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Resumo

Reis SB. Associacdo de terapia robdtica e estimulacdo cerebral n&o-invasiva na
reabilitacdo do membro superior pds-acidente vascular cerebral: revisdo sistematica e
metanalise de ensaios clinicos randomizados [dissertacdo]. S&o Paulo: Faculdade de

Medicina, Universidade de Sdo Paulo; 2020.

Introducdo. A terapia robdtica e a estimulacdo cerebral ndo invasiva sdo estratégias
promissoras para a reabilitacdo pds-acidente vascular cerebral. Objetivo. Esta revisdo
sistematica e meta-analise objetiva avaliar a evidéncia da estimulacdo cerebral ndo invasiva
associada a terapia robdtica na melhora dos desfechos de estrutura/ funcdo corporal e
atividade do membro superior em sujeitos que sofreram acidente vascular cerebral.
Método. Este estudo foi realizado de acordo com o protocolo PRISMA e previamente
registrado na Plataforma PROSPERO (CRD42017054563). Sete bases de dados e literatura
cinzenta foram sistematicamente consultadas por dois revisores, e 1176 registros foram
acessados. Qito ensaios clinicos randomizados com desfechos de estrutura/ funcéo corporal
e atividade do membro superior foram incluidos. A analise de subgrupos foi realizada de
acordo com a fase pds-acidente vascular cerebral; caracteristicas do dispositivo robético
(i.e. suporte para o braco, articulagcbes envolvidas, treino unimanual ou bimanual);
paradigma da estimulacdo cerebral ndo invasiva; momento da estimulacdo cerebral e
guantidade de sessdes. O Software Grade-Pro foi utilizado para acessar a qualidade da
evidéncia. Resultados. Um tamanho de efeito homogéneo néo significativo foi encontrado
tanto para o desfecho de estrutura e funcdo corporal (diferenca média 0.15, 95% CI -3.10 to
3.40; P = 0.93, 12 = 0%) quanto para o desfecho de limitagdo da atividade (diferenca média
padronizada 0.03, 95% CI -0.28 to 0.33; P = 0.87, 12 = 0%). Conclus&o. De acordo com esta

revisdo sisteméatica e meta-analise, ndo ha evidéncias de que a estimulagcdo cerebral ndo



invasiva associada a terapia robotica melhore o desempenho motor e a atividade do

membro superior em sujeitos que sofreram acidente vascular cerebral.

Descritores: Acidente vascular cerebral; Robdtica; Extremidade superior; Estimulacdo

transcraniana por corrente continua; Estimulacdo magnética transcraniana; Metanalise.



Abstract

Reis SB. Effects of robotic therapy associated with non-invasive brain stimulation on upper
limb rehabilitation after stroke: systematic review and meta-analysis of randomized clinical
trials [dissertation]. Sdo Paulo: “Faculdade de Medicina, Universidade de S&o Paulo”;

2020.

Background. Robot-assisted therapy and non-invasive brain stimulation (NIBS) are
promising strategies for stroke rehabilitation. Objective. This systematic review and meta-
analysis aim to evaluate the evidence of NIBS as an add-on intervention to robotic therapy
in order to improve outcomes of upper limb motor impairment or activity in subjects with
stroke. Methods. This study was performed according to the PRISMA Protocol and was
previously registered on the PROSPERO Platform (CRD42017054563). Seven databases
and grey literature were systematically searched by two reviewers, and 1176 registers were
accessed. Eight randomized clinical trials with outcome measures of upper limb body
structure/ function or activity limitation were included. Subgroup analyses were performed
according to: phase post-stroke; device characteristics (i.e. arm support, joints involved,
unimanual or bimanual training); NIBS paradigm; timing of stimulation and number of
sessions. The Grade-Pro Software was used to assess quality of the evidence. Results. A
nonsignificant homogeneous summary effect size was found both for body structure
function domain (mean difference 0.15, 95% CI -3.10 to 3.40; P = 0.93, 12 = 0%) and
activity limitation domain (standard mean difference 0.03, 95% CI -0.28 to 0.33; P = 0.87,
12 = 0%). Conclusions. According to this systematic review and meta-analysis, there is a
lack of evidence that NIBS, as an add-on intervention to RT, improves outcomes of upper

limb motor impairments or activity in subjects with stroke.



Descriptors: Stroke; Robotics; Upper extremity; Transcranial direct current stimulation;

Transcranial magnetic stimulation; Meta-analysis.



1. INTRODUCTION




According to the definition of the World Health Organization, stroke is as clinical
syndrome that consists of rapidly developing clinical signs of focal (or global in case of
coma) disturbance of cerebral function persisting more than 24 hours or bringing on death
with no other apparent cause than a vascular agent(1). The mean global lifetime risk of
stroke increased from 22.8% in 1990 to 24.9% in 2016(2).

Stroke can be ischemic or haemorrhagic and lead to unilateral or bilateral
motor/sensory impairments, aphasia, hemianopia, apraxia, ataxia, neglect and other
neurologic deficits(3) Recovery is often incomplete and neurologic impairments are
associated with restrictions in functional abilities and in participation in activities of daily
living, work and leisure.

According to the approach of the International Classification of Functioning,
Disability, and Health [ICF], functionality includes interaction of positive aspects among
three different domains: body functions and structures; activity and participation;
environmental and personal factors(4). All of these domains may be affected by stroke. In
2013, stroke was considered the third major cause of long-term disability, preceded only by
ischemic heart disease and lower respiratory tract infections(5). In underdeveloped
countries, where two-thirds of all strokes occur, DALY's (disability-adjusted life-years) lost
are almost seven times greater than in developed countries(6-8). In Brazil, up to 61.5% of
stroke survivors become dependent for performance of activities of daily living(9) and up
to 70% of patients in working age do not return to work(10, 11).

Disability may impact quality of life, mental health and also pose significant
economic burden. In the United States, the direct and indirect costs related to stroke in 2007
were estimated at US $ 40.9 billion. A total of US $ 25.2 billion were directed toward direct

medical expenses such as hospital admission, outpatient care and home care(12).



Motor impairment after stroke typically affects about 80% of patients(13) and
involves the upper limbs in more than 73% of them(14). Only 38% of individuals who
present flaccid arm plegia after stroke recover dexterity to some extent, and only 11%
achieve full functional recovery(14). Upper limb function is directly related to the
satisfactory performance of self-care activities, leisure and labor(15). Upper limb function
also impacts mental health(16) and perception of quality of life(17). In developed countries,
even six months after lesion onset, two-thirds of survivors are unable to perform daily life
activities using the paretic hand(18, 19). Upper limb function is directly related to the
satisfactory performance of self-care activities, leisure and labor(15).

Outlining an individual treatment plan for improvement of upper limb function
requires that the health professional understands goals of the patient and caregiver
regarding impairments, activity limitation and level of participation(20). The identification
of more effective interventions to enhance arm and hand function is a priority of
neurorehabilitation research, reflected by an increasing number of randomized clinical
trials(21). In systematic reviews, several techniques for upper limb rehabilitation have been
identified, ranging from bilateral arm training to robotic therapy [RT](21).

In this context, RT is evolving rapidly(22). Robotic devices can move passive limbs,
provide resistance or assistance to movement(23) of a single joint(24), or control of
intersegmental coordination(25). Robotic devices may deliver or increase repetitive task
training or task-specific training. RT may support motor learning, enhance motor control
and strength.

A systematic review concluded that there is strong evidence for interventions favouring
intensive high repetitive task-oriented and task-specific training in all phases
poststroke(26). Intensity of practice and task-specific training are key elements of

successful RT(26, 27). A Cochrane overview that synthetized systematic reviews concluded



that there is moderate-quality evidence of a beneficial effect of RT compared with any
comparison intervention (other rehabilitation, placebo or no treatment) on measures of
impairment (16 trials, 586 participants) and activities of daily living (13 trials, 552
participants)(21).

Different robotic devices are available for clinical practice and five have been more
often used in clinical trials: MIME, BiManu Track, NeRebo, MIT Manus and InMotion
Shoulder Elbow Robot(22) (Figure 1). These devices may target various joints (i.e.
shoulder/elbow, elbow, elbow/wrist, wrist/hand, or the upper limb as a whole), apply forces
(end-effector devices) or have robot axes aligned with anatomical axes of the subject
(exoskeleton-type devices). They can provide different types of training (i.e. assistive,
active, passive, passive-mirrored, active-assistive, corrective, path guidance, and

resistive)(22, 28, 29).

Figure 1. Example of robotic device: InMotion Shoulder Elbow Robot.



At the same time, NIBS has emerged as a potential add-on tool to rehabilitation
interventions, by boosting adaptive plasticity mechanisms(30). NIBS is based on the
principle of application of external stimuli to modify brain activity. One of the primary
objectives of NIBS in stroke is to allow a given motor training intervention (such as RT) to
have a similar effect when administered for a shorter period of time, or to have a greater
effect when used for the same period of time. NIBS techniques include transcranial direct
current stimulation [tDCS] and transcranial magnetic stimulation [TMS], among other
interventions(31, 32).

TMS consists in the induction of electric current by the application of a magnetic
pulse in the target region of the motor cortex through a coil (Figure 2). The electric current
promotes neuronal depolarization. When magnetic pulses are administered rhythmically
(repetitive TMS, rTMS), neuronal activity can be inhibited or excited. Effects may outlast
the stimulation period. Usually, low-frequency rTMS (1 Hz), decreases excitability while
high frequency rTMS (around 3 - 20 Hz) increases excitability but effects can vary
according to baseline neuronal activity(33).

TDCS, on the other hand, does not lead to neuronal depolarization, but facilitates or
hinders the depolarization of the cell membrane and consequently leads to increased or
decreased excitability. In tDCS, a low-intensity electric current (variable from 1mA to
2mA) flows between two electrodes (cathode and anode) soaked in saline solution (Figure
3). For stimulation of the motor cortex, one electrode is placed on the skin, near the
topography of the motor cortex, and another electrode can be placed over the supraorbital

area. Similarly to rTMS, tDCS effects may last beyond the stimulation period.



~o .~ Magnetic field

TMS coil

Eletric current

Juliana lasi

Figure 2. Transcranial magnetic stimulation. Electric currents are induced in the brain by a
phenomenon of electromagnetic induction.
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Direction of
current flow

Juliana lasi

Figure 3. tDCS. Transcranial direct current stimulation increases or decreases cortical
excitability modifying the membrane potential through two surface electrodes.

Transcranial alternating current stimulation [tACS] and transcranial random noise

stimulation [tRNS] are two others NIBS methods(34). They deliver electrical stimuli with



different parameters from those delivered by tDCS. TACS may be applied in a wide
frequency range(35), commonly over the cortex to deliver EEG-like frequency currents
(0.1-80 Hz)(34). When applied in the EEG range, it is possible that tACS entrains with or
synchronizes neuronal networks, targeting the membrane excitability of neurons more
selectively(35). For plasticity studies using a frequency range of 1-5kHz, cortical
excitability of the primary motor cortex (M1) is increased(36). In tRNS, a normally
distributed random level of current generated with a frequency spectrum between 0.1 and
640 Hz at a sampling rate of 1280 samples per second. The frequency spectrum is
comparable to “white noise”(37). Similarly to tACS, tRNS can modulate cortical
excitability(34).

In this context, several studies support the idea that the association of NIBS with
other interventions may lead to further benefits on upper limb impairments or function(38,
39). Yet, despite the exponential increase in studies about NIBS as an add-on therapy for
upper limb rehabilitation after stroke(40), meta-analyses disagree on its effectiveness(21,
41-44),

Specifically, in regard to the association between NIBS and RT to improve upper
limb function, the first randomized clinical trials were published in 2011(45, 46). Since
then, other studies that used different outcomes, devices, protocols and NIBS parameters
also reported results of the association of NIBS and RT.

This systematic review and meta-analysis aim to evaluate the evidence of the
association of RT and NIBS for upper limb rehabilitation in stroke. We analyzed
randomized clinical trials that compared the association of RT and active NIBS or sham for
the improvement of upper limb motor recovery on body function and structure

(impairment) as well as on activity and participation (disability) according to the ICF(20).



2. REVIEW




2.1. Motor recovery after stroke

For motor-related abilities, functional gains tend to follow the level of recovery of
movement skills(47) so that upper limb motor control runs in parallel with the level of
independence for activities of daily living. In general, three phenomena underlie motor
recovery: restitution, compensation and substitution(47).

Restitution includes events such as reduction of edema, absorption of heme products
in hemorrhagic stroke, restauration of ionic currents and axonal transport(47). Recovery
associated with restitution of function is more prominent within the first weeks after the
injury.

Compensatory strategies comprise the adequacy of the patient’s impairment to the
environmental demand, for instance by increasing the time or effort employed in a
particular task, adjusting intentions or selecting new goals, modifying the environment or
using assistive devices such as functional orthoses or neuroprostheses(47).

Substitution includes the reorganization of neural networks in order to perform
functions that were lost or disrupted by the injury. It is associated, therefore, with motor
learning and changes in synaptic efficacy(47). Motor recovery by substitution can be
enhanced by external stimuli such as assistive modalities of motor training, neuromuscular
or musculoskeletal interventions, and may occur through the acquisition, retention or
adaptation of motor skills(48).

The science of neurorehabilitation flourished in the last decades, along with
increased knowledge about neuronal plasticity. There is evidence that neural networks may
reorganize(49). After a brain lesion such as stroke, perilesional or remote cortical areas can
undergo changes to facilitate motor performance and learning(49, 50). The reorganization
of neural networks is more prominent within the early stages after stroke but can occur still

in the chronic phase (after 6 months post-injury)(51-53). One of the goals of
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neurorehabilitation is to maximally take advantage from the capacity of the brain to
adaptively reorganize(54) in order to facilitate recovery of function, activity and
participation.

The knowledge about the role of the affected and non-affected hemispheres in
motor recovery has been expanded by assessing the behavioural consequences of inhibition
of each hemisphere before and after motor tasks. Using rTMS as a tool to transiently inhibit
neuronal excitability, it has been demonstrated that inhibition of the motor cortex of the
affected, but not of the unaffected hemisphere, may decrease motor performance of the
paretic hand in some patients with mild hand paresis in the chronic phase after stroke(55).
Additionally, excessive inhibition of the motor cortex of the affected hemisphere by the
unaffected hemisphere may compromise the generation of voluntary movement by the
paretic hand(56). These results suggest that the loss of balance between the two
hemispheres and increased activity in the unaffected hemisphere may be a maladaptive type
of neural plasticity that can compromise motor performance in a subset of subjects after

stroke. This concept is known as the hypothesis of interhemispheric imbalance (Figure 4).

Increase of activity g % Decrease of activity

Brain lesion

)

Juliana lasi

Figure 4. Theory of interhemispheric imbalance after stroke. The loss of balance between
the two hemispheres and increased activity in the unaffected hemisphere may compromise
motor performance.
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Traditional rehabilitation interventions, qualified as “bottom-up” approaches, such
as motor training aim to modify stimuli at the peripheral level that influence the central
nervous system and lead to changes in behaviour(57). “Top-down” approaches, such as
NIBS, act directly on the central nervous system to improve behaviour(57). As an add-on
intervention to “bottom-up” approaches, NIBS can potentially be applied with the goal of
adjusting inter-hemispheric imbalance after brain injuries and hence, facilitate the

rehabilitation process. (Figure 5).

Bottom-up Top-down

Juliana lasi

Figure 5. “Bottom-up” and “top-down” rehabilitation approaches.

The variability of available techniques and the heterogeneity of subjects represent

opportunities and challenges for rehabilitation based on scientific evidence.
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2.2. Robotic Therapy

Even though each robotic device employs a different paradigm of movement
training, in general RT rests on principles of rehabilitation that indicate benefits of intensive
repetition of movements, providing feedback on performance and increasing the input of
somatosensory information from the paretic limb to the central nervous system(58-64).
Computational models of motor learning of the task of moving the upper limb to reach an
object suggest that the central nervous system plans these movements in outer space(65, 66)
with the location and target initially coded as vectors in respect to fixation, and
subsequently subtracted to produce an intentional motion vector in a centralized coordinate
system in the hand. The internal maps, or, internal models, are the responsible to convert
this vector into motor commands. Once an internal template is learned, it can be
remembered at a future date. The relearning is then faster and more complete than the
original learning. This phenomenon is called consolidation(65-69). There is evidence that,
during the learning process, motor memories are initially stored in the primary motor
cortex. Subsequently, they are transferred to the premotor and parietal cortices, where they
are consolidated and stabilized during sleep (for a review, see Ebajemito et al, 2016)(70).

Research and development efforts in the area of rehabilitation robotics were
initiated in the 70's(25). In 2010, a landmark multicenter, randomized controlled trial
(Veterans Administration, VA study) showed benefits of upper limb RT compared to
traditional therapy(71). This trial included 127 patients with moderate-to-severe upper-limb
impairment, six months or more after stroke, randomly assigned to either intensive robot-
assisted therapy, intensive comparison therapy, or usual care. During 12 weeks, the RT
group received 36 sessions with a planar shoulder-and-elbow robotic device, an antigravity
shoulder and grasp-hand device and a wrist robot device, consecutively along 3-week

blocks. The intensive comparison therapy group received conventional rehabilitative
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techniques matching robot-assisted therapy in intensity, type and schedule of movements.
The usual care group received medical management, clinic visits as needed, and in some
cases rehabilitation services not dictated by a protocol.

The study concluded that the RT group improved significantly more in performance
in the Fugl-Meyer Assessment Scale (upper limb) and in the Wolf Motor Function Test
after 36 weeks than the usual care group. Differences in motor gains between the RT and
intensive comparison therapy groups were not statistically significant. No serious adverse
events were reported.

Concerns about the cost-effectiveness of RT have been raised, given the costs of
the robotic equipment. RT enables a therapist to simultaneously supervise multiple robots
and patients while performing a large number of repetitions of movements. It has been
argued that the cost per session of RT is lower compared to intensive training administered
by many therapists. Furthermore, In the VA study, patients who underwent RT used fewer
health services in general, resulting in a lower average cost in relation to an intensive
training group(72). The reasons underlying this finding were not clearly determined.

The effectiveness of RT according to systematic reviews may vary according to the
outcome analysed. The ICF can be used to describe whether treatment aimed to reduce
impairments, increase activity or participation(21). Systematic reviews that addressed
effects of RT on body structure and function according to the ICF concluded that this
intervention leads to statistically significant but small improvements in motor control of the
upper limbs, compared to conventional therapy(22, 73, 74). Indeed, the overall effects do
not exceed the values of the minimal clinical important differences of Fugl-Meyer
Assessment scores(22). Regarding muscle strength, the magnitude of the effect is

considered medium(74). Only shoulder/elbow devices seem to be beneficial(22). There is
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still no evidence of benefit of RT over conventional therapy to improve muscle tone(22, 73,
74).

In regard to effects of activity according to the ICF, systematic reviews disagree
about RT benefits. Veerbeek et al. 2016 (22), Lo et al, 2017(75) and Bertani et al. 2017(73)
concluded that RT is just as effective as conventional training for activities of daily living,
whereas a Cochrane review of 2018, that included 24 studies with a total of 957
participants, concluded that RT improved activities of daily living scores over any other
intervention(23).

According to guidelines of the American Heart Association/American Stroke
Association(76), RT provides some benefit for upper limb motor ability and participation,
but it remains to be determined whether it is more beneficial than dose-matched
conventional therapy. According to the guidelines, RT is “reasonable to consider to deliver
more intensive practice for subjects with moderate to severe upper limb paresis”(76).

Evidence is lacking about mechanisms underlying RT and about benefits of this
treatment, when initiated early after stroke(22). Also, there is a need for interventions that

can boost effects of RT. NIBS is a candidate intervention to attain this goal.

2.3. Models for non-invasive brain stimulation (NIBS) as add-on therapies in
stroke

Many of the studies about the benefit of excitation or inhibition of a particular
cortical area in neurorehabilitation have been based on the hypothesis of inter-hemispheric
imbalance. NIBS could be applied to either increase excitability of the motor cortex of the
ipsilesional hemisphere, decrease excitability of the motor cortex of the contralateral
hemisphere, or both (56, 77), in order to restore inter-hemispheric balance and thus enhance

upper limb performance.
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Several articles have been published using NIBS to facilitate adaptive processes of
brain plasticity, improve upper limb performance or motor learning according to the
hypothesis of interhemispheric imbalance. However, the effectiveness of this approach is
still uncertain, according to conflicting conclusions of systematic reviews(41, 42, 78-80).

The effectiveness of increasing the excitability of the affected hemisphere with
facilitatory rTMS or suppressing the unaffected hemisphere using inhibitory rTMS to
improve motor function after stroke is a matter of debate(79). A review including 19 trials
involving a total of 588 participants did not find statistically significant effects of rTMS on
motor function or the Barthel Index score(41). The heterogeneity across studies, the lack of
randomised controlled trials, the small sample sizes and the lack of studies in the subacute
stage post-stroke limit conclusions(79).

Likewise, results of studies implementing tDCS to modulate motor excitability have
been highly variable(80). A systematic review and meta-analysis, for example, including 17
studies with 468 participants concluded that tDCS and motor practice positively facilitate
long-term motor learning in individuals with stroke(78). A network meta-analysis including
26 studies with 754 participants found that there is no evidence that tDCS improves arm
function, measured by the Fugl-Meyer upper extremity assessment, however the
intervention may enhance capacity to perform activities of daily living(42). A Cochrane
systematic review included nine studies with 396 participants and concluded that, when
only studies with good methodological quality were included in the analysis, tDCS does not
improve performance of activities of daily living(81).

TDCS has some practical advantages over rTMS in clinical research. It is
considered a simpler and safer technique(82, 83). Blinding of participants is more reliable

by the administration of sham tDCS than sham rTMS, because active tDCS does not cause
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sensations in the subject other than slight tingling in the scalp, whereas, depending on the
intensity of stimulation of the motor cortex, active rTMS can evoke visible movements.

One of the reasons of the discrepancies in studies that employed rTMS or tDCS to
improve motor performance or recovery is a flaw in the premise of imbalance in
interhemispheric inhibition as a universal mechanism of maladaptive plasticity in stroke.
Under a number of circumstances, the hypothesis of inter-hemispheric imbalance does not
seem to apply. In patients with severe post-stroke upper limb impairments, the unaffected
hemisphere may be relevant for recovery and motor performance(84-86). Also, inhibition
of the unaffected hemisphere at an early stage after stroke could worsen motor performance
of the paretic hand if the activity of the unaffected hemisphere is beneficial, rather than
maladaptive. This hypothesis is known as the vicariation model, according to which activity
in residual networks substitutes those functions lost by damaged areas(40).

However, both hypotheses — interhemispheric imbalance and vicariation — may be
too simplistic and not sufficient to explain recovery in all patients(40). The bimodal
balance-recovery model combines these two hypotheses into a single model, introducing a
new parameter — the structural reserve - which describes the extent to which neural
pathways and neural tissue preserved by the lesion contribute to recovery in an individual
patient. The amount of structural reserve determines whether interhemispheric imbalance
dominates over vicariation: if the structural reserve is high, the interhemispheric
competition model can predict recovery better than the vicariation model. The latter is more
useful in predicting recovery in patients with little structural reserve(40). Thus, the bimodal
balance model could better enable NIBS to be tailored to the specific needs of an individual

patient.
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2.4.  State of art and gaps in knowledge

Within the past decade, the possibility of associating NIBS with intensive motor
training, represented by RT, has progressively raised more interest. A narrative review on
the effects of tDCS coupled with RT in post stroke upper limb rehabilitation(30) included
eight studies and highlighted the large variability in the characteristics of enrolled patients
and the lack of a standardized intervention protocol. The main sources of variability
underscored by the review were: subjects’ characteristics such as phase post stroke, type of
stroke, lesion site; NIBS intervention, such as, bi or unilateral stimulation, excitation or
inhibition, stimulation parameters, electrode size; and RT principles, such as bi- or
unimanual training and support offered to the arm. However, until now, a systematic review
and meta-analysis about effects of NIBS in association with RT on measures of body

structure/function and activity limitation according to the ICF had not been performed.



3. OBJECTIVE




19

This systematic review and meta-analysis aims to evaluate the evidence of NIBS as an
add-on intervention to robotic therapy in order to improve outcomes of upper limb motor

impairment or activity in subjects with stroke.



4. METHODS
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4.1. Ethics and registration

This study was performed according to the PRISMA Protocol(87) and was
approved by the Research Ethics Committee of USP Medical School on March, 2017 (n°
0085/17) (Supplementary Material 1). The protocol was properly registered on the

PROSPERO Platform (CRD42017054563) (Supplementary Material 2).

4.2. Search Strategy

Seven scientific databases were systematically searched: MEDLINE (Medical
Literature Analysis and Retrieval System Online; through the PubMed interface);
EMBASE (Excerpt Medical Database); Cochrane Central Register of Controlled Trials
(CENTRAL); LILACS (Latin American & Caribbean Health Sciences Literature; through
the Virtual Health Library - Bireme interface); CINAHL (Cumulative Index to Nursing and
Allied Health Literature through the EBSCO interface); DORIS (Database of Research in
Stroke) and PEDro (Physiotherapy Evidence Database). The articles were manually
retrieved. In addition, the following online archives of theses or trial registers were
searched: Clinical Trials; Digital Library of Theses and Dissertations of S&o Paulo
University; DORIS; Digital Brazilian Library of Theses and Dissertations; Public Domain
Portal; CAPES (Coordination for the Improvement of Higher Education Personnel) Thesis
and Dissertation Bank.

The following key words were used: stroke, robot, transcranial direct current
stimulation and transcranial magnetic current stimulation. The term “upper limb” was not
selected in order to avoid missing studies that involved both lower and upper extremities.
The term “transcranial direct current stimulation” and “transcranial magnetic current
stimulation” were used instead of “non-invasive brain stimulation”, because 1. “non-
invasive brain stimulation” is not registered as a controlled vocabulary term; and 2. When

the key word “transcranial direct current stimulation” is exploded, records of “transcranial
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alternating current stimulation” and “random noise stimulation” are automatically detected.

For databases without the option of “exploding” terms, the key words “transcranial

alternating current stimulation” and “random noise stimulation” were also used. Whenever

possible, the filter “random” was used. The full search strategy can be found in

Supplementary Material — Table 1. No publication data, or language restrictions were

imposed. The search included all studies published until July, 2019.

Table 1. Full Search Strategy

Database Search Strategy
1.(Stroke) OR (Strokes) OR (Apoplexy) OR (CVA) OR (CVAs) OR
(Cerebrovascular Accident) OR (Cerebrovascular Accidents) OR (Vascular
Accident, Brain) OR (Vascular Accidents, Brain)
2.(Robot*) OR (Exoskeletons Device) OR (Exoskeleton Devices)
CINAHAL 3.(Transcran_ia| D_irect _Current Stimulatior_1) OR (tD_CS) OR (Tr_anscra_nial
EMBASE Random Noise S_tlmulatlon_) OR (Transcr_anlal Alternating Curren_t Stlmulatl_on)
MEDLINE OR (Transcranial Electrical Stimulation)  OR (Transcranial Electrical
Stimulations) OR (Electric Stimulation Therapy) OR (Therapeutic Electrical
Stimulation) OR (Therapeutic Electric Stimulation) OR (Electrical Stimulation
Therapy) OR (Electrotherapy) OR (Interferential Current Electrotherapy) OR
(Transcranial Magnetic Stimulation) OR (Transcranial Magnetic Stimulations)
OR (Magnet*)
4.1 AND 2 AND 3 + filter “random” (if disponible)
1.MeSH descriptor: [Stroke] explode all trees
2.MeSH descriptor: [Robotics] explode all trees
COCHRANE 3.MeSH descriptor: [Transcranial Direct Current Stimulation] explode all trees
4.MeSH descriptor: [Transcranial Magnetic Stimulation] explode all trees
S#H3 or #4
6. #1 and #2 and #5
1.(stroke) AND (robot*)
2.(robot*) AND (transcranial direct current stimulation)
3.(robot*) AND (transcranial random noise stimulation)
LILACS 4.(robot*) AND (transcranial alternating current stimulation)
[F;(E)grlg 5.(robot*) AND (transcranial magnetic stimulation)
GRAY 6.(stroke) AND (transcranial direct current stimulation)
LITERATURE 7.(stroke) AND (transcranial random noise stimulation)

8.(stroke) AND (transcranial alternating current stimulation)
9.(stroke) AND (transcranial magnetic stimulation)
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4.3. Study Selection

Titles and/or abstracts of studies retrieved using the search strategy and those from
additional sources were independently assessed by two reviewers who read the full-text
articles and selected studies according to the inclusion and exclusion criteria.

Disagreements between the two reviewers were resolved by consensus.

4.4. Eligibility Criteria

Types of studies: Randomized clinical trials with parallel or crossover design were
included. Authors were contacted to provide missing data of abstracts and non-published
studies.

Types of participants: People with upper limb paresis due to stroke were included.
No restrictions were imposed regarding: age, residual upper limb motor-function, time
since last stroke, type of stroke or history of previous strokes. Studies that included subjects
with cerebellar strokes or strokes in cerebellar pathways were not included.

Types of interventions: Trials that added active NIBS before, during or after RT in
order to improve upper limb outcomes were included. Four types of NIBS were assessed:
tDCS, transcranial alternating current stimulation (tACS), transcranial random noise
stimulation (tRNS) and TMS.

Types of controls: RT associated with sham NIBS or RT alone.

Types of outcome measures: Upper limb performance measured by the main
standard scales for the ICF Body Structure/ Body Function domain (for instance, Fugl-
Meyer Assessment Scale - FMA, Ashworth or modified Ashworth scale, force and range of
motion) or Activity level (for instance, Wolf Motor Function Test [WMFT], Action

Research Arm Test [ARAT], Motor Activity Log [MAL], Box and Blocks Test [BBT],
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Jebsen-Taylor Hand Function Test [JTHFT], Nine Hole Peg Test [NHPT], and Motor

Assessment Scale [MAS](88).

4.5. Data extraction

Data were extracted from the records to a standard form by two reviewers.
Disagreements were resolved by consensus. If information was missing/unclear in
manuscripts, their authors were contacted. In case of crossover studies, only data of the first
intervention were extracted for metanalyses.

If more than one outcome was assessed to measure body function/ structure, the
priority for analysis was the Fugl-Meyer according to recommendations of the
measurement working group of the Stroke Recovery and Rehabilitation Roundtable (89).
To measure activity limitation, priority of analysis was given to the ARAT according to
recommendations of the same panel(89). If these scales were not present in the study, the

choice of outcome was based on the most frequent outcomes across the selected studies.

4.6. Methodological Quality

Risks of bias were assessed independently by two reviewers. Disagreements were
settled by consensus and no consultation with a third reviewer was necessary. If there was a
lack of, or unclear information, authors were asked for clarification, or requests were made
for the provision of the missing information.

The following domains were assessed for each study: randomization(90);
concealment allocation(90); blinding of outcome assessment(90); blinding of participants
and personnel(90); description or implicit intention-to-treat analysis; extent of loss(91);
sample homogeneity (similarity between characteristics data of active and control group);

sample representativeness (absence or presence of exclusion criteria others than the usually
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present on RT or NIBS trials in general); presence of description of sample calculation;
information regarding early cessation of trials; and selective reporting(90). For each
domain, the study was classified as having high, low or unclear risk of bias.

The classification of bias was not used as a criterion to exclude studies from a
possible meta-analysis but was used for analysis of quality of the evidence according to
GRADE -pro GDT (Grading of Recommendations Assessment, Development and
Evaluation)(87), by a GRADE Evidence Profile across the domains study design, risk of
bias, inconsistency, indirectness and imprecision. The domain risk of bias was classified
prioritizing randomization, allocation, blinding and extent of loss. Others domains
contributed with the percentage of high or unclear risk of bias (i.e. <50% not serious; 50%
to 75%, serious; >75%, very serious). The domain inconsistency was classified according
to 12 of metanalysis (<50% not serious; 50% to 75%, serious; >75%, very serious). The
domain imprecision was classified according to the Z test for overall effect (<50% not
serious; 50% to 75%, serious; >75%, very serious).

The quality was stated as high (further research is very unlikely to change our
confidence in the estimate of the effect), moderate (further research is likely to have an
important impact on our confidence in the estimate of the effect and may change the
estimate), low (further research is very likely to have an important impact on the
confidence in the estimate of effect and is likely to change the estimate), or very low (very

uncertain about the estimate of the effect)(87).

4.7. Quantitative data Analysis
For studies in which the same scale was used to evaluate the outcome (i.e. Fugl-
Meyer for Body Structure/ Function), the number of participants in each group, mean

scores and standard deviations after interventions in the active and control groups were
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analysed in RevMan 5.3. (Review Manager 5.3). For the Fugl-Meyer, a higher score was
regarded as positive. The mean difference was established in individual studies by
calculating the difference between the means of the active and control groups.

For types of outcomes assessed with different scales (i.e. Activity Limitation)
measures of post and pre-intervention of each subject were assessed after contacting the
authors and requesting individual data. The individual relative difference between post and
pre- intervention (post-pre/pre) was calculated for each subject. The mean and standard
deviations of relative differences in active and control groups were analysed in RevMan
5.3. In individuals who presented a baseline score of 0, the relative difference was also
considered to be 0. We opted for this approach because none of the individuals who scored
0 at baseline presented a post-pre-difference above the Minimal Detectable Changes of the
respective scale.

For scales in which a lower score was regarded as positive compared to a higher
score, the mean was multiplied for -1. The standard mean difference was established in
individual studies by calculating the difference between the means of the active and control
groups.

The summary effect size was calculated by the average of the mean difference or
standard mean difference of individual studies with the corresponding 95% confidence
interval [CI]. Heterogeneity among studies was assessed by I In case of statistical
heterogeneity, defined as an I*> > 50%, a random-effect model was applied, while a fixed-
effect model was applied for I> < 50% (92). All analyses were performed using RevMan
5.3. and P values <0.05 were considered statistically significant.

In addition, the following subgroup analyses were conducted(22, 30, 93, 94):
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according to subjects” characteristics: phase post stroke (acute, 1-7 days; early
subacute, > 7 days-3 months; late subacute, 3-6 months; chronic, > 6
months)(95).

according to robotic device characteristics: arm support (end-effector or
exoskeleton)(28); joints involved (shoulder; elbow; wrist; hand); and unimanual
or bimanual training.

according to NIBS characteristics: NIBS paradigm (aiming to increase or
decrease cortical excitability); timing of stimulation (pre, post or during RT).
According to general characteristics: number of sessions (1 -6; 7-12; 13-24; 25-

36)(71).



5. RESULTS
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At the last search in July 2019, a total of 1266 records were identified from

databases, grey literature and hand-search. After removing duplicates, 1176 articles were

identified and 14 abstracts were selected for full-text reading. The study selection process is

represented in Figure 6, according to the PRISMA Flow diagram(87).

Records excluded
(n=1162)

Full-text articles excluded
(n =6)

)
c
.g EMBASE (n=34); MEDLINE (n=380); Gray literature
g LILACS (n=25); COCHRANE (n=7); PEDro (n=655); Hand
’é (n=108); DORIS (n=14); CINAHAL (n=38) search (n=5)
Q
S
v A 4
PR Records after duplicates removed
& (n=1176)
‘e
)
o
a
\ 4
Records screened
(n=1176)
~—
; \ 4
E Full-text articles assessed
.28 for eligibility >
w (n=14)
v
— Studies included in
qualitative synthesis
o) (n=28)
Q
o
=
::’ v
Studies included in
guantitative synthesis
(meta-analysis)
(n=8)
~—

Figure 6. Study selection process: flow diagram.
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At the end of the selection, six trials were excluded due to the following reasons:
two did not attempt criteria for control groups(93, 96); three did not use standard clinical
scales as outcome measures(46, 94, 97); and one did not attempt criteria for control groups

and did not use standard clinical scales as outcome measures(98).

5.2. Characteristics of the trials

Characteristics of the participants in the trials selected for the systematic review and
meta-analysis are shown in Table 2 and characteristics of the interventions are shown in
Table 3. One study(45) applied three different interventions (sham tDCS; anodal tDCS;
cathodal tDCS) and, in this review, was divided in two (Hesse et al,2011- A — anodal
stimulation and Hesse et al,2011- C — cathodal stimulation). Thus, considering Hesse et al,
2011 as two different trials for statistical analyses, the review included 9 trials, with a total
of 324 participants (161, active; 163, control).

The robot devices used in the studies were: InMotion2; MitManus; BiManu Track;

ReoGo; Armeo®Spring and REAplan robot. Their characteristics are shown in Table 4.
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Table 4. Characteristics of the robotic devices.
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Degrees
Robot device  Arm-support  Joint involved of Training modalities?
freedom
) Assistive, Active, Passive,
MitManus? end-effector shoulder/elbow 2D Active-assistive. Corrective
Path guidance, Resistive,
wrist 3D Movement perturbation
Assistive, Active, Passive,
InMotion? end-effector shoulder/elbow 2D ACIIVG-_&SSISIIVG, C(_)rr_ectlve,
Path guidance, Resistive,
Movement perturbation
BiManu Track end-effector wrist /hand 2D Pass_lve-m_lrrored, Active-
passive-mirrored
ReoGo end-effector shoulder/elbow 3D Aqtlve, Passw_e, _Path
guidance, Resistive
Armeo®Spring  exoskeleton whole-arm 3D  Active
REAplan robot  end-effector  shoulder/elbow 2D Assistive, Active, Passive,

Active-assistive

1The protocol used on the included studies not necessarily employed all these training

modalities.

2 InMotion is the commercial version of the MIT-Manus. This brand of device presents
others versions that include wrist/hand joints. Ang et al., 2015 and Di Lazzaro et al., 2016
only used shoulder/elbow version, whereas Edwards et al., 2019 employed both

shoulder/elbow and wrist version.
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5.3. Methodological Quality

The assessment of risk of bias is shown in Figure 7.

Angetal, 2014

Dehem et al. 2018

DiLazaro etal, 2016
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Edwards et al. 2014

Hesse etal, 2011

maxfield etal., 2011

Straudi etal., 2016
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Figure 7. Risk of bias: domains assessed for each study. Green signal = low risk of bias;

red signal = high risk of bias; no signal = risk of bias unclear.

5.4. Main analysis

5.4.1. Body structure/function

Seven of the included studies(38, 45, 99-103) chose the Fugl-Meyer Assessment
scale as an outcome measure of body structure/function. Overall, a nonsignificant
homogeneous summary effect size (mean difference 0.15, 95% CI -3.10 to 3.40; P = 0.93,

12 = 0%) was found (Figure 8).
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5.4.2. Activity limitation

Six of the included studies(45, 100-104) evaluated eligible scales of activity
limitation: ARAT(103), BB(45, 102, 104), MAL(102), and WMFT(100, 101). Of the two
studies that assessed the WMFT, one reported the WMFT-Time score (time required to
complete the tasks: a lower score was regarded as positive compared to a higher
score)(101). The other study described the WMFT-FAS score (Functional Ability Scale: a
higher score was regarded as positive compared to a lower score)(100). Data from Hesse et
al. (2011) were not available. Therefore, results of 5 studies(100-104) were analysed.

Overall, a nonsignificant homogeneous summary effect size (standard mean

difference 0.03, 95% CI -0.28 to 0.33; P = 0.87, 12 = 0%) was found (Figure 9).
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5.5.1. Phase post-stroke

Five trials(38, 99-101, 104) only recruited participants in the chronic phase post-
stroke; one trial(45) only recruited participants in the subacute phase and two, in both
phases(102, 103).

Body structure / body function - Nonsignificant homogeneous summary effect sizes
were found for the chronic (mean difference 1.18, 95% CI -3.13 to 5.50; P = 0.59, 12 = 0%)
and subacute (mean difference -1.60, 95% CI -6.14 to 2.94; P = 0.49, 12 = 36%) phases
(Figure 10).

Activity limitation - Nonsignificant homogeneous summary effect sizes were found
for participants in the chronic (standard mean difference 0.10, 95% CI -0.23 to 0.43; P =
0.56, 12 = 30%) and subacute phases (standard mean difference -0.28, 95% CI -1.14 to 0.59;

P = 0.53, I2 = 0%) (Figure 11).
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5.5.2. Arm Support

Seven trials employed end-effector devices(38, 45, 99-102, 104); and one trial
employed an exoskeleton device(103).

Body structure/body function - Nonsignificant homogeneous summary effect sizes
were found for end-effector (mean difference 0.83, 95% CI -2.51 to 4.18; P =0.62, 12 = 0%)
and exoskeleton (mean difference -11.20, 95% CI -24.82 to 2.42; P = 0.11) devices (Figure
12).

Activity limitation - Nonsignificant homogeneous summary effect sizes were found
for end-effector (standard mean difference 0.07, 95% CI -0.26 to 0.40; P=0.69, 12 = 7%) and
exoskeleton (standard mean difference -0.24, 95% CI -1.07 to 0.60; P = 0.58) devices (Figure

13).
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5.5.3. Joints involved.

Five trials employed robotic devices that involve only shoulder/ elbow movements:
MitManus(99); REAplan Robot(104); InMotion 2(38) and ReoGo(101, 102). One trial
employed a robotic device that involved only wrist movements: BiManu Track(45). One trial
tested a robotic device that involves whole arm movements: Armeo®Spring(103). One trial
alternated between two versions of the same device - MitManus planar robot, for shoulder/
elbow, and MitManus wrist robot, for wrist (100); therefore, this trial was analysed as part of
the whole arm subgroup.

Body structure / body function - Nonsignificant homogeneous summary effect size
were found for the comparisons involving robots with only shoulder/ elbow movements
(mean difference 3.28, 95% CI -2.35 to 8.91; P = 0.25, 12 = 0%), robots with wrist
movements only (mean difference -0.21, 95% CI -4.97 to 4.55; P = 0.93, 12 = 0%) and robots
with whole arm movements (mean difference -4.14, 95% CI -11.35 to 3.06; P = 0.26, 12 =
30%) (Figure 14).

Activity limitation - Nonsignificant homogeneous summary effect size were found for
the comparison involving robots with only shoulder/ elbow movements (standard mean
difference 0.01, 95% CI -0.50 to 0.52; P = 0.98, 12 = 36) and for the comparison involving
robots with whole arm movements (standard mean difference -0.04, 95% CI -0.35 to 0.42; P

= 0.85; 12= 0%) (Figure 15).
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5.5.4. Unimanual or bimanual training.

Only one trial(45) employed a robotic device with bimanual training. The results of
this trial were split according to the intervention performed: Hesse et a. 2011-A (anodal
tDCS) and Hesse et al. -C (cathodal tDCS).

Body structure / body function - For unimanual (mean difference 0.47, 95% CI -3.97
to 4.90; P = 0.84, 12 = 7%) and bimanual (mean difference -0.21, 95% CI -4.97 to 4.55; P =
0.93, 12 = 0%) training, nonsignificant homogeneous summary effect sizes were found
(Figure 16).

Activity limitation - A nonsignificant homogeneous summary effect size (standard

mean difference 0.03, 95% CI -0.28 to 0.33; P = 0.87, 12 = 0%) was found (Figure 17).
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5.5.5. NIBS paradigm

Three studies used anodal tDCS [atDCS] to improve cortical excitability of the
affected hemisphere(100, 101, 103); three studies placed the tDCS anode over the affected
hemisphere and the cathode over the unaffected hemisphere(99, 102, 104); and one study
used atDCS and cathodal tDCS [ctDCS] in different groups(45). Only a proof-of-principle
trial used continuous thetaburst stimulation [cTBS], a specific paradigm of repetitive
TMS(38), to induce long-term depression-like changes in the affected hemisphere.

Body structure / body function - For atDCS, a nonsignificant heterogeneous summary
effect size (mean difference -0.78, 95% CI -5.62 to 4.06; P = 0.75, 12 = 37%) was found. For
ctDCS, a nonsignificant SES (mean difference -0.30 95% CI -6.64 to 6.04; P = 0.93) was
found. For bilateral anodal and cathodal tDCS, a nonsignificant homogeneous summary
effect size (mean difference 1.18, 95% CI -7.22 to 9.58; P = 0.78, 12 = 0%) was found. For
cTBS of the affected hemisphere, a nonsignificant SES (mean difference 2.90, 95% CI -5.80
to 11.60; P = 0.51) was found (Figure 18).

Activity limitation - For atDCS of the affected hemisphere, a nonsignificant
homogeneous summary effect size was found (standard mean difference -0.04, 95% CI -0.39
to 0.32; P = 0.84, 12 = 0%). For bilateral anodal and cathodal tDCS, a nonsignificant
homogeneous summary effect size was found (standard mean difference -0.21, 95% CI -0.40

to 0.82; P = 0.50, 12=40%) (Figure 19).
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5.5.6. Timing of stimulation

Five studies applied NIBS during the first 20 to 30 minutes of RT(45, 101-104) and
three, before RT(38, 99, 100).

Body structure / body function - Nonsignificant homogeneous summary effect size
were found for NIBS applied during RT (mean difference -0.21, 95% ClI -4.34 to 3.93; P =
0.92, 12 = 17%) and for NIBS applied before RT (mean difference 0.72, 95% CI -4.52 to
5.97; P = 0.79, 12 = 0%) (Figure 20).

Activity limitation - Nonsignificant homogeneous summary effect sizes were found
for both NIBS applied during RT (standard mean difference -0.06, 95% CI -0.50 to 0.38; P
=0.79, 12 = 11%) and before RT (standard mean difference 0.11; 95% CI -0.32 to 0.54; P =

0.62) (Figure 21).
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5.5.7. Number of sessions

In one cross-over trial with one active and one sham session of treatment, the results
of the first session were included in the analysis(104). The following trials had a parallel
design: in three trials, 7 to 12 sessions of treatment were performed(38, 99, 102); in two,
from 13 to 24 sessions(101, 103) and in other two, from 25 to 36 sessions(45, 100).

Body structure / body function - Nonsignificant homogeneous summary effect sizes
were found for trials in which 7 to 12 sessions (mean difference 2.01, 95% CI -4.03 to 8.05;
P = 0.51, 12 = 0%), and from 25 to 36 sessions (mean difference -0.50, 95% CI -4.65 to
3.66; P =0.81, I12=0%). A nonsignificant heterogeneous summary effect size was fond for
trials with 13 to 24 sessions (mean difference -0.07, 95% CI -22.50 to 22.36; P = 1.00, 12 =
79%) (Figure 22).

Activity limitation — Nonsignificant homogeneous summary effect sizes were found
for the first session of the cross-over trial (standard mean difference 0.65, 95% CI -0.25 to
1.56; P =0.16); for trials with 7 to 12 sessions (standard mean difference -0.15, 95% CI -
0.97 to 0.67; P = 0.71), 13-24 sessions (standard mean difference -0.35, 95% CI -0.97 to
0.28; P = 0.28, 12 = 0%) and 25-36 sessions (standard mean difference 0.11; 95% CI -0.32

to 0.54; P =0.62 (Figure 23).
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5.6. Quality of the evidence

An Evidence Profile was performed on GRADE -pro GDT. Quality was considered
high for both body structure/function and activity limitation outcome measures, suggesting
that further research is very unlikely to change the confidence in the estimate of the effect
with the paradigms employed in these studies(87) (Table 6). However, quality of the

evidence ranged from very low to high scores according to subgroup analyses (Table 7).
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Table 7. Summary of the quality of evidence for different subgroups according to outcome

measures.

Subgroup

Body

structure/function

Activity Limitation

Phase post stroke — Chronic

Phase post stroke - Subacute

Arm support - End-effector

Arm support — Exoskeleton

Joints involved - Shoulder / elbow

Joints involved - Wrist/ hand

Joints involved - Whole arm

Upper limb involved - Bimanual training

Upper limb involved - Unimanual training
NIBS paradigm - atDCS of affected hemisphere

NIBS paradigm - bilateral cathodal and anodal
tDCS

NIBS paradigm - ctDCS on unaffected
hemisphere

NIBS paradigm - cTBS on affected hemisphere
Timing of stimulation - NIBS during RT
Timing of stimulation - NIBS before RT
Number of sessions - 1-6 sessions

Number of sessions - 7-12 sessions

Number of sessions - 13-24 sessions

Number of sessions - 25-36 sessions

MODERATE

MODERATE

HIGH

VERY LOW

LOW

HIGH

LOW

HIGH

HIGH

HIGH

HIGH

HIGH

MODERATE

HIGH

HIGH

NR

MODERATE

LOW

HIGH

MODERATE

LOW

HIGH

LOW

HIGH

NR

HIGH

NR

HIGH

HIGH

LOW

NR

NR

HIGH

MODERATE

VERY LOW

MODERATE

LOW

MODERATE

Abbreviation: NR = not reported
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A total of 324 subjects were included in this meta-analysis, and there was no
statistical heterogeneity in the results. Overall, the quality of the evidence was high. Despite
the increase in the number of clinical trials that assessed NIBS as an add-on intervention of
RT over the past years, there is no evidence to support the hypothesis that effects of RT on
outcomes of body structure and function or on outcomes of activity limitation can be
enhanced by NIBS. This conclusion is in line with the conclusion of a previous narrative
review(30). Despite the lack of statistical heterogeneity, however, the NIBS paradigms and
motor training protocols were very diverse across studies.

Four different NIBS paradigms were employed in the included studies and all,
except one, were based on the hypothesis of interhemispheric competition model. This
hypothesis seems not to apply to subjects with stroke with different levels of
impairment(40, 105) or lesion location(106). Other variables that raise concerns about the
potential of NIBS as a therapeutic tool are inter and intra-subject variability that can be
caused by individual brain anatomy, level of ongoing cortical activity, muscle pre-
contraction, subject attentional focus, and even menstrual cycle and circadian
rhythms(107). Neuronavigated NIBS and EEG monitoring of stimulation effects in real
time may be useful to decrease variability of effects(107). In order to select patients for
clinical trials or proof-of-principle studies involving NIBS and motor training,
understanding of mechanisms and biomarkers of responsiveness may be key to enhance the
probability of success(108).

The need to tailor NIBS interventions to particular characteristics has been
underscored by the negative results of the NICHE study, the largest clinical trial to date in
which low-frequency rTMS was administered to the unaffected hemisphere of subjects in
the chronic phase after stroke with the goal of down-regulating excessive inhibition of the

affected hemisphere, prior to sessions of motor training(109). Another plausible
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explanation of the negative results of the NICHE trial as well as those of this meta-analysis
is a ceiling effect: the impact of high-intensity motor practice on improvement of
performance may exceed the magnitude of NIBS effects.

Alternatively, the association of NIBS and RT may have effects on retention of
improved motor performance rather on immediate effects of motor training. Results of a
trial that randomized 164 patients to active or sham atDCS of the motor cortex of the
affected hemisphere prior to RT(100), included in this review, contradict this hypothesis.
After 36 sessions of treatment, the benefits of RT were unchanged by add-on atDCS.
However, at 6 months post, the percentage of “responders” (improvement in FM >5 points)
was significant greater in the control group than in the active group. Finally, it is necessary
to consider that NIBS objectives may not only be to enhance effects of training, but also to
yield comparable results of a training intervention when administered for a shorter period
of time. No studies addressing this issue were identified.

Another point that deserves attention is that an optimal training RT paradigm to be
associated with NIBS has not yet been determined. Giaccobe et al (2013) demonstrated that
a single session of tDCS can enhance effects of motor training when applied immediately
prior to RT but not during or after this intervention. Also, alternating sessions between
proximal and distal joints seems to be a more efficient strategy to improve upper limb
motor performance than isolated block sessions of proximal and distal joints(100, 110). It
remains to be determined if this result also applies to NIBS + robotic training because no
head-to-head comparisons of different paradigms of training associated with the same
NIBS intervention were found. Finally, the role of robotic bimanual training remains to be
clarified. This intervention may enhance the output to the paretic limb in some individuals
with stroke(111) but we only included in this review one study that applied this

approach(45).
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Clinical trials that test a large number of combinations of NIBS and training
paradigms may be challenging due to resource and time constraints. Kinematic
measurements are sensitive and correlate well with clinical assessment in subjects with
stroke(112). Therefore, proof-of-principle studies that assess responsiveness to different
paradigms may inform the design of larger clinical trials.

None of the studies included in this meta-analysis chose outcomes of activity
limitation as primary endpoints, and only one study assessed the ARAT(103), an outcome
recommended by the Stroke Recovery and Rehabilitation Roundtable(89). Future studies
may include this outcome measure as performed in the RATULS (Robot Assisted Training
for the Upper Limb after Stroke) study(110). No significant changes were reported for the
ARAT in RATULS(110), a trial in which RT was not associated with functional training.
On the other hand, a smaller trial compared RT training (n = 22) with RT associated with
therapist-assisted functional training (n=23) and found significant improvement on activity
limitation favouring the experimental group(113). Overall, these results suggest that
changes in measures of body structure and function or activity limitation may vary
according to the specific model of motor training. It is possible that translation-to-task
interventions as add-on therapies to RT are required to ameliorate activity limitation. In
trials that plan to address the possibility of boosting the effect of RT by adding NIBS to
enhance activity, inclusion of translation-to-task interventions should be considered.

Limitations

The number of included studies in this systematic review was relatively low but the
sample size (n=324) was greater than those reported in other meta-analyses about effects of
specific rehabilitation interventions in stroke. For instance, a meta-analysis(114) evaluated

the effectiveness of a combination of NIBS and virtual reality included 213 individuals.
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The present review did not explore some others possible subgroups that would
probably interfere at motor and functional recovery, due to lack of sufficient individual data
about baseline motor impairment, type of stroke, site of lesion and training intensity

measured by the number of repetitions performed per session.

Summary of findings and remaining gaps

This systematic review found no evidence that NIBS, as an add-on intervention to
RT, improves outcomes of upper limb motor impairments or activity in subjects with
stroke. Overall, but not in subgroup analyses, the quality of this evidence was considered
high for both outcomes. The greatest gaps of information are: use of exoskeleton robotic
device and training concomitant of the whole joints of the arm for motor impairments;
training with patients in a subacute phase post stroke; use of exoskeleton devices; bimanual
motor training and motor training involving distal joints for activity limitation.

It is advisable to consider performance of proof-of-principle studies involving NIBS
and different motor training paradigms, in order to better understand mechanisms
underlying these interventions, as well as biomarkers of responsiveness. Furthermore, it is
critical to assess effects of translation to task training as a complement for NIBS and RT, in

order to enhance performance of activities of daily living.



7. CONCLUSIONS
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According to this systematic review and meta-analysis, there is a lack of evidence
that NIBS, as an add-on intervention to RT, improves outcomes of upper limb motor

function or activity in subjects with stroke.
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2. Protocol registered on the PROSPERO Platform (CRD42017054563).

Systematic review
This record cannot be edited because it is being assessed by the editorial team

1. * Review title.

Give the working title of the review, for example the one used for obtaining funding. Ideally the title should
state succinctly the interventions or exposures being reviewed and the associated health or social problems.
Where appropriate, the title should use the PI(E)COS structure to contain information on the Participants,
Intervention (or Exposure) and Comparison groups, the Outcomes to be measured and Study designs to be
included.

The effects of robotic therapy associated with non-invasive brain stimulation on upper limb rehabilitation after
stroke:
systematic review and meta-analysis of randomized clinical trials

2. Original language title.

For reviews in languages other than English, this field should be used to enter the title in the language of the
review. This will be displayed together with the English language title.

3. * Anticipated or actual start date.

Give the date when the systematic review commenced, or is expected to commence.

02/01/2017

4.* Anticipated completion date.

Give the date by which the review is expected to be completed.

31/03/2018

5. * Stage of review at time of this submission.

Indicate the stage of progress of the review by ticking the relevant Started and Completed boxes. Additional
information may be added in the free text box provided.

Please note: Reviews that have progressed beyond the point of completing data extraction at the time of initial
registration are not eligible for inclusion in PROSPERO. Should evidence of incorrect status and/or completion
date being supplied at the time of submission come to light, the content of the PROSPERO record will be
removed leaving only the title and named contact details and a statement that inaccuracies in the stage of the
review date had been identified.

This field should be updated when any amendments are made to a published record and on completion and
publication of the review. If this field was pre-populated from the initial screening questions then you are not
able to edit it until the record is published.

The review has not yet started: No

Review stage Started Completed

o Yes Yes
Preliminary searches



Piloting of the study selection process

Formal screening of search results against eligibility criteria
Data extraction

Risk of bias (quality) assessment

Data analysis

Provide any other relevant information about the stage of the review here (e.g. Funded proposal, protocol not

yet finalised).

6. * Named contact.

The named contact acts as the guarantor for the accuracy of the information presented in the register record.

Suzana Reis

Email salutation (e.g. "Dr Smith" or "Joanne") for correspondence:
Dra Suzana

7.* Named contact email.

Give the electronic mail address of the named contact.

suzana.reis@ymail.com

8. Named contact address

PLEASE NOTE this information will be published in the PROSPERO record so please do not enter private information

Give the full postal address for the named contact.

255 Ovideo Pires de Campos St. 5th Floor/5080

9. Named contact phone number.

Give the telephone number for the named contact, including international dialling code.

+55 11 2661-7955

10. * Organisational affiliation of the review.

Full title of the organisational affiliations for this review and website address if available. This field may be

completed as 'None' if the review is not affiliated to any organisation.

University of Sao Paulo General Hospital

Organisation web address:

11. * Review team members and their organisational affiliations.

Give the title, first name, last name and the organisational affiliations of each member of the review team.

Affiliation refers to groups or organisations to which review team members belong.

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

No
No



Professor Adriana Conforto. Hospital das Clinicas da Faculdade de Medicina da Universidade de S&o
Paulo/Fundacéo Faculdade de Medicina

Professor Wanderley Bernardo. Hospital das Clinicas da Faculdade de Medicina da
Universidade de S&o Paulo/Fundagéo Faculdade de Medicina Ms Suzana Reis.
Mr Carlos Oshiro.

Hermano Igo Krebs. MIT, Boston, MA, US

12. * Funding sources/sponsors.

Give details of the individuals, organizations, groups or other legal entities who take responsibility for initiating,
managing, sponsoring and/or financing the review. Include any unique identification numbers assigned to the
review by the individuals or bodies listed.

The University of Sao Paulo General Hospital is the sponsor for the research, and where it will be carried out.
No funding has, however, been received for this study.

13. * Conflicts of interest.

List any conditions that could lead to actual or perceived undue influence on judgements concerning the main
topic investigated in the review.

None

14. Collaborators.

Give the name and affiliation of any individuals or organisations who are working on the review but who are
not listed as review team members.

15. * Review question.

State the question(s) to be addressed by the review, clearly and precisely. Review questions may be specific
or broad. It may be appropriate to break very broad questions down into a series of related more specific
questions. Questions may be framed or refined using PI(E)COS where relevant.

The objective of this review and meta-analysis is to evaluate the evidence for the efficacy of robotic therapy
associated with non-invasive brain stimulation for upper limb rehabilitation after stroke.

16. * Searches.

State the sources that will be searched. Give the search dates, and any restrictions (e.g. language or
publication period).
Do NOT enter the full search strategy (it may be provided as a link or attachment.)

Seven scientific databases will be systematically searched: MEDLINE (Medical Literature Analysis and
Retrieval System Online; through the PubMed interface); EMBASE (Excerpt Medical Database); The
Cochrane Central Register of

Controlled Trials (CENTRAL); LILACS (Literatura Latino-Americana e do Caribe em Ciéncias da Saude;
through the Biblioteca Virtual em Saude interface); CINAHL (Cumulative Index to Nursing and Allied Health
Literature; through the EBSCO interface); DORIS (Database of Research in Stroke) and PEDro (the
Physiotherapy Evidence Database).

In addition, a handsearch will be done by scanning the reference lists of articles, consulting experts in the
field and searching non-published studies from the following online archives of theses and online trials
registers: ClinicalTrials; Biblioteca Digital de Teses e Dissertacdes da USP; Doris; Biblioteca Brasileira Digital
de Teses e Dissertagdes; Portal Dominio Pablico; Banco de Teses & Dissertagdes CAPES.

The following key words will be used: stroke, robot, and transcranial direct current stimulation.



The term “upper limb” was not selected in order to avoid missing studies that involve both lower and upper
extremities. The term “tDCS” will be used instead of “NIBS”, because 1. NIBS is not registered as a controlled
vocabulary term; and 2. We noticed that when the key word “tDCS” is exploded, records of tACS, RNS and
TMS are automatically detected, and in databases which do not give the option to “explode” terms, the key
words tACS, RNS and TMS will be used.

Thereby, as a general search strategy, combinations of these key words will be applied, according to the
availability of each database; and, whenever possible, the filter “random” will be used.

The full search strategy can be found in the attached PDF document (link provided below).

No publication data, or language restrictions will be imposed.

17. URL to search strategy.

Give a link to a published pdf/iword document detailing either the search strategy or an example of a search
strategy for a specific database if available (including the keywords that will be used in the search strategies),
or upload your search strategy.

Do NOT provide links to your search results.

https://www.crd.york.ac.uk/PROSPEROFILES/54563_STRATEGY_20170008.pdf

Do not make this file publicly available until the review is complete

18. * Condition or domain being studied.

Give a short description of the disease, condition or healthcare domain being studied. This could include
health and wellbeing outcomes.

Stroke. Upper limb rehabilitation.

19. * Participants/population.

Give summary criteria for the participants or populations being studied by the review. The preferred format
includes details of both inclusion and exclusion criteria.

Patients with upper limb paresis due to stroke will be included. No restrictions will be imposed regarding: age,
residual upper limb motor-function, time since last stroke, type of stroke or history of previous strokes.
Cerebellar strokes or strokes in cerebellar pathways will not be included, except in relation to irrelevant parts
of the sample for which the data has been separately reported.

20. * Intervention(s), exposure(s).

Give full and clear descriptions or definitions of the nature of the interventions or the exposures to be
reviewed.

Trials that consider the association of robotic therapy and NIBS for the improvement of upper limb motor
performance.

Robotics will be defined as “The application of electronic computerized control systems to mechanical
devices designed to perform human function [...].” (PubMed [MEDLINE], MeSH database, 2005); and NIBS
will be defined considering the most used forms of tES (tDCS; tACS; RNS) and TMS.

All of the protocols associating these two interventions as rehabilitation tools will be included. Studies using

robotic devices and TMS only as an evaluation tool for kinetic and kinematic analyses or for cortical
excitability will not be included.

21. * Comparator(s)/control.



Where relevant, give details of the alternatives against which the main subject/topic of the review will be
compared (e.g. another intervention or a non-exposed control group). The preferred format includes details of
both inclusion and exclusion criteria.

Trials that consider as control groups: robot-assisted therapy associated with sham NIBS; robot-assisted
therapy associated with usual care; or robot-assisted therapy alone.

22.* Types of study to be included.

Give details of the types of study (study designs) eligible for inclusion in the review. If there are no restrictions
on the types of study design eligible for inclusion, or certain study types are excluded, this should be stated.
The preferred format includes details of both inclusion and exclusion criteria.

Randomized clinical trials with parallel design. Abstracts and finalized but non-published studies will be
included if they present sufficient effect measures, or authors will be contacted and asked to provide any
missing data. Cluster or crossover trials will not be included.

23. Context.

Give summary details of the setting and other relevant characteristics which help define the inclusion or
exclusion criteria.

24.* Main outcome(s).

Give the pre-specified main (most important) outcomes of the review, including details of how the outcome is
defined and measured and when these measurement are made, if these are part of the review inclusion
criteria.

The motor performance of the upper limb measured using standard scales, such as the Fugl-Meyer
assessment scale; the Wolf motor function test; the Ashworth scale; the action research arm test; the motor
activity log; the box and blocks test; the nine hole peg test; the motor assessment scale; and the Jebsen
Taylor hand test.

Timing and effect measures
Post-intervention mean and standard deviation data will be extracted from each study.

If more than one effect measure is present, the choice of scale (given in full above) to be used will be
determined as follows: 1. FM; 2. WMFT; 3. Ashworth; 4. ARAT; 5. MAL; 6. BBT; 7. NHPT; 8. MAS; and 9.
JTHT. The choice of timing will be determined in the following manner: 1. From the 25th session; 2. from the
19th to the 24th session; 3. from the 13th to the 18th session; 4. up to the 12th session.

25. * Additional outcome(s).

List the pre-specified additional outcomes of the review, with a similar level of detail to that required for main
outcomes. Where there are no additional outcomes please state ‘None’ or ‘Not applicable’ as appropriate to
the review

None.

Timing and effect
measures None.

26. * Data extraction (selection and coding).

Describe how studies will be selected for inclusion. State what data will be extracted or obtained. State how
this will be done and recorded.

Titles and/or abstracts of studies retrieved using the search strategy and those from additional sources will be
screened independently by two reviewers to identify studies that potentially meet the inclusion criteria. In case



of disagreement, the issue will be resolved by consensus. If consensus is not possible, a third reviewer will be
consulted.

Reading of the full-text articles will be done by the same two reviewers, and studies will be selected according
to the inclusion and exclusion criteria. Disagreements between the two reviewers will again be resolved by
consensus, with the involvement of a third reviewer if required.

Data will be extracted from the records to a specific extraction form by two reviewers. Disagreements will be
resolved by consensus, and if consensus is not possible, a third reviewer will be consulted. If more than one
record of the same study is identified, the data will be compiled once in the extraction form. If inconsistencies
across reports are identified, or, if there is a lack of, or unclear information, authors will be asked for
clarification, or requests will be made for the provision of the missing information. A maximum of three emails
will be sent in an attempt to gain contact.

The following information will be extracted from each study:
a) Population characteristics:

Age, gender, history of previous strokes, time since last stroke (acute, sub-acute, chronic), type of stroke,
affected hemisphere, site of the lesion, stroke severity, handedness.

b) Intervention characteristics:
General: intervention design; number and frequency of sessions; number in each group.

Non-invasive brain stimulation: sort of NIBS, protocol used (including parameters of stimulation and the type
equipment used); device used; application duration, timing of application (online; offline).

Robot-therapy: device used; joints targeted (shoulder/elbow; wrist/hand); bimanual or unimanual approach;
principle of the device (exoskeletal or end-effector); amount of movement per session.

Outcome measures: mean and standard deviation post-intervention in the scale being used.

27. * Risk of bias (quality) assessment.

Describe the method of assessing risk of bias or quality assessment. State which characteristics of the studies
will be assessed and any formal risk of bias tools that will be used.

Publication bias will be assessed independendly by two reviewers. Disagreements will be settled by
consensus. If consensus is not possible, a third reviewer will be consulted. If inconsistencies are identified, or,
if there is a lack of, or unclear information, authors will be asked for clarification or to request that the missing
information is provided. A maximum of three emails will sent in an attempt to gain contact.

The following domains will be assessed for each study: randomization; concealment allocation; blinding;
intention-to-treat principle; extent of loss; sample homogeneity; sample representativeness; sample
calculation; and information regarding early cessation of trials. For each domain, the study will be classified
as high risk of bias; low risk of bias; or unclear risk of bias.

Classification of bias will not be used as a criterion on which to exclude studies from a possible meta-
analysis, but studies classified as high risk of bias or unclear will be analyzed in subgroups, and will be
included in an evidence quality analysis using GRADEpro GDT.

28. * Strategy for data synthesis.

Provide details of the planned synthesis including a rationale for the methods selected. This must not be
generic text but should be specific to your review and describe how the proposed analysis will be applied
to your data.

The effect measures (mean and standard deviations) will be entered into RevMan 5.1. (Review Manager 5.1)
and a forest plot, funnel plot, heterogeneity assessment and standardized mean difference calculation will be



conducted. In addition, 95% confidence intervals will be determined, random effects modelling will be
conducted, and the Mantel-Haenszel method applied.

29. * Analysis of subgroups or subsets.

State any planned investigation of ‘subgroups’. Be clear and specific about which type of study or participant
will be included in each group or covariate investigated. State the planned analytic approach.

The intention is to conduct subgroup meta-analyses for the following: risk of bias; joints involved (shoulder;
elbow; wrist; hand); time since the last stroke (acute; sub-acute; chronic); unimanual or bimanual approach;
NIBS principle (increasing or decreasing of cortical excitability); timing of stimulation (online; offline).

30. * Type and method of review.

Select the type of review and the review method from the lists below. Select the health area(s) of interest for
your review. Type of review

Cost effectiveness No
Diagnostic No
Epidemiologic No
Individual patient data (IPD) meta-analysis No
Intervention No
Meta-analysis Yes
Methodology No
Narrative synthesis No
Network meta-analysis No
Pre-clinical No
Prevention No
Prognostic No
Prospective meta-analysis (PMA) No
Review of reviews No
Service delivery No
Synthesis of qualitative studies No
Systematic review Yes
Other No

Health area of the review

Alcohol/substance misuse/abuse No



Blood and immune system

Cancer

Cardiovascular

Care of the elderly

Child health

Complementary therapies

Crime and justice

Dental

Digestive system

Ear, nose and throat

Education

Endocrine and metabolic disorders

Eye disorders

General interest

Genetics

Health inequalities/health equity

Infections and infestations

International development

Mental health and behavioural conditions

Musculoskeletal

Neurological

Nursing

Obstetrics and gynaecology

Oral health

Palliative care

Perioperative care

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No

No



Physiotherapy No

Pregnancy and childbirth No
Public health (including social determinants of health) No
Rehabilitation No
Respiratory disorders No
Service delivery No
Skin disorders No
Social care No
Surgery No
Tropical Medicine No
Urological No
Wounds, injuries and accidents No
Violence and abuse No

31. Language.
Select each language individually to add it to the list below, use the bin icon to remove any added in error.
English

There is an English language summary.

32.* Country.

Select the country in which the review is being carried out from the drop down list. For multi-national
collaborations select all the countries involved.

Brazil

33. Other registration details.

Give the name of any organisation where the systematic review title or protocol is registered (such as with The
Campbell Collaboration, or The Joanna Briggs Institute) together with any unique identification number
assigned. (N.B. Registration details for Cochrane protocols will be automatically entered). If extracted data will
be stored and made available through a repository such as the Systematic Review Data Repository (SRDR),
details and a link should be included here. If none, leave blank.

34. Reference and/or URL for published protocol.

Give the citation and link for the published protocol, if there is one

No | do not make this file publicly available until the review is complete



35. Dissemination plans.

Give brief details of plans for communicating essential messages from the review to the appropriate
audiences.

On completion of the review, a paper will be submitted to a leading journal in the field.

Do you intend to publish the review on completion?

Yes

36. Keywords.

Give words or phrases that best describe the review. Separate keywords with a semicolon or new line.
Keywords will help users find the review in the Register (the words do not appear in the public record but are
included in searches). Be as specific and precise as possible. Avoid acronyms and abbreviations unless
these are in wide use. Systematic review

Meta-analysis

Stroke

Rehabilitation

Upper limbs

Robotic

Non-invasive brain stimulation

37. Details of any existing review of the same topic by the same authors.

Give details of earlier versions of the systematic review if an update of an existing review is being registered,
including full bibliographic reference if possible.

38. * Current review status.

Review status should be updated when the review is completed and when it is published. For newregistrations
the review must be Ongoing.

Review_0Ongoing

39. Any additional information.

Provide any other information the review team feel is relevant to the registration of the review.

40. Details of final report/publication(s).

This field should be left empty until details of the completed review are available.



