• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
10.11606/T.54.1989.tde-14102014-113233
Document
Auteur
Nom complet
Marcio Jose Martins
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Carlos, 1989
Directeur
Jury
Alcaraz, Francisco Castilho
Felicio, Jose Roberto Drugowich de
Gomes, Marcelo
Koberle, Roland
Kurak, Valerio
Titre en portugais
Invariância conforme e modelos com expoentes críticos variáveis
Mots-clés en portugais
Ansatz de Bethe
Invariância Conforme
Modelo de Heisenberg
Modelos Exatamente Integráveis
Resumé en portugais
Nesta tese estudamos as propriedades críticas dos modelos anisotrópicos (isotrópicos) de Heisenberg com spin s arbitrário. O espectro das Hamiltonianas, com condições periódicas de contorno, foi calculado para redes finitas, resolvendo-se as equações do Bethe ansatz associadas. Nossos resultados indicam que a anomalia conforme destes modelos tem o valor c=3s/(1+s), independente da anisotropia, e os expoentes críticos variam continuamente com a anisotropia assim como no modelo de 8-vértices. O conteúdo de operadores destes modelos indica que a teoria de campos que governa a criticalidade destes modelos de spin é descrita por operadores formados pelo produto de um operador Gaussiano por outro com simetria Z(2s). Estudando estes modelos, com certas condições especiais de contorno, mostramos que eles são relacionados com uma nova classe de teorias unitárias recentemente propostas
Titre en anglais
Conformal invariance and statistical mechanics dels with continuonsly varying exponentes
Mots-clés en anglais
Bethe Ansatz
Conformal Invariance
Exact Integrable Models
Heiseng Model
Resumé en anglais
This thesis is concerned with the critical properties of anisotropic (isotropic) Heisenberg chain,with arbitrary spin-s. The eigenspectrum of these Hamiltoniana, with periodic boundaries, are calculated for finite chains by solving numerically their associated Bethe ansatz equations. The results indicate that the conformal anomaly hás the value c=3s/1+s, independently of the anisotropy, and the exponentes vary continuously with the anisotropy like in the 8-vertex model. The operator content of these models indicate that the underlying field theory governing these critical spin-s models are described by composite fields formed by the product of Gaussian and Z(2s) fields. Studying these models, with some special boundary conditions, we show that they are related with a large class of unitary conformal field theories recntly introduced
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2014-10-20
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
Centro de Informática de São Carlos
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.