• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Thèse de Doctorat
DOI
https://doi.org/10.11606/T.5.2020.tde-03072020-160625
Document
Auteur
Nom complet
Fábio Pires de Souza Santos
Adresse Mail
Unité de l'USP
Domain de Connaissance
Date de Soutenance
Editeur
São Paulo, 2019
Directeur
Jury
Bendit, Israel (Président)
Kerbauy, Fabio Rodrigues
Kerbauy, Daniella Marcia Bahia
Rego, Eduardo Magalhães
Titre en portugais
Meta-análise de dados de sequenciamento completo de exoma em pacientes com neoplasias mieloproliferativas e mielodisplásicas/mieloproliferativas Filadélfia-negativo
Mots-clés en portugais
Exoma
Leucemia mielóide
Mielofibrose
Mutação genética
Policitemia
Trombocitemia
Resumé en portugais
As neoplasias mieloproliferativas (NMP) e mielodisplásicas / mieloproliferativas (SMD/NMP) Filadélfia-negativo ('Philadelphia' [Ph]-negativo) são neoplasias mieloides crônicas que apresentam diversas mutações oncogênicas. Estudos recentes, utilizando técnicas de sequenciamento de última geração, descreveram as alterações mais comumente encontradas nessas neoplasias. A hipótese do presente estudo é que a análise dos dados de sequenciamento genômico de uma grande coorte destes pacientes poderia revelar novos oncogenes e as principais diferenças no perfil molecular destas neoplasias. Para tanto, foram analisados dados de sequenciamento de exoma total (WES; 'Whole Exome Sequencing') de 403 pacientes com diagnóstico de NMP (N=303) e SMD/NMP (N=100) Ph-negativo. A coorte incluía 124 pacientes brasileiros que realizaram a coleta de amostra e sequenciamento, cujos dados foram combinados com dados de 279 pacientes extraídos de estudos publicados na literatura médica. Testes estatísticos foram utilizados para determinar os genes mais frequentemente mutados nestas doenças, principais padrões de mutação, combinação de mutações entre genes e análise de heterogeneidade clonal. Modelos estatísticos de regressão logística e de Cox foram desenvolvidos para classificação e determinação da sobrevida dos pacientes com base em alterações genéticas. Foram identificados 54 oncogenes para estas doenças com base em dados de WES, incluindo 17 genes nunca previamente descritos como sendo oncogenes nestas neoplasias. A maioria dos 54 genes pertence a uma de 7 vias biológicas distintas, com papéis relevantes na oncogênese destas doenças. Dezenove genes apresentaram distribuição diferente entre NMPs e SMD/NMP, sugerindo que eles contribuem para o fenótipo da doença. Analisando as combinações de genes, cinco pares de genes e 6 tríades de genes, tem-se uma prevalência distinta entre NMPs e SMD/NMPs. As principais vias biológicas alteradas também apresentam distribuição distinta entre as diferentes doenças, assim como nos genes encontrados no topo da hierarquia clonal. Um modelo de regressão logística, baseado apenas nas alterações genéticas, conseguiu determinar, com elevada acurácia, o diagnóstico dos pacientes. Mutações do gene NRAS ou em genes de splicing de mRNA, foram fatores independentes associados com menor sobrevida. Pacientes com NMPs e SMD/NMPs apresentaram perfis relacionados, porém distintos, de mutações que auxiliam no diagnóstico diferencial e na estratificação prognóstica. Estudos futuros, empregando-se algoritmos de aprendizado por máquinas, poderão aperfeiçoar esses resultados e levar a uma classificação molecular destas doenças
Titre en anglais
Meta-analysis of whole exome sequencing data in patients with Philadelphia-negative myeloproliferative and myelodysplastic/myeloproliferative neoplasms
Mots-clés en anglais
Exome
Genetic mutation
Leukemia myeloid
Myelofibrosis
Polycythemia
Thrombocythemia
Resumé en anglais
Philadelphia-negative (Ph-negative) myeloproliferative neoplasms (MPN) and myelodysplastic/myeloproliferative neoplasms (MDS/MPN) are related chronic myeloid disorders that present with several distinct oncogenic mutations. Recent studies utilizing next-generation sequencing technology have described the most frequent genetic abnormalities in these disorders. The hypothesis of the present study is that the analysis of a large cohort of such patients could reveal novel oncogenic drivers and the key differences in the molecular profile of these neoplasms. To this end, whole exome sequencing (WES) data from 403 patients with either MPNs (N=303) or MDS/MPN was analyzed. The cohort included 124 Brazilian patients who had sample collection and sequencing, and whose data was combined with data from 279 patients collected from studies published in the medical literature. Statistical tests were used to determine the most frequently mutated genes in these disorders, patterns of mutations, combinatorial mutational analysis between genes and clonal heterogeneity analysis. Logistic regression and proportional Cox Hazards model were fitted to classify and estimate survival based on genomic features. A total of 54 oncogenes were identified using WES data, including 17 genes not previously reported as being mutated in these neoplasms. Most of the 54 genes belonged to one of 7 distinct biological groups with relevant roles in the oncogenesis of these disorders. Nineteen genes had different distributions among MPNs and MDS/MPNs. Analyzing gene combinations, there were 5 gene pairs and 6 gene triads that had a distinct prevalence among MPNs and MDS/MPNs. The main biological pathways also had different distribution among the diseases, as well genes that presented within the top of the clonal hierarchy. A logistic regression model based solely on genetic abnormalities could classify with high accuracy patient's diagnosis, and mutations of gene NRAS and genes associated with mRNA splicing were independent predictors of decreased survival. Patients with MPNs and MDS/MPNs present with related but distinct mutational profiles that can be used in differential diagnosis and prognostic stratification. Future studies employing machine learning algorithms can improve on these results and lead to a molecular classification of these disorders
 
AVERTISSEMENT - Regarde ce document est soumise à votre acceptation des conditions d'utilisation suivantes:
Ce document est uniquement à des fins privées pour la recherche et l'enseignement. Reproduction à des fins commerciales est interdite. Cette droits couvrent l'ensemble des données sur ce document ainsi que son contenu. Toute utilisation ou de copie de ce document, en totalité ou en partie, doit inclure le nom de l'auteur.
Date de Publication
2020-07-03
 
AVERTISSEMENT: Apprenez ce que sont des œvres dérivées cliquant ici.
Tous droits de la thèse/dissertation appartiennent aux auteurs
CeTI-SC/STI
Bibliothèque Numérique de Thèses et Mémoires de l'USP. Copyright © 2001-2021. Tous droits réservés.