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RESUMO 

 

Grassi DC. Análise longitudinal por imagens de tensor de difusão do encéfalo de pacientes com 

lesão axonial difusa traumática moderada e severa [tese]. São Paulo: Faculdade de Medicina, 

Universidade de São Paulo; 2021. 

 

Introdução: Atualmente, o traumatismo cranioencefálico (TCE) é um problema de saúde 

pública mundial devido à sua alta prevalência, morbidade e mortalidade. Os mecanismos 

envolvidos no trauma são complexos e diferentes tipos de lesões podem estar presentes, dentre 

elas a lesão axonial difusa (LAD). Sabe-se que a LAD é altamente prevalente em vítimas de 

trauma moderado e grave, sendo caracterizada por diferentes processos fisiopatológicos 

complexos e prolongados que determinam um processo neurodegenerativo encefálico. 

Objetivo: Avaliar longitudinalmente com imagens de tensor de difusão (DTI) a integridade da 

substância branca cerebral de pacientes com LAD moderada e severa em três momentos após 

o trauma e comparativamente com indivíduos controles normais. Além disso, verificar se há 

correlação entre os parâmetros quantitativos de DTI e dados dos exames neuropsicológicos dos 

pacientes. Métodos: Foram selecionadas 20 vítimas de TCE moderado e grave e 20 controles, 

pareados para idade e sexo. Foi realizado exame de RM em três diferentes tempos: 2 meses 

(tempo 1), 6 meses (tempo 2) e 12 meses (tempo 3) do TCE. No grupo controle, o exame de 

RM foi realizado em um único momento. Utilizamos métodos de análise de tratografia para a 

avaliação do fascículo longitudinal superior e do corpo caloso, bem como a técnica de análise 

voxel a voxel para a avaliação do encéfalo total para extrair os parâmetros quantitativos de DTI. 

Além disso, diferentes domínios cognitivos foram avaliados, bem como análise do desfecho 

clínico dos pacientes. Testes de correlação foram feitos usando os parâmetros de DTI com os 

domínios cognitivos examinados. Foram considerados positivos os resultados com p< 0,05. 

Resultados: O grupo de pacientes apresentou em todos os segmentos estudados valores médios 

de FA menores e valores médios de DM maiores em relação ao grupo controle. A análise 

baseada em voxel indicou mudanças significativas ao longo do tempo nos parâmetros de DTI 

no grupo dos pacientes. Foram observadas melhora na atenção e memória dos pacientes. 

Identificamos diferentes correlações entre os parâmetros de DTI e as diferentes funções 

cognitivas ao longo do tempo. Discussão e conclusões: Observamos alterações quantitativas 

nos valores de DTI nos tratos estudados. A FA está relacionada com a integridade axonial e 

valores reduzidos estão presentes em estados de perda da coesão da substância branca. Além 

disso, altos valores de DM podem estar relacionados com a perda da organização tecidual 



 

 x 

microestrutural. A diversidade dos achados de correlação dos índices cognitivos avaliados e as 

respectivas áreas estudadas demonstram quão heterogêneas e extensas são as alterações 

microestruturais no grupo dos pacientes estudados. A mudança destas relações ao longo do 

tempo confirma o caráter dinâmico e prolongado dos mecanismos biológicos envolvidos na 

LAD. Os resultados deste estudo demonstram que mesmo após 12 meses do evento traumático, 

há alterações microestruturais na substância branca e estas são detectáveis por DTI. 

Acreditamos que, no futuro, os parâmetros quantitativos de DTI poderão ser úteis como 

biomarcadores na estimativa da gravidade de lesão e guiar processos de reabilitação.  

 

Descritores: Traumatismos craniocerebrais; Lesão axonal difusa; Imagem por tensor de 

difusão; Testes neuropsicológicos; Degeneração neural; Neuroimagem. 
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ABSTRACT 

 

Grassi DC. Longitudinal analysis of brain diffusion tensor imaging in patients with moderate 

and severe traumatic diffuse axonal injury [thesis]. São Paulo: Faculdade de Medicina, 

Universidade de São Paulo; 2021. 

 

Introduction: Currently, traumatic brain injury (TBI) is a worldwide public health problem 

due to its high prevalence, morbidity, and mortality. The mechanisms involved in trauma are 

complex, and different types of injuries may be present, including diffuse axonal injury (DAI). 

DAI is highly prevalent in victims of moderate and severe trauma, being responsible for most 

individuals who are in a vegetative state or with severe loss of ability after injury. It involves 

different and prolonged pathophysiological processes which lead to neurodegeneration. 

Objective: To evaluate longitudinally using diffusion tensor imaging (DTI) the integrity of the 

cerebral white matter in patients with moderate and severe DAI at three moments after trauma, 

and in comparison with healthy control subjects. In addition, we aimed to test correlations 

between the DTI parameters and patients' neuropsychological data. Methods: Twenty victims 

of moderate and severe TBI and 20 controls, matched for age and sex, were selected. MRI exam 

was performed at three different times: 2 months (time 1), 6 months (time 2) and 12 months 

(time 3) of the TBI. In the control group, the MR examination was performed in a single 

moment. We evaluated the superior longitudinal fascicle and the corpus callosum with 

tractography analysis, as well as the the whole brain with voxelwise analysis to extract DTI 

quantitative parameters. In addition, different cognitive domains were tested, and patients' 

clinical outcome was assessed one year after trauma. Correlation tests were performed using 

the DTI parameters with the cognitive domains examined. Results with p <0.05 were considered 

significant. Results: The patients group had lower mean FA values and higher mean MD values 

in all sites when compared to the control group. Voxelwise analysis indicated significant 

changes over time in DTI parameters in the patients group. We observed improvements in 

patients' attention and memory. We identified different correlations between the DTI 

parameters and the different cognitive functions over time. Discussion and Conclusions: We 

observed quantitative changes in the DTI values in the studied segments. FA is related to axonal 

integrity and reduced values are present in states of loss of white matter cohesion. Moreover, 

high MD values may be related to the loss of the microstructural organization of neuronal 

tissues. The various correlations between cognitive indexes and DTI parameters in different 

brain areas demonstrate how heterogeneous and extensive the microstructural changes are 
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present in trauma victims. Changes in the correlations over time confirms the dynamic and 

prolonged nature of the biological mechanisms involved in DAI. The results of this study 

demonstrate that even after 12 months of the traumatic event, there are microstructural changes 

in the white matter, and these are detectable by DTI. We believe that, in the future, the 

quantitative parameters of DTI may be useful as biomarkers in estimating the severity of the 

injury and guiding rehabilitation processes. 

 

Descriptors: Craniocerebral trauma; Diffuse axonal injury; Diffusion tensor imaging; 

Neuropsychological tests; Nerve degeneration, Neuroimaging. 
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1.1 The introduction and literature review of this thesis are based on the following two 

articles 

 

Publication 1 is a literature review of diffusion tensor imaging (DTI) in the evaluation of 

diffuse axonal injury (DAI). This article was commented in a Letter to the Editor by Santos et 

al. (http://dx.doi.org/10.1590/0004-282x20180113). Therefore, we have also published a Reply 

Letter (Publication 2). 

 

a) Publication 1  

1. Title: Current contribution of diffusion tensor imaging in the evaluation of diffuse 

axonal injury  

2. Literature review  

3. Journal: Arquivos de Neuropsiquiatria   

4. Status: published in March 2018 (https://doi.org/10.1590/0004-282x20180007) 

 

Current contribution of diffusion tensor imaging in the evaluation of diffuse axonal injury 
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Abstract: 

Traumatic brain injury (TBI) is the number one cause of death and morbidity among 

young adults. Moreover, survivors are frequently left with functional disabilities during the 

most productive years of their lives. One main aspect of TBI pathology is diffuse axonal injury 

(DAI), which is increasingly recognized due to its presence in 40 to 50% of the cases that 

requires hospital admission. DAI is defined as widespread axonal damage, characterized by 

complete axotomy and secondary reactions due to overall axonopathy. These changes can be 

seen in neuroimaging studies as hemorrhagic focal areas and diffuse edema. However, DAI 

findings are frequently under-recognized in conventional neuroimaging studies. In this 

scenario, diffusion tensor imaging (DTI) plays an important role because it provides further 

information on white matter integrity that is not obtained with standard magnetic resonance 

imaging (MRI) sequences. There are extensive reviews concerning the physics of DTI and its 

use in the context of TBI patients, but these issues are still hazy for many health-allied 

professionals. Herein, we aim to review the current contribution of diverse state-of-the-art DTI 

analytical methods to the understanding of the pathophysiology and prognosis of DAI, to serve 

as a quick reference for those interested in planning new studies and who are involved in the 

care of TBI victims. For this purpose, a comprehensive search in Pubmed was performed using 

the following keywords: “traumatic brain injury”, “diffuse axonal injury”, and “diffusion tensor 

imaging”. 

 

Key Words: Magnetic resonance imaging; diffusion tensor imaging; tractography; diffuse 

axonal injury, traumatic brain injury 

 

Traumatic brain injury 

 

 Currently, traumatic brain injury (TBI) is a worldwide public health problem due to its 

high prevalence, morbidity and number of deaths. The most affected individuals are young 

males, who are more likely to engage in risk-taking behaviors. These traumatic events may 

result in several disabilities, loss of productivity and impaired quality of life. Therefore, 

understanding the mechanisms of trauma, grading it, and providing adequate medical care to 

the victims are essential to minimize the large social and economic consequences of TBIs1,2. 

 One of the most important aspects for guaranteeing an optimized approach for tretating 

a TBI victim is understanding how the trauma occurred and providing a detailed and prompt 
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clinical examination of the victim. Neurotrauma mechanisms are complex, and multiple types 

of injuries over the CNS may coexist, such as skull fractures, contusions, hematomas, and 

diffuse axonal injury (DAI)3,4. The Glasglow Coma Scale (GCS) is the most widely used 

clinical classification and depends on the best eye, verbal and motor responses. According to 

GCS, a TBI can be graded as mild, moderate or severe. This scoring system was created in 1975 

and lacks the sensitivity to predict subtle but meaningful residual dysfunction, such as physical, 

cognitive, psychological and behavioral deficits5. 

 More comprehensive clinical algorithms have been developed to determine mortality 

and persistent disabilities in TBI victims. Two of the most used and well-known are the 

IMPACT and CRASH algorithms. The IMPACT algorithm was developed during clinical trials 

of severe TBI victims, and CRASH algorithm was developed with mild and moderate TBI 

patients. Both algortithms use clinical predictors such as age, GCS score and pupillary reactivity 

at hospital admission. The addition of biomarkers, such as protein S100-beta, microtubule 

associated protein 2 and myelin basic protein, as well as imaging data from head computed 

tomography (CT) scans, has been shown to improve the reliability of these prognostic models5. 

However, the clinical manifestations present after traumatic events vary, and predicting 

prognosis in an individual patient remains challenging in daily practice5-7.  

In particular, patients with DAI frequently exhibit an apparent discrepancy between 

clinical status (usually moderately to severely compromised) and early imaging findings (often 

normal or minimally abnormal)3,4. Moreover, it is not well established why some survivors 

regain complete function while others remain severely disabled. Therefore, it is critical to 

understand the pathophysiology of DAI and to foster non-invasive neuroimaging tools to reveal 

the damage to the central nervous system and provide guidance for therapeutic decisions and 

counseling for TBI patients and their families. 

 

Pathophysiology of diffuse axonal injury 

 

 DAI is defined as wide axonal injury with microscopic and macroscopic components, 

which may only be visible in severe cases upon CT and magnetic resonance imaging (MRI). 

The mechanism of injury is based on the inertia of the brain: when fast and strong accelerations 

and decelerations occur, different structures with distinct densities (such as gray and white 

matter) suffer shearing and straining forces which stretch and damage axons, leading to diffuse 

axonal injury2,4. Commonly affected brain sites are the corpus callosum, fornices, subcortical 
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white matter and cerebellum7. Once the victim presents in a comatose state with a GCS less 

than 8, the probability of brainstem involvement becomes significant and the prognosis 

worsens8. 

 It is very important to understand that DAI does not only consist of the axonal injury 

itself. Complex neuropathological processes ensue, such as an inflammatory response 

secondary to the traumatic event associated with protein deposition. After direct axonal injury, 

multiple changes occur microscopically, including cellular death, synaptic dysfunction, 

activation of glial cells and anomalous protein deposition (Tau and A proteins)9-11.  

 Damage to an axon does not always means its disconnection: connections may 

occasionally still be present, but it is not well known if they remain functional12. It is well 

established that neuronal death per se evolves into Wallerian degeneration, which is defined as 

the progressive anterograde disintegration of axons and accompanying demyelination that 

occurs after injury to the proximal axon or cell body13. Furthermore, it has been increasingly 

recognized that anomalous protein deposition secondary to axonal injury might be related to 

the future manifestation of Alzheimer’s disease in some patients14,15.  

 Histopathologically, DAI can be divided into three degrees:  grade I - microscopically 

widespread axonal injury in any location; grade II: grade I findings plus focal lesions in the 

corpus callosum; and grade III: findings of grade II plus focal lesions in rostral portion of the 

brainstem16.   

 

Neuroimaging  

 

 Neuroimaging evaluation of a TBI patient is based on CT and MRI studies. During 

emergency care, TBI victims are usually first evaluated with CT scans, which are fast and 

accurate in identifying life-threatening conditions that may require prompt intervention, such 

as extra-axial hematomas7.  

 There is a mismatch between the CT findings and clinical presentation in TBI patients. 

For instance, punctate microhemorrhages on the corpus callosum and gray-white matter 

junction are shown in only 10% of all TBI patients. Within two weeks after a traumatic event, 

neuronal loss can be inferred on CT as a discrete ventricular enlargement in some patients7,14. 

 An MRI, despite being less widely available and requiring longer scan times than a CT, 

is the best modality to assess brain injuries because it provides a better identification of 

anatomic features and higher spatial resolution3. Hemorrhages are represented by loss of signal 
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in gradient echo and susceptibility-weighted sequences (Figure 1), whereas areas of edema 

present as high signals in T2-weighted and fluid attenuation inversion recovery (FLAIR) 

sequences (Figure 2).  

 

   
 

Figure 1: A 19-year-old male patient with DAI and GCS of 8 after a motorcycle accident. 

While T2 conventional sequences (A) are rather insensitive for hemorrhagic lesions, T2*-GRE 

(B) shows numerous foci of signal loss (circles) in the subcortical white matter corresponding 

to areas of extravascular blood. SWI (C) is even more sensitive than the previous two 

sequences, exhibiting more conspicuous (circles) and numerous lesions (squares) on both 

cerebral hemispheres. The images were performed sequentially during the same examination at 

a 3 Tesla scanner. 
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Figure 2: A 27-year-old male patient with moderate TBI due to a motorcycle accident. At 

admission, Glasgow Coma Scale score was 10 and he presented with left hemiparesis and left 

third nerve palsy. Axial FLAIR images show hyperintense lesions (arrows) in the lateral aspect 

of the right cerebral peduncle (A), right internal capsule (B), splenium of the corpus callosum, 

as well as subtle lesions in the subcortical bilateral frontal white matter (C). 

 

 Nevertheless, more advanced techniques, such as diffusion tensor imaging (DTI), is more 

sensitive to neuronal lesions in areas that appear normal on conventional MRI sequences, 

especially in patients with DAI14,17-19. 

 

Diffusion weighted imaging  

 

 Since its medical debut, diffusion weighted imaging (DWI) has largely been used in 

routine clinical practice in applications ranging from diagnosing stroke to helping physicians 

determine tumor cellularity. Diffusion weighted imaging is an integral part of any MRI brain 

examination and is of paramount importance in radiological diagnosis. 

 Diffusion weighted imaging is based on the random motion of water molecules, which 

was first described by the botanist Robert Brown in 1827. In a homogeneous liquid environment 

without any barriers, water diffusion is free (isotropic); in other words, it has no preferred 

direction. In contrast, when there are surrounding structures restricting water molecule 

movement, a preferred diffusion direction becomes apparent (anisotropic diffusion)20. 

 In the brain, several components hinder the water diffusion in all directions, making the 

diffusion anisotropic. This anisotropic diffusion depends on the geometry and composition of 

natural barriers, such as cell membranes, myelin sheaths and primary microstructural 

components (neurofilaments and microtubules). For this reason, anisotropy is markedly high in 

well-organized white matter tracts and is lower in cerebrospinal fluids21.  

 Diffusion weigthed imaging shows hyperintensities in pathological conditions, such as in 

high cellularity density (tumors), abnormal cellular uptake of water (cytotoxic edema) or 

entrapment of water between myelin membranes (intramyelinic edema). However, other 

increases in water concentration, such as observed in vasogenic edema or gliosis, also cause 

nonspecific hyperintensity on DWI, which is a T2-weighted sequence22.  

 To distinguish between true restriction of water molecules diffusion and artifacts (T2 

shine-through effects), apparent diffusion coefficient (ADC) maps were developed. When 
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analyzing each voxel from the image with two different b values, it is possible to quantify water 

diffusivity and convert this information into a visual map (ADC maps). The term “apparent” 

concerns the fact that calculated ADCs in tissues vary according to the previously attributed b 

values. Moreover, the ADC information corresponds to each voxel (in the order of millimeters) 

but not at the microscopic level of cell structures (in the order of a few micrometers). On ADC 

maps, restricted water diffusion is confirmed as a low signal intensity23,24.  

In patients with traumatic injury, cytotoxic edema usually occurs in cases of cortical 

contusion and DAI. Cortical contusions usually affect both superficial cortical gray matter and 

subcortical white matter but do not typically follow a vascular distribution. In acute DAI, it is 

possible to detect multifocal areas with restricted diffusion, which appear bright on DWI and 

dark on ADC maps. Predilection sites are the corpus callosum, especially the splenium, cerebral 

peduncles, deep white matter structures and gray-white matter interface (Figure 3). This 

restricted water diffusion may vanish in a few days or may evolve into residual lesions with a 

persistent high signal intensity on FLAIR and T2-weighted images25.  

 

  
 

Figure 3: Diffusion-weighted images in the axial plane of a young patient four days after a 

head injury demonstrate bright lesions (arrows) in areas typically affected in DAI: left cerebral 

peduncle (A), splenium of the corpus callosum (B), and subcortical frontal white matter (C). 

The lesions were dark on ADC maps (not shown). 

 

 

Diffusion Tensor Imaging 
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 The tensor model was proposed to characterize and quantify diffusion anisotropy. By 

measuring diffusion in at least six different gradient directions applied to the three different 

axes (X- horizontal, Y- vertical and Z- perpendicular to X), it is possible to determine an 

average water diffusion according to the distance and intensity for each voxel26,27.  

Fractional anisotropy (FA) is a scalar measure that reflects the microstructural geometry 

and is very high (close to 1) in normal white matter but is usually lower in damaged white 

matter and is close to zero in the cerebrospinal fluid27.  Colormaps can be created based on the 

first eingenvector that composes FA calculation in which each color represents the main 

diffusion direction of WM tracts (conventionally, red is used for left-right, green for 

anteroposterior, and blue for superior-inferior directions), and the degree of brightness is 

proportional to the magnitude of anisotropy28,29 (Figure 4). 

 

 
 

 

Figure 4: Three-dimensional FA colormap of an 18-year-old TBI victim. The patient was 

admitted with a GCS score of 8 after a motorcycle accident, despite the use of a helmet. 

Conventionally, long association fibers with anteroposterior direction such as the cingulum are 

represented in green (straight arrow), inter-hemispheric commissural fibers (e.g., corpus 

callosum, curved arrow) with left-right direction are represented in red, while projection tracts 

with superior-inferior route such as the costicospinal tract are represented in blue (arrowhead). 
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 The mean diffusivity (MD) reflects the overall degree of water diffusion in all directions, 

regardless of its orientation dependence30. Radial (RD) and axial diffusivities (AD) are other 

quantitative DTI parameters. AD in the principal tensor direction (first eigenvector), with its 

associated magnitude (first eigenvalue), and RD represents the other two directions 

perpendicular to the principal direction of the diffusion tensor. Investigations with animal 

models have indicated that RD correlates with demyelination, whereas AD seems to be related 

to more profound tissue damage and axonal loss31,32. Still, translational characteristics of these 

studies remain to be proven. 

 Several acquisition parameters influence the quality of diffusion data. The ability to 

obtain a valuable dataset is strongly related to the strength of the gradient coils and the 

maximum b values that can be achieved. For most brain studies, a b value of 1000 s/mm2 is 

usually adequate and results in an effective compromise between sensitivity and the signal-to-

noise ratio (SNR). Ideally, images should be acquired with high and isotropic spatial resolution 

(1 – 2 mm3). Many gradient directions, optimally at least 32, should be applied. However, there 

is a trade-off between the optimal acquisition parameters and the scanning time. Head motion 

should be minimized as much as possible. Preprocessing steps may, however, partly attenuate 

motion artifacts and the eddy current artifacts33,34. 

 Distinct methods are available to analyze diffusion tensor images. Herein, we aim to 

briefly discuss the basic principles, advantages and caveats of each main DTI analytical method, 

namely, region-of-interest analysis, tractography and voxelwise analysis, along with the 

relevant findings of recent DTI studies of TBI patients. 

 

Region-of-interest analysis 

 

 In region-of-interest (ROI) analysis, diffusion parameters are obtained from a pre-

determined area of the brain or around a specific anatomic structure. The area-of-interest can 

be manually drawn and there is no requirement to use anatomical atlas. This method is also 

suitable for studies in patients with large brain lesions in different sites or great anatomic 

distortions that could bias other analytical methods that require registration steps. Once the ROI 

is determined, the mean values of the water diffusion parameters are obtained33,34 (Figure 5).  

One advantage of this method is that even small brain regions, such as subcortical areas 

and deep basal ganglia, van be assessed. Another benefit is that multiple comparisons errors are 

less prominent if the investigator predefines an a priori hypothesis and fewer areas are 
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examined. Region-of-interest analysis identifies even subtle changes and is thus one of the most 

sensible and straightforward analytical methods available33.  

 

 
 

Figure 5: Diffusion parameters can be extracted from a selected ROI. In this case of a 42-year-

old woman who suffered physical aggression and presented with severe TBI, the right thalamus 

(orange shape) was manually delineated in the FA map. 

 

However, certain considerations must be underscored: some information may be missed 

whne only one area is being studied; it may be difficult to compare the same ROIs between 

individuals due to intrinsic variability; and the process of delimitating the ROI can be laborious 

if it appears in multi-slice images or in the case of big data with multisubject comparisons. It is 

extremely important to know where to look for the changes; ROI analysis of nonaffected areas 

can identify normal parameters, but truly true compromised areas can be missed. The manual 

nature of the ROI drawing may lead to the low reproducibility of intra- and intersubject ROI 

correspondence; hence, anatomic atlas tools or semi-automatic methods are advisable.  For this 

reason, it is possible to standardize ROI-studies by using segmentation and registration steps; 

segmentation helps determine the area of interest, whereas registration matches the 

corresponding points among all images in different subjects33-35.  
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 Mac Donald et al. demonstrated that DTI could detect white matter injury in a mouse 

model of DAI and could determine the approximate timing of injury. These authors extracted 

diffusion parameters with ROI analyses from the corpus callosum and the external capsule and 

compared the findings with histological and electron microscopy characteristics. In comparison 

with uninjured mice, anisotropy measures were lower in the injured group in all stages. During 

the early acute phase (less than one day), axial diffusivity was reduced and axonal injury was 

present histologically.  In the subacute phase (one week to one month after injury), a reduction 

of anisotropy was accompanied by increases in AD, RD and MD, which reflected the 

dominance of demyelination and edema at histological evaluation. The authors proposed that if 

similar mechanics are present in human TBI, these DTI changes could be used for novel clinical 

and forensic applications. However, the authors did not find any correlation between severity 

of histological damage and the DTI parameters36.  

Another study evaluated 10 healthy individuals and five patients with mild TBI within 

24 hours of injury and one month later. The authores extracted diffusion parameters with ROIs 

positioned in the corpus callosum and internal and external capsules. Soon after the injury, TBI 

patients demonstrated significant reductions in anisotropy compared with controls. In the 30-

day-control, two patients showed slight increases in FA values when compared with their initial 

results, which was considered a possible sign of recovery37.   

According to Huisman et al.18, changes in water diffusion anisotropy do occur in TBI, 

and these changes may be biomarkers for severity of tissue injury and predictors for outcome. 

Patients were analyzed within seven days of the event, and the data were compared with those 

from a control (healthy) group. The studied regions included the internal capsule, splenium, 

thalamus and putamen. This study showed that FA was significantly decreased in the posterior 

limb of the internal capsule and splenium of the corpus callosum. Furthermore, there was a 

statistically significant correlation between FA values in the DAI predilection sites and the 

severity of head injury, as measured BY acute and subacute neurologic assessments (acute GCS 

and Rankin scores)18.  

In addition, another longitudinal study analyzed 11 TBI victims in acute (less than seven 

days) and subacute (from eight days to rehabilitation discharge) stages and correlated DTI 

findings with a disability rating scale. Eleven ROIs were chosen based on previous studies that 

demonstrated an association between FA and functional or cognitive outcomes in TBI.  It was 

apparent that the FA values varied according to the pathophysiologic processes of TBI. During 

the acute phase, FA values were lower than they were in the subacute stage, possibly because 
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of brain edema. Consequently, subacute values were more likely to reflect the axonal structural 

integrity. Therefore, these authors suggested that the optimal timing of DTI data acquisition for 

TBI prognostication might be during the subacute stage of injury38. 

 

Tractography 

 

 Three-dimensionional visualization of DTI information is also possible. Tensor 

information allows the trajectories to be estimated by inferring WM fiber orientations. 

Tractography allows the parcellation of white matter, and this information may be particularly 

useful in anatomofunctional studies because white matter bundles are linked to specific 

cognitive, language, behavioral, and motor functions (Figure 6)39.  

 

 

  
 

Figure 6: A young female patient had a motorcycle accident and presented at the emergency 

room with a Glasgow Coma Score of 3. She persisted with language impairment one year after 

the traumatic event. It is possible to evaluate DTI parameters from any tract related to a specific 

cognitive domain. The superior longitudinal fasciculus is linked to language skills because it 

interconnects Broca’s area (responsible for speech production in the frontal lobe), Geschwind’s 

area (semantic processing in the parietal lobe) and Wernicke’s territory (speech comprehension 

in the temporal lobe). First, whole-brain tractography was obtained with a brute-force approach 

from the full tensor data (A). A set of “AND”, “SEED” and “NOT” ROIs was placed on both 

cerebral hemispheres based upon a priori anatomical knowledge (B). The superior longitudinal 

fasciculi were then virtually dissected with a deterministic streamline approach and displayed 

on a FA color-encoded map (C).  
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Tractography consists of three processing steps: seeding, propagation and termination. 

Seeding involves determining the area from which the fiber bundles will be drawn, and the most 

common approach is to define an ROI and placing one or more seeds in the expected trajectory 

of the tract. Another possible way is to use automatic seeding for the whole brain from a full 

set of tensor data29,39.  

Propagation is how visual schemes of fibers are generated, and different algorithms are 

developed to link intervoxel information. Algorithms are based on deterministic or probabilistic 

approaches. The first one is based on a streamline principle: from the seed location (ROI) 

nearby voxels will be linked to the same streamline if their principal eigenvectors have 

congruous orientations or similar FA values. Probabilistic tractography, in constrast, represents 

an estimation based on multiple possible fiber directions in each seed. For this reason, 

probabilistic tractography tends to disperse trajectories more than deterministic methods and 

has the potential to delineate a greater proportion of the WM tract28,29,39,40.  

Finally, termination is the last step of fiber tracking procedure with well-defined criteria. 

Tipically, FA thresholds (usually higher than 0.25 to avoid contamination by CSF and grey 

matter) and turning angle thresholds (generally 30o or 60o depending on the known curvature 

of the tract of interest).  This method of “virtual dissection” allows the isolation of specific 

anatomic fibers pathways from DTI datasets and has been proven useful in several adult and 

pediatric conditions (Figure 7)39. 

 

 
 

Figure 7: Axial FLAIR image of an adult male patient with chronic post-traumatic sequelae 

shows gliosis in the frontal lobes, mainly in the right side (A). FA colormap demonstrates 

paucity of WM fibers and reduction of brightness due to reduction of FA values in the frontal 

lobes, more pronounced in the right side (B). DTI-based tractography of the splenium, body 
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and genu of the corpus callosum (represented in green, blue, and red colors, respectively) shows 

premature termination of streamlines of peripheral fibers of the genu projecting to or from the 

prefrontal regions coincidental to the areas of low signal intensity on the axial T1-weighted 

image (C). 

 

 Nevertheless, there are some important shortcomings that must be taken into account 

while analyzing tractography. This method estimates fibers tract anatomy on a macro scale. 

Voxels are in the order of millimeters, whereas the axonal diameter is in the order of microns. 

It is also not possible to differentiate afferent from efferent bundles. Moreover, assumption of 

homogeneous unidirectional tensors is unrealistic because many brain regions comprise more 

than one fiber bundle. Crossing, diverging or kissing fibers result in incorrect direction 

estimations and pathways and may lead to abrupt tract termination. Diffusion spectrum imaging 

(DSI), q-space imaging (QSI), q-ball imaging (QBI), and high angular resolution diffusion 

imaging (HARDI) are more sophisticated approaches that may overcome some of these 

limitations40.  

 Wang et al. studied 12 patients who suffered from severe TBIs within seven days and 

nine moths after injury. They analyzed the corpus callosum, fornix and peduncular projections 

with deterministic tractography. The authors could identify at least one DTI parameter 

demonstrating DAI-associated alterations in each region. Furthermore, they demonstrated a 

good correlation between DTI findings and long-term prediction outcome, as measured with 

Glasgow Outcome Scale-Extended scores41.  

 Another group demonstrated that patients with mild TBI have reduced FA values in 

various white matter locations and various fiber bundles within 5.5 months after trauma. In 

comparison with healthy-matched controls, the authors demonstrated lower anisotropy in 

multiple white matter regions, predominantly in the cerebral lobar white matter, cingulum and 

corpus callosum, using deterministic tractography. A minority of fibers showed premature 

discontinuation on fiber tracking, and the authors presumed that this may have been caused by 

the presence of sharply angulated fibers or by small areas of hemosiderin that were not visible 

on MRI42. 

 A large study evaluated 106 TBI chronic patients who had no abnormalities on 

conventional MRI in comparison with 62 healthy controls. The investigators applied a 

deterministic approach to extract the volume and FA measures of long association tracts from 

the uncinated fasciculus, superior cingulum, temporal cingulum, superior longitudinal 
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fasciculus, arcuate fasciculus, inferior fronto-occipital fasciculus and inferior longitudinal 

fasciculus. Injured patients demonstrated reduced FA values in both uncinated fasciculi, both 

inferior fronto-occipital fasciculi and in the right inferior longitudinal fasciculus. However, the 

tract volumes were not significantly decreased in injured patients43. 

 A recent study evaluated trauma-exposed police officers with and without post-

traumatic stress disorder using a 3T system. The authors applied an automated and unbiased 

reconstruction of WM tracts using a global probabilistic tractography method known as 

TRACULA (TRActs Constrained by UnderLying Anatomy)44 and found significantly higher 

mean diffusivity in the right uncinate fasciculus in the affected group. The uncinate fasciculus 

is the major white matter tract connecting the amygdala to the prefrontal cortex. These authors 

also found that the MD of the right uncinate fasciculus was positively associated with anxiety 

symptoms in patients with post-traumatica disorder45. 

 Head injury survivors usually present with persistent cognitive symptoms that impair 

their quality of life, such as deficits in language performance and executive function. In the 

future, tractography studies could be used to monitor the benefits of target therapies in these 

patients by evaluating DTI metrics in specific white matter tracts linked to specific functional 

domains. 

 

Voxelwise analysis 

 

 Voxelwise analysis has become more popular because its automatic approach requires 

minimal intervention and less user dependence. Voxelwise analysis is suitable for global 

analyses of brain parenchyma and is particularly useful for large group comparisons of 

individuals with no significant distortions in brain anatomy33,46.  

Primarily, the images must be standardized into a template to make sure that each voxel 

corresponds to the same anatomic location in all subjects. Thus, a critical step is to define the 

best way to register and compare multiple images from different individuals in an accurate 

manner33.  

 Previously, voxelwise analyses were performed with voxel-based morphometry using 

T1 weighted-images. Although some constraints related to image registration, segmentation 

and smoothing are present, voxel-based morphometry can still be used to explore diffusion 

images in particular research scenarios.  
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Tract-based spatial statistics is the current leading method of voxelwise analysis using 

nonlinear image transformation of FA images across subjects46. Tract-based spatial statistics 

uses the mean FA values from individual subjects to create a skeletonized map with the local 

maximal FA values for each tract. With this approach, the differences in all the voxels of the 

brain, except those from the skeleton voxels are ignored. Another challenge is registration 

inaccuracies of areas with high contrast of FA values, such as adjacent to ventricles33,47. A more 

recent alternative approach for the registration step of tract-based spatial statistics is to use the 

full tensor information with a complementary tool, known as DTI-ToolKit, which has been 

shown to reduce the number of misassigned voxels by a total of seven47,48. 

In voxelwise analysis, all the voxels in the image are compared with each other in a 

local manner, and hence statistical procedures to control for multiple comparisons errors might 

be carried out. These may, in turn, reduce the sensitivity for more subtle findings in particular 

regions33. 

Our group evaluated twenty adults with moderate to severe TBI at a 3.0T MRI scanner 

in the acute (t1 < 3 months), subacute (6 < t2 < 9 months) and chronic stages (12 < t3 < 15 months) 

following trauma. According to tract-based spatial statistics analysis, the patients exhibited one 

large cluster with statistically significant lower FA values (p < 0.001) at all times (t1, t2, t3) 

compared to the controls (Figure 8), but the number of affected voxels decreased over time by 

2% at t2 and by 7.3% at t3. During the chronic stage (t3), patients recovered white matter damage 

in comparison with the acute stage (t1) with significant increases of FA in the bilateral anterior 

thalamic radiations, forceps major and minor, corticospinal tracts, cingulum, uncinate, inferior 

fronto-occipital, superior and inferior longitudinal fasciculi. Patient performances on cognitive 

measures was suboptimal at all three stages, but also improved over time in the same fashion 

as white matter recovery49.  
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Figure 8: Twenty patients with acute moderate-to-severe TBI were compared with 20 age- and 

sex-matched controls with tract-based spatial statistics (TBSS). The patients exhibited one large 

cluster with statistically significant lower FA values (A). The TBI patients also demonstrated 

significant increases in mean diffusivity (B) and radial diffusivity (C) in extensive areas of the 

brain, as well as increased axial diffusivity in a less extensive area (shown in red), except for 

the corpus callosum, which showed increased axial diffusivity (depicted in blue) (D).  

 

 One study applied voxel-based analysis and ROI analysis in 10 adolescent patients with 

mild TBI who were assessed within one week after injury and compared with a paired-control 

group. The results indicated increased FA, decreased radial diffusivity and unchanged axial 

diffusivity in multiple brain regions, which may be related with axonal cytotoxic edema and 

reflect acute injury. Moreover, the alterations in DTI metrics were highly correlated with 

postconcussive symptoms severity and emotional distress50. 

 Lipton et al.51 retrospectively analyzed 17 cognitively-impaired mild TBI victims who 

underwent neuroimaging studies between eight months and three years after the trauma event 

and compared these patients with a healthy cohort of 10 individuals. Voxel-based analysis 

showed multiple areas of lower FA and high mean diffusivity in the white matter bilaterally, 

especially in the corpus callosum, subcortical white matter and internal capsules51.  

Another study indicated extensive changes in major intra- and interhemispheric white 

matter tracts in patients with diffuse axonal injury.  The authors carried out both ROI analysis 

and voxel-based analysis in nine chronic TBI patients (approximately four years after the event) 

and in 11 healthy individuals. The results indicated significant lower FA values in the corpus 

callosum, internal and external capsules, superior and inferior longitudinal fascicles and in the 

fornix in the TBI group. Furthermore, ADC values were increased not only where the FA values 

were lower, but also in otherwise-normal regions, possibly indicating that ADC may be an even 

more sensitive measurement than FA in detecting widespread white matter damage52. 

 

Conclusion 

 

 TBI remains as a major public health problem worldwide. Computed tomography and 

MRI have played a crucial role in the acute setting, but several challenges arise when applying 

neuroimaging methods to predict clinical outcome in patients with a broad range of injury 
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severity, especially in individuals who develop persistent symptoms despite minor findings on 

standard imaging.  

Diffusion tensor imaging takes advantage of the intrinsic property of anisotropic 

diffusion of water molecules in brain tissues to probe tissue integrity and organization. 

Although increasing publications have reported applying this technique in various clinical and 

research scenarios, DTI principles and its various methodological approaches remain unfamiliar 

for some allied-health professionals. We reviewed some advantages and shortcomings of the 

most commonly applied analytical methods (ROI, tractography and voxelwise analyses) along 

with their applications in the investigation of TBI. 

Particularly in patients with diffuse axonal injury, natural barriers to the free water 

diffusion such as the cytoskeleton, axons and myelin sheath may be damaged, leading to the 

ubiquitous finding of reduced FA in distinct brain areas.  Increased radial diffusivity and 

increased mean diffusivity usually accompany these FA changes. It seems that abnormalities in 

DTI metrics may correlate with the timing of head injury, severity biomarkers and long-term 

prognosis. In the future, DWI and DTI may also aid in selection of TBI patients for targeted 

therapies and in monitoring the effectiveness of treatments.  

 Upcoming investigations should try to select more homogeneous groups of patients and 

clearly state inclusion and exclusion criteria. Longitudinal studies with a combined 

quantification of DTI metrics, instead of transversal studies with putative evaluation of isolated 

indices, should enhance comprehension of TBI pathophysiology. These studies might foster the 

goal of alleviating the burden associated with TBI.  
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Dear Editor,  

 

We appreciate the effort of Santos and colleagues for writing the letter entitled “Diffuse 

axonal injury: diffusion tensor imaging and cognitive outcome”1 about the published article by 

Grassi et al.2. We would like to thank for all their comments on our paper and we acknowledge 

the opportunity to reply to their considerations. 

 Traumatic brain injury remains a major public health concern, directly affecting millions 

of otherwise healthy individuals, as well as, indirectly their household members, who usually 

have to deal with long-term sequelae, including psychiatric symptoms and cognitive deficits. 

During the last years, advanced magnetic resonance (MR) techniques have played an important 



I n t r o d u c t i o n  a n d  L i t e r a t u r e  R e v i e w - 26 

 
 

 

role in detecting abnormalities that were once under-recognized when using conventional MR 

technology. In particular, diffusion tensor imaging represents an important advanced MR tool 

in the context of traumatic brain injury and diffuse axonal injury3. There are already extensive 

compendiums concerning the physics of diffusion tensor imaging, however, instead, in our 

work we aimed to briefly review its basic principles and main analytical methods (region-of-

interest, tractography and voxelwise analyses), along with the main relevant findings in the 

context of traumatic brain injury and diffuse axonal injury2. 

Taking into account the advantages of diffusion tensor imaging in the noninvasive 

exploration of brain microstructure and networks, one should not be surprised by the striking 

number of recent publications using this technique in the evaluation of patients at different 

stages after a traumatic episode, ranging from mild to moderate and severe injuries2,3. However, 

there is still an urge to associate diffusion tensor imaging findings with clinical aspects and to 

correlate the scores with cognitive outcomes, making it valuable and accessible as a prognostic 

tool in a daily clinical practice.  

Fortunately, new scientific studies are evolving steadly and, soon after our recently-

published paper2, new evidences have strengthened the relationship between diffusion tensor 

imaging abnormalities and diffuse axonal injury outcomes. As pointed by Santos et al., the work 

conducted by Hellstrom and colleagues4 indicated robust associations between self-reported 

cognitive, somatic and emotional symptoms, 12 months after mild traumatic brain injury with 

white matter diffusion tensor imaging parameters, extracted with a vowelwise analysis, dubbed 

as tract-based spatial statistics. This work also reinforced physiologic effects of aging on brain 

white matter structures, leaving the older brain more vulnerable to subtle injury-related 

processes3. This also emphasizes the need to control the age as a potential confounding variable 

on case-control diffusion tensor imaging studies.  

A work by Leon et al.5 assessed 217 victims of moderate to severe TBI 19 days after 

the traumatic episode. Twenty-eight white matter fiber bundles were chosen because of their 

susceptibility to trauma and were evaluated by region-of-interest-analysis. Diffusion tensor 

imaging metrics were highly associated with unfavorable clinical outcome after six months to 

one year after the trauma.   

 Furthermore, a recent meta-analysis of 20 studies investigated correlations between 

diffusion tensor imaging measures and seven cognitive domains in mild to severe TBI victims. 

All studies pointed a concordance between diffusion tensor imaging parameters and cognition: 
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increased fractional anisotropy values were associated with higher cognitive performance, 

especially regarding memory and attention functions5.  

It is expected that diffusion tensor imaging evaluation will have potential clinical 

application in head injury survivors in the near future. Nevertheless, most findings heretofore 

were based on single works and hence upcoming studies are awaited to highlight the prognostic 

value of diffusion tensor imaging. There is still much work to be done. Larger scale, 

longitudinal analyses with homogeneous TBI groups might play a decisive role in how this 

technique will prove helpful in predicting a patient´s prognosis and also aiding in selection of 

patients who might benefit from targeted therapies.  
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 To evaluate longitudinally with diffusion tensor imaging (DTI) the integrity of the 

cerebral white matter in patients with moderate and severe diffuse axonal injury (DAI) at three 

moments after trauma, by using two distinct analytical methods:  

 a) DTI-based tractography of the corpus callosum (CC) and the bilateral superior 

longitudinal fascicles (SLF);  

 b) Whole-brain voxelwise analysis. 

 We also aimed to correlate the DTI scalar indices with neuropsychological tests 

assessing different cognitive domains. 
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Abstract 

Objective: The goal is to evaluate longitudinally with diffusion tensor imaging (DTI) 

the integrity of cerebral white matter in patients with moderate and severe DAI and to 

correlate the DTI findings with cognitive deficits.  

Methods: DAI victims (n=20) were scanned at three timepoints (2, 6 and 12 months) 

after trauma. A healthy control group (n=20) was evaluated once with the same high-

field MRI scanner. The corpus callosum (CC) and the bilateral superior longitudinal 

fascicles (SLFs) were assessed by deterministic tractography with ExploreDTI. A 

neuropschychological evaluation was also performed. 

Results: The CC and both SLFs demonstrated various microstructural abnormalities in 

between-groups comparisons. All DTI parameters demonstrated changes across time in 

the body of the CC, while FA (fractional anisotropy) increases were seen on both SLFs.  

In the splenium of the CC, progressive changes in the mean diffusivity (MD) and axial 

diffusivity (AD) were also observed. There was an improvement in attention and 

memory along time. Remarkably, DTI parameters demonstrated several correlations 

with the cognitive domains. 

Conclusions: Our findings suggest that microstructural changes in the white matter are 

dynamic and may be detectable by DTI throughout the first year after trauma. Likewise, 

patients also demonstrated improvement in some cognitive skills.   

 

Keywords: brain injury, white matter, MRI, DTI, tractography, cognition  

 

Introduction  

 

Traumatic brain injury (TBI) is a complex public health issue worldwide because of its 

high prevalence, morbidity and mortality(1,2). In the last decades, studies have demonstrated 

the vulnerability of cerebral parenchyma in the trauma scenario and also its importance when 

correlating with cognitive and psychological impairments in survivors(3,4).  

Diffuse axonal injury (DAI) plays an essential role in TBI since it is present in almost 

half of the victims who need hospitalization and because it is related to brain dysfunctions(5–

8). The widespread axonal injury leads to a loss of the brain connectiveness, causing cognitive, 

motor, and sensory deficits(9–11). Also, DAI is associated with the development of the chronic 

neurodegenerative traumatic disorder(12,13).  
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There are different and complex mechanisms involved in the pathophysiology of DAI. 

Histopathological studies have shown primary and secondary axonal lesions, inflammatory and 

regeneration processes accompanied by Wallerian degeneration and neuroplasticity that may 

be the related with the clinical and cognitive outcomes in TBI survivors(7,14). Computed 

tomography (CT) and conventional magnetic resonance imaging (MRI) are relatively 

insensitive for these microstructural changes. Nevertheless, diffusion tensor imaging (DTI) is 

an advanced MRI technique that is able to probe microstructural integrity by exploring the 

diffusion of water molecules in brain tissues(15–17). Therefore, we hypothesized that these 

abnormalities would be detectable by DTI metrics along the first year after trauma.  

In the last decades, DTI has demonstrated its capability to study brain architecture, 

geometry and microstructure, and it has been used in the evaluation of several neurological 

conditions, including brain trauma(18,19). Among different DTI methods of analysis, 

tractography has been commonly used to parcellate and to assess the white matter tracts in TBI 

victims, ranging from mild to severe trauma, and even in those without associated findings in 

conventional MRI(20–23). 

Fiber tracts connect different regions of the brain in order to module neuronal impulses. 

The greatest white matter bundle in the human brain is the corpus callosum (CC), responsible 

to link homologous regions of both cerebral hemispheres, and also involved in motor, 

psychological and cognitive activities(24). The genu, body and splenium are the main CC 

subdivisions connecting the orbitofrontal regions, the frontoparietal lobes and the occipital 

cortices, respectively. Another critical tract involved in different cognitive processes such as 

language, memory, emotions and attention is the superior longitudinal fascicle (SLF), which 

connects Broca´s area (frontal lobe), Geshwind´s area (parietal lobe) and Wernicke´s territory 

(temporal lobe) in the same brain hemisphere(25). Several studies have demonstrated the 

vulnerability of these brain tracts in the context of traumatic brain injury victims(20,22,26,27). 

However, longitudinal studies assessing the dynamic changes of white matter in DAI are scant 

in the literature.   

 This study aims to longitudinally evaluate with DTI the integrity of the CC and the SLFs 

in patients with moderate and severe DAI at three moments during the first year after the 

traumatic event, and also in comparison with a matched healthy control group. In addition, 

correlations between DTI quantitative parameters and neuropsychological data will also be 

scrutinized. 
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Materials and methods 

 

Patients 

Selection criteria  

 This study was approved by the Institutional Review Board, and all individuals agreed 

to be in the study and signed the informed consent form. Patients included in this study were 

adult outpatients (ages between 18 and 55 years old) admitted to the Emergency Room of the 

Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, Brazil, due to 

moderate and severe head trauma according to Glasgow Coma Scale (GCS) scores of 3–12 at 

initial evaluation, and who met the following criteria: (1) clinical and tomographic diagnosis of 

DAI, (2) a Marshall score(28) of I, II or III based on CT evaluation, (3) had no focal lesions 

greater than 10cm3, (4) had no midline shift greater than 0.5cm, (5), had no epidural hematomas 

that determined compression of the brain parenchyma, (6) had no previous head injury history 

with hospitalization.  

 

Description of patient’s sample 

 Initially, two hundred and twenty-five head trauma patients were evaluated, twenty 

patients (11.25% of those) were included in the final analysis and two hundred and five 

(88.75%) were excluded based on the following reasons:186 patients did not meet clinical 

and/or tomographic criteria for DAI; seven losses of follow-up; five individuals had exclusion 

safety criteria for MRI examination; five DTI artifacts; one patient deceased; and one patient 

developed epidural compressive hematoma. 

For the 20 patients who met the selection criteria, demographic characteristics were as 

follows: 17 men and 3 women; mean age was 29.6 years (SD+6.8), 14 patients presented with 

moderate head trauma (GCS of 8–12) and 10 suffered motorcycle accidents. 

 

Brain imaging 

Magnetic resonance imaging 

 Each patient had a 3.0 Tesla MRI of the brain performed on the same scanner (Intera 

Achieva, Philips Medical System, Best, The Netherlands) with an eight-channel head coil 

(Philips Medical System) at three timepoints: (1) 2 months after the trauma, (2) 6 months after 

the trauma and (3) 12 months after the trauma. A healthy age- and sex-matched control group 

of 20 individuals was also scanned once. 
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Anatomical imaging protocol was acquired in the sagittal plane with a 3D T1-weighted 

Fast Field Echo (3DT1-FFE) sequence covering the entire brain (180 slices), and the following 

parameters:  inversion time (IT) = 700 ms; TR/TE = 6.2 ms/2.7 ms; flip angle = 8°; acquisition 

matrix = 240 x 240; field of view (FOV) = 240 x 240 x 180 mm; voxel resolution = 1 

mm3 (isotropic); slice thickness = 1.0 mm; completion time = 4 minutes. The susceptibility 

weighted image protocol consisted of principles of Echo Shifting with a Train of Observations 

(PRESTO) 3D-T1FFE sequence, axially acquired (a total of 230 slices - 1mm thick), according 

to these specifications: TR/TE = 22/29 ms; flip angle = 10°; FOV= 220 x 182 mm; matrix = 

224 x 224; voxel size = 0.98 x 0.98 x 1.0 mm; completion time = 3 minutes.  

 

DTI data acquisition 

DTI images were collected in the axial plane with gradients applied in 32 non- collinear 

directions. The entire brain was covered within 70 slices, 2 mm-thick each, with no gaps in 

between. One image with no diffusion weighting was obtained (b = 0 s/mm2). Other parameters 

used were:  TR/TE = 8500 /61ms; b value = 1000 s/mm2; matrix = 128 x 128; FOV (“field-of-

view”) = 256 x 256 mm; 2mm3 isotropic voxel; NEX = 1; completion time = 7 minutes. 

 

Pre-processing  

All data were pre-processed using the functional MRI brain (FMRIB) software library 

(FSL), version 5.0 (available at http://www.fmrib.ox.ac.uk/fsl/), following this sequence: brain 

extraction tool (BET), FMRIB’s linear image registration tool (FLIRT) and correction of eddy 

current induced distortions(29,30). Motion correction was completed using the free toolbox 

ExploreDTI (A. Leemans, University Medical Center, Utretch, The Netherlands), by rotating 

the B-matrix in order to keep the orientation input accurate. Investigation for residuals and 

outliers of the diffusion tensor fit was done with the same software, ending on residual maps 

similar on all groups. Moreover, the same software was used for tensor calculation and fiber 

tracking (31,32). 

 

Tractography 

A whole-brain tractography was first automatically obtained in the native space using a 

brute-force approach of every pixel. Deterministic tractography technique was then achieved 

following a predesigned combination of specific procedures, which included positioning of 

multiple regions-of-interest (ROIs) on different planes, based on prior anatomical knowledge 
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and previous studies(33,34). The FACT (fiber assignment by continuous tracking) algorithm 

was calculated with a fractional anisotropy threshold of 0.25 and maximum angles of 30o for 

the CC and 60o for the SLF, equally applied to all subjects(35).   

The CC was segmented in three parts: genu, body and splenium. According to the Hofer 

and Frahm’s representation(36), the genu was defined as the one-sixth part of the anterior CC, 

while the splenium the last one-fourth and the body the residual part. The CC was virtually 

dissected following these steps: first, “SEED” ROIs were marked in the paramedian plane along 

the CC. To securely track fibers from left and right hemispheres, “AND” ROIs were traced in 

the midsagittal portion, and, finally, “NOT” ROIs were drawn in the axial and coronal planes 

in order to eliminate horizontally and vertically oriented fibers (e.g. cingulum and corticospinal 

tracts, respectively). To dichotomize the SLF fibers, two “SEED” ROIs were delineated in the 

coronal plane, and two “NOT” ROIS were used to the axial plane to exclude any tracks that had 

a vertical orientation (towards the corona radiata or the corticospinal fibers) (Figure 1). 

 The following average quantitative DTI parameters were extracted from each tract: 

fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity 

(RD). 

 

 
 

Figure 1. DTI-based tractography post-processing with ExploreDTI. A, whole-brain 

tractography is first obtained with a brute-force approach. B, SEED (in blue) and NOT (in red) 

ROIs placed in multiple planes of FA maps to virtually dissect the bilateral SLFs. C. Three-
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dimensional representation of both SLFs on oblique view. D, E and F show the final results of 

segmentation of the CC in the lateral plane: genu, body, and splenium, respectively. 

 

Neuropsychological tests 

 An experienced neuropsychologist (ALCZ) performed specific tests to assess different 

cognitive domains. The patients were submitted to neuropsychological (NP) assessment only 

at timepoints 2 and 3 because of comprehension difficulties, mental confusion and agitation 

typically seen in the early post-trauma stage. The results of each test were converted into a Z-

score according to age and years of education. On timepoint 2, three patients were not able to 

complete the NP tests. On timepoint 3, one patient had missing information concerning the IQ 

estimation.    

 The Hopkins verbal learning test (HVLT) evaluates the episodic verbal memory. It 

consists on immediate, late recall and later recognition of a list containing 12 words(37). The 

examiner reads the list and the patient is asked to repeat as many words as possible. This 

procedure is repeated two more times and then 25 minutes after that (later recognition).  

 The Victoria Stroop test assesses selective attention and inhibition control. It consists of 

three cards, one of them with colors, the other with random words colored and the last with 

color names with mismatched colors(38). The patient has to say aloud the colors´ names as fast 

as possible. 

 Both semantic verbal and phonologic fluency were assessed by the FAS test – where 

the patient is asked to say as many words as possible beginning with each letter F, A and S. For 

the semantic verbal assessment – using animals as a category, the patient has to say as many 

different animals as possible in one-minute interval(38). 

 One subtest present in the Wechsler Memory Scale (WAIS – III) evaluates the working 

memory in forward and reverse recall of a digit sequence(39). A digit sequence is presented at 

one digit per second rate and after that the patient has to recall it in forward and in backward 

sequences. 

 IQ estimation was calculated by combining the performance on both vocabulary and 

matrix reasoning tests present in the WAIS – III(39,40). The vocabulary test consists on the 

presentation of words and the patient is asked to define them. In the matrix reasoning test, a 

matrix of abstract pictures in which there is one picture missing is presented, and the patient 

has to choose one option that better suits the missing picture. 
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Statistical analyses 

 Statistical analysis was performed using IBM – SPSS statistics for Windows, version 

25 (International Business Machines Statistical Package for the Social Sciences Inc., Chicago, 

IL, USA). A professional statistical expert was consulted for all analyses. 

Initially, the data was inspected for outliers and distributional characteristics. There 

were no considerable asymmetries in all DTI quantitative samples or NP tests results.   

Comparisons between the patients and the control group were performed with Student´s 

t-test. A generalized linear function test with robust standard error and unstructured correlation 

matrix was performed to evaluate changes over time of DTI parameters and neuropsychological 

tests. After that, the Benjamin - Hochberg procedure for repeated measures was performed. To 

calculate correlation coefficients, Pearson and Spearman's tests were used. Results were 

considered significant with p-value <0.05. 

 

Results 

 

Comparisons of the DTI parameters between patients and healthy controls 

 The DTI parameters (FA, MD, AD and RD) extracted from the CC and both SLFs in 

the control group and in the patients group at all three timepoints can be seen in the 

supplementary Table S1.  

In order to examine the early microstructural abnormalities after moderate and severe 

TBI, we compared the patients group at timepoint 1 with the healthy controls (Figure 2). We 

found significant differences in all DTI parameters at all segments of the CC with lower FA 

values and higher MD and RD values in the patients group (p<0.001). There were no significant 

differences in AD in any CC segment when comparing both groups. For both SLFs, we found 

similar results as those found in the corpus callosum, except for AD in the left SLF, which 

demonstrated significant higher values in the patient’s group (p=0.04).  
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Supplementary Table S1. DTI quantitative results for each white matter tract. 

 

Tract  Controls 

(n=20) 

PT1 (n=20) PT2 (n=20) PT3 (n=20) 

Genu FA 0.516 + 0.015 0.467 + 0.045 0.468 + 0.048 0.467 + 0.051 

MD 0.777 + 0.032 0.829 + 0.046 0.837 + 0.052 0.841 + 0.060 

AD 1.288 + 0.037 1.308 + 0.041 1.320 + 0.044 1.325 + 0.050 

RD 0.522 + 0.031 0.589 + 0.059 0.593 + 0.065 0.599 / 0.075 

Body  FA 0.535 + 0.010 0.486 + 0.028 0.481 + 0.027 0.485 + 0.029 

MD 0.756 + 0.019 0.795 + 0.034 0.807 + 0.040 0.809 + 0.043 

AD 1.279 + 0.029 1.278 + 0.040 1.293 + 0.051 1.296 + 0.054 

RD 0.494 + 0.017 0.552  + 0.037 0.562 + 0.039 0.563 + 0.047 

Splenium  FA 0.578 + 0.016 0.530 + 0.030 0.529 + 0.031 0.530 + 0.029 

MD 0.792 + 0.020 0.842 + 0.039 0.851 + 0.039 0.859 + 0.048 

AD 1.398 + 0.031 1.409 + 0.053 1.425 + 0.047 1.442 + 0.059 

RD 0.489 + 0.022 0.558 + 0.044 0.565 + 0.047 0.567 + 0.049 

Right SLF  FA 0.466 + 0.017 0.428 + 0.034 0.427 + 0.033 0.435 + 0.030 

MD 0.712 + 0.024 0.744 + 0.032 0.746 + 0.039 0.744 + 0.043 

AD 1.107 + 0.033 1.115 + 0.032 1.116 + 0.038 1.122 + 0.047 

RD 0.514 + 0.023 0.559 + 0.039 0.562 + 0.045 0.555 + 0.046 

Left SLF  FA 0.491 + 0.017 0.454 + 0.033 0.456 + 0.032 0.461 + 0.027 

MD 0.700 + 0.019 0.739 + 0.030 0.745 + 0.034 0.741 + 0.036 

AD 1.112 + 0.033 1.133 + 0.028 1.144 + 0.030 1.143 + 0.031 

RD 0.494 + 0.0174 0.542 + 0.039 0.545 + 0.0421 0.540 + 0.041 

The results are shown in mean values + standard deviations. MD, AD and RD are presented in 

x 10-3 mm2/s. n = number. PT1, PT2 and PT3 accounts for the patients groups at timepoints 1, 

2 and 3, respectively. 
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Figure 2. Column bar graphics exhibit the mean values with 95% confidence intervals (error 

bars) of DTI metrics (FA, MD, AD, RD) for the patients group at timepoint 1 (PT1) in each CC 

segment (genu in blue, body in green, splenium in orange) and both SLFs (right SLF in purple, 

left SLF in yellow). The corresponding parameters in the control group are shown in grey color. 

MD, AD and RD are expressed in x 10-3 mm2/s. The corresponding values for the control group 

are exhibited in grey color. Statistically significant differences (p<0.05) obtained with Student´s 

t-test are indicated in the graphics with asterisks (*). 

 

 

Changes in the DTI parameters along time 

 Table 1 summarizes the results from the generalized estimating equation (GEE) for the 

comparison of all quantitative DTI metrics in the patients group considering the three 

timepoints. 

In the body of the CC, FA demonstrated a decrease between timepoints 1 and 2, and 

then a significant increase at timepoint 3 (p=0.02). For both MD and AD, we also observed the 

same pattern of increasing values along time in the body (p=0.003, p=0.025), and splenium 

(p<0.001, p<0.001), respectively. For RD, we found increasing values in the body of the CC 

(p=0.016). There were no other significant changes in the DTI parameters in the genu of the 

CC (Figure 3).  
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Table 1. Results obtained with generalized estimation equation to evaluate of DTI parameters 

in the patients group (n=20) along timepoints 1, 2 and 3.  

 

 

Tract DTI 

metric 

p-

value 

Genu FA 0.835 

MD 0.063 

AD 0.061 

RD 0.181 

Body FA 0.020 

MD 0.003 

AD 0.025 

RD 0.016 

Splenium FA 0.992 

MD <0.001 

AD <0.001 

RD 0.070 

Right 

SFL 

FA 0.003 

MD 0.764 

AD 0.575 

RD 0.035 

Left SLF FA 0.035 

MD 0.231 

AD 0.088 

RD 0.180 

                                    Significant p-values are shown in italics. 

 

 We also found significant FA increases along time in both right and left SLFs (p=0.003, 

p=0.035, respectively), accompanied by a significant decrease for RD values in the right SLF 

(p=0.035). No other significant changes over time for the other DTI parameters were observed 

in the SLFs (Figure 3). 
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Figure 3. Box-plot graphics exhibit comparisons of DTI metrics (FA, MD, AD, RD) along time 

for the patients group in each CC segment and in both SLFs (genu in blue shades, body in green 

shades, splenium in orange shades, right SLF in purple shades, and left SLF in yellow shades). 

MD, AD and RD are expressed in x 10-3 mm2/s. Statistically significant differences along time 

found with generalized linear function tests are indicated in the graphics with the corresponding 

p-values. 

 

Neuropsychological evaluation 

 Neuropsychological tests indicated deficits in all cognitive domains in the patients group 

as indicated by negative Z-scores at both timepoints 2 and 3. Along time, however, patients 

presented improvement of the performances on memory (p=0.004) and attention (p=0.001). 

Other domains such as verbal fluency, working memory and IQ estimation did not demonstrate 

significant modifications throughout time (Table 2). 
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Table 2. Z-scores computed for each cognitive domain and the statistical results after 

generalized estimated equation using time as a model of effect. 

 

Cognitive domain PT2 PT3 p-value 

Memory -2.478 + 0.171 -1.980 + 0.205 0.004 

Attention -1.941 + 0.249 -1.113 + 0.251 0.001 

Verbal fluency -1.348 + 0.190 -1.239 + 0.132 0.473 

Working memory -0.424 + 0.158 -0.425 + 0.155 0.993 

IQ   -1.006 + 0.141 -0.885 + 0.144 0.101 

The results are shown in mean values + standard deviations. PT2 and PT3 accounts for the 

patients groups at timepoints 2 and 3, respectively. Significant p-values are shown in italics. 

 

 

Correlations between DTI parameters and neuropsychological tests 

 There were several significant correlations between DTI parameters and the results of 

the neuropsychological tests at both timepoints 2 and 3. These results are summarized in the 

supplementary Table S2. 

At timepoint 2, we found positive correlations of FA values in the genu of the corpus 

callosum with attention (p=0.031), and in the splenium with attention (p=0.036) and working 

memory (p=0.003). There were also positive correlations of FA values in the right (p=0,039) 

and left (p=0,009) SLFs with IQ. In parallel, MD values in the genu correlated negatively with 

working memory (p=0,05), as well as in the splenium with attention (p=0.009), verbal fluency 

(p=0.002), working memory (p=0,032) and IQ (p=0,024). MD values also correlated negatively 

with verbal fluency on left SLF (p=0.037). Moreover, RD values in the genu were correlated 

negatively with verbal fluency (p=0.049); in the splenium with attention (p=0.018), verbal 

fluency (p=0.02), working memory (p=0.032) and IQ (p= 0.009); and in the left SLF with IQ 

(p=0.044). There was no evidence of correlations between AD at any regions studied and the 

neuropsychological results at timepoint 2.  

 At timepoint 3, FA values at the genu also demonstrated a positive correlation with the 

attention index (p=0.02). Correspondingly, RD values in the same site showed a negative 

correlation with the same cognitive domain (p=0.036). AD values in the left SLF showed a 

negative correlation with attention index (p=0.004). There were no other significant correlations 

between DTI metrics and the cognitive domains at timepoint 3. 
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Supplementary Table S2. Spearman correlation tests with significant correlations between 

DTI metrics and neuropsychological results 

 

Tract DTI 

parameter 

Timepoint Attention Verbal 

fluency 

Working 

memory 

IQ 

Genu FA PT2 R=0.508 

p=0.031 

   

FA PT3 R=0.514  

p=0.020 

   

MD PT2   R=-0.456 

p=0.050 

 

RD PT3 R=-0,445 

p=0.049 

   

Splenium FA PT2 R=0.496  

p=0.036 

 R=0.645  

p=0,003 

R=0.636  

p=0.005 

MD PT2 R=-0.594 

p=0.009 

R=-0.529 

p=0.020 

R=-0.494  

p=0.032 

R=-0.530 

p=0.024 

RD PT2 R=-0.549 

p=0.018 

R=-0.465 

p=0.045 

R=-0.511  

p=0,025 

R=-0.597 

p=0.009 

Right 

SLF 

FA PT2    R=0.489  

p=0.039 

AD PT2  R=-0.557 

p=0.013 

  

Left SLF FA PT2    R=0.600  

p=0.009 

MD PT2  R=-0.481  

p=0.037 

  

AD PT2  R=-0.553 

p=0.014 

  

RD PT2    R=-0.479 

p=0.044 

AD PT3 R=-0.620 

p=0.004 

   

PT2 and PT3 accounts for the patients groups at timepoints 2 and 3, respectively. 

 

 

Discussion 

 

 Our study demonstrates extensive diffusion abnormalities in the white matter, 

characterized by lower FA and higher MD, in all the evaluated segments in DAI patients in 

comparison to healthy controls. This is coherent to the widespread feature of DAI following 

moderate and severe trauma and is in line with several previous works conducted in animal 

models and in humans(9,18–20,41–50). 
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FA is the most commonly used parameter in DTI studies to assess integrity and 

geometry of axonal fibers. High FA values (close to one) are observed in brain regions 

containing well-organized parallel axon arrays. On the other hand, brain regions with no 

internal directional organization are associated with low FA (close to zero). In contrast to FA, 

MD represents the overall water diffusion, regardless its direction, and is affected by both radial 

and axial diffusivities(51,52). It has been largely discussed which processes underlie the 

changes in RD and AD and how they should be interpreted(51–55).  Herein, we found more 

pronounced increments in RD, which are possibly associated with demyelination and 

neuroinflammation, specially the water accumulation within the myelin sheath (intramyelinic 

oedema). There were also higher AD values in the patients group, but this difference was 

significant only in the right SLF, which most likely reflects abnormalities in cell density and 

increase in extracellular space. Kinnunen et al. also found the same combination of 

abnormalities in DTI-derived scalar metrics using a voxelwise approach in TBI patients in 

several brain regions, including the CC and SLFs(9). Our work reinforces the utility of both FA 

and MD as sensitive DTI biomarkers of microstructural damage in DAI patients, even in 

otherwise normal-appearing parenchyma on conventional MRI. 

The longitudinal evaluation of DTI parameters in our study demonstrated that the 

diffusion abnormalities are not stationary, but also change into some extent along time after 

trauma. This was particularly evident in the body of the CC, that showed an initial decrease in 

FA values followed by an increase in the second phase post-injury, accompanied by an increase 

in MD, AD and RD in the overall study interval. There were also progressive increments in MD 

and AD values in the splenium. In the SLFs, there were progressive increases in FA mean 

values, accompanied by significant changes in RD in the right side. Indeed, several works 

demonstrated that, in addition to the primary axonotmesis directly caused by rotational forces 

at the moment of the impact, other pathological processes ensue afterwards. There is evidence 

of a late secondary pro-inflammatory response associated with deposition of myelin debris, 

overexpression of cytokines, synaptic dysfunction, activation of glial cells, and also deposition 

of anomalous proteins, such as Tau and beta-amyloid(56–59). On the other hand, in a search 

for homeostasis and regeneration, a continuous process of debris clearance and anti-

inflammatory response is also triggered, with reparative mechanisms that contribute to a 

neurological recovery(60,61).  

One study using a mouse model showed early isolated axonal injury, followed by 

demyelination, oedema, and persistent axonal damage up to one month after the experiment, 
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which were accompanied by progressive changes in scalar indices, suggesting that DTI may 

indicate approximate timing of injury(43). Tissue reorganization have been detected to start as 

early as days after trauma and within 4 weeks, along with an increase in fiber density in affected 

regions in a rodent model(62). Other investigations conducted in humans that analyzed TBI 

victims from mild to severe trauma also demonstrated FA changes from early phases up to 

several years after trauma(42,45,48). In addition to the continuing process of debris clearance 

and neuronal regeneration, another reasonable explanation for the progressive increment in FA 

may be related to the vascular injury associated with DAI that causes local bleeding with 

hemoglobin degradation and iron deposition, which may also determine dynamic changes in 

FA values (63,64). Non-invasive methods such as DTI might be helpful to foster the 

understanding of the underlying complex pathophysiologic abnormalities and the 

microstructural anatomical substrates of the commonly observed cognitive deficits in TBI 

victims. 

Following recovery from transient loss of consciousness and partial or complete 

recuperation of acute neurological deficits caused by head trauma, DAI survivors may present 

persistent disabilities, loss of productivity and impaired quality of life(1,2). Cognitive 

impairments depend on multiple variables, such as the trauma severity, rehabilitation and even 

genetic factors(65–67). A neuropsychological assessment indicated compromise of all 

cognitive functions in the patients group in our study up to one year after trauma, but there was 

significant improvement of episodic verbal memory and attention domains along time. This is 

in agreement with a meta-analysis review of 39 cross-sectional TBI studies, which indicated 

that cognitive functions improve after moderate to severe TBI but remains markedly impaired 

up to two years post-injury(67). 

Moreover, we found significant correlations between DTI metrics and cognitive 

performances. There were positive correlations between FA values in the genu of the CC with 

attention at both evaluated phases, as well as negative correlation between MD values and 

working memory at timepoint 2. The mechanics of head trauma places the ventral and lateral 

surfaces of the frontal lobes in particular vulnerability for damage(68,69). Given the frontal 

projections of the genu, it is not surprising that executive functions mediated by these areas 

could be correlated with microstructural abnormalities as detected by DTI in our study. The 

splenium is also frequently injured in head trauma due to specific anatomical features such as 

its close proximity to the fixed falx that determines how the shearing forces propagates in this 

region. There were significant correlations between DTI indices extracted from the splenium 
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and several cognitive domains, including attention, verbal fluency, working memory and IQ at 

six months post-trauma. Our results also indicated positive correlations between FA values in 

both SLFs and IQ at the same timepoint, in addition to negative correlations between the other 

DTI metrics and verbal fluency and IQ. The correlations were more pronounced in the left SLF, 

what may be related to the by far more prevalent functional language dominance in the left 

cerebral hemisphere(70). Furthermore, there were more pronounced correlations in our study 

at six-moths post-injury, suggesting this interval as the optimal timing of DTI data acquisition 

for evaluation of cognitive outcomes. 

Others authors have also found correlations between DTI parameters and 

neurocognition. Hashim et al. evaluated 19 subacute (up to one year post-trauma) and chronic 

(from one up to five years post-trauma) patients with a voxelwise approach and found persistent 

functional loss in chronic TBI, and also correlations between diffusion indices with memory 

and visuomotor coordination test scores, but not with executive function(71). Another group 

conducted a longitudinal study with region-of-interest based analysis at specific brain sites and 

demonstrated significant correlations with clinical outcomes up to 15 months after severe 

trauma(72). There is also evidence of associations between DTI indices and self-reported 

cognitive and emotional symptoms at 12-months post-injury in mild TBI(4). This study also 

pointed strongest effects in frontal regions including the forceps minor and the genu of the 

CC(4). 

Lack of correlations between some DTI metrics and cognitive domains at specific sites 

in our study, especially in the body of the CC, may be related to the relatively low number of 

participants that are ideally required for correlational studies(73). Indeed, we have applied strict 

exclusion criteria in order to evaluate a very homogeneous group of moderate and severe TBI 

patients with a pure presentation of DAI rather than evaluating patients with a broader spectrum 

of traumatic injuries, such as large intra-axial and extra-axial hematomas. Furthermore, another 

possible explanation is that distant rewiring and behavioral compensation may mediate 

spontaneous improvement of cognitive deficits after TBI. Although these mechanisms are not 

completely understood and do not represent true pathological recovery, it is supposed that 

second behavior in intact circuits overtake the original cognitive with associated shifts in 

anatomofunctional maps topography(74,75).  

There are several methodological approaches to analyze DTI datasets. Region-of-

interest analysis allows straightforward extraction of diffusion parameters from a 

predetermined area of the brain, but only a limited part of the cerebral structure is evaluated in 
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two-dimensional images. Voxelwise analysis is broadly applied on research scenarios because 

it is suitable for global analyses of brain parenchyma and allows semi-automated comparison 

of large groups of patients. Some shortcomings of this approach, however, are the need for 

alignment and registration of brain volumes to a standard space, with its associated 

inaccuracies(18). Herein, rather than applying an exploratory evaluation prone to multiple error 

biases, we chose to evaluate with tractography the greatest inter-hemispheric commissure 

bundle and one long association tract that are known to link critical cortical regions and to 

modulate several cognitive functions.  

Still, some caveats of the deterministic streamline tractography approach should be 

mentioned. This technique indirectly estimates fiber tract anatomy based on the main direction 

of water molecules diffusion in each voxel (in the order of millimeters), by far much bigger 

than the axonal diameter (in the order of microns). This assumption of homogeneous 

unidirectional vectors is unrealistic and gives erroneous estimations of fiber pathways in areas 

of crossing fibers. Furthermore, longer acquisition times and motion artifacts limit increases in 

spatial resolution. Other robust diffusion analysis techniques that soothe some of these 

limitations are evolving steadfastly, such as global probabilistic tractography, high angular 

resolution diffusion imaging (HARDI), q-ball imaging and diffusion kurtosis analysis 

(DKI)(18,75–77). So far, however, these approaches require more sophisticated processing 

algorithms and are less feasible for implementation in clinical sets to evaluate individual TBI 

patients. 

Finally, this study emphasizes the utility of DTI to obtain quantitative information about 

the white matter microstructure in patients with moderate and severe brain injury. Our results 

showed extensive and dynamical changes in DTI parameters throughout the first year after 

trauma. In parallel, patients also demonstrated better performance scores in different 

neuropsychological domains over time, which could be correlated with DTI metrics at 

particular brain sites, indicating the potential role of microstructural reorganization and 

neuroplasticity. DTI is a noninvasive method that could be helpful in monitoring progression 

of DAI and to select cognitively compromised patients for targeted therapies in the future. 
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ABSTRACT  

 

Background: Diffuse axonal injury occurs in high acceleration and deceleration forces in 

traumatic brain injuries (TBI). This lesion leads to disarrangement of the neural network, which 

can result in some grade of deficiency. The Extended Glasgow Outcome Scale (GOS-E) is the 

primary outcome instrument to evaluate TBI victims. Diffusion tensor imaging (DTI) assesses 

the white matter (WM) microstructure based on the displacement distribution of water 

molecules. 

Objective: Study the WM microstructure along the first year after trauma using DTI, check the 

patient’s clinical outcome, and test for associations. 

Methods:  We scanned 20 TBI victims of moderate and severe trauma at 2 months and 1 year 

after the event. Imaging processing was done with the FMRIB software library; we used the 

tract-based spatial statistics software yielding fractional anisotropy (FA), mean diffusivity 

(MD), axial diffusivity (AD), and radial diffusivity (RD) for statistical analyses. We computed 

the average difference between the two measures across subjects and performed a one-sample 

t-test and threshold-free cluster enhancement, p-value < 0.05, corrected. The GOS-E evaluated 

clinical outcomes. We tested for associations between outcome measures and significant mean 

FA clusters. 

Results: Significant clusters of altered FA were identified anatomically using the JHU WM 

atlas. We found spotted areas of FA increment along time, in the right brain hemisphere and 

the left cerebellum. Extensive regions of increased MD, RD, and AD were observed. Patients 

presented an excellent overall recuperation. There were no associations between FA and 

outcome scores, but we cannot exclude a small to moderate association. 

 

Keywords: Craniocerebral Trauma; Diffuse Axonal Injury; Diffusion Tensor Imaging; 

Glasgow Outcome Scale; Regeneration. 

 

INTRODUCTION  

 

 Traumatic brain injury (TBI) causes different complex brain lesions such as hematomas, 

contusions, vascular injuries, and diffuse axonal injury (DAI). DAI results from high-energy 

acceleration and deceleration forces, determining shearing strains in the white matter, leading 

to disconnection or dysfunction of the neural network1. 



S y s t e m a t i z e d  T e x t - 60 

 
 

 

 Head injuries, particularly DAI, result in distinct functional deficits, such as physical, 

cognitive, and behavioral impairments, which dramatically affect life quality, return to daily 

activities, and social reintegration of survivors2. In 1975, Jennett and Bond developed the 

Glasgow Outcome Scale (GOS), and it was used as a primary outcome measure in phase III 

trials in TBI3,4. Afterward, acknowledging some limitations of the GOS, the Glasgow Outcome 

Scale – Extended (GOS-E) was developed.  Since its definition in 1981, it has been primarily 

used and recommended as the primary outcome measurement in TBI studies5,6.  

 DAI is not only restricted to mechanical forces at the moment of the trauma. Many 

different processes are triggered, such as inflammatory responses, molecular changes, 

apoptosis, and Wallerian degeneration. Therefore, the pathophysiology of DAI can be divided 

into primary and secondary lesions. The primary axonal lesion is the complete disconnection 

related to the kinetic energy in the trauma moment. In contrast, secondary axonal injuries are 

indirect and progressive lesions to neurons that ensue late after the initial shock7. The impact 

sparks molecular and cellular events that disturb the homeostasis, leading to changes in neurons 

and the regional microglia that can persist for years8.  

 Traditional imaging modalities such as computed tomography and standard magnetic 

resonance (MR) sequences, such as T1 and T2 weighted sequences, are not sensitive to show 

the white matter (WM) damage related to DAI. Diffusion tensor imaging (DTI) is an advanced 

MR modality based on water molecules diffusion that measures the preferential displacement 

along the white matter tracts and has been used to access the brain microstructure in different 

pathologies, including head injuries9. There are diverse methods available to analyze DTI 

images, such as region-of-interest analysis and tractography. One of the most commonly used 

is the whole-brain approach to test for group-comparisons, for which tract-based spatial 

statistics (TBSS) is particularly recommended for voxel wise and cluster-based analyses, 

constraining statistical analysis to the center of the tracts9. It is a semi-automated method, with 

minimal user dependence, that allows a whole-brain evaluation and is notably suitable for 

evaluating diffuse lesions in the brain parenchyma such as DAI10,11.  

 Other groups have used this approach to assess white matter changes in head injury 

victims in different stages after trauma12,13. Lipton and colleagues conducted a study on patients 

with mild TBI who presented with persistent cognitive impairment eight months to three years 

after the trauma. They found decreased fractional anisotropy (FA) and increased mean 

diffusivity (MD) in the corpus callosum, subcortical white matter, and internal capsules 

compared to healthy controls13. Another group investigated adolescents with mild TBI in the 
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acute phase (from 1 to 6 days after the trauma event) compared to age-matched controls14. They 

found significantly decreased apparent diffusion coefficient (ADC) and radial diffusivity (RD) 

and increased FA in several white matter regions and the left thalamus, consistent with axonal 

cytotoxic edema in the acute phase post-injury. However, few published works analyzed the 

progressive changes in the white matter in DAI, particularly in moderate and severe trauma 

victims.  

 This study aims to evaluate longitudinally the white matter of patients with severe and 

moderate DAI at two moments defined as the subacute (two months) and early chronic phases 

(one year) following the trauma event. We also assessed patients´ clinical outcome one year 

after trauma, using the GOS-E scale6. Our central hypothesis is that DTI parameters change 

along time and can have a degree of correlation with functional outcome. 

 

METHODS 

 

Standard protocol approvals 

 The protocol was reviewed and approved by the institutional review board, the local 

ethics committee, and all participants gave written informed consent. 

 

Study design and subjects 

A prospective study was conducted throughout one year. Adult outpatients admitted at 

the Emergency Room of Clinics Hospital, Faculdade de Medicina da Universidade de São 

Paulo, victims of moderate and severe TBI (Glasgow Coma Scale scores between 3 and 12 at 

initial evaluation), presenting clinical and tomographic findings exclusively of DAI were 

eligible to be admitted in the study. Exclusion criteria were the presence of contusions greater 

than 10cm3, midline shift greater than 0.5 cm, extra-axial collection determining compression 

of the brain parenchyma, or any indication for surgical intervention. Patients with poor quality 

imaging studies that limited analysis, clinical contra-indications that precluded MR scanning, 

or loss of follow-up were also excluded. 

 

Data acquisition  

 All data were acquired on a 3T system (Intera Achieva, Philips Healthcare, Best, The 

Netherlands). Patients were scanned using an 8-channel head proton coil (Philips Healthcare, 

Best, The Netherlands) at two time-points: two months (subacute phase) and one year (early 



S y s t e m a t i z e d  T e x t - 62 

 
 

 

chronic phase) after the trauma. The routine protocol included fluid-attenuated inversion 

recovery (FLAIR), diffusion-weighted imaging (DWI), and susceptibility-weighted imaging 

(SWI) sequences. For the data analysis in this study, we used a volumetric T1-weighted and 

DTI sequences. 

 The 3D-T1 fast field echo, acquired in the sagittal plane, was obtained using the following 

parameters: FOV 240 x 240 x 180 mm3; matrix 240 x 240mm; isotropic resolution; TR/TE 

6,2/2,7ms; and acquisition time 4.13min. 

 The DTI sequence was acquired in the axial plane, using 32 directions and one b0 using 

the following parameters: 70 slices; slice thickness 2mm; no gap; field of view 256 x 256 mm; 

voxel resolution = 2mm3 (isotropic); TR/TE 8.500/61ms; b = 1000 s/mm2; matrix 128 x 128; 

number of excitations (NEX) = 1; and acquisition time of 7 minutes. 

 

Imaging processing and analysis 

 Initially, all diffusion images were pre-processed for eddy current corrections and 

extraction of non-brain voxels, using FMRIB's Diffusion Toolbox (FSL) software, version 

5.0.119,15. For motion correction, the free toolbox Explore DTI (A. Leemans, University 

Medical Center, Utrecht, The Netherlands) was used, which rotates the B-matrix while keeping 

the exact initial orientation. With this same software, visual quality inspection for residuals and 

outliers was performed in each data set16,17. 

 Thereafter, FA maps were analyzed using TBSS9. All individual´s FA images were non-

linearly registered to the most typical subject of the sample (using -n command), and then the 

aligned dataset was transformed into the MNI152 standard space (1mm3). The mean aligned 

FA images were merged into a single four-dimensional (4D) average FA image. A mean FA 

skeleton was extracted from the generalized 4D image and the tracts were projected into the 

skeleton, using a 0.2 threshold18. To extract mean, axial, and radial diffusivities (MD, AD, and 

RD, respectively), non-linear warps and skeleton projections were applied to each DTI scalar 

parameter.  

 

Statistical analysis 

 To assess differences in FA, MD, RD, and AD along time, we performed one-sample t-

tests, using the average difference between the two measures across subjects. Initially, it was 

first computed the difference between the subacute minus the early chronic phases, and then 

the early chronic minus the subacute phases. Permutation-based nonparametric inferences were 
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made on unsmoothed statistical maps, using 5000 permutations, and the cluster-like structures 

were enhanced using the threshold-free cluster enhancement (TFCE) algorithm19. This 

approach was similarly also applied to the MD, AD, and RD maps. Data were corrected for 

multiple comparisons, using the family-wise error (FWE) rate, setting the significance level at 

p < 0.05.  

 Thenceforth, the cluster tool (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Cluster) was applied to 

extract the exact clusters, followed by the Atlasquery tool to obtain the coordinates 

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlasquery) according to the Johns Hopkins University 

(JHU) white matter tractography atlas.  

 

Outcome measure 

 We used the GOS-E at 12 months post-injury obtained at the medical appointment follow-

up, which has been recommended as the main outcome measurement in TBI studies7. It consists 

in an eight-scale global measure of function, used to estimate physical disability grading6. It 

classifies patients into upper and lower levels of good recovery (GOS-E = 7,8), moderate 

disability (GOS-E = 5,6), severe disability (GOS-E = 3,4), vegetative state (GOS-E =2) and 

death (GOS-E =1).  

 

Association analysis  

 The WM areas with FA differences along time were defined as ROIs and the mean FA 

values of each one was calculated. Then, to test for association of mean FA values of each ROI 

with GOS-E grading, we used Cohen’s d effect size test. We segmented patients into two 

different groups: sub-optimal (GOS-E= 5 or 6) and optimal (GOS-E = 7 or 8) performance. We 

tested for associations of each ROI at two months and one year after trauma.  

 Taking into account the relatively small patient sample, we also estimated Cohen’s d 

effect size test considering a bigger sample size (4 times our sample, with the same distribution). 

 

RESULTS 

  

 In the initial screening, 225 patients with head trauma were evaluated, and the final 

analysis included twenty patients of those. Demographics of the final sample are described in 

Table 1. Two hundred and five subjects were excluded for the following reasons:  
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- 186 had no clinical and/or tomographic criteria for DAI; 

- 7 follow-up losses; 

- 5 were not eligible for MRI; 

- 5 had low-quality DTI studies; 

- 1 developed epidural compressive hematoma; 

- 1 deceased. 

 

Table 1. Demographics of the 20 patients included in the study. 

 
GCS = Glasgow coma scale, GOS-E = Glasgow outcome scale extended 

 

 Evaluation of changes along time at two months and one year after trauma (chronic minus 

subacute volumes) with voxel based TFCE analysis indicated brain regions with FA increment 

along time, predominantly in the right hemisphere and in the left cerebellum. The significant 

brain clusters (Table 2) were found in the right superior longitudinal fascicle, the temporal part 

of the right superior longitudinal fascicle, right inferior fronto-occipital fascicle, right superior 

and inferior longitudinal fascicles, the body of corpus callosum, forceps major and left 

corticospinal tract (Figure 1). Moreover, we found extensive areas of increases in MD, RD, and 

AD (p < 0.05, FWE corrected) (Figure 2).  
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Table 2. The most significant clusters found in FA analysis. 

 

 
R SLF = right superior longitudinal fascicle, R IFOF = right inferior fronto-occipital fascicle, 

R ILF = right inferior longitudinal fascicle, L CST = left cortical spinal tract  

 

 

 
 

Figure 1. The most significant clusters found with increments in FA (early chronic minus 

subacute phase) are represented in red, TFCE (p < 0.05, FWE corrected). The mean FA skeleton 

is indicated in white. FA, fractional anisotropy. 
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Figure 2. White matter differences between early chronic and subacute phases. Significant 

clusters (p < 0.05, FWE corrected). Blue depicts MD, yellow AD and green RD increases in 

the chronic phase. FWE, family-wise error; MD, mean diffusivity; AD, axial diffusivity; RD, 

radial diffusivity. 

 

 Of note, the one-sample t-test used to assess the difference between subacute minus the 

early chronic volumes did not demonstrate significant differences for any DTI parameter. 

 Correlations between the different FA ROIs and the one-year GOS-E grades were tested 

with different ROIs at 2-months and 1-year post-trauma (Figures 3 and 4). We did not find any 

correlations on either moment. 
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Figure 3. Subgroup analysis 

The forest plot shows the effect size in the outcome variable across the prespecified subgroup 

according to GOS-E outcome stratification (moderate disability vs good recovery).  Association 

analysis between different ROIs at 2 months after trauma with sub-optimal and optimal 1-year 

post-trauma GOS-E scores. Horizontal axis demonstrates differences between the groups of 

recovery according to each cluster. 

Effect sizes values displayed along with respectively confidence interval of 95% and statically 

significance (p) obtained by Cohen’s d test (squares). 

 

 
 

Figure 4. Subgroup analysis  

The forest plot shows the effect size in the outcome variable across the prespecified subgroup 

according to GOS-E outcome stratification (moderate disability vs good recovery).  Association 
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analysis between different ROIs at one year after trauma with sub-optimal and optimal 1-year 

post-trauma GOS-E scores. Horizontal axis demonstrates differences between the groups of 

recovery according to each cluster. 

Effect sizes values displayed along with respectively confidence interval of 95% and statically 

significance (p) obtained by Cohen’s d test. 

 

 In addition, hypothetically increasing 4 times our sample, we found some associations the 

one-year GOS-E and the specific ROIs of FA increase at 2 months and 1 year after trauma 

(Table 3).  

 

Table 3. Correlation analysis supposedly increasing by 4 times the sample size. 

 
 p value obtained by Cohen’s d test.  

 

 

DISCUSSION 

 

   In our investigation, we did a whole-brain analysis using a semi-automated method to 

explore white matter changes over time in moderate and severe TBI victims. DTI has mainly 

been used to study white matter in the trauma scenario. However, most published articles are 

related to mild trauma and with different follow-up periods12,13,20. It is important to emphasize 

that our patient sample is very homogeneous, consisting of victims with moderate and severe 

trauma, explicitly diagnosed and exclusively with DAI, and followed throughout one year after 

the event. 
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 We found some scattered areas of FA increase, notably in the right brain hemisphere, 

accompanied by vast regions in the brain and the cerebellum demonstrating an increase in MD, 

RD, and AD along time. Interestingly, the patients showed relatively good clinical outcomes, 

according to the GOS-E scale. We also found different associations between each brain region 

with increased FA and the late clinical outcome (GOS-E) two months and one year after trauma, 

which were more prominent when tested for a larger sample size. Our results are aligned with 

previous studies that have described white matter changes on DTI parameters along with time 

in victims of head trauma21,22. These ongoing DTI parameters are related to different 

pathophysiological processes such as inflammation, degeneration, and regeneration – which 

have already been described in experimental studies23,24. 

 We identified a general area of increase in MD, AD, and RD in brain tracts one year after 

trauma. We consider that MD increase is mainly a result of high RD values and, in a lower 

degree to AD increment. MD represents the overall diffusivity of water molecules, which can 

be related to the increasing content of isotropic tissue with water content (gliosis)25. Although 

the biological basis for the anisotropy and diffusivity changes in tissues revealed by DTI data 

is still largely debated, studies using animal models have demonstrated that axonal injury itself 

is represented by AD changes and demyelination is associated with an increase in RD values26. 

Considering that increases in both AD and RD contribute positively to augments in MD values, 

it is reasonable to assume MD as a more sensitive parameter when compared to FA in our 

observation.  

 Moreover, in addition to axonal injury, other important and specific pathophysiological 

processes are also present in the trauma scenario, such as neuroinflammation, afferent 

degeneration, and debris clearance, and the magnitude of each one at different stages may imply 

distinct changes in DTI scalar values. Animal models’ studies play an essential role in 

characterizing these other effects ensued by the trauma event and how they change over time. 

However, most of the articles published to date describe the changes seen in the early acute 

time after trauma, and only a limited number of articles evaluate long-term consequences27. It 

is already well established that the overall axonal injury in trauma survivors is a consequence 

of the secondary axonal injury, which is the indirect damage to neurons related to 

neuroinflammation and microglial activation, triggered by the initial impact and that can persist 

for years23. These processes are responsible for biochemical changes leading to local edema 

and changes in the microvascular circulation, leading to ischemia and demyelination, which can 

be illustrated by the RD increase over time28. Moreover, AD increase has been associated with 
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an increment of the extracellular water content, such as debris clearance, that would ease the 

water molecule movement in an axis parallel to the axons29. Thereby, we suppose that our 

results can be explained by the Wallerian or Wallerian-like degeneration process due to DAI or 

related to a secondary pathological process, such as regional ischemia and neuronal death may 

ultimately lead to brain atrophy29. 

 We also found some spotted areas of FA increase in the right brain hemisphere and the 

left cerebellum over time. Different causes can be associated with FA increase, such as local 

fibrosis, hemorrhage areas, and neuronal sprouting30. FA is related to the microstructural 

organization, with high values (close to one) related to most anisotropic tissues. Microstructural 

organization after the trauma has been reported to start as early as days and can persist for years, 

which is linked to neuroplasticity31. The functional recovery accompanied by FA increment 

may be related somehow to neuroplasticity. Interestingly, we found areas of FA increase in the 

right brain hemisphere and in the left cerebellum, which may illustrate the involvement of the 

contralateral cerebellar hemisphere in functional and compensatory changes after trauma, as it 

has been already reported32. An interesting functional study evaluated children with moderate 

and severe trauma in comparison to controls, and it demonstrated that children with TBI 

demonstrated changes in functional cerebral activity and demonstrated increased recruitment 

of neural resources such as the cerebellum33.  

 We tested for correlations between mean FA values at the subacute and early chronic 

phases of the specific regions that presented significant changes overtime and the GOS-E 

scores. We couldn’t find any significant correlations; however, the lack of significance may be 

related to our sample size, relatively small when considering the optimal number of individuals 

required for correlational studies35. Still, some specific regions as the right SLF and the body 

of the corpus callosum demonstrated, at the early chronic phase, promising effect sizes in 

functional stratification between optimal and sub-optimal GOS-E scores and mean FA values 

by using a theoretical larger sample size. 

 Whole-brain voxel-wise analysis has been increasingly used to study DAI since the 

widespread nature of the disorder, as well as the advantages of minimal intervention for multi-

subject group evaluation provided by this analytical method. However, with this technique, it 

is mandatory the use strict statistical procedures for correcting for multiple comparison errors, 

which reduces the sensitivity for detecting subtle changes12.  

 One limitation of our study is the relatively small sample size. However, we included a 

particular and homogeneous group of patients with a minimum one-year survival after the 
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traumatic event, especially considering that victims of moderate and severe head trauma have 

high mortality rates in the first six months34,35. Moreover, we did have a particular group in 

terms of one-year survival, but these patients also presented an excellent recovery with high 

one-year GOS-E scores. This may be related to the exclusion of other conditions commonly 

associated with a head injury, such as contusions and hematomas that can imply a poorer 

outcome2.  

 Concerning the methodology and imaging acquisition, we need to emphasize that more 

gradient encoding directions and more robust DTI acquisition and analytical methods such as 

high angular resolution diffusion imaging (HARDI), diffusion kurtosis imaging (DKI), and q-

ball imaging are available and could have enhanced the power of the data analysis11,36. 

However, these approaches require longer acquisition times, more sophisticated algorithms, 

and are still less feasible to implement in clinical and research scenarios.  

 

CONCLUSION 

 

                In conclusion, our work indicated changes in all DTI scalar metrics in the brain and 

cerebellum white matter in a homogeneous group of DAI victims along the first year following 

moderate and severe head trauma. This study can be important to guide future research in 

understanding the different pathophysiological processes that ensue at different stages during 

patient recovery. Upcoming studies are awaited to indicate DTI as a tool in signaling functional 

outcome, as well as an auspicious method to be used to guide therapies and rehabilitation 

procedures in trauma survivors.      
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Our results showed extensive changes in the brain white matter microstructure in 

patients with moderate and severe DAI throughout the first year after trauma, by using DTI-

based tractography and vowelwise analysis.  

In addition, patients also demonstrated better performance scores in different 

neuropsychological domains over time, which could be correlated with DTI metrics in 

particular brain sites. 
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