• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tesis Doctoral
DOI
https://doi.org/10.11606/T.54.1982.tde-03022015-152934
Documento
Autor
Nombre completo
Jose Roberto Drugowich de Felicio
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Carlos, 1982
Director
Tribunal
Koberle, Roland (Presidente)
Kurak, Valerio
Qualifik, Paul
Rosa Junior, Sylvio Goulart
 
Título en portugués
Propriedades críticas do modelo de Ashkin-Teller
Palabras clave en portugués
Não disponível
Resumen en portugués
O modelo de Ashkin-Teller (1943) exibe um comportamento crítico, aparentemente não universal, semelhante ao do modelo de Baxter. Entretanto ele pode também ter propriedades críticas idênticas às do modelo de Ising, dependendo da relação entre as constantes de acoplamento. Nesse trabalho investigamos essas duas regiões de comportamento distinto, usando a hamiltoniana de tempo contínuo e, fazendo a hipótese de que esse limite não tira o sistema de sua classe de universalidade. Na região K4 ‹ K1 = K2 a hamiltoniana equivalente e uma versão discreta do modelo de Thirring massivo, e os índices críticos são calculados após a identificação das densidades com operadores desse modelo da teoria de campos. A região K4 ›K1 = K2, em que o modelo sofre duas transições, é estudada usando uma transformação do grupo de renormalização no espaço real. O modelo é reconhecido, nessa região, como sendo um modelo de Ising diluído que tem os expoentes usuais
 
Título en inglés
Not available
Palabras clave en inglés
Not available
Resumen en inglés
The Ashkin-Teller model (1943) displays non-universal critica1 behavior similar to the one found in the Baxter model. For appropriate values of the coupling constants it can, nevertheless, have critical properties identical to those found in the Ising model. In this work we study the entire phase diagram, and thus investigate both behaviours, using the continuous time hamiltonian. We assume that this limit preserves the universality class of the model. For K4‹ K1 = K2 the equivalent hamiltonian is a discrete version of the Thirring model, and critical indices are calculated after identification of the densities with operators of this field theoretical model. For K4› K1 = K2 the hamiltonian is equivalent to a dilute Ising model with the usual exponents. We also derive these exponents through a real space renormalization group transformation
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2015-02-03
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores.
CeTI-SC/STI
© 2001-2024. Biblioteca Digital de Tesis y Disertaciones de la USP.