• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.54.1992.tde-07042015-165731
Documento
Autor
Nombre completo
Osame Kinouchi Filho
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 1992
Director
Tribunal
Alfonso, Nestor Felipe Caticha
Fontanari, Jose Fernando
Wreszinski, Walter Felipe
Título en portugués
Generalização ótima em perceptrons
Palabras clave en portugués
Não disponível
Resumen en portugués
O perceptron tem sido estudado no contexto da física estatística desde o trabalho seminal de Gardner e Derrida sobre o espaço de aclopamentos desta rede neural simples. Recentemente, Opper e Haussler calcularam via método de réplicas, o desempenho ótimo teórico do perceptron na aprendizagem de uma regra a partir de exemplos (generalização). Neste trabalho encontramos a curva de desempenho ótimo após a primeira apresentação dos exemplos (primeiro passo da dinâmica de aprendizagem). No limite de grande número de exemplos encontramos que o erro de generalização é apenas duas vezes maior que o erro encontrado por Opper e Haussler. Calculamos também o desempenho ótimo para o primeiro passo da dinâmica de aprendizagem com seleção de exemplos. Mostramos que a seleção ótima ocorre quando o novo exemplo é escolhido ortogonal ao vetor de acoplamentos do perceptron. O erro de generalização neste caso decai exponencialmente com o número de exemplos. Propomos também uma nova classe de algoritmos de aprendizagem que aproxima muito bem as curvas de desempenho ótimo. Estudamos analiticamente o primeiro passo da dinâmica de aprendizagem e numericamente seu comportamento para tempos longos. Mostramos que vários algoritmos conhecidos (Hebb, Perceptron, Adaline, Relaxação) podem ser interpretados como aproximações, de maior ou menor qualidade, de nosso algoritmo
Título en inglés
Not available
Palabras clave en inglés
Not available
Resumen en inglés
The perceptron has been studied in the contexto f statistical physics since the seminal work of Gardner and Derrida on the coupling space of this simple neural network. Recently, Opper and Haussler calculated, with the replica method, the theoretical optimal performance of the perceptron for learning a rule (generalization). In this work we found the optimal performance curve after the first presentation of the examples (first step of learning dynamics). In the limit of large number of examples the generalization error is only two times the error found by Opper and Haussler. We also calculated the optimal performance for the first step in the learning situation with selection of examples. We show that optimal selection occurs when the new example is choosen orthogonal to the perceptron coupling vector. The generalization error in this case decay exponentially with the number of examples. We also propose a new class of learning algorithms which aproximates very well the optimal performance curves. We study analytically the first step of the learning dynamics and numerically its behaviour for long times. We show that several known learning algorithms (Hebb, Perceptron, Adaline, Relaxation) can be seen as more or less reliable aproximations o four algorithm
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
OsameFilhoM.pdf (4.57 Mbytes)
Fecha de Publicación
2015-04-08
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
Centro de Informática de São Carlos
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2021. Todos los derechos reservados.