• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
10.11606/T.54.1990.tde-25032015-105837
Document
Auteur
Nom complet
Jorge Chahine
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 1990
Directeur
Jury
Felicio, Jose Roberto Drugowich de (Président)
Alcaraz, Francisco Castilho
Koberle, Roland
Oliveira, Paulo Murilo Castro de
Santos, Raimundo Rocha dos
Titre en portugais
Método de Monte Carlo com evolução no espaço de parâmetros
Mots-clés en portugais
Não disponível
Resumé en portugais
Nesta tese estudamos vários tópicos ligados a simulações Monte Carlo de sistemas clássicos de spin em rede. Estamos interessados mais nos métodos do que nos resultados de aplicações com grande precisão numérica, devido a limitações computacionais. A ênfase é dada principalmente ao método de Grupo de Renormalização via Monte Carlo. Em primeiro lugar levamos a cabo um estudo detalhado do truncamento no espaço de Hamiltonianas para poder controlar numericamente os efeitos de operadores marginais. Um estudo detalhado do modelo Ashkin Teller N= 2 em duas dimensões é apresentado. Procuramos, a seguir, entender melhor o método de Ferrenberg e Swendsen de histogramas estudando-o para poder calcular, em uma só simulação, valores de expoentes não universais. Apresentamos resultados do modelo de Ising com defeito em 2d. Este método é aplicado ao problema da determinação da ordem de transições. Exemplos de modelos de Ising com interação de multispin são apresentados. Mostramos a seguir uma nova e poderosa técnica de investigar transições de fase que é obtida da combinação de idéias do Grupo de Renormalização via Monte Carlo e do método de histograma. Estes métodos são finalmente usados para estudar o modelo Ashkin Teller N= 3 anisotrópico em duas dimensões
Titre en anglais
Not available
Mots-clés en anglais
Not available
Resumé en anglais
In this thesis we study various topics in the realm of Monte Carlo simulations of classical spin systems. We are more interested in the methods themselves than in precise numerical results, due to computational limitations. Emphasis lies in the study of the Monte Carlo renormalization group. First of all, we study the effects of truncations in Hamiltonian space on the marginal operators of a theory. A case study of the Ashkin Teller N= 2 in 2d is presented. Next we turn to trying to understand better Ferrenberg and Swendsen´s histogram method, extending it so that non universal exponents can be obtained from a single simulation. Results from simulations of the 2d Ising model with a defect are shown. This method is then applied to the problem of phase transition order determination. Examples from 2d Ising models with multispin interactions are presented. We then present a new and powerful method for investigating phase transitions which derives from the combination of MCRG and the histogram method. This new technique is then used in the study of the N= 3, 2d, anisotropic Ashkin Teller model
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
JorgeChahineD.pdf (3.89 Mbytes)
Date de Publication
2015-03-25
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.