Doctoral Thesis
DOI
https://doi.org/10.11606/T.55.2018.tde-03102018-154845
Document
Author
Full name
Marcos Luiz Crispino
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 1993
Supervisor
Committee
Carvalho, Luiz Antonio Vieira de (President)
Freiria, Antonio Acra
Ladeira, Luiz Augusto da Costa
Táboas, Plácido Zoega
Tadini, Wilson Mauricio
Title in Portuguese
BIFURCAÇÃO EM CAMPOS DESCONTÍNUOS
Keywords in Portuguese
Não disponível
Abstract in Portuguese
Estudamos neste trabalho a bifurcação das soluções da seguinte classe de equações: x(t) = -fα(x([t])), t ≥ 0, x(0) = c0 (1) onde α = (α0, ..., αm-1) ∈ Rm, αi ≥ 0, i =0, ..., m-1, e: fα (t) = {αi, βi < t ≤ βi+i, i = 0, ... m-1, β0 = 0 , βm = 1 0, t = 0 1, t gt; 1 -fα(-t), t ≤ 0. Considerando um caso particular onde α ∈ R3, foi demonstrado que as soluções de (1) podem exibir um comportamento não caótico, porém complicado.
Title in English
Not available
Keywords in English
Not available
Abstract in English
The bifurcation of the solutions of the following class of equations: x(t) = -fα(x([t])), t ≥ 0, x(0) = c0 (1) where α = (α0, ..., αm-1) ∈ Rm, αi ≥ 0, i =0, ..., m-1, and: fα (t) = {αi, βi < t ≤ βi+i, i = 0, ... m-1, β0 = 0 , βm = 1 0, t = 0 1, t gt; 1 -fα(-t), t ≤ 0 . was studied. Taking a particular case where α ∈ R3, it was show that the solutions of (1) may exhibit a complicated (but not chaotic) behavior.
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2018-10-03