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RESUMO 
 

Moreira LI. Desenvolvimento de modelos preditores de resposta clínica em doentes 

com dor crônica com técnicas de inteligência artificial [dissertação]. São Paulo: 

Faculdade de Medicina de São Paulo, Universidade de São Paulo; 2023. 

 
Introdução: A dor é o sintoma mais prevalente no ser humano, está entre as três 

principais causas globais de anos vividos com incapacidade. O tratamento 

inadequado da dor é grave problema de saúde pública. O uso de abordagens de 

inteligência artificial (IA) nas áreas da saúde possibilita melhora da prevenção, 

detecção, diagnóstico, tratamento das doenças e utilização de recursos de saúde e 

pode transformar os modelos de prestação de cuidados à saúde. Objetivo: se os 

modelos de aprendizado de máquina são capazes de predizer melhora significativa 

ou não em doentes com dor com base nas informações da primeira consulta. Método: 

Foram analisados dados de 506 doentes atendidos no Ambulatório do Centro de Dor 

da Clínica Neurológica do Hospital das Clínicas da Faculdade de Medicina da 

Universidade de São Paulo, coletados por uma interface sistematizada e padronizada 

de avaliação no período de 1 ano. Os desfechos foram a melhora de dor com base na 

escala verbal analógica (EVA) e impressão global de mudança pela versão do médico 

e do doente (IGM). A análise descritiva foi realizada por estatística simples. Uma 

abordagem de aprendizado de máquina (AM) supervisionada foi realizada a partir de 

um algoritmo desenvolvido e um total de 338 atributos relacionados a dor foram 

incluídos no estudo. O algoritmo foi treinado a partir de algoritmos de Random Forest 

e XGBoost disponíveis. O desempenho foi avaliado pela métrica da Área Sobre a 

Curva (AUC – ROC) e os fatores explicativos apresentados como gráficos de resumo 

SHAP. Resultados: Os resultados fornecem evidência de que o AM tem potencial de 

auxiliar no manejo da dor e a tomada de decisões clínicas. Os modelos gerados 

originaram um questionário com 12 questões com as melhores variáveis. Conclusão: 

Os resultados deste estudo sugerem que o uso de IA tem efeito positivo no 

gerenciamento do doente com dor e são necessários mais estudos com abordagens 

de IA nos doentes com dor crônica. 

 

Palavras-chaves: Dor crônica. Inteligência artificial. Tratamento. Aprendizado de 

máquina. Controle da dor. 



 

 

ABSTRACT 
 

Moreira LI. Development of predictive models of clinical response in patients with 

chronic pain with artificial intelligence techniques [dissertation]. São Paulo: “Faculdade 

de Medicina, Universidade de São Paulo”; 2023. 

 

Introduction: Pain is the most prevalent symptom in humans; it is among the three main 

global causes of years lived with disability. Inadequate pain treatment is a severe 

public health problem. Artificial intelligence (AI) approaches in healthcare enable 

improved prevention, detection, diagnosis, treatment of diseases, and utilization of 

healthcare resources and can transform healthcare delivery models. Objective: 

whether machine learning models can predict significant improvement or not in 

patients with pain based on information from the first consultation. Method: Data from 

506 patients who attended the Ambulatory of the Pain Center of the Neurological Clinic 

of the Hospital das Clínicas of the Faculty of Medicine of the University of São Paulo 

were analyzed, collected by a systematized and standardized interface of evaluation 

in 1 year. Outcomes were improvement in pain based on the verbal analog scale (VAS) 

and global impression of change by the doctor and patient version (GIC). Descriptive 

analysis was performed using simple statistics. A supervised machine learning (ML) 

approach was performed using a developed algorithm, and 338 pain-related attributes 

were included in the study. The algorithm was trained from available Random Forest 

and XGBoost algorithms. Performance was evaluated by the Area Under Curve (AUC 

– ROC) metric, and the explanatory factors were presented as SHAP summary graphs. 

Results: The results provide evidence that BF has the potential to help with pain 

management and clinical decision-making. The generated models originated a 

questionnaire with 12 questions with the best variables. Conclusion: The results of this 

study suggest that the use of AI has a positive effect on the management of patients 

with pain, and further studies are needed with AI approaches in patients with chronic 

pain. 
 
Keywords: Chronic pain. Artificial intelligence. Treatment. Machine learning. Pain 
control. 
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DEFINITIONS 
 

Accuracy Refers to how close to reality the results are found. For 
example, in a model with an accuracy of 70%, the model is 
correct at 70 predictions for every 100 predictions made. 

Clustering A form of prediction that combines results from a collection of 
models. Increase model accuracy. 

Algorithms Are sets of steps, rules and/or processes that a computer can 
follow to obtain a solution to a specific type of problem. 

Machine Learning It is a data analysis method that allows systems, after being 
trained, to create algorithms capable of modifying and 
improving with experience  

 Deep Learning It is often defined as a subset of machine learning. It refers to 
the use of neural networks in several layers that repeat a task, 
learn progressively, and seek the gradual improvement of 
results (58,60) 

Baseline Is the model used as a reference point to compare the 
performance of another model, usually more complex. 

Test base This is data presented to the model that simulates real 
forecasts to verify the real performance. 

Training base Set of data used by a training algorithm to create a model. 
Class Category of a set of enumerated target values for a label. For 

example, in a chronic pain binary classification model, there 
are two classes, with pain and without pain. 

Dataset A dataset or "dataset" is a collection of data that is usually 
tabulated. 

Ensemble Is a machine learning technique that combines the result of 
multiple models in order to produce a better predictive model. 

Random Forest Estimate based on decision tree models. 
Framework Is a library that unites codes with several functions ready to be 

imported and used. They have many different resources and 
algorithms already optimized. 

Big data Refers to large sets of data. 
Artificial Intelligence Technological advancement that allows computer systems to 

perform tasks that would be performed by humans.  
Instance Records in the dataset about which you want to make a 

prediction. For example, each instance could be a record 
containing patient information such as age, weight. 

Threshold A threshold value criterion, higher and lower, used as a 
parameter. 

Model A statistical representation of a forecasting task. Train a model 
and then use the model to make predictions. 

Overfitting Occurs when the model learns the details in the training data. 
In machine learning, the aim is to create a model that learns 
about the data and then makes predictions with the input of 
new data. 

Precision It is the ratio between the True Positives and all Positives. It 
would be the measure of patients that were identified among 
all patients. 



 

 

Features It transforms raw data into data processed as features ready 
to be used by any model. For example, an instance with 
patient data would have a resource indicating gender. 

Label A response (outcome) to a prediction task. For example, the 
instance label defined in this project would be a pain, 
indicating whether or not the patient has improved. 

Validation A process used, as part of training, to assess the quality of a 
machine learning model. Because the validation set is 
separate from the training set, validation helps ensure that the 
model's performance generalizes beyond the training set. 
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1 INTRODUCTION 
 

Pain is the most prevalent symptom in humans (1). More than 45% of Brazilians 

have chronic pain, and in the state of São Paulo, pain is present in 31% of the 

population (2). Its prevalence is increasing due to the aging of the population, which is 

due to the improvement of sanitary conditions, nutrition, quality of life, and therapeutic 

interventions aimed at the treatment of naturally disabling or fatal conditions (3); it is 

an important social, economic and assistance burden (4). 

The International Association for the Study of Pain (IASP) defines pain as “an 

unpleasant sensory and emotional experience associated, or similar to that associated 

with actual or potential tissue damage”; and it is characterized as chronic when the 

pain lasts longer than three months (5). 

Patients with chronic pain use health services five times more often than those 

without pain and require specialized care, generally multidisciplinary, involving 

medication, physical medicine and rehabilitation procedures, mental health, and, often, 

neuroanesthetic procedures and functional neurosurgical devices (3). In addition, 

associated morbidities are common in patients with chronic pain, among them anxiety, 

depression, sleep disorders, fatigue, and impairment of physical and mental 

performance (6). 

Pain is often a warning of a medical condition or injury. Treatment of the underlying 

medical condition is crucial and can improve the pain, but the pain may persist despite 

treatment of the initial condition that caused it. Therefore, the epidemiological issue is 

aggravated due to incurability, that is, many patients who suffer from it have their 

suffering refractory to the available treatments and, consequently, the resulting 

disability becomes progressive (5, 7). According to the Global Burden of Disease 

Study, low back pain and neck pain are among the three leading global causes of years 

lived with disability (8). 

Predicting the evolution of chronic pain and the possibility of its relief is difficult 

because it has different etiologies, such as trauma, neoplasms, and functional 

disorders, among others that are often difficult to detect in the first consultations (9). 

Chronic pain is usually refractory to treatment because its diagnosis is usually difficult, 

its treatment is prolonged, the possibility of improvement is low and when it occurs it 

is slow even with the use of well-structured therapies and with high costs (10). Many 
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therapeutic schemes have been developed using analgesics and other 

pharmacological treatments, physical therapies, rehabilitation methods, 

psychotherapies, and functional anesthetic and neurosurgical procedures to treat and 

prevent pain (11, 12). As a consequence of population aging, the social burden of 

chronic pain management must increase considerably and new innovative procedures 

aimed at its management must be implemented (13). In addition to the primary costs, 

there are those related to the displacement of patients to treatment centers and 

abstention from work, school, family, and social activities, which can compromise the 

follow-up and the result of interventions (14). 

Treating patients with pain is increasingly recognized as a mandatory 

component of curricula related to health areas and government policies (15). The 

scarcity of knowledge about prevention, application of treatments, rehabilitation, and 

monitoring of patients with pain can result in ineffective treatments, iatrogenesis, and 

idiosyncrasy (16). Unsatisfactory pain treatment is a serious public health problem and 

further compromises patients' quality of life (17) and worsens their isolation, 

depression, anxiety, frustration, sleep disorders, and fatigue (3). 

According to the guidelines proposed by the IASP, treatment should focus on 

pain mechanisms and the medication mechanism of action (18). Pharmacological 

interventions are generally the first-line therapies in pain control (19). Although chronic 

pain is a global problem, there are still gaps. 

With the increasing application of information technologies (IT) in health policies 

and their relevance in patient care, there is a need to develop studies that make it 

possible to analyze the real scope of these modalities of access to information and 

understand the themes applied in the medicine to improve the activity and attitude of 

health professionals, based on the characteristics of patients and doctor-patient 

relationships (20). In addition, computational science methods can incorporate clinical 

and experimental data, even complex ones, to better understand the complexity of pain 

management (21). 

Scientific computing, which is the science that studies data processing 

techniques and methods with a focus on the development of algorithms, made 

significant progress with the popularization of computer and internet access, the use 

of databases and their mining to generate knowledge, remote monitoring techniques, 

the use of virtual reality and computational simulation (22). In medicine, the use of this 

reality originated in the 20th century with the term “telemedicine” (23). 
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The use of Artificial Intelligence (AI) in medicine makes it possible to learn (train, 

build, formulate, or induce a knowledge model) with a data set and look for patterns 

following algorithms defined by specialists who are capable of proposing solutions to 

medical problems (24), such as the Machine Learning (ML) technique, which uses 

algorithms based on mathematics and statistics to perform learning. Among data 

science techniques, ML stands out as a set of methods that make it possible to detect 

patterns in data and, based on discovered patterns, predict or classify future data to 

analyze structures such as subgroups of data or extract information from data. 

Adequate to generate new knowledge (21). The use of ML is based on the need to 

process and obtain useful information from large volumes of data in situations where 

it is impracticable to perform processing and analysis manually. There are expectations 

that in health, AI will make it possible to improve the prevention, detection, diagnosis, 

and treatment of diseases and transform healthcare delivery models (25) . 

There is great interest that the application of ML methods corroborates to 

identify predictive variables of improvement in treatments for making clinical decisions 

with a greater probability of effectiveness (14). Understanding what induces a 

prediction is essential to determine the appropriately targeted interventions in clinical 

settings, for this reason, ML methods employed in clinical applications move away from 

complex models, although more accurate, and mold themselves into more simple 

interpretable models (e.g., linear) (26). 

Although many studies are based on ML to diagnose chronic pain, little attention 

has been given to its treatment and management. There have been many attempts to 

carry out traditional studies seeking answers about the possibilities of pain 

improvement or not with the use of specific characteristics of chronic pain, many of 

them with a psychological nature. Therefore, research on AI and its methods, such as 

ML, in treating and rehabilitating patients with chronic pain has become relevant. Some 

works evaluate the use of AI in the self-management of pain, with the creation of 

mechanisms that the patient uses to manage his pain, such as applications. Virtual 

reality enables a wide range of health data, both in clinical and non-clinical settings, 

and can potentially be applied with ML algorithms to support chronic pain research. 

These analyses can help predict, identify, and treat diseases (27). 

To carry out the present study, structured and unstructured data from patients 

with chronic pain of different causes were analyzed to highlight the most important 

attributes of pain characteristics with the objective of mapping the patient's information 
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collected in their first consultation for each outcome used. The result indicates whether 

or not the patient will experience significant relief in pain sensation. Furthermore, the 

analysis of these variables may enable the development of procedures aimed at 

improving pain and use this technology to detect patients with a high probability of not 

benefiting from the usual treatments and enable the development of new individualized 

therapies, medication, physical medicine and rehabilitation, mental health or based on 

the execution of invasive procedures. 
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2 OBJECTIVES 
 

2.1  Primary  

 

To identify predictive characteristics of pain improvement in patients who do not 

respond to pain treatments. 

 

2.2  Secondary 

 

To develop a questionnaire with these predictive characteristics. 
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3 LITERATURE REVIEW 

 

3.1  Chronic pain 

 

Pain is a biological phenomenon with a subjective psychological dimension that 

emerges from brain activity; various nuances of behavior and cognition influence it. It 

is a complex condition dependent on the interaction between biological, psychological, 

ethical, age, and social factors (28). 

According to the IASP, pain was defined in 1979 as “an unpleasant sensory and 

emotional experience associated with actual or potential tissue damage or described 

in terms of such damage”. In 2020, this concept was revised and aims to expand the 

scope of the definition of pain, which is now conceptualized as an “unpleasant sensory 

and emotional experience associated with or similar to that resulting from actual or 

potential tissue injury” (5, 29). Complementing the new definition, the authors included 

six explanatory notes about pain:  

1. Pain is always a personal experience and is influenced by biological, 

psychological, and social factors (5, 29). 

2. Pain and nociception are not the same phenomenon and cannot be 

exclusively determined by the activity of sensitive neurons (5, 29). 

3. Each person's experience interferes with the concept of pain (5, 29). 

4. Self-report of pain should be considered (5, 29). 

5. Although the individual generally adapts to pain, it can have negative effects 

on social and psychological well-being (5, 29). 

6. The inability to communicate may not reveal that a human being or a non-

human animal is experiencing pain; that is, the verbal description is just one 

of several behaviors or instruments to express pain (5, 29). 

Pain is generally classified as acute or chronic according to duration (30). Chronic 

pain differs from acute pain in numerous ways as a specific disease or injury usually 

causes acute pain due to tissue damage inflammation or a disease process that lasts 

for days or a few weeks and resolves as the cause or the injured tissue heals (31). 

Pain is considered chronic when it persists or recurs for more than three months, 

persists for a long time after the cure of the disease or causal injury, and can manifest 

itself even in the absence of injury, that is, more than what is observed about acute 
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pain, there is not a direct relation between the magnitude of the tissue injury and the 

intensity of the pain (32), it may persist for days, weeks, months, years or permanently 

after the injury, or it may not have a defined etiology, that is, chronic pathological pain 

becomes a disease (33). Additionally, chronic pain causes suffering, disability, and 

negative biopsychosocial impact (3). It often becomes some patients' only clinical or 

predominant problem (34). Chronic pain incorporates several physical, psychological, 

and social factors (35). It is a complex biopsychosocial experience, clearly influenced 

by neurological and psychosocial processes (36). 

Chronic pain is a serious public health problem. More than 45% of the Brazilian 

population has chronic pain (2). In developed countries, the prevalence is also high; 

up to 50% of the general population can be affected by chronic pain (35). These 

patients use health services five times more than patients without pain and require 

specialized care (37, 38), generally multidisciplinary, involving medication, physical 

and mental health rehabilitation, and often physical medicine, neuroanesthetic, and 

functional neurosurgical devices. It is one of the most common diseases that affect 

humans and the most common cause of years lived with disability in the world (39, 40). 

According to the last study published in 2019 by the Global Burden of Disease Study 

(GBD), chronic pain is among the ten diseases that most affect years lived with 

disability (AVIs), a metric composed not only of the prevalence of diseases but also of 

the morbidities, mortalities, and age of occurrence experienced by young people, 

adults and the elderly. Among the ten diseases most commonly affect humanity, two 

are chronic pain: musculoskeletal disorders, and headaches, which most burden the 

health system. Over the past 30 years, global health has improved, but the number of 

years lived with a disability has remained stable. Among the main public health 

problems, the inappropriate use of analgesics in therapies that are not efficient in pain 

management stands out (8). 

The reduced work capacity of patients with chronic pain results in enormous costs 

with sick leave and benefits arising from disability, the high consumption of health 

resources, and expenses related to issues arising from the labor market (10). The 

chance of an unemployed individual with chronic pain is twice as high as the general 

population (41). In addition, mortality rates are 2.5 times higher in individuals affected 

by chronic pain (42). 

Pain is classified, according to its pathophysiology, as nociceptive pain when 

there is continuous inflammation and demonstrable tissue damage (osteoarthritis, 
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rheumatoid arthritis, fracture, injury, trauma, etc.) (5); neuropathic pain, when there is 

damage to structures of the peripheral or central somatosensory system, and can be 

felt in areas without tissue damage, far from the damage or disease of the nervous 

system (43); nociplastic pain when there is no identifiable causal lesion (44); or mixed 

pain when combining nociceptive, neuroplastic and nociplastic profiles. To be 

considered neuropathic pain, some questions must be accounted for, that is, 

characteristic verbal descriptors (burning, stinging, numbness) (45), plausible 

anatomical distribution for the pain complaint and presence of causal health condition, 

such as diabetes mellitus, neurotoxicity, trauma, among others (43, 46). Nociplastic 

pain results from abnormal processing or modulation of nociception or other 

perceptions without clear evidence of tissue damage activating nociceptors and/or 

injury or disease of the somatosensory system. Pain is mixed when it results from 

damage to somatosensory nervous system structures and other organs or tissues, as 

it occurs in cancer patients, for example (47-49). 

Despite recent advances in pain research, there are still no effective measures 

to treat most patients with chronic pain. Frequently, the cause of chronic pain is 

unknown; its occurrence is unaccompanied by objective findings, and effective 

methods to detect it are unknown, which makes treatment and management complex 

and generally ineffective. In addition, due to the high variability of presentation and 

patient characteristics, appropriate care for patients in chronic pain management 

requires personalized attitudes regarding pain intensity and duration, disease status, 

tolerability and tolerance of possible adverse events, and risk of drug abuse (50). 

As pain is an individualized experience, it has a multifactorial etiology, and 

understanding the biological, social, physical, and psychological contexts is essential 

for the treatment to be satisfactory; it is not directly related to the intensity and nature 

of nociceptive stimuli and biomedical mechanisms but of the interaction of various 

psychological and social dimensions. Therefore, it is more accurately qualified and 

quantified when reported (30, 32). Nevertheless, universal standards still must be for 

preventing and treating chronic pain (51). Therefore, self-report instruments and 

standardized questionnaires to assess pain intensity, functional abilities, beliefs and 

expectations, and emotional distress have been developed in several languages and 

help with treatment planning (52). 
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3.2 Pain management 

 

The therapeutic protocol for chronic pain is based on medication, lifestyle 

changes, and rehabilitation (53). 

The treatment of chronic pain must be interdisciplinary, as it is a multidimensional 

experience, i.e., with physical, cognitive, psychological, and behavioral aspects that 

involve follow-up and clinical assistance, with pharmacological, physical, and 

psychological methods (32) and must have a multimodal treatment approach (54). The 

treatment is evaluated by the type of pain, the cause, and personal characteristics (53). 

It aims to relieve pain, minimize discomfort, and improve the quality of life, functions, 

and performance of carrying out activities. Therefore, all professionals in the 

multidisciplinary team must know epidemiology, anatomy, physiology, biochemistry, 

clinical psychological aspects, and pharmacological, rehabilitation, and reintegration 

interventions related to pain (3). 

One of the main barriers to pain management is the lack of knowledge about 

diagnoses, therapies, rehabilitation, and reintegration of patients with pain (55). 

Inadequate management affects approximately 80% of the global population (56). 

Chronic pain is rarely cured; physicians and patients should focus on improving 

activities, functionality, and quality of life, even when it persists. Many therapeutic 

strategies incorporate trial and error in which medications and procedures are tested 

until the most effective ones are identified, at the expense of medical visits, 

reassessments, and frequent adjustments of intervention modalities and magnitudes 

(56, 57). Despite the publication of several guidelines and recommendations for 

treatment, up to 40% of patients with chronic pain remain symptomatic due to the 

heterogeneity of chronic pain mechanisms and individual variables that are not linearly 

related to the etiology of pain but to the interaction of its pathophysiology, individual 

variables, and social contexts. One of the recommendable precepts for treating chronic 

pain is the observation of clinical evaluations in sequential appointments (58). 

The treatment of chronic pain is based on the World Health Organization (WHO) 

Analgesic Ladder (Figure 1), which was released in 1986 with the original proposal to 

treat cancer pain (12, 59, 60) and which was expanded to treat also patients with pain 

not caused by the oncological disease. According to the WHO Analgesic Ladder (11), 

non-steroidal anti-inflammatory drugs (NSAIDs) are recommended on the first rung to 

treat mild pain, weak opioids to treat moderate pain on the second, and potent opioids 
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to treat intense pain on the third step. Adjuvant drugs can be incorporated at all steps. 

The Analgesic Ladder is part of the WHO Program entitled “Pain in Cancer and 

Palliative Care” and has undergone several modifications over the years (61). Despite 

criticism, it is still a reference for controlling pain in cancer patients and non-oncological 

acute and chronic pain conditions. It was recommended to use the WHO Analgesic 

Ladder only in a unidirectional way; that is, if there is a need for more advanced 

interventions due to the worsening of the pain, the treatment included drugs from 

higher steps. Recently, the bidirectional application of the Analgesic Ladder has been 

proposed; that is, the treatment must adapt to the intensity of the pain in ascending 

steps. When improvement occurs, it must be used in the descending direction. A step 

was also added to the ladder. The fourth step includes non-pharmacological 

procedures, that is, interventional and minimally invasive, recommended to treat 

persistent pain, combined with other methods. Among these procedures, epidural 

analgesia, prolonged administration of analgesics and anesthetics with or without 

implantable pumps or not, and functional neurosurgical analgesic procedures (for 

example, lumbar percutaneous adhesiolysis, rhizotomy, cordotomy) stand out; 

electrical neuromodulation of the nervous system (for example, brain stimulation of the 

spinal cord or peripheral nervous system), anesthetic blocks of peripheral nerves with 

physical or chemical means, and among other procedures (12, 61). 

 

Figure 1 - Adapted WHO Analgesic Ladder  

 
Fonte: Anekar, Cascella (2022). WHO Analgesic Ladder is still a reference in pain 
management in oncological patients and is being extended for pain settings in 
acute and non-oncological diseases (11). 
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Non-biologically based treatments are essential to improve therapeutic outcomes 

in chronic pain. Among them are rehabilitation, physiotherapy, occupational therapy, 

nutrition, and psychological therapies, including cognitive behavioral therapy and 

acupuncture (62). Drug treatment uses analgesics, tricyclic or dual antidepressants, 

anticonvulsants, and weak or strong opioids (63). A balance must be found between 

effective treatment and acceptable side effects (54). Unfortunately, the 

pharmacological, interventional, behavioral, and surgical therapies used to treat 

chronic pain have limited effectiveness in reducing pain, functional recovery, and 

returning to work. In addition, there is a high occurrence of continuous dependence on 

opioid analgesics (64). 

The critical challenge in pain management arises because pain cannot be 

measured directly. Although several methods for multidimensional pain assessments 

have been proposed, the gold standard of data collection is self-report (52). The 

current definition of pain by the IASP evidences verbal self-report compared to non-

verbal assessments, as it makes it possible to register valuable information, even in 

animals and humans with compromised cognition or linguistic inability (5). 

Self-reports and non-standard or low-precision questionnaires are the most used 

assessment tools in patients with pain and one of the most expressive causes of 

assessment errors compared to other areas of medicine; i.e., the importance of the 

appropriate collection is emphasized, of real-life data to develop strategies and 

improve the care of patients with pain using AI (14). 

Improving the treatment and management of chronic pain and improving patients' 

quality of life also reduce social costs (27). A comprehensive assessment of each 

patient's specific biological, psychosocial, and psychobehavioral etiologies will likely 

improve the quality of care. The first consultation is a special moment in the patient's 

clinical history, as it can improve adherence to treatment and engagement with long-

term care (65). Treatments with virtual tools have become fundamental in reaching 

patients regardless of location (53). 

  

3.3  Health records 

 

The health record, also called medical records, have common characteristics that 

must be adopted in accordance with the Resolution of the Federal Council of Medicine. 
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The medical record is a single document about the patient's health and the care 

provided to him; it has a legal, confidential, and scientific character (66). 

The health record is essential in clinical practice, as health professionals use the 

clinical and evolutionary history of the patient during their follow-up to make clinical 

and managerial decisions to support research and professional training; therefore, the 

quality of records is a portrait of the quality of care provided (67). 

All records must be completed objectively, allowing for their reading, 

identification, and location. However, some studies point to the low quality of the health 

record in terms of illegibility, inconsistency of records, and lack of basic information on 

patient follow-up (68-70). 

The international literature advocates structuring the health record electronically, 

with standardization of patient assessment methods (71, 72) to improve the quality of 

care. However, in Brazil, the digitization of medical records is a late novelty; there are 

still specific medical records for each health unit, which are often on paper or 

digitalized, which makes it difficult to update and share patient information and places 

a logistical burden on health systems (73). 

Some studies demonstrate that even a simple platform, but one that meets 

clinical and documental needs related to medical evaluation, can be effective for 

recording patient treatment. Wilsey et al. demonstrated the importance of using a 

simple documentation system developed with the Microsoft Access program to help 

prescribe opioids and their use in 1,400 patients (61). 

Data availability and quality are essential to establish treatment, rehabilitation, 

and reintegration strategies for patients with chronic pain. In the 1970s and 1980s, few 

hospitals recorded structured data in computer systems. Hospitals that collected 

standardized data used their nomenclatures and definitions, a methodology that made 

attempts to algorithmically model pain difficult (51). Over time, vast amounts of data 

became available, and advances were made in the standardization of medical 

nomenclatures (74). Based on data from standardized records, it is possible to analyze 

this information and direct it toward adequate decision-making in management and 

care (75, 76). 

The use of IT in health began to be incorporated into electronic records at various 

stages of patient care, from initial care to diagnostic configuration, decision-making, 

and patient follow-up throughout treatment. Using standardized systems to assess 
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care can improve care providers' quality and efficiency and reduce interventions' costs 

(74). 

With the advancement of science, there is a demand for new methods of 

analyzing complex and unstructured data, that is, the analysis of large databases (big 

data). In the big data revolution, precision medicine and electronic medical records 

have great prominence, despite being at the beginning, as there is a large amount of 

quality data and the need for sampling as a tool to work with this variety of data and, 

thus, reduce the bias (77, 78). Scientific knowledge from current research points to 

results based on large averages. Personalized medicine or precision medicine aims to 

improve these results by customizing the treatment according to the biological 

characteristics of the patients. However, due to the multicausality of the diseases, it 

takes work to achieve 100% accuracy (79). Therefore, using standardized electronic 

medical records and digitizing all patient data by health services to encourage these 

new big data analyses is critical (73, 80). 

New techniques to ensure data confidentiality using encryption techniques will be 

increasingly incorporated into scientific research (81). 

 

3.4  Artificial Intelligence (AI) 

 

For many years scientists have been studying the possibilities of making computers 

learn similarly to human beings. The first industrial revolutions presented alternatives 

to automate processes to supply human labor efficiently and at a lower cost using 

machines. The Industrial Revolution 4.0 enabled processes and machines to 

communicate using computers and networks dedicated to these operations (Figure 2). 

All industrial revolutions focused on the independence of machines in production 

processes. The data analysis area followed this process by developing algorithms that 

respond autonomously and adapt to the data automatically without human intervention 

(73, 82-85). 
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Figure 2 – Stages of Industrial Revolution 

  
Source: Sakurai, Zuchi (2018) Graphic representation of the Industrial Revolution 
timeline depicting the historic milestones to the present day (82). 

 

In 1950 the British mathematician Alan Turing, considered the “father of 

computational science and AI”, published a book entitled “Computing Machinery and 

Intelligence” with the subtitle “Can machines think?”, the objective was to show if 

computers were capable of learning and convince a human being that they were talking 

to someone else and not a machine; this experiment was called the “imitation game” 

and later the “Turing test” (86). 

In 1956, the term AI was introduced during a Dartmouth College conference by 

John McCarthy et al., who defined it as “the science and engineering of making 

intelligent machines”. The conference spawned this new area of interdisciplinary 

research that provided the intellectual framework for subsequent computer research 

and development efforts (25). As it is a new area, it was also discussed which field the 

AI area was related to, whether computer science, engineering, or biomedicine. AI is 

a subfield of Computer Science and is a term used for the ability of a computer to 

model intelligent behavior with minimal human intervention (87). 

In the 1980s, a social revolution was expected due to increased access to 

computers and AI, with health areas being the main focus (88). However, some issues 

limited the growth in the use of computers, such as storing large amounts of data in 

the computer's main memory, which justified the introduction of the term "big data", 

which describes the set of large numbers of data that, despite the challenge of 

analyzing a large volume of information would make it possible to develop new 

knowledge, which would not be possible with usual data analysis (89). 

The most extensive relation between statistics and data science is forecasting 

and regression. Basic statistics focuses on performing inference; it uses a small 
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sample to draw conclusions about large populations. There has been growing 

development in the discipline of statistics in recent years related to data modeling. 

Exploratory data analysis (EDA) emerged in 1977 with John W. Turkey through the 

book Exploratory Data Analysis. It allowed quantitative analysis, greater access to 

extensive data, and the development of new technologies (77). 

With the increase in data and its complexity, the choice of traditional statistical 

methodology to analyze data presents limitations. Traditional statistics aims to find and 

interpret the relationship between data (confidence intervals and results). Compared 

to typical statistical analysis, AI works with high-dimensional data and many structures 

that cannot be represented in a simple statistical model, such as a linear regression 

graph. Furthermore, running conventional analyzes needs many assumptions about 

data to work correctly; the larger the volume of data, the harder it is to find patterns. AI 

methods, on the other hand, require considerably fewer assumptions about the data. 

One of the few assumptions is that the random variables are independent and 

identically distributed. ML methods are based on high accuracy and prediction but less 

on interpreting the generated model (90). In ML techniques, statistical methods assess 

relations between data characteristics and the proposed result. However, the use of 

the MA technique in a real clinical environment is limited due to the difficulty in 

interpreting its predictions, which limits the optimized use of methods, such as deep 

learning and models, to support medical decisions (26). 

In April 2021, GM Ordinance No. 4,617 was approved in Brazil, which instituted 

the Brazilian Strategy for Artificial Intelligence and its thematic axes to "guide the 

actions of the State in favor of fostering research, development, and innovation in 

artificial intelligence and guaranteeing innovation in the productive and social 

environment of the area" (91). 

The data comes from several sources: text, video, questionnaires, etc. The 

biggest challenge in data science is to work with raw data, that is, unstructured data, 

such as free texts. Unstructured data must be transformed into structured data, i.e.is, 

numerical or categorical data, being processed and manipulated. Converting 

numerical data into categorical data is often used in data analysis. The use of AI relies 

on deploying algorithmic software routines designed to analyze data and built upon 

large pre-filtered structured and unstructured datasets (88). Data is sorted by type to 

determine which programming language will best process it, for example, R or Python 

(77). 
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Before starting any analysis, it is necessary to standardize the programming 

language. Many languages and software are available for data analysis, for example, 

Stata, SPSS, R, Python, etc. The most commonly used languages are R, which is 

based on data analysis, and Python, a general programming language both have open 

and free libraries. Python is easily assimilated and very close to “natural language” and 

is considered the best language for programmers in other areas of expertise. It is 

commonly used due to its versatility and scope of applicability (92). 

AI is divided, according to the Association for the Advancement of Artificial 

Intelligence (AAAI), into the following sub-areas: AI Applications; Data Mining and Big 

Data; ML; Natural Language Processing; Automated Planning; Reasoning and 

Probabilistic Reasoning; Knowledge Representation; Robotics and Perception; Agent-

Based and Multiple-Agent Systems and Research (or Pathfinding) (92). 

AI is classified into virtual and physical. The physical part is a machine's 

hardware, and the virtual part is the software. The virtual component is divided into 

several branches, including MA, which uses mathematical algorithms to learn through 

experience based on historical data (89, 90). It differs from classical statistical methods 

because they are data-driven and do not impose a linear structure to the data (77). 

The term Machine Learning was first used in 1959 by Arthur Scherbius to 

describe algorithms that give "computers the ability to learn without being 

programmed". One of the basic requirements for any intelligent behavior is learning 

(93). Learning is the ability to adapt, modify and improve behaviors and responses. 

The term “learning”, used in ML analyses, can also be described as “training”, 

“building”, “formulating,” or “inducing” (89). In ML, systems learn patterns from the 

analysis of millions of data. Develops self-learning and self-improvement algorithms. 

The evolution of ML techniques aimed at increasing the storage capacity of current 

computers. It is defined as using algorithms that aim to extract information from data 

and represent them through a mathematical model used to make predictions or 

inferences by entering new data sets. It aims to discover patterns that explain the 

relations of the data among themselves, which would be impossible to be carried out 

by human beings (88). When making an estimate (test or prediction) for a data set of 

unknown values, it is referred to that the model is being “applied” (21). The focus of 

this technology is to be able to make decisions in isolation or with minimal human 

intervention (88). 
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ML may seem complex, but it combines simple ideas to produce highly accurate 

models that can “learn” from previous data. The ML application process can be divided 

into a few steps: defining the study problem; knowing the data that will be used; 

preparing these data in the pre-processing, transformation, and selection of variables; 

choosing the best algorithm; stipulating the method that will evaluate the performance 

of the generated models; finding better results; establishing the method for presenting 

the data (26). 

Commonly used types of ML algorithms are (88):  

• Unsupervised learning: These are classification and prediction algorithms 

based on previous examples. There is no label information; the estimated 

desired outputs are not informed, so the data are “unlabeled”. During training, 

the algorithm does not receive the expected outcomes and possibly discovers 

their relations through data exploration. The learning process, in this case, 

intends to identify similar data and group or organize them. 

• Supervised learning: It is the ability to find patterns. The data is labeled; it is 

known which output (outcome) is expected for each data input. The model is 

built from the input data (or dataset) in ordered pairs (input and desired output). 

Learning (or training) consists of presenting the algorithm with sufficient 

examples (records or instances) of desired inputs and outputs. The algorithm 

learns the general rule, correctly maps the inputs and outputs, and generates 

the final model.  

An ML model is a set of variables (or resources), where each variable has a “weight” 

that the machine learns through data inclusion. The final result, or equation, is 

generated from an ML algorithm. The development of this equation determines the 

model's performance, and its success depends on the algorithm used. Several 

different algorithms can be tested with the test data, varying the parameters of 

these algorithms in search of what performs best by the data scientist. To measure 

the result of the model, you can use cross-validation tests, separate the data into a 

training and test set, and others. For the final equation, the model relies on input 

data feeds to define the response of the output values. Interpretable models are 

simpler models, such as tree and linear regression models, in which, due to their 

simplicity, little effort is required to elaborate an explanation from the learned model 

(27). 
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To evaluate model performance, i.e., which model produces the most accurate 

predictions, the Cross Validation (CV) technique, consists of dividing the data into sets. 

One set is used for training, and the other for testing and evaluating the model's 

performance, basically alternating between training and testing and vice versa. Cross-

validation with five folds (or parts) is built into the XGBoost algorithm; it is unnecessary 

to program and specify the number of iterations required in the run. In this method, the 

available models are randomly partitioned into equal subsets of size N, obtaining the 

mean of N different estimates. Each estimate is obtained by keeping one of the N 

subsets for validation and the remaining N - 1 subsets for training. In the first iteration, 

the data were divided into five parts, four parts for training and 1 part for testing. In the 

second iteration, 1 part, different from the previous one, is used for testing while the 

rest is for training. This process is repeated five times so that every database goes 

through training and testing (94). 

Initially, before training the model, the data are randomly separated on a training 

and test basis, which means learning the weights to minimize the prediction error. In 

the training and testing technique, during the development of the MA application, a 

database, known as the training base, that is, the data are “taught” as training datasets, 

will be processed by the chosen algorithm, which will apply several rules, calculations, 

parameters, and comparisons, in search of a final equation that best fits the 

parameters used in this training. Algorithms learn from unprogrammed data and can 

be used to gain insights and predict decisions from large and complex data sets. 

Creating reliable ML models requires large volumes of training data. Therefore, you 

can find different models that perform similarly in training. These analyses can help 

better predict, identify, and treat diseases in healthcare. After the model was trained, 

the test base was used to evaluate performance with data input different from those 

already used. Test data, which is data, was not used in the development of the 

algorithm. In this step, the algorithms use parameters based on training data to confirm 

their performance and identify the one that presents the best result with new input data. 

Next, it is necessary to define the metric to evaluate the model, for example, the ROC 

curve, the area under the curve (AUC), and the confusion matrix. After these steps, 

the final model will be defined, and it can be used or not, in predicting new values, 

depending on its performance (27, 58).  

There are several algorithms for ML analysis, the most used are: 
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a. Explanatory Algorithms (95) (Linear Regression, Logistic Regression, SHAP, 

LIME): Creates explanatory models to understand the relations of model 

variables and identifies variables that have a statistical relations with the result. 

b. Clustering algorithms (95) (K-Means, Hierarchical Clustering): are used to 

perform cluster analysis. 

c. Dimensionality Reduction Algorithms (95) (PCA, LDA): reduces the number of 

input variables. 

d. Similarity Algorithm (77, 95) (KNN, Euclidean Distance, Cosine, Levenshtein, 

Jaro-Winkler, SVD, etc.): compare the similarity of the data. 

e. K-Nearest Neighbors (KNN): a method for classification and regression. 

Classify a record by assigning it to the class that has its counterpart. 

f. Ensemble Learning Algorithm (77, 96) (Random Forest, XGBoost, LightGBM, 

CatBoost): it is based on combining several simple prediction models (weak 

learner), training them for the same “task” and producing a grouped model more 

complex (strong learner), from the sum of the parts of the simpler models, 

aiming to reduce the biases and make them more robust, reducing the individual 

disadvantages of the final model. For a prediction of a single model, many 

algorithms can be used. The most used ones are:  

• Random Forest (97), which is a machine learning algorithm based on 

“decision trees” (or classification). This algorithm allows combining 

numerous decision trees, which were trained separately, in a single model, 

which is their set. Individually, the predictions made by decision trees may 

not be accurate, but when combined and analyzed together, they allow for 

more robust and accurate overall predictions and the algorithm 

• Extreme Gradient Boosting (XGBoost) (96) is also based on decision 

trees. XGBoost is based on training several simple models to generate, in 

the end, a robust model. It combines software and hardware optimization 

techniques to produce superior results and, in this way, uses fewer 

computing resources in a reduced time. The technique is superior and 

complementary to Random Forest, as it optimizes the available space on 

the disk while the big data analysis takes place. This algorithm already has 

the cross-validation method integrated into each interaction, thus 

optimizing the need to program the analyzes and specify the exact number 

of necessary reinforcement interactions in a single execution. 
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The Tree Model is a classification and regression method. Currently, decision 

tree-based algorithms are considered best in class. Decision trees (Figure 3) 

are question-and-answer flowcharts that graphically represent the decision-

making process. They are techniques for learning relations rules between 

variables. The process starts with several questions with an initial estimate 

based on knowledge about the analyzed problem and refines them as more 

information is obtained; the process ends with the analysis of results and 

decision-making. The decision tree lists all possible alternatives for each 

question in the “True” (value 1) and “False” (value 0) modes. Decision trees are 

nodes, edges, and terminal nodes generated through descending processes. 

First, nodes are split based on the underlying distribution of a given input 

variable, resulting in multiple subnodes. Then, this process is repeated, 

resulting in a predicted output. Simple tree models are easily interpretable (78, 

95).  

 

Figure 3 – Illustration of a decision tree. 

 
Source: author themselves 
 

The metrics to evaluate the generated models can be carried out in several ways. 

The results of the models can be represented, for example, through a confusion matrix 

(Figure 4) or by the ROC curve and AUC, among the most used metrics in MA. The 

confusion matrix details model performance and illustrates the number of correct and 

incorrect classifications categorized by response types by the model. It is used to 

calculate “False Positive” values, i.e., when the expected result is negative, but the 

model assumes it to be positive; “False Negatives”, when the expected result is 
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positive, but the model results in negative; “True Positives”, when the expected result 

is positive and the model is positive; and “True Negatives”, when the expected result 

is negative, and the model results in negative (77). The AUC curve is derived from the 

ROC curve. The Area Under the Curve (AUC) is the total area under the Receiver 

Operating Characteristic (ROC) curve. It evaluates each model and demonstrates how 

well it can distinguish between positive and negative. The AUC value is associated 

with greater efficiency of the classifier with a lower false positive rate; the higher the 

AUC, the better (Figure 5) (78, 80). 

 

Figure 4 – Example of a confusion matrix for a binary response. 

 
Source: author themselves 

 

Figure 5 – Exemplification of the ROC and AUC curve

 
Source: author themselves 
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To explain the output of the ML models, the Shapley Additive Planation (SHAP) 

technique is used, which is used in game theory to determine how much each player 

contributes to the gain in a collaborative game. This method assigns an average 

contribution value among all possible characteristic combinations. SHAP is a library 

that uses Shapley Values; that is, it assigns importance to each variable to justify the 

result of any machine learning model. SHAP values consider that the result of each 

combination of factors should be used to rank the importance of a single factor, having 

as input an instance and a trained model that assigns a contribution to each variable; 

the sum of all contributions corresponds to the output predicted by the model (98-100). 

SHAP is more challenging to interpret than a linear or logistic regression model, 

but it is a visual, intuitive, and simple form of representation (99, 100). In some cases, 

even if models contribute to each feature, the interpretability is limited; the features 

must be interpretable. Therefore, SHAP can be described as a method based on 

assigning a value to each resource in the cooperation based on its contribution to the 

model's decisions. There are other feature assignment methods, but SHAP is the only 

one with the three desirable properties: 1- The model is explained truthfully, and it has 

precision; 2 - Missing features do not impact model decisions; 3 - If a model changes 

so that the contribution of some resource increases or remains the same, the allocation 

of that resource must not decrease, regardless of the other resources, maintain 

consistency (101). 

Some SHAP graphics options are used as explanatory methods for models, such 

as: “KernelSHAP”, which is an agnostic explainer; “LinearSHAP”, for linear models; 

“DeepSHAP”, for deep models; and “TreeSHAP” more geared towards tree-based 

models (85). The most widely used is TreeSHAP, which only authorizes allowed paths 

within the “tree”, which means that it does not include unrealistic combinations of 

features, as in other methods based on permutation (98). 

The characteristics of a SHAP chart can be evaluated as follows (Figure 6):  

• The X axis is the SHAP values. Positive values contribute to the model 

responding positively to the desired outcome; Negative values represent that 

the model responds negatively to the expected outcome. 

• The Y axis is the model's variables (or features). They are arranged in order of 

importance, from most important to least. 

• Each colored dot represents a sample (or dataset); that is, each dot is a sample, 

a patient. The further to the right, the more positive the contribution of the 
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variable to that sample. The more comprehensive the range of SHAP values, 

the better the variable for the model. Points around the value 0 have weak 

contributions. 

• The colors represent the increase or decrease of the variable value. The red 

color is high values, and the blue color is lower. Variables with a transparent 

color split, i.e., red and blue from opposite sides, demonstrate good prediction 

as you can visualize their contribution to the model.  

 

Figure 6 – Chart representation SHAP Summary plot.

 
Source: author themselves 

 

Shapley Additive Explanation (SHAP) framework is an ML machine 

explainability technique (99, 102). The base value is the standard output predicted by 

the model if there is no variable information, and the model output value represents 

the prediction considering the provided input. A contribution in this scale is associated 

with each variable, with a length and a color. The length indicates the impact of this 

variable on the prediction, and the color indicates whether the impact is positive or 

negative. For example, red indicates a positive impact on the prediction, while blue 

indicates a negative impact. It is considered a classification threshold; if the prediction 

output value is more significant, it will be represented by the red color and positively 

contribute to the model. As a value lower than the threshold is considered a negative 

prediction when evaluating the same model with the base value, variables with a lower 

value will have a negative impact and are represented in blue. 



LITERATURE REWIEW 
 

 

27 

The ability to interpret a single prediction is useful, but the model learns relations 

that are often complex. For example, variables with the same value can have positive 

and negative impacts for different instances (or even no impact). The summary plot in 

the SHAP framework was used to generate an overview of the importance of each 

variable and its impact. 

The models differ significantly in terms of their explanatory factors. These 

separate models are not good predictors, but together (average), they can predict 

better than any individual model. Each generated SHAP chart represents the individual 

description of each model and how the variables impact this model. For each model, 

a SHAP was generated; for example, if the algorithm generates ten models, 10 SHAPs 

will be generated. The algorithm's number of models must be fixed and known in 

advance. However, this difference does not impact performance since the 

configuration found performs best. 

SHAP charts make it possible to understand the “role” of each variable (feature). 

It can be interpreted according to length and color. Color has a positive (red color) or 

negative (blue color) impact on pain improvement; that is, the blue color meant that the 

patient generally did not improve; variables represented with red meant that the patient 

probably improved. The length of the variable had an impact on the prediction; i.e., the 

longer the length, the greater the impact on the model. 

Figure 7 is the representation of the model presented by the summary plot. The 

summary plot aims to present an overview of the contribution of the variables. In this 

graph on the left, there is a list of variables that are ordered from the highest to the 

lowest impact on the model's decisions; that is, the variables “1”, “2,” and “3” are the 

ones that most impact the model's prediction. In the center of the graph (value 0) is a 

set of points, each representing an input instance (dataset) of the model. On the “x” 

axis of the image, it is possible to observe a scale from -3 to approximately 2. The “x” 

coordinate of the point quantitatively measures the impact (as can be seen on the 

scale), while the “y” coordinate indicates the variable to which that point refers. The 

red and blue colors mean that, in that instance, the variable's value is high (red) or low 

(blue). The interpretation of the meaning of color in the models must be individual for 

each variable; for example, for a medicine, the color blue (0) indicates that the patient 

did not use it, while the color red (1) indicates that the patient used the medicine; for a 

disease, for example, the variable “6”, blue (0) indicates that the patient did not have 

the disease and red (1) indicates that the patient had it. They were considering the 
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variable “10”. Among the 12 variables that comprise the model, the “10” is the 10th in 

importance; it can assume two values, 0, which indicates that the patient does not use 

this medication, and 1, which indicates that they do. As can be seen, there is a large 

number of points in blue positioned on the 0 axes in the graph; this indicates, based 

on what was learned by the model, that the information that the patient does not use 

this medication has no impact on the prediction for the patient's improvement. 

On the other hand, the information that the patient uses this medication (red, 

indicating the value 1) has a small positive impact on the prediction (points positioned 

on the right side of the value 0 of the scale). Other variables present a more complex 

behavior. For example, the variable “7”, with value 1, can negatively and positively 

impact the prediction. It is also possible to observe that the positive or negative impacts 

are quite similar in terms of the impact and the number of impacted instances. Unlike 

variable “6”, which, although the indication of the occurrence of the disease by the 

patient (value 1, high) can have a positive and negative impact, it is possible to observe 

that the impact is most often positive in the prediction. In addition, the dimension of the 

impact is more significant. On the other hand, the absence of disease has a small and 

mostly negative impact on the prediction. 

 

Figure 7 – Presentation of the overview of the behavior of the variables in a model 

with the graph. 

 
Source: author themselves. Explanation factors (as seen as SHAP summary 

graphs) associated to prototypical models. Model built with XGBoost. 

 

3.5  The use of Artificial Intelligence in pain 
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Scientific literature shows that the use of AI can contribute to improving the 

performance and quality of health care (79). In medicine, it makes it possible to 

propose solutions to clinical problems based on the analysis of large volumes of data 

thanks to the use of computers and algorithms defined by specialists in the field (24). 

It provides several clinical applications, including neuronavigation, image processing, 

three-dimensional modeling and printing, prosthetic fabrication, stereotactic 

radiosurgery, and clinical trial management (89). Patient data can be collected using 

electronic medical records by entering information on anamnesis, clinical and 

complementary exams, disease and patient evolution, use of prescribed medications, 

and use of defined algorithms that can be updated. The analysis of these data and 

proposal of differential diagnoses, with the respective probabilities of occurrence, 

support the decision as a way to reduce the possibility of mistakes by the team. Studies 

indicate that data from the anamnesis, the quality of the physical examination, and the 

volume of complementary tests requested by physicians to solve cases vary 

significantly, emphasizing the importance of professional experience in solving 

possible diagnoses. Electronic medical or health records are essential tools for 

personalized medicine, early detection, and targeted prevention to increase clinical 

value and reduce healthcare costs (88). 

AI plays a significant role in healthcare, and to keep up with this progress, it is 

essential that professionals can evaluate AI-based studies (103). 

The use of AI in healthcare to assist professionals in clinical diagnostic decisions 

and therapy management is increasing (104). For example, works in the scientific 

literature use ML to predict the evolution of chronic pain with algorithms to calculate 

dynamic changes in chronic pain risk scores based on various aspects of health 

behavior. However, they usually use only three sources of information: depression, 

nutrition, and physical activities (51). 

AI methods or ML algorithms have been used to obtain physiological information 

from individuals with chronic pain, including respiratory rate, blood oxygen 

concentrations, heart rate, body temperature, and blood pressure (53). 

Some AI studies evaluate the improvement of chronic pain treatment via the 

prediction of therapeutic responses with trained, supervised learning algorithms 

instead of using traditional statistics that divide individuals into binary response 

categories. Studies usually classify patients as “responders” and “non-responders,” 

and two “arms”, active and placebo, are used. However, one cannot legitimately label 
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an individual treated with a given active treatment as a 'responder' (or not) because it 

is unknown what would have happened had they been allocated to the comparator arm 

(53). 

AI can help fine-tune the evaluation of patients and minimize the evaluator's 

biases. It makes it possible to assess patients' risk, analyze the disease (for example, 

decoding ECG and imaging findings), select the best therapy based on the patient's 

clinical history and clinical trial results, track diseases, and detect early signs of 

worsening alerts. Currently, several therapies are used to control chronic pain, based 

on drug treatments, mind-body therapies, cognitive behavioral therapy, rehabilitation 

methods, digital therapies, telerehabilitation, chatbots, remote patient monitoring, AI, 

and immersive medicine technology (51). 

A meaningful follow-up interpretation of the patient's journey can be provided to 

assess national guidelines and use ML to chart treatment adherence, making problem-

solving and decision-making more informed and improving communication between 

patients and professionals of health. Ultimately, it makes it possible to create the best 

possible scenarios to improve the management and self-management of chronic pain. 

Therefore, in health sectors, the interpretability of an ML model is a desired feature, 

which should help the team make decisions (13). 
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4 METHODS 
 

An open observational study was carried out with an exploratory nature on pain 

in chronic patients. Information on pain screening, pain assessment, medications 

used, individual and hereditary antecedents, life habits, impressions of change in 

relation to pain, rehabilitation methods performed, and other interventions the patient 

had access to were accessed. 

The existence of response predictors of pain improvement or not was evaluated 

with the analysis of standardized data extracted from the information of the first 

consultation. After the analysis, the main response predictors were identified. 

 

4.1 Study location and period 

 

Data collection took place from March 2017 to March 2018 at the Ambulatory of 

the Pain Center of the Neurological Clinic (PCNC) of the Hospital das Clínicas of the 

Faculty of Medicine of the University of São Paulo (HCFMUSP), using the electronic 

platform entitled “Interface Eletrônica de Atendimento Ambulatorial” (IEAA).  

 

4.2 Ethical and legal aspects 

 

The project was submitted to the Research Ethics Committee of HCFMUSP and 

approved (CAAE nº 10854912.2.0000.0068 opinion issued on 20/12/2013). 

Furthermore, the “Electronic Interface for Ambulatory Care” system was patented via 

the University of São Paulo (BR1020140115030 – deposit made on 13/05/2014) and 

has been routinely used for over ten years in patient care at the Neurosurgery Division 

of HCFMUSP/SP.  

 

4.3 Study population 

 

Data from patients treated at chronic pain outpatient clinics for one year were 

collected based on information from medical consultations recorded on the “Electronic 

Interface” service platform, which consists of a standardized script for consultations 

and records the care information.  
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4.3.1 The inclusion criteria were: 

 

1. Age equal to or greater than 18 years. 

2. Patients who attended at least one follow-up consultation at the PCNC of 

HCFMUSP in the 12 months following the first consultation. 

3. Patients with data entered into the Electronic Interface during outpatient care. 

4. Patients with information in the mandatory questionnaires were completed 

entirely. 

 

4.3.2 The exclusion criteria were: 

 

1. Age less than 18 years old. 

2. Inability to answer the questions during the consultation performed by the pain 

group. 

3. Patients who did not attend more than one consultation within the 12-month 

follow-up period. 

4. Patients who did not respond to the mandatory questionnaires or who 

responded with missing information. 

 

4.4 Data collection 

 

The evaluation and follow-up of the patients were carried out using the tool 

“Electronic Interface for Ambulatory Care” (IEAA), developed in the Discipline of 

Neurosurgery of the Department of Neurology at FMUSP, to constitute a standardized 

online service platform, providing an essential path of clinical information about 

patients with pain, allowing for the addition of new scales, clinical inventories, and 

specific research according to demand. This tool enables a uniform and systematic 

assessment of patients and provides medical and legal documentation of the clinical 

and sociodemographic conditions of patients for the multidisciplinary team. The use of 

standardized support tools during care can be considered costly, but their application 

during care can induce physicians to avoid “undertreatment” and “undercare” of the 

patient. 
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The IEAA offers the care team standardized follow-up to evaluate patients. It is 

composed of validated, detailed and self-administered instruments. It also makes it 

possible to create personalized doctor-patient treatment agreements, provides 

consistent, detailed, and available documentation for the medical record at any time, 

even outside the scheduled consultation day or at another institute, and aggregates 

information and data for analysis. The IEAA makes it possible to monitor patients 

regardless of the institution where they are treated. It was formalized as a care 

instrument and received support from the Research Program for the SUS (PPSUS) 

during 2016-2018. 

In the present project, the data computerization tool was used to track the degree 

of pain improvement or worsening and markers of good and bad prognosis. 

Analogously, the information can be used to readjust the prescription of medications 

or interventions with higher costs and, potentially, less clinical effectiveness. 

The IEAA digital mask provides an extensive database with patient information 

throughout their care history. Data registered at the IEAA are anonymized in several 

layers; the patients are characterized according to code numbers and can only be 

identified through physical access to a file protected by the institution. 

 

4.4.1 Clinical evaluation and treatment of the patient with pain 

 

The assessment process consisted of self-reports and patient-directed reports 

during the first visit. From the collected data, a big data study was carried out. 

Figure 8 represents the timeline of the evaluations carried out in each service.  

 

Figure 8 – Design of the study. 

 
The outcomes are the improvement of 30% of pain according to the Verbal Analog Scale 
(VAS); improvement of the pain according to the Global Impression Change Scale (GIC).  
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4.4.1.2 Assessment instruments 

 

Clinical assessment included patients' pain characteristics, symptoms, functional 

status, and clinical history. The evaluations were carried out with tools that aimed to 

locate and quantify the subjective experience of pain. 

The patient's clinical history, personal and family history, life habits, pain 

characteristics, intensity, duration, mode of onset, duration of disease and pain, 

temporal relations, location, the associated somatic symptoms, the drugs used, and 

the respective follow-up dates. 

 

4.4.1.3 Unstructured data Sociodemographic assessment: 

1. The sociodemographic assessment carried out was based on gender, age, 

location of residence, skin color, and education. 

2. Medications used: The medication treatments for pain relief that the patient had 

access to at the hospital pharmacy were recorded. 

4.4.1.4 Structured data 

1. Background assessment: A questionnaire was used to assess the associated 

morbidities, present or past, life habits, and hereditary history of the patients. 

(Appendix 1) 

2. Interrogation about the different systems: The different systems were evaluated 

(cephalic segment, neck, respiratory system, circulatory system, digestive 

system, locomotor system, nervous system, genitourinary system, and 

endocrine system). (Appendix 2)  
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3. Assessment of pain: The assessment is divided into nine axes: Installation of 

pain; Duration of pain; duration of illness; Verbal pain intensity; Plan of pain 

location; Character of the pain; Frequency of pain episodes; Temporal 

predominance of pain; Pain evolution. (Appendix 3) 

4. McGill Pain Questionnaire (105, 106) – short version: It is a multidimensional 

scale to characterize pain. It uses quantitative measures that make it possible 

to assess the essential qualities of the painful condition. It consists of 15 

descriptors, grouped into three groups and classified as absent or present: 

Sensitive-discriminative dimension of pain; Affective-motivational dimension of 

pain, Cognitive-evaluative dimension of pain. It also makes it possible to record 

the location of the pain. A figure with the human body parts divided and 

numbered from 1 to 53 is presented to the patient. (Appendix 4) 

5. Verbal Analog Scale (VAS) (107, 108): scale used to assess pain intensity. 

Scores range from 0 to 10, with 0 representing no pain, five moderate pain, and 

10 “worst possible pain”. (Appendix 5) 

6. Douleur Neuropathique Pain 4 Questions – DN4 (45, 109): scale to assess the 

occurrence or not of neuropathic pain, incorporating both symptoms and signs 

on physical examination. One point is awarded for each positive item and 0 for 

each negative item. The total score consisted of the sum of 10 items, and the 

diagnosis of neuropathic pain was established when the sum of “positive” values 

was more significant than or equal to 4. (Appendix 6) 

7. Global Impression Clinical (GIC) (110, 111): this is a self-evaluation of the 

patient and an evaluation of the physician on the perception of the global 

evolution of the disease about the treatment used. (Appendix 7) 

 

4.5 Application of Machine Learning 

 

4.5.1 Knowing the data 

 

 After collecting the data, they were arranged in an Excel spreadsheet and later 

in SPSS to evaluate and understand each variable and its relationship with the others. 

Based on the analysis of the raw data, three parameters were selected as an outcome 

to show the reduction or not of pain: 
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1. 30% reduction in pain intensity according to the Analog Verbal Scale (VAS); the 

difference between pain intensities reported in the first and last consultation was 

calculated. 

2. 50% reduction in pain intensity, according to the Analog Verbal Scale (VAS). 

The difference between the reported pain intensities between the first and the 

last consultation was calculated. 

3. Global Impressions Clinical (GIC) according to the degree of improvement or 

worsening of the pain sensation according to the patient and the evaluator. An 

improvement was considered when the value was at least two on the final visit.  

 

4.5.2 Preparing the data 

 

The raw data were processed to avoid errors in the dataset. First, however, the 

data underwent a selection and adequacy that defined which ones would be excluded 

or kept. 

After this stage, the data was pre-processed, where the missing data were 

formatted, organized, and treated. Data were simplified to “Boolean” variables (true or 

false), with some exceptions, such as age. This processing facilitated the development 

of the algorithm and was chosen because it worked best with discrete and binary 

values. For example, the variable 'verbal intensity' admitted the values 'strong', 

'moderate', and 'weak' as an answer. In the pre-processing, three variables were 

created: 'strong verbal intensity', 'moderate verbal intensity', and 'weak verbal 

intensity'. The values 1 for “true” and 0 for “false” were assigned to each variable. Data 

pre-processing has a positive impact on a model generation. 

The last phase of this step was the selection of variables (or features), where it 

was evaluated, which variables would be most important for the study problem, which 

is to map the patient information collected in their first consultation to the correct 

outcome and select the outcome (or label); outliers were identified; and the variables 

in the database were organized to be presented to the algorithm. Finally, data were 

labeled, i.e., data pairs (patient information - result). Labeled data is used for training 

prediction models. The algorithm carried out in this phase was developed and used to 

evaluate the problem proposed in this project. 
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In this study, the outcome was pain improvement; as output values, the labels VAS < 

30%, VAS < 50%, and GIC “better” or “much better” were used according to the 

perception of the doctor and the patient. 

 

4.5.3 Machine Learning method 

 

After the selection and pre-processing stages, the stages in which the data were 

treated, the testing phase began, and the technique of choice for analyzing these data 

was with the ML algorithms (Figure 9). The same tests were repeated in some 

algorithms using the cross-validation technique, with training and test data variations.  

 

Figure 9 – Flowchart of a project with Machine Learning. 

   
Source: Author themselves. Illustrating the planning step by step to 
use a machine learning technique. 

 

Ultimately, the techniques were supervised ML (Figure 10) with Ensemble 

Learning methods. The algorithms used for data analysis were XGBoost and Random 

Forests, two well-known state-of-the-art algorithms for tabulated data, which are also 

robust in high-dimensional problems. The existing implementations in the Scikit-learn 

(https://scikit-learn.org/) (78) and https://xgboost.readthedocs.io/en/stable/ libraries 

were used. The performances of these algorithms were superior compared to routine 

analyses with regressions. The choice was based on the study problem that would be 

better analyzed through the Decision Tree in order to find the best rules to be later 

used for forecasting. 
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Figure 10 – Study outline with Supervised Machine Learning 

 
Source: Author themselves. A great volume of data is collected and input in the system; 
a predictive model is generated with the input data during training; the expected output is 
evaluated; following each new data entry in the predictive model developed, the expected 
outcome is the same. 

 

The programming language used was Python. (Access: 

https://www.python.org/). 

The final model's performance was the ROC/AUC metrics (ROC curve and area 

under the curve). The ROC curve graph was generated only in the comparison phase 

of the proposed MA approach with other approaches in the literature. Given the 

number of experiments performed, only AUC values were generated in other cases. In 

the models generated from the final model, the performance was evaluated using the 

confusion matrix and AUC values. 

Cross-validation was used to obtain a more accurate estimate of how the final 

model would behave for real data. It was performed in 5 folds, that is, a total of 5 

variations of the model are estimated, each with four folds for training and one-fold for 

testing. 

 

4.5.3 Model development 

 

The AI algorithm used was ML, with supervised learning algorithms trained to 

predict the probability of response to treatment. The initial model was built from input 

data (or dataset) that were arranged in ordered pairs with the desired “input” and 

“output”. These data were labeled; for each input, the output was already expected. 

A prediction model is a function f(X) that receives information from patient X as 

input and returns the expected result as output so that the result can be anticipated for 

future patients. It is a weighted combination of features. The features included were 
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the evaluated attributes. A prediction model is obtained after a well-defined error-

minimization strategy. There are many possible minimization strategies, but trees were 

used in this study. 

The models were built using base algorithms available in the SciKit-Learn 

libraries: XGBoost or Random Forests. A model from the XGBoost library and Random 

Forest was fed separately, with each label's resources. Each variable has a “weight” 

that the machine learns by adding the data. The model learned from data from 

subpopulations in which each subpopulation is associated with a specific subset of 

features; e.g., the characteristics of the original set were decomposed into several 

subsets. The input data were divided into training and test sets. The training set was 

used to build the model. Data learning, or data training, consisted of introducing several 

examples (records or instances) of desired inputs and outputs, using samples of cases 

for which the true classification was known to induce a set of training examples. During 

training and testing, some variations may occur due to parameter adjustments to find 

the combination that presents the best result. The models underwent a fine adjustment 

in the parameters of each algorithm, with many repetitions of processes, and this was 

possible due to the computational power used. 

Then, the cluster learning method was used to promote diversity when learning 

the set. When we combine these different models, we have an ensemble, the 

predictive power being more significant than the models alone. Each generated 

ensemble model was evaluated according to its attributes. The models were grouped, 

separated by labels, according to their explanatory factors, and sampled in space. The 

points (or models) were grouped so that models that included the same attributes 

belonged to the same group. For this method, the set of characteristics representative 

of the characteristics to build the model was selected. The best models (best AUC) 

were selected to create the ensemble. The higher the AUC, the more clustered the 

models were. 

Model performance was evaluated using appropriate statistics. The standard 

measure for quantifying forecasting performance is based on model sensitivity and 

specificity. The trade-off between these two measures produces a characteristic curve, 

summarized by its area (AUC). Model reliability was evaluated by cross-validation; that 

is, the same model is trained and evaluated using different subsets of data. Measures 

of dispersion about the mean (or average), especially the mean absolute deviation 

(MAD), provide how well the model can be expected to work for future patients. Figure 
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11 exemplifies a model space where each point is a model, their colors indicate AUC 

and their sizes indicate MAD (the more significant, the more reliable the model). A 

model's coordinates correspond to its predicted results. Specifically, each model 

receives patients and returns the corresponding results. The final vector of results 

associated with a model is projected into two-dimensional space for easy visualization. 

 

Figure 11 – Representation of a model space 

 
Each point represents a model x’. Models are arranged according to 
the probabilities attributes of patients, thus, models that specify similar 
probabilities to the same patients are placed next to each other in 
space. 

 

After this process, the best learning models were selected, evaluated, and re-

evaluated until a satisfactory model was found for the presented problem. A final 

predictive model was then created to map the evolution of pain in patients with chronic 

pain. 

After defining the model, or final algorithm, all new data entries were performed 

through this programmed algorithm for the output of each label. Thus, several models 

for each outcome were generated. 

The generated models were arranged in a “model space” and graphically 

represented by SHAP. Models with a good threshold performed better than the 

average for each label. For each algorithm in each label, a space of unique and distinct 

models was generated in order to build simple and interpretable models. A prediction 

model's performance strongly depends on the characteristics that make up the model. 

A model composed of many features is likely to suffer from poor generalization, i.e., 

the model will not work well for future patients. Selecting the optimal set of features to 

compose a model requires exhaustive research on all possible feature sets. 



METHODS  
 

 

42 

The alternative was the sampling of forecasting models. Sampling involves 

randomly selecting a set of features and then training a prediction model composed of 

those features. This process was repeated many times, resulting in different (i.e., 

thousands) sets of features and models to characterize the model space. For example, 

you can filter out models that perform well and are reliable. 

When presenting the model space, the maximum number of resources that make 

up each model was defined; each model should have at most 15 features as a good 

compromise between interpretability and performance. Using this threshold, the 

validity and feasibility of the work can be tested. For the elaboration of this project, 

“TreeSHAP” was used to calculate the explanation model, since the learning 

algorithms of this model are based on trees driven by gradients or random “forests”. 

Figure 12 represents a view of the methodology (framework) used in this work. 

The algorithm was developed by UFMG, validated in thesis format (112) and article 

publication (113), and used as a case study for the problem presented in this project. 

 

Figure 12 – Illustrated description of the methodology used. 

 

 
Source: Costa, Moreira (2021) (112). Artistic representation of the framework overview. The framework 
began with an input table matrix. (n x m) being “n” the number of instances and “m” the number of 
resources. Figures represent a) A random sample of resources sets. The learning algorithm is used to 
induce a model for each sample set; b) The set of all generated models integrate a space in the model; 
c) and d) The calculation of the mean values Shapley Additive exPlanations (SHAP) for each model in 
the space of the model; e) The clustering of the model space based on the mean of SHAP. 
 

The time limit for model optimization was defined as 24 hours; this is the 

approximate time in the worst-case scenario to execute the proposed approach.  
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4.5.3 Interpretation of the model 

 

Objectively, the stages of the algorithm used can be described as follows: After 

generating the model space, the Shapley Additive Planation (SHAP) method was used 

to intuitively interpret the models graphically. With the models defined, each model's 

average of the SHAP values was calculated. Then, it was grouped in the model space 

using the average of the SHAP values as a criterion. Models with similar explanations 

were in the same grouping, while models with considerably divergent explanations 

were far apart and thus in different groupings. A prototype was then selected to 

represent each grouping. The method for choosing the prototype was to select the 

model with the best performance using the AUC of the cluster. Results were always 

given in pairs of AUC Curve and SHAP explanations. The selection of a prototype for 

each grouping made it possible to build a combination of models that, in addition to 

presenting a better performance, were more interpretable since they used only a 

fraction of the original variables. It is important to emphasize that the algorithm used 

carried out these steps (113, 114). 

 

4.5.4 Development of the questionnaire 

 

Each label spawned some models that were considered great. All generated 

models were grouped for each label, and among the generated models, each one was 

evaluated to verify which ones could generate a 12-question questionnaire with the 

best performance. The approach itself performed feature selection. Only some 

generated models met the criterion of few features and satisfactory performance. 

After performing the ensemble, a unique model was generated for each label. 

Considering the AUC values, the best ensemble was evaluated, and a questionnaire 

was created with the variables of this ensemble model. It was necessary to restrict the 

number of resources to limit the number of questions. While the initial experiment 

allowed up to 15 features per model, in this case, it was limited to 7 features, with 

satisfactory performance. 

The features that generated the 12 questions came from a single ensemble 

which, in turn, consisted of a combination of base models (XGBoost and Random 

Forest). 

 



METHODS  
 

 

44 

4.6 Statistical analysis 

 

Data analyses were carried out in partnership with the Federal University of Minas 

Gerais (UFMG) and with the company Kunumi, a pure tech producing AI knowledge 

and tools. 

The data were analyzed and prepared correctly. The data consisted of 338 

attributes involving pain characteristics, socioeconomic status, and prescribed 

treatments and were not limited to continuous types. 

The sample was characterized with descriptive statistics using means, standard 

deviations, and extensive data analysis. The software used for the descriptive 

statistical analysis was SPSS (Statistical Package for the Social Sciences) version 

24.0 from IBM (International Business Machines). 

The specifications related to the hardware on which the works were performed were 

CPU Intel® CoreTM i3-6100 @ 3.70 GHz, 16 GB DDR3 1,600 MT/s, and 256 GB SSD. 
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5 RESULTS 
 

The results of this project were divided into two groups:  

1. Descriptive analysis: descriptive statistical analysis to characterize the 

sample, using means and standard deviations; 

2. Model analysis: analysis of models generated with the aid of AI. 

 

5.1  Descriptive analysis 

 

Of the 934 patients initially evaluated for inclusion in the study, 506 were 

included (Figure 13). The pain clinic evaluated all patients to establish the diagnosis of 

chronic pain. Women represented more than 57.7% of patients. The mean age of 

patients treated was 55.66±14.20 years. Patients from the southeast region of Brazil 

predominated (96.3%), with a low level of education (35%) and white (74.7%) (Table 

1). 

 

Figure 13 - Selection of research participants. The value in parentheses refers to the 
number (n) of patients at each selection stage. 
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Table 1 – Distribution of patients according to sex, the state where they lived, level of 
education, and skin color in absolute numbers (n) and percentages (%). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All patients underwent standardized neurological examination (Table 2), and the 

main pain intensity, measured by VAS, was 6.36 (± 2.66). The mean value of the 

positive DN-4 questionnaire for neuropathic pain was 4.43. The patients had pain 

predominantly located in the lower limbs (right and left), mainly in the feet (right and 

left) (Table 3). Among the 506 individuals with chronic pain, it can be noted that the 

regions most affected by pain were located in the right hemibody. (Figure 14). 

 

 

 

 

 

 

 

  N = 506 
Age (years)  55,66±14,20 
Sex   
Male 214 (42,3%) 
Female 292 (57,7%) 
State   
Bahia 1 (2,0%) 
Distrito Federal 1 (2,0%) 
Espirito Santo 2 (4,0%) 
Minas Gerais 1 (2,0%) 
Pernambuco 1 (2,0%) 
São Paulo 471 (93,3%) 
Education level   
Primary education completes 177 (35%) 
Primary education incomplete 61 (12,1%) 
Secondary education complete 109 (21,5%) 
Secondary education incomplete 12 (2,4%) 
Tertiary education complete 37 (7,3%) 
Tertiary education incomplete 14 (2,8%) 
Postgraduation 3 (0,6%) 
Literate 17 (3,4%) 
Illiterate 5 (1,0%) 
Not informed 42 (8,3%) 
Ethnicity   
White 378 (74,7%) 
Brown 48 (3,8%) 
Black 26 (5,1%) 
Asian 9 (1,8%) 
Not informed 45 (8,9%)   



RESULTS 

 

48 

Table 2 – Distribution of absolute numbers (n) presented in means and standard 
deviations of the reduced McGill questionnaire, according to sensitive, 
affective, and evaluative dimensions. Pain intensities according to VAS. 
And neuropathic pain screening number with DN4. 

  N = 506 
McGill Questionnaire short   
Sensitive 3,16±2,35 
Affective 2,62±1,51 
Evaluative 1,26±0,50 
Analog Verbal Scale   

0 26 (5,1%) 
1 7 (1,4%) 
2 19 (3,8%) 
3 24 (4,7%) 
4 26 (5,1%) 
5 69 (13,6%) 
6 59 (11,7%) 
7 77 (15,2%) 
8 93 (18,4%) 
9 43 (8,5%) 
10 63 (12,5%) 

Neuropathic pain Inventory (DN-4) 4,43±2,38 
 

Table 3 – Distribution of affected body segments in absolute numbers (n) and 
percentages (%). 

           N = 506 (%) 
Location of the pain according to body segment 
Head 99 (19,6%) 
Right shoulder 82 (16,2%) 
Lower thorax 30 (5,9%) 
Left shoulder 101 (20,0%) 
Right arm 59 (11,7%) 
Right hypochondrium 58 (11,5%) 
Epigastric region 27 (5,3%) 
Left hypochondrium 63 (12,5%) 
Left arm 76 (15,0%) 
Right flank 56 (11,1%) 
Left flank 60 (11,9%) 
Right periumbilical region 56 (11,1%) 
Left periumbilical region 69 (13,6%) 
Genital region 28 (5,5%) 
Right thigh 95 (18,8%) 
Left thigh 93 (18,4%) 
Posterior region of the head 26 (5,1%) 
Cervical Posterior region 68 (13,4%) 
Left scapula 103 (20,4%)  
Posterior thorax 28 (5,0%) 
Right scapula 88 (17,4%) 
Left arm posterior side  63 (12,5%) 
Left posterior hemithorax  67 (13,2 %) 
Lumbar 54 (10,7%) 
Right posterior hemithorax  59 (11,7%) 
Right arm posterior side  53 (10,5%) 
Left lumbar 111 (21,9%) 
Right lumbar 103 (20,4%) 
Left glute region 109 (21,5%) 
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Coccygeal region 92 (18,2%) 
Right glute region 101 (20,0%) 
Posterior side of the left thigh 101 (20,0%) 
Posterior side of the right thigh 84 (16,6%) 
Right forearm 75 (14,8%) 
Left forearm 81 (16,0%) 
Right knee 107 (21,1%) 
Left Knee 111 (21,9%) 
Right leg 103 (20,4%) 
Left leg 113 (22,3%) 
Right foot 115 (22,7%)  
Left foot 116 (22,9%) 
Posterior side of the left forearm 50 (9,9%)  
Posterior side of the right forearm 41 (8,1%) 
Left popliteal region 75 (14,8%) 
Right popliteal region 72 (14,2%) 
Posterior side of the left leg 103 (20,4%) 
Posterior side of the right leg 87 (17,2%) 
Left heel 107 (21,1%) 
Right heel 94(18,6%) 
Internal region of the right hand 101 (20,0%) 
Internal region of the left hand 101 (20,0%) 
External region of the left hand 91 (18,0%) 
External region of the right hand 76 (15,0%) 
   

Figure 14 – Artistic representation of body regions affected by pain. 

 
Source: Costa, Moreira (2021) (113). Areas in black are the most often reported by patients. 

 

The “Global Impression of Change” questionnaire showed that more than 30% 

of the patients reported that the current treatment did not improve their pain, 

proportional to the opinion of the evaluating physician (Table 4). 
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Table 4 – Distribution of absolute numbers (n) and percentages (%) of responses to 
the Global Impression of Change questionnaires, according to the doctor's 
and patient's versions. 

Global Impression Clinical N = 506 
Patient’s version   

Slightly better 97 (19,2%) 
Slightly worse 63 (12,5%) 
Better 74 (14,6%) 
Much better 30 (5,9%) 
Much worse 17 (3,4%) 
worse 53 (10,5%) 
No changes 168 (33,2%) 

Doctor’s version   
Slightly better 90 (17,8%) 
Slightly worse 60 (11,9%) 
Better 91 (18,0%) 
Much better 28 (5,5%) 
Much worse 9 (1,8%) 
Worse 48 (9,5%) 
No changes 176 (34,8%)  

  
Patients with chronic pain were subdivided according to pain diagnoses and 

pain syndrome (Tables 5 and 6). Neuropathic pain was the most prevalent main pain 

syndrome observed in 59.3% of patients. Among those with non-neuropathic pain as 

their main pain, fibromyalgia was the most common, affecting 8.1% of patients. As a 

secondary pain syndrome, fibromyalgia affected 5.9% of patients, followed by 

nociceptive pain, which affected 4%. Finally, as tertiary pain, migraine affected 4.9% 

of patients. In addition, other pain syndromes were reported, with 33% having 

myofascial pain syndrome.  

 

Table 5 – Distribution of diagnoses classified as primary, secondary, and tertiary pain 
in absolute numbers (n) and percentages (%).  

                N = 506 
Primary pain   
Neuropathic pain 300 (59,3%) 
Nociceptive pain 9 (1,8%) 
Nociplastic pain 

 

Fibromyalgia 41 (8,1%) 
Migraine 16 (3,2%) 

Not informed 140 (27,7%) 
Secondary pain   
Neuropathic pain 0 
Nociceptive pain 20 (4.0%) 
Nociplastic pain 

 

Fibromyalgia 30 (5.9%) 
Migraine 12 (2.4%) 

Tertiary pain   
Neuropathic pain 0 
Nociceptive pain 0 
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Nociplastic pain 
 

Fibromyalgia 2 (0.4%) 
Migraine 25 (4.9%) 

 

Table 6 – Main pain syndromes in absolute numbers (n) and percentages (%). 

   N = 506 
Myofascial syndrome  167 (33.0%) 
Core pain 71 (14.0%) 
Postherpetic neuralgia 35 (6.9%) 
Polyneuropathies 82 (16.2%) 
Pain in phantom limb 11 (2.2%) 
Trigeminal neuralgia 15 (3.0%) 
Carpal tunnel syndrome 15 (3.0%) 

 

As expected, patients with chronic pain had other baseline diseases (Table 7). 

Among the 506 individuals with chronic pain, 24.9% reported systemic arterial 

hypertension, and 70% had already suffered a cerebrovascular accident (CVA). The 

pain can be derived from some trauma. More than 16% of the patients reported pain 

installed after the trauma, with 5.9% motorcycle accidents and 4% firearm accidents. 

 

Table 7 - Distribution of diagnoses of the most prevalent conditions reported in medical 
records in absolute numbers (n) and percentages (%). 

Ailments reported in patient’s records at the 
first consultation  N = 506 

Hansen’s disease 13 (2,6%) 
Spinal cord injury 21 (4,2%) 
Cancer 42 (8,3%) 
Systemic Arterial Hypertension 126 (24,9%) 
Diabetes mellitus 88 (17,4%) 
Dyslipidemia 48 (9,5%) 
Hypothyroidism 44 (8,7%) 
Cerebrovascular accident 70 (13,8%) 
Depression 45 (8,9%) 
Traumas 82 (16,2%) 

Car accidents 8 (1,6%) 
Motorcycle accidents 30 (5,9%) 

    Being run over 8 (1,6%) 
Firearm injury 20 (4,0%) 
Fall 10 (2,0%) 

   Trauma 6 (1,2%) 
    

 

Most patients had already been treated with medication before the first 

appointment by the ACDNC at HCFMUSP. Patients arrived at the pain clinic with 

treatment for chronic pain previously prescribed by other specialties. 47.5% of patients 

were using amitriptyline, and 41.5% were using gabapentin. (Table 8). 
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Table 8 – Distribution of drugs for pain registered in the first consultation in absolute 
numbers (n) and percentages (%). 

Drugs being used                                                                                  n = 506 
Amitriptyline 25 Mg Pill. 241 (47,5%) 
Amitriptyline + Lindocaine Gel (4% + 2%) Gel 46 (9,0%) 
Baclofen 10 Mg Pill. 68 (13,5%) 
Carbamazepine 200 Mg Pill. 58 (11,5%) 
Celecoxib 200 Mg Caps. 7 (1,4%) 
Ketoprofen 100 Mg Pill. Ent. 6 (1,2%) 
Cyclobenzaprine 5 Mg Pill. 34 (6,7%) 
Codeine 30 Mg Pill. 37 (7,3%) 
Diclofenac Sodium 50 Mg Pill. 3 (0,6%) 
Dipyrone 500 Mg Pill. 146 (28,9%) 
Dipyrone 500 Mg / Ml Sol. Oral 58 (11,4%) 
Duloxetine 30 Mg Caps. 16 (3,2%) 
Phenytoin 100 Mg Pill. 6 (1,2%) 
Fentanyl 25 Mcg / H patch 4 (0,8%) 
Fentanyl 50 Mcg / H patch 2 (0,4%) 
Gabapentin (Manipulated) 100 Mg Caps. 6 (1,2%) 
Gabapentin 300 Mg Caps. 210 (41,5%) 
Gabapentin 400 Mg Caps. 99 (19,5%) 
Carboximetilcelulose Gel (manipulated) 3% Gel 3 (0,6%) 
Carboximetilcelulose Gel 3% + Lidocaine 2% Gel 1 (0,2%) 
Ibuprofen 300 Mg Pill. 5 (1,0%) 
Lamotrigine 100 Mg Pill. 79 (15,6%) 
Lamotrigine 25 Mg Pill. 52 (10,2%) 
Levomepromazine (1mg / Drop) 4% Sol. Oral 7 (1,4%) 
Lidocaine 2% Gel 8 (1,5%) 
Metadona (Manipulated) 1Mg Caps. 1 (0,2%) 
Metadona 10 Mg Pill. 95 (18,7%) 
Morphine 10 Mg Pill. 12 (2,3%) 
Morphine 30 Mg Caps. Lib. 1 (0,2%) 
Morphine 30 Mg Pill. 6 (1,2%) 
Naproxen 250 Mg Pill. 13 (2,5%) 
Oxcarbazepine 300 Mg Pill. 6 (1,2%) 
Oxycodone 10 Mg Pill. 14 (2,7%) 
Oxycodone 20 Mg Pill. 2 (0,4%) 
Paracetamol 500 Mg Pill. 59 (11,6%) 
Piroxicam 20 Mg Pill. Subl. 2 (0,4%) 
Pregabalin 75 Mg Caps. 22 (4,3%) 
Muscle Relaxant HC Pill. 100 (19,7%) 
Topiramate 100 Mg Pill. 5 (1,0%) 
Topiramate 25 Mg Pill. 6 (1,2%) 
Topiramate 50 Mg Pill. 7 (1,4%) 
Tramadol 50 Mg Caps. 168 (33,2%) 
Venlafaxine 75 Mg Caps. Lib. 101 (19,9%) 
No pain medication 102 (20,1%) 
Not informed 18 (3,5%)   

 

A comparative analysis was conducted regarding the number of consultations 

to predict with a high degree of confidence whether the patient would respond 

positively to conventional treatment for chronic pain with a minimum number of follow-

up consultations (Table 9). Two hundred and sixty-five patients were seen in at least 
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three consultations; 30% showed improvement with treatment, 34% were men aged 

54 years on average, and the mean VAS value was 4.93. The increase in the number 

of consultations followed the reduction in the number of patients treated; fewer patients 

had more than three consultations. Table 9 shows patient information broken down by 

the number of appointments. As the number of appointments increased, so did the 

percentage of patients for whom the treatment was effective. 

Accumulating resources from previous queries leads to better results. In 

general, there is a gain in prediction performance as more features are added to the 

model (i.e., more queries). The gain provided is quite significant, especially with the 

addition of the second appointment. However, forecast performance tends to stabilize. 

A significant disadvantage of systematic resource accumulation is that it markedly 

increases the total number of resources. For example, the data resulting from 

accumulating features from the first five queries has 1660 features. Algorithms that are 

not robust to handle so much functionality have limitations. 

 

Table 9 – Distribution of the absolute number (n) and percentages (%) of consultations 
about the effect or not of the treatment, age (years), the average of the Brief 
Pain Questionnaire (McGill), and pain intensity (VAS).  

 3 consultations 4 consultations 5 consultations 
Effective treatment (n = 506) 152 (30,03%) 82 (16,20%) 57 (11,26%) 
Sex – Male 52 (34,21%) 27 (32.93%) 17 (29,82%) 
Age (years) 54,64 ± 9,2 54,11 ± 9,3 52,81 ± 10,2 
Intensity of pain (0-10) 4,93 (2,0−7,25) 5,54 (3,25−8,0) 4,51 (2,0−7,0) 
Not effective treatment (n = 506) 113 (22,33%) 51 (10,07%) 24 (4,74%) 
Sex – Male 56 (49,56%) 21 (41,18%) 10 (41,67%) 
Age (years) 57,21 ± 9,2 55,55 ± 9,5 50.21 ± 12,04 
EVA (0−10) Intensity of pain 6,09 (5,0−8,0) 6,02 (4,5−8,0) 5,79 (5,0−8,0) 
      

 

5.2  Model analysis 

 

Data consisted of attributes extracted from self-reports of patients registered at 

the first consultation. The models' results predicted a significant reduction in pain at 

the end of treatment. 

The models generated from the XGBoost, and Random Forest algorithms were 

based on the interaction of many data. The trained data model consisted of a mixture 

of subpopulations in which each subpopulation was associated with a specific subset 

of features. Sampling consisted of randomly selecting a subset of variables. As a 
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result, 1,000 random subsets were generated for each size (n), where 1 ≤n ≤15; the 

model could not have more than 15 variables, adding up to an approximate total of 

15,000 subsets. The sample generated a total of 150,000 models using the XGBoost 

algorithm and another 150,000 models using the Random Forests algorithm. Each of 

them provided a different explanation for the phenomenon. Therefore, many 

contrasting interpretations or competing explanations exist for the same phenomenon. 

As a comparison parameter, a single model was trained and fed with all the 

variables to obtain the average performance (average of XGBoost and the Random 

Forest). In the end, the following mean AUCs were found for each label: AUC of 0.65 

for EVA 30, 0.615 for VAS 50, and 0.569 for GIC (physician and patient) (Table 10). 

Models with a good threshold performed better than the average for each label. 

 

Table 10 – Distribution of mean AUC values when training a single model with data 
separated by labels.  

  XGBoost Random Forests   
Label AUC AUC Mean 

VAS 30 0,648 0,652 0,650 
VAS 50 0,634 0,597 0,615 

GIC 0,564 0,575 0,569 
      

The mean was obtained by training a single model and feeding it with all the variables. To 
evaluate the performance of the models, a standard AUC (area under ROC) measure was 
used. A crossed validation of the five folds was used, hence, data were organized in five 
folds, and, in every run, four folds were used as training sets and the remaining fold was 
used as a test set. A separate validation set was also employed, which was used to select 
the best models. The mean value of AUC was reported in the five runs. All of this process 
was carried out separately for each label, namely, VAS 30, VAS 50, and GIC . 

 

The experimental results revealed that the method reached an AUC of 0.84 based 

only on data from the first consultation, which followed the selection procedure of 

characteristics and explanation diversities. Using data from the second query, the AUC 

value increased to 0.896, with the model explanations from query 1 as meta-features 

and combining them with the new data from query 2. As a result, prediction 

performance increased to 0.975 in 5 queries, an increase of only 16% compared to 

consultation 1, reducing the treatment planning period; test results showed that it was 

optional to compare several consultations to obtain a good performance of the 

predictive model. 

The performance threshold of 0.650 for the VAS label 30 resulted in one sampled 

model space for XGBoost and another for Random Forests. Although this performance 
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threshold appeared low, it exceeded the physician's estimated first-visit performance. 

As a result, the XGBoost model space comprises 2,830 models out of the original 

150,000 models. In contrast, the Random Forests model space comprised 2,507 

models. 

The generated models were projected on a two-dimensional plane, according to 

the probabilities assigned by the model, using the t-sne technique, an adequate tool 

for better visualization of the perception of high-dimensional datasets (114). 

The paired correlation was performed between the GIC patient version, GIC 

evaluator version, VAS 30, and VAS 50 labels. It was observed that the VAS 30 and 

VAS 50 labels were highly correlated and reached a correlation value of 0.85. 

However, the GIC label was not highly correlated with VAS 30 and VAS 50 and 

presented correlation values of 0.1 and 0.097, respectively, meaning that patients' and 

physicians' self-assessments could be discrepant. It has been shown that when 

patients experience a 30% reduction in pain intensity, most of the time, they also 

experience a 50% reduction. 

Although the type of pain is important for diagnosis and treatment, the response 

to treatment was more based on the personal characteristics of patients and less 

related to the type of pain itself. Patients were usually treated according to their main 

pain complaint, with pain etiology not being the main factor directly considered in the 

models. 

The best models for each label will be presented below and explained briefly for 

observation. 

 

5.2.2 Templates for the label VAS 30 

 

The XGBoost model space generated for VAS 30 comprised 2,830 models out 

of the original 150,000 models, while the Random Forests model space comprised 

2,507 models. Figure 15 represents the model space, where each point corresponded 

to a model, and the point size indicated the variation of the validation error; the color 

scale was associated with the performance achieved by the model, with light colors 

representing the best performance. It demonstrates predictive models that had a 

prediction effectiveness greater than 0.65 of AUC. Each dot has color, size, and 

position (x and y coordinates). The color shows the average AUC value; the lighter, 

the more influential the model. Each model was evaluated several times, and an 
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average AUC was obtained. The size of the points shows the degree of reliability in 

the model, that is, the degree of variation of the AUC. In this case, the higher the point, 

the more reliable the model was. Light and large dots were best. The coordinates were 

assigned based on the probabilities of improvement for each patient. Then, each model 

(or point) was applied to all patients, generating a probability vector (each dimension 

of the vector was the probability that the patient in question improved). So, if one point 

is located close to the other, these two points correspond to predictive models and 

were right for the same patients. If two points are positioned far from each other, they 

correspond to the correct models for different patients. The spaces of the generated 

models were filtered, and only the models considered good were selected, with 

superior performance than the average. Depending on the space, this filtering removed 

90% to 98% of the models.  

 

Figure 15 – Graphical representation of the model space generated for the VAS 30 
label. 

 
Visualization t SNE of the space of models generated where each 
point represents a model X’. The models are displayed according to 
the attribute probabilities by model. The colors indicate the mean 
(cross-validation) of the AUC values and the size is relative to the 
variance with smaller points indicating that the corresponding model 
has a lower variance.  

 

After that, the attributes present in each model were evaluated. Models which 

included the same attribute were grouped together. Finally, to explain the model, the 

used methods was Shapley Additive Planation (SHAP) to intuitively interpret the 

models graphically. Each SHAP graph generated represented an individual description 

of each model and the how the variables individually impacted this model. A SHAP 

was created for each model. 
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In Figure 16 is the representation of the best models, selected according to the 

distribution of the variables evaluated according to the level of interference on the 

occurrence of pain, based on the coding expressed in the ordinate column presented 

to the right of the SHAP graphs. The figure depicts an overview of the models which 

had an improvement of 30% as the outcome, selected as “great” from the analyses of 

the AUCs’ means. There was great diversity in these prototype models, evidencing 64 

distinct resources, of which 8 resources were present in 7 models and just 1 resource 

in three models.  

 The represented model in the graph in Figure 16 “a” aimed at predicting the 

improvement of the patient based on the result of VAS 30 using 12 features. The most 

important feature for the decision making of the model is located on the upper part of 

the SHAP graph. In this case the ”intensity of pain” was the most relevant feature, 

followed by the “pin like”, and “sex”. The “personal history of alcoholism” was the least 

important in this case.  The models differed significantly in terms of their explanatory 

factors. The diversity becomes clear as one inspects the prototype models, since each 

model employed a very different set of resources from the other prototype models. As 

the models were selected maximizing the diversity of explanations, it was expected 

that the number of shared resources would be few. The most relevant resources for 

each prototype could be extracted directly from their SHAP values. The most relevant 

characteristics of the final model was the combination of the most relevant 

characteristics in their prototype model. The most relevant characteristics of each 

model of this prototype were: “pain intensity”, McGill score – affective dimension”, 

“Myofascial Pain Syndrome", “DN-4 score total”, McGill score – sensory dimension”, 

“McGill score – evolving dimension”, and “unbearable pain”. 
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Figure 16 – Explanation factors presented as summary SHAP graphs with the label VAS 30. 

  
A set of graphs of summaries showing only the most important resources. They were extracted from the Random Forest and XGBoost models. 
Each line represents a variable. The datasets were constructed from the concatenation of the first visit, combined with the SHAP obtained from 
a trained machine learning model with all the data from the first visit. Explanatory factors (seen as SHAP summary graphs) associated to 
prototype models with the label VAS 30. It continues. 
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Figure 16 - Explanatory factors are presented as SHAP summary charts for the VAS 30 label . 

  
A set of graphs of summaries showing only the most important resources. They were extracted from the Random Forest and XGBoost models. Each line 
represents a variable. The datasets were constructed from the concatenation of the first visit, combined with the SHAP obtained from a trained machine 
learning model with all the data from the first visit. Explanatory factors (seen as SHAP summary graphs) associated to prototype models with the label VAS 
30.  Conclusion.
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Considering the 30% reduction in pain, of the 506 patients, there was an 

improvement in 210, while the remaining 296 did not improve (Table 11).  

 

Table 11 – Distribution of patients with 30% or no improvement in pain according to 
VAS, in absolute numbers (n) and percentages (%). 

VAS 30 n = 506 
Improved  210 (41,5%) 

Did not improve 296 (58,5%) 
   

 

Among the 210 patients who improved, the model could correctly predict 171 

but was wrong in 39. Within the 296 who did not improve, the model could correctly 

predict “no improvement” of pain in 165 patients but was wrong in the prediction in 131 

cases (Table 12). 

 

Table 12 - Confusion matrix for evaluating the models generated based on the label 
VAS 30. 

  Predicted value 

VAS 30 
Real No Yes 
No 165 131 
Yes 39 171     

5.2.1 Models for the label VAS 50 

 

The XGBoost model space generated for VAS 50 comprised 1,408 models out 

of the original 150,000 models, while the Random Forests model space comprised 

11,829 models. 

The results of the generated prototype models were displayed in representative 

SHAP graphs associated with prototype models generated in the VAS 50 model space 

to provide an overview of the most important features. 

Figure 17 represents the best models selected according to the distribution of 

the evaluated variables, referring to the degree of interference in the occurrence of 

pain, based on the coding expressed in the ordinate column presented to the right of 

the SHAP graphs. The figure provides an overview of which ensembles were most 

important in the models, with a 50% improvement in pain as the outcome, selected as 

“optimal” from the analysis of the mean AUCs. The models differed greatly depending 
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on the extent, location, and duration of pain and prescribed medications. There was 

great diversity in these prototype models, showing 79 distinct features within the 11 

models, of which 14 features were present in 11 models and only one feature in four 

models. 

The model represented in Figure 17 by graph “a” aimed to predict the patient's 

improvement based on the result of the VAS 50 using ten features. The most important 

feature for model decision-making is located at the top of the SHAP chart. In this case, 

“pain intensity” was the most relevant feature, followed by “pain predominance” and 

“throbbing pain”. “Similar family history” was the least important in this case. Therefore, 

according to the values of the SHAP graph for the “pain intensity” feature of model “a”, 

it was considered that high values of pain intensity increased the possibilities of a 

significant reduction in the magnitude of pain at the end of the treatment. Very low 

values (blue dots) are concentrated on the left side of the graph; low pain intensity did 

not contribute significantly to the patient's improvement. The points in red for the 

second variable, which refer to the predominance of pain, are predominantly positioned 

to the right of the value “0”, that is, well delimited, demonstrating that the lack of a 

moment in the day when pain predominates had an positive impact in predicting 

improvement; patients who had a specific time of pain predominance had little impact 

on prediction. The sensation of throbbing pain, of the pain-sensitive dimension 

variable, had a positive but small impact on pain improvement; the absence of 

throbbing pain had almost no impact on the improvement or worsening of pain in this 

model. The model suggested that the feature “pain located in the right shoulder” was 

revealed to have a negative impact on this model and less probability of improvement 

if the patient had it. “Phantom limb pain” was related to a great positive impact on the 

prediction of pain improvement. 

The most relevant characteristics of each prototype model were: “pain intensity”; 

“McGill score - evolutionary dimension”; “numbness”; “McGill score - sensitive 

dimension”; “McGill total score”; “GIC Doctor's Version”; “throbbing pain”; “nauseating 

pain”; “DN-4 score”; “severe pain intensity” and “McGill score - affective dimension”. 
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Figure 17 - Explanatory factors presented as SHAP summary charts for VAS 50 label. 

 
A set of graphs of summaries showing only the most important resources. They were extracted from the Random Forest and XGBoost models. Each line 
represents a variable. The datasets were constructed from the concatenation of the first visit, combined with the SHAP obtained from a trained machine learning 
model with all the data from the first visit. Explanatory factors (seen as SHAP summary graphs) associated with prototype models for EVA 50 label. Four of the 
eleven models of prototypes built with XGBoost. (It continues below). 
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Figure 17 – Explanatory factors presented as SHAP summary charts for VAS 50 label . 

  
A set of graphs of summaries showing only the most important resources. They were extracted from the Random Forest and XGBoost models. Each line 
represents a variable. The datasets were constructed from the concatenation of the first visit, combined with the SHAP obtained from a trained machine learning 
model with all the data from the first visit. Explanatory factors (seen as SHAP summary graphs) associated with prototype models for VAS 50 label. Four of 
the eleven models of prototypes built with XGBoost. (It continues below). 
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Figure 17 – Explanatory factors presented as SHAP summary charts for VAS 50 label . 

  
A set of graphs of summaries showing only the most important resources. They were extracted from the Random Forest and XGBoost models. Each line 
represents a variable. The datasets were constructed from the concatenation of the first visit, combined with the SHAP obtained from a trained machine learning 
model with all the data from the first visit. Explanatory factors (seen as SHAP summary graphs) associated with prototype models for VAS 50 label. Four of the 
eleven models of prototypes built with XGBoost. Conclusion.  
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Of the 506 patients included in the present study, 160 patients reported at least 

50% pain relief at the end of follow-up, while 346 did not. Although this number is not 

precise, it was considered the worst scenario, since the traditional management to 

treat chronic pain represents, at least, confidence in the patient's improvement. (Table 

13). 

 

Table 13 – Distribution of records of pain improvement of 50% or not according to the 
VAS assessment of pain intensity (0 to 10) in absolute numbers (n) and 
percentages (%). 

VAS 50 n = 506 
Improved 160 (31,62%) 

Did not improve 346 (68,38%) 
    

 

The matrix revealed that of the 160 patients who improved, the model could 

correctly predict 105 and was wrong in 55. On the other hand, of the 346 who did not 

improve, the model could correctly predict non-improvement in 246 cases, but it 

needed to be corrected in 100 cases. Table 14). 

 

Table 14 - Confusion matrix for evaluating the models generated based on the VAS 50 
label. 

  Predicted Value 

VAS 50 
Real No Yes 
No 246 100 
Yes 55 105     

 

5.2.3 Global Impression Clinical assessment 

 

Data referring to the report of pain improvement were evaluated according to 

the versions of the patient and the evaluator regarding the Clinical Global Impression 

(GIC) scale, classified as much worse, worse, slightly worse, unchanged, slightly 

better, better, much better. The outcome values were “better” or “much better”. 

Regarding GIC, 18,575 models were generated for XGBoost and 10,035 

models for Random Forests. 

5.2.3.1 Patient version 
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Figure 18 shows the best models selected according to the distribution of the 

evaluated variables, referring to the degree of interference in the occurrence of pain, 

based on the coding expressed in the ordinate column shown to the right of the SHAP 

graphs. The figure reveals an overview of which models were selected as “optimal” 

based on the analysis of the average AUCs, which had the patient’s version of pain as 

the outcome, with “better” or “much better” as positive parameters (value 1)., according 

to the GIC scale. The models differed greatly depending on the extent, location, and 

duration of pain and prescribed medications. There was great diversity in these 

prototype models, showing 49 distinct ensembles within the five prototype models, of 

which seven features were present in 4 models and four features were present in only 

1 model. 

The model represented in Figure 18 by graph “a” uses eight features. It can be 

seen in this model that the variable “GIC medical version” was the most relevant, 

followed by the variable “lamotrigine 100mg” and “leg pain”; that is, they are the three 

variables that most impacted the prediction of this model; following the same 

philosophy, knowing whether “the patient underwent surgery” was the least important 

feature. 

The most relevant features of the final model would be the combination of the 

most relevant features in its prototype models. For example, using the GIC scale by 

patient version as the label, XGBoost as the learning algorithm, and DBScan as the 

clustering algorithm, the most relevant characteristics of each prototype model were: 

“GIC physician version”; “suffocating pain”; “pain intensity”; “McGill total score”.  
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Figure 18 - Explanatory factors displayed as SHAP summary charts for GIC label patient's version. 

 
A set of graphs of summaries showing only the most important resources. They were extracted from the Random Forest and XGBoost models. 
Each line represents a variable. The datasets were constructed from the concatenation of the first visit, combined with the SHAP obtained from 
a trained machine learning model with all the data from the first visit. Explanatory factors (seen as SHAP summary graphs) associated with 
prototype models for GIC patient’s version. Four of the eleven models of prototypes built with XGBoost.. Continuation 
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Figure 18 - Explanatory factors displayed as SHAP summary charts for GIC label patient's version.

 
A set of graphs of summaries showing only the most important resources. They were extracted from the Random Forest and XGBoost 
models. Each line represents a variable. The datasets were constructed from the concatenation of the first visit, combined with the SHAP 
obtained from a trained machine learning model with all the data from the first visit. Explanatory factors (seen as SHAP summary graphs) 
associated with prototype models  for GIC patient’s version... Conclusion. 
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According to the patient version GIC scale results, out of the 506 patients, 130 

patients improved, and the remaining 376 did not. (Table 15).  

 

Table 15 - Distribution of patients with or without pain improvement according to the 
patient's version of the Clinical Global Impression (GIC) scale, in absolute 
numbers (n) and percentages (%). 

GIC patient n = 506 
Improved 130 (25,7%) 

Did not improve 376 (74,3%)   
 

The model correctly predicted the outcome of 73 patients out of the 130 who 

improved, but it was wrong in 57. Of the 376 who did not improve, the model was able 

to predict the absence of improvement in 288 cases correctly, but it needed to be 

corrected in the prediction in 88 cases (Table 16). 

 

Table 16 - Confusion matrix for evaluating the models generated based on the patient's 
version GIC label. 

  Predicted Value 

GIC patient 
Real No Yes 
No 288 88 
Yes 57 73     

 

5.2.3.2 Doctor’s version 

 

Figure 19 represents the best models selected according to the distribution of 

the evaluated variables, referring to the degree of interference in the occurrence of 

pain based on the coding expressed in the ordinate column presented to the right of 

the SHAP graphs. The figure provides an overview of which ensembles were most 

important in the models that had the doctor's version of the patient's pain sensation as 

the outcome, having as positive parameters (value 1) “better” or “much better”, 

according to the scale of GIC. The models differed greatly depending on the extent, 

location, and duration of pain and prescribed medications. There was great diversity in 

these prototype models, showing 36 distinct ensembles within the 4 prototype models, 

of which 4 features were present in 3 models and only 1 feature in three models. 
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The model represented in Figure 19 by graph “a” used 15 features. It can be 

observed in this model that the variable “pain intensity” was the most relevant, followed 

by the variable “gender (f/m)” and “gabapentin use”; that is, they were the three 

variables that most impacted the prediction of this model; following the same 

philosophy, knowing whether “the patient used celecoxib” was the least important 

feature. 

The most relevant features of the final model would be the combination of the 

most relevant features in its prototype models. Using the GIC scale by the doctor's 

version as a label, the most relevant characteristics of each prototype model were: 

“pain intensity”; “GIC patient version”; “McGill total score”; "GIC Doctor's Version”.  
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Figure 19 – Explanation factor presented as SHAP summary graphs for the GIC label Doctor’s version.   

 
A set of graphs of summaries showing only the most important resources. They were extracted from the Random Forest and XGBoost models. Each 
line represents a variable. The datasets were constructed from the concatenation of the first visit, combined with the SHAP obtained from a trained 
machine learning model with all the data from the first visit. Explanatory factors (seen as SHAP summary graphs) associated with prototype models  for 
GIC doctor’s version. 
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According to the results of the physician's version of the Clinical Global 

Impression scale, of the 506 patients, 137 patients improved, and the remaining 369 

did not (Table 17). 

 

Table 17 – Distribution of patients in terms of pain improvement or not, according to 

the Clinical Global Impression (GIC) scale according to the doctor's 

version in absolute numbers (n) and percentages (%).  

GIC Doctor n = 506 
Improved 137 (27,1%) 

Did not improve 369 (72,9%)   
 

The model correctly predicted the outcome of 94 patients out of the 137 who 

improved, but it was wrong in 43. Of the 369 who did not improve, the model was able 

to predict the absence of improvement in 235 cases correctly, but it needed to be 

corrected in the prediction in 134. (Table 18). 

 

Table 18 - Confusion matrix for evaluating the models generated based on the GIC 

label evaluator's version. 

  Predicted Value 

GIC doctor 
Real No Yes 
No 235 134 
Yes 43 94     

 

5.2.5 Final questionnaire 

 

The final questionnaire was obtained after generating the ensemble for each 

label and evaluating the corresponding AUCs. 

An AUC > 0.70 was used as a filter to develop the questionnaire experiment. In 

addition, the following conditions were added to the system: 1) the model was 

composed of a reduced number of features, and 2) ensembles were generated with a 

maximum of 38 features. To elaborate on the questionnaire, the objective was to reach 

maximum performance with the information from the first consultation. 
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After analyzing the generated models, the patient version GIC label reached the 

best AUC, with an ensemble model with 14 unique features converted into 12 

questions. 

The algorithm developed from the analysis of the data of the current project was 

practical not only in identifying, in an isolated way, the variables that most contributed 

to the outcome but also in the combination of these variables that achieved an 

excellent performance. 

Figure 20 shows the questionnaire developed in this work. 

 

Figure 20 – Questionnaire presented with the best features of the 
models generated from the GIC label. 

 
Questionnaire developed from the best AUCs of the variables 
with the best labels, namely, the patient’s version of the GIC 
scale. 
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The questionnaire was entered into the IEAA system and will be completed 

during the first consultation of patients treated at the PCNC at HCFMUSP. In addition, 

the internal validation of the questionnaire will be carried out with a prospective study 

of these data. 
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6 DISCUSSION 
 

This study aimed to apply an artificial intelligence approach to identify predictive 

parameters of the evolution of pain relief in patients with chronic pain and to obtain a 

questionnaire containing these parameters to help in the clinical management of these 

patients. Despite the existence of several guidelines and recommendations for its 

treatment, up to 40% of patients with chronic pain remain symptomatic despite the best 

medical treatment (58), and precisely defining the best therapy for a patient is still a 

challenge. 

Chronic pain is considered a complex disease, resulting from associated 

morbidities and other symptoms resulting from it or therapeutic interventions. This 

explains why it is misdiagnosed in more than 75% of patients, and treatments are often 

ineffective. In addition, how pain is described, interpreted, and understood varies 

considerably from the perspectives of health professionals and sufferers, especially 

when the pain is chronic (13, 115). 

The descriptive analysis carried out in patients with pain makes it possible to 

observe several factors that determine its occurrence and perpetuation, such as sex, 

age, life habits, individual and hereditary antecedents, and types of pain, among other 

clinical determinants. The management of these risk factors can make it possible to 

guide prophylactic attitudes towards chronic pain, aiming at reducing its duration and 

severity, rehabilitation and integration of patients. In addition, some of these factors 

are relevant for predictions, assessments, management, and prognosis of chronic pain 

conditions, and others are potentially important for identifying new models of 

therapeutic interventions (115). 

The complexity of chronic pain is challenging because it stems from several 

mechanisms that can cause or aggravate it, which justifies the various strategies for 

its management. Furthermore, the journey to defining the cause of the pain can take 

many years. Therefore, patient-centered multidisciplinary assessment is extremely 

important and is the basis for appropriately managing chronic pain (116). 

 

6.1 Demographic characteristics of the study cohort  
 

Most (96%) of the patients included in the present study came from the 

southeastern region of Brazil; however, it must be considered that most of the patients 
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treated at HCFMUSP live in the state of São Paulo. According to studies, 

approximately 31% of adult residents of the city of São Paulo have chronic pain, which 

is considered a public health problem (2, 58, 117). 

The prevalence of chronic pain in women in Brazil is approximately 70%; in this 

series, it was observed that pain was more prevalent in women (57.7%); however, it is 

important to emphasize that more women than men are treated in outpatient service 

environments , that is, there is greater demand for assistance to treat their pain (2, 

114, 118, 119). 

Pain prevalence is highest in adults aged 45 to 65, and the mean age of patients 

seen in the pain clinic was 55 years (58, 114). 

74% of the patients treated at the outpatient clinic declared themselves white. 

However, there are poorly understood ethnic variations related to pain, and it is 

questionable whether white people experience less pain than black people (120, 121). 

Although most patients had a certain level of education, 35% had completed 

primary education, 21% had completed secondary education, and only 7.3% had 

completed higher education. Other studies also indicate a correlation between chronic 

pain and socioeconomic deprivation; individuals with low educational levels and low 

social status are more likely to have chronic pain (121-123). 

The patients included in this series had other comorbidities such as systemic 

arterial hypertension (SAH) (25%), diabetes mellitus (17%), and cerebrovascular 

accident (CVA) (14%). Previous studies report the presence of additional chronic 

conditions in up to 88% of individuals with chronic pain, suggesting that those with 

chronic diseases are more prone to chronic pain. If, on the one hand, chronic pain 

increases the risk for SAH, on the other hand, the predisposition to chronic pain 

increases in those with SAH. The presence of comorbidities is related to the successful 

therapeutic management of chronic pain as it limits the applicability of disease-specific 

clinical guidelines and reduces options for adequate analgesic therapy (124-126). The 

predisposition to the occurrence of chronic painful conditions may occur in patients 

with a hereditary history, such as diabetes mellitus, hypertension, hypothyroidism, 

migraine, degenerative neuropathies, and other neurological diseases, Hansen's 

disease and other infectious diseases, fibromyalgia or other functional diseases (35, 

127). 

Some studies emphasize that improving pain can improve subjective health, 

that is, the patient's perception of pain and well-being (128). 
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Based on this criterion, it was decided to use the VAS instruments as an 

outcome, which evaluates the intensity of pain, and GIC, which evaluates the doctor's 

and the patient's perception regarding the improvement in the treatment. 

  

6.2 Characteristics of the accessed health record  
 

This study showed the importance of a systematic and standardized medical 

record to assess and treat chronic pain and the possibility of using these complex and 

multivariate data in future research. Furthermore, only an organized record of multiple 

variables allows designing research strategies to assess possible interactions between 

variables and their impact on the mechanism and management of the disease. 

Currently, most electronic records of pain-related data are not standardized. For 

example, diagnostic codes need to be clearly identified, and instruments for self-

description and self-assessment of pain need to be more accurate in identifying pain-

related issues (129, 130). To overcome the challenges related to the communication 

of chronic pain, a digital tool called "Electronic Interface for Ambulatory Care" (IEAA) 

was created by the Discipline of Neurosurgery of the Department of Neurology at 

FMUSP, which provides an extensive, consistent database of patients throughout their 

clinical care history. This tool was created in 2014 and formalized as a care instrument 

in 2016. The use of the IEAA allowed the experimental design of the present study with 

the analysis of multiple variables involved in pain with the outcome of its evolution and 

the search for predictors of its evolution.  

 

6.3 Characteristics of pain 
 

The analysis of data from this series emphasized the importance of self-

reporting in the treatment and monitoring of the evolution of pain. These previous 

corroborating studies considered self-report as the gold pain assessment standard 

(131, 132). 

Pain location: In the present case series, the pain was more frequently located 

on the right side of the body and manifested in multiple locations. The number of pain 

areas was the most accurate variable. The occurrence of acute or chronic pain 

elsewhere in the body was the most important clinical risk factor for developing chronic 

pain. It is described that the presence of more than one cause of chronic pain and pain 

of longer duration is associated with worse quality of life (133-136). 
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Type of pain: Neuropathic pain, detected using the DN-4 questionnaire, was 

present in 59.3%, according to the IASP criteria (7), as the main pain syndrome. 

Studies endorse these data, pointing out that neuropathic pain affects approximately 

14% of the world population (137, 138). In this sample, it was also observed that 

nociceptive pain was present as the primary pain in approximately 2% of the evaluated 

patients. A systematic review study analyzed that the prevalence of nociceptive pain 

in Brazil is approximately 16% and is Brazil's most reported pain mechanism. 

Nociplastic pain was present in approximately 11% of patients, but it is important to 

emphasize that patients from the specific outpatient clinic for fibromyalgia were not 

evaluated. The prevalence of nociplastic pain in Brazil is around 12%, with 5% for 

fibromyalgia and 2% for chronic migraine (2, 139). 

Pain intensity: Chronic pain intensity ranged from moderate to severe, with 

pain reported by more than 45% of patients with pain in Brazil (140, 141). However, 

studies indicate a lack of uniformity in measurement instruments and the use of “weak”, 

“moderate” and “strong” terminologies to classify pain intensity (140, 141). 

Pain management: Most patients (47.5%) evaluated in the present series used 

the tricyclic antidepressant amitriptyline as an analgesic, which acts in the blockade 

and reuptake of serotonin and norepinephrine neurotransmitters in the pain suppressor 

system (142). Another widely used drug was gabapentin (61%), an anticonvulsant drug 

indicated for the pain of postherpetic neuralgia and painful peripheral diabetic 

neuropathy, but with limited evidence for treating other types of pain (143). 

Chronic pain management focuses on rehabilitation and improving quality of life, 

not necessarily on the cure. The economic burden of treating chronic pain is significant. 

In addition to drug treatment, the costs of rehabilitation and reintegration of patients 

are added. Delayed diagnosis and poor pain management can result in more suffering, 

increased costs, and worsening impairments and disabilities (13, 144). Satisfactory 

pain management depends on a comprehensive assessment of the biological etiology 

of pain in conjunction with the patient's specific psychosocial and behavioral 

dimensions. 

 

6.4 Application of Artificial Intelligence (AI) and Machine Learning (ML) in data 

analysis  
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The growing availability of “big data” enables new lines of research in chronic 

pain while at the same time implying the incorporation of new techniques for data 

mining and improving knowledge (145). 

Interpreting a large amount of data and its relationship with the disease is a great 

challenge when predicting outcomes that can make the most effective therapy for the 

patient (146). 

The analysis of longitudinal data, which are measures observed over time in 

many subjects, are generally multivariate and quite unbalanced; that is, they are 

unevenly arranged over the period studied. Longitudinal data analysis is traditionally 

performed using simple statistical methods. However, longitudinal data analysis 

derived from patient records may violate this assumption, as the observations correlate 

for the same patient but are independent. In addition, you often see different results 

tracked repeatedly at various intervals and/or with varying frequencies. Therefore, 

classical statistical models may not be applicable to analyze longitudinal data of this 

magnitude (147). 

This research aimed to overcome the limits of basic statistics, which is a science 

that evaluates the behavior of data to identify patterns or correlations, that is, averages, 

standard deviations, variance, covariance, a correlation between data points, 

univariate and multivariate (148), which is limited in identifying “responders” and “non-

responders” considering only individuals in the intervention group, that is, labeling an 

individual who received a certain active treatment as a “responder” (or not) because it 

is not known what would happen to that person if he belonged to the comparator (or 

placebo) group. To correctly infer whether or not a given participant responded to a 

given treatment, it is necessary to know what would happen if a key event (treatment) 

occurred and it did not, which is not possible in the real world (14). 

The idea of using AI was precisely to find the best predictors, which often need 

to be more readily identifiable during the query. A supervised ML algorithm was used 

to analyze the data collected to identify these response predictors. It is a predictive 

and non-intuitive analysis technique that evaluates many data instead of dividing 

individuals into binary response categories, as usually used in basic statistics (14). A 

similar study uses this technique to assess pain predictors (149). 

The development and popularization of machine learning techniques and the 

improvement of diagnostic instruments based on these technologies have 

revolutionized decision-making by health professionals (13). However, although many 
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studies have relied on ML to diagnose chronic pain, little has been attributed to its 

treatment (150-152). 

Research on ML approaches to treat, rehabilitate and self-manage chronic pain 

is needed. Many articles use AI in self-care, aiming to create mechanisms so that the 

patient manages his pain using, for example, applications and virtual reality. Using 

these tools in patient care generates a wide range of health data, both within and 

outside of clinical settings, that can potentially be used in future BF studies to support 

research on chronic pain (153-156). 

ML techniques require fewer assumptions about the data compared to simple 

statistics. ML focuses on mathematics and algorithms, uses large volumes and 

varieties of data to make predictions, and is concerned with solving problems, which 

implies predictions and pattern recognition. It is an excellent attribute for conducting 

longitudinal studies with extended follow-up and multiple measures (147). 

Based on understanding data, ML is increasingly used to help health 

professionals and patients. Renowned for its ability to find complex relationships and 

identify critical patterns in datasets, ML offers new opportunities to use health and 

healthcare-related information effectively (13). This approach is very attractive as the 

potential clinical gains are significant. For example, even a small increase in the 

probability of response to treatment in a particular individual can be dramatic. However, 

attempts to achieve clinical gains through personalized medicine often must catch up 

to the original expectation (14). 

The approach used was ensemble learning, a little explored technique because 

it evaluates explanatory modeling and predictive modeling and uses a combination of 

models to generate predictions in search of the best performance (157, 158). The 

SHAP (102) has recently emerged as an explanatory method of models, which is used 

to obtain the prediction explanation from the generated model. Model interpretability is 

always a challenge, especially when using the ensemble method, one of the 

techniques chosen in this study, due to the complexity of the data (159). The model 

explanation is more concerned with providing insight into the contribution of each 

feature from the model output. 

There are several ML algorithms; it is necessary to try them in each presented 

problem to identify which obtains better performance because there is no algorithm 

that is superior to the other. The XGBoost (160) and Random Forest (97) algorithms 
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are not explanatory. The model was tested to avoid malfunction and validate 

explainability (149). 

We evaluated the joint learning approach to predict the evolution of pain relief in 

patients with unknown chronic pain conditions because, despite the existence of 

several guidelines and recommendations for its treatment, up to 40% of patients with 

chronic pain may remain symptomatic despite the best medical treatment. Precisely 

defining the best therapy for a patient is still a challenge. 

Research using AI tools has revealed that improved data increases accuracy 

performance. As the number of consultations considered increased, an increase in the 

AUC was observed with our proposed approach. On the other hand, the performance 

of the model reached a threshold of improvement; that is, when accumulating raw data 

from several sequential queries, it did not reflect significant changes, but there was a 

decrease in the performance of the model due to the large number of features added 

in each additional visit. The study showed that the first consultation was an essential 

event in the history of pain, influencing adherence to treatment and involvement with 

long-term self-management, corroborating previous studies (65). 

The accuracy performance can be justified as traditional machine learning 

approaches are generally not adapted to handle longitudinal data. 

139 variables were identified in the generated models, including factors related 

to and associated with the pain phenotype, such as pain etiology, morbidities, and 

factors related to treatment. The variables were listed in order of importance in the 

figures (Figure 16, Figure 17, Figure 18, and Figure 19). Many variables that were used 

did not show significant influence on the model. Hierarchical classifiers allowed for 

classifying features in the top-down direction of the decision tree. In all labels, the 

characteristics that appeared as the most important were: pain intensity, McGill 

questionnaire score, and GIC. The classifiers trained to make these assignments were 

complex, so the analysis of the models was better together than the evaluation of each 

separately. Interestingly, the model selected the best predictors without bias (or prior 

knowledge of predictors that were by default considered most important) (149). 

Detailed discussions about the strengths and limitations of these methods will be the 

scope of future studies. 

The improved performance has generated a significantly reduced set of features. 

This remarkably reduced subset produced side benefits such as improving the 

explainability of predictions. The explanations of the models were used as meta-
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features that functioned as a memory of previous queries. This method strongly 

indicated that the resource weights contain more decisive information than the 

resources in the previous queries. The approach that used the model explanations 

meta-feature with a diversification set of explanations achieved an AUC of 0.975. 

Finally, the study demonstrated that models generated by the GIC label patient 

version had the best AUC when crossed with each other. To group these predictive 

variables, a questionnaire with 12 questions was generated, with the objective of being 

applied in the first consultation of the patient with pain at the HCFMUSP pain clinic, for 

a better prediction of pain evolution. 

The acceptance of the use of AI in the clinical environment is slow, mainly due to 

the fact that the introduction of the use of new technologies is related to the increase 

in available tools that will be used during the consultation, which can be seen as 

difficulty and complexity in work by the doctor. However, implementing these 

technologies in the long term will facilitate and simplify some costly activities. In 

addition, using these tools will be just one more source of information to help improve 

diagnostic accuracy; the final judgment will remain with the physician (149). 

It is expected that new analyses will be carried out using AI on query data due to 

the enormous amount of information produced and stored by modern technology. 

Current ML algorithms provide tools to help the multidisciplinary team make decisions 

based on these data relationships. 

There are limitations to this study. First, this study is a single-center study. The 

development of the project presented a computational limitation. The proposal 

demanded a considerable time to learn a model, but with some optimizations, it was 

possible to reduce it. There is an obstacle to calculating the SHAP value, as not all 

supervised learning algorithms allow this calculation efficiently. There is an 

independent version of the algorithm, but its computational complexity is high, and it 

was impossible to apply it in our present study. 
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7 CONCLUSION 
 

• Consistent systematized recording of evolutionary data related to individuals 

with pain, especially with chronic pain, obtained by the IEAA, was essential for 

the application of AI tools in ML algorithms. 

• The ensemble algorithm was the most efficient in the ensemble analysis of the 

models. 

• The application of Random Forest and XGBoost algorithms were the ones with 

the best performance in dealing with many variables. 

• A good prediction was obtained using data from the first consultation. 

• The use of model explanations meta-features allowed to reach an AUC of 0.975. 

• The experimental design with ML allowed the generation of a 12-question 

questionnaire with the best predictors of pain evolution. 

• ML analyzes are not intuitive; therefore, the selected variables can be 

considered unimportant in relation to evaluations in other care settings, for 

example, in the office, but this factor is considered positive. 

• Machine learning has a high level of complexity, so you should not focus on 

understanding what is behind it but on the result. 

• Chronic pain is a public health problem, and new strategies are needed to 

facilitate and streamline safe and effective care. 
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Appendix 1 - Patient history 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Anexo 1 - Avaliação dos antecedentes 
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Appendix 2 – ISDA Scale 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Anexo 2 - Interrogatório sobre os diversos aparelhos 
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Appendix 3 - Pain assessment 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Anexo 3 - Avaliação do quadro doloroso 
 
 

 



APPENDIX 

 

100 

Appendix 4 - The short-form McGill Pain Questionnaire 
 

 
 
 
 
 
 
 
 

Anexo 4 - Questionário SF-MPQ (Short Form of the McGill Questionnaire) 

Data:  
Nº Dimensões da dor: 
1 Dimensão Sensorial: 

  Ausente Presente 

 Latejante 
Pontada 
Choque 
Fina/agulhada 
Fisgada 
Queimação 
Espalha 
Dolorida 

( ) 
( ) 
( ) 
( ) 
( ) 
( ) 
( ) 
( ) 

( ) 
( ) 
( ) 
( ) 
( ) 
( ) 
( ) 
( ) 

2 Dimensão Afetiva 

  Ausente Presente  
Cansativa 
Enjoada 
Sufocante 
Apavorante 
Aborrecida 

( ) 
( ) 
( ) 
( ) 
( ) 

( ) 
( ) 
( ) 
( ) 
( ) 

3 Dimensão Avaliativa  
  Ausente Presente 

 Que incomoda 
Insuportável 

( ) 
( ) 

( ) 
( ) 

4 Questão 2: Marque sobre o diagrama, com um X, a (s) área (s) onde você sente dor e onde a dor é mais intensa: 
 

 
 1- cabeça 

2- ombro D 
3- tórax anterior 
4- ombro E 
5- braço D 
6- hipocôndrio D 
7- região epigástrica 
8- hipocôndrio E 

17- cabeça (região 
posterior) 
18- cervical (região 
posterior) 
19- escapula E 
20- tórax posterior 
21- escapula D 
22- braço (posterior) E 

28- região lombar D 
29- glúteo E 
30- região coccígea 
31- glúteo D 
32- coxa (posterior) E 
33- coxa posterior D 
34- antebraço D 
35- antebraço E 

41- pé E 
42- antebraço (posterior) E 
43- antebraço (posterior) D 
44- região poplítea E 
45- região poplítea D 
46- perna (posterior) E 
47- perna (posterior) D 
48- região calcânea E 
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Appendix 5 – Douleur Neuropathique 4 Questions (DN4) 
 

 
 
 

 
 

 
Anexo 6 - Questionário DN4 

Nº Questões  

1 Questão 1: A sua dor tem uma ou mais das seguintes características? 

  Queimação: ( ) Sim ( ) Não 
 

 Sensação de frio doloroso: ( ) Sim ( ) Não 
 

 Choque elétrico: ( ) Sim ( ) Não 

2 Questão 2: Há presença de um ou mais dos seguintes sintomas na mesma área da 

sua dor? 
 

 Formigamento: ( ) Sim ( ) Não 

  Alfinetada e agulhada: ( ) Sim ( ) Não 

  Adormecimento: ( ) Sim ( ) Não 

  Coceira: ( ) Sim ( ) Não 

 Exame do paciente: 

3 Questão 3: A dor está localizada numa área onde o exame físico pode revelar uma 

ou mais das seguintes características? 

  Hipoestesia ao toque: ( ) Sim ( ) Não 

  Hipoestesia a picada de agulha: ( ) Sim ( ) Não 

4 Questão 4: Na área dolorosa a dor pode ser causada ou aumentada por: 

  Escovação: ( ) Sim ( ) Não 

  Escore total:  
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Appendix 6 – Global Impression Clinical scale (GIC) 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Anexo 7: Escala De Impressão Clínica Global 
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Appendix 7 
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Predicting the Evolution of Pain Relief: Ensemble Learning by
Diversifying Model Explanations

ANDERSON BESSA DA COSTA, Computer Science Department, Universidade Federal de Minas Gerais
LARISSA MOREIRA, Pain Center, Department of Neurology, Universidade de São Paulo
DANIEL CIAMPI DE ANDRADE, Pain Center, Instituto do Câncer do Estado de São Paulo
ADRIANO VELOSO, Computer Science Department, Universidade Federal de Minas Gerais
NIVIO ZIVIANI, Computer Science Department, Universidade Federal de Minas Gerais, and Kunumi

Modeling from data usually has two distinct facets: building sound explanatory models or creating powerful predictive models
for a system or phenomenon. Most of recent literature does not exploit the relationship between explanation and prediction
while learning models from data. Recent algorithms are not taking advantage of the fact that many phenomena are actu-
ally de!ned by diverse sub-populations and local structures, and thus there are many possible predictive models providing
contrasting interpretations or competing explanations for the same phenomenon. In this article, we propose to explore a
complementary link between explanation and prediction. Our main intuition is that models having their decisions explained
by the same factors are likely to perform better predictions for data points within the same local structures. We evaluate
our methodology to model the evolution of pain relief in patients su"ering from chronic pain under usual guideline-based
treatment. The ensembles generated using our framework are compared with all-in-one approaches of robust algorithms
to high-dimensional data, such as Random Forests and XGBoost. Chronic pain can be primary or secondary to diseases. Its
symptomatology can be classi!ed as nociceptive, nociplastic, or neuropathic, and is generally associated with many di"erent
causal structures, challenging typical modeling methodologies. Our data includes 631 patients receiving pain treatment. We
considered 338 features providing information about pain sensation, socioeconomic status, and prescribed treatments. Our
goal is to predict, using data from the !rst consultation only, if the patient will be successful in treatment for chronic pain
relief. As a result of this work, we were able to build ensembles that are able to consistently improve performance by up to
33% when compared to models trained using all the available features. We also obtained relevant gains in interpretability,
with resulting ensembles using only 15% of the total number of features. We show we can e"ectively generate ensembles
from competing explanations, promoting diversity in ensemble learning and leading to signi!cant gains in accuracy by en-
forcing a stable scenario in which models that are dissimilar in terms of their predictions are also dissimilar in terms of their
explanation factors.

CCS Concepts: • Computing methodologies→ Ensemble methods; • Applied computing→ Health informatics;
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