Prevalência do uso de drogas ilícitas e medicamentos por motoristas de caminhão que trafegam em rodovias do estado de São Paulo

Dissertação apresentada à Faculdade de Medicina da Universidade de São Paulo, para obtenção do título de Mestre em Ciências

Programa: Fisiopatologia Experimental

Orientadora: Prof.ª Dr.ª Vilma Leyton

São Paulo

2019
Helena do Nascimento Panizza

Prevalência do uso de drogas ilícitas e medicamentos por motoristas de caminhão que trafegam em rodovias do estado de São Paulo

Dissertação apresentada à Faculdade de Medicina da Universidade de São Paulo, para obtenção do título de Mestre em Ciências
Programa: Fisiopatologia Experimental
Orientadora: Prof.ª Dr.ª Vilma Leyton

São Paulo

2019
Panizza, Helena do Nascimento
Prevalência do uso de drogas ilícitas e medicamentos por motoristas de caminhão que trafegam em rodovias do estado de São Paulo / Helena de Nascimento Panizza. São Paulo, 2019.
Dissertação (mostrado) -- Faculdade de Medicina da Universidade de São Paulo.

Descritores: 1. Toxicologia 2. Epidemiologia
USP/FM/DBD-441/19

Responsável: Erinalva da Conceição Batista, CRB-6 6755
Normatização adotada

Esta dissertação está de acordo com as seguintes normas em vigor no momento desta publicação:

- Referências: adaptado de *International Committee of Medical Journals Editors* (Vancouver).

- Abreviatura dos títulos dos periódicos de acordo com *List of Journals Indexed in Index Medicus*.
Sumário

Lista de Figuras ... 7
Lista de Tabelas ... 8
Lista de Abreviaturas ... 9
Resumo .. 11
Abstract ... 12
1. Introdução... 13
 1.1 Acidente de Trânsito .. 14
 1.2 Fatores de risco para envolvimento em AT: destaque para o uso de substâncias psicoativas na direção de veículo automotor .. 19
 1.2.1 Maconha .. 21
 1.2.2 Estimulantes ... 25
 1.2.2.1 Cocaína .. 25
 1.2.2.2 Anfetamina ... 27
 1.2.3 Medicamentos .. 30
 1.2.3.1 Antidepressivos tricíclicos .. 31
 1.2.3.2 Benzodiazepínicos ... 33
 1.3 Motoristas de caminhão .. 35
2. Justificativa .. 39
3. Objetivo ... 42
4. Material e Métodos ... 44
 4.1 Material .. 45
 4.1.1 Equipamentos .. 45
 4.1.2 Kits de Triagem e reagentes ... 45
 4.1.3 Padrões ... 45
 4.2 Métodos .. 46
 4.2.1 Comando de Saúde nas Rodovias ... 46
 4.2.2 Casuística .. 47
 4.2.3 Critérios de inclusão e exclusão .. 47
 4.2.4 Aspectos éticos .. 47
 4.2.5 Coleta das amostras e aplicação dos questionários 47
 4.2.6 Análises toxicológicas ... 48
 4.2.7 Avaliação dos dados sociodemográficos e ocupacionais 53
 4.2.8 Correlação de dados sociodemográficos e ocupacionais com uso de drogas ilícitas ... 56
 4.2.9 Análises estatísticas ... 56
5. Resultados ... 57
5.1 Perfil sociodemográfico e ocupacional dos motoristas de caminhão 62
5.2 Perfil sociodemográfico e ocupacional e relação com uso de drogas ilícitas 63
 5.2.1 Avaliação da correlação entre o fator “Idade” e uso de drogas ilícitas 64
 5.2.2 Avaliação da correlação entre o fator “Acidente de trânsito previamente
relatado” e uso de drogas ilícitas .. 66
 5.2.3 Avaliação da correlação entre o fator “Tipo de carga transportada” e uso de
drogas ilícitas .. 66
 5.2.4 Avaliação da correlação entre o fator “Estado civil” e uso de drogas ilícitas
70
 5.2.5 Avaliação da correlação entre o fator “Cor de pele” e uso de drogas ilícitas72
 5.2.6 Avaliação da correlação entre o fator “Escolaridade” e uso de drogas ilícitas
.. 72
 5.2.7 Avaliação da correlação entre o fator “Tempo de profissão” e uso de drogas
ilícitas .. 72
 5.2.8 Avaliação da correlação entre o fator “tipo de serviço” e uso de drogas
ilícitas .. 74
 5.2.9 Avaliação da correlação entre o fator “Característica do serviço” e uso de
drogas ilícitas .. 74
 5.2.10 Avaliação da correlação entre o fator “Distância percorrida” e uso de
drogas ilícitas .. 75
5.3 Uso relatado de drogas .. 77
6. Discussão .. 78
7. Considerações finais ... 92
8. Referências Bibliográficas .. 95
9. Anexos .. 105
 Anexo A – Questionário .. 105
 Anexo B– Termo de consentimento livre e esclarecido (TCLE) 106
 Anexo C – Aprovação do Comitê de Ética em Pesquisa da FMUSP 108
Lista de Figuras

Figura 1: Número de mortes (em preto) e taxa de mortalidade (em verde) por acidente de trânsito para cada 100.000 habitantes no mundo. Adaptado de *Global Status Report on Road Safety, 2018*. ... 17

Figura 2: Taxa de mortalidade por acidente de trânsito para cada 100.00 habitantes no Brasil. Adaptado de *Global Status Report on Road Safety, 2018*. 18

Figura 3: Estrutura química dos neurotransmissores noradrenalina e dopamina, bem como da efedrina e das anfetaminas, evidenciando a similaridade estrutural. Adaptado de *Heal D, 2013*... 28

Figura 4: A estrutura química dos benzodiazepínicos. FONTE: Chouinard G, 1999... 34

Figura 5: Teste de imunoensaio utilizado na etapa de triagem. ... 50

Figura 6: Cromatograma ilustrativo de uma das amostras consideradas positivas para a presença de anfetamina. ... 60

Figura 7: Cromatograma ilustrativo de uma das amostras consideradas positivas para a presença de cocaína. .. 60

Figura 8: Cromatograma ilustrativo de uma das amostras consideradas positivas para a presença de maconha. .. 60

Figura 9: Distribuição de usuários de estimulantes de acordo com a faixa etária........ 65

Figura 10: Distribuição do uso de drogas estimulantes em relação ao tipo de carga transportada. ... 69

Figura 11: Distribuição do uso de drogas estimulantes e THC (A e B, respectivamente) em relação ao estado civil declarado ... 71

Figura 12: Distribuição do uso de drogas estimulantes (A) e THC (B) em relação ao tempo de exercício da profissão declarado. .. 73

Figura 13: Distribuição do uso de estimulantes e relação com a característica do serviço prestado (A) e a distância percorrida na atual viagem (B). .. 76
Lista de Tabelas

Tabela 1: Detalhe das condições cromatográficas utilizadas nas análises de anfetamina.......51
Tabela 2: Detalhe das condições cromatográficas utilizadas nas análises de benzoilecgonina. 51
Tabela 3: Detalhe das condições cromatográficas utilizadas nas análises de THC-COOH....... 51
Tabela 4: Condições cromatográficas utilizadas nas análises de antidepressivos tricíclicos e benzodiazepínicos.. 52
Tabela 5: Relação massa/carga dos íons pesquisados para confirmação dos ADT e BDZ por CL-EM/EM. .. 52
Tabela 6: Entrevistas realizadas e amostras de urina coletadas dos “comandos de saúde nas rodovias” durante o ano de 2016... 58
Tabela 7: Número de amostras positivas para as drogas anfetamina (AMP), cocaína (COC) e maconha (THC). .. 59
Tabela 8: Perfil sociodemográfico e ocupacional dos caminhoneiros entrevistados no ano de 2016.. 63
Tabela 9: Distribuição de usuários de estimulantes de acordo com a faixa etária. 65
Tabela 10: Distribuição dos motoristas entrevistados quanto ao tipo de carga que estavam transportando quando foram entrevistados.. 67
Tabela 11: Distribuição dos motoristas entrevistados quanto ao tipo de carga que estavam transportando quando foram entrevistados.. 69
Lista de Abreviaturas

AT: acidente de trânsito
ADT: antidepressivos tricíclicos
AMP: anfetamina
ANVISA: Agência Nacional de Vigilância Sanitária
BDZ: medicamentos benzodiazepínicos
CG-EM: cromatografia gasosa acoplada à espectrometria de massas
CL-EM/EM: cromatografia líquida acoplada à espectrometria de massas
CNH: Carteira Nacional de Habilitação
COC: cocaína
CSR: Comando de Saúde nas Rodovias
DUI: dirigir sob influência de álcool ou, do Inglês, Driving under the influence of alcohol
DUID: Dirigir sob influência de drogas ou, do Inglês, Driving under the influence of drugs
FMUSP: Faculdade de Medicina da Universidade de São Paulo
GABA: ácido gama-aminobutírico
IBGE: Instituto Brasileiro de Geografia e Estatística
IPEA: Instituto de Pesquisa Econômica Aplicada
LENAD: Levantamento Nacional de Álcool e Drogas
MDMA: metilênodioximetanfetamina
OMS: Organização Mundial de Saúde
ONU: Organização das Nações Unidas
PRF: Polícia Rodoviária Federal
RDC: Resolução da Diretoria Colegiada
SNC: Sistema Nervoso Central
TCLE: Termo de Consentimento Livre e Esclarecido
THC: Δ-9 Tetrahidrocanabinol
THC-COOH: Δ-9 Tetrahidrocanabinol carboxílico
UNODC: Escritório das Nações Unidas sobre Drogas e Crime, ou, do Inglês, United Nations Office on Drugs and Crime
Resumo

Panizza HN. Prevalência do uso de drogas ilícitas e medicamentos por motoristas de caminhão que trafegam em rodovias do estado de São Paulo [dissertação]. São Paulo: Faculdade de Medicina, Universidade de São Paulo; 2019.

Os acidentes de trânsito constituem uma das principais causas de morte e morbidade na população mundial. Dentre as atitudes de risco assumidas pelo motorista, destaca-se o uso de drogas ilícitas e medicamentos psicoativos. Estudos anteriores realizados em motoristas de caminhão apontam que uma parcela considerável da população entrevistada fazia uso de drogas ilícitas. É sabido que indivíduos engajados nesta profissão apresentam alto risco de desenvolvimento de estresse ocupacional e transtornos psiquiátricos, o que pode estar correlacionado com o uso de drogas ilícitas e medicamentos psicoativos. Em vista disso, o presente trabalho visou estimar a prevalência de anfetamina, cocaína e maconha, bem como dos medicamentos benzodiazepínicos e antidepressivos tricíclicos em população de caminhoneiros que trafegavam por rodovias federais paulistas no ano de 2016. Foram realizadas abordagens durante os eventos denominados Comando de Saúde nas Rodovias, promovidos pela Polícia Rodoviária Federal, onde os motoristas foram submetidos a entrevistas focadas na obtenção de informações socioeconômicas e ocupacionais, consumo de drogas e medicamentos, além da coleta de urina. A triagem das amostras foi feita por imunoensaio e a confirmação realizada por cromatografia gasosa acoplada à espectrometria de massas para as drogas ilícitas, bem como cromatografia líquida acoplada a espectrometria de massas em tandem para os medicamentos. Dentre as 866 amostras coletadas no ano de 2016, nenhuma foi considerada positiva para a presença de medicamentos, enquanto 58 mostraram-se positivas para uma ou mais drogas ilícitas, resultando na prevalência de 6,7% para essas últimas na amostra estudada. As drogas de caráter estimulante foram as mais prevalentes, visto terem sido confirmadas em 51 amostras (5,9% da população participante). Para essas últimas, foi possível evidenciar maior susceptibilidade ao uso em indivíduos mais jovens, que alegam exercer a profissão a menos tempo, solteiros, que estavam percorrendo longas distâncias na atual viagem, que se consideravam caminhoneiros de longa distâncias e que vinham transportando produtos de caráter perecível. Já para a maconha, foi verificado que os motoristas mais suscetíveis eram aqueles que se declararam solteiros, e a menos tempo exercendo a profissão.

Descritores: Toxicologia; Epidemiologia; Acidentes de trânsito; Drogas ilícitas; Cannabis; Cocaína; Anfetamina; Antidepressivos.
Abstract

Road traffic accidents are considered one of the major causes of mortality and morbidity worldwide. Among risky behaviors assumed by the drivers, the use of illicit drugs and psychotropic medication stand out. Previous studies with truck drivers show that a substantial proportion of the interviewed subjects were used to the consumption of illicit drugs. It is known that individuals engaged to this type of professional activity present higher risks for development of occupational stress and psychiatric disorders, which might be correlated with illicit drug and medicine use. Therefore, the present study aimed to estimate the prevalence of amphetamine, cocaine, and marijuana, as well as benzodiazepine and tricyclic antidepressant use in the population of truck drivers that crossed São Paulo state federal highways during the year of 2016. The approaches were made during the events "Comando de Saúde nas Rodovias" (Health Commands on the Roads) promoted by the Federal Highway Police. Drivers were submitted to an interview focused on socio-economic profile, as well as the use of drugs and medicines and were also asked to provide a urine sample. The screening of the samples was performed through immunoassay, and the confirmation was performed by gas chromatography-mass spectrometry for illicit drugs, and liquid chromatography-tandem mass spectrometry for the medicines. Among 866 samples collected in 2016, none of them were considered positive for the presence of medicines, and 58 were considered positive for at least one illicit drug, resulting in a prevalence of 6,7%. Stimulant-type drugs were the most prevalent, showing 51 confirmed samples (5,9% of the interviewed population). Additionally, it as possible to correlate a higher susceptibility of stimulant drugs use by younger, not married subjects, less experienced as truck drivers, traveling long distances on the actual journey, which classified themselves as long-haul truck drivers and were transporting perishable products when interviewed. Regarding the marijuana use, it was correlated a higher susceptibility for single drivers with less experience as a professional driver.

Descriptors: Toxicology; Epidemiology; Accidents, traffic; Street drugs; Cannabis; Cocaine; Amphetamine; Tricyclic antidepressive agents.
1. Introdução
1.1 Acidente de Trânsito

A importância dos veículos automotores para o transporte terrestre é indiscutível na sociedade atual. Desde sua criação, no final do século XIX, os veículos sofreram adaptações e variações e se difundiram para as mais diversas regiões do globo. São atualmente utilizados no transporte público e particular, bem como no transporte de cargas. Porém nem todos os aspectos decorrentes da implementação desta tecnologia foram benéficos. Com sua popularização, houve aumento da ocorrência de acidentes de trânsito (AT) e, consequentemente, aumento no número de mortos e feridos em decorrência desses eventos. Assim, na década de 1950, iniciou-se por parte da comunidade internacional a preocupação quanto ao assunto e iniciaram-se monitorizações das estatísticas de ocorrência de AT em alguns países¹.

No ano de 2004, a Organização Mundial de Saúde (OMS) publicou o “World Report on Road Traffic Injury Prevention”, no qual foram divulgadas informações referentes à segurança viária, abrangendo distintas regiões do mundo. Nesta publicação, foi verificada a extensão com que os AT vinham afetando diferencialmente os países, bem como pontuada as prováveis variáveis envolvidas na modulação da ocorrência destes².

Posteriormente diversos documentos foram lançados pela OMS com o objetivo de monitorar a evolução da segurança viária, destacando-se as quatro versões do “Global Status Report on Road Safety”. Nestes, foi constatado que o número de mortes por AT vinha crescendo, tendo sido registrado um aumento de 1,15 para 1,35 milhão de pessoas que perdiam a vida todo ano em
decorrência de AT, além de um número estimado entre 20 e 50 milhões de pessoas que eram acometidas por ferimentos não fatais. Em vista disso, os AT evoluíram da 9ª para a 8ª colocação nos anos estudados no que se refere à causas de mortes mais comuns no mundo.

Esses dados revelam informações ainda mais alarmantes: apesar da taxa de mortes por AT ter se mantido relativamente estável em 18 mortos por cem mil habitantes pelos últimos 15 anos, ou seja, entre os anos de 2000 e 2016, conforme apresentado na Figura 1, este era reflexo da diminuição progressiva do número de mortes em países considerados desenvolvidos, tais como Austrália, Canadá, França, Suécia, Japão e Estados Unidos, acompanhada do aumento do número em países subdesenvolvidos e em desenvolvimento. Estes dois últimos grupos foram responsáveis por 90% dos AT contabilizados, mesmo apresentando apenas 48% da frota de veículos mundial registrada. Além disso, a faixa etária mais afetada foi a de indivíduos entre 15 e 29 anos (sendo a primeira causa de mortes de indivíduos dessa população), ou seja, população considerada jovem e economicamente ativa. Logo, a morte ou invalidez desse grupo específico acarreta grandes perdas econômicas e sociais.

Ainda segundo esses relatórios, diversos fatores podem contribuir para a obtenção de vias mais seguras, tais como redução dos limites de velocidades em vias urbanas (apenas 29% dos países investigados apresentaram legislações neste sentido e, destes, menos de 10% possuíam legislações consideradas eficazes), melhoria do acesso ao transporte público de qualidade, melhoria de infraestrutura e fiscalização. Outros pontos considerados de suma importância foram a redução do ato de dirigir sob influência de álcool (DUI, do
Inglês, *Driving Under the Influence of Alcohol*, uso de capacetes por motociclistas, de cintos de segurança e dispositivos de retenção para crianças (“cadeirinhas”). Porém, assim como para as legislações referentes à velocidade, citada anteriormente, as legislações que versam sobre esses tópicos também são nulas ou deficientes na maioria dos países. Para o DUI, por exemplo, apesar de 90% dos países apresentarem algum tipo de legislação referente ao assunto, apenas 49% estabeleciam o limite legal de concentração de álcool no sangue como 0,05 gramas por decilitro, como recomendado pela OMS na versão do *Global Status Report on Road Safety* publicada em 2009. Assim, as projeções indicaram que, se nenhuma medida fosse tomada, o número de mortes por AT atingiria o valor de 2,4 milhões em 2030, elevando os AT à 5ª posição em eventos letais, ficando atrás apenas das isquemias cardíacas, acidentes vasculares cerebrais, doença pulmonar obstrutiva crônica e infecções do trato respiratório3-5.

Em vista disso, a assembleia geral da ONU publicou em 2010 a resolução 64/255 “Improving Global Road Safety”, que estabeleceu a década de 2011 - 2020 como a Década de Ação pela Segurança no Trânsito, visando promover a implementação, nos países signatários, de medidas de melhoria nas condições do trâfego, a fim de reduzir o número total de mortes em AT em 50%6. A ONU, ao proceder dessa forma, baseou-se num fato importante apontado no relatório da OMS: uma vez que diversos países já vinham conseguindo reduzir o número de AT, e este fato foi possível graças a esforços governamentais provenientes de diversas instâncias, provou-se o caráter evitável dos AT.
Figura 1: Número de mortes (em preto) e taxa de mortalidade (em verde) por acidente de trânsito para cada 100.000 habitantes no mundo. Adaptado de Global Status Report on Road Safety, 2018.

O Brasil pertence ao grupo de países de média renda e é signatário da resolução citada anteriormente. Apesar disso, está entre aqueles onde são registrados maiores números de morte no trânsito. Conforme apresentado na Figura 2, não apresentou reduções significativas na taxa de mortes por AT até o ano de 2017, no qual foram reportadas 36.430 mortes, sendo estes os dados mais recentes publicados pela OMS. Consequentemente, apesar de a “Década” proposta pela ONU estar terminando, não houve durante este período, alteração substancial no número de mortos em AT. Dessa forma, o Brasil se encontra aquém da meta proposta pela ONU, fato que pode estar correlacionado com a ineficácia das medidas de políticas públicas de caráter preventivo implementadas no período⁴,⁵.
No Brasil, a maioria dos deslocamentos, tanto de carga quanto de pessoas, é feito por meio de rodovias. Logo, apresenta extensa malha rodoviária, cujas dimensões vêm aumentando; em 2001, calculava-se que existiam aproximadamente 171.000 Km de vias pavimentadas no país, enquanto em 2017 ultrapassava 213.000 Km. Destes, ao menos 71.000 Km eram constituídos de rodovias federais nas quais, em 2014 foram registrados um total de 169.163 acidentes envolvendo mais de 300.000 veículos, resultando em mais de 8.000 mortes e cerca de 100.000 feridos, dentre os quais mais de 25% foram considerados feridos graves. Os custos estimados para a sociedade como um todo somaram 12,3 bilhões de reais, valores que incluem custos associados às pessoas envolvidas (remoção do local, transporte a hospitais e outros centros de atendimento, custos hospitalares e previdenciários decorrentes de perda de produção), custo com veículos (remoção de veículos, danos a estes causados,
perda de carga), custos institucionais e danos de propriedade. Isso sem mencionar o custo social que um AT representa; tanto a perda prematura de uma pessoa e o impacto que este evento pode gerar em seu grupo social, como os traumas que podem imprimir em seus sobreviventes.

Segundo o Instituto de Pesquisa Econômica Aplicada (IPEA), houve no Brasil um aumento de 40% no número de AT ocorridos no país entre os anos de 2007 e 2014, o que acarretou, como era esperado, um aumento do custo dos respectivos em 35% para este mesmo período. Existem muitos fatores que podem ter corroborado com este evento; um deles é o grande aumento da frota de brasileira veículos, que apresentou, de 2003 a 2014, variação de 136%. Também, para agravar a situação, esta alteração não foi acompanhada por melhorias estruturais substanciais, o que pode ter vindo a contribuir com o aumento da aglomeração de veículos nas vias, com consequente deterioração das condições de trânsito tanto em centros urbanos como em rodovias.

1.2 Fatores de risco para envolvimento em AT: destaque para o uso de substâncias psicoativas na direção de veículo automotor

A OMS aponta diversos fatores de risco para envolvimento em AT, dentre os quais três recebem ênfase e concentram grande atenção das autoridades de tráfego, sendo foco de campanhas de conscientização e fiscalização. O primeiro é a condução de veículo em altas velocidades. Neste cenário, o motorista se coloca em uma situação na qual o tempo hábil para reagir a uma adversidade, possivelmente prevenindo a ocorrência de um AT é diminuído, resultando tanto em aumento do risco de envolvimento em tais eventos, como de sua gravidade.
O estado de fadiga do motorista é considerado outro importante fator de risco. Já foi comprovado em diversos estudos que a restrição ao sono promove significativa diminuição no estado de alerta e no desempenho cognitivo e psicomotor, sendo este tema inclusive abordado por revisões literárias. Mais além, a piora do quadro de fadiga pode acarretar em episódios de lapsos de sono.

Finalmente, o terceiro principal fator de risco, segundo a OMS, consiste em dirigir sob o efeito de álcool e drogas psicoativas. Isso porque é sabido que essas substâncias interferem de forma significativa nas funções cerebrais, prejudicando diversas habilidades necessárias à direção segura. Por conseguinte, o uso de substâncias, sejam elas de caráter lícito - como o álcool e medicamentos psicoativos - ou ilícito – como a maconha e a cocaína - tem sido apontado como um fator que contribui de maneira expressiva para o aumento da morbimortalidade dos AT. Isso posto, surge, por parte das autoridades, a necessidade de controle e fiscalização do uso das respectivas substâncias por motoristas. No Brasil, o ato de dirigir sob a influência de álcool ainda é largamente praticado. Segundo dados provenientes da pesquisa denominada “Vigilância dos fatores de risco e proteção para doenças crônicas por inquérito telefônico” (VIGITEL) promovida pelo Ministério da Saúde em 2018, abranguendo as 26 capitais brasileiras e o Distrito Federal, 5,3% dos brasileiros entrevistados admitiram já haverem dirigido após terem feito uso de bebidas alcoólicas.

O Código de Trânsito Brasileiro atual, em seu artigo 306, explicita como crime o ato de “conduzir veículo automotor com capacidade psicomotora alterada em razão da influência de álcool ou outra substância psicoativa que
determine dependência”. Porém, apesar de o texto legislativo apresentar descrição minuciosa no que se refere ao uso de álcool pelo motorista, o uso de outras drogas psicoativas encontra-se vago; as classes de drogas em questão não são especificadas, bem como as possíveis concentrações que serão utilizadas para tipificar um crime. Essas “brechas” legislativas dificultam a fiscalização e o monitoramento do uso de substâncias psicoativas por motoristas no Brasil, de forma que a magnitude da ocorrência desses eventos, bem como a relação dos respectivos com a ocorrência de AT não são conhecidas.

1.2.1 Maconha

A Cannabis sativa é uma planta herbácea originária da Ásia central, que tem sido usada pela medicina popular há séculos, devido aos diversos compostos oriundos de seu metabolismo secundário, pertencentes a classes químicas distintas, dentre as quais destaca-se os canabinoides, flavonoides, terpenoides e alcaloides. Dentre essa diversidade de substâncias, muitas apresentaram ação farmacológica, ressaltando-se ação antiepilética, antiemética, imunossupressora e estimulante do apetite, além de possuírem potencial terapêutico no tratamento de diferentes patologias, tais como epilepsia e Alzheimer, por exemplo. Recentemente, inclusive, a Agência Nacional de Vigilância Sanitária (ANVISA), por meio da RDC de número 327 de 2019, aprovou a fabricação, importação, comercialização e consumo de produtos industrializados contendo como princípios ativos derivados vegetais ou fitofármacos da Cannabis sativa para fins medicinais de uso humano.

Maconha é a denominação utilizada para designar o produto resultante de processo de secagem e trituração das folhas e flores da planta Cannabis sativa.
Ela contém diversos compostos químicos, dentre os quais destacam-se os canabinoides, tais como o canabinol, o canabidiol, o canabigerol e diversos isômeros do tetrahidrocanabinol (THC). A atribuição dos efeitos psicoativos da maconha é associada principalmente ao Δ9-THC. A ação dessa droga e a forma como ela modula o comportamento do indivíduo pode ser considerada como única, visto apresentar características estimulantes, depressoras, sedativas, tranquilizantes e alucinógenas. O uso recreacional dessa droga é devido aos seus efeitos de euforia e relaxamento, bem como alterador do humor. A via administrada mais comum é a inalatória, resultante do fumo de cigarros artesanalmente preparados e que contenham em seus interiores as folhas e flores processadas e secas. Porém seu uso por meio da via oral também é feito e, por conta da legalização do uso da Cannabis em alguns países, diversos produtos alimentícios contendo fragmentos dessa planta, seu óleo ou seu extrato em suas composições tem sido inseridos nesses mercados, dentre os quais destaca-se brownies e cookies, bebidas, doces (chocolates e balas), entre outros. Uma vez administrado, o THC se ligará em receptores específicos pertencentes ao sistema endocanabinoide, alterando o funcionamento de diversos neurotransmissores, distribuídos em distintas regiões do Sistema Nervoso Central (SNC). Dessa forma, os sintomas clínicos que podem ser observados no indivíduo que fez uso dessa droga incluem alterações de aprendizado, de função endócrina, de ingestão de alimentos, temperatura corpórea, e de particular interesse, de alterações motoras, de memória e de cognição.

A maconha é a droga ilícita mais utilizada pela população mundial, bem como pela população brasileira. Dados publicados pela Organização das Nações
Unidas estimam que 192 milhões de pessoas no mundo tenham feito uso de maconha ao menos uma vez durante o ano de 2016, sendo que desses, 13,8 milhões consistem em jovens entre 15 e 16 anos de idade. Mais além, o número de usuários dessa droga têm crescido consideravelmente na década de 2006 a 2016, tendo sido registrado um aumento de 16%28. No Brasil, segundo dados provenientes do III LENAD (Levantamento Nacional de Álcool e Drogas), publicado em 2017 e contendo dados coletados no ano de 2015, 3,8 milhões de pessoas entrevistadas entre 12 a 65 anos de idade indicaram ter feito uso de maconha ao menos uma vez nos últimos 12 meses, enquanto 2,2 milhões indicaram ter feito uso da respectiva droga nos últimos trinta dias, o que representa, respectivamente, uma prevalência de 2,5 e 1,5% da população entrevistada29.

Concomitantemente, reiterando os dados anteriormente descritos, estudos mostraram que a maconha é a droga ilícita mais encontrada em amostras biológicas de motoristas parados aleatoriamente30–32. Devido ao seu uso amplamente difundido mesmo entre motoristas, diversos estudos estão disponíveis na literatura a fim de estimar o potencial prejudicial desta substância em habilidades cognitivas e psicomotoras necessárias para dirigir33–35.

Em estudos epidemiológicos focados na determinação da prevalência de drogas ilícitas em motoristas feridos e mortos em AT, foi verificado que a substância mais comumente detectada era o THC; este fato foi observado em diversos países, tais como Austrália36, Canadá15, Estados Unidos37 e Reino Unido38. Contribuindo com estes achados, estudos de culpabilidade realizados em motoristas que se envolveram em AT puderam determinar - por meio da
aplicação de uma análise da determinação da responsabilidade, que levava em conta diversos fatores, tais como condições da via, do veículo e tipo de acidente - que indivíduos que haviam feito uso de THC apresentaram maior probabilidade de acharem-se responsáveis pela ocorrência dos acidentes nos quais se envolveram16.

Por fim, estudos experimentais pautados em diferentes abordagens confirmam que há prejuízo dose-dependente na habilidade de dirigir dos motoristas quando sob efeito da droga39–41. Isso porque esta última é capaz de promover alterações no desempenho cognitivo e psicomotor do indivíduo, fato que se torna crítico quando este assume a direção de um veículo automotor, visto acarretar prejuízo da coordenação, da atenção dividida, das funções visuais, do tempo de reação e, consequentemente, da capacidade para dirigir com segurança. Os efeitos nocivos se concentraram nas primeiras duas horas e diminuem consideravelmente ao longo da terceira e quarta hora. O desempenho do motorista, avaliado por meio de parâmetros tais como tempo de reação, realização de tarefas que necessitavam de atenção dividida, atenção prolongada e coordenação motora indicou que a diminuição das habilidades psicomotoras do motorista pode chegar a atingir 70% a 80% com níveis elevados de consumo, definidos como concentração de THC no plasma sanguíneo de 14 a 60 ng/mL (nanogramas por mililitro)33.

A associação do uso de álcool e maconha pelo motorista é ainda mais preocupante, pois há evidências de que o uso simultâneo dessas substâncias promove comprometimento das habilidades psicomotoras necessárias para a execução de direção segura superior ao que seria esperado do uso de ambas isoladamente, considerando-se a dose administrada42.
1.2.2 Estimulantes

O grupo de drogas estimulantes é conhecido por apresentar, como principal característica farmacológica, a estimulação do SNC e periférico\(^\text{43}\). É composto por drogas que podem ser separadas em basicamente dois grupos distintos, sendo eles os estimulantes de ação psicomotora e os de ação psicotomímética ou alucinógena. No primeiro grupo de substâncias citado encontram-se a cocaína e seus derivados, bem como determinadas drogas anfetamínicas, tais como a anfetamina, metanfetamina e o metilfenidato. Outras substâncias pertencentes ao grupo das anfetaminas, por sua vez, se encaixam dentro do grupo de estimulantes alucinógenos, como o MDMA (3,4-metilenodioximetanfetamina – "ecstasy"). Segundo dados publicados pela UNODC (United Nations Office on Drug and Crime) em 2018, as drogas estimulantes pertencentes ao grupo das anfetaminas, juntamente com outras drogas estimulantes prescritas, foram o segundo grupo de drogas mais utilizado no mundo no ano de 2016, estimado em 34 milhões de indivíduos, sendo superado apenas pelo uso de maconha\(^\text{28}\).

1.2.2.1 Cocaína

A cocaína é um alcaloide encontrado e extraído das folhas da planta *Erythroxylum coca*, nativa das regiões andinas da América do Sul. Estudos arqueológicos indicam que o uso das folhas de coca é muito antigo, datando de 2500 anos a.C. Apenas na segunda metade do século XIX as propriedades estimulantes dessa planta foram reconhecidas e foi isolado seu princípio ativo, na forma de cloridrato de cocaína. Essa droga foi rapidamente comercializada
em grande escala, tendo sido utilizada como anestésico local, além de ser indicada no tratamento de dores e cansaços44.

Pode ser encontrada na forma de base livre ou \textit{crack}, sendo insolúvel em água e, assim, comumente administrada por via inalatória, por meio da vaporização do princípio ativo. A cocaína na forma de sal, ou cloridrato de cocaína, consiste em um pó solúvel em água, que é normalmente inalado e, por conseguinte, absorvido pela mucosa do trato respiratório. Também pode ser aplicada pela via intravenosa. Uma vez administrada, a cocaína penetrará no SNC e agirá sobre os transportadores de monoaminas (dopamina, serotonina e norepinefrina) presentes em neurônios pré-sinápticos e impedindo a retirada de monoaminas da fenda sináptica43.

De acordo com os dados publicados pelo III LENAD, proveniente de entrevistas realizadas no ano de 2015, a cocaína em pó e o \textit{crack} figuram como as segunda e terceira drogas ilícitas mais consumidas pela população brasileira, sendo superadas apenas pelo uso de maconha. Assim, no ano recém citado, 4.683.000 e 1.393.000 pessoas com idades entre 12 e 65 anos alegaram já ter feito uso de cocaína em pó e de \textit{crack} alguma vez na vida, respectivamente, enquanto 1.340.000 e 451.000 pessoas alegam terem utilizado cocaína em pó e \textit{crack} no último ano, respectivamente29.

Por conseguinte, tais dados reforçam aqueles obtidos pelo estudo II BNADS (Segunda Pesquisa Brasileira Nacional sobre o Álcool ou, do Inglês, Second Brazilian National Alcohol Survey), realizado entre os anos de 2011 e 2012, no qual foi estimado o uso de cocaína (tanto fumada quanto aspirada) atingiu 2,2% da população durante o período que se estendeu a até um ano

29
antes da realização das entrevistas, sendo este valor correspondente a 3,2 milhões de indivíduos⁴⁶.

1.2.2.2 Anfetamina

A anfetamina consiste em uma droga sintética cuja descoberta data de mais de 100 anos⁴⁶. Assim como a efedrina, apresenta grande semelhança estrutural com os neurotransmissores monoaminérgicos (dopamina, norepinefrina e serotonina), fato que está fortemente correlacionado com seu mecanismo de ação (Figura 3)⁴⁷. Isso porque tal semelhança permite com que haja a competição entre a anfetamina e as monoaminas endógenas pelos transportadores de recaptura de monoaminas, sendo que estes últimos realizam a retirada dessas substâncias da fenda sináptica para o interior dos terminais neuronais pré-sinápticos. Uma vez em meio intracelular, a anfetamina agirá por meio de diversos mecanismos, os quais resultarão em aumento da disponibilidade de monoaminas na fenda sináptica. Assim, os efeitos característicos de seu uso são consequentes da hiperestimulação de determinadas vias neuronais dependentes de sinalização por monoaminas. Desde sua síntese, a anfetamina vem sendo estudada e aplicada terapeuticamente no tratamento de narcolepsia, depressão moderada, distúrbio de déficit de atenção e obesidade.

A administração aguda dessa substância, em doses baixas ou moderadas, induz sintomas de euforia e excitação, porém o uso em altas doses tem sido correlacionado com taquicardia, hipertensão, hipertermia periférica e episódios psicóticos, com alucinações e delírios. Por ativar áreas cerebrais relacionadas com sensações de prazer e recompensa, a anfetamina apresenta potencial para o desenvolvimento de sintomas de dependência em indivíduos que fazem uso contínuo. Consequentemente, o uso ilícito e abusivo dessa substância é há muito tempo conhecido, e vêm sendo combatido por autoridades nacionais e internacionais, tanto por meio do controle de medicamentos que apresentem princípio ativo anfetamínico, quanto por meio do rastreamento e desmantelamento de sistemas de produções ilegais.

Apesar desses esforços, esse grupo de substâncias ainda é largamente utilizado pela população mundial. Segundo dados publicados pela UNODC em 2019, estima-se que 28,9 milhões de indivíduos na faixa etária de 15 a 64 anos tenha feito uso de alguma sustância pertencente ao grupo das anfetaminas no
ano de 2017, o que corresponde a uma prevalência de 0,59% da população mundial

Esta substância, ao ser administrada em baixas doses, parece melhorar alguns processos cognitivos relacionados com a atenção e coordenação motora, efeito ainda mais pronunciado em indivíduos em estado de fadiga. Isso fez com que seu uso abusivo se espalhasse entre indivíduos que visavam manter o estado de alerta por longos períodos. Em consequência, estudos mostraram uma alta incidência do uso de anfetamina em motoristas profissionais. Porém pesquisas epidemiológicas realizadas em motoristas acidentados mostraram que os indivíduos que dirigiam sob o efeito dessa classe de estimulantes apresentavam maior risco de se envolverem em AT do que aqueles que não estavam sob o efeito de nenhuma substância. Essa aparente contradição é explicada pela complexidade das tarefas envolvidas no ato de dirigir. Assim, isoladamente, o processo cognitivo pode ser melhorado com pequenas doses de estimulantes, porém quando se necessita que o motorista aplique sua atenção dividida em múltiplas tarefas, como ocorre frequentemente na direção, o desempenho torna-se prejudicado. Em concordância com essas afirmações, estudos realizados a fim de avaliar o desempenho de motoristas sob efeito de anfetamina na realização de percurso controlado determinaram piora em certas habilidades, sendo observadas dificuldades em manter a trajetória e a velocidade, além de tomadas de decisões ousadas, que colocam o motorista em situações de maior risco. Também, a dose de anfetamina utilizada parece afetar fortemente a cognição do motorista: enquanto doses menores promovem melhoria, doses maiores, além de não promoverem a melhoria esperada, têm sido correlacionadas com uma piora no desempenho do motorista. Outro
importante fator que deve ser considerado em relação ao potencial prejuízo que o uso dessa substância pode acarretar ao motorista em estado de fadiga é que esta parece não ser capaz de evitar a sonolência ao volante56.

No Brasil, motoristas de caminhão relatam que, para suportar as exaustivas jornadas de trabalho a que são submetidos, fazem uso de medicamentos anorexígenos adquiridos nas rodovias de forma ilegal, cujos princípios ativos são convertidos em anfetamina, como o femproporex57,58.

1.2.3 Medicamentos

De acordo com dados publicados pela OMS, a prevalência de depressão e de transtornos de ansiedade estimadas para o Brasil no ano de 2015 foi de 5,8 e 9,3\%, respectivamente, sendo esses valores superiores aos estimados para a população mundial, de 4,4 e 3,6\%, respectivamente59. Dentre as terapias medicamentosas disponíveis para o tratamento de tais transtornos, ressalta-se o uso de medicamentos antidepressivos e benzodiazepínicos (BDZ).

Os BDZ e os antidepressivos são largamente utilizados tanto pela população mundial quanto pela população brasileira. Foi verificada prevalência de 6,1\% para o consumo de algum BDZ pela população entrevistada (representativa da população brasileira) no último ano, de acordo com os resultados publicados por Madruga e cols. (2018), provenientes da análise de dados obtidos pelo II BNADS, coletados entre 2011 e 201260. Segundo a Agência Nacional de Vigilância Sanitária (ANVISA), o clonazepam, por exemplo, esteve entre os vinte princípios ativos mais dispensados no país, com venda estimada em 25 a 50 milhões de unidades no ano de 201761.
Em estudo de Brunoni e cols. (2013), realizado por meio da análise de dados provenientes do Estudo Longitudinal da Saúde do Adulto (ELSA), coletados entre 2008 e 2010, foi verificado os valores de prevalência do uso de BDZ e antidepressivos de 3,88% e 6,87% para a amostra avaliada, respectivamente. Mais além, depressão e transtornos de ansiedade não foram considerados fatores preditivos para o uso das medicações psicoativas avaliadas, indicando o provável uso incorreto ou abusivo das medicações por pessoas que não apresentavam quadros de doença psiquiátrica, além de falta de tratamento medicamento adequado por pessoas que possuíam quadro clínico psiquiátrico62,63.

Assim, tanto a presença de quadros psiquiátricos não tratados quanto o uso abusivo dos medicamentos recém citados, além de representarem considerável diminuição da qualidade de vida dos indivíduos afetados, podem ocasionar em prejuízo às habilidades necessárias para a condução segura de veículo automotor64–66.

1.2.3.1 Antidepressivos tricíclicos

Os antidepressivos tricíclicos (ADT) consistem em um grupo de substâncias cuja estrutura química assemelha-se a clorpromazina e demais fenotiazidas, visto apresentarem um anel central, que pode apresentar seis ou sete membros, unido a dois anéis benzênicos. O estudo e aplicação dessa classe de medicamentos no tratamento de casos de depressão vem sendo desenvolvidos desde o final da década de 195067.

Agem sobre o SNC, inibindo a recaptura dos neurotransmissores noradrenalina e serotonina de determinados grupamentos neuronais, resultando
em um aumento da disponibilidade dos respectivos na fenda sináptica. Dentre os efeitos adversos do uso dos ADT destacam-se sonolência, sedação, visão embaçada e problemas de memória, que são decorrentes de suas ações sobre receptores histaminérgicos H1 e receptores colinérgicos68.

Em estudos nos quais avaliou-se o desempenho de indivíduos saudáveis e depressivos na execução de testes de direção simulada e de atividades que exigiam desempenho em vários domínios distintos considerados essenciais ao processo de dirigir, como coordenação motora, atenção seletiva, vigilância, tempo de reação e tolerância ao estresse, foi verificado pior desempenho de indivíduos que estavam sob o efeito de ADT, em comparação àqueles que não estavam sob o efeito de nenhuma droga ou que haviam feito uso de antidepressivos pertencentes a outras classes, como os inibidores seletivos da recaptura de serotonina69–71. Também, estudos epidemiológicos verificaram aumento do risco do motorista em se envolver em AT quando dirigindo sob influência de ADT72.

Trabalhos de revisão como o de Sansone e cols. (2009) puderam verificar que o aumento do risco de se envolver em AT parece ser superior em indivíduos que se encontravam em período de adaptação ao medicamento ADT, que se dá no início do tratamento e em alterações de dose, bem como em indivíduos idosos e nos que faziam uso de altas doses73. Também, a associação dos ADT com outras drogas psicoativas, em especial os BDZ, parece potencializar o risco de envolvimento desse motorista em AT.
1.2.3.2 Benzdiazepínicos

Os medicamentos benzodiazepínicos (BDZ) foram primeiramente introduzidos no mercado norte americano, na década de 1960. Ganharam popularidade por apresentarem perfil mais seguro do que as classes de medicamentos ansiolíticos e hipnóticos que vinham sendo utilizados até então, grupo no qual destacam-se os barbitúricos74. São inclusos nessa classificação fármacos que apresentam como estrutura química básica o núcleo benzodiazepínico (2,3-diazabiciclo[5.4.0]undeca-3,5,7,9,11 penteno), que consiste em um anel benzênico fundido à um anel de sete membros substituído nos carbonos alocados nas posições 1 e 4 (Figura 4)75. Estes irão se diferenciar quanto aos demais grupos substituintes que estarão ligados à estrutura básica, fator que irá garantir diferenças farmacocinéticas entre substâncias, permitindo a ampliação da utilização desse grupo no tratamento de distintos quadros clínicos, tais como ansiedade, insônia, epilepsia, sedações pré-cirúrgicas e no processo de retirada do uso de drogas em dependentes químicos76. Assim, por apresentarem ampla aplicação terapêutica, são largamente prescritos e utilizados mundialmente77.
Os BDZs são depressores do SNC. Agem como moduladores positivos dos receptores GABA (ácido gama-aminobutírico), sendo este último o neurotransmissor mais comum presente no SNC. O GABA apresenta ação naturalmente inibitória, e a estimulação de seus receptores promove redução da excitabilidade neuronal. O uso terapêutico prolongado de BDZ já foi correlacionado com ocorrência de tolerância e dependência. Também, o uso abusivo dessa classe de medicamentos já foi relatado, sendo esta prática muitas vezes feita em combinação com outras drogas, fato preocupante, visto que aumenta o risco de intoxicação aguda por BDZ.

O uso de BDZ já foi associado com sintomas de sonolência, ataxia, diplopia (visão dupla), fraqueza muscular, vertigem, confusão mental e diminuição da coordenação motora. Em decorrência do potencial prejudicial dessas manifestações nos processos cognitivos necessários para dirigir, diversos estudos foram elaborados a fim de avaliar o risco do uso dos BDZ por motoristas. Assim, trabalhos epidemiológicos verificaram aumento do risco de
motoristas que dirigiam sob efeito de BDZ se envolverem em AT, em comparação com motoristas que não estavam sob o efeito de nenhuma droga, sendo este risco mais pronunciado no início do tratamento e em indivíduos idosos79–81. Em concordância com esses achados, estudos experimentais que visavam avaliar o potencial prejudicial do uso agudo dessa classe de medicamentos nas funções psicomotoras necessárias para dirigir verificaram que o uso dos respectivos promoveu piora em diversos critérios avaliados, tais como diminuído estado de alerta, aumento do tempo de reação e aumento do número de erros em testes de atenção dividida82,83.

1.3 Motoristas de caminhão

Segundo dados do Departamento Nacional de Trânsito (DENATRAN), atualmente, em 2019, a frota nacional totaliza 103.363.180 veículos automotores, dentre os quais 6,0% representam caminhões (o equivalente a 6.167.640 veículos distribuídos em caminhões, caminhões-trator, reboques e semirreboques). No ano estudado, ou seja, 2016, o número de veículos automotores contabilizado pelo mesmo departamento era de 93.867.016, dentre os quais 5.586.558 eram caminhões, o equivalente a 6,0% da frota nacional, indicando um aumento do número total de caminhões circulantes em 10,4%, apesar de mantida a proporção deste tipo de veículo em relação à frota nacional84,85. Em 2014, estes estiveram envolvidos em 33,4% dos AT registrados em rodovias federais, bem como em 25,7% dos AT envolvendo feridos graves, representando aproximadamente 44% dos custos totais calculados com os AT8. Esses dados indicam uma discrepância que, provavelmente é resultante de uma disfunção existente nessa classe trabalhadora, e que a torna mais susceptível a
estar envolvida em um AT86. Neste contexto, ressalta-se a necessidade de melhor compreender o ambiente no qual este profissional se insere, a fim de elucidar os principais fatores que podem vir a contribuir para a manutenção do quadro apresentado, tais como desenvolvimento de doenças ocupacionais, fadiga e uso de substâncias psicoativas.

Estudos apontam que essa classe trabalhadora apresenta risco aumentado de desenvolver diversas doenças ocupacionais, visto estar submetida a sobrecarga de trabalho, longas jornadas, horários de trabalho e de descanso irregulares87. Também, muitas vezes passam diversos dias ou semanas na estrada, longe do contato da família e amigos, trabalhando a maior parte das vezes sozinhos, expostos às adversidades climáticas e aborrecimentos do trânsito, fatores que tornam essa população vulnerável ao desenvolvimento de diversas doenças psiquiátricas, tais como estresse e depressão, bem como o uso de álcool e outras substâncias psicoativas88. A fadiga é relatada por muitos motoristas e, além de ser este fator fortemente correlacionado com a ocorrência de AT, consiste em um dos motivos pelos quais os motoristas indicam fazer uso de substâncias estimulantes para fins laborais$^{51,89–91}$.

O ato de dirigir sob influência de drogas ilícitas e medicamentos psicoativos, quando realizado por motoristas profissionais, torna-se ainda mais preocupante. Isso porque eles normalmente dedicam mais tempo à execução dessa atividade do que os demais motoristas e, ainda, guiam veículos pesados, apresentando, dessa forma, maior potencial de causar ferimentos e mortes quando se envolvem em AT, além de gerar maior perda material, como citado anteriormente82.
Até o ano de 2012, o regime de trabalho que regia a profissão dos motoristas de caminhão não era regulamentado em legislação própria e, por consequência, a maioria dos caminhoneiros era contratada por meio de regime regido pela C.L.T. (Consolidação das Leis de Trabalho) e, neste cenário, tratados como “empregados que exercem atividade externa incompatível com a fixação de horário de trabalho”, o que acarretava em inobservância dos períodos de descanso e horas extras trabalhadas. Posteriormente, a lei 12.619/2012 foi implementada, a fim de regular e disciplinar a jornada de trabalho e o tempo de direção do motorista profissional. Essa última foi, posteriormente, substituída pela lei 13.103/2015, do que resultou, em termos gerais, na determinação de uma jornada de trabalho diária não superior a 8 horas, tempo de direção não superior a 5 horas consecutivas, 1 hora de parada para refeições por dia e 11 horas de descanso diário, contando, dentre essas, com ao menos oito horas ininterruptas. Tais alterações vieram em favor do motorista profissional, visando melhoria nas suas condições de trabalho. Em sentido amplo, a observância da lei garantiria ao motorista maior salubridade no desempenho de suas funções, o que poderia vir a contribuir inclusive com a diminuição do uso de drogas de abuso e medicamentos psicoativos, principalmente aqueles de caráter estimulante, cujo uso, conforme anteriormente descrito, já foi associado a execução de atividades laborais em motoristas profissionais. Porém um grande desafio à observância da lei no que tange à jornada de trabalho desses motoristas consiste justamente na precariedade das estradas e postos de pernoite disponíveis, uma vez que a quantidade desses últimos é escassaa, inferior àquela desejada, considerando a demanda. Também, os postos de pernoite existentes não estão uniformemente distribuídos nas rodovias e, mais
além, suas condições são precárias, não atendendo às necessidades dos motoristas. Muitos temem pela própria segurança e pela carga, sujeita à roubo, fato que contribui para que optem, muitas vezes, por abdicar do descanso, visando finalizar o frete em período mais curto possível, em detrimento de seu bem estar físico ou psíquico. Portanto, apesar de alterações legislativas terem sido implementadas visando promover melhoria das condições laborais de motoristas profissionais, alguns desafios ainda devem ser superados para que haja uma melhora real desse cenário.
2. Justificativa
Como exposto anteriormente, os motoristas de caminhão consistem em uma população que, em decorrência de condições de trabalho, encontra-se mais susceptível ao uso e abuso de drogas ilícitas e medicamentos psicoativos, fato extremamente preocupante, visto que esses profissionais dedicam várias horas diárias à profissão. Assim, o ato de dirigir sob influência dessas substâncias aumenta o risco desses indivíduos em se envolverem em AT. A dimensão do uso de drogas ilícitas e medicamentos psicoativos por motoristas profissionais brasileiros não é plenamente conhecida. Entretanto, apesar de existirem estudos prévios que visaram determinar a prevalência dessas substâncias tanto na população geral de motoristas como nos motoristas profissionais, alterações legislativas - tais como a implementação da lei 13.103 de 2015, popularmente conhecida por “Lei do Motorista” e a RDC 52 de 2011 da ANVISA - podem haver contribuído com modificações no padrão do uso dessas drogas. Portanto o presente estudo busca, além de atualizar as informações referentes ao uso de drogas ilícitas, determinar o uso de medicamentos psicoativos pela população de motoristas de caminhão brasileiros, bem como correlacionar o uso com determinadas variáveis sócio demográficas e ocupacionais, a fim de determinar os possíveis fatores que predispõem o motorista ao uso. Os resultados encontrados podem ser de grande utilidade por parte das autoridades públicas, se utilizados na prevenção da ocorrência de AT, por meio de conscientização da população de motoristas quanto aos riscos de dirigir sob influência dessas substâncias, na elaboração de alterações legislativas relacionadas com controle e fiscalização do ato de dirigir sob influência de drogas e medicamentos psicoativos e na implementação de melhorias estruturais nas rodovias e postos.
de pernoite, a fim de possibilitar um planejamento de viagem mais adequado à esses motoristas, permitindo, assim, condições viáveis para que esses possam cumprir a contento seus direitos de descanso e pernoite, amparados por lei.
3. Objetivo
3. Objetivo

O objetivo do estudo consistiu em determinar a prevalência do uso das substâncias psicoativas anfetamina, cocaína, maconha, medicamentos benzodiazepínicos e antidepressivos tricíclicos em motoristas de caminhão que utilizaram como rotas as estradas federais que cruzam o estado de São Paulo durante o ano de 2016.
4. Material e Métodos
Este é um estudo epidemiológico de desenho observacional do tipo transversal.

4.1 Material

4.1.1 Equipamentos

Para a confirmação das amostras, utilizamos um equipamento de cromatografia gasosa modelo GC 2010 acoplado a espectrômetro de massas quadrupolo modelo QP 2010, ambos da “Shimadzu®” (Kyoto, Japão), bem como um equipamento de cromatografia líquida acoplado a espectrômetro de massas, modelo LCMS-8050, da “Shimadzu®” (Kyoto, Japão).

4.1.2 Kits de Triagem e reagentes

Os kits utilizados no imunoensaio consistiram no “MultiDrogas 10 Teste Rápido”, e foram obtidos da “Inlab, Brasil”. Reagentes analíticos foram obtidos da “Merck” (Darmstadt, Alemanha). Para a realização das extrações em fase sólida, foram usados cartuchos “Bond elut” de 130 mg e 3 mL, provenientes da “Agilent Technologies®” (California, Estados Unidos da América).

4.1.3 Padrões

Soluções-padrão de benzoilecgonina e seu padrão deuterado (benzoilecgonina-d3), anfetamina e seu padrão deuterado (anfetamina d-5), 11-nor-Δ9-tetrahidrocanabinol carboxílico e seu padrão deuterado (11-nor-Δ9-tetrahidrocanabinol carboxílico-d-3), diazepam, alprazolam, bromazepam, clonazepam, oxazepam, amitriptilina, nortriptilina, imipramina e clomipramina em ~
concentrações de 1 mg/mL em metanol foram obtidos da “Cerilliant Corporation” (Texas, EUA).

4.2 Métodos

4.2.1 Comando de Saúde nas Rodovias

De 2008 a 2016, a equipe de pesquisadores do Laboratório de Toxicologia do Departamento de Medicina Legal, Ética Médica e Medicina Social e do Trabalho da Faculdade de Medicina da Universidade de São Paulo (LT-FMUSP) acompanhou o programa “Comando de Saúde nas Rodovias” (CSR), promovido pela Polícia Rodoviária Federal (PRF) em parceria com o Serviço Social do Transporte e Serviço Nacional de Aprendizagem no Trânsito (SEST e SENAT). Os CSR eram eventos nacionais que ocorriam simultaneamente em Rodovias Federais de todos os estados do Brasil e Distrito Federal cerca de quatro vezes ao ano.

Estes eventos, que eram voltados ao motorista de caminhão, visavam promover a saúde dos motoristas. Para isso, os caminhoneiros eram atendidos por médicos e outros profissionais da saúde, e estes realizavam testes a fim de detectar fatores de risco à saúde, tais como obesidade, diabetes, alterações visuais, entre outros. Posteriormente, os motoristas atendidos tinham acesso aos resultados, e recebiam orientação médica. Também, os CSR apresentavam caráter educativo; nos eventos, os participantes eram atualizados, por meio de palestras e informativos, em assuntos relevantes ao cotidiano do motorista.
4.2.2 Casuística

Os CSR foram realizados pela PRF seis vezes no estado de São Paulo em 2016 e, em cada ocasião, foram abordados cerca de 150 motoristas para participar da ação preventiva. Para o desenvolvimento deste projeto, foram abordados 878 motoristas que aceitaram participar do estudo e responderam ao questionário. Destes, 866 forneceram amostra de urina para a realização de análises toxicológicas. As amostras foram coletadas em dias úteis, no período das 9h00 às 17h00.

4.2.3 Critérios de inclusão e exclusão

Foram incluídos no estudo todos os motoristas que, após informados pela equipe sobre os objetivos da pesquisa, aceitaram em participar, assinaram o Termo de Consentimento Livre e Esclarecido (TCLE) e responderam ao questionário. Aqueles que se negaram a participar foram desconsiderados da amostragem.

4.2.4 Aspectos éticos

O presente trabalho foi aprovado pelo Comitê de Ética em Pesquisa da Faculdade de Medicina da Universidade de São Paulo, sob o protocolo de pesquisa de número 060/2016.

4.2.5 Coleta das amostras e aplicação dos questionários

A equipe, composta por pesquisadores do LT-FMUSP, foi responsável pela coleta das amostras de urina, preenchimento dos questionários, armazenamento inicial e transporte dessas amostras ao laboratório.
Os motoristas abordados pelos policiais rodoviários foram informados pela equipe de coleta sobre o objetivo da pesquisa e necessidade de fornecimento da urina para análise toxicológica, esclarecendo-se o caráter voluntário e a não identificação dos participantes. Além disso, foram orientados a assinar o Termo de Consentimento Livre e Esclarecido (TCLE) (Anexo B). Após aceitarem participar do estudo, foi aplicado, na forma de entrevista, um questionário estruturado (Anexo A). Coletaram-se aproximadamente 30 mililitros de urina por micção espontânea, em frascos de polietileno previamente identificados com um número de controle laboratorial interno. Esta foi a única identificação possível, fato necessário para o confronto dos dados provenientes dos exames toxicológicos e dos questionários.

As amostras foram mantidas sob refrigeração em geladeiras térmicas e conduzidas ao laboratório no mesmo dia da coleta (período não superior a seis horas) e armazenadas em freezer (-20°C), sendo descongeladas à temperatura ambiente à medida que se procederam as análises toxicológicas.

4.2.6 Análises toxicológicas

A determinação da presença de substâncias (inalteradas e/ou biotransformadas) nas amostras foi feita por meio da realização de dois procedimentos analíticos distintos, conforme preconizado em manuais recomendados pela comunidade científica internacional[97].

a) Triagem

Todas as amostras coletadas foram submetidas ao teste de triagem, tendo sido esta última realizada cerca de 24 horas após a coleta das amostras,
por meio do teste imunocromatográfico “Multi-Drogas One Step” obtido da Inlab, Brasil.

Seu princípio de funcionamento baseia-se na ligação competitiva entre a droga (ou seus metabólitos) presente na amostra e seu conjugado (aderido a um local específico da tira cromatográfica) com um anticorpo marcado. Durante o teste, a amostra migra por capilaridade pela tira cromatográfica. Caso não haja, na amostra avaliada, droga em concentração igual ou superior ao valor de cut-off (valor de corte), haverá anticorpo marcado disponível para ligação com o conjugado. Ocorrerá, neste caso, a formação de uma linha visível na região marcada com “T”, ou região teste, indicando resultado negativo.

Se, por outro lado, houver, na amostra avaliada, droga em concentração igual ou superior ao valor de cut-off, esta última irá saturar o sítio de ligação com o anticorpo, e este último, por sua vez, não irá se ligar com o conjugado aderido à tira, de forma que não haverá a formação de linha visível na região teste, indicando resultado positivo. A Figura 5 ilustra o aspecto geral do teste utilizado nos ensaios de triagem.

O presente teste possuía os valores de cut-off de 1.000 ng/mL para anfetamina e ADT, 300 ng/mL para benzodiazepínicos e cocaína e 50 ng/mL para THC-COOH.
Figura 5: Teste de imunoensaio utilizado na etapa de triagem.

b) Confirmação

Todas as amostras que foram consideradas positivas para os analitos analisados durante a etapa de triagem, realizada por imunoensaio, foram submetidas ao procedimento de confirmação. Para as drogas ilícitas anfetamina, cocaína e maconha, foi utilizada a técnica de cromatografia gasosa acoplada a espectrometria de massa (CG-EM), enquanto as amostras consideradas positivas para medicamentos benzodiazepínicos e ADTs foram confirmadas por cromatografia líquida acoplada à espectrometria de massas (CL-EM/EM).

Os analitos de interesse foram extraídos das amostras pelo método de extração em fase sólida (*Solid-phase extraction*, SPE) para benzoilecgonina.
(principal produto de biotransformação da cocaína presente na urina), e extração em fase líquida para o 11-nor-tetraidrocanabinol carboxílico (principal produto de biotransformação do THC presente na urina), e anfetamina, tendo sido utilizados os valores de *cut-off* de 150, 15 e 500 ng/mL, respectivamente, para a benzoilecgonina, 11-nor-tetraidrocanabinol carboxílico e anfetamina98,99. Foram pesquisados os íons de relação massa/carga (m/z) 82, 240 e 361 para benzoilecgonina e 85, 243 e 364 para benzoilecgonina-d3, os íons 140, 118 e 115 para anfetamina e 144 e 123 para anfetamina-d5 e, por fim, os íons 371, 473 e 488 para THC-COOH e 374, 376, 491 para THC-COOH deuterado. Detalhes das condições cromatográficas utilizadas nas análises estão especificados nas Tabelas 1 a 3, que expressam, respectivamente, dados utilizados nas análises para anfetamina, benzoilecgonina e THC-COOH.

Tabela 1: Detalhe das condições cromatográficas utilizadas nas análises de anfetamina.

<table>
<thead>
<tr>
<th>Fonte de íons</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 70</td>
<td>2</td>
</tr>
<tr>
<td>100</td>
<td>1</td>
</tr>
<tr>
<td>20</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FORNO</th>
<th>Variação (°C/min)</th>
<th>Temperatura (°C)</th>
<th>Tempo de corrida (min)</th>
<th>Temperatura (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fonte de íons</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Interface</td>
</tr>
<tr>
<td>-</td>
<td></td>
<td>70</td>
<td>2</td>
<td>22,5</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>190</td>
<td>0</td>
<td>220</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>300</td>
<td>3</td>
<td>250</td>
</tr>
</tbody>
</table>

Tabela 2: Detalhe das condições cromatográficas utilizadas nas análises de benzoilecgonina.

<table>
<thead>
<tr>
<th>Fonte de íons</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 150</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FORNO</th>
<th>Variação (°C/min)</th>
<th>Temperatura (°C)</th>
<th>Tempo de corrida (min)</th>
<th>Temperatura (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fonte de íons</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Interface</td>
</tr>
<tr>
<td>-</td>
<td></td>
<td>150</td>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>270</td>
<td>4</td>
<td>220</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>270</td>
<td>5</td>
<td>280</td>
</tr>
</tbody>
</table>

Tabela 3: Detalhe das condições cromatográficas utilizadas nas análises de THC-COOH.

<table>
<thead>
<tr>
<th>Fonte de íons</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 150</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FORNO</th>
<th>Variação (°C/min)</th>
<th>Temperatura (°C)</th>
<th>Tempo de corrida (min)</th>
<th>Temperatura (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fonte de íons</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Interface</td>
</tr>
<tr>
<td>-</td>
<td></td>
<td>150</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>270</td>
<td>5</td>
<td>200</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>270</td>
<td>5</td>
<td>250</td>
</tr>
</tbody>
</table>
As amostras consideradas positivas para ADT e BDZ foram submetidas ao processo de extração líquido-líquido. Para a realização das análises cromatográficas, optou-se pela utilização dos parâmetros especificados na Tabela 4, tendo sido pesquisados pelos íons que apresentavam as relações massa/carga (m/z) expressas na Tabela 5. Foi empregado o valor de cut-off de 1 ng/mL.

Tabela 4: Condições cromatográficas utilizadas nas análises de antidepressivos tricíclicos e benzodiazepínicos.

Fase móvel A	Água ultrapura + 2 mmol/L formiato de amônio + 0.1% (v/v) ácido fórmico
Fase móvel B	Metanol + 2 mmol/L formiato de amônio + 0.1% (v/v) ácido fórmico
Fluxo	350 µL/min (gradiente)
Espectrômetro de massas	Multiple reaction monitoring (MRM)*; ionização por eletrospray em modo positivo
Tempo de corrida (min)	16

*Do inglês, monitoramento de reações múltiplas.

Tabela 5: Relação massa/carga dos íons pesquisados para confirmação dos ADT e BDZ por CL-EM/EM.

<table>
<thead>
<tr>
<th>Molécula</th>
<th>Ions (m/z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amitriptilina</td>
<td>278,0; 91,0</td>
</tr>
<tr>
<td>Imipramina</td>
<td>281,1; 86,00</td>
</tr>
<tr>
<td>Nortriptilina</td>
<td>264,1; 233,1</td>
</tr>
<tr>
<td>Clomipramina</td>
<td>314,9; 86,1</td>
</tr>
<tr>
<td>Diazepam</td>
<td>284,9; 154,0</td>
</tr>
<tr>
<td>Oxazepam</td>
<td>287,0; 314,0</td>
</tr>
<tr>
<td>Clonazepam</td>
<td>316,1; 270,0</td>
</tr>
<tr>
<td>Bromazepam</td>
<td>317,8; 272,0</td>
</tr>
<tr>
<td>Alprazolam</td>
<td>309,1; 281,0</td>
</tr>
</tbody>
</table>
4.2.7 Avaliação dos dados sociodemográficos e ocupacionais

As informações sociodemográficas foram obtidas dos questionários respondidos pelos motoristas (Anexo A). Assim, as variáveis foram categorizadas em relação a sexo, cor da pele, escolaridade, estado civil, tipo de serviço realizado, característica do serviço e carga que transportavam. Posteriormente, durante o processamento dos dados obtidos, os seguintes critérios foram utilizados:

Idade: O grupo de motoristas com idades conhecidas (N=865) foi separado em faixas etárias de 10 anos, obtendo-se um total de 6 faixas etárias, sendo estas: “indivíduos de até 29 anos”, “30 a 39 anos”, “40 a 49 anos”, “50 a 59 anos”, “60 a 69 anos” e, por fim, “70 a 79 anos”.

Estado Civil: Os motoristas foram agrupados em três categorias distintas, de acordo com o estado civil declarado: solteiros, casados ou amasiados e viúvos ou divorciados.

Escolaridade: Os indivíduos foram classificados, de acordo com a etapa escolar concluída, em uma das seguintes categorias:

1) “Nunca estudou”: indivíduos sem nenhum tipo de educação formal declarada.
2) “1ª a 4ª Série”: Concluíram de um a quatro anos de ensino formal.
3) “5ª a 8ª Série”: Concluíram de cinco a oito anos de educação formal.
4) “2º Grau incompleto”: Entre nove e dez anos de educação formal.
5) “2º Grau completo”: Onze anos de educação formal.
6) “superior incompleto”: Início declarado de estudo em nível superior.
7) “superior completo”: Estudo em nível superior completo.

8) “ensino técnico”.

Cor da pele: Os motoristas foram classificados, segundo observação do entrevistador, em cores de pele “branca”, “parda”, “negra” e “amarela”.

Acidente de trânsito prévio: Aos motoristas entrevistados, foi questionado se já haviam sofrido AT nas rodovias, enquanto no exercício da profissão. Dessa forma, foi possível a separação dos questionários dos entrevistados em dois grupos: aqueles que relataram já haverem sofrido AT anteriormente, e aqueles que indicaram nunca haverem sofrido AT.

Tipo de carga transportada: Os questionários dos motoristas entrevistados que se encontravam com o caminhão carregado quando da realização da entrevista e que souberam apontar o tipo de carga contida em seus veículos foram separados em sete grupos, de acordo com o tipo de carga transportada por eles relatado:

1) Câmera fria: Transporte de carnes ou demais alimentos que necessitem de refrigeração para transporte.

2) Alimentos perecíveis: Transporte de frutas e legumes de caráter perecível, sem relato de uso de métodos de refrigeração.

3) Alimentos não perecíveis;

4) Produtos químicos;

5) Materiais não perecíveis;

6) Carga viva;
7) **Produtos farmacêuticos:** Transporte de medicamentos.

Dessa forma, para a avaliação dessa variável, foram excluídos das análises estatísticas os questionários pertencentes aos motoristas cujas cargas não foram identificadas durante a entrevista (N=118) e dos motoristas que declararam estarem com os caminhões vazios (N=56).

Característica do serviço: Os questionários dos caminhoneiros entrevistados foram divididos em dois grupos, de acordo com relato em relação à característica do serviço. No grupo nomeado “Caminhoneiros de curtas distâncias” foram inclusos os indivíduos que relataram fazer entregas sempre em uma mesma região, contendo origens e destinos próximos, fato que permitiria, portanto, a possibilidade de voltar todos os dias para casa, enquanto no grupo de “Caminhoneiros de longas distâncias”, foram inclusos aqueles que relataram fazer entregas em diversas regiões do país, tendo que pernoitar na estrada com frequência.

Distância percorrida: Foi realizada a separação dos questionários de acordo com a distância percorrida na atual viagem relatada, ou seja, aquela que estavam realizando quando parados no CSR. Assim, a partir do cálculo da mediana das distâncias percorridas na atual viagem, que foi de 550 quilômetros, a amostra foi dividida em dois grupos distintos, sendo esses aqueles que relataram estar percorrendo distância igual ou inferior a 550 quilômetros (≤550 Km) e aqueles que percorreram distâncias superiores a 550 quilômetros (> 550 Km).

Tipo de serviço: Durante as entrevistas, os participantes foram perguntados se eram contratados, aposentados ou autônomos.
4.2.8 Correlação de dados sociodemográficos e ocupacionais com uso de drogas ilícitas

Após a análise das informações sociodemográficas e ocupacionais, os resultados foram confrontados com informações referentes à utilização de drogas ilícitas, provenientes dos resultados das análises toxicológicas. Este procedimento possibilitou o estabelecimento de correlações entre o uso das respectivas e informações sociais e ocupacionais específicas. Para tal, os questionários provenientes de indivíduos que apresentaram amostras positivas para a presença das drogas ilícitas abordadas no presente estudo foram separados em dois grupos. Em um primeiro grupo, foram inclusas as informações de indivíduos cujas amostras biológicas mostraram-se positivas para as drogas de caráter estimulante (anfetamina e a cocaína), enquanto no segundo grupo, àquelas positivas para THC, sendo que, posteriormente, tais grupos foram confrontados com aquele composto por indivíduos cujas amostras biológicas foram consideradas negativas para as substâncias de interesse.

4.2.9 Análises estatísticas

Os dados foram codificados e armazenados em Excel® (Microsoft Office®). Após a análise descritiva dos dados, os resultados foram agrupados conforme o uso de substâncias, reveladas pelos resultados das análises toxicológicas, e avaliados de acordo com as características sociodemográficas de interesse. Comparações inter-grupo foram realizadas por teste de Qui-quadrado (\(X^2\)) de Pearson, utilizando-se os softwares Minitab e Prism versão 6 (Graphpad software).
5. Resultados
Foram realizados seis Comandos de Saúde nas Rodovias no ano de 2016, sendo dois deles na cidade de Marília (BR153-Rodovia Transbrasiliana, nas datas de 7 de Abril e 20 de Setembro), um em Atibaia (Rodovia Fernão Dias, em 18 de Maio), um em São José do Rio Preto (R153-Rodovia Transbrasiliana, em 16 de Março), um em Cachoeira Paulista (BR 381-Rodovia Presidente Dutra em 23 de Novembro) e um em Itapecerica da Serra (Rodovia BR116-Regis Bittencourt, em 19 de Outubro), possibilitando a realização de 879 entrevistas. Dentre os indivíduos entrevistados, 13 recusaram-se em fornecer amostras de urina, resultando em exclusão destes indivíduos de análises posteriores, restando um total de 866 questionários e respectivas amostras biológicas viáveis para análise, conforme apresentado na Tabela 6.

Tabela 6: Entrevistas realizadas e amostras de urina coletadas dos “comandos de saúde nas rodovias” durante o ano de 2016.

<table>
<thead>
<tr>
<th>Cidade</th>
<th>Data</th>
<th>Número de entrevistas</th>
<th>Amostras coletadas</th>
</tr>
</thead>
<tbody>
<tr>
<td>São José do Rio Preto</td>
<td>16/03/2016</td>
<td>173</td>
<td>173</td>
</tr>
<tr>
<td>Marília</td>
<td>07/04/2016</td>
<td>121</td>
<td>120</td>
</tr>
<tr>
<td>Atibaia</td>
<td>18/05/2016</td>
<td>61</td>
<td>61</td>
</tr>
<tr>
<td>Marília</td>
<td>20/09/2016</td>
<td>183</td>
<td>181</td>
</tr>
<tr>
<td>Itapecerica da Serra</td>
<td>19/10/2016</td>
<td>155</td>
<td>146</td>
</tr>
<tr>
<td>Cachoeira Paulista</td>
<td>23/11/2016</td>
<td>186</td>
<td>185</td>
</tr>
<tr>
<td>TOTAL</td>
<td>879</td>
<td>866</td>
<td></td>
</tr>
</tbody>
</table>

Assim sendo, 58 amostras foram consideradas positivas para drogas ilícitas, representando 6,7% do total de amostras investigadas. Dessas, a cocaína foi a droga mais prevalente, visto ter sido confirmada em um total de 28 amostras, sendo que em 23 dessas foi a única droga determinada, enquanto em três seu uso foi associado com o do THC, e em outras duas, com anfetamina. A anfetamina, por sua vez, foi confirmada em 25 amostras, sendo que em 23
dessas foi a única droga determinada. Por fim, o THC foi confirmado em 10 amostras, sendo a única droga determinada em sete dessas, conforme especificado na Tabela 7. As Figuras 6, 7 e 8 apresentam, respectivamente, trechos dos cromatogramas de amostras consideradas positivas para a presença de anfetamina, cocaína e maconha.

Tabela 7: Número de amostras positivas para as drogas anfetamina (AMP), cocaína (COC) e maconha (THC).

<table>
<thead>
<tr>
<th>Droga pesquisada</th>
<th>η</th>
<th>%*</th>
<th>%**</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMP</td>
<td>23</td>
<td>2,7</td>
<td>39,7</td>
</tr>
<tr>
<td>COC</td>
<td>23</td>
<td>2,7</td>
<td>39,7</td>
</tr>
<tr>
<td>THC</td>
<td>7</td>
<td>0,8</td>
<td>12,1</td>
</tr>
<tr>
<td>COC+THC</td>
<td>3</td>
<td>0,3</td>
<td>5,2</td>
</tr>
<tr>
<td>AMP+COC</td>
<td>2</td>
<td>0,2</td>
<td>3,4</td>
</tr>
<tr>
<td>TOTAL</td>
<td>58</td>
<td>6,7</td>
<td>100,0</td>
</tr>
</tbody>
</table>

*porcentagem em relação à população total (N=866)

**porcentagem em relação a grupo "positivos para drogas" (N=58)

η=Número de amostras
Figura 6: Cromatograma ilustrativo de uma das amostras consideradas positivas para a presença de anfetamina.

Figura 7: Cromatograma ilustrativo de uma das amostras consideradas positivas para a presença de cocaína.

Figura 8: Cromatograma ilustrativo de uma das amostras consideradas positivas para a presença de maconha.
Em relação aos medicamentos, 16, 11 e 2 amostras foram consideradas positivas para a presença de antidepressivos tricíclicos, medicamentos benzodiazepínicos e ambos, respectivamente durante a fase da triagem. Porém, após a confirmação dessas amostras por CL-EM/EM, todas mostraram-se negativas.
5.1 Perfil sociodemográfico e ocupacional dos motoristas de caminhão

A partir da análise dos questionários, foi possível estabelecer o perfil da população estudada. Todos os indivíduos entrevistados pertenciam ao sexo masculino, sendo que aproximadamente 80% da população foi classificada como de cor de pele branca, e a idade média foi de 43,2 (±0,4) anos. Também, mais de 50% da população declarou possuir escolaridade de oito anos ou menos (ou seja, até o primeiro grau) e quase 80% dos indivíduos entrevistados declarou estar em um relacionamento estável. Em relação aos questionamentos referentes à profissão, o tempo médio de profissão relatado foi de 17,4 (±0,4) anos, a maioria dos indivíduos (77,6%) se declarou caminhoneiro de longa distância e contratado; a média da distância percorrida na atual viagem foi de 810,7 (±28,2) quilômetros. Essas e outras características relevantes da amostra foram contempladas na Tabela 8.
Tabela 8: Perfil sociodemográfico e ocupacional dos caminhoneiros entrevistados no ano de 2016.

<table>
<thead>
<tr>
<th>Característica avaliada</th>
<th>Número Absoluto (Ƞ)</th>
<th>Porcentagem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Até 29 anos</td>
<td>87</td>
<td>10,0</td>
</tr>
<tr>
<td>30 a 39 anos</td>
<td>272</td>
<td>31,4</td>
</tr>
<tr>
<td>40 a 49 anos</td>
<td>252</td>
<td>29,1</td>
</tr>
<tr>
<td>50 a 59 anos</td>
<td>188</td>
<td>21,7</td>
</tr>
<tr>
<td>60 a 69 anos</td>
<td>61</td>
<td>7,0</td>
</tr>
<tr>
<td>70 a 79 anos</td>
<td>5</td>
<td>0,6</td>
</tr>
<tr>
<td>Não identificados*</td>
<td>1</td>
<td>0,1</td>
</tr>
<tr>
<td>Cor de pele</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brancos</td>
<td>679</td>
<td>78,4</td>
</tr>
<tr>
<td>Negros</td>
<td>56</td>
<td>6,5</td>
</tr>
<tr>
<td>Pardos</td>
<td>101</td>
<td>11,7</td>
</tr>
<tr>
<td>Amarelos</td>
<td>4</td>
<td>0,5</td>
</tr>
<tr>
<td>Não identificados*</td>
<td>26</td>
<td>3,0</td>
</tr>
<tr>
<td>Escolaridade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1º a 4º Série</td>
<td>108</td>
<td>12,5</td>
</tr>
<tr>
<td>5º a 8º Série</td>
<td>347</td>
<td>40,1</td>
</tr>
<tr>
<td>2º Grau incompleto</td>
<td>84</td>
<td>9,7</td>
</tr>
<tr>
<td>2º Grau Completo</td>
<td>293</td>
<td>33,8</td>
</tr>
<tr>
<td>Superior incompleto</td>
<td>13</td>
<td>1,5</td>
</tr>
<tr>
<td>Superior Completo</td>
<td>19</td>
<td>2,2</td>
</tr>
<tr>
<td>Técnico</td>
<td>1</td>
<td>0,1</td>
</tr>
<tr>
<td>Nunca Estudou</td>
<td>1</td>
<td>0,1</td>
</tr>
<tr>
<td>Estado Civil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solteiro</td>
<td>139</td>
<td>16,1</td>
</tr>
<tr>
<td>Casado, amasiado</td>
<td>670</td>
<td>77,4</td>
</tr>
<tr>
<td>Viúvo, separado, divorciado</td>
<td>53</td>
<td>6,1</td>
</tr>
<tr>
<td>Não identificados*</td>
<td>4</td>
<td>0,5</td>
</tr>
<tr>
<td>Tipo de serviço</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autônomo</td>
<td>260</td>
<td>30,0</td>
</tr>
<tr>
<td>Contratado</td>
<td>603</td>
<td>69,6</td>
</tr>
<tr>
<td>Aposentado</td>
<td>3</td>
<td>0,3</td>
</tr>
</tbody>
</table>

* Não identificados: Indivíduos cujos questionários não foram preenchidos para a característica observada, o que resultou em exclusão do mesmo em análises estatísticas posteriores.

5.2 Perfil sociodemográfico e ocupacional e relação com uso de drogas ilícitas

Do total de amostras coletadas, 51 foram consideradas positivas para a presença das drogas de caráter estimulante avaliadas, grupo no qual foram inclusas aquelas confirmadas para a presença de cocaína e anfetamina, tanto usadas isoladamente quanto em combinação com outras drogas estudadas, representando prevalência de 5,9% em relação ao total de amostras e 87,9% em relação ao grupo de amostras positivas.
5.2.1 Avaliação da correlação entre o fator “Idade” e uso de drogas ilícitas

O uso de estimulantes apresentou correlação estatisticamente significativa com o fator “idade” frente ao teste de qui-quadrado, tendo sido verificada maior prevalência dessas últimas nas amostras biológicas de indivíduos pertencentes às faixas etárias mais jovens - ou seja, aqueles que declararam possuir até 39 anos quando da realização da entrevista, e que foram incluídos, portando, nos grupos de faixas etárias “Até 29 anos” e “30 a 39 anos” - visto que esses grupos apresentaram prevalência de 13,8 e 8,8% respectivamente, tendo sido esses valores muito superiores aqueles obtidos para as demais faixas etárias consideradas, como apresentado na Figura 9 e na Tabela 9, que a complementa ($\chi^2=20,00$, $p=0,0003$). Não foi verificada correlação entre o uso de THC e o fator “idade”, pelo teste estatístico de qui-quadrado ($\chi^2=5,422$, $p=0,3665$).
Figura 9: Distribuição de usuários de estimulantes de acordo com a faixa etária.

Tabela 9: Distribuição de usuários de estimulantes de acordo com a faixa etária.

<table>
<thead>
<tr>
<th>IDADE</th>
<th>Positivos</th>
<th></th>
<th>Negativos</th>
<th></th>
<th>TOTAL</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Número Absoluto(Ƞ)</td>
<td>(%)</td>
<td>Número Absoluto(Ƞ)</td>
<td>(%)</td>
<td>Número Absoluto(Ƞ)</td>
<td>(%)</td>
</tr>
<tr>
<td>Até 29 anos</td>
<td>12</td>
<td>13,8</td>
<td>75</td>
<td>86,2</td>
<td>87</td>
<td>100</td>
</tr>
<tr>
<td>30 a 39 anos</td>
<td>24</td>
<td>8,8</td>
<td>248</td>
<td>91,2</td>
<td>272</td>
<td>100</td>
</tr>
<tr>
<td>40 a 49 anos</td>
<td>10</td>
<td>4,0</td>
<td>242</td>
<td>96,0</td>
<td>252</td>
<td>100</td>
</tr>
<tr>
<td>50 a 59 anos</td>
<td>3</td>
<td>1,6</td>
<td>185</td>
<td>98,4</td>
<td>188</td>
<td>100</td>
</tr>
<tr>
<td>60 a 69 anos</td>
<td>2</td>
<td>3,3</td>
<td>59</td>
<td>96,7</td>
<td>61</td>
<td>100</td>
</tr>
<tr>
<td>70 a 79 anos</td>
<td>0</td>
<td>0,0</td>
<td>5</td>
<td>100,0</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>TOTAL</td>
<td>51</td>
<td>5,9</td>
<td>814</td>
<td>94,1</td>
<td>865</td>
<td>100</td>
</tr>
</tbody>
</table>
5.2.2 Avaliação da correlação entre o fator “Acidente de trânsito previamente relatado” e uso de drogas ilícitas

Dentre o grupo de motoristas que declarou já haver sofrido AT nas rodovias anteriormente (N=185), dezesseis apresentaram resultado positivo para estimulantes na urina, representando 8,6% do grupo, enquanto o grupo de motoristas que relatam não haverem se envolvido em AT anteriormente (N=679), 35 indivíduos tinham consumido estimulantes, do que resulta no valor de prevalência de 5,15%. O uso de THC foi verificado em três indivíduos que relataram haverem sofrido AT anteriormente e em sete indivíduos que relataram não terem se envolvido em tais eventos, representando prevalência de 1,6 e 1,0%, respectivamente. Assim, não houve diferença estatisticamente significativa entre os dois grupos estudados, tanto para o uso de estimulantes ($x^2=3,196, p=0,0738$) quanto para o uso de THC ($x^2=0,4434, p=0,5055$).

5.2.3 Avaliação da correlação entre o fator “Tipo de carga transportada” e uso de drogas ilícitas

Conforme mencionado anteriormente, os questionários dos motoristas entrevistados foram separados em sete grupos, de acordo com o tipo de carga transportada. A distribuição dos respectivos nas categorias especificadas está representada na Tabela 10. Foram excluídos da presente análise os questionários nos quais não foram identificadas as cargas transportadas, bem como aqueles nos quais houve declaração de estarem com caminhões vazios
(118 e 56 motoristas, respectivamente), resultando em um total de 692 questionários viáveis para análise desta variável.

Tabela 10: Distribuição dos motoristas entrevistados quanto ao tipo de carga que estavam transportando quando foram entrevistados.

<table>
<thead>
<tr>
<th>CATEGORIA</th>
<th>Número de indivíduos (Ƞ)</th>
<th>(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Câmara fria</td>
<td>40</td>
<td>5,8</td>
</tr>
<tr>
<td>Produto perecível</td>
<td>100</td>
<td>14,5</td>
</tr>
<tr>
<td>Alimento não perecível</td>
<td>104</td>
<td>15,0</td>
</tr>
<tr>
<td>Químicos</td>
<td>56</td>
<td>8,1</td>
</tr>
<tr>
<td>Carga viva</td>
<td>5</td>
<td>0,7</td>
</tr>
<tr>
<td>Material não perecível</td>
<td>382</td>
<td>55,2</td>
</tr>
<tr>
<td>Produtos Farmacêuticos</td>
<td>5</td>
<td>0,7</td>
</tr>
<tr>
<td>TOTAL</td>
<td>692</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Dentre o grupo de motoristas que indicou fazer transporte de alimentos perecíveis (100 indivíduos), 20 deles apresentaram amostra positiva para ao menos uma droga estimulante, representando prevalência de uso de estimulantes de 20% para este grupo. Resultado semelhante foi verificado em relação ao grupo que declarou estar transportando carga viva, composto por cinco motoristas, dentre os quais um deles apresentou amostra considerada positiva para estimulantes. Logo, o valor de prevalência de substâncias estimulantes nas amostras biológicas dos grupos de motoristas que indicaram transportar produtos perecíveis e carga viva, recém descritos, contrastou-se com os valores encontrados nos demais grupos considerados, que variaram de 0% (produtos químicos e farmacêuticos) a 4,7% (materiais não perecíveis). Logo, esta diferença foi estatisticamente significativa frente ao teste de qui-quadrado, como apresentado na Figura 10 e na Tabela 11, que a complementa (x²=42,69,
p<0,0001). Não houve diferença estatisticamente significativa entre o uso de THC e o tipo de carga transportada ($x^2=2,07$, $p=0,9135$).
Figura 10: Distribuição do uso de drogas estimulantes em relação ao tipo de carga transportada.

Tabela 11: Distribuição dos motoristas entrevistados quanto ao tipo de carga que estavam transportando quando foram entrevistados.

<table>
<thead>
<tr>
<th>Tipo de carga</th>
<th>Positivos Número Absoluto(Ƞ) (%)</th>
<th>Negativos Número Absoluto(Ƞ) (%)</th>
<th>TOTAL Número Absoluto(Ƞ) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Câmara fria</td>
<td>1 2,5</td>
<td>39 97,5</td>
<td>40 100</td>
</tr>
<tr>
<td>Produtos perecíveis</td>
<td>20 20,0</td>
<td>80 80,0</td>
<td>100 100</td>
</tr>
<tr>
<td>Alimentos não perecíveis</td>
<td>3 2,9</td>
<td>101 97,1</td>
<td>104 100</td>
</tr>
<tr>
<td>Químicos</td>
<td>0 0,0</td>
<td>56 100,0</td>
<td>56 100</td>
</tr>
<tr>
<td>Carga viva</td>
<td>1 20,0</td>
<td>4 80,0</td>
<td>5 100</td>
</tr>
<tr>
<td>Materiais não perecíveis</td>
<td>18 4,7</td>
<td>364 95,3</td>
<td>382 100</td>
</tr>
<tr>
<td>Hospitalares</td>
<td>0 0,0</td>
<td>5 100,0</td>
<td>5 100</td>
</tr>
<tr>
<td>TOTAL</td>
<td>43 6,3</td>
<td>649 94,5</td>
<td>687 100</td>
</tr>
</tbody>
</table>
5.2.4 Avaliação da correlação entre o fator “Estado civil” e uso de drogas ilícitas

O grupo de motoristas solteiros era composto por 139 motoristas (16% do total de motoristas entrevistados), o de motoristas casados ou amasiados por 670 motoristas (77,4% do total), enquanto o grupo de viúvos ou divorciados, por 53 motoristas (6,1%).

Foi observada maior prevalência do uso de drogas estimulantes em indivíduos solteiros ($\eta=13$, representando 9,3% da população de solteiros) em comparação aos demais estados civis considerados, visto que estes últimos apresentaram valores de prevalência de 5,7% para o grupo de casados e amasiados (38 indivíduos) e 0% para o grupo de viúvos e divorciados ($x^2=6,353$, $p=0,0417$; Figura 11A). Perfil semelhante foi verificado em relação ao uso do THC; dentre o grupo de indivíduos solteiros, 5 apresentaram amostras positivas, representando 3,6% do grupo, valor superior ao verificado no grupo de casados/amasiados (5 indivíduos, 0,75% da população) e viúvos/divorciados (nenhum indivíduo); $x^2=8,822$, $p=0,0121$ (Figura 11B).
Figura 11: Distribuição do uso de drogas estimulantes e THC (A e B, respectivamente) em relação ao estado civil declarado.
5.2.5 Avaliação da correlação entre o fator “Cor de pele” e uso de drogas ilícitas

Os motoristas foram categorizados pelos entrevistadores em uma das seguintes cores de pele, em: brancos (η=679), negros (η=56), pardos (η=101) e amarelos (η=4).

Não foi verificada diferença significativa entre cor de pele e o uso dos grupos de drogas estimulantes ($x^2=0,4659$, $p=0,9263$) e THC ($x^2=1,447$, $p=0,6945$).

5.2.6 Avaliação da correlação entre o fator “Escolaridade” e uso de drogas ilícitas

Não foi verificada diferença estatisticamente significativa entre a escolaridade dos motoristas e o uso das drogas estimulantes ($x^2=6,921$, $p=0,4372$) e THC ($x^2=3,058$, $p=0,8795$).

5.2.7 Avaliação da correlação entre o fator “Tempo de profissão” e uso de drogas ilícitas

Foi verificada diferença estatisticamente significativa entre uso de estimulantes, bem como o de THC, e o tempo de profissão relatado, sendo os indivíduos que declararam trabalhar a menos tempo como caminhoneiros os mais susceptíveis ao uso de drogas estimulantes ($x^2=6,176$, $p=0,0456$) e de THC ($x^2=9,357$, $p=0,0093$), conforme representado na Figura 12.
Figura 12: Distribuição do uso de drogas estimulantes (A) e THC (B) em relação ao tempo de exercício da profissão declarado.
5.2.8 Avaliação da correlação entre o fator “tipo de serviço” e uso de drogas ilícitas

Dentre o grupo de caminhoneiros que declararam trabalhar como contratados, 35 indivíduos apresentaram resultado positivo para estimulantes nas amostras de urina, o que corresponde a prevalência de 5,8%. No grupo dos que se declarou autônomo, por sua vez, houve prevalência de 6,1% (16 indivíduos), enquanto os aposentados, 0%. Assim, não foi verificada diferença significativa entre o tipo de serviço prestado e o uso dos grupos de drogas estimulantes por meio do método do Qui-quadrado ($x^2 = 0,2284, p = 0,8921$). Resultados semelhantes foram verificados por meio da análise da prevalência do uso de THC e sua relação com o tipo de serviço prestado; os valores encontrados foram de 0,8, 1,9 e 0% para os grupos de contratados, autônomos e aposentados, respectivamente ($x^2 = 1,940, p = 0,3791$).

5.2.9 Avaliação da correlação entre o fator “Característica do serviço” e uso de drogas ilícitas

A partir da aplicação do teste de Qui-quadrado, foi verificada correlação significativa entre o uso de estimulantes e a característica do serviço prestado, tendo sido observado maior valor de prevalência da presença de estimulantes nas amostras biológicas de indivíduos que se declararam motoristas de longas distâncias (7,44%), em relação ao verificado para motoristas de curtas distâncias (0,51%; $x^2 = 13,03; p = 0,0003$), como demonstrado na Figura 13A, abaixo. Não foi verificada, para a característica avaliada, correlação estatisticamente significativa frente ao uso de THC ($x^2 = 0,0336, p = 0,8546$).
5.2.10 Avaliação da correlação entre o fator “Distância percorrida” e uso de drogas ilícitas

Foi verificada diferença estatisticamente significativa entre o uso de estimulantes e a distância percorrida na atual viagem, sendo os motoristas que declararam estar realizando trajetos superiores a quinhentos e cinquenta quilômetros (550 Km) os mais susceptíveis ao uso dessas substâncias, como apresentado na Figura 13B ($x^2=13,45, p=0,0002$). Por outro lado, não foi verificada correlação estatisticamente significativa em relação ao uso de THC e a distância percorrida na atual viagem ($x^2=0,3162, p=0,5739$).
Figura 13: Distribuição do uso de estimulantes e relação com a característica do serviço prestado (A) e a distância percorrida na atual viagem (B).
5.3 Uso relatado de drogas

No grupo de caminhoneiros entrevistados, 38 informaram serem usuários de anfetamina e 185 alegaram já haver utilizado esta droga ao menos uma vez na vida. Os motivos determinados para o uso foram variados, porém o mais recorrente consistiu em expectativa da melhora do desempenho na direção, principalmente durante os períodos de fadiga. Os medicamentos mais comumente citados pelos motoristas consistiram nos anorexígenos Desobesi® e Nobese®, referenciados por 55 e 31% dos entrevistados que alegaram utilizar rebitê, respectivamente. Também foram relatados o uso de Lipomax®, Dualid®, Hipofagin S® e Tamilan®, em porcentagens inferiores à 2%.

O uso de drogas ilícitas, feito ao menos uma vez na vida, foi relatado por 118 dos motoristas, representando 18% dos entrevistados; destes, nove admitiram serem usuários regulares. As drogas mais comumente reportadas foram cocaína e maconha, presentes em, respectivamente, 53,4 e 67,8% dos relatos dos motoristas que já fizeram uso de drogas.

Quatro dos motoristas entrevistados alegaram fazer uso de algum medicamento ansiolítico e/ou hipnótico para tratamento de insônia. Foram citados os medicamentos Apraz® (alprazolam), Somalium® (bromazepam), alprazolam (medicamento genérico), e Stilnox® (zolpidem).

Também, quatro motoristas relataram fazer uso de algum antidepressivo para o tratamento de depressão, tendo sido citados os medicamentos Denyl® (citalopram), fluoxetina (medicamento genérico), sertralina (medicamento genérico), e Donaren® (trazadona).
6. Discussão
O perfil sócio econômico e ocupacional do motorista de caminhão delineado no presente estudo, construído a partir das variáveis idade, cor de pele, escolaridade e estado civil, foi muito semelhante aos perfis encontrados em outros estudos, nos quais há a predominância praticamente absoluta de indivíduos do sexo masculino neste meio, sendo a maioria declarados casados e possuindo escolaridade de até oito anos de estudo.57,89,100–102. Em nossa amostra, a maioria dos indivíduos entrevistados (80,8%) foi classificada como de cor de pele branca, enquanto pardos, negros e amarelos representaram apenas 12,0%, 6,7% e 0,5% da população, respectivamente. Esses valores diferem-se substancialmente de dados referentes à composição brasileira por cor ou raça colhidos em 2015 e fornecidos pelo IBGE, principalmente quanto a participação de brancos e pardos, que representam 45,2 e 45,1% da população, respectivamente, fato que pode ser atribuído tanto a diferenças na percepção individual de cada coletor quanto a diferença na composição étnica da amostra estudada, restrita apenas à motoristas que trafegavam no estado de São Paulo, e daquela utilizada pelo IBGE, sendo esta última representativa da população brasileira.103

O fato de apenas oito dos motoristas entrevistados (representando 0,9% da amostra) haverem relatado fazer uso de medicamentos ansiolíticos, hipnóticos ou antidepressivos para o tratamento de depressão, ansiedade e insônia pode indicar não uma baixa taxa de prevalência desses transtornos na população estudada, quando comparado com a população brasileira, mas uma deficiência no acesso ao tratamento médico adequado, e, consequentemente, aos medicamentos necessários. Essa inferência é suportada por estudos realizados tanto no Brasil quanto em outros países.104 Da Silva-Júnior e
colaboradores (2009), por exemplo, em um estudo seccional realizado com uma população de 300 motoristas de caminhão brasileiros constatou que, apesar de 13,6% dos motoristas de caminhão entrevistados ter sido diagnosticada com depressão pela equipe entrevistadora, sendo este valor de prevalência superior ao encontrado na literatura para homens brasileiros à época (1,9 a 5,9%), nenhum deles reportou o tratamento da doença ou o uso de medicação própria105. Ressalta-se a necessidade da realização de estudos mais aprofundados a fim de comprovar a veracidade desta hipótese, visto que sua mera sugestão é preocupante. Isso porque, doenças psiquiátricas como a depressão, quando não tratadas, além de ocasionarem grande diminuição da qualidade de vida desses indivíduos, têm sido correlacionadas com o aumento do risco de se envolver em acidente de trânsito quando associadas à direção64,106,107.

A escolha pelo estudo dos ADTs se deu principalmente pelo fato de serem fármacos longamente utilizados na terapia da depressão em decorrência de sua eficácia, e por apresentarem baixo custo, do que resultaria maior acesso à população. Três antidepressivos tricíclicos – a amitriptilina, clomipramina e nortriptilina - estão contidos na lista do RENAME (Relação Nacional de Medicamentos Essenciais), relação dos medicamentos disponibilizados pelo SUS (Sistema Único de Saúde) por meio de políticas públicas108. Porém, apesar das considerações anteriores, nenhum dos entrevistados relatou fazer uso de ADTs, tendo sido reportado apenas o uso dos inibidores seletivos da recaptação de serotonina (ISRS) citalopram, fluoxetina e sertralina, além da trazadona.
Os ISRS, diferentemente dos ADT, não apresentam ação anticolinérgica e, portanto, não estão associados com diminuição das funções cognitivas necessárias para a execução da direção segura. Seus efeitos adversos mais comuns – náusea, vômito, insônia e dores de cabeça - são considerados brandos, e tendem a desaparecer com a progressão do tratamento109. Dessa forma, o uso de tal classe de fármacos no tratamento de depressão nesta população, se plausível, realmente seria benéfico, do ponto de vista da segurança do tráfego.

Apesar de dezoito amostras de urina terem sido consideradas positivas para a presença de ADT durante a triagem, porém tidas como negativas após a confirmação por CL-EM/EM indica a presença muito provável de um interferente nessas amostras, sendo um possível candidato a ciclobenzaprina. Isso porque tal molécula apresenta grande semelhança estrutural com ao ADT, diferenciando-se da amitriptilina pela presença de apenas uma dupla ligação110. Estudos da literatura ressaltam a ocorrência prévia de interferência da ciclobenzaprina e seu principal metabólito, a norciclobenzaprina, na determinação da presença de ADT em análises toxicológicas de amostras biológicas, mesmo havendo utilização de distintas metodologias111,112.

A ciclobenzaprina é largamente utilizada na terapia no tratamento de dores musculares, ressaltando-se o uso na terapia de dores não específicas nas costas, devido a sua capacidade de promover o relaxamento da musculatura estriada esquelética113. Em decorrência de sua similaridade estrutural com os ADT, a ciclobenzaprina também apresenta ação anticolinérgica e, por conta disso, possui efeitos adversos semelhantes àqueles verificados nos ADT, descritos anteriormente. Dessa forma, apesar de não terem sido encontrados na
literatura estudos que versem especificamente sobre o assunto, seu uso indiscriminado pode, muito provavelmente representar um risco à segurança viária\(^{114}\). Apesar dos medicamentos que contenham a ciclobenzaprina como princípio ativo serem classificados pela ANVISA (Agência Nacional de Vigilância Sanitária) como medicamentos de tarja vermelha, ou seja, medicamentos vendidos sob prescrição e necessitando, portanto, da apresentação de receita médica para a sua dispensação no Brasil, estes podem ser facilmente comprados nas farmácias e drogarias sem a necessidade de apresentação de qualquer receita.

Já foi constatado anteriormente que motoristas de caminhão relatam sofrer de diversas dores musculares principalmente na região das costas em decorrência de terem que carregar e descarregar o caminhão, além de estarem submetidos a longas jornadas de trabalho, nas quais podem vir a sofrer por conta da tensão postural e da vibração contínua do veículo\(^{115}\). Tal fato pode vir a corroborar com o uso não prescrito deste tipo de medicação por essa classe trabalhadora, porém necessita-se da realização de estudos mais aprofundados a fim de confirmar a veracidade de tal afirmação.

Em semelhança com o corrido com os ADT, treze amostras foram consideradas positivas para a presença de medicamentos benzodiazepínicos durante a etapa de triagem, porém foram posteriormente consideradas negativas para a presença do respectivo grupo de medicamentos após a confirmação por CL-EM/EM. É sabido que determinadas substâncias podem agir como interferentes em imunoensaios para a determinação da presença BDZ, dentre as quais ressalta-se a sertralina e o efavirenz, fármacos de ação antidepressiva e antirretroviral, respectivamente\(^{116}\).
Considerando que a prevalência dos medicamentos ADT e BDZ nas amostras biológicas coletadas foi nula, e levando em conta o baixo número de relatos do uso de medicamentos pertencentes à essas classes pelos motoristas entrevistados, verifica-se que os resultados obtidos no presente estudo corroboram com alguns estudos presentes na literatura e realizados em outros países, nos quais a prevalência de medicamentos nas amostras de motoristas de caminhão estudadas foi baixa, ou seja, inferior aos valores de prevalência verificados para as demais drogas estudadas. Lemire e cols. (2002) verificou que 0,3% das amostras de urina de motoristas de caminhão parados aleatoriamente em Quebéc, Canadá, se encontravam positivas para BDZ, enquanto Labat e cols. (2008), verificou que 0,004% das amostras de urina dos motoristas de caminhão parados aleatoriamente em Nord-Pas-de-Calais, França, foram consideradas positivas para BDZ.117,118

A prevalência do uso das drogas ilícitas cocaína, anfetamina e maconha obtida no presente estudo foi de 6,7%, valor que vai de acordo com achados publicados em outros estudos.51,101 Dentre as drogas ilícitas, as de caráter estimulante e, em particular, a anfetamina tem sido largamente descrita na literatura como de utilização laboral pelos motoristas, cujo intuito visaria a melhoria do desempenho ao dirigir, principalmente por melhorar, em um primeiro momento, a sensação de fadiga, permitindo com que estes continuem dirigindo por mais tempo.89,100,119,120 Dessa forma, esperava-se verificar valores de prevalência superiores para drogas estimulantes nessa população, em comparação com a maconha, por exemplo.
Assim, em conformidade com as expectativas previstas, a prevalência determinada para as drogas estimulantes avaliadas neste estudo foi de 5,9%, sendo este valor resultante da soma das prevalências encontradas para anfetamina (2,6%) e cocaína (2,6%) usadas isoladamente, ou associadas a outras drogas (0,6%), valores que são reforçados por outros estudos presentes na literatura. Em estudo de Oliveira e cols. 2013, no qual foi avaliado o uso de anfetaminas por motoristas em amostras colhidas no ano de 2012, a prevalência encontrada foi de 2,7%121. Similarmente, Bombana e colaboradores (2017)101 verificaram a presença das drogas anteriormente citadas no fluido oral de motoristas de caminhão em amostras coletadas nos anos de 2014 e 2015; 2,1% foram consideradas positivas para anfetamina, 2,7% para cocaína e 1% para THC. Esses dados reforçam aqueles obtidos no presente estudo, no qual as drogas anfetamina e cocaína, além de serem as drogas mais comumente encontradas na amostra, apresentaram valores de prevalência semelhantes entre si, indicando ser o uso das mesmas igualmente disseminado na população estudada.

Outras publicações, apesar de utilizarem-se de metodologias semelhantes à abordada no presente estudo, obtiveram valores de prevalência distintos. A publicação de Sinagawa e colaboradores (2015), no qual avaliou-se a prevalência das drogas anteriormente citadas em amostras de urina de motoristas do estado de São Paulo entre os anos de 2008 a 2011, verificou que a anfetamina foi a droga mais prevalente, detectada em 5,4% nas amostras de urina investigadas89. A cocaína foi encontrada em apenas 2,6%, e a maconha, em 1,0%. Logo, é possível verificar diferença entre as prevalências das drogas estimulantes anfetamina e cocaína reportadas por Sinagawa e pelo presente
estudo, indicando possível diminuição no consumo de anfetaminas e aumento no consumo de cocaína entre os anos de 2011 e 2016. Além disso, apesar de ser a anfetamina a droga mais comumente detectada durante os anos de 2008 a 2011, verificou-se que houve um aumento do número de amostras consideradas positivas para cocaína, superando, a partir de 2011, o número de amostras positivas para anfetaminas. Achado semelhante é verificado em outra publicação do nosso grupo, que, utilizando-se de metodologia semelhante, verificou que no período de 2009 a 2016, a prevalência das drogas ilícitas anfetamina e cocaína nas amostras de urina coletadas de motoristas de caminhão foi de 3,4 e 3,6%, respectivamente e, apesar da anfetamina ter sido a substância ilícita mais prevalente verificada até o ano de 2010, é superada pela cocaína a partir de 2011. É sabido que a ANVISA, por meio da Resolução de número 52 (RDC 52/2011), determinou a proibição da produção, dispensação, importação, exportação, prescrição e uso dos sais e isômeros de anfepramona, femproporex e mazindol, princípios ativos contidos nos medicamentos anorexígenos mais relatados pelos motoristas. Mesmo havendo a posterior liberação dessas moléculas pela ANVISA em 2014, a dispensação de medicamentos que continham como princípio ativo as substâncias citadas anteriormente passou a ser regulamentada por legislação rígida. Consequentemente, a diminuição da oferta dessas substâncias pode ter contribuído com a diminuição do uso dos medicamentos anorexígenos pelos motoristas, e estes últimos podem ter buscado por modos alternativos para controlar a fadiga, tal como migração para uso de outras drogas estimulantes do SNC, caso da cocaína. Outros estudos semelhantes realizados em amostras de motoristas colhidas em anos anteriores ao da publicação da RDC 52/2011.
corroboram com essas afirmações; Leyton e cols. (2012), em amostras de urina colhidas em 2009, verificou prevalência de anfetaminas de 5,8%, dobro da prevalência de cocaína, estimada em 2,2%.51

Ao serem comparados resultados de prevalência de uso de drogas ilícitas obtidos em diferentes estudos, ressalta-se que diferenças metodológicas podem promover obtenção de resultados distintos, de forma que o confronto de informações deve ser feito de forma cautelosa. Primeiramente, diversos estudos existentes na literatura baseiam-se apenas nas informações obtidas por meio de questionários, contando, por conseguinte, com as informações fornecidas pelo motorista100,120. Estudos baseados em relatos podem ser vantajosos em diversos aspectos, porém podem resultar em subnotificação do uso de drogas, tanto em frequência quanto em intensidade125. Da mesma forma, pudemos verificar que o uso recente de anfetamina tende a ser subnotificado pelos motoristas; dentre os 25 indivíduos cujas amostras apresentaram-se positivas, apenas 8 admitiram ter feito uso recente da droga; a maioria relatou não ter feito uso recente, porém já ter experimentado a droga previamente. Da mesma forma, o uso recente de cocaína e maconha também foi subnotificado; apenas 9 indivíduos admitiram ter feito uso recente de alguma dessas substâncias ilícitas, sendo que 4 participantes fizeram uso de maconha, 1 de cocaína e 2 de ambas as drogas citadas, informações que se contrastam com os resultados obtidos das análises toxicológicas, nas quais 25, 7 e 3 indivíduos apresentaram em suas amostras cocaína, THC e a combinação de ambas as drogas, respectivamente. Muito provavelmente, um dos fatores que podem vir a colaborar com a subnotificação do uso das drogas anteriormente citadas é o fato de ser realizada a entrevista de forma presencial e oral; o receio em admitir o uso de algo que se sabe ser
proibido, principalmente durante um evento promovido pela Polícia Rodoviária Federal, mesmo estando a presença policial posicionada de forma a favorecer o desenvolvimento adequado das entrevistas, ou seja, permitindo a privacidade do participante e o caráter anônimo do entrevistado, podem ter corroborado com o pequeno número de relatos de usuários recentes.

Diferenças notáveis em relação à prevalência do uso de drogas ilícitas são encontradas ao compararem-se estudos realizados em diferentes países, e mesmo ao comparar-se estudos realizados em distintas regiões de um país tão grande quanto o Brasil, fato que pode ser decorrente não apenas de variações nos métodos utilizados para coleta de informações, mas de reais diferenças no padrão de uso dessas drogas por diferentes grupos populacionais. Essas observações possivelmente apresentam influência de diversas variáveis, tais como a disponibilidade das drogas em questão, percepção do risco ao uso por parte do motorista, bem como conhecimento e respeito às legislações vigentes no país em questão. Estudo como o de Gjerde e cols. (2014), no qual foi avaliado o uso de drogas ilícitas e medicamentos psicoativos em motoristas brasileiros e noruegueses, verificou-se que para os primeiros, o uso das drogas estimulantes cocaína e anfetamina foi significativamente maior do que para os últimos, fato que é justificado pela implementação mais antiga de legislações rígidas que visem combater o dirigir sob Influência de drogas (do inglês, DUID – Driving Under Influence of Drugs) na Noruega, inicialmente datadas de 1936. Somado a isso, é ressaltado o maior reforço policial na fiscalização nesta população, bem como duras penalidades aos infratores.
Verificamos a associação entre as variáveis idade, estado civil, tempo de profissão, característica do serviço prestado e distância percorrida no atual trajeto com o uso de drogas estimulantes, sendo os indivíduos mais jovens, solteiros, que exerciam a profissão a menos tempo, que declararam-se motoristas de longa distância e que realizavam jornadas mais longas quando foram entrevistados os mais susceptíveis ao uso das drogas estimulantes estudadas; esses resultados reiteram achados prévios, relatados em outros estudos realizados no Brasil89,101,120 e no exterior119. Somando-se a estes achados, acrescenta-se que o tipo de carga transportada parece influenciar no uso de estimulantes, sendo mais susceptíveis ao uso os motoristas que transportam produtos perecíveis, tais como frutas, verduras e legumes e aqueles que transportam carga viva, visto que a prevalência de estimulantes nas amostras de urina dos motoristas que alegaram transportar estes tipos de produtos foi mais de três vezes superior, quando comparado com o grupo total de caminhoneiros entrevistados, dados que corroboram com outro trabalho do nosso grupo122.

Sinagawa e cols. (2015), observaram que há maior susceptibilidade ao uso de estimulantes em motoristas autônomos ou, em outras palavras, em motoristas cujos salários eram proporcionais à quantidade de fretes realizados89. No presente estudo, tal correlação não foi confirmada.

O estabelecimento da lei 13.103 de 2015, legislação que regulamenta a jornada de trabalho de motoristas profissionais, com certeza representa um grande avanço dessa classe profissional, visto que determina fatores essenciais à uma jornada de trabalho saudável, como número máximo de horas de trabalho.
diárias permitidas, períodos de descanso diurno e noturno e número máximo de horas seguidas que um motorista pode dirigir. Assim, era esperado que a implementação de tais alterações contribuísse com diminuição de jornadas exaustivas e irregulares, e, consequentemente, com melhoria na qualidade de vida dos respectivos, visto permitir melhor controle da alimentação, sono e fadiga. Em última instância, esperaria verificar menor prevalência de uso de drogas estimulantes e de maconha na população de caminhoneiros após a implementação da legislação. Mais além, no mesmo dispositivo legal, foi introduzida a obrigatoriedade da realização de análises toxicológicas em pelos, cabelos e unhas para determinação de uso de determinadas drogas psicoativas nos últimos três meses para a renovação das CNHs (Carteira Nacional de Habilitação) dos tipos C, D e E, cujo objetivo foi o de contribuir para a inibição do uso das respectivas drogas por motoristas profissionais, visto que estes dependem desde documento para exercer o seu ofício. Entretanto, não há evidência científica de que o ato de tornar compulsória a realização desse exame no momento da obtenção ou renovação da CNH seja efetivo para a redução da mortalidade no trânsito. Assim, tal observação não procede, muito pelo contrário: a prevalência do uso das drogas estimulantes cocaína e anfetamina encontrados em estudos recentes continuam superiores aos valores encontrados para a média da população brasileira, dado extremamente preocupante. Também, não houve alteração significativa no uso de maconha.

Muitos fatores podem vir a contribuir com os resultados obtidos. A falta de infraestrutura nas estradas pode vir a ser um deles. Uma descrição muito frequente dos caminhoneiros entrevistados é a falta de lugares adequados onde eles possam pernoitar, bem como a precariedade dos locais existentes, fator que
muitas vezes os levam a decidir parar o caminhão apenas durante curtos períodos de descanso. Há grande preocupação com a possibilidade de assaltos e roubos de carga, ocorrências registradas mais de 19.000 vezes no ano de 2016, 10% a mais do que no ano anterior128. Outras possibilidades incluem pressões por horários e metas, exigidos pelas empresas, fato que pode ser combatido por meio de maior fiscalização das respectivas por parte das autoridades competentes.

O estabelecimento de programas de conscientização tem sido descrito na literatura como importante mecanismo atuante no combate ao ato de dirigir sob influência de álcool e drogas129. Ao se idealizar uma política que vise diminuir o uso de drogas por motoristas profissionais, esta parece ser uma abordagem válida, visto que o conhecimento do motorista em relação ao real potencial prejudicial que uma droga psicoativa pode gerar em seu discernimento e habilidade de dirigir com segurança é limitado, de forma que o risco assumido ao fazer uso dessas é subestimado. Isso é visto com clareza durante a condução das entrevistas feitas com os motoristas de caminhão abordados durante o CSR: muitos deles indicam não estarem cientes dos malefícios no uso, principalmente no que concerne ao uso dos anorexígenos anfetamínicos, os rebites.

A sanção pela câmara dos deputados da Lei 13.454 de 2017, que autoriza a produção, a comercialização e o consumo de medicamentos à base das substâncias anorexígenas sibutramina, anfepramona, femproporex e mazindol foi considerada pela ANVISA como inconstitucional e um risco para a população, visto permitir a comercialização desses medicamentos sem a realização de rigorosas análises técnicas sobre qualidade, segurança e eficácia130,131. Muito
provavelmente houve maior disponibilidade dessas substâncias no mercado brasileiro e consequente aumento do uso abusivo tanto pela população de forma geral como pelos motoristas profissionais. Assim, o estudo e monitoramento do uso de substâncias por motoristas de caminhão se faz necessário, a fim de acompanhar possíveis mudanças no padrão do uso dessas drogas psicoativas.
7. Considerações finais
A prevalência do uso das drogas ilícitas abordadas no presente estudo – especialmente das drogas estimulantes – ainda é grande na população de motoristas de caminhão brasileiros, apesar da ocorrência de modificações legislativas que poderiam favorecer a diminuição do uso tanto laboral como recreativo por essa classe de trabalhadores, tendo se mostrado mais susceptíveis ao uso os caminhoneiros mais jovens, solteiros, que declararam estar a menos tempo exercendo a profissão, que se declararam caminhoneiros de longas distâncias e que percorriam grandes distâncias no atual trajeto. Esse fato indica que as alterações legislativas, por si só, não resultaram em alterações e melhoras práticas nas condições laborais desses motoristas. Consequentemente, ainda há muito a ser feito para promover modificação dessa realidade, a fim de obter estradas mais seguras, tanto para os caminhoneiros como para os demais motoristas.

A melhoria do texto legislativo, a realização de programas de conscientização voltados não apenas aos motoristas, mas também a indivíduos que exerçam cargos de liderança nas empresas que contratem esses motoristas, focados em transmitir informações relacionadas ao potencial prejudicial do uso de drogas para a saúde, com ênfase nos riscos que estes estão assumindo ao dirigir sob o efeito destas, bem como melhoria da infraestrutura das estradas e postos de pernoite, de forma a gerar uma melhora nas condições laborais desses motoristas, ainda consistem nas principais armas de políticas públicas que visem diminuir a ocorrência do ato de dirigir sob influência de drogas no Brasil.

Apesar de o uso dos medicamentos estudados não apresentar prevalência na população estudada, o uso de outros medicamentos que podem
prejudicar o processo de dirigir veículo automotor deve ser considerada e melhor estudada futuramente.
8. Referências Bibliográficas

15. Dussault C, Brault M, Bouchard J, Lemire AM. The Contribution of Alcohol and Other Drugs Among Fatally Injured Drivers in Quebec: Some Preliminary

45. Abdalla RR, Madruga CS, Ribeiro M, Pinsky I, Caetano R, Laranjeira R.
Prevalence of Cocaine Use in Brazil: Data from the II Brazilian National Alcohol and Drugs Survey (BNADS). *Addict Behav*. 2014;39(1):297-301.

110. Lofland JH, Szarlej D, Buttaro T, Shermock S, Jalali S. Cyclobenzaprine hydrochloride is a commonly prescribed centrally acting muscle relaxant, which is structurally similar to tricyclic antidepressants (TCAs) and differs from amitriptyline by only one double bond. *Clin J Pain*. 2001;17(1):103-104.

117. Lemire A-M, Montégiani M, Dussault C. *Alcohol and Drug Consumption by Québec Truck Drivers*.

9. Anexos

Anexo A – Questionário

IDENTIFICAÇÃO

Número de Controle Laboratorial: __________ Entrevistador: __________

Participante: () Aceitou participar () Recusou participar, motivo:

Idade: __________ Sexo: Feminino () Masculino ()

Naturalidade (Cidade/UF): /

Estado civil: Solteiro () Casado () Viúvo () Divorciado () Amaciado ()

Etnia: Branca () Negra () Amarela () Parda ()

Escolaridade: Nunca estudou () 2º grau () Outro:

1º a 4ª série () 2º Grau Incompleto ()

5º a 8ª série () Superior ()

Curso técnico () Superior Incompleto ()

Tempo de Profissão: __________ anos

Serviço: Contratado () Autônomo () Aposentado ()

Percursos (Cidade/UF) Distância: __________ km Distância:

Origem: /

Destino: /

Tempo de descanso: __________ h/noite __________ h

Já se envolveu em AT? Sim () Não ()

Quantos?

Nos últimos 12 meses? Sim () Não ()

INFORMAÇÕES SOBRE A SAÚDE

Pressão alta () Diabete () Estresse () Outro () Nenhum ()

Atividade física Sim () Não () Frequência: __________ vez/semana Tempo __________ h/dia

Medicamentos: Sim () Não () Qual? __________ Motivo: __________

Faz uso de bebidas alcoólicas?

Sim () Não () Última vez? __________

Local de consumo: Casa () Bar () Outro: __________

Freqüência nos últimos 12 meses (vezes por semana):

() diariamente () 1 vez por semana

() 2-3 vezes por semana () 4-5 vezes por semana

Tipo de bebida: Cerveja () Destilados ()

Vinho () Outros: __________

Fumante?

Sim () Ex-fumante () Não ()

Tempo de uso: __________

Quantidade de cigarros por dia: __________

Usa rebite?

Sim () Já usei () Não ()

Qual? __________

Freqüência (vezes por semana):

() diariamente () 1 vez por semana

() 2-3 vezes por semana () 4-5 vezes por semana

Quando foi a última vez? __________

Onde adquiriu?

() Posto de gasolina () Amigos () Outros __________

Motivo para uso?

() Manter acordado () Outro motivo __________

Usa outro tipo de droga?

Maconha () Crack ()

Cocaína () Outras ()

Uso () Nunca () Já usei ()

Freqüência (vezes por semana):

() diariamente () 1 vez por semana

() 2-3 vezes por semana () 4-5 vezes por semana

Quando foi a última vez?

Outras informações relevantes: __________
TERMO DE CONSENTIMENTO LIVRE E ESCLARECIDO

I - DADOS DE IDENTIFICAÇÃO DO SUJEITO DA PESQUISA
Nome: ...
Documento de Identidade: ... Sexo: () M ()F
Data de nascimento: _____/____/____
Endereço: ... N°: Apt:.......
Bairro: ... Cidade: ..
CEP: ... Telefone: (........)

II – DADOS SOBRE A PESQUISA CIENTÍFICA
1. TÍTULO DO PROTOCOLO DE PESQUISA:

Prevalência do uso de drogas ilícitas e medicamentos por motoristas de caminhão que trafegam em rodovias do Estado de São Paulo

PESQUISADORA: Profa. Dra. Vilma Leyton
CARGO/FUNÇÃO: Professora Doutora
INSCRIÇÃO NO CONSELHO REGIONAL N° 6.108
UNIDADE DO HCFMUSP: Departamento de Medicina Legal, Ética Médica e Medicina Social e do Trabalho da FMUSP

2.AVALIAÇÃO DO RISCO DA PESQUISA
Sem Risco () Risco Mínimo (x) Risco Médio ()
Risco Baixo () Risco Alto ()

3. DURAÇÃO DA PESQUISA: 24 meses

III – REGISTRO DAS EXPLICAÇÕES DO PESQUISADOR AO SUJEITO DA PESQUISA

1. Justificativa e os objetivos da pesquisa; 2. procedimentos que serão utilizados e propósitos, incluindo a identificação dos procedimentos; 3. desconfortos e riscos esperados; 4. benefícios que poderão ser obtidos.

1. Esta pesquisa está sendo feita para avaliar o quanto os motoristas profissionais têm utilizado substância psicoativas, principalmente os “rebites”, e
explicar os riscos que essas substâncias podem acometer ao motorista e à sociedade como um todo.

2. O senhor (a) deverá responder a um questionário.

3. Será coletada uma amostra de urina.

4. O senhor (a) não será identificado (a).

5. Estamos coletando apenas informações sobre sua profissão e saúde (dados obtidos do questionário)

6. Mesmo que seu exame toxicológico seja positivo, o senhor (a) não será identificado (a) de forma nenhuma.

7. Não há desconfortos para a coleta de urina e os riscos dessa pesquisa são mínimos.

8. Os benefícios deste tipo de pesquisa é ajudar a implantar políticas para um trânsito mais seguro.

IV. ESCLARECIMENTOS DADOS PELO PESQUISADOR SOBRE GARANTIAS DO SUJEITO DA PESQUISA CONSIGNANDO:

1. Acesso, a qualquer tempo, às informações sobre os procedimentos, riscos e benefícios relacionados à pesquisa, inclusive para dirimir eventuais dúvidas. O principal pesquisador é a Profa Dra. Vilma Leyton, que pode ser encontrado no endereço: Av. Dr. Arnaldo, 455 – Cerqueira César, São Paulo – SP, tel: (11) 3061-8414. Se você tiver alguma consideração ou dúvida sobre a ética da pesquisa, entre em contato com o Comitê de Ética em Pesquisa (CEP) – Avenida Dr. Arnaldo, 251 – Cerqueira César – São Paulo – SP – tel: (11) 3893-4401/4407 – E-mail: cep.fm@usp.br

2. Liberdade de retirar o seu consentimento a qualquer momento e de deixar de participar do estudo.

3. Salvaguarda da confidencialidade, sigilo e privacidade.

V. CONSENTIMENTO PÓS-ESCLARECIDO

Declaro que, após convenientemente esclarecido pelo pesquisador e ter entendido o que me foi explicado, consinto em participar do presente Protocolo de Pesquisa.

__________________________, _____ de ________________ de 20___.

Assinatura do sujeito da pesquisa

Assinatura do pesquisador
Anexo C – Aprovação do Comitê de Ética em Pesquisa da FMUSP

APROVAÇÃO

O Comitê de Ética em Pesquisa da Faculdade de Medicina da Universidade de São Paulo, em sessão de 09/03/2016, APROVOU o Protocolo de Pesquisa n° 060/16 intitulado: “PREVALENCIA DO USO DE DROGAS ILÍCITAS E MEDICAMENTOS POR MOTORISTAS DE CAMINHÃO QUE TRAFEGAM EM RODOVIAS DO ESTADO DE SÃO PAULO” apresentado pelo Departamento de MEDICINA LEGAL, ÉTICA MÉDICA, MEDICINA SOCIAL E DO TRABALHO.

Cabe ao pesquisador elaborar e apresentar ao CEP-FMUSP, os relatórios parciais e final sobre a pesquisa (Resolução do Conselho Nacional de Saúde n° 466/12, inciso IX.2, letra "c").

Pesquisador (a) Responsável: Vilma Leyton
Pesquisador (a) Executante: Helena do Nascimento Panizza

CEP-FMUSP, 10 de Março de 2016.

Profa. Dra. Maria Aparecida Azevedo Koike Folgueira
Coordenador
Comitê de Ética em Pesquisa