• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.55.2019.tde-02042019-100140
Document
Author
Full name
Monica Furkotter
Institute/School/College
Knowledge Area
Date of Defense
Published
São Carlos, 1989
Supervisor
Committee
Rodrigues, Hildebrando Munhoz (President)
Claeyssen, Julio Cesar Ruiz
Ladeira, Luiz Augusto da Costa
Menzala, Gustavo Perla
Spezamiglio, Adalberto
Title in Portuguese
SOBRE BIFURCAÇÃO E SIMETRIA DE SOLUÇÕES PERIÓDICAS DE EQUAÇÕES DIFERENCIAIS NÃO LINEARES
Keywords in Portuguese
Não disponível
Abstract in Portuguese
Não dsponível
Title in English
Not available
Keywords in English
Not available
Abstract in English
Consider the equation u + u = g(u, p) + µf (t), where p, u are samll parameters, g is an odd smooth nonlinear function of u, f is an even continuous function, either 2π/m-periodic or π/m-odd-harmonic (i.e, f(t + π/m) = -f(t), for every t in R) and m≥ 2 is an integer. Under certain conditions, the small 2π-periodic solutions maintain some symmetry properties of the forcing function f(t), when µ ≠ 0. Some other interesting results describe the changes of the number of such solutions, as p and µ very is a small neighborhood of the origin. It was also proved that a central assumption, which was required in the main results, is generic. The main tool used in this work is the Liapunov-Schmidt Method.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
MonicaFurkotter.pdf (1.30 Mbytes)
Publishing Date
2019-04-02
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.