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Resumo 

Moretti IF. Exploração da via de sinalização do Receptor do Tipo Toll 4 (TLR4) para o 

tratamento de Glioblastoma [tese]. São Paulo: Faculdade de Medicina, Universidade 

de São Paulo; 2023. 

Glioblastomas (GBM) são astrocitomas grau 4 e apresentam sobrevida média de 15 

meses após o diagnóstico mesmo como tratamento padrão que consiste na ressecção 

cirúrgica, radioterapia e quimioterapia com temozolamida (TMZ). Previamente, nosso 

grupo reportou o aumento da expressão de receptores do tipo Toll (TLR) de membrana 

plasmática em GBMs, especialmente no subtipo mesenquimal (MES), que apresenta 

o pior prognóstico. TLR4 é um receptor do sistema imunológico responsável em 

reconhecer moléculas associadas a patógenos e a dano. Diferentes vias de 

sinalização são descritas para o TLR4 que podem ser pró-sobrevivência ou pró- 

morte. O objetivo principal deste trabalho foi a análise da sinalização do TLR4 em 

células de GBM e explorar possíveis alvos terapêuticos. Inicialmente confirmou-se a 

presença de TLR4 em astrocitomas humanos e nas linhagens celulares de GBM do 

subtipo MES, U87MG e A172. O tratamento com lipossacarídeo (LPS), ativador 

clássico da via TLR4, levou a translocamento para o núcleo tardio do NF-B, um dos 

principais fatores de transcrição da via do TLR4, com aumento da expressão de IL1B 

e genes relacionados ao reparo do DNA. Observou-se ainda aumento da expressão 

de genes associados a vias não canônicas do TLR4, inflamassomo e ripoptossomo, 

que foram validados em análise in silico em banco de dados públicos do Atlas do 

Genoma do Câncer (TCGA). O tratamento combinado com LPS+TMZ aumentou a 

apoptose das células U87MG, no entanto, houve um incremento significativo maior da 

morte celular com o acréscimo de inibidor do reparo do DNA, anti-RAD51 / Amuvatinib, 

em comparação a cada tratamento único. A seguir, o efeito combinado de LPS com 

metformina (MET) foi analisada em U87MG e A172 por RNASeq. MET é um 

medicamento conhecido para tratamento de diabetes e inibi o complexo I da 

fosforilação oxidativa e também pode causar uma resposta anti-inflamatória, incluindo 

diminuição da ativação do NF-B. MET levou à diminuição da viabilidade celular e 

estresse mitocondrial em ambas linhagens. Na U87MG, LPS+MET aumentou a 

expressão de genes pró-apoptóticos e diminuiu de genes pró-sobrevivência e o 

tratamento combinado LPS+MET+TMZ aumentou significativamente a apoptose das 

células tumorais. Já nas células A172, com aumento da expressão de genes anti-



 

 

oxidantes, o nível de apoptose do tratamento combinado foi muito similar ao 

tratamento só com TMZ. No entanto, o tratamento com MET diminui a expressão de 

genes relacionados a segregação cromossômica, o que foi compatível com a parada 

do ciclo celular observado após tratamento MET+TMZ. O aumento da expressão de 

genes de anti-oxidação, especialmente SOD1 foi validado in silico nos dados de TCGA 

no subtipo mitocondrial (MTC), com perfil de expressão similar à linhagem A172. A 

ativação da via TLR4 foi confirmada no subtipo glicolítico/plurimetabólico (GPM), 

compatível com perfil de expressão da linhagem U87MG. Os resultados do presente 

estudo sugerem que os GBM-GPM são elegíveis ao tratamento com MET e a 

associação com inibidores de reparo do DNA poderá incrementar a morte da célula 

tumoral, enquanto os GBM-MTC poderão se beneficiar com tratamento combinado 

com inibidores de anti-oxidantes, como anti-SOD1.  

 

Palavras-chave: Glioblastoma. Metformina.  Receptores de lipopolissacarídeos. 

Pontos de checagem do ciclo celular. Apoptose. NF-kappa B. Receptor 4 toll-like. 

  



 

 

Abstract 

Moretti IF. Exploitation of Toll like rector 4 (TLR4) signaling pathway for Glioblastoma 

treatment [thesis]. São Paulo: “Faculdade de Medicina, Universidade São Paulo”; 2023 

 

Glioblastomas are grade 4 astrocytomas, presenting a medium overall survival of 15 

months with standard treatment which consists in tumor resection, radiotherapy and 

chemotherapy with temozolomide (TMZ). Previously, our group showed upregulation 

of plasmatic membrane Toll-like receptors (TLRs) in human astrocytoma samples, 

particularly in GBM of mesenchymal (MES) subtype, presenting the poorest outcome. 

TLR4 is an important immune receptor, responsible to recognize molecules associated 

to pathogens and cellular damage. TLR4 stimulation may activate different pathways 

leading either to cell survival or cell death. The general aim of the present study was 

to analyze TLR4 signaling pathways in GBM cells and explore possible druggable 

targets. First, we confirmed TLR4 presence in human astrocytoma samples, and GBM 

cell lines of MES subtype, U87MG and A172. The lipopolysaccharide (LPS) treatment, 

TLR4 classical activator, led to late nuclear translocation of NF-B, one of the main 

transcription factor downstream of TLR4 activation, with upregulation of IL1B and gene 

related to DNA repair. Genes associated to non-canonical TLR4 pathway, as 

ripoptosome and inflammasome, were also upregulated, which were validated in silico 

analysis of the public The Cancer Genome Atlas (TCGA) GBM RNASeq database. 

The combined LPS+TMZ treatment increased apoptotic rate of U87MG cells, however, 

a further increment was observed with the addition of the DNA repair inhibitor, anti-

RAD51 / Amuvatinib, compared to each treatment alone. Next, the effect of the 

combined therapy with LPS and metformin (MET) was analyzed in U87MG and A172 

by RNASeq. MET is a known medication for diabetes and inhibits complex I of oxidative 

phosphorylation, and also may cause an anti-inflammatory response, including NF-B 

activation. MET led to a decrease of tumor cell viability and mitochondrial stress in both 

lineages. In U87MG, LPS+MET upregulated pro-apoptotic gene expressions and 

downregulated pro-survival gene expressions and the combined treatment 

LPS+MET+TMZ increased significantly the apoptosis of tumor cells. In contrast, in 

A172, with upregulation of anti-oxidative genes, the apoptotic rate of the combined 

treatment was similar to TMZ alone. However, MET treatment decreased the 

expression of genes related to chromosome segregation, which was compatible to 

observed cell cycle arrest after MET+TMZ treatment. Upregulation of anti-oxidative 



 

 

genes, mainly SOD1, was validated in silico in the TCGA dataset in the mitochondrial 

(MTC) GBM subtype, with similar expression profile detected in A172. TLR4 activation 

was confirmed in the glycolytic/plurimetabolic (GPM) GBM subtype, compatible with 

the expression profile observed in U87MG. Therefore, the results of the present study 

suggested that GBM-GPM are eligible for MET treatment and an association with DNA 

repair inhibitors may increment tumoral cell death, while GBM-MTC may benefit from 

combined treatment with anti-oxidative inhibitors as anti-SOD1. 

 

Keywords: Glioblastoma. Metformina.  Lipopolysaccharide receptors. Cell cycle 

checkpoints. Apoptosis.  NF-kappa B. Toll-like receptor 4.  

  



 

 

Summary 

 

1 Introduction – TLR4 and GBM……………..……………………………………… 12 

1.1 Toll-like Receptor 4……………………………………..……………………............ 13 

1.2 Glioblastoma………………………………………………………………….......….. 15 

1.3 TLR4 and GBM…………………………………...……………………………...…... 17 

2 Aims……………………………………………………………………….…………... 18 

3 Experimental design and the studies………………………………….………... 18 

4 Publication 1 - Late p65 nuclear translocation in glioblastoma cells indicates 

non-canonical TLR4 signaling and activation of DNA repair genes……………... 19 

5 Publication 2 - GBM Cells Exhibit Susceptibility to Metformin Treatment 

According to TLR4 Pathway Activation and Metabolic and Antioxidant Status... 37 

6 Discussion – TLR4 and Glioblastoma – final remarks…………………...……… 63 

7 Conclusion…………………………………………………………………………… 68 

8 References for introduction and discussion…..……………………….……… 69 

9 Anexos…….……………………………………………………………...…………... 75 

 

 

 

 

 

 

 

  

 



12 

 

Introduction 
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1 Introduction 

 

Toll like receptor 4 (TLR4) is classically described as present in immune system 

cells, and it binds to molecules commonly present in pathogens or to endogenous 

molecules derived from cellular damage. Initially, TLR4 activation leads to a pro-

inflammatory response through the production of interleukin-6 (IL-6), interleukin-1β (IL-

1β), interleukin-8 (IL-8) cytokines and tumor necrosis factor (TNF), which assures cell 

survival and promotes cell proliferation. TLR4 can also activate an anti-inflammatory 

signal increasing interleukin-10 (IL-10) expression or by interferon type I signaling 

pathway (1). Moreover, TLR4 activation can promote cellular death (2). 

In the tumor context, phenotypically anti- and/or pro-inflammatory cells infiltrate 

the tumor configuring a complex microenvironment (3, 4). Besides, tumor cells may 

“re-educate” immune cells to a pro-tumoral phenotype to promote tumor growth and 

proliferation (4). Additionally, TLR4 has been detected not only in inflammatory cells, 

but also in tumor cells (5, 6, 7, 8). Therefore, the present work was designed to address 

the question how the activation of TLR4 in GBM cells impact in tumor progression. 

 

1.1    Toll like receptor 4 

 

TLR4, among receptors, is the first molecule in the innate immunity capable of 

recognizing cell stress or pathogens invasion. Ten TLRs are described in humans, 

TLR1-10, and are structurally similar 

The basic structure of these receptors comprises a recognition domain in the 

amino- terminal portion, presenting leucin repetitions; followed by a transmembrane 

helix, and a cytoplasmic domain, denominated Toll-interleukin receptor (TIR) in the 

carboxy-terminal portion (9, 10, 11). 

Each TLR presents specific roles and characteristics for recognition, as TLR 1, 

2, 4, 5, and 6, located in plasmatic membrane, bind to bacterial and fungal structures, 

while TLR 3, 7, 8, and 9, located in endosomes, recognize bacterial and viral molecules 

(9, 10, 12). 

Pathogens molecules recognized by these receptors are nominated as 

Pathogens Associated Molecular Patterns (PAMPs), and endogenous molecules from 

damage or necrotic cells and tissues are designated as Danger Associated Molecular 

Patterns (DAMPs). Several molecules are classified as DAMPS, such as, high mobility 
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protein B1 (HMGB1) (13); hyaluronic acid (9); uric acid, heat chock proteins, surfactant 

protein A and extracellular matrix products like fibronectin, heparan sulfate, and 

fibrinogen (10, 14). DAMPs are recognized by TLR2 and TLR4, and they play an 

immunogenic role repairing the damaged area (15). The signaling pathway activated by 

DAMPs and PAMPs are similar, differing only for the co-receptors associated to the 

recognition (16). 

Interestingly, TLR4 has the ability to activate two distinct pathways, via Myeloid 

Differentiation primary response gene 88 (MyD88) and TIR-domain-containing 

adapter-inducing interferon-β (TRIF). After MyD88 activation, transcription factor 

Nuclear kappa B (NF-B) and the family Mitogen Activated Protein Kinases (MAPKs) 

are activated.  

The NF-B is an important transcription factor in TLR4 pathway. The NF-B 

family consists of five subunits. Structurally, NF-B family present a transactivation 

domain responsible for gene transcription. The five subunits can form homo and 

heterodimers, and are named RelA, also known as p65; RelB, c-Rel, p50 and p52(17). 

TLRs are known to activate the NF-B canonical pathway. Briefly, in the canonical 

pathway, the signal starts after NF-B p50/p65 is released from the inhibitor kappa B 

(IKB), and subsequently phosphorylated by IKB kinase complex (IKK), the IKB is 

ubiquitinated and degraded (18). The subunit p65 plays the major role and it forms 

heterodimer with p50 and c-Rel, being part of the canonical pathway (19). In this 

pathway, the NF-B induces a pro-inflammatory phenotype by expressing IL-6, TNF, 

IL-1β and IL-8, chemokines, adhesion molecules, acute phase proteins, and co-

stimulation molecules (20, 21). This signaling pathway is related to cell proliferation, 

with activation of proliferation factors as cyclin D1 (22), c-JUN (6, 23) and c-myc (24). 

In addition, cell proliferation can be also increased indirectly by IL-6 and IL-8 secretion 

(25, 26). This pro-survival signaling is essential for immune cells to fulfill their protective 

role (10, 27). For IL-1β maturation is necessary the inflammasome complex, composed 

by NLRP3 (NLR Family Pyrin Domain Containing 3), CASP1 (Caspase 1) and 

PYCARD (PYD And CARD Domain Containing). The Inflammasome is an important 

process that activates the innate immune response, adaptative response and also lead 

to a type of cell death, named pyroptosis (28). 
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The non-canonical pathway of TLR4 involves the TLR4 endocytosis under 

phosphoinositide 3-kinase (PI3K) modulation. Once inside the endosome, TLR4 

signals by TRIF (29). TRIF activation leads to an anti-inflammatory response, resulting 

in the activation of the transcription factors interferon-3 and 7 (IRF3/7). IRF3/7 induces 

the expression of interferon type I cytokines (IFN-α and IFN-β) and IL-10 (9, 10, 30, 31). 

TRIF pathway is responsible to end the inflammatory process. Furthermore, TRIF 

orchestrates a death signaling pathway by interaction with RIPK1 (Receptor interacting 

protein kinase 1), RIPK3 (Receptor interacting protein kinase 3), and FADD (Fas 

Adaptor Death Domain). This complex activates CASP8 (caspase 8), starting the 

apoptotic cell signaling (32). CASP8 inhibition may result in a necroptosis response 

(33). 

 
Figure 1 Schematic of TLR4 signaling. After activation of TLR4 the canonical signaling pathway 

activates NF-B, that translocates to the nucleus and starts the transcription of cell proliferation genes, 
and inflammatory cytokines. TLR4 activates the inflammasome complex to produce the functional IL-
1β. TLR4 endocytosis is another pathway signaling for Interferon type I response. Further, TLR4 
activates the ripoptosome complex leading to either necroptosis with the inhibition of CASP8 or 
apoptosis in its presence.  

 

1.2     Glioblastoma 

 

The present work will analyze TLR4 role in Glioblastoma (GBM) cells. GBM is 

classified as astrocytoma grade 4 according to the World Health Organization (WHO), 

with overall survival of 15 months with current standard of care which includes surgical 

tumor resection, radiotherapy, and chemotherapy with temozolomide (TMZ) (34, 35). 
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GBM is a very heterogenous tumor, with high proliferative cells rate, nuclear atypia, 

neovascularization, and necrosis. GBM is restrict to the central nervous system, and 

is highly invasive to the surrounding normal brain tissue (36, 37). 

The de novo GBM corresponds to primary GBM, whereas secondary GBM 

evolves from a lower grade astrocytoma (38). GBM was one of the first solid tumor 

analyzed by high throughput sequencing which determined different molecular 

subtypes based on mutational status with impact on patient’s overall survival. The 

proneural (PN) subtype presents a molecular pattern related to progenitor or neural 

stem cells and correlated with better overall survival. The PN subtype harbour 

mutations in PDGFRA (platelet derived growth factor receptor alpha), TP53 (tumor 

protein p53) and IDH1 (isocitrate dehydrogenase 1) genes. The classical subtype (CS) 

presents proliferative markers, mostly EGFR (epidermal growth factor receptor) 

amplification, but also deletion in chromosome 10 and amplification in chromosome 7. 

The mesenchymal (MES) subtype is associated to mesenchymal markers, as MET, 

NF1 (neurofibromin 1) mutations, and presents the worst prognosis (39, 40, 41). WHO 

added IDH1 mutation status for classification purposes and the majority of secondary 

GBMs presents IDH1 mutation and characteristics of PN subtype (42). GBM with IDH1 

mutation will be designated as grade 4 astrocytoma with IDH1 mutation, according the 

most recent WHO classification (43). 

Several high throughput analyses were performed to try to identify expression 

signatures and correlation to overall survival. In the present work the classification 

proposed in Garofano et al´s study, 2021 (44) was applied to analyze the impact of our 

results based in a metabolic stratification of GBM. Four pathways based on metabolic 

and development molecular signatures were identified in GBM by the authors. Two 

subtypes were based in metabolic phenotypes, one presenting complex I of the 

mitochondrial oxidative phosphorylation system (OXPHOS) upregulated genes, 

named as Mitochondrial (MTC), and the other with upregulation of glycolytic pathway 

targets, named as glycolytic/plurimetabolic. The two other subtypes were classified 

according to developmental markers, one being neuronal (NEU), presenting 

upregulation of genes responsible for axogenesis and synaptic transmission, and the 

other denominated as proliferative/progenitor subtype (PPR), with markers of 

progenitor neural cells, and upregulation of genes related with cell cycle progression 

and DNA repair (44). 
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1.3 TLR4 and GBM 

 

Several roles have been described for TLR4 in tumor cells, as cell survival and 

proliferation (7, 45, 46, 47, 48, 49, 50), migration (49, 51), and a pro-inflammatory phenotype 

(50, 52, 53, 54, 55). In glioma animal models (52, 56, 57), TLR4 activation by LPS, a 

known agonist for TLR4, resulted in tumor remission, where the anti-tumor response 

was attributed to the infiltration of inflammatory cells (45).  

TLR4 role was also evaluated in glioma stem cells (GSCs). TLR4 upregulation 

was reported in differentiating glioma stem cells (GSCs) and its blockage led to 

decreased number and viability of differentiate cells. The transcription factor, NF-B, 

was associated to TLR4 activation in differentiating GSCs cells. A positive loop of 

autocrine signaling through secreted hyaluronic acid, a DAMP TLR4-agonist, was 

described to increment this pathway (58). However, newly differentiated GBM cells 

showed no effect in their viability, when treated with LPS and TMZ ( 5 9 ) . Moreover, 

non-differentiated GSCs with downregulated TLR4, presented self-renewal and 

survival by avoiding the activation of inflammatory pathways (60). In animal models, 

microglia secretion of IL-6 via TLR4, increased glioma growth through IL-6 intake by 

GSCs cells (61). 

Previously, we also evaluated the expression of plasmatic membrane TLRs in 

human astrocytoma samples and observed higher TLRs expression in the tumor 

samples compared to non-tumor samples. Interestingly, TLRs expressions were 

upregulated in MES-GBM subtype. Our findings confirmed the TLRs presence in tumor 

cells (8), that motivated our interest to better understand their role in the tumor context. 

We focused our studies in TLR4 because it was highly upregulated in tumor samples, 

and presented a particular cell compartment distribution, including a nuclear 

localization.  
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2 Aims 

 

We aimed to evaluate the TLR4 role in GBM cells in search for druggable 

targets in the TLR4 signaling pathways. 

 

3 Experimental design and the studies 

 

We designed the present work with in vitro experiments in GBM cell lines to 

address the TLR4 signaling pathways activated by LPS, and the effects on these 

pathways with combined treatment with metformin (MET) and TMZ. The corresponding 

results were presented in publication 1 and publication 2, respectively.  
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4 Publication 1 - Late p65 nuclear translocation in glioblastoma cells 

indicates non-canonical TLR4 signaling and activation of DNA repair 

genes 

 

In publication 1, we evaluated the role of TLR4 in GBM, aiming to analyze: 

a) TLR4 expression in human astrocytoma cases 

b)  TLR4 gene and protein expression in U87MG-GBM cell line 

b) U87MG cells behavior after stimulus with LPS in U87MG cells 

c) involved signaling pathways in U87MG cells after LPS stimulus by Next Generation 

Sequencing-RNASeq (NGS-RNA-seq) 

d) effect of combined treatment with LPS + TMZ and LPS + inhibitor of DNA repair + 

TMZ in U87MG cells. 

e) the identified signaling pathways in silico in the Cancer Genome Atlas (TCGA)-GBM-

RNASeq dataset 

This study was published in the Scientific Reports (62), where methodology, 

results and discussion were detailed. In brief, we observed, unexpectedly, a late NF-B 

translocation to nucleus after 12hs of LPS stimulation, in contrast to a translocation 

within 100min after canonical activation of TLR4 previously described in immune cells. 

An increased expression of IL1B was observed after this time interval, and, 

interestingly, DNA repair genes expressions were concomitantly increased, and TLR4 

was detected in nuclei of U87MG cells. A TLR4-non-canonical pathway activation was 

observed after LPS stimulation by the transcriptomic analysis, with upregulation of 

ripoptosome and inflammasome components. The combined treatment with LPS and 

TMZ led to an increased apoptotic rate in comparison to TMZ alone, and the addition 

of a DNA repair inhibitor, Amuvatinib, RAD51 inhibitor, further reduced tumor cell 

viability more than with each treatment alone. These results suggested that for GBM 

cases presenting stimulation of TLR4, a combinatory treatment with pharmacological 

inhibition of the DNA repair pathway may be complementary treatment to the current 

standard of care. The publication 1 (PMID: 33446690) is presented below. 
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Publication 1 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Late p65 nuclear translocation in glioblastoma cells 

indicates non-canonical TLR4 signaling and activation of 
DNA repair genes 
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5 Publication 2 - GBM Cells Exhibit Susceptibility to Metformin Treatment 

According to TLR4 Pathway Activation and Metabolic and Antioxidant 

Status 

 

In Publication 2, we aimed to analyze the effect of LPS combined to metformin 

in two GBM cell lines, U87MG and A172.Metformin (MET), a known medication for 

diabetic patients, sensitizes insulin receptor, increases mitochondrial ROS by 

inhibition of complex I of oxidative phosphorylation, decreases ATP level, and 

activates AMPK (adenosine monophosphate (AMP)-activated protein kinase). AMPK 

activation, in turn, inhibits NF-B pathway, leading to anti-tumor response by 

decreasing pro- inflammatory cytokines. We analyzed the impact of MET in GBM cells 

in TLR4 activated condition by RNA-Seq. This study was published in Cancers (63), 

where methodology, results and discussion were detailed. In brief, the transcriptomic 

analysis in the designed experimental conditions revealed different gene expression 

signature in U87MG and A172 cells in response to LPS+MET. U87MG cells were more 

prone to oxidative stress, mitochondrial damage and cell death than A172. On the other 

hand, A172 exhibited minor change after LPS, however, MET treatment 

downregulated a set of genes related to cell cycle, corroborating the cell cycle arrest 

observed after MET+TMZ combined treatment. Moreover, A172 cells presented an 

upregulation of antioxidant genes, explaining the low apoptotic rate presented by these 

cells after MET+TMZ treatment. According to Garofanos´s proposed GBM stratification 

U87MG cell line presented a glycolytic/multimetabolic subtype profile, while A172 

presented a mitochondrial subtype profile (44). Interestingly, the in silico analysis of 

the TCGA-GBM-RNASeq dataset showed upregulation of antioxidant genes in the 

MTC subtype and activation of the TLR4 pathway in GPM subtype, suggesting that 

GPM-GBM subtype will be eligible for MET treatment, but MTC-GBM subtype will 

require a combinatory treatment with an anti-oxidant inhibitor to get anti-tumor effect. 

The publication 2 (PMID: 36765551) is presented next. 
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Publication 2 
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Discussion 
 
 
 
 
 
 
 
 
 
 
 
 

TLR4 and Glioblastoma - final remarks 
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6 Discussion- TLR4 and Glioblastoma – final remarks 

 

In the present work, we analyzed the signaling pathways involved in TLR4 

activation in GBM, based on in vitro experiments with GBM cell lines with 

transcriptomic approach and in silico validation in the TCGA GBM RNASeq dataset. 

First, in the publication 1 we confirmed the TLR4 expression in human astrocytoma 

samples and in human GBM derived cell lines. The Mesenchymal (MES) GBM 

subtype exhibited the highest TLR4 expression, and also upregulation of important 

TLR4 downstream signaling targets. The TLR4 agonist, LPS, was used to track the 

involved signaling pathways in MES-GBM cell line, U87MG. TLR4-agonists have 

been tested in several clinical trials and have proved to improve the outcome in 

several types of cancers. These trials aimed to activate inflammatory responses (64) 

by enhancing the recruitment of lymphocytes (65) or increasing antigen presentation 

by concomitant intratumoral injection of immature dendritic cells (66). Moreover, the 

safety of immune checkpoint blockage together with TLR4-agonists was confirmed 

in phase I clinical trials, and lymphoma patients with upregulated TLR4 presenting 

better outcome in phase II clinical trial (67). 

The demonstration of TLR4 in GBM tumor cells pointed this receptor as a 

potential therapeutic target in GBM. As TLR4 recognizes self-molecules, as 

damage associated molecules and promotes pro-inflammatory response (68), it 

may be triggered by GBM necrotic cell debris (34) to activate immune response. 

The GBM tumor microenvironment is immunosuppressed (7), devoid from 

lymphocytes (69), and the major immune population of macrophages derived from 

monocytes and microglia present immunosuppressed and pro-tumor survival 

profiles (70, 71). Macrophages co-cultured with GBM cells exhibited 

downregulation of TLR4 (72). Thus, a therapeutic strategy to activate TLR4 in 

GBM is justified in this context. However, in parallel to a pro-inflammatory response 

with upregulation of IL1B, we observed upregulation of pro-proliferative gene 

expressions, such as SRF and JUN, and also of DNA repair related genes after LPS 

stimulation of U87MG cells. In fact, a correlation of TLR4 with DNA repair genes has 

also been observed in kidney clear cell carcinoma, melanoma, and stomach 

adenocarcinoma (73). Upregulation of DNA repair pathway may contribute to TMZ 

therapy resistance (12). Regulation of TLR4 by miR-23b-5p was described in GBM, 
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where TMZ resistant cells presented downregulation of this miR, and its 

overexpression increased tumoral cell death (13). TLR4 was also associated to 

radiation resistance through upregulation of DNA repair, by a mechanism involving 

activation of MYD88 and NF-B (16). Among the upregulated DNA repair genes 

detected in this study, RAD51 is the central enzyme for homologous recombination 

of double strand break repair (74) and there was a commercial pharmacological 

compound, Amuvatinib (18), that has already been tested in clinical trials, including 

a phase I trial in GBM (18-21). Although, the compound was well tolerated, in the 

phase II clinical trial including small cell lung carcinoma the pre-established endpoint 

was not complied (20). Amuvatinib has also downregulated activation of c-MET 

receptor tyrosine kinase. The protein c-MET is associated with cell survival and 

proliferation (75). In vitro study with glioma cells, a specific antibody blocking RAD51 

caused DNA damage accumulation and cell death (76). In our study, U87MG cells 

stimulated with LPS, RAD51 inhibition with Amuvatinib, led to significant decrease in 

tumor cell viability at the rate of TMZ treated cells. FEN1 was another upregulated 

DNA repair gene after LPS treatment of U87MG cells, that was correlated with 

RAD51 expression. Similarly, FEN1 upregulation was observed in TMZ resistant 

cells, and in glioma patients associated with poor overall survival (12). 

Pharmacological inhibition of FEN1 increased double strand breaks leading to 

genome instability and cell death (12), reverted TMZ resistance, and downregulated 

RAD51 in glioma mouse model. Therefore, FEN1 inhibition may be another option 

for combined therapy in GBM, Nevertheless, specificity of these compounds for 

inhibition of tumor cells-only still needs to be proven to avoid undesired effect on 

DNA repair essential for the survival of normal cells (17). 

Interestingly, in U87MG cells, TLR4 activation led to apoptosis, but TLR4 

inhibition also led to cell cycle arrest, cell death and decreased migration (77). 

Therefore, the comprehension of the involved pathways in TLR4 activation and 

inhibition will help to refine the options for combinatory therapy in GBM. Curcumin 

was reported as owing pharmacological effect to downregulate TLR4 and its 

downstream cascade targets as p65, IL-1β and IL-6 (50), decreasing U87MG cell 

viability. TAK-242, a more specific inhibitor of TLR4, decreased migration and 

invasion of ovarian and breast cancer cells (78). Metformin (MET) decreased LPS 

response and NF-B activation in immune cells (27). Repurposing MET for GBM 
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treatment is compelling, as MET is a well-known medication for diabetes, well 

tolerated already tested for long-term usage. 

Therefore, as the next step of the study we analyzed the role of MET 

associated with LPS treatment in GBM cells. Two different GBM cell lines, U87MG 

and A172, were used to this end, for both being MES-subtype but with distinct 

metabolic profile, according to Garofano´s recent report (44). U87MG cells presented 

glycolytic / plurimetabolic (GPM) phenotype and A172 presented upregulation of 

complex I of oxidative phosphorylation related genes, being classified with 

mitochondrial (MTC) phenotype. Transcriptomic analysis of both cell lineages treated 

for LPS, MET and LPS+MET showed upregulation of ER stress genes. Additionally, 

differences in the antioxidant status was identified. A172 cells presenting an 

upregulation of anti-oxidative genes, as SOD1, peroxiredoxins, and TRX, were less 

prone to mitochondrial oxidative stress that hindered an increment of apoptosis after 

LPS+MET treatment. Instead of apoptosis, A172 cells presented downregulation of 

chromosome segregation related genes, and cell cycle arrest in G2/M phase after 

MET+TMZ treatment. U87MG cells with GPM profile presented increased cell death, 

through reduced BCL-2, a cell survival gene, suggesting an increment of autophagic 

apoptosis after LPS+MET+TMZ treatment. Schematic main findings of these 

combined treatments of U87MG and A172 cells are presented in figure 1.  

The validation of the transcriptomic findings was performed in silico in GBM 

RNASeq dataset of the TCGA. In this dataset, GPM-GBM subtype showed TLR4 

activation with downstream pathway genes, presenting eligibility characteristcs for 

MET treatment. However, such cases also presented upregulation of IL8, a pro-

angiogenic factor, suggesting that a combination treatment for MET and IL-8 

inhibition may be more effective. Upregulation of anti-oxidative genes was validated 

in MTC-GBM subtype at the TCGA-GBM RNASeq dataset,and for those cases an 
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inhibition of antioxidant factors, specially SOD1 inhibitor, may be indicated. 

Figure 1. Graphical abstract. U87MG and A172 cells, two GBM cell lines, exhibited different 
responses after Metformin (MET) and Lipopolysaccharide (LPS) treatment. U87MG cells exhibited 
upregulation of SOD2, while A172 presented upregulation of SOD1, peroxiredoxins, and thioredoxin 
genes. U87MG presented activation of the TLR4 pathway, leading to upregulation of CXCL8 and IL1B 
after LPS stimulation, whereas A172 showed no response to LPS. In both cell lines, MET treatment 
blunted mitochondrial respiration and increased mitochondrial superoxide production, leading to 
upregulation of genes related to ER stress. U87MG exhibited upregulation of pro-apoptotic genes and 
downregulation of anti-apoptotic genes, resulting in increased apoptosis after MET+LPS+TMZ 
combination treatment. A172 exhibited downregulation of cell cycle genes, leading to cell cycle arrest 
after MET treatment. The graphical abstract was produced using BioRender.com. 

 

Enthusiasm for MET in cancer therapies is increasing. New studies since the 

publication 2 were released and will be discussed next. Two studies, one in breast 

cancer cells and another in colon cancer cells, observed improvement of outcome 

with MET combined therapy with other drugs. MET was responsible to increase 

oxidative stress, cell cycle arrest and cell death (79, 80). Oxidative stress due to MET 

induced DNA damage and cell death (80). In colorectal cancer cells, a 

phosphoproteomic approach identified alterations in cell cycle regulation proteins 

with cell cycle arrest in MET treated cells after 24hrs. The combined therapy with 

MET and inhibitor of BCL-2 or BCL-XL improved the anti-survival effect of MET (81). 

These findings were convergent with our study presented in publication 2, and 

highlight the multiomics approach to refine the search for potential targets to improve 

MET therapy. 

Additionally, CAR-T cell was prepared in a hydrogel scaffold containing MET, 
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and injected in a gastric cancer animal model. The CAR-T cells were more 

proliferative with better metabolic fitness than tumor cells, and no tumor growth was 

observed in the animals after 60 days (32). 

 

7 Conclusion 

 

In conclusion, TLR4 proved to be an interesting therapeutic target in GBM. As 

GBM is a very heterogeneous tumor, the combination therapy needs to be featured 

according to characteristics of each subtype described so far. Taking into account 

the molecular mesenchymal (MES) subtype, and the metabolic phenotypes: 

glycolytic / plurimetabolic (GPM) and mitochondrial (MTC) metabolic phenotype, the 

MES-GPM-GBM presented upregulation of TLR4 pathway with eligibility for 

metformin treatment, while the MES-MTC-GBM presented gene expression profile 

prone to anti-oxidative inhibitor therapy, as anti-SOD1. Combinatory therapy with 

anti-DNA repair, as anti-RDA51, and anti-angiogenic factor, as anti-IL8 may be 

beneficial for MES-GPM-GBM. 
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