Marina Passos Torrealba

Efeito de nanovesículas extracelulares derivadas de linhagens tumorais de linfoma T cutâneo em queratinócitos imortalizados

Tese apresentada à Faculdade de Medicina da Universidade de São Paulo para obtenção do título de Doutora em Ciências

Programa de Dermatologia

Orientador: Prof. Dr. José Antonio Sanches Junior

Coorientadora: Prof. Dra. Maria Notomi Sato

Marina Passos Torrealba

Efeito de nanovesículas extracelulares derivadas de linhagens tumorais de linfoma T cutâneo em queratinócitos imortalizados

Tese apresentada à Faculdade de Medicina da Universidade de São Paulo para obtenção do título de Doutora em Ciências

Programa de Dermatologia

Orientador: Prof. Dr. José Antonio Sanches Junior

Coorientadora: Prof. Dra. Maria Notomi Sato

Dados Internacionais de Catalogação na Publicação (CIP)

Preparada pela Biblioteca da Faculdade de Medicina da Universidade de São Paulo

©reprodução autorizada pelo autor

```
Torrealba, Marina Passos
Efeito de nanovesículas extracelulares derivadas
de linhagens tumorais de linfoma T cutâneo em
queratinócitos imortalizados / Marina Passos
Torrealba. -- São Paulo, 2022.
Tese (doutorado) --Faculdade de Medicina da
Universidade de São Paulo.
Programa de Dermatologia.
Orientador: José Antonio Sanches Junior.
Coorientador: Maria Notomi Sato.
Descritores: 1.Vesículas extracelulares 2.Células
epidérmicas 3.Células HaCaT 4.Micose fungoide
5.Síndrome de Sézary 6.Adesão celular 7.Inflamação
8.Indutores da angiogênese
USP/FM/DBD-294/22
```

Responsável: Erinalva da Conceição Batista, CRB-8 6755

AGRADECIMENTOS

Enquanto escrevo essa seção muitos pensamentos vêm à mente. Foi uma jornada longa que passou rápido, rica em aprendizados e experiências, e bastante intensa. Também teve a colaboração de diversas pessoas, de muitos lugares, de diferentes maneiras. A elas escrevo meu agradecimento detalhado abaixo.

Ao Prof. Dr. José Antonio Sanches Jr, pela orientação e pela confiança neste trabalho.

À Prof.^a Dr^a. Maria Notomi Sato pela coorientação, parceria e compreensão. Pela grande disponibilidade ao longo desses anos. Pelos "empurrãozinhos" e pelo incentivo maternal nesse período de orientação.

Ao Prof. Dr. Anders Woetmann por me receber em seu grupo de pesquisa na Universidade de Copenhagen, Dinamarca. Agradeço também pela confiança, pela dedicada supervisão e pelas tantas discussões de resultados. E, por lembrar que ciência é, antes de tudo, entusiasmante.

Ao meu pai, Carlos Torrealba, pelo apoio fraternal e incondicional. Pelo suporte afetivo, financeiro e emocional.

Ao meu irmão Maurício, longe fisicamente, mas muito presente durante essa etapa. Obrigada pela escuta, bom humor e parceria.

Aos meus queridos irmãos, Marcelo e Leandro, sempre presentes. A minha querida tia Lygia pelo carinho e apoio familiar.

Ao Jacob Vahr, por estar tão presente nessa etapa, pela compreensão, carinho e apoio incondicional. E claro, pela contribuição com a formatação das tabelas suplementares.

Às amizades nascidas no laboratório que pacientemente dividiam seus conhecimentos práticos, teóricos e pessoais e por todos os momentos de convívio e companheirismo: Anna Júlia, Franciane, Iara, Yasmin, Fábio Seiti, Luanda Oliveira, Elaine, Raquel, Luana e Kelly Manfrere.

Aos integrantes do grupo de pesquisa LEO Foundation Skin Immunology Research Center e ao Prof. Dr. Niels Ødum, que me receberam tão bem durante o período de doutorado sanduíche na Universidade de Copenhagen: Martin, Sana, Sara, Veronika, Chella, Daniel, Shayne, Maria, Emil e Mia. Um agradecimento especial a Marina Ramírez Galera e Cheng Chi.

Em especial a Lisa Harth, colega de bancada que acompanhou de perto e participou ativamente do meu projeto. Agradeço pelas tantas discussões científicas, pela companhia e pela amizade.

Aos amigos e *roommates* Gustav, Fiqah, Paula, Greg, Fra, Victor, Emil e Alessio, pela companhia, pelos tantos jantares e claro, carinho. Por terem feito eu me sentir em casa em Copenhagen.

As minhas amigas Nátalli e Anna Claudia pelos ouvidos sempre prontos e abraços sempre abertos.

Ao auxílio dos especialistas Tillmann Pape, Thomas Hartig Braunstein e do Prof. Dr. Klaus Qvortrup do *Core Facility for Integrated Microscopy* (CFIM) da Universidade de Copenhagen, na aquisição das imagens de Cryo-TEM e de microscopia confocal.

Ao Dr. Denis Myashiro e Dra. Jade Cury-Martins pela parceria nos projetos desenvolvidos em conjunto com a Clínica de Linfomas Cutâneos do HCFMUSP.

A todos os integrantes do LIM 56 que de maneira direta ou indireta contribuíram para a realização deste trabalho.

À banca de qualificação Dr. Fábio Seiti, Dra. Raquel Leão e Prof. Dra. Telma Oshiro pelas contribuições e melhorias na tese.

À secretaria do Departamento de Dermatologia HC-FMUSP, Ruth e Marcelo.

À CAPES, FAPESP e CNPQ pelo apoio financeiro.

Essa tese está de acordo com as seguintes normas, em vigor no momento dessa publicação:

Referências: adaptado de International Commitee of Medical Journals Editors (Vancouver).

Universidade de São Paulo. Faculdade de Medicina. Divisão de Biblioteca e Documentação. *Guia de apresentação de dissertações, teses e monografias*. Elaborado por Annelise Carneiro da Cunha, Maria Julia de A. L. Freddy, Maria F. Crestana, Marinalva de Souza Aragão, Suely Campos Cardoso, Valéria Vilhena. 3ª ed. São Paulo: Divisão de Biblioteca e Documentação; 2011. Abreviatura dos títulos dos periódicos de acordo com *List of Journals in Index Medicus*.

SUMÁRIO

Lista de Figuras

Lista de Tabelas

Resumo Abstract

1. INTRODUÇÃO1				
1.1	Linfomas cutâneos de células T	1		
1.2	Contexto imunológico	2		
1.3	Barreira cutânea	5		
1.4	Nanovesículas	. 10		
2. OB	JETIVOS	. 14		
2.1	Objetivos específicos	. 14		
3. DEI	LINEAMENTO DO ESTUDO	. 15		
4. MA	TERIAIS E MÉTODOS	. 16		
4.1	Linhagens de linfoma de células T cutâneo (Modelos celulares tumorais utilizados).	. 16		
4.2	Cultura de células	. 16		
4.3	Protocolo de Obtenção de sEV a partir de meio de celular condicionado	. 17		
4.4	Validação das nanopartículas: Análise de rastreamento de nanopartículas	. 17		
4.5	Validação das nanopartículas: Western blotting	. 18		
4.6	Validação das nanopartículas: criomicroscopia eletrônica de transmissão	. 18		
4.7	Análise do conteúdo proteico das nanovesículas	. 18		
4.8 imorta	Avaliação da captação e incorporação das nanovesículas por queratinóo lizados	itos 19		
4.9	Marcação das nanovesículas para experimentos com fluorescência	. 19		
4.10	Avaliação das sEV marcadas por citometria de fluxo	. 20		
4.11 por im	Análise da captação de sEV por citometria de fluxo e citometria de fluxo multiespecta agem	ctral 21		
4.12	Análise da captação de sEV por microscopia confocal de fluorescência	. 21		
4.13	Avaliação do efeito funcional de sEV em queratinócitos imortalizados	. 22		
4.14	Expressão gênica	. 22		
4.15	Expressão de microRNAs por qPCR em tempo real	. 23		
4.16	Análise estatística	. 23		
5. RES	SULTADOS	. 24		
5.1	Obtenção e caracterização das nanovesículas extracelulares	. 24		
5.2	Validação das sEV: distribuição média de diâmetro	. 26		
5.3	Validação das sEV: perfil proteico	. 29		

	5.4	Validação das sEV: morfologia	30
	5.5	Conteúdo protéico das nanovesículas LCCT	32
	5.6	Captação e incorporação das nanovesículas por queratinócitos imortalizados	36
	5.6.1	Marcação de nanovesículas e verificação por citometria de fluxo	36
	5.7 citome	Avaliação da captação das nanovesículas por citometria de fluxo convencional e tria de fluxo por imagem	e por 39
	5.8	Avaliação da incorporação das nanovesículas por microscopia confocal	43
	5.9	Transferência de RNA vesiculado para queratinócitos imortalizados	48
	5.10	Efeito das nanovesículas em células epiteliais	51
6.	DIS	CUSSÃO	67
	6.1	Obtenção, estudo do conteúdo proteico e ensaios de captação das sEV-LCCT	67
	6.2	Efeito da captação das sEV-LCCT por queratinócitos	71
7.	CO	NCLUSÃO E CONSIDERAÇÕES FINAIS	77
8.	ANE	EXOS	78
9.	REFE	RÊNCIAS	79
А	PÊNDI	CES	

LISTAS DE FIGURAS

Figura 1. Principais componentes da camada córnea e desmossomos	6
Figura 2. Esquema de conteúdo básico de nanovesículas	11
Figura 3. Delineamento do estudo	15
Figura 4. Remoção do excesso do reagente de marcação por cromatografia de exclusão tamanho.	por 20
Figura 5. Linhagens de linfoma T cutâneo em cultura.	24
Figura 6. Protocolo de obtenção de nanovesículas partir de meio condicionado	25
Figura 7. Caracterização das nove frações obtidas da cromatografia por exclusão de tamanh	o.26
Figura 8. Análise da distribuição de tamanho por rastreamento de nanopartículas (NTA)	27
Figura 9. Distribuição média de diâmetro das amostras sEV-Myla 2059 e sEV-Hut78	28
Figura 10. Quantificação total de partículas por NTA	28
Figura 11. Rendimento proteico dos preparados de sEV	29
Figura 12. Expressão de marcadores típicos de sEV em lisado proteico	30
Figura 13. Visualização da morfologia das nanovesículas sEV-Myla2059.	30
Figura 14. Visualização da morfologia das nanovesículas sEV-Myla Hut78	31
Figura 15. As sEV-LCCT contem 59 entre as 100 proteínas mais frequentemente encontradas sEV.32	s em
Figura 16. sEV-Myla 2059 marcadas com CFSE, Anexina-V e CLA	37
Figura 17. sEV-Myla 2059 marcadas com CFSE e Anexina-V após tratamento à base de difere detergentes.	ntes 38
Figura 18. Estratégia de análise por citometria de fluxo de imagem (IFC)	40
Figura 19. Estratégia de análise por citometria de fluxo (FACS).	40
Figura 20. Avaliação da captação de sEV-Myla 2059 por células HaCaT por citometria de flu citometria de imagem	xo e 41
Figura 21. Resultados ilustrativos da inibição da captação de sEV-Myla 2059 por células HaC baixas temperaturas.	aT a 42
Figura 22. Inibição da captação de sEV-Myla 2059 por células HaCaT a baixas temperaturas	42
Figura 23. Inibição da captação de sEV-Myla 2059 por células HaCaT a baixas temperaturas	43
Figura 24. Queratinócitos imortalizados captam nanovesículas in vitro	44
Figura 25. Áreas de co-localização de nanovesículas e queratinócitos ampliadas	45
Figura 26. MFI das imagens obtidas por microscopia confocal	46
Figura 27. Ilustração da análise de reconstrução tridimensional em queratinócitos tratados nanovesículas	com 47
Figura 28. Nanovesículas incorporadas por queratinócitos imortalizados	48
Figura 29. Captação de RNA vesiculado por queratinócitos é dependente da temperatura	49

Figura 30. Expressão dos miR-155, miR-21, miR-378 e Let-7a em amostras de sEV-LCCT 50
Figura 31. Expressão de miR-155 e miR-21 em células HaCaT tratadas com sEV
Figura 32. Expressão de miR-378 e let-a em células HaCaT tratadas com sEV
Figura 33. Expressão de filagrina e loricrina em células HaCaT tratadas com sEV52
Figura 34. Expressão das citoqueratinas 1, 5, 10 e 19 em células HaCaT tratadas com sEV 53
Figura 35. Expressão de componentes dos desmossomos e junções de oclusão em células HaCaT tratadas com sEV
Figura 36. Expressão de VEGF-A em células HaCaT tratadas com sEV
Figura 37. Correlação negativa entre a expressão dos transcritos FLG e KRT10 e o miR-155 em células HaCaT tratadas com sEV
Figura 38. Correlação negativa entre a expressão dos transcritos KRT10, FLG e DSC3 e o miR- 21 em células HaCaT tratadas com sEV
Figura 39. Correlação positiva entre a expressão dos transcritos DSC1, FLG e LOR e o miR-155 em células HaCaT tratadas com sEV
Figura 40. Total de leituras por amostra
Figura 41. Correlação entre as amostras 59
Figura 42. Análise de expressão diferencial de células HaCaT tratadas com sEV-Myla2059 59

LISTA DE TABELAS

Tabela 1: 59 proteínas expressas nas sEV-LCCT entre as 100 mais frequentemente encontradas em sEV
Tabela 2: Integrinas e proteínas relacionadas a adesão celular
Tabela 3: Marcadores relacionados a tumorigênese
Tabela 4: Marcadores comuns em células T
Tabela 5: Citoqueratinas
Tabela 6: Marcadores não comuns em sEV
Tabela 7:Correlação entre a expressão dos transcritos e dos miRs 155 e 21 57
Tabela 8: Correlação entre a expressão dos transcritos e os miRs 378 e let-7a
Tabela 9: 20 DEGs com maior variância após o tratamento com as sEV-LCCT por 4 h 60
Tabela 10: 20 DEGs com maior variância após o tratamento com as sEV-LCCT por 24 h 61
Tabela 11: DEGs relacionados a adesão celular após o tratamento com as sEV-LCCT por 4 h. 62
Tabela 12: DEGs relacionados a adesão celular após o tratamento com as sEV-LCCT por 24 62
Tabela 13: DEGs relacionados a manutenção do envelope cornificado após o tratamento com as sEV-LCCT por 4 h
Tabela 14: DEGs relacionados a manutenção do envelope cornificado após o tratamento com assEV-LCCT por 24 h
Tabela 15: DEGs relacionados com a síntese de metaloproteinases após o tratamento com as sEV-LCCT por 4 h
Tabela 16: DEGs relacionados com a síntese de metaloproteinases após o tratamento com as sEV-LCCT por 24 h
Tabela 17: DEGs relacionados com a síntese de galectinas após tratamento com as sEV-LCCT por 4 h
Tabela 18: DEGs relacionados com a síntese de galectinas após tratamento com as sEV-LCCT por 24 h
Tabela 19: DEGs relacionados com o processo de angiogênese após tratamento com as sEV- LCCT por 4 h
Tabela 20: DEGs relacionados com o processo de angiogênese após tratamento com as sEV-LCCT por 24 h

RESUMO

Torrealba MP. Efeito de nanovesículas extracelulares derivadas de linhagens tumorais de linfoma T cutâneo em queratinócitos imortalizados [tese]. São Paulo: Faculdade de Medicina, Universidade de São Paulo; 2022.

Os linfomas cutâneos primários de células T (LCCT) são um grupo heterogêneo de linfomas não Hodgkin que se manifestam inicialmente na pele. Micose fungoide (MF) é o LCCT mais prevalente, e a síndrome de Sézary (SS) é uma variante leucêmica agressiva. A forma avançada de LCCT está correlacionada com prurido intenso, sistema imunológico disfuncional e inflamações cutâneas crônicas. De fato, infecções bacterianas são recorrentes e, pacientes em estágio avançado, muitas vezes vão a óbito em decorrência de sepse e não do tumor em si. Comprometimento da barreira cutânea e aumento na expressão de fatores angiogênicos são comuns no LCCT, entretanto, as origens dessas alterações ainda são pouco estudadas. Células tumorais influenciam e modulam o funcionamento de outras células por diferentes vias, uma delas é via secreção de nanovesículas no espaço extracelular (sEV). sEV são estruturas esféricas com bicamada lipídica que transportam em seu interior uma grande diversidade de componentes bioativos como citocinas, quimiocinas, ligantes de receptores de ativação/inibição, diferentes tipos de ácidos nucleicos, enzimas, entre outros. As sEV podem ser captadas e internalizadas por outras células, sendo consideradas mediadores da comunicação intercelular e amplamente estudadas em neoplasias. Entretanto, evidencias da contribuição de sEV para a patogênese no LCCT são escassas. Portanto, o estudo teve por objetivo obter e caracterizar o conteúdo proteico de sEV tumorais no LCCT e avaliar o efeito da captação e internalização de sEV-LCCT por queratinócitos imortalizados. sEV derivadas das linhagens tumorais de LCCT, Myla2059 (MF) e Hut78 (SS), foram obtidas de meio condicionado por protocolo baseado em centrifugação diferencial, ultrafiltração e cromatografia por exclusão de tamanho. Os parâmetros de perfil morfológico, de diâmetro (167nm e 159nm) e de expressão proteica (Hsp-70, CD81 e RAB5), avaliados respectivamente por criomicroscopia eletrônica de transmissão (Crio-TEM), análise do rastreamento de partículas (NTA) e western blotting (WB), se mostraram típicos de sEV. Identificamos, por espectrofotometria de massa (MS), 620 proteínas carreadas pelas sEV-LCCT, dentre integrinas e moléculas de adesão celular (CD62L, ALCAM/CD166, ITGB1, TGB2) marcadores relacionados a tumorigênese (CD70, LGALS1, LGALS3BP, KIT e PDGFRB) e marcadores comuns em células T (CD26, CD40LG, IL1R2, IL1RAP e IL27b). Por meio de avaliações por citometria de fluxo e de imagem, observamos que queratinócitos absorvem e captam sEV-LCCT de maneira dependente de temperatura. Após a confirmação da incorporação de sEV-LCCT para o citosol dos queratinócitos pela análise de *z*stack por microscopia confocal, o perfil de expressão gênica de queratinócitos tratados com sEV-LCCT foi analisado por sequenciamento de RNA e RT-qPCR. Observamos regulação negativa de moléculas relacionadas a manutenção da barreira cutânea como filagrina, loricrina, involucrina, desmogleínas, desmocolinas e caderinas. Diversos genes relacionados com a formação da camada córnea também foram alterados (STAB1, LCE1E, HRNR e S100A8). A expressão de fatores relacionados ao processo de angiogênese (ESM1, VEGF-A-C-D, PGF) e pruritogênicos (NFG) foi maior após o tratamento com sEV-LCCT. Por fim, dentre os genes diferencialmente expressos com maior regulação positiva, observamos fatores pró-inflamatórios (CSF2, CXCL8, SERPINB2, GRZB, CXCL3 e SPRRs). Assim, concluímos que o tratamento de sEV-LCCT alterou a expressão de transcritos relacionados a via de inflamação, adesão celular e formação do envelope cornificado em queratinócitos imortalizados. Os dados são inéditos e sugerem a contribuição de sEV derivadas de células tumorais no processo de inflamação crônica, angiogênese e comprometimento da barreira cutânea no LCCT.

Descritores: Vesículas extracelulares; Células epidérmicas; Células HaCaT; Micose fungoide; Síndrome de Sézary; Adesão celular; Inflamação; Indutores da angiogênese.

ABSTRACT

Torrealba MP. Effect of cutaneous t cell lymphoma tumor derived small extracellular vesicles in immortalized keratinocytes [thesis]. São Paulo: "Faculdade de Medicina, Universidade de São Paulo"; 2022.

Primary cutaneous T-cell lymphomas (CTCL) are a heterogeneous group of non-Hodgkin lymphomas that initially manifest in the skin. Mycosis fungoides (MF) is the most prevalent CTCL, and Sézary syndrome (SS) is an aggressive leukemic variant. The advanced form of CTCL is correlated with severe pruritus, a dysfunctional immune system, and chronic skin inflammation. In fact, bacterial infections in immunocompromised patients with advanced-stage CTCL often leads to sepsis and death. Dysfunctional skin barrier and increased expression of angiogenic factors are common in CTCL, however, the origins of these changes are still not completely understood. Tumor cells influence and modulate other cells behavior in different ways, one of which is via the secretion of nanovesicles into the extracellular space (sEV). sEV are spherical structures with a lipid bilayer that carry within them a great diversity of bioactive components such as cytokines, chemokines, ligands of activation/inhibition receptors, different types of nucleic acids, enzymes, among others. sEV can be captured and internalized by other cells, being considered mediators of intercellular communication and widely studied in neoplasms. However, evidence of the contribution of sEV to the pathogenesis of CTCL is scarce. Therefore, the study aimed to obtain and characterize the protein content of tumural sEV in CTCL and to evaluate the sEV-CTCL uptake and internalization effects by immortalized keratinocytes. sEV derived from the CTCL cell lines, Myla2059 (MF) and Hut78 (SS), were obtained from conditioned medium by a protocol based on differential centrifugation, ultrafiltration and size exclusion chromatography. The morphological profile, diameter (167nm and 159nm) and protein expression markers (Hsp-70, CD81 and RAB5), evaluated respectively by transmission electron cryo-microscopy (Cryo-TEM), particle tracking analysis (NTA) and western blotting (WB), were typical of sEV. We identified by mass spectrophotometry (MS) 620 proteins carried by sEV-CTCL, among integrins and cell adhesion molecules (CD62L, ALCAM/CD166, ITGB1, TGB2) tumorigenesis-related markers (CD70, LGALS1, LGALS3BP, KIT and PDGFRB) and common markers on T cells (CD26, CD40LG, IL1R2, IL1RAP and IL27b). Flow cytometry and imaging flow cytometry confirmed keratinocytes sEV-CTCL absorption in a temperature-dependent manner. The incorporation of sEV-CTCL into the keratinocyte's cytosol was visualized by z-stack analysis with confocal microscopy. Then, the gene expression profile of sEV-CTCL-treated keratinocytes was analyzed by RNA sequencing and RT-

qPCR. We observed downregulation of molecules related to skin barrier maintenance such as filaggrin, loricrin, involucrin, desmogleins, desmocholines and cadherins. Stratum corneum formation related genes expression was also aberrant (STAB1, LCE1E, HRNR and S100A8). The pro-angiogenic factors expression (ESM1, VEGF-A/C/D and PGF) and pruritogens (NFG) was upregulated after sEV-CTCL treatment. In addition, pro-inflammatory factors (CSF2, CXCL8, SERPINB2, GRZB, CXCL3 and SPRRs) were among the upregulated differentially expressed genes. We conclude that sEV-CTCL treatment leads to aberrant expression of genes related to the inflammation pathway, cell adhesion and cornified envelope formation in immortalized keratinocytes. Our study is the first to suggest the contribution of tumor -derived sEV in the chronic inflammation, angiogenesis and impairment of the skin barrier in CTCL.

Descriptors: Extracellular vesicles; Epidermal cells; HaCaT cells; Micosis fungoides; Sezary syndrome; Cell adhesion; Inflammation; Angiogenesis inducing agents.

1. INTRODUÇÃO

1.1 Linfomas cutâneos de células T

Os linfomas cutâneos primários de células T (LCCT) são um grupo heterogêneo de linfomas não-Hodgkin de origem extranodal que se manifestam primeiramente na pele, sem evidência de acometimento extracutâneo na ocasião do diagnóstico (Dummer et al. 2021).

Até 2005 essas neoplasias não eram reconhecidas como uma entidade própria, mas sim como um acometimento secundário da pele por linfomas nodais. Então, naquele ano, a Organização Mundial da Saúde (*World Health Organization - WHO*) e a Organização Europeia para Pesquisa e Tratamento do Câncer (European Organization for Research and Treatment of Cancer - EORTC) propuseram uma uniformidade no diagnóstico e classificação dessas neoplasias. Em 2018, o mesmo grupo de trabalho publicou uma nova atualização com as recentes publicações que avaliaram processos diagnósticos e prognosticos para os linfomas cutâneos (Willemze et al. 2019, Willemze et al. 2005).

A incidência de LCCT é de cerca de 10 casos por 100 mil habitantes por ano, e seu diagnóstico se baseia em uma combinação de achados clínicos, patológicos e imunofenotípicos. A presença de uma população monoclonal de linfócitos T nas lesões cutâneas ou no sangue periférico podem colaborar com o diagnóstico em alguns casos (Willemze et al. 2018). As células T transformadas em LCCT são tipicamente células T CD4+ de memória e frequentemente produzem citocinas com perfil Th2 (Stolearenco et al. 2020, Yumeen and Girardi 2020, Dummer et al. 2021).

Dentre os tipos clássicos de LCCT, temos a micose fungoide (MF) e sua variante leucêmica, a síndrome de Sézary (SS). A micose fungoide é o tipo mais comum de LCCT e representa 50% dos linfomas cutâneos existentes. Ela é caracterizada, em sua apresentação cutânea, por manchas eritematosas, placas e/ou tumores, com ou sem envolvimento dos linfonodos e vísceras. É uma doença que tem inicialmente uma apresentação clínica bastante semelhante a outras doenças inflamatórias como psoríase e eczemas crônicos, mas que pode ser progressiva e de curso indolente. Os pacientes com MF apresentam uma sobrevida média em 5 anos de 88%, mas com melhor prognostico e sobrevida diretamente relacionada ao estadiamento inicial (Willemze et al. 2005, Agar et al. 2010).

A síndrome de Sézary, por sua vez, é uma variante relativamente rara, caracterizada por uma tríade de eritrodermia generalizada, linfadenopatia e número elevado de células de Sézary no sangue (linfócitos grandes com o núcleo de aspecto cerebriforme) (Willemze et al. 2019). SS representa menos de 5% dos LCCT, com curso mais agressivo em comparação à MF. O diagnóstico laboratorial da SS se dá através da contagem absoluta das células de Sézary (>1000 células/mm³) no sangue periférico, juntamente com alterações imunofenotípicas em marcadores de células T maduras: deleção do CD7 numa população CD4 \geq 40% ou deleção do CD26 numa população CD4 \geq 30%, relação dos linfócitos T CD4:CD8 \geq 10 e demonstração de um clone predominante de células T no sangue periférico e em linfonodos ou em biópsias de pele (Willemze et al. 2005). A SS é uma variante dos LCCT que ocorre quase que exclusivamente em adultos, e a sobrevida média em 5 anos é de cerca de 20% (Agar et al. 2010, Willemze et al. 2005). Neste trabalho o termo LCCT restringe-se as formas de LCCT: MF e SS.

1.2 Contexto imunológico

A fisiopatologia da MF e da SS ainda não é totalmente conhecida, sendo que pouco se sabe sobre a origem do comportamento maligno dos clones de linfócitos na MF e na SS.

As células transformadas na MF e na SS exibem um fenótipo de *homing* para a pele, pela expressão de marcadores como antígeno de linfócito cutâneo (CLA) e receptores de quimiocinas CCR4, CCR4.2, CCR3 entre outros, explicando, em parte, a alta afinidade dessas células pela pele (Ferenczi et al. 2002, Campbell et al. 2010). Apesar das semelhanças, e por durante muito tempo acreditar-se que MF e SS fossem estágios diferentes da mesma doença, atualmente sabese que são doenças distintas por terem sua origem em células diferentes e apresentarem perfil genético distinto (Campbell et al. 2010, van Doorn et al. 2009).

Os linfócitos T clonais de indivíduos com MF são comumente derivados de linfócitos T de memória residentes (TRM) (CCR4+ CLA+ L-selectina- CCR7-) (Campbell et al. 2010). Os TRM são capazes de responder rapidamente a ativação antígeno dependente, e constituem 80% dos linfócitos T residentes na pele saudável (Clark et al. 2006). Tal perfil vai de encontro ao que é observado na clínica: pacientes com lesões que ficam fixas no mesmo local por muitos anos (Campbell et al. 2010). Em contrapartida, os linfócitos malignos na SS têm origem em linfócitos de memória central (TCM) (CCR4+ L-selectina+ CCR7+), com receptores que lhe atribuem tropismo não só para pele, como para linfonodos, justificando sua clínica mais disseminada e com pior prognostico (Campbell et al. 2010). Alguns estudos sugerem, ainda, que em uma parcela dos

pacientes com SS, as células malignas são derivadas de células T reguladoras (T reg). Esses clones malignos expressam o fator de transcrição FoxP3 e são capazes de suprimir os linfócitos T convencionais (Heid et al. 2009).

Apesar dessas diferenças na origem dos linfócitos neoplásicos, e da polarização Th2/reguladora relatada, inicialmente, na MF, observa-se que o infiltrado linfocítico é composto por muitas células benignas, poucas malignas e de perfil mais pró-inflamatório e Th1 (com produção de IFNγ e presença de linfócitos TCD8+). Com o avançar da doença, há uma expansão dos linfócitos malignos, e uma polarização Th2, com o aumento de produção de citocinas como IL-10 e IL-4 (Echchakir et al. 2000, Stolearenco et al. 2020, Hsi et al. 2015).

Os linfócitos T CD4+ malignos de pacientes com MF/SS ao serem estimulados com fitohemaglutinina (PHA) produzem grandes quantidades de IL-4 (Vowels et al. 1992). Além disso, essas citocinas, de perfil Th2, como IL-4 e IL-5, são frequentemente identificadas em lesões de pele de pacientes em estágios iniciais de MF, mas não na pele saudável ou na pele de indivíduos saudáveis (Vowels et al. 1994). De forma bastante semelhante, já foi observado o aumento de expressão de RNAm de IL-10, outra citocina de caráter regulador/supressor, conforme houve um aumento no infiltrado maligno nas lesões de pacientes com MF, indicando que o aumento da expressão desta citocina esteja associada a um pior prognostico tumoral (Asadullah et al. 1996).

Além da atividade das células neoplásicas, o microambiente também colabora com a patogênese da doença e o processo inflamatório gerado pelas células neoplásicas. Biópsias da pele de pacientes com MF revelam que infiltrado de linfócitos é um achado comum (>75%). Eosinófilos e linfócitos B são raros, enquanto células CD68+ e CD1a+ (marcadores típicos de macrófagos) estão presentes na grande maioria dos casos estudados (Iliadis et al. 2016, Schlapbach et al. 2010). Corrobora com esses achados a expressão aumentada de RNAm de citocinas e quimiocinas relacionadas a macrófagos em biopsias de pacientes com MF quando comparadas com as de indivíduos saudáveis (Wu et al. 2014). Sugaya et al correlacionaram a maior expressão do receptor CD163, característico de perfil M2, tanto na pele como em sua forma solúvel no soro, com a progressão da doença em pacientes com LCCT (Sugaya et al. 2012). Estudos recentes também encontraram uma maior expressão do receptor CD206+, também característico de perfil M2, mais expresso em biópsias de pele de pacientes MF nos estágios mais avançados da doença (Furudate et al. 2016). Macrófagos do tipo M2 são mais tolerogênicos, produzem IL-10 e constantemente são relacionados à progressão tumoral em diversos tipos de neoplasias (Najafi et al. 2019).

Além de uma maior presença de macrófagos do tipo M2, observa-se nos pacientes com a forma avançada de LCCT, uma maior expressão de receptores clássicos de DCs como, CD11c, CD207, CD208, CD204 e CD303 nas lesões em relação a pele não lesionada dos pacientes com MF, indicando não só um infiltrado de linfócitos e macrófagos, como de DCs nas lesões destes pacientes (Schlapbach et al. 2010). Através de reações de imunofluorescência, pesquisadores observaram uma maior expressão do marcador CD209/DC-SIGN, característico de célula dendrítica imatura, colocalizados com células T reguladoras. Em contrapartida, células dendríticas CD208+, definidas como maduras, foram raramente encontradas nesses agrupamentos com células T, indicando que as DCs imaturas possam estar colaborando com os processos de escape tumoral e supressão de resposta contra as células neoplásicas (Schlapbach et al. 2010). Outro trabalho evidenciou que as DCs associadas ao tumor expressam PD-L1, inibem a proliferação de células T citotóxicas específicas ao tumor e promovem a indução de células T reguladoras *in vitro* (Wilcox et al. 2009).

Já é bem estabelecido que a ativação constante de STAT3 é essencial na patogênese dos LCCT, por colaborar com a sobrevivência e proliferação das células neoplásicas (Sommer et al. 2004, Nielsen et al. 1999, Bromberg et al. 1999). Recentemente, em 2016, Willerslev-Olsen e colaboradores demonstraram o papel da SEA (enterotoxina A de *Staphylococcus*) produzida pelos *S. aureus* da pele, aumentando a ativação de STAT3 e a expressão de IL-17 (citocina próinflamatória associada a inflamação da pele, desregulação imune e progressão da doença) apenas em células neoplásicas, mesmo quando cultivadas com linfócitos T CD4+ não transformados. Tal achado indica o papel importante que o *S. aureus* da pele, e suas toxinas como a SEA, tem na ativação e sobrevida dos linfócitos neoplásicos (Willerslev-Olsen et al. 2016).

Além de todo esse infiltrado imune nas lesões dos pacientes portadores das LCCT, os queratinócitos, responsáveis por formar a barreira protetora da pele, também medeiam respostas imunológicas cutâneas ao produzirem citocinas que interagem com células imunes na pele (Nickoloff and Griffiths 1990). Além de citocinas, os queratinócitos produzem diversas outras moléculas, que causam o prurido característico no LCCT.

O perfil mais tolerogênico e Th2 gerado pelas células neoplásicas e pelo microambiente tumoral, associado a uma diminuição da diversidade de linfócitos T saudáveis (em decorrência da expansão dos neoplásicos), gera uma imunossupressão nos indivíduos com LCCT que pode favorecer, entre outras coisas, o aparecimento de novas neoplasias. Associado a isso, a produção de componentes pruritogênicos pelos queratinócitos e outros fatores que auxiliam na quebra da

barreira cutânea, favorecem não só processos infecciosos, como uma maior ativação de STAT3 pela SEA, e consequentemente a maior sobrevida dos linfócitos neoplásicos. Essa maior susceptibilidade associada à imunossupressão pode, em muitos casos, se tornar fatal (Yumeen and Girardi 2020).

1.3 Barreira cutânea

A pele humana representa o maior órgão humano de cerca de 2 m² em um indivíduo adulto. É um órgão indispensável à vida, e sua função mais importante é fornecer uma barreira eficaz entre os ambientes interno e externo do organismo (Eyerich et al. 2018). Ela é composta pela epiderme, camada mais superficial, e pela derme, camada intermediária que confere a resistência mecânica (Jiao et al. 2022). A epiderme é responsável por evitar a perda de água, proteção contra agressões externas (químicas, luzes ultravioletas, alérgenos) ou de infecções microbianas além da promoção de resposta regenerativa (Eyerich et al. 2018). As principais estruturas descritas nesse capítulo estão ilustradas na Figura 1.

Em situações patológicas como na dermatite atópica, danos à barreira cutânea diminuem o grau de hidratação da epiderme e colaboram com perda de água transepidérmica (do inglês, *transepidermal water loss* - TEWL) (Sant'Anna Addor and Aoki 2010). Pacientes com LCCT apresentam as mesmas características: menor grau de hidratação na pele e maior TEWL nas regiões de lesão quando comparadas com a pele não lesionada ou a pele de indivíduos sem doença (Suga et al. 2014). Como consequência da pele seca pode haver complicações como desconforto e coceira, desenvolvimento de dermatites além de infecções bacterianas e virais.

A epiderme é composta por queratinócitos em diferentes estágios de diferenciação, dispostos em uma arquitetura de multicamadas altamente coesas. Essas camadas da epiderme são: camada basal, camada espinhosa, camada granulosa e camada córnea. Para a barreira cutânea ser totalmente funcional, os queratinócitos precisam passar pelo processo de diferenciação dérmica (queratinização) que é coordenado por diversos fatores entre citocinas, neuropeptídeos e fatores de crescimento (EGF, do inglês *epidermal growth fator*, TGF- α , do inglês *transforming growth factor* α ; KGF, do inglês *keratinocyte growth factor*, TGF- β , do inglês *transforming growth factor* α ; KGF, do inglês *keratinocyte growth factor*, TGF- β , do inglês *transforming growth fator* β), *e* devem ser conectados uns aos outros por junções intercelulares (Moltrasio, Romagnuolo and Marzano 2022). A proliferação de queratinócitos é restrita a camada de células basais, a camada mais profunda. Após a mitose, os queratinócitos diferenciam-se progressivamente e

migram através da epiderme em direção à superfície da pele, para finalmente perder seus núcleos e outras organelas, cornificar e achatar, formando assim a camada córnea (Jiao et al. 2022).

As junções intercelulares promovem uma coesão mecânica não somente entre os queratinócitos, mas também destes com à lâmina basal. Tais junções podem ser: hemidesmossomos, desmossomos, junções aderentes (do inglês *adherent junctions*, AJ) e junções de oclusão (do inglês *tight junctions* – TJ) dispersos de maneira específica entre as diferentes camadas epiteliais (Jiao et al. 2022).

Os hemidesmossomos são responsáveis pela adesão das células basais à lâmina basal. São uma placa de aderência única, composta pelos filamentos de ancoragem de lamininina 5, integrinas e plectina. Os desmossomos mantém uma célula unida à outra, e apresentam porções extra e intracelulares. A porção intracelular é composta por diversas proteínas associadas entre si enquanto a porção extracelular é composta por desmogleínas (DSG1-4) e desmocolinas (DSC1-3), que fazem as pontes entre as células justapostas. Junções aderentes são as estruturas intercelulares de ancoragem que acoplam a membrana celular ao citoesqueleto de actina por meio de caderinas. E, por sua vez, as junções de oclusão são compostas principalmente por claudinas e ocludinas, e fecham os espaços entre as células epiteliais (Jiao et al. 2022).

Epiderme

Figura 1. Principais componentes da camada córnea e desmossomos. SPRRs = pequenas proteínas ricas em prolina. Criado na plataforma de ilustração Biorender.com.

No contexto dos LCCT, o sobrenadante da cultura de linhagens de LCCT provoco, *in vitro*, maior espaçamento dos desmossomos e redução na expressão de desmogleínas e integrinas relacionadas a adesão celular em cultura de queratinócitos (Thode et al. 2015). Tais modificações *in vivo* podem acarretar numa perda da integridade da barreira cutânea, tornando o indivíduo mais susceptível a lesões cutâneas e infecções. Além disso, os dados clínicos sugerem fortemente que defeitos na barreira cutânea têm um papel fundamental na suscetibilidade a infecções de pele em pacientes com LCCT (Stolearenco et al. 2020).

A alta incidência de infecções é uma característica comum nos pacientes com LCCT (Bonin et al. 2010, Axelrod, Lorber and Vonderheid 1992, Mirvish, Pomerantz and Geskin 2011). Axelrod et al. avaliaram diferentes tipos de infecção em pacientes com LCCT. De acordo com o estudo, o tipo de infecção mais prevalente é infecção cutânea bacteriana, sendo Staphylococcus aureus (SA) a infecção mais comum no LCCT (Axelrod et al. 1992). A infecção por SA também é a maior causa de morbidade e mortalidade nos LCCT (Mirvish et al. 2011). Além da abundância de bactéria ser um problema por si, SA é conhecido por sua capacidade de produzir enterotoxinas estafilocócicas (ES). Chamados de superantígenos, são conhecidos por sua capacidade de ativar grandes porções de linfócitos T por reação cruzada de moléculas de MHC-II e receptores de células T (independentemente de especificidade do antígeno do TCR e da área de ligação antígeno-peptídeo no MHC) burlando as etapas de processamento e a apresentação de antígenos. Assim, SA pode gerar um meio pró-oncogênico na pele lesionada do paciente. De fato, células malignas (Tokura et al. 1992), e não malignas (Woetmann et al. 2007), de pacientes com LCCT respondem com intensa proliferação à toxina ES. Esse tipo de infecção está intimamente associado ao estágio da doença (Axelrod et al. 1992). Pacientes em estágio avançado de LCCT, em sua maioria imunocomprometidos, muitas vezes vão a óbito em decorrência da sepse e não do tumor em si (Allen et al. 2020, Posner et al. 1981).

Além dessa maior susceptibilidade da barreira cutânea, os queratinócitos produzem uma série de moléculas de efeito pruritogênico que podem levar a lesões na pele e consequentemente, facilitar a entrada de bactérias e vírus. O fator de crescimento de nervo (NGF) é um deles. Ele estimula o alongamento de fibras nervosas na derme e está altamente expresso na epiderme e em maiores concentrações no soro de pacientes com SS (Suga et al. 2013). As concentrações de NGF, juntamente com as de CCL1, CCL17, CCL26, CCL27, LDH e IgE se correlacionam positivamente com o escore de prurido nos pacientes com SS (Suga et al. 2013). No soro, as maiores concentrações de NGF se correlacionam também com maiores concentrações do fator de crescimento endotelial vascular (VEGF-A) (Sakamoto et al. 2018), fator solúvel com papel central na angiogênese da pele (tanto em processos fisiológicos, como patogênicos). Pacientes eritrodérmicos com LCCT possuem valores séricos de VEGF-A elevados, e esse fator de crescimento, *in vitro*, induz em linhagens de queratinócitos, o aumento da expressão de outra molécula pruritogênica, o transcrito de linfopoietina estromal tímica (TSLP) (Sakamoto et al. 2018), evidenciando a relação das duas moléculas pruritogênicas.

A TSLP promove, *in vitro*, a proliferação de linhagens tumorais derivadas de pacientes com LCCT via fosforilação de STAT5 (Takahashi et al. 2016). Além disso, o TSLP é encontrado em altos níveis no plasma de pacientes em estágios iniciais de LCCT (Tuzova et al. 2015), o que sugere sua participação na patogênese da doença.

Outro indutor da proteína TSLP, a periostina, também está altamente expressa em lesões de pacientes com LCCT quando comparado com peles não lesionadas (Takahashi et al. 2016). Fibroblastos são grandes produtores de periostina, e, *in vitro*, fibroblastos isolados de lesões de pacientes respondem a citocinas Th2, secretando maiores quantidades de periostina quando comparados com fibroblastos de pele não lesionada (Takahashi et al. 2016).

Assim, forma-se uma alça de *feedback* positivo onde o ambiente tumoral Th2, promove a secreção de periostina pelos fibroblastos, que por sua vez induzirá a proteína TSLP, que colaborará com a proliferação de células tumorais, e uma maior polarização Th2. A secreção dessas moléculas pruritogênicas por sua vez, podem aumentar o prurido, e a lesões na barreira cutânea, favorecendo infecções.

As galectinas são outra família de proteínas envolvidas na homeostase da barreira epitelial e na progressão tumoral. Elas estão envolvidas em diversos processos como os de adesão celular, e de proliferação, morte e migração celular em resposta a lesões (Viguier et al. 2014). No LCCT, há relatos da produção de galectina-9 por células neoplásicas diminuindo o infiltrado de linfócitos T CD8+ nas lesões, e uma correlação positiva entre seu aumento sérico e marcadores de pior prognostico (Nakajima et al. 2019). Thode e colaboradores atribuíram as galectinas secretadas por células tumorais LCCT uma série de alterações observadas em modelo *in vitro* de pele, como proliferação exacerbada de queratinócitos e perda da estrutura organizada das camadas epiteliais (Thode et al. 2015).

Citoqueratinas (KRT) são proteínas estruturais que formam filamentos intermediários no epitélio, representando de 30 a 80% do total de proteínas presentes no epitélio (Wang, Zieman and Coulombe). Os queratinócitos que proliferam da camada basal expressam o par de citoqueratinas KRT5 e KRT14, que durante a diferenciação é substituído pelo par KRT1 e KRT10. Durante a regeneração de tecidos após lesão, os queratinócitos expressam transitoriamente o par KRT6 e KRT16 e com redução na expressão de KRT1 e KRT 10 (Fuchs and Green 1980). Entretanto, semelhante ao perfil de queratinócitos após lesão, queratinócitos em lesões de pele psoriática também expressam altos níveis de KRT6, 16 e 17 (Zhang, Yin and Zhang 2019). As KRT6, 16 e 17 em particular são consideradas alarminas já que a expressão aumentada dessas moléculas contribui para ativação de processo inflamatório em queratinócitos e em células T na epiderme (Zhang et al. 2019).

A super expressão de KRT6 e KRT16 em modelo experimental e *in vitro* provoca prejuízo no processo de cicatrização de lesões, com desorganização na estrutura dos filamentos de citoqueratinas (Zhang et al. 2019). Estudos recentes mostraram que KRT17, mas não KRT6 ou KRT16, induz hiper proliferação de queratinócitos através da ativação via STAT3 (Yang et al. 2018). Além disso, KRT17 parece atuar como fator de transcrição de citocinas inflamatórias (CXCL5/10/11; CCL2/19; IFN-γ) (Zhang et al. 2019). Assim, as KRT6, KRT16 e KRT17 são consideradas marcadores de hiperproliferação na psoríase, e em amostras tumorais.

Além de fornecer esse suporte estrutural às células epiteliais, as citoqueratinas também regulam a proliferação celular, migração, adesão e processos inflamatórios (Fuchs and Cleveland 1998). Estes estudos apontam a relevância da expressão das KRT em doenças de pele inflamatórias, embora até o momento não haja descrição da expressão dessas proteínas em pacientes com LCCT.

Outras moléculas tem participação central na integridade da barreira. A filagrina é produzida na forma de pró-filagrina pelas células da camada granulosa. Após clivagem, os monômeros de filagrina se associam aos filamentos de queratina, formados pelas proteínas KRT, e constituem as porções inferiores da camada córnea (Moosbrugger-Martinz et al. 2022). A loricrina representa 70% da massa proteica total encontrada na camada córnea, e, como a filagrina é produzida na camada granulosa (Candi, Schmidt and Melino 2005). Ambas, locrina e filagrina, têm sido extensamente estudadas em doenças inflamatórias na pele por envolvimento com a manutenção da barreia cutânea. A expressão dos dois transcritos é reduzida na pele lesionada de pacientes LCCT (Suga et al. 2014). Além disso, os níveis de expressão destes transcritos se correlacionam

negativamente com marcadores de mal prognostico da doença o que sugere envolvimento na progressão da doença.

Dada a ativação desregulada da sinalização associada ao tumor e a produção de citocinas, moléculas pruritogênicas, galectinas e fatores inflamatórios e angiogênicos por células T malignas, é concebível que as células T malignas sejam fatores-chave na remodelação da pele.

Células tumorais tem a capacidade de modificar em benefício próprio a matriz extracelular ou o fenótipo de células teciduais próximas como fibroblastos, células endoteliais, macrófagos e outros tipos celulares imunológicos ou não (Hyenne, Lefebvre and Goetz 2017). Além da interação celular direta ou a ação de fatores solúveis, a comunicação entre célula tumoral e o microambiente também pode ser mediada por outros componentes imunomoduladores como pequenas vesículas extracelulares, conhecidas antigamente como exossomas. Neste trabalho, nos referiremos a estas vesículas como nanovesículas (sEV).

1.4 Nanovesículas

Diversas células do organismo são capazes de liberar vesículas para o espaço extracelulares, que podem ser classificadas de acordo com os diferentes tamanhos e origens. Nanovesículas são as vesículas menores, que possuem entre 40 a 150nm de diâmetro (Colombo et al. 2013). O ponto em comum entre todas as microvesículas é a estrutura de sua membrana: uma bicamada lipídica, com a mesma orientação topológica da membrana plasmática (Trajkovic et al. 2008).

É possível isolar sEV de quase todo fluído corporal humano: plasma, soro, leite materno, sêmen, saliva e urina (Eriksen et al. 2001). São produzidas e secretadas de maneira constitutiva e por serem fontes de antígenos virais e produtos celulares, e em muitos casos refletirem o que está acontecendo no microambiente, são muito úteis como biomarcadores e/ou alvos terapêuticos (Samimi et al. 2010).

Essas vesículas transportam compostos biológicos como proteínas, ácidos nucléicos, enzimas, receptores de membranas entre outros, que podem ser captados e internalizados por outra célula próxima ou, em tecidos distantes. O conteúdo transportado pode desencadear uma cascata de eventos na célula receptora, e dessa forma desempenhar uma importante função biológica na comunicação entre as células (Culley 2009). Componentes comumente encontrados em sEV estão ilustrados na Figura 2.

As sEV podem ser secretados por células imunes ou não imunes e afetam tanto a imunidade inata quanto a adaptativa, incluindo apresentação de antígeno, diferenciação e ativação celular, regulação e supressão imune, entre outros. Em geral, os marcadores de superfície e conteúdo das sEV, bem como as funções dessas sEV, estão intimamente relacionados às propriedades pró-inflamatórias ou anti-inflamatórias das células secretoras (Colombo et al. 2014).

A comunicação intercelular por sEV está implicada em processos fisiológicos e patológicos, especialmente em neoplasias (Perez-Villar et al. 1996). São um modo de comunicação intercelular no câncer que pode mediar a transferência de oncogenes e proteínas entre diferentes tipos celulares (Thery, Ostrowski and Segura 2009). Embora diversos tipos celulares secretem sEV de maneira fisiológica, a produção por células tumorais é, ao menos, 10

vezes maior do que células saudáveis (Shao et al. 2016). Existem diversos relatos sobre o potencial modulador de sEV derivadas de células tumorais (Li et al. 2022).

No tumor, as sEV podem atuar como moléculas imunomoduladoras promovendo um balanço favorável para o crescimento/proliferação das células tumorais de diversas formas (Liu, Gu and Cao 2015). Lyden e colaboradores mostraram em estudo publicado em 2015 que nanovesículas derivadas de diferentes células tumorais tem participação central na formação de nichos pré-metastáticos em modelo animal (Hoshino et al. 2015).

Estudos indicam que sEV também tem participação na patogênese de doenças inflamatórias na pele (Shao et al. 2020). Estudo recente sugere que sEV são mediadores essenciais na patogênese da psoríase ao constatar que sEV derivadas de mastócitos são capazes de induzir a geração de células T auto-reativas após transferência de fosfolipase A2 (Cheung et al. 2016). Outro estudo recente demonstrou que queratinócitos estimulados por citocinas características de lesão psoriática secretam sEVs que podem ser captados por neutrófilos. Os neutrófilos por sua vez produzem maior quantidade de NETs (do inglês *Neutrophil extracellular traps*) e citocinas pró-inflamatórias, o que exacerbaria a inflamação local (Jiang et al. 2019).

A dermatite atópica (DA) é outra doença inflamatória comum, caracterizada por inflamação e comprometimento da barreira cutânea (Roediger and Schlapbach 2022). Assim como no LCCT, os pacientes com DA são suscetíveis à infecção por S. aureus, que por sua vez agrava a inflamação associada à DA. Estudos apontam que sEV derivados de S. aureus podem exacerbar a inflamação da DA ao transportar moléculas efetoras bacterianas às células hospedeiras, agravando assim as respostas inflamatórias. sEV de S. aureus induzem maior produção dos mediadores pro-inflamatórios IL-6 e TSLP em fibroblastos (Hong et al. 2011), estimulam queratinócitos a produção exacerbada das citocinas inflamatórias IL-1 β , IL-18, IL-6 e MIP-1 α (Jun et al. 2017) e induzem ativação de células endoteliais e recrutamento de monócitos (Kim et al. 2019). Além disso, foi demonstrado que a α -hemolisina transportada em S. aureus-EVs induziu morte celular de queratinócitos, exacerbando tanto a ruptura da barreira cutânea quanto a inflamação da pele (Hong et al. 2014).

Recentemente, dois estudos investigaram sEV no LCCT. Moyal e colaboradores, relatam que sEV derivados das células tumorais expressam o microRNA-155 e facilitam a motilidade de células tumorais (Moyal et al. 2021). Kirsi Laukkanen e colaboradores, evidenciam a presença de HERV-W e seus receptores em sEV derivadas de linhagens tumorais LCCT e sugerem que essas

moléculas podem mediar a captação das sEV em células receptoras (Laukkanen et al. 2020). Ainda não há relatos da relação de sEV e o comprometimento da barreira cutânea no LCCT.

Assim, é possível perceber o quanto as nanovesículas impactam em vários cenários, ora atuando na comunicação celular e modulando a resposta imune, e colaborando com a patogênese tumoral, ou ainda, sendo exploradas como biomarcadores de resposta terapêutica, ou progressão de doença. Sabe-se que pacientes com LCCT apresentam uma inflamação crônica da pele e uma disfunção da barreira cutânea. Entretanto, as causas das alterações morfológicas e das características histopatológicas da doença na pele são desconhecidas.

Assim, através de modelos tumorais imortalizados, este trabalho visa auxiliar na compreensão da patogênese dos LCCT e verificar a contribuição das nanovesículas para a disfunção de barreira e o processo inflamatório observado na pele dos pacientes.

2. OBJETIVOS

Obter e caracterizar nanovesículas extracelulares derivadas de linhagens tumorais de Linfoma T cutâneo. Avaliar o efeito das nanovesículas extracelulares em queratinócitos imortalizados pelo perfil transcricional.

2.1 Objetivos específicos

- Desenvolvimento de protocolo para obtenção de nanovesículas derivadas de meio de cultura condicionado de linhagens LCCT;
- Validação do protocolo de obtenção nanovesículas-LCCT pela presença de marcadores proteicos, tamanho e morfologia compatíveis;
- Análise do conteúdo proteico das nanovesiculas-LCCT;
- Avaliação da captação e internalização das nanovesículas-LCCT por queratinócitos imortalizados;
- Estudo do efeito no perfil transcripcional em queratinócitos imortalizados tratados com nanovesículas-LCCT;

3. DELINEAMENTO DO ESTUDO

O projeto foi estruturado em três etapas: (I) obtenção e validação das nanovesículas (sEV), (II) caracterização das sEV quanto ao conteúdo proteico e (III) avaliação do efeito das sEV em queratinócitos imortalizados. O esquema descrito na Figura 3, adaptada de López-Pacheco (López-Pacheco et al. 2021).

Os experimentos foram realizados sob a supervisão do Prof. Dr. Anders Woetmann, no laboratório LEO Foundation Skin Immunology Research Center, na Universidade de Copenhagen, Dinamarca, durante doutorado sanduíche com apoio financeiro Capes-Print.

Figura 3. Delineamento do estudo. Nanovesículas (sEV) foram obtidas de meio condicionado de linhagens de LCCT por protocolo derivado de diferentes técnicas e, validadas quanto ao tamanho, morfologia e marcadores proteicos específicos. O conteúdo proteico foi avaliado por espectrometria de massa. Na etapa final, a captação, internalização e efeito das sEV, foi analisado em queratinócitos imortalizados por microscopia confocal, citometria de imagem, citometria convencional e análise do transcriptoma.

4. MATERIAIS E MÉTODOS

4.1 Linhagens de linfoma de células T cutâneo (Modelos celulares tumorais utilizados)

Linhagens celulares derivadas de pacientes com tumores são indispensáveis e amplamente utilizadas na pesquisa como modelos robustos e reprodutíveis no estudo de tumores. De onze linhagens derivadas de pacientes LCCT disponíveis atualmente (Gill et al. 2022), duas linhagens foram selecionadas para a investigação: Myla 2059 e Hut78. As duas linhagens foram gentilmente concedidas pelo Prof. Dr. Niels Odum, da LEO Foundation Skin Immunology Research Center, na Universidade de Copenhagen, Dinamarca.

A linhagem linfocítica Myla 2059 é modelo *in vitro* de MF avançada, desenvolvida em 1992 a partir de biópsia de pele de indivíduo de 82 anos do sexo masculino, caucasiano e diagnosticado com micose fungoide estágio IIA (Kaltoft et al. 1992). No período da biópsia o paciente encontravase com extensa área corporal lesionada (comprometimento de aprox. 80%) e extensa linfadenopatia. Infelizmente, o paciente foi a óbito após a progressão da doença. Durante a autópsia não foi encontrado comprometimento de órgãos internos (Kaltoft et al. 1992). Como modelo representativo *in vitro* da variante leucêmica de LCCT síndrome de Sézary, a linhagem celular de escolha foi Hut78, obtida em 1990 a partir do sangue periférico de indivíduo de 53 anos do sexo masculino, também caucasiano, diagnosticado com síndrome de Sézary com estadiamento IVA, com acometimento na pele, sangue, linfonodos e fígado (Gazdar et al. 1980).

Além de excelentes modelos *in vitro* para investigação de tumores, a utilização de linhagens celulares traz vantagem especial em estudos com vesículas extracelulares: é possível ampliar a produção de vesículas ao trabalhar com volumes maiores de cultivo celular, o que definitivamente seria um obstáculo com células primárias que apresentam expansão e viabilidade em cultivo celular por tempo limitado.

4.2 Cultura de células

As linhagens celulares de LCCT, Myla 2059 e Hut78, foram cultivadas em meio RPMI-1640 (Sigma, St. Louis, MO, EUA) suplementado com 10% de soro fetal bovino (FBS) (Biological Industries, Cromwell, CT, EUA) com 1% de penicilina /Estreptomicina (Sigma) a 37°C com 5% de CO2 em frascos de 175cm² (ThermoFisher). Para os experimentos de obtenção de vesículas extracelulares (sEV) as linhagens de células foram cultivadas em meio AIM-V (ThermoFisher Scientific, Waltham, MA, EUA) sem suplementação de soro. A linhagem celular de queratinócitos

imortalizados HaCaT foi cultivada no meio DMEM, high glucose, GlutaMAX[™] (ThermoFisher, # 10566016) suplementado com 10% de FBS com 1% de penicilina /Estreptomicina em frascos de 175cm² a 37°C com 5% de CO2. A viabilidade celular foi determinada com o corante trypan blue (Bio-rad, Hercules, California, EUA) a cada 72h e as linhagens foram testadas regularmente para contaminação por mycoplasma com o kit MycoAlert PLUS (Lonza, Gampel, Gampel-Bratsch, Suíça).

4.3 Protocolo de Obtenção de sEV a partir de meio de celular condicionado

O meio condicionado (CM) de linhagens LCCT mantidas na concentração celular 1x10⁶/mL foi coletado a cada 48 h e mantido a 4°C para posterior purificação de sEV. As sEV a partir de CM de 48 h, foram obtidas por protocolo baseado em centrifugação diferencial, ultrafiltração e cromatografia de exclusão por tamanho. Durante a etapa inicial de centrifugações (500g por 5', 2000g por 30' e 10.000g por 30') a 4°C, as células mortas, o *debri* celular e vesículas maiores foram descartados. Em seguida, o CM foi filtrado a vácuo em membrana PES de 0,45 μm (ThermoFisher) e armazenado em 4°C.

Após 18 horas, o CM foi concentrado em até 200x com auxílio de filtros para centrífuga Amicon de 100 kDa (Millipore Sigma, MA, EUA). Por fim, as sEV foram isoladas por cromatografia de exclusão por tamanho em colunas (IZON, Medford, MA, USA), de acordo com instruções do fabricante. Brevemente, o concentrado de 0.5 mL de CM foi inserido no topo das colunas previamente lavadas e com o pH estabilizado. Os primeiros 3 ml (*void*) foram descartados e 9 frações de 0,5 ml seguintes foram coletadas. As frações 2, 3 e 4, que contém as vesículas extracelulares, foram homogeneizadas e concentradas com filtros para centrifuga.

4.4 Validação das nanopartículas: Análise de rastreamento de nanopartículas

Para determinar a concentração e o tamanho das partículas, as amostras de sEV foram diluídas em PBS e analisadas por um Nanosight LM10 (Malvern Panalytical, Reino Unido) munido de laser de 405 nm. As diluições foram determinadas de acordo com a variação recomendada do aparelho de 1x10⁸ a 1x10⁹ com o limite mínimo de 50 partículas por *frame*. Cinco vídeos de 30 s de cada amostra foram capturados e processados usando o software NTA versão 3.2 (Malvern Panalytical). A temperatura foi monitorada durante as leituras e o nível de câmera para a aquisição foi 12.

4.5 Validação das nanopartículas: Western blotting

As amostras de sEV foram incubadas com a solução de lise RIPA (Thermo Scientific, #89900) suplementado com coquetel de inibidores de protease e fosfatase (Thermo Scientific, #78443) no gelo por 60 minutos e centrifugados a 12000 rpm por 10 min a 4°C. O pellet foi descartado e o sobrenadante com as proteínas sEV foi transferido para um tubo e armazenado a -80°C. A concentração de proteína foi determinada pelo Micro BCA[™] Protein Assay Kit (Thermo Scientific, #23235).

Os seguintes anticorpos primários foram usados para análises proteicas: anti-RAB5 (1:100, ThermoFisher, #PA5-29022), anti-HSP70 (1:500, Cell Signaling, Danvers, MA, # 4876S), anti-CD81 (1:500, Cell Signaling, Danvers, #56039) e controles negativos de EV, anti-GM130 (1:500, Cell Signaling, #12480T) e anti-calnexina (1:500, Abcam, Cambridge, UK, #ab22595). Os anticorpos secundários utilizados foram: anti-camundongo (1:2000, #P0260) e anti-coelho (1:1000, #P0217), ambos fornecidos pela Dako (Agilent/Dako, Glostrup, Dinamarca). No caso da análise de CD81, o experimento foi realizado em condições não redutoras, com o tampão de amostra Pierce™ LDS Sample Buffer (Thermo Scientific, #84788) para a corrida. O total de 12 µg de proteína sEV e 5 µg de proteína de lisado celular foram usados para a técnica.

A preparação das amostras, extração de proteínas celulares e detalhes do ensaio de *western blotting* foram realizados de acordo com o descrito previamente (Krejsgaard et al. 2006).

4.6 Validação das nanopartículas: criomicroscopia eletrônica de transmissão

As amostras sEV foram concentradas e processadas para criomicroscopia eletrônica de transmissão (Crio-TEM) na *cryo chamber* Vitrobottm Mark IV (Thermo). Essa câmera, específica para congelamento rápido, impede que cristais de gelo formem artefatos na imagem. Após transferência para a grade de cobre específica para TEM, foram transportadas em nitrogênio líquido para aquisição das imagens no microscópio eletrônico de transmissão Tecnai G2 20 TWIN (FEI Company, Hillsboro, OR) com imagens capturadas a 200 kV. As imagens foram obtidas no *Core Facility for Integrated Microscopy* (CFIM) na Universidade de Copenhagen, Dinamarca, com auxílio do especialista Tillmann Pape e do Prof. Dr. Klaus Qvortrup.

4.7 Análise do conteúdo proteico das nanovesículas

Para o estudo do conteúdo proteico vesiculado, as amostras foram analisadas por espectrometria de massa (LC-MS/MS) com método de aquisição independente de dados (DIA). Para tal, as amostras foram lisadas com o tampão de lise tiocianato de guanidina (6 M GdCl, 10

mM TCEP, 40 mM CAA, 50 mM HEPES pH8.5). Os reagentes foram procedentes da Sigma (cloridrato de guanidínio (#G3272), 2-Cloroacetamida (#C0267), HEPES (#H3375) e Cloridrato de tris(2-carboxietil) fosfina (#C4706)). A seguir, as proteínas foram precipitadas com solução de acetona 100% por 18 horas a -20°C (concentração final de 80%). O pellet de proteínas foi ressuspendido na mesma solução tampão e quantificado pelo método de microBCA (ThermoFisher). O lisado de proteínas foi diluído na concentração 2mg/ml e submetido à etapa de digestão proteica para posterior dessalinização de amostras antes de ser avaliado por MS. O ensaio foi executado pela empresa Biogenity (Alborg, Dinamarca) no espectrofotômetro Orbitrap Exploris™480 (ThermoFisher).

4.8 Avaliação da captação e incorporação das nanovesículas por queratinócitos imortalizados

Células da linhagem de queratinócitos imortalizados HaCaT foram distribuídas em placas de 24 poços (Corning, Somerville, MA, USA), 1x10⁵ de células por poço, e incubadas durante a noite a 37°C com 5% de CO₂. No dia seguinte, foram tratadas com sEV previamente marcadas ou não, em diferentes concentrações e tempos de incubação. Passado o tempo de incubação, os poços foram cuidadosamente lavados com PBS 1x gelado e as células foram incubadas por 5 minutos a 37°C com solução enzimática TrypLE™ Express Enzyme (Thermo, # 12604013) para gentil remoção da placa. As células então foram lavadas com meio DMEM e posteriormente com PBS 1x, fixadas e imediatamente avaliadas por citometria de fluxo ou citometria de fluxo por imagem quanto à captação de sEV.

4.9 Marcação das nanovesículas para experimentos com fluorescência

As sEV foram marcados com CellTrace[™] Violet Cell Proliferation Kit (ThermoFisher, #C34557) ou CellTrace[™] CFSE Cell Proliferation Kit (ThermoFIsher, #C34554) na concentração final de 10 µ ou 20 µM, respectivamente. O conteúdo de RNA vesiculado foi marcado com SYTO[™] RNASelect[™] Green Fluorescent cell Stain (ThermoFisher, #S32703) na concentração final de 10 µM. Em alguns ensaios de citometria foi realizada a incubação com anticorpos anti-annexin-V (BD, Becton, Dickinson and Company, Franklin Lakes, NJ, United States; #556421) e anti-CLA (BD, #563961) simultâneas com os reagentes permeáveis à membrana celular. Brevemente, sEV foram incubadas por 60 minutos a 37°C com os reagentes de marcação. Em seguida, foram submetidas a cromatografia de exclusão por tamanho e ultrafiltração para remoção do excesso de reagente de marcação. Essa etapa é crucial para garantir a remoção do reagente de marcação

que não foi integrado as sEV (Figura 4) e reduzir a emissão de falso sinal positivo nos ensaios de captura de sEV por células. As sEV então foram imediatamente utilizadas em ensaios com células HaCaT ou foram acopladas a esferas de látex (*beads*) e avaliadas por citometria de fluxo.

Figura 4. Remoção do excesso do reagente de marcação por cromatografia de exclusão por tamanho. Ilustração do protocolo de marcação e remoção do excesso de marcação cromatografia de exclusão por tamanho. Adaptado de (Morales-Kastresana et al. 2017).

4.10 Avaliação das sEV marcadas por citometria de fluxo

Após a remoção do excesso de anticorpo ou dos fluoróforos permeáveis a membrana plasmática, as sEV foram acopladas a esferas de látex de tamanho 3 µm (Thermo) por 15 minutos em temperatura ambiente (TA), com homogeneização constante por rotação. As esferas foram diluídas em proporção de 10x. A seguir, os espaços livres das esferas foram bloqueados com 1 mL de soroalbumina bovina (BSA, Sigma, #A9418) na concentração final de 10 mM, por 15 minutos à TA, sob constante homogeneização. Um mL de PBS 1x foi adicionado à solução e incubado por mais 15 minutos, TA, sob agitação constante. A solução foi centrifugada (580 g, 5

minutos, TA) e as esferas foram ressuspendidas em 1 mL de glicina (100 mM). Uma nova etapa de bloqueio (30 minutos, TA, rotação constante) foi realizada. Por fim, a solução foi lavada com PBS 1x gelado por centrifugação e ressuspendida em tampão para aquisição em placa de 96 poços no citômetro de fluxo LSRFortessa[™] (BD). Ao menos 50.000 eventos foram adquiridos por amostra.

Para evitar sinais de anticorpos/agregados proteicos inespecíficos acoplados às esferas, as amostras de sEV/beads foram incubadas com diferentes soluções de detergente por 45 minutos a TA e a amostra foi adquirida novamente. O tratamento de lise foi realizado com solução de PBS 1x de Triton[™] X-100 na concentração final de 1% (Sigma-Aldrich, #T8787), NP-40 na concentração final de 1% (ThermoFisher, #85124) ou Tween 20% (ThermoFisher, #13484259).

Todos os experimentos de citometria foram desenvolvidos no Flow Cytometry & Single Cell Core Facility, na Universidade de Copenhagen, Dinamarca.

4.11 Análise da captação de sEV por citometria de fluxo e citometria de fluxo multiespectral por imagem

A captação das sEV por células HaCaT foi avaliada por citometria convencional e citometria multiespectral de imagem. Resumidamente, as células fixadas foram transferidas para microplacas de 96 poços de fundo em U (Sigma, # BR701330), volume de 200 µl. A leitura foi feita no citômetro de fluxo LSRFortessa™ (BD) com aproximadamente 50.000 eventos adquiridos por amostra. A análise foi feita no software FlowJo v10.8 (BD). Como estratégia de análise, selecionamos as amostras únicas por FSC-H e FSC-A e sem seguida, a população de interesse por tamanho e granulosidade, SSC e FSC.

A leitura da amostra por citometria de fluxo multiespectral de imagem foi realizada no equipamento Amnis® ImageStream®XMk II (Luminex Corporation, Austin, TX, USA). As imagens foram adquiridas no modo com alta resolução high gain (HG) com a amplificação máxima do equipamento, de 60x. Ao menos 500 eventos únicos e em foco (estratégia de análise) foram adquiridos por amostra. A análise foi feita no software IDEAS (Luminex).

4.12 Análise da captação de sEV por microscopia confocal de fluorescência

Para avaliar se as nanovesículas poderiam ser internalizadas por queratinócitos, 50x10³/poço de células HaCaT foram plaqueadas em lâminas de vidro (*Nunc*[™] *Lab-Tek*[™] *II CC2*[™] *hamber Slide System*, ThermoFisher, # 154941) por 24 h prévias ao tratamento de sEV. O meio então foi substituído por 200 µl de suspensão de aproximadamente 1.5x10⁹ sEV previamente
marcadas com CellTrace[™] Violet diluídos em meio de cultura, durante 3h30 à 37°C com 5% de CO2. Utilizamos dois controles negativos do ensaio: apenas o tampão PBS e controle da lavagem (solução de marcação CellTrace[™] Violet submetida ao mesmo processo de marcação e lavagem que as nanovesículas, porém sem conter as nanovesículas).

Após a incubação, cada poço foi lavado com solução de PBS 1x gelado e fixado com solução de paraformaldeído 4% a 37°C por 15 minutos. A seguir, as células foram lavadas com a solução de *Hanks' Balanced Salt Solution* (HBSS) (ThermoFisher, #14025134) e marcadas com 100 ul (5µg/mL, 10 minutos em TA), por poço, do reagente *Wheat Germ Agglutinin (WGA) Texas RedTM-X Conjugate* (ThermoFisher, #W21405).

Passado o tempo de incubação, a lâmina foi lavada mais uma vez com o tempão HBSS e coberta com o meio de montagem específico para imunofluorescência ProLong™ Diamond Antifade Mountant (Thermofisher, #P36961) e armazenada a 4°C no escuro. Análise foi realizada no microscópio confocal de varredura a laser modelo Carl Zeiss LSM 980 acoplado com Airyscan 2 localizado no *Core Facility for Integrated Microscopy* (CFIM) na Universidade de Copenhagen, Dinamarca, com auxílio do especialista Thomas Hartig Braunstein.

4.13 Avaliação do efeito funcional de sEV em queratinócitos imortalizados

Para a análise do efeito de sEV na expressão genica, queratinócitos HaCaT foram distribuídos em placas de 24 poços (Corning), 1x10⁵ de células por poço, e incubadas por 18 horas a 37°C com 5% de CO₂. Posteriormente, foram adicionadas 4x10¹⁰ ou 8x10¹⁰ de sEV por 4 h ou 24 h, sendo o volume final do poço de 250 µl. Após incubação, o sobrenadante foi removido e as células aderidas ao poço foram lavadas com PBS 1x gelado três vezes. Todo o líquido foi removido e a placa armazenada a -20°C para os ensaios de expressão de RNA.

4.14 Expressão gênica

A avaliação dos transcritos em células HaCaT foi realizada por sequenciamento de RNA (transcriptoma) e PCR em tempo real (RT-qPCR). A extração de RNA total foi obtida com o kit RNeasy Plus Kit (Qiagen, #74034) seguindo as recomendações do fabricante. A quantidade de RNA foi mensurada com auxílio do espectrofotômetro NanoDrop ND-1000 (ThermoScientific). Para obtenção de DNA complementar a partir do RNA total purificado foi utilizado o kit High Capacity cDNA reverse transcription kit (Applied Biosystems, #4368814) de acordo com as recomendações do fabricante. A amplificação e detecção de fluorescência foi feita no termociclador Mx3005P (Agilent Technologies, Santa Clara, Clarifórnia, USA). O sequenciamento

de RNA foi executado pela BGI (Beijing Genomics Institute), alocado em Hong Kong, na China. A análise foi realizada em parceria com o bioinformata Prof. Thomas Litman, *LEO Foundation Skin Immunology Research Center*, na Universidade de Copenhagen.

4.15 Expressão de microRNAs por qPCR em tempo real

A avaliação da expressão de microRNA em células HaCaT e nanovesículas foi realizada por qPCR em tempo real (RT-qPCR). O cDNA foi sintetizado a partir de 5 ng de amostra com auxílio do kit de transcrição reversa de miRNA TaqMan® (Applied Biosystems, #4366596) de acordo com instruções do fabricante. O *small nuclear* (do inglês: snRNA) U6 RNA foi usado como referência para os miRNAs de interesse. A PCR quantitativa foi realizada através do kit miRNA TaqMan® (Applied Biosystems, #4427975) seguido de amplificação e detecção de fluorescência em tempo real no termociclador Mx3005P (Agilent Technologies). As sondas TaqMan utilizadas nos ensaios são provenientes da Life Technologies: hsa-miR-21-5p (#000397), hsa-miR-155-5p (#4440886), U6 snRNA (#001973), hsa-miR -378a-5p (#000567) e let-a (#000377).

4.16 Análise estatística

Cada conjunto de dado foi verificado quanto a adesão a curva da normalidade com o teste estatístico Shapiro-Wilk (Royston 1982). Para análise por espectrometria de massa, utilizamos o teste T paramétrico na comparação entre as amostras sEV com distribuição normal e o teste estatístico não paramétrico Mann Whitney entre as amostras sEV sem distribuição normal. Para análise de células HaCaT tratadas com sEV, utilizamos o teste T paramétrico na comparação entre as amostras o teste T paramétrico na comparação entre as amostras seV sem distribuição normal. Para análise de células HaCaT tratadas com sEV, utilizamos o teste T paramétrico na comparação entre as amostras com distribuição normal ou o teste estatístico não paramétrico Wilcoxon (Wilcoxon 1945) entre as amostras sem distribuição normal. Na análise de correlação utilizamos o teste estatístico paramétrico Pearson para conjunto de dados com distribuição normal ou o teste estatístico não paramétrico Spearman para conjunto de dados sem distribuição normal. Os gráficos foram desenvolvidos no software Graph Prism versão 8.3. p<0,5 foi considerado diferente estatisticamente.

5. RESULTADOS

5.1 Obtenção e caracterização das nanovesículas extracelulares

A fonte para obtenção de vesículas mais comumente utilizada é o meio de cultura condicionado (Gardiner et al. 2016), de acordo com a Sociedade Internacional de Vesículas Extracelulares (ISEV). O soro fetal bovino (SFB), adicionado como suplemento na cultura, é fonte de contaminação em estudos de sEV derivadas de meio condicionado. Assim, optamos por utilizar nas culturas para obtenção de sEV o meio de cultura AIM-V específico para cultura de linhagens linfocíticas que não necessita de suplementação de soro.

Assim, as linhagens celulares foram mantidas em cultura na concentração 1x106/mL e o sobrenadante foi coletado a cada 48h por centrifugação e substituído por meio fresco. O meio condicionado foi mantido em 4°C por no máximo 24h. O número máximo de 6 passagens foi utilizado para obtenção de nanovesículas por cultura. A viabilidade das células foi acompanhada durante todo o período de coleta pelo corante trypan blue, sendo o mínimo aceitável de 85% de células viáveis. As linhagens foram testadas regularmente para contaminações por mycoplasma.

Figura 5. Linhagens de linfoma T cutâneo em cultura. Microscopia óptica das linhagens LCCT Myla 2059 (A) e Hut78 (B) em suspensão após 72h de cultura. Aumento de 40x.

As nanovesículas produzidas, espontaneamente, foram obtidas do meio celular condicionado por protocolo baseado em centrifugação sequencial, ultrafiltração e cromatografia por exclusão de tamanho, Figura 6.

Outro contaminante frequente nos preparados de sEV é a albumina (Shu et al. 2021, Pietrowska et al. 2019), importante componente nos meios de cultura *in vitro*, comumente purificada juntamente com as sEV. Com o intuito de reduzir essa contaminação, utilizamos o filtro de centrifugação de 100 kDa MWCO na etapa de ultrafiltração do protocolo de obtenção de sEV,

eliminando assim a albumina, cujo peso molecular é 66kDa, e, também, outras proteínas solúveis de peso molecular inferior a 100kDa, como a maioria das citocinas (Shu et al. 2020).

Figura 6. Protocolo de obtenção de nanovesículas partir de meio condicionado. O protocolo adotado para obtenção de sEV consta de três etapas: (I) centrifugação sequencial, para remoção de *debri* celular e vesículas maiores, (II) ultrafiltração, para redução do volume do meio condicionado e remoção de agregados proteicos de peso molecular inferior a 100kDa, e (III) cromatografia por exclusão de tamanho, etapa em que as vesículas são purificadas e separadas de proteinas filtradas junto com meio condicionado concentrado na etapa anterior. Opcionalmente é possível realizar uma segunda filtração para reduzir o volume de sEV obtido. Ilustração criada com Biorender.com.

A cromatografia por exclusão, última etapa do protocolo de obtenção de EV, resultou na coleta de nove frações de 0,5mL. A concentração de proteínas, realizado pelo método de BCA, e as partículas, por rastreamento de nanopartículas (NTA), foram analisadas nas nove frações coletadas Figura 7A. Detalhes e princípio da técnica NTA estão descritos na seção seguinte 5.2. validação por rastreamento de nanopartículas.

Observa-se na Figura 7A que as frações tardias tiveram maior rendimento proteico e menor rendimento de partículas, enquanto o inverso foi observado nas frações iniciais, F2, F3 e F4. Tal padrão indica que as vesículas se concentram nas frações iniciais e proteínas solúveis nas frações tardias, em acordo com instruções do fabricante e estudos prévios (Shu et al. 2020). O ensaio de western blotting do marcador HSP-70, proteína enriquecida em vesículas extracelulares pequenas, detectou também banda, ligeiramente, mais intensa nas frações F2 e F3 em comparação com as demais, Figura 7B.

Os achados avaliados, em conjunto, indicam que as frações F2, F3 e F4 contém as nanovesículas extracelulares (sEV).

Figura 7. Caracterização das nove frações obtidas da cromatografia por exclusão de tamanho. As nove frações de 0,5mL coletadas na última etapa do protocolo de obtenção de sEV foram caracterizadas quanto a (A) quantidade de partículas por rastreamento de nanopartículas (NTA) e quantidade de proteínas pelo método de BCA e (B) expressão de HSP-70 por western blotting. As barras representam mediana dos valores de NTA e os dot spot em vermelho representam os valores de mediana da quantificação de proteínas (n=3).

Em seguida, o preparado de sEV foi validado por três abordagens técnicas distintas: tamanho médio compatível, evidência de perfil proteico típico de sEV e avaliação da morfologia em análise por microscopia, conforme as diretrizes (ISEV)(Théry et al. 2018).

5.2 Validação das sEV: distribuição média de diâmetro

As vesículas foram avaliadas quanto ao tamanho e concentração através da análise de rastreamento de nanopartículas (NTA) no aparelho Nanosight. Brevemente, o espalhamento de luz emitido pelo aparelho sobre a amostra permite a visualização das partículas em movimento browniano. O equipamento então grava pequenos vídeos que são analisados pelo software posteriormente. Durante a análise dos vídeos, partículas menores são distinguíveis de partículas maiores por apresentarem movimentos mais rápidos. Assim, a observação individual das partículas permite uma análise de alta resolução. O software gera um gráfico de distribuição média do tamanho das partículas das cinco leituras de cada amostra, ilustrado na Figura 8A do lado

esquerdo, e a média das cinco leituras ao lado direito. A Figura 8B mostra captura de tela dos vídeos analisados e as setas indicam partículas em movimento. Uma leitura exata e reprodutível depende também do ajuste de certos parâmetros no momento da aquisição. Os parâmetros aplicados durante a aquisição estão descritos na seção Metodologia.

Figura 8. Análise da distribuição de tamanho por rastreamento de nanopartículas (NTA). Preparado de sEV-Hut78 foi diluído 2000x em PBS para aquisição no aparelho Nanosight. (A) Imagens extraídas do relatório gerado pelo software mostram distribuição média de tamanho provenientes de 5 leituras diferentes da mesma amostra e, ao lado, média das mesmas leituras. (B) capturas de tela de dois dos vídeos analisados, setas indicam partículas em movimento.

A Figura 8 mostra os resultados da análise de rastreamento de nanopartículas do grupo amostral sEV-Myla 2059 e sEV- Hut78. As médias de tamanho das sEV de ambos os grupos foram 167.52 ± 7.08 e 159.05 ± 3.23, das amostras sEV-Myla 2059 e sEV- Hut78 respectivamente. As médias foram similares e ambas estão dentro do esperado de sEV, entre 100nm e 200nm. As

amostras sEV assemelham-se também nas modas, 144.76 \pm 9.42 e 141.93 \pm 5.66, sEV-Myla 2059 e sEV- Hut78, respectivamente.

Figura 9. Distribuição média de diâmetro das amostras sEV-Myla 2059 e sEV-Hut78. As sEV foram diluídas em PBS e o tamanho das partículas foi avaliado por NTA. Estão representados no gráfico resultados de 5 amostras do grupo sEV-Myla 2059 e 6 amostras do grupo sEV-Hut78 obtidas em pelo menos três experimentos independentes.

Figura 10. Quantificação total de partículas por NTA. As sEV foram diluídas em PBS e a quantidade total de partículas foi avaliada nas amostras por NTA (sEV-Myla2059, n=10; sEV-Hut78, n=14). Os dados mostram mediana e quartis em vermelho. Os resultados foram obtidos em pelo menos três experimentos independentes.

Os resultados apontam também que a produção de partículas entre as linhagens é semelhante, Figura 9. O rendimento médio de partículas a partir de 60 mL de MC, foi 1.1x10¹¹ para as amostras sEV-Myla 2059 e 1.6x10¹¹ para as amostras sEV-Hut78 (Figura 10). As análises de NTA permitem concluir que as amostras mostram tamanho compatível com sEV de acordo com a literatura científica (Théry et al. 2018).

5.3 Validação das sEV: perfil proteico

Antes de validar o protocolo, de acordo com o perfil proteico das sEV, avaliamos se a produção de sEV diferia em quantidade entre as linhagens. Assim, sEV foram preparadas a partir de 60 mL de MC e quantificadas quanto a massa proteica. Observamos que os amostras sEV-Myla 2059 e sEV-Hut78 não diferem quanto a carga proteica, Figura 11, apesar da maior dispersão no grupo amostral das sEV-Myla 2059.

Figura 11. Rendimento proteico dos preparados de sEV. As amostras sEV foram lisadas com o reagente RIPA e sua carga proteica foi quantificada pelo método BCA, (sEV-Myla2059, n=10; sEV-Hut78, n=10). Gráficos de violino incluem quartis e a mediana em vermelho. Os resultados foram obtidos em pelo menos três experimentos independentes.

O perfil proteico dos lisados de sEV, juntamente com lisados celulares das linhagens foi determinado por *western blotting*. As proteínas que selecionamos para comprovar o perfil proteico são: CD81 (receptor de membrana plasmática), HSP-70 e RAB5 (proteínas presentes no citosol). A ISEV instrui ainda o emprego de marcadores chamados de negativos para sEV - proteínas que não apresentam relação com vesículas, mas presentes nas células podendo ser purificadas em conjunto com as sEV no preparado como indicadores de contaminação por resíduo celular. Como controle negativos selecionamos GM-130 e a calnexina.

Os ensaios de caracterização proteica por *westem blotting* revelaram presença dos marcadores de sEV HSP-70, RAB5, CD81 nas amostras de nanovesículas e nos lisados celulares das células de origem enquanto que os marcadores negativos GM-130 e calnexina foram expressos somente nos lisados celulares, Figura 12. Os resultados são considerados adequados para validação do perfil proteico das sEV.

Figura 12. Expressão de marcadores típicos de EV em lisado proteico celular e de amostras sEV. Lisado proteico de sEV e de linhagens LCCT foram avaliados por western blotting quanto a expressão dos marcadores HSP-70, RAB5 e CD81 e dos controles negativos GM130 e calnexina. Foram utilizados 10 µg de amostra sEV e 12 µg das amostras de lisado celular.

5.4 Validação das sEV: morfologia

A última etapa de validação das sEV foi a análise morfológica por crio-microscopia eletrônica. A morfologia típica de sEV das amostras sEV-Myla2059 pode ser observada na Figura 13, e na Figura 14, para amostras sEV-Hut78.

Figura 13. Visualização da morfologia das nanovesículas sEV-Myla2059. Os preparados de sEV foram ultracongelados no equipamento Vitrobottm Mark IV e imediatamente analisados no microscópio de transmissão eletrônica Tecnai G20 TWIN.

Figura 14. Visualização da morfologia das nanovesículas sEV-Myla Hut78. Os preparados de sEV foram ultracongelados no equipamento Vitrobottm Mark IV e imediatamente analisados no microscópio de transmissão eletrônica Tecnai G20 TWIN. Setas nas imagens indicam exemplos de nanovesículas.

Em ambos os casos é possível observar vesículas dentro de vesículas maiores, tal fenômeno pode ser decorrente das sucessivas centrifugações durante a etapa de ultrafiltração. Nota-se também a heterogeneidade nos tamanhos, evento também observado na análise por NTA. Também, as imagens sugerem que o tamanho das vesículas observadas condiz com o resultado obtido das análises por NTA. As imagens de microscopia eletrônica confirmam morfologia condizente com sEV.

5.5 Conteúdo protéico das nanovesículas LCCT

Após a validação das nanovesículas, vinte preparados de nanovesículas (replicatas experimentais) derivadas das linhagens Myla 2059 e Hut78 foram analisadas quanto ao conteúdo proteico por espectroscopia de massa. Os dados de intensidade de expressão das proteínas com ao menos dois peptídeos foram transformados (log2) em etapa prévia a análise. Também foram removidas amostras identificadas como *outliers* (1 do grupo sEV-Hut78 e 3 do grupo sEV-Myla 2059).

Identificamos o total de 620 proteínas (646 se considerarmos as diferentes isoformas da mesma proteína) descritas no Anexo A, sem a presença de proteínas exclusivas em um dos grupos. Não foi identificado citocinas nas amostras de sEV, o que indica que as etapas do protocolo de obtenção de sEV foram eficientes na remoção de citocinas, que são frequentes no meio condicionado de células tumorais.

A seguir comparamos o grupo de proteínas obtidos das sEV-LCCT com as 100 proteínas mais frequentemente encontradas em estudos com sEV, de acordo com a base de dados Vesiclepedia (Pathan et al. 2019, Kalra et al. 2012) ilustradas na Figura 15.

Figura 15. As sEV-LCCT contem 59 entre as 100 proteínas mais frequentemente encontradas em sEV. Diagrama de Venn entre as proteínas encontradas nas sEV-LCCT (total de 649, cor vermelha) e as 100 proteínas mais frequentes em estudos com sEV de acordo com a base de dados EVpedia (Vesiclepedia) representado na cor azul.

As 59 proteínas presentes nas sEV-LCCT constituem uma parte das 100 mais frequentes elencadas pela Vesiclepedia estão detalhadas na tabela 1.

encontradas em sEV						
TLN1	C3	CD81	LGALS3BP	PPIA	EEF1A1	
EEF2	CFL1	HSPA8	LDHA	KPNB1	HSP90AA1	
YWHAG	YWHAQ	AHCY	KRT10	GAPDH	RAB7A	
MSN	CCT2	ACTB	TUBB4B	TFRC	PGK1	
UBA1	MYH9	ENO1	CAP1	GNB2		
FASN	CCT8	CCT4	PFN1	ALDOA		
A2M	PRDX1	ANXA6	CDC42	FLNA		
KRT1	EZR	GSN	GNB1	CLIC1		
RAP1B	HSP90AB1	TCP1	ACLY	CCT6A		
EIF4A1	CCT3	ITGB1	RAB10	CLTC		
TPI1	SLC3A2	PKM	ALB	RAN		

Tabela 1: 59 proteínas expressas nas sEV-LCCT entre as 100 mais frequentemente encontradas em sEV

Observa-se proteínas *heat shock* (HSPA8, HSP90AB1 e HSP90AA1), tetraspaninas (CD81) e proteínas da família anexina (ANXA6), todas reconhecidas com frequência em sEV, utilizadas como marcadores de sEV. Dentre as frequentemente expressas, também há proteínas relacionadas a adesão celular (RAP1B, ITGB1), matrix celular (ACTB e TUBB4B), enzimas catalizadoras (FASN e LDHA), chaperonas (CCT3, CCT4, CCT6A, CCT2 e CCT8) e componentes do sistema complemento (C3).

Identificamos a presença de diversas integrinas e moléculas de adesão celular nas amostras de sEV, Tabela 2. Comparando as sEV-Hut78 com as sEV-Myla2059 detectamos maior abundância de 8 das 12 integrinas e moléculas de adesão (p>0.05, CD166, CD146, CD54, LAMP2, ITGB1, ADGRG6 e ITGB2) nas EV-Hut78.

Tabela 2: Integrinas e proteínas relacionadas a adesão celular							
Símbolo oficial do gene	sEV-Hut78	sEV-M2059	Valor <i>d</i> e p				
PVR (CD155)	13.2760	12.9881	0.2701				
ALCAM (CD166)	13.1989	12.8755	0.0023				
MCAM (C146)	12.9092	12.5110	0.0030				
SELL (CD62L)	12.5096	12.3826	0.2112				
CDH1 (CD234/LCAM)	12.2089	11.6709	0.0954				
CD44	12.7938	10.6397	0.0002				
ICAM1 (CD54)	11.2523	11.6314	0.0467				
LAMP2 (CD107b)	11.8331	10.4933	0.0179				
ITGB1 (CD29)	11.5150	10.3754	0.0159				
SLC3A2 (CD98)	11.5487	9.3395	0.0007				
ADGRG6	10.8221	9.7152	0.0160				
ITGB2 (CD18)	11.2644	8.4081	0.0001				
	as e proteínas relacionada Símbolo oficial do gene PVR (CD155) ALCAM (CD166) MCAM (C146) SELL (CD62L) CDH1 (CD234/LCAM) CD44 ICAM1 (CD54) LAMP2 (CD107b) ITGB1 (CD29) SLC3A2 (CD98) ADGRG6 ITGB2 (CD18)	Símbolo oficial do gene SEV-Hut78 PVR (CD155) 13.2760 ALCAM (CD166) 13.1989 MCAM (C146) 12.9092 SELL (CD62L) 12.5096 CDH1 (CD234/LCAM) 12.2089 CD44 12.7938 ICAM1 (CD54) 11.2523 LAMP2 (CD107b) 11.8331 ITGB1 (CD29) 11.5150 SLC3A2 (CD98) 11.5487 ADGRG6 10.8221 ITGB2 (CD18) 11.2644	Símbolo oficial do geneSEV-Hut78SEV-M2059PVR (CD155)13.276012.9881ALCAM (CD166)13.198912.8755MCAM (C146)12.909212.5110SELL (CD62L)12.509612.3826CDH1 (CD234/LCAM)12.208911.6709CD4412.793810.6397ICAM1 (CD54)11.252311.6314LAMP2 (CD107b)11.833110.4933ITGB1 (CD29)11.515010.3754SLC3A2 (CD98)11.54879.3395ADGRG610.82219.7152ITGB2 (CD18)11.26448.4081				

Valores de intensidade log2 (média) de cada grupo de sEV;

Detectamos também 23 proteínas relacionadas ao processo de progressão tumoral, descritas na Tabela 3. Destas, nove foram mais abundantes na amostra sEV-Hut78 (CD70,

PDGFRB, RAB7A, RAB10, ACACA, MYOC, LGALS3BP, IL6ST e CSF1R) e somente três foram mais abundantes nas amostras sEV-Myla 2059 (CACYBP, FSCN1 e LGALS1). Apesar das proteínas da família RAB estarem muito relacionadas com carcinogênese, também são frequentes em preparados de sEV, enfatiza a qualidade dos métodos selecionados para o isolamento de sEV.

		0		
Proteinas (IDs)	Símbolo oficial do gene	sEV-Hut78	sEV-M2059	Valor de p
P09619	PDGFRB (CD140B)	13.0123	12.0555	0.0006
P10721	KIT (c-kit)	12.6041	12.4922	0.2024
P32970	CD70 (CD27L)	13.6319	12.9312	0.0494
P68871	HBB	13.5351	13.5622	0.7727
P69905	HBA1, HBA2	13.6815	13.8405	0.1281
P51149	RAB7A	10.8442	9.9464	0.0005
P61026	RAB10	11.4471	10.7282	0.0052
P62491	RAB11A	10.9852	10.7248	0.6577
Q8WZ75	ROBO4	11.7360	11.5426	0.3795
Q9HB71	CACYBP (S100A6BP)	8.3217	9.6679	0.0004
Q53EL6	PDCD4	8.7010	8.2346	0.1391
Q12906	ILF3 (MMP4)	8.5104	7.8099	0.2164
Q12913	PTPRJ (CD148)	14.7442	14.6959	0.6229
Q13085	ACACA	10.7282	9.0963	0.0002
Q16658	FSCN1	11.9662	12.7777	0.0001
Q16853	AOC3 (VAP-1)	11.4832	11.2007	0.0852
Q99972	MYOC	10.0589	8.4070	0.0087
Q08380	LGALS3BP	13.3354	8.6922	0.0001
P09382	LGALS1	8.5292	9.8812	0.0459
P12821	ACE (CD143)	11.9596	11.7529	0.1578
P40189	IL6ST (CD130)	12.6961	12.2532	0.0402
P07333	CSF1R	12.6222	11.6815	0.0001
Q9UBG0	MRC2 (CD280)	11.4822	10.8177	0.1347

Tabela 3: Marcadores relacionados a tumorigênese

Valores de intensidade log2(média) de cada grupo de sEV;

Conforme esperado, as sEV-LCCT expressam também diversos marcadores de células T, descritos na Tabela 4. Dos 9 marcadores de células T encontrados, a expressão de DPP4 (CD26), ICOSLG e BST1 foi mais abundante nas amostras sEV-Hut78 enquanto que para sEV-Myla 2059 foram a expressão de EBI3, CD40LG e IL1R2.

Tabela 4. Marcauores comuns em celulas 1							
Proteinas (IDs)	Símbolo oficial do gene	sEV-Hut78	sEV-M2059	Valor de p			
P27930	IL1R2	8.6051	11.2171	0.0052			
Q9NPH3	IL1RAP	12.2127	12.3385	0.2728			
P29965	CD40LG	8.7104	11.4853	0.0008			
Q10588	BST1 (CD157)	12.2710	11.4878	0.0182			
Q14213	EBI3 (IL27b)	8.6288	14.2081	0.0002			
P08637	FCGR3A (CD16)	15.5404	15.6512	0.5235			
Q12913	PTPRJ (CD148)	14.7442	14.6959	0.6229			
075144	ICOSLG	14.0801	13.6858	0.0084			
P27487	DPP4 (CD26)	12.3131	11.7900	0.0038			

Tabela 4: Marcadores comuns em células T

Valores de intensidade log2(média) de cada grupo de sEV;

Identificamos também 7 citoqueratinas (KRT) expressas similarmente entre amostras de sEV avaliadas, descritas na Tabela 5.

Tabela 5: Citoqueratinas							
Proteinas (IDs)	Símbolo oficial do gene	sEV-Hut78	sEV-M2059	Valor de p			
P04264	KRT1	9.7070	9.7098	0.9914			
P35527	KRT9	9.6132	9.7962	0.6079			
P13645	KRT10	9.7366	9.4101	0.3606			
P02533	KRT14	9.4669	9.4327	0.9258			
P35908	KRT2	9.7024	9.1729	0.3131			
P13647	KRT5	8.6522	8.3112	0.1431			
P02538	KRT6A	9.3070	8.9683	0.3593			

Valores de intensidade log2(média) de cada grupo de sEV;

Apesar de não termos encontrado contaminantes como resíduos celulares nos preparados de sEV pela técnica de *western blotting*, detectamos a presença das apoliproteínas APO1, APO2 e albumina nos preparados de sEV (Tabela 6).

Tabela 6: Marcadores não comuns em sEV							
Proteinas (IDs)	Símbolo oficial do gene	sEV-Hut78	sEV-M2059	Valor de p			
P02768	ALB	14.5385	14.5813	0.7105			
P02647	APOA1	11.8052	11.8406	0.8456			
P02652	APOA2	12.5285	12.9510	0.0101			
P02654	APOC1	11.9461	12.4724	0.0370			
P02655	APOC2	12.3215	11.9390	0.2071			
P02656	APOC3	14.9018	13.5830	0.0554			

Valores de intensidade log2(média) de cada grupo de sEV.

Esses componentes não são conhecidos ser componentes de EVs e provavelmente são derivados do meio de cultura utilizado para obtenção de nanovesículas.

5.6 Captação e incorporação das nanovesículas por queratinócitos imortalizados

O passo seguinte foi avaliar se as sEV possuem relação com a patogênese da doença na pele no LCCT. Assim, foi analisado se as sEV são captadas e internalizadas por células epiteliais em ensaios de co-cultivo. Para tal, o primeiro passo foi marcar as sEV com agente fluorogênico.

5.6.1 Marcação de nanovesículas e verificação por citometria de fluxo

Considerando que não há marcadores exclusivos de sEV, adotamos a estratégia de marcar as sEV com reagentes que se ligam a componentes genéricos carreados por sEV, como RNA ou ou proteínas. O corante não fluorescente diacetato de carboxi-fluoresceína succinimidil éster (CFSE-DA) difunde-se passivamente através das membranas celulares por conta dos grupos acetatos aderidos à molécula CFSE. Uma vez dentro do citosol, os grupos acetatos são clivados pelas esterases intracelulares e o corante clivado torna-se fluorescente (agora em sua forma CFSE). A remoção dos grupos acetatos reduz drasticamente a permeabilidade da membrana plasmática. O corante, fluorescente, no citosol liga-se covalentemente a porção amina de proteínas intracelulares através do seu grupo éster de succinimidilo (Parish 1999). Pelo fato de esterases também serem carreadas por sEV, o mesmo princípio se aplica a nanovesículas (Morales-Kastresana et al. 2017).

As sEV-Myla 2059 foram incubadas com CFSE, com anticorpos anti-anexina e anti-CLA (antígeno de linfócitário cutâneo). As proteínas anexinas atuam na fusão e transporte de membranas intracelulares, são enriquecidas em nanovesículas e frequentemente utilizadas como marcadores de sEV (Osteikoetxea et al. 2015). A avaliação da expressão de CLA foi realizada na linhagem Myla 2059, pois expressam esse marcador em sua membrana plasmática.

O excesso de CFSE e anticorpos foi removido com cromatografia de exclusão de tamanho e ultrafiltração, conforme descrito anteriormente (Morales-Kastresana et al. 2017). Devido ao tamanho das sEV não ser detectável por citometria convencional, as sEV foram acopladas a *beads* (esferas) de látex de tamanho 3.8 µm. Como controles negativos do ensaio, utilizamos sEV sem marcação e o pool de anticorpos e CFSE sem as sEV. Todas as amostras foram processadas da mesma maneira, inclusive durante as etapas de lavagem por SEC e UF, e incubadas com as *beads* para posterior aquisição em citometro de fluxo, Figura 16. A estratégia de análise está ilustrada na Figura 16A.

Figura 16. sEV-Myla 2059 marcadas com CFSE, Anexina-V e CLA e avaliadas por citometria de fluxo. Os preparados de sEV-Myla 2059 foram marcados com CFSE, Anexina-V e CLA simultaneamente, e lavados por SEC e UF para remoção do excesso de CFSE e anticorpos. Como controles do ensaio foi utilizado sEV sem a incubação dos reagentes de marcação e os reagentes de marcação sem sEV. Todas as amostras foram submetidas ao mesmo protocolo de lavagem e posteriormente incubadas com beads para analise por citometria de fluxo. (A) estratégia de análise; (B) Amostra sEV e controles em histograma para cada fluorescência avaliada. Histograma de cor preta com linha tracejada representa o controle negativo do ensaio sEV sem marcação acoplada as beads, o histograma de cor cinza com linha tracejada representa os reagentes utilizados para marcação (CFSE e anticorpos) sem a presença de sEV e o histograma preenchido de cor laranja representa a amostra sEV devidamente marcada. A mediana da intensidade de fluorescência (MFI) encontra-se escrita ao lado dos histogramas.

A Figura 16B mostra a intensidade de fluorescência de cada marcador em forma de histograma, que incluem sEV marcadas com CFSE e o pool de anticorpos (Bead – sEV/CFSE/Ab), sEV sem marcação (Bead – sEV) e, os marcadores CFSE e pool de anticorpos (Bead – CFSE/Ab), como controle de remoção do excesso de reagente pelos processos de lavagens. Confirmamos a marcação de CFSE e Anexina-V na amostra com sEV (Figura 16B), os valores de MFI encontram-se descritos na figura. Em ambos os casos não foi observada florescência nos controles negativos, sugerindo a completa remoção do excesso de reagente pelo protocolo de lavagem. A expressão de CLA não foi detectada na amostra sEV.

A membrana que delimita as nanovesiculas são compostas pela mesma bicamada lipídica da membrana plasmática das células que as derivam. Dessa forma, por conta da composição lipídica, as membranas plasmáticas são suscetíveis a lise induzida por detergentes enquanto que contaminantes proteicos não vesiculados podem permanecer praticamente inalterados (Osteikoetxea et al. 2015, Tian et al. 2020). Para então averiguar a presença de contaminantes no preparado de sEV utilizamos diferentes tratamentos a base de detergentes nas amostras sEV previamente marcadas com CFSE e anexina-V, Figura 17.

Figura 17. sEV-Myla 2059 marcadas com CFSE e Anexina-V após tratamento à base de diferentes detergentes. Os preparados de sEV-Myla 2059 foram marcados com CFSE e anexina-V e acoplados a beads. Em seguida, as amostras foram tratadas com diferentes soluções à base de detergentes por 60 minutos a temperatura ambiente e imediatamente avaliadas no citômetro de fluxo. A intensidade de fluorescência é ilustrada em histograma com a MFI descrita na imagem. Os diferentes tratamentos estão representados por tracejados coloridos com identificação na legenda. O histograma preenchido de cinza claro corresponde a amostra não tratada.

O deslocamento do histograma após o tratamento com detergentes é visível para ambas marcações CFSE e anexina-V. Nota-se também a redução da MFI, em 57% após o tratamento com Triton para ambos os parâmetros analisados, em 29% para CFSE e 31% para anexina-V após o tratamento à base de NP-40 e 41% para CFSE e 39% para anexina-v após o tratamento à base de *Tween*. O tratamento à base de detergentes indica que o sinal positivo de CFSE e anexina-V é proveniente de material vesiculado e não de agregados extracelulares.

5.7 Avaliação da captação das nanovesículas por citometria de fluxo convencional e por citometria de fluxo por imagem

Para avaliar se as sEV são capturadas e internalizadas por células epiteliais, queratinócitos imortalizados da linhagem HaCaT foram incubados por 24 h com diferentes quantidades de sEV-Myla 2059 marcadas com CFSE, fixados e avaliados, por citometria de fluxo e de imagem, quanto à captação e absorção das sEV.

A citometria de fluxo de imagem multiespectral (IFC) é uma técnica que incorpora aspectos visuais e espaciais que a microscopia oferece com a análise precisa das intensidades de sinal fluorescente característica da citometria de fluxo. Dessa forma, a detecção de fluorescência é combinada com imagens de alta resolução espacial em nível celular individual (Phanse et al. 2012), característica interessante no estudo de captação de vesículas.

Como na citometria de fluxo convencional, é necessário delimitar bem a população de interesse a ser analisada (Figura 18). Primeiramente determinamos a seleção de células únicas para excluir agregados celulares, debris e *doublets* da análise. Esse primeiro *gate* foi desenhado com base na análise da circularidade dos eventos totais adquiridos, produzida pela combinação dos parâmetros *brightfield area* x *brightfield aspect ratio*. Células únicas adquiridas normalmente tem *aspect ratio* próximo de 1, enquanto agregados celulares tem *aspect ratio* igual ou menor que 0.5. Os limites da área selecionada foram determinados por checagem e visualização individual dos eventos (ilustrado ao lado do gate, Figura 18A). Em seguida, selecionamos as células em foco a partir do histograma do *brightfield gradient RMS*, também com checagem visual individual dos eventos. O parâmetro *brightfield gradient RMS* representa a nitidez da imagem que, de maneira geral, exibem altos valores de pixels e, consequentemente, maior *brightfield gradient RMS*. Por fim, selecionamos os queratinócitos HaCaT que incorporaram o fluoróforo CFSE combinando detecção da intensidade do CFSE x Max. Pixel do CFSE, Figura 18B. Para a delimitação da área dessa população nos baseamos também na amostra de controle negativo, células HaCaT tratadas com CFSE "lavado" sem as nanovesículas.

Figura 18. Estratégia de análise por citometria de fluxo de imagem (IFC). Células HaCaT foram tratadas com sEV-Myla 2059 previamente marcados com CFSE e analisadas por citometria de fluxo de imagem. A morfologia celular foi avaliada pelo canal 1 (Ch-1, 425-480nm, *brighfield*), a detecção da fluorescência emitida pelo CFSE foi avaliada no canal 2 (Ch-2, 480-560nm, FITC) e as imagens foram sobrepostas (*merge*). Para definir a população de interesse, agregados celulares, *doublets* e *debri* celulares foram separados de células adquiridas como únicos eventos pela avaliação da combinação dos parâmetros *area x aspect ratio*, ambos do Ch01. Em seguida, as células em foco foram selecionadas a partir do *gradient* RMS também do Ch01, em forma de histograma (A). Com a população de interesse estabelecida, avaliamos células positivas para a fluorescência CFSE por meio do gate de intensidade de fluorescência do Ch02 x Max. Pixel Ch02 (B).

A estratégia de análise adotada na análise por citometria de fluxo convencional foi seleção das células únicas, exclusão das células mortas, seleção das células HaCaT e, por fim, posicionamento de *gate* em células HaCaT-CFSE+ para avaliação percentual, Figura 19. O MFI de HaCaT-CFSE(+) foi calculado no *gate* de células HaCaT.

Figura 19. Estratégia de análise por citometria de fluxo (FACS). Células HaCaT foram tratadas com sEV-Myla 2059 previamente marcados com CFSE e analisadas por citometria de fluxo. Para a análise foi feita a seleção de células únicas, exclusão das células mortas, exclusão de debri celular e por fim, avaliação da florescência FITC.

Detectamos sinal de fluorescência emitido pelo CFSE em células HaCaT incubadas com sEV--CFSE, o que evidencia captação e absorção das nanovesículas. O ensaio de tratamento de células HaCaT com diferentes quantidades de sEV apontam que a captação é dose dependente, conforme ilustrado pelo percentual de células HaCaT-CFSE+ e também pelo MFI (Figura 20A). Resultados similares foram obtidos dos ensaios de IFC (Figura 20B). Não observamos alteração na viabilidade celular entre as diferentes doses de tratamento, avaliada por citometria de fluxo (dado não mostrado).

Figura 20. Avaliação da captação de sEV-Myla 2059 por células HaCaT por citometria de fluxo e citometria de imagem. Células HaCaT foram tratadas com diferentes quantidades de sEV-Myla 2059 previamente marcados com CFSE por 24 h e analisadas por citometria de fluxo e de imagem. O percentual de células HaCaT-CFSE e a mediana da intensidade de fluorescência (MFI) de CFSE foi gerada por FACS (A) e imagens representativas foram obtidas por citometria de fluxo de imagem (B). O gráfico em barra ilustra a mediana. A linha tracejada indica o controle negativo (CFSE sem sEV).

Nanovesículas interagem e são absorvidas pelas células de várias maneiras, como endocitose mediada por receptor, fagocitose, micropinocitose ou fusão direta com a membrana plasmática, processos dependentes ou não de energia celular (Ginini et al. 2022). Para investigar se a via de captação é via fusão direta com a membrana plasmática ou via endocitose, processo ativo dependente de energia, repetimos o tratamento das células HaCaT com sEV com incubação em baixas temperaturas (4°C) com o intuito de atenuar a atividade celular das células HaCaT (Figura 21 e Figura 22).

Figura 21. Resultados ilustrativos da inibição da captação de sEV-Myla 2059 por células HaCaT a baixas temperaturas. Células HaCaT foram tratadas sEV-Myla 2059 previamente marcados com CFSE por 3 h a 37°C ou 4°C e analisadas por citometria de fluxo e de imagem. (A) Intensidade de fluorescência de CFSE em células HaCaT representado por histograma. (B) Imagens de células HaCaT tratadas com sEV a 37°C ou 4°C e dos os controles do ensaio, tratamento com sEV sem marcação e tratamento com CFSE "lavado". O tratamento encontra-se ao lado das imagens.

Observamos que nos grupos tratados a 37°C 46% das células HaCaT foram FITC (+), enquanto que os grupos tratados a 4°C o percentual de células HaCaT FITC (+) foi de 0.1%, Figura 22. Os dados de MFI coincidem com os achados percentuais, sendo a mediana de 394 e 121 referente aos grupos tratados a 37°C ou a 4°C, respectivamente.

Figura 22. Inibição da captação de sEV-Myla 2059 por células HaCaT a baixas temperaturas. Células HaCaT foram tratadas com 1x10¹⁰ de sEV-Myla 2059 marcados com CFSE, sEV sem marcação ou apenas o CFSE por 3h a 37°C ou 4°C e analisadas por citometria de fluxo. Valores absolutos do percentual e de MFI dos ensaios representados em gráficos de barra. As barras evidenciam média e desvio padrão dos grupos. Resultados obtidos a partir de três experimentos independentes. * = p>0.05.

Apesar dos valores brutos de MFI não serem estatisticamente significantes, a razão entre o MFI da amostra sEV marcada com CFSE (sEV CFSE) e a amostra controle da remoção de excesso de CFSE durante a marcação das sEV (CFSE), na incubação a 37°C foi de 3.7 e 1.1 na

incubação a 4°C (Figura 23). A razão dos valores percentuais de células HaCaT foi similar, sendo 526 maior que seu controle negativo a 37°C enquanto que apenas 1.2 com o ensaio a 4° C (Figura 23).

Figura 23. Inibição da captação de sEV-Myla 2059 por células HaCaT a baixas temperaturas. Células HaCaT foram tratadas sEV-Myla 2059 previamente marcados com CFSE ou apenas o CFSE por 3h a 37°C ou 4°C e analisadas por citometria de fluxo. Valores relativos à amostra controle do percentual e de MFI representados em gráficos de barra. As barras evidenciam média e desvio padrão dos grupos. Resultados obtidos a partir de três experimentos independentes.

Em conjunto, os resultados mostram que as células HaCaT captam e absorvem as sEV-Myla 2059 via processo ativo dependente de energia, compatível com o processo de endocitose.

5.8 Avaliação da incorporação das nanovesículas por microscopia confocal

Apesar das evidências de captação pelas células HaCaT, é possível que as sEV estejam aderidas ao lado externo na membrana plasmática. As imagens obtidas por IFC mostradas na seção anterior são projeções 2D, sem a perspectiva de profundidade da célula. Assim não permitem visualizar se a localização das nanovesículas encontra-se no citosol celular, o que indicaria internalização das vesículas, ou se apenas encontram-se depositadas na superfície celular do lado externo. Portanto, optamos por analisar em microscopia de fluorescência confocal.

Para tal, células HaCaT foram tratadas com sEV previamente marcadas com CellTrace[™] Violet, reagente fluorescente com especificidade para proteínas. Para possibilitar a visualização da membrana plasmática das células HaCaT por microscopia, as células foram marcadas com lectinas fluorescentes (*Wheat Germ Agglutinin Texas Red[™]-X Conjugate* – WGA). Como controle do ensaio as células HaCaT foram tratadas também com sEV sem marcação prévia (HaCaT + sEV) ou com o reagente CellTrace Violet sem a presença das sEV (HaCaT + PBS-BV421). As amostras de controle foram submetidas ao mesmo processo de lavagem por SEC e UF, conforme descrito nas seções anteriores.

A Figura 24 mostra a co-localização das sEV com as células HaCaT cultivadas com amostra sEV-BV421, imagens ampliadas na Figura 25, com setas que destacam a localização das sEV.

Figura 24. Queratinócitos imortalizados captam nanovesículas in vitro. Queratinócitos imortalizados (HaCaT) foram tratados com sEV previamente marcadas com CellTraceTM Violet por 4h, fixados e marcados com WGA Texas RedTM processados para análise por microscopia de fluorescência. sEV sem marcação foi utilizado como controle negativo do ensaio e PBS-BV421 como controle de lavagem das sEV. Imagens representativas de três experimentos realizados. As barras de escala representam 10µm. Aquisição em objetiva 63x com óleo de imersão. Células HaCaT estão representadas em vermelho e sEV em azul.

Figura 25. Áreas de co-localização de nanovesículas e queratinócitos ampliadas. Queratinócitos imortalizados HaCaT foram tratados com sEV previamente marcadas com CellTraceTM Violet por 4h, fixados e marcados com WGA para análise de microscopia de florescência. Na imagem superior à esquerda células HaCaT que apresentam co-localização com sEV estão destacadas. As áreas em destaque estão ampliadas nas imagens seguintes com setas indicando as nanovesículas. As barras de escala representam 5µm.

Os valores de MFI confirmam a captação e retenção das sEV pelas células HaCaT, Figura 26. Apesar de sinal positivo sutil para o marcador de sEV na amostra do controle negativo PBS-BV421 (Figura 24), o processo de remoção do excesso do marcador das sEV se mostrou eficiente de acordo com os valores de MFI obtido das imagens de microscopia, Figura 26, entre as amostras sEV e PBS-BV421 (medianas: 14 e 16, respectivamente).

Figura 26. Intensidade mediana de fluorescência das imagens obtidas por microscopia confocal. Representação gráfica da intensidade mediana de fluorescência (MFI) de BV-421/CellTrace Violet foi calculada em capturas de imagens (n=3-20) com o software Zen 3 Blue Edition V. 3.5. e apresentados em gráfico de barra com representação da mediana. * p< 0.05, ** p< 0.01 e *** p< 0.001; u.a = unidade arbitrária.

Assim, o sinal detectado pelos sensores BV-421 na amostra sEV-BV421 é derivado de nanovesículas e não de marcador em excesso não removido.

Após a identificação de áreas de co-localização das sEV com células HaCaT, investigamos se havia de fato a internalização por microscopia confocal, técnica que permite a construção de projeção tridimensional da imagem. Para a captação das imagens com o parâmetro de profundidade em relação à base da lâmina, delimita-se o ponto mínimo (superfície imersa no óleo) e máximo (superfície aderida a lâmina) do eixo Z e a quantidade de capturas desejadas nesse intervalo. Após selecionarmos a área de interesse, estipulamos 65 capturas na resolução máxima. O empilhamento das imagens obtidas com variações no eixo z (do inglês "z-stack") permite a construção da projeção tridimensional ilustrada na Figura 27A. Análise Z-stack possibilita a visualização espacial da nanovesícula em destaque em relação à membrana plasmática da célula HaCaT, para cada sEV, conforme ilustrado na Figura 27B. A avaliação por microscopia confocal mostra a incorporação das sEV pelas células HaCaT, Figura 28.

Figura 27. Ilustração da análise de reconstrução tridimensional em queratinócitos tratados com nanovesículas. Queratinócitos imortalizados HaCaT foram tratados com sEV marcadas e analisados por microscopia confocal de florescência. Imagens foram captadas na opção Z-stacking para análise espacial tridimensional. (A) Projeção tridimensional criada a partir da reconstrução do empilhamento de imagens capturas em série (65 camadas) em área pré-determinada nos eixos XY, mas com variações no eixo Z. As sEV estão representadas na cor azul e a membrana plasmática das células HaCaT na cor vermelha. (B) sEV co-localizada com célula HaCaT estão em destaque com círculo de cor clara, e sua representação espacial em relação à membrana plasmática da célula HaCaT no eixo Z encontra-se demarcada com círculo de cor violeta. A barra de escala representa 5µm.

Figura 28. Nanovesículas incorporadas por queratinócitos imortalizados. Queratinócitos imortalizados HaCaT foram tratados com sEV previamente marcadas e analisados por microscopia confocal de florescência. Imagens foram captadas na opção Z-stacking para análise espacial tridimensional. Projeções criadas a partir da reconstrução do empilhamento de imagens capturas em série (65 camadas) em áreas de co-localização de sEV e células HaCaT. sEV estão representadas na cor azul e a membrana plasmática das células HaCaT na cor vermelha. A barra de escala representa 5µm.

A captação e incorporação das sEV derivadas de linhagens tumorais LCCT por células HaCaT foi caracterizada e evidenciada por citometria convencional, de imagem e microscopia de fluorescência confocal.

5.9 Transferência de RNA vesiculado para queratinócitos imortalizados

Os ensaios até o momento evidenciam a captação, *in vitro*, de nanovesículas por células epiteliais através da marcação de conteúdo proteico vesiculado. Porém, além dos componentes proteicos, diversos estudos evidenciam a importância de ácidos nucleicos transportados por sEV, principalmente fragmentos curtos reguladores, os microRNAs (Wu et al. 2022, Zhao et al. 2022). No linfoma LCCT, o perfil de expressão de microRNAs tem sido extensivamente estudado e um grande número de artigos relatam um padrão de expressão desregulado (Matsuda et al. 2022, Wen, Xie and Wang 2021, Di Raimondo et al. 2021, Han et al. 2022, Moyal et al. 2021, Gluud et al. 2020, Lindahl et al. 2016). Assim, diante da importância de microRNAs na patogênese do LCCT, nos questionamos se os microRNAs transportados pelas nanovesículas LCCT eram absorvidos e transferidos para as células HaCaT. Para tal, avaliamos a captação de RNA vesiculado por sEV-Myla 2059 por células HaCaT com sEV previamente marcadas com RNAsyto, reagente permeável à membrana plasmática que cora seletivamente RNA.

Em acordo com os ensaios anteriores, a detecção do sinal de fluorescência em células HaCaT tratadas com sEV indicam a captação e absorção de RNA vesiculado, Figura 29, de forma dependente de temperatura. A mediana de células HaCaT-FITC+ foi de 95% no tratamento a 37°C em comparação a 0.5% de células HaCaT-FITC+ a 4°C nas células HaCaT tratadas com amostra

(sEV RNASyto), Figura 29C. O mesmo ocorreu com os valores de MFI, sendo 2060 para o tratamento a 37°C e 139 quando conduzido a 4°C.

Figura 29. Captação de RNA vesiculado por queratinócitos é dependente da temperatura. Células HaCaT foram tratadas sEV-Myla 2059 previamente marcados com RNAsyto, sEV sem marcação ou apenas o RNAsyto por 3h a 37°C ou 4°C e analisadas por citometria de fluxo (FACS, A) e de imagem (IFC, B). (C) Valores absolutos do percentual e de MFI dos ensaios. (D) Valores, de percentual e de MFI, relativos à amostra controle. As barras evidenciam média e desvio padrão dos grupos. * p< 0.05 e *** p< 0.001 entre o mesmo tratamento conduzido a 37°C ou 4°C.

Os controles do ensaio, amostras sEV sem marcação e RNASyto marcação sem amostra sEV, evidenciaram a especificidade do sinal positivo à amostra sEV marcada, sEV-RNAsyto. A inibição da captação por baixas temperaturas é evidenciada pela razão entre controle e tratado

dos valores de MFI (mediana: 18 para o tratamento a 37°C versus 1.2 para 4°C) e percentual (mediana: 1075 para o tratamento a 37°C versus 17 para 4°C) de células HaCaT-FITC+, Figura 29D.

Com a intenção de avaliar se microRNAs (miRs) vesiculados são transferidos para células HaCaT, verificamos a expressão de quatro diferentes miRs nas sEV e em células HaCaT após o tratamento de sEV por RT-qPCR. Selecionamos os miRs 155 e 21 ambos conhecidos pelo envolvimento na patogênese de LCCT (Moyal et al. 2021, Moyal et al. 2017, Kopp et al. 2013a, Kopp et al. 2013b) e os miRs 378 e let-7a até o momento sem relatos no LCCT, mas com envolvimento em outros canceres. Posteriormente, confirmarmos a expressão dos microRNAs nas amostras de sEV (Figura 30).

Figura 30. Expressão dos miR-155, miR-21, miR-378 e Let-7a em amostras de sEV-LCCT. A expressão de miRnas foi analisada por RT-qPCR nas sEV-Myla2059 e sEV-Hut78 (n=5). As barras evidenciam média e desvio padrão dos grupos. CT = tempo de ciclagem.

Para a normalização da expressão dos miRs nas células HaCaT optamos por dois genes internos: U6 e miR205. As células HaCaT foram tratadas com duas doses diferentes de sEV-Myla 2059 4x10¹⁰ e 8x10¹⁰ durante 4 h ou 24 h. Detectamos aumento da expressão do microRNA-155 em células HaCaT tratadas por 24 h com sEV-Myla 2059 (Figura 31A). O efeito é observado em ambas as análises (valores de mediana com os valores relativos a U6 foram: 1.93 e 1.40 para o tratamento de sEV 4x10¹⁰ e 8x10¹⁰ por 24h e valores de mediana com os valores relativos a miR-205: 1.16 e 2.00 para o tratamento de sEV 4x10¹⁰ e 8x10¹⁰ por 24h e valores de mediana com os 24h. Figura 31B e Figura 32A.

Figura 31. Expressão de miR-155 e miR-21 em células HaCaT tratadas com sEV. A expressão dos miR-155 (A) e miR-21 (B) foi analisada por RT-qPCR em células HaCaT tratadas com sEV-Myla 2059 por 4 h ou 24 h (n=8). As barras evidenciam média e desvio padrão dos grupos. Resultados obtidos a partir de pelo menos três experimentos independentes. * p< 0.05, ** p< 0.01 guando comparado com o controle sem tratamento.

Figura 32. Expressão de miR-378 e let-a em células HaCaT tratadas com sEV. A expressão dos miR-378 (A) e let-a (B) foi analisada por RT-qPCR em células HaCaT tratadas com sEV-Myla 2059 por 4 h ou 24 h (n=8). As barras evidenciam média e desvio padrão dos grupos. Resultados obtidos a partir de pelo menos três experimentos independentes. * p< 0.05 quando comparado com o controle sem tratamento.

5.10 Efeito das nanovesículas em células epiteliais

A epiderme fornece uma barreira física importante contra agressões externas. Há diversas evidencias da expressão alterada de marcadores relacionados a integridade da barreira cutânea no LCCT (Nickoloff and Griffiths 1990, Fried and Cerroni 2012, Thode et al. 2015). Desta forma, nos propusermos a averiguar se as sEV derivadas das linhagens LCCT podem contribuir com algum dano na barreira cutânea. Para tal, avaliamos a expressão de transcritos de moléculas

envolvidas com a manutenção e integridade da barreira cutânea em células HaCaT tratadas com sEV-LCCT por RT-pPCR.

O tratamento com sEV-Myla 2059 foi capaz de diminuir a expressão de filagrina e loricina de células HaCaT, Figura 33. No caso da filagrina, a expressão foi regulada negativamente após tratamento de 4h (redução de 40% na mediana, para ambas as doses). A redução da expressão da loricrina foi de 78% e 81% nas incubações de 4h e 51% e 60% nas incubações de 24h, para as doses de 4 ou 8x10¹⁰ sEV, respectivamente. Assim, observamos que a regulação desses transcritos ocorre em período de 4h, com aparente recuperação na expressão da filagrina após 24h.

Figura 33. Expressão de filagrina e loricrina em células HaCaT tratadas com sEV. A expressão dos transcritos filagrina e locricina foi analisada por RT-qPCR em células HaCaT tratadas com sEV-Myla 2059 (n=8). As barras evidenciam média e desvio padrão dos grupos. Resultados obtidos a partir de três experimentos independentes. ** p< 0.01, *** p< 0.001 e **** p< 0.0001 comparados com os grupos não tratados.

Devido ao papel das citoqueratinas (KRT) na estrutura da epiderme avaliamos o impacto das sEV na expressão das KRT 1, 5, 10 e 19, em células HaCaT tratadas com sEV Myla 2059, Figura 34. A incubação das HaCaT com as sEV foi capaz de diminuir a expressão das quatro KRT avaliadas. Contudo, o efeito das sEV na expressão das KRT foi mais tardio, com maior impacto no tratamento de 24h (redução de 89% e 95% para KRT1, 62% e 74% para KRT10, 28% e 34% para KRT5 e 31% e 63% para KRT19, nas doses 4 ou 8x10¹⁰ sEV respectivamente). Observamos também que o efeito foi dose dependente para as quatro KRT. Apesar da regulação negativa de diferentes proporções entre as KRT avaliadas, o efeito biológico foi consistente.

Figura 34. Expressão das citoqueratinas 1, 5, 10 e 19 em células HaCaT tratadas com sEV. A expressão dos transcritos de KRT1, 5, 10 e 19 foi analisada por RT-qPCR em células HaCaT tratadas com sEV-Myla 2059 (n=8). As barras evidenciam média e desvio padrão dos grupos. Resultados obtidos a partir de três experimentos independentes. ** p< 0.01, *** p< 0.001 e **** p< 0.0001 entre os grupos tratados e não tratado;

Os queratinócitos da camada basal da epiderme estão unidos entre si por estruturas de adesão intercelulares, os desmossomos. Os desmossomos se unem aos filamentos de queratina e são subdivididas em duas subfamílias – as desmogleínas e as desmocolinas (Rivitti 2018, Murata et al. 2022). Avaliamos a expressão desses componentes dos desmossomos, a desmogleína-1 (DSG-1), a desmocolina-1 (DSC1) e desmocolina-3 (DSC3), Figura 35. Também incluímos na avaliação a expressão da claudina-1 (CLDN1), componente das junções de oclusão às estruturas de adesão intercelulares encontradas na epiderme.

Figura 35. Expressão de componentes dos desmossomos e junções de oclusão em células HaCaT tratadas com sEV. A expressão das desmogleína-1 (DSG-1), desmocolina-1 (DSC1), desmonolina-3 (DSC3) e claudina-1 (CLDN1) foi analisada por RT-qPCR em células HaCaT tratadas com sEV-Myla 2059 (n=8). As barras evidenciam média e desvio padrão dos grupos. Resultados obtidos a partir de três experimentos independentes. * representa p< 0.05, ** representa p< 0.01, *** representa p< 0.001 e **** representa p< 0.001 entre os grupos tratados e não tratado;

As sEV-Myla 2059 induziram regulação negativa na expressão da DSG1 (56%), DSC1 (53%) e DSC3 (29%) em células HaCaT com a dose de 8x10¹⁰ e na expressão de DSC3 (28%) também na dose de menor de sEV, de 4x10¹⁰, nas incubações de 24h. Os valores em parênteses indicam a mediana do percentual de regulação negativa. É interessante observar que apesar da regulação negativa no DSG1 no tempo de incubação maior, identificamos regulação positiva (50%) na incubação de 4h. Ao contrário do observado nos componentes dos desmossomos, a expressão da CLDN1 foi induzida (regulação positiva de 25% e 36% para as doses de sEV de 4x10¹⁰ e 8x10¹⁰, respectivamente) no tratamento de menor duração e se mostrou estável após 24 h do tratamento.

Além da manutenção da integridade da pele dos pacientes, outro fator de relevância na patogênese da doença é o processo de angiogênese. Com o intuito de investigar se as

nanovesículas derivadas de células tumorais influenciariam a produção do VEGF-A, fator relacionado a angiogênese em queratinócitos, avaliamos a expressão de VEGF-A em células HaCaT tratadas com sEV-Myla 2059.

Figura 36. Expressão de VEGF-A em células HaCaT tratadas com sEV. A expressão de fator de crescimento endotelial vascular (VEGF-A) foi analisada por RT-qPCR em células HaCaT tratadas com sEV-Myla 2059 (n=8). As barras evidenciam média e desvio padrão dos grupos. Resultados obtidos a partir de três experimentos independentes. * representa p< 0.05, ** representa p< 0.01, *** representa p< 0.001 e **** representa p< 0.001 entre os grupos tratados e não tratado;

Identificamos aumento no transcrito VEGF-A nas células HaCaT tratadas com sEV em todas as condições avaliadas (aumento de 360% e 380% nas incubações de 4h e 172% e 197% na incubação de 24h, respectivamente nas doses 4x10¹⁰ e 8x10¹⁰).

Nos questionamos se a expressão dos transcritos avaliados estaria relacionada com a quantidade de nanovesículas captadas e internalizadas pelas células HaCaT. Para responder a essa questão investigamos se havia correlação entre os valores de expressão dos transcritos e a expressão dos miRnas altamente expressos nas sEV, nos ensaios anteriores das células HaCaT tratadas com as nanovesículas.

De fato, em alguns casos, há correlação negativa entre a expressão do transcrito e dos miRnas. É o caso da expressão da filagrina (FLG) ou da citoqueratina 10 (KRT10) com o miR-155 no tratamento de sEV com 8x10¹⁰ durante 24 h, Figura 37.

Figura 37. Correlação negativa entre a expressão dos transcritos FLG e KRT10 e o miR-155 em células HaCaT tratadas com sEV. A expressão da filagrina (FLG), citoqueratina-10 (KRT10) e do miR-155 foi analisada por RT-qPCR em células HaCaT tratadas com sEV-Myla 2059 (n=8-14). Os gráficos ilustram a correlação desses valores. Valor de p e de r baseado no teste estatístico de correlação paramétrica Pearson ou não paramétrica Spearman.

O mesmo fenômeno foi observado entre valores de expressão da FLG, KRT10 ou DSC3 em relação a expressão do miR-21, após o tratamento de 8x10¹⁰ sEV-Myla 2059 durante 24 h (Figura 38).

Figura 38. Correlação negativa entre a expressão dos transcritos KRT10, FLG e DSC3 e o miR-21 em células HaCaT tratadas com sEV. A expressão da filagrina (FLG), citoqueratina-10 (KRT10), desmocolina-3 (DSC3) e do miR-21 foi analisada por RT-qPCR em células HaCaT tratadas com sEV-Myla 2059 (n=8-14). Os gráficos ilustram a correlação desses valores. Valor de p e de r baseado no teste estatístico de correlação paramétrica Pearson ou não paramétrica Spearman.

Os dados também se relacionam de maneira positiva, como no caso da expressão de DSC1, FLG e LOR com a expressão do miR-155 após o tratamento de 8x10¹⁰ sEV-Myla 2059 durante 4h (Figura 38).

Figura 39. Correlação positiva entre a expressão dos transcritos DSC1, FLG e LOR e o miR-155 em células HaCaT tratadas com sEV. A expressão da filagrina (FLG), loricrina (LOR), desmocolina-1 (DSC1) e do miR-155 foi analisada por RT-qPCR em células HaCaT tratadas com sEV-Myla 2059 (n=8-14). Os gráficos ilustram a correlação desses valores. Valor de p e de r baseado no teste estatístico de correlação paramétrica Pearson ou não paramétrica Spearman.

O cálculo da correlação entre os valores de expressão de cada um dos transcritos e dos miRnas estão descritos nas Tabelas 7 e 8. Observamos diversos casos com significância estatística (vermelho), entretanto é preciso analisar funcionalmente para avaliar a relevância biológica. A expressão de alguns transcritos, como a filagrina e a loricrina, correlacionaram-se com a expressão de miR-155 e miR-21 em quase todos os tratamentos testados, fato não observado na mesma magnitude com os outros transcritos. Ressaltamos que apesar de estatisticamente significantes (p>0.05) a correlação não indica relação de casualidade.

miR	miR-155/U6			miR-21/U6				
Tempo		4h	24	4h	4	h	24	4h
sEV-M2059	4x10^10	8x10^10	4x10^10	8x10^10	4x10^10	8x10^10	4x10^10	8x10^10
FLG	0.0013	0.0035	0.0078	0.0016	0.0032	0.0332	0.8820	0.0115
LOR	0.0087	0.0156	0.9512	0.7975	0.0020	0.0294	0.0205	0.3913
VEGF-A	0.5008	0.3874	0.1150	0.2035	0.3268	0.9909	0.0279	0.0209
DSC3	0.7406	0.3248	0.6667	0.0519	0.7432	0.3534	0.3777	0.0416
DSC1	0.2272	0.0345	0.3921	0.7815	0.0478	0.0205	0.2725	0.8797
DSG1	0.4365	0.929	0.5105	0.1786	0.6402	0.8205	0.5480	0.0842
CLDN1	0.6748	0.5211	0.4279	0.5098	0.3451	0.3525	0.7033	0.8256
KTR1	0.9418	0.7376	0.8196	0.3782	0.4640	0.8493	0.9099	0.7485
KTR5	0.9800	0.7723	0.2513	0.0921	0.6280	0.8851	0.7052	0.1033
KTR10	0.5778	0.3225	0.9526	0.0188	0.5565	0.3245	0.2275	0.0285
KTR19	0.5821	0.0962	0.7033	0.6823	0.5364	0.0576	0.5364	0.9069
Valores de p< 0.05 estão destacados na cor vermelha; Correlação de Pearson ou correlação de Spearman							nan	

Tabela 7: Correlação entre a expressão dos transcritos e dos miRs 155 e 21
miR	miR-	-378/U6	miR-3	378/U6	Let-a	17/U6	Let-a	7/U6
Tempo		4h	24	4h	4	h	24	h
sEV-M2059	4x10^10	8x10^10	4x10^10	8x10^10	4x10^10	8x10^10	4x10^10	8x10^10
FLG	0.3518	0.0219	0.2675	0.0237	0.0675	0.1536	0.2220	0.0115
LOR	0.5745	0.0675	0.0103	0.4877	0.1923	0.1486	0.0011	0.018
VEGF-A	0.2162	0.5065	0.1323	0.2350	0.3894	0.5694	0.0084	0.0127
DSC3	0.5380	0.3938	0.3055	0.0740	0.0714	0.0574	0.6397	0.5886
DSC1	0.8348	0.0827	0.2772	0.9604	0.0055	0.0460	0.0921	0.1156
DSG1	0.9300	0.6605	0.4340	0.3935	0.6859	0.4011	0.4729	0.0102
CLDN1	0.8546	0.5493	0.3894	0.6009	0.0086	0.0324	0.1433	0.0437
KTR1	0.8063	0.8049	0.7811	0.5187	0.0184	0.1585	0.7098	0.0646
KTR5	0.5498	0.7375	0.3827	0.0926	0.0413	0.2418	0.8472	0.4692
KTR10	0.6746	0.4263	0.2279	0.0780	0.6145	0.9016	0.3631	0.5537
KTR19	0.882	0.0279	0.7520	0.5019	0.9768	0.0022	0.5886	0.2658
Valores de p•	< 0.05 estão	destacados n	a cor vermelh	a; Correlação	de Pearson o	u correlação d	de Spearman.	

Tabela 8: Correlação entre a expressão dos transcritos e os miRs 378 e let-7a

Diante da evidência do potencial de regulação das sEV-Myla 2059 nas células HaCaT, prosseguimos a avaliar outras vias que poderiam ser moduladas sEV. Para analisar essa questão optamos por uma abordagem de investigação ampla: análise do conjunto completo dos transcritos (transcriptoma). Enfatizamos que a análise completa dos dados se encontra em curso, e os resultados apresentados são preliminares.

Doze amostras de células HaCaT (04 replicatas de amostras sem tratamento, tratadas com 8x10¹⁰ de sEV-Myla 2059 por 4 h ou 24 h) foram analisadas por sequenciamento de RNA. O sequenciamento das amostras foi realizado em corrida única, com o mínimo de 20,5 milhões de leituras (média de 21 milhões) por amostra (Figura 40).

Figura 40. Total de leituras por amostra. Células HaCaT tratadas com 8x1010 sEV-Myla 2059 por 4 h ou 24 h ou sem tratamento foram submetidas ao sequenciamento de RNA. Os gráficos de barra indicam quantidade de leituras por amostra.

O total de 28.938 genes foram identificados em pelo menos uma amostra. Duas amostras foram consideradas *outliers* e removidas da análise por baixa correlação com o resto do grupo de tratamento. Os dados estão ilustrados na análise de componentes principais (PCA) e correlação de Pearson entre os grupos de tratamento (Figura 41A e Figura 41B, respectivamente).

Figura 41. Correlação entre as amostras. Células HaCaT tratadas com 8x1010 sEV-Myla 2059 por 4 h ou 24 h ou sem tratamento foram sequenciamento de RNA. (A) análise de componente principal dos 4377 genes mais variáveis e (B) *heat-map* de correlação de Pearson. As setas indicas duas amostras (CTRL-A e 4h-A) com baixa correlação com o grupo de tratamento.

A seguir avaliamos os genes diferencialmente expressos (DEG) entre os grupos tratado e controle nos dois tempos de tratamento, 4 h e 24 h. Identificamos 1950 DEG entre as amostras controle e tratado por 4 h e 641 DEG entre as amostras controle e tratado por 24 h, ilustrados em *heat map* nas Figuras 42. A descrição completa dos DEGs está nos Anexos B e C.

Figura 42. Análise de expressão diferencial de células HaCaT tratadas com sEV-Myla2059. Células HaCaT sem tratamento ou tratadas com 8x1010 sEV-Myla 2059 por 4 h, 24 h foram analisadas por sequenciamento

de RNA (10 amostras, A, E, C e H; controle = ctrl; 4h = tratamento por 4h; 24h = tratamento por 24h). Análise de expressão diferencial (Var>0.1, p<0.05, q=0.15, >2-fc) identificou 1950 genes após o tratamento de 4 h (heat map da esquerda) e 641 genes após o tratamento de 24 h (heat map da direita).

Os 20 DEGs com maior variância (positiva e negativa) para os tratamentos de 4 h e 24 h estão descritos nas Tabelas 9 e 10.

Gene		Valor de p	Fold Change
CSF2	Colony Stimulating Factor 2	0.0007	7.1927
CXCL8	C-X-C Motif Chemokine Ligand 8	0.0001	6.9068
KRTAP2-3	Keratin Associated Protein 2-3	0.0005	6.1016
SPRR2D	Small Proline Rich Protein 2D	<0.0001	6.0106
SPRR2A	Small Proline Rich Protein 2A	<0.0001	5.6613
ESM1	Endothelial Cell Specific Molecule 1	0.0031	5.5602
CREB5	CAMP Responsive Element Binding Protein 5	0.0021	5.5297
MMP20	Matrix Metallopeptidase 20	0.0018	5.5253
HSPA6	Heat Shock Protein Family A (Hsp70) Member 6	0.0043	5.2833
SERPINB2	Serpin Family B Member 2	<0.0001	4.9075
ISLR2	Immunoglobulin Superfamily Leucine Rich Repeat 2	0.0032	-4.7217
MPIG6B	Megakaryocyte And Platelet Inhibitory Receptor G6b	0.0003	-4.7818
NAP1L3	Nucleosome Assembly Protein 1 Like 3	0.0194	-4.7977
BMF	Bcl2 Modifying Factor	0.0000	-4.8374
PCDH18	Protocadherin 18	<0.0001	-4.8867
TXNIP	Thioredoxin Interacting Protein	<0.0001	-4.9943
VAV3	Vav Guanine Nucleotide Exchange Factor 3	<0.0001	-4.9958
PPARGC1A	Peroxisome Proliferator-Activated Receptor Gamma	0.0021	-5.3229
SEMA6D	Semaphorin 6D	<0.0001	-5.5731
LEXM	Lymphocyte Expansion Molecule	<0.0001	-5.7128

Tabela 9: 20 DEGs	com maior v	variância apo	os o tratament	o com as	sEV-LCCT	por 4 h
	••••••					

Gene		Valor de p	Fold Change
HSPA6	Heat Shock Protein Family A (Hsp70) Member 6	0.0008	5.1943
S100A8	S100 Calcium Binding Protein A8	0.0200	4.7155
TNF	Tumor Necrosis Factor	0.0218	4.6112
SPRR2A	Small Proline Rich Protein 2A	0.0355	4.0629
GPR85	G Protein-Coupled Receptor 85	0.0001	3.7002
SERPINB4	Serpin Family B Member 4	0.0112	3.4375
HLA-DRA	Major Histocompatibility Complex, Class II, DR Alpha	0.0040	3.4201
CXCL3	C-X-C Motif Chemokine Ligand 3	0.0457	3.3034
MFAP2	Microfibril Associated Protein 2	0.0011	3.2235
GZMB	Granzyme B	0.0071	3.1730
KRT77	Keratin 77	0.0075	-3.4726
LCE1E	Late Cornified Envelope 1E	0.0041	-3.4995
RNF225	Ring Finger Protein 225	0.0271	-3.5000
CLEC3A	C-Type Lectin Domain Family 3 Member A	0.0090	-3.5486
GLULP4	Glutamate-Ammonia Ligase Pseudogene 4	0.0033	-3.6378
ADAMTS18	ADAM Metallopeptidase;Thrombospondin 1 Motif 18	0.0000	-3.7622
C1QTNF8	Complement C1q Tumor Necrosis Factor-Related 8	0.0000	-3.7622
CCN5	Cellular Communication Network Factor 5	0.0180	-3.9447
KRT1	Keratin 1	0.0012	-4.1542
ADAMTS5	ADAM Metallopeptidase; Thrombospondin 1 Motif 5	0.0054	-4.6942

Tabela 10: 20 DEGs com maior variância após o tratamento com as sEV-LCCT por 24 h

Os DEGs com maior variância após o tratatamento com sEV-LCCT em sua maioria estão relacionados com processo inflamatório. Por meio da análise diferencial observamos também diversos DEGs relacionados com adesão celular, descritos nas Tabelas 11 e 12.

Em acordo com o observado por RT-qPCR, os dados de RNA-seq mostram que o tratamento de sEV alterou a expressão de diferentes citoqueratinas (KRT). O perfil de regulação das KRT diferencialmente expressas foi diferente entre os dois tempos de tratamento: tendência de regulação positiva (aumento na expressão de KRT23, KRT17, KRT16, KRT6A e redução na expressão de KRT71 e KRT74) após 4 h de tratamento e tendência de regulação negativa (diminuição da expressão de KRT13, KRT3, KRT4, KRT77 e KRT1) após 24 h de tratamento.

Gene		Valor de p	Fold Change
CLDN6	Claudin 6	0.0049	3.1297
CLDN4	Claudin 4	<0.0001	2.3916
CLDN8	Claudin 8	0.0034	-1.3368
ITGB6	Integrin β6	0.0003	1.7289
ITGA2	Integrin α2	<0.0001	1.5314
PCDHGA7	Protocadherin Gamma-A7	0.0369	-1.3774
PCDHGA10	Protocadherin Gamma-A10	0.0166	-1.4491
PCDHB11	Protocadherin Beta 11	0.0240	-2.6957
CDH10	Cadherin 10	0.0060	-2.9514
PCDH18	Protocadherin-18	<0.0001	-4.8866
LAMA3	Laminin α3	<0.0001	1.6194
LAMA2	Laminin α2	0.0076	1.4018
LAMC2	Laminin γ2	0.0001	1.2027
LAMA4	Laminin α4	0.0014	-1.0154
PLEC	Plectin	0.0061	1.5481
FERMT2	Kindlin	0.0003	1.4592
KRT23	Keratin 23	0.0051	4.1973
KRT17	Keratin 17	<0.0001	2.7656
KRT16	Keratin 16	0.0002	1.9027
KRT6A	Keratin 6A	<0.0001	1.4432
KRT71	Keratin 71	0.0259	-1.8823
KRT74	Keratin 74	0.0069	-2.5179

Tabela TT. DEOS Telacionados a adesão celular abos o tratamento com as sevecos por 4
--

Tabela 12: DEGs relacionados a adesão celular após o f	ا tratamento com as sEV-LCCT	por 24 h
--	------------------------------	----------

Gene		Valor de p	Fold Change
DSG4	Desmoglein 4	0.0042	-2.0407
DSCAM	DS cell adhesion molecule	0.0014	2.0293
ITGA11	Integrin α11	0.0015	-1.5387
CDH19	Cadherin-19	0.0243	2.7110
PCDH18	Protocadherin-18	0.0017	-1.3616
LAMB4	Laminin β4	0.0293	-1.6690
KRT13	Keratin 13	0.0001	-1.1953
KRT3	Keratin 3	0.0146	-2.3514
KRT4	Keratin 4	0.0004	-2.9469
KRT77	Keratin 77	0.0075	-3.4726
KRT1	Keratin 1	0.0012	-4.1542

Notamos DEGs relacionados com a diferenciação celular e manutenção do envelope cornificado, estão descritos nas Tabelas 13 e 14.

Observa-se também a regulação negativa do gene codificador da involucrina, marcador de diferenciação celular em queratinócitos (Watt 1983), de maneira consistente nos dois tempos de tratamento (o *foldchange* de -1.22 e -2.73 para 4 h e 24 h, respectivamente).

Identificamos a expressão alterada de moléculas envolvidas na adesão intercelular da epiderme, como as claudinas (CLDN4, CLDN6 e CLDN8) e subunidades das integrinas (ITGB6, ITGA2, ITGA11) em ambos os tempos de tratamento. Alguns componentes moleculares relacionados aos desmossomos como as subunidades da laminina (LAMA3, LAMA2, LAMC2, LAMA4 e LAMB4), a desmogleína 4 (DSG4) e a plectina (PLEC) foram regulados, em sua maioria positivamente. Observamos também o aumento na expressão das "*small proline-rich proteins*" (SPRs; SPRR2D, SPRR2F, SPRR2A e SPRR1B), proteínas estruturais da camada granulosa como a involucrina (Watt 1983), em ambos os tempos de tratamento.

Gene		Valor de p	Fold Change
SPRR2D	Small Proline Rich Protein 2D	<0.0001	6.0106
SPRR2F	Small Proline Rich Protein 2F	0.0015	2.5465
SPRR2A	Small Proline Rich Protein 2A	<0.0001	5.6613
SPRR1B	Small Proline Rich Protein 1B	0.0006	2.5436
HRNR	Hornerin	0.0061	-2.4366
IVL	Involucrin	0.0004	-1.2286
S100A5	S100 Calcium Binding Protein A5	0.0018	-1.4708
SATB1	SATB Homeobox 1	0.0002	-1.5329
BMP6	Bone Morphogenetic Protein 6	0.0060	4.6857

Tabela 13: DEGs relacionados a manutenção do envelope cornificado após o tratamento com as sEV-LCCT por 4 h

Tabela 14: DEGs relacionados a manutenção do envelope cornificado após o tratamento com as sEV-LCCT por 24 h

Gene		Valor de p	Fold Change
LCE1E	Late Cornified Envelope 1E	0.0041	-3.4995
S100A8	S100 Calcium Binding Protein A8	0.0200	4.7155
SPRR1B	Small Proline Rich Protein 1B	0.0087	1.1483
SPRR2A	Small Proline Rich Protein 2A	0.0355	4.0629
IVL	Involucrin	< 0.0001	-2.7344
BMP6	Bone Morphogenetic Protein 6	0.0263	2.4814

As enzimas proteolíticas metaloproteinases são capazes de degradar componentes da matriz extracelular e por essa razão estão relacionadas com a progressão de diversos tumores (Vacca et al. 1997, Li et al. 2013, Fromme and Zigrino 2022, Tune et al. 2022, Łukaszewicz-Zając,

Pączek and Mroczko 2022). Observamos regulação na expressão de diversas enzimas dessa família de proteínas, descritas nas Tabelas 15 e 16.

Gene		Valor de p	Fold Change
ADAMTS9	Disintegrin and Metalloproteinase TS9	0.0038	4.0467
ADAM19	Disintegrin and Metalloproteinase 19	< 0.0001	3.1084
ADAMTS15	Disintegrin and Metalloproteinase TS 15	0.0009	2.4939
ADAM8	Disintegrin and Metalloproteinase 8	< 0.0001	1.9919
ADAMTS14	Disintegrin and Metalloproteinase TS 14	0.0263	1.4434
ADAM32	Disintegrin and Metalloproteinase 32	0.0082	1.4078
ADAMTS6	Disintegrin and Metalloproteinase TS 6	0.0047	1.0808
ADAM1B	Metalloproteinase 1B	0.0446	-1.6798
ADAMTS5	Disintegrin and Metalloproteinase TS 5	0.0081	-4.0229
MMP20	Metalloproteinase 20	0.0018	5.5253
MMP9	Metalloproteinase 9	0.0396	1.3305
MMP13	Metalloproteinase 13	0.0016	-1.2017
MMP12	Metalloproteinase 12	0.0201	-1.6253
MMP11	Metalloproteinase 11	0.0168	-1.6441

Tabela 15: DEGs relacionados com a síntese de metaloproteinases após o tratamento com as sEV-LCCT por 4 h

Tabela 16: DEGs relacionados com a síntese de metaloproteinases após o tratamento com as sEV-LCCT por 24 h

Gene		Valor de p	Fold Change
ADAMTS14	Disintegrin and Metalloproteinase TS 14	0.0098	1.2861
ADAM8	Disintegrin and Metalloproteinase 8	0.0030	1.2340
ADAM1B	Metalloproteinase 1B	0.0499	-1.4195
ADAMTS18	Disintegrin and Metalloproteinase TS 18	< 0.0001	-3.7622
ADAMTS5	Disintegrin and Metalloproteinase TS 5	0.0054	-4.6942
MMP9	Metalloproteinase 9	0.0120	1.1917
MMP13	Metalloproteinase 13	< 0.0001	-2.2743
MMP10	Metalloproteinase 10	0.0123	-2.4972
MMP12	Metalloproteinase 12	0.0024	-3.4249

As galectinas são lectinas com atuação em processos de inflamação e progressão tumoral, inclusive em canceres hematológicos como LCCT(Giordano, Croci and Rabinovich 2013, Shi et al. 2022). Observamos regulação na expressão gênica dessas lectinas, descritos nas Tabelas 17 e 18. Nossos dados mostraram aumento da expressão da galectina-3 (Gal-3) e redução da galectinas 7, 7B e 4 nas células HaCaT após o tratamento com sEV-Myla 2059.

poi 4 ii			
Gene		Valor de p	Fold Change
LGALS2	Galectin 3	0.0455	1.6922
LGALSL	Galectin like	0.0001	1.3302
LGALS7B	Galectin 7B	0.0040	-1.1613
LGALS7	Galectin 7	0.0495	-1.5354
LGALS4	Galectin 4	0.0302	-4.2339

Tabela 17: DEGs relacionados com a síntese de galectinas após tratamento com as sEV-LCCT por 4 h

Tabela 18: DEGs relacionados com a síntese de galectinas após tratamento com as sEV-LCCT por 24 h

Gene		Valor de p	Fold Change
LGALS7B	Galectin 7B	0.0113	-1.7266
LGALS4	Galectin 4	0.0014	-2.0679

A associação entre o processo de angiogênese e o prognostico no LCCT está bem estabelecida (Miyagaki et al. 2017, Miyagaki et al. 2012). Notamos a modulação na expressão de diversos fatores relacionados com a angiogênese após o tratamento com as sEV-LCCT, detalhados nas Tabelas 19 e 20.

Tabela 19: DEGs relacionados com o processo de angiogênese após tratamento com as sEV-LCCT por 4 h

Gene		Valor de p	Fold Change
IGFALS	Insulin Like Growth Factor Binding Protein Acid Labile	0.0209	-3.2141
FGF1	Fibroblast Growth Factor 1	0.0024	-1.8040
VEGFD	Vascular Endothelial Growth Factor D	0.0332	-1.5031
PDGFC	Platelet Derived Growth Factor C	0.0004	-1.3538
TGFB3	Transforming Growth Factor Beta 3	0.0470	-1.2380
VEGFC	Vascular Endothelial Growth Factor C	0.0037	1.1035
IGF	Insulin Growth Factor - 1	0.0141	1.5261
VGF	VGF Nerve Growth Factor Inducible	0.0261	1.5690
FGF5	Fibroblast Growth Factor 5	0.0093	1.8700
VEGFA	Vascular Endothelial Growth Factor A	0.0003	2.0213
NGF	Nerve Growth Factor	0.0141	2.3730
PDGFB	Platelet Derived Growth Factor Subunit B	0.0002	2.6214
TGFA	Transforming Growth Factor Alpha	0.0006	2.7921
HBEGF	Heparin Binding EGF Like Growth Factor	0.0006	2.9893
FGF19	Fibroblast Growth Factor 19	0.0019	3.3035

2001 001 2	- 7 11		
Gene		Valor de p	Fold Change
PGF	Placental Growth Factor	0.0008	1.9165
HBEGF	Heparin Binding EGF	0.0006	1.5870
NGF	Nerve Growth Factor	0.0022	1.4501
TGFA	Transforming Growth Factor Alpha	0.0001	1.1476
VEGFA	Vascular Endothelial Growth Factor A	0.0013	1.1371

Tabela 20: DEGs relacionados com o processo de angiogênese após tratamento com as sEV-LCCT por 24 h

6. DISCUSSÃO

Nanovesículas são pequenas vesículas extracelulares que contém proteínas, lipídios e ácidos nucléicos, medeiam a comunicação célula-célula, influenciam microambientes locais e distantes. Até o momento há apenas dois estudos sobre nanovesículas no contexto de LCCT. Um dos estudos identificou os miRs 155 e 1246 carreados por nanovesículas derivadas de linhagens e do soro de pacientes LCCT (**Moyal et al. 2021**). Outro, relata que as nanovesículas derivadas de linhagens LCCT carreiam partículas de retrovírus endógenos (HERV-W) (Laukkanen et al. 2020). O nosso estudo é o primeiro a avaliar a possível contribuição de nanovesículas tumorais na patogênese da doença na pele em pacientes com LCCT. A seguir iremos discutir em tópicos as etapas de obtenção e caracterização das sEV-LCCT, e a análise do efeito provocado após internalização por queratinócitos imortalizadas (linhagem HaCaT).

6.1 Obtenção, estudo do conteúdo proteico e ensaios de captação das sEV-LCCT

Todo o estudo foi baseado em sEV de linhagens imortalizadas. Essa escolha permitiu a execução de ensaios que requerem quantidades razoavelmente altas de sEV: caracterização proteica por espectroscopia de massas e visualização da internalização das sEV por células receptoras por diferentes ensaios de imagem. Por outro lado, a validação dos principais achados com sEV derivadas de células primárias ou de soro e/ou plasma de pacientes com LCCT é de grande importância.

O protocolo adotado para obtenção das sEV **a**tende aos requisitos propostos pela Sociedade Internacional de Vesículas Extracelulares (ISEV), como o uso de duas técnicas diferentes no protocolo de obtenção de vesículas (Théry et al. 2018). Identificamos parâmetros compatíveis com sEV nas nossas amostras por ao menos três abordagens técnicas distintas, como preconiza a ISEV (Théry et al. 2018).

A validação de conteúdo proteico compatível com sEV, realizada por WB, confirmou a presença de CD81, HSP-70 e RAB5 nos nossos preparados de sEV. O marcador CD81 é um receptor ancorado na membrana plasmática de organismos eucarióticos (Kinoshita 2016), e a presença desse marcador no preparado de EV confirma a bicamada lipídica estrutural específica de EVs, independentemente da via de secreção das vesículas. O CD81 pertence à família das tetraspaninas e juntamente com outras proteínas dessa mesma família é considerado um dos principais marcadores de EVs (Andreu and Yáñez-Mó 2014). As proteínas *heat shock* (HSP), são outro tipo de marcador usual para sEV. São chaperonas presentes no citosol celular envolvidas

com diversos processos de homeostase celular. A confirmação de HSP no nosso preparado de vesículas indica que a estrutura de bicamada lipídica envolveu e carreou proteínas do citosol, como esperado em EVs. Também identificamos nos preparados de sEV a proteína RAB5, componente da família de proteínas RAB, envolvidas com importantes funções nas vias endolíticas, secretórias e no transporte intracelular vesicular. Proteínas RAB foram descritas em diversos estudos de sEV (Blanc and Vidal 2018, Alenquer and Amorim 2015), sendo, portanto, um bom controle positivo do preparado de sEV.

Como controles negativos, selecionamos a calnexina, proteína expressa no retículo endoplasmático (Bonsergent et al.) e GM-130, proteína associada a membrana do complexo de Golgi (Jones, Manioci and Russell 2022), ambos foram negativos nos nossos preparados de sEV e positivos para os lisados celulares, nos ensaios de WB. Pelo fato de serem proteínas que não apresentam relação com vesículas, mas estão presentes nas células e podem ser purificadas em conjunto com as sEV no preparado, são considerados indicadores de pureza nas amostras sEV. Dessa forma, excluímos contaminação por resíduo celular no nosso preparo de sEV.

Apesar das medidas adotadas para exclusão de contaminantes, identificamos albumina nos preparados de sEV pela análise de espectroscopia de massa (MS). Porém, diversos estudos relatam presença de albumina nos preparados de sEV (Théry et al. 2018, Jeppesen et al. 2019), estando inclusive entre as 100 proteínas mais detectadas de acordo com a Vesiclepedia (Tabela 1). Não devemos excluir também a possibilidade dessas proteínas estarem aderidas ou agregadas junto as vesículas, o que dificultaria a remoção do preparado de sEV.

O estudo do conteúdo proteico por MS identificou o total de 620 proteínas presentes em ambos preparados de sEV das duas linhagens LCCT, Myla 2059 e Hut78. Apesar de o conteúdo ser o mesmo em ambos preparados de sEV, com 100% de similaridade em termos qualitativos, estes diferem quantitativamente, ou seja, na abundância de cada proteína entre os preparados de sEV-Myla 2059 e sEV-Hut78. Apesar das duas linhagens serem representações distintas de uma doença espectral, Myla 2059 de MF avançada enquanto que Hut78 é representativa de SS, as linhagens diferem quanto a expressão de uma série de marcadores, sensibilidade a terapias farmacológicas e ao perfil de indução de tumor *ex vivo* (Netchiporouk et al. 2017, Gill et al. 2022). Assim, o comportamento distinto frente a esses fatores sugere que o conteúdo proteico seja diferente entre as linhagens. É, portanto, curioso o fato de termos encontrado sobreposição completa do conteúdo proteico entre os dois grupos de preparados de sEV. É possível que os parâmetros de escolha para o ensaio (*input* de amostra, e preparo, por exemplo) tenham

contribuído para um limite de detecção do ensaio para proteínas de baixa abundância (Pietrowska et al. 2019), o que explicaria a similaridade qualitativa entre as amostras.

Quanto ao conteúdo vesicular proteico, é importante destacar que a análise desses dados continua em curso, portanto os resultados são preliminares. Os dados estão sendo analisados quanto as abordagens de enriquecimento de vias, envolvimento com processos biológicos e funções moleculares através das análises *Gene Ontology* (GO) e *Kyoto Encyclopedia of Genes and Genomes* (KEGG). Dentre as diferentes proteínas detectadas descrevemos alguns exemplos de integrinas, moléculas relacionadas a processos tumorigênicos e marcadores comumente encontrados em células T.

Nossos resultados apontam que a integrina do tipo ß2 (ITGB2) é uma das proteínas relacionadas à adesão celular carreadas pelas sEV-LCCT. É interessante o fato de a abundância ter sido significativamente maior nas sEV derivadas da forma leucêmica de LCCT (SS), sEV-Hu78, em comparação a variante MF, sEV-Myla 2059. Essas integrinas β2 são indispensáveis para o extravasamento de células T ativadas através do endotélio vascular (Grabbe et al. 2002), função evidenciada em modelo murino knockout da molécula CD18/ITGB2 em células T, em que o extravasamento de células T CD18-/- em lesões cutâneas eczematosas foi prejudicado. Esses resultados corroboram com o quadro clínico observado nos pacientes de SS, forma clínica de LCCT em que as células tumorais são encontradas no sangue periférico e em lesões cutâneas, indicando habilidade de extravasamento através do endotélio vascular. Assim, nossos resultados sugerem que as sEV derivadas das células tumorais Hut78 poderiam herdar a habilidade de atravessar o endotélio vascular por meio dessa molécula. Além disso, estudos indicam que a expressão de CD18/ITGB2 em sEV plasmáticas de pacientes sépticos é maior do que em indivíduos saudáveis e se correlaciona com dados clínicos de mal prognostico (Kawamoto et al. 2019). Pacientes com SS em estado avançado da doença vão a óbito em sua maioria por sepse (Allen et al. 2020, Posner et al. 1981). Assim, é possível que sEV-ITGB2 estejam relacionadas em com o estado de inflamação sistêmica observados em pacientes sépticos no LCCT.

Assim como o caso da ITGB2, nossos resultados também mostram que as sEV-Hut78 transportam em maior abundância a integrina da família β1 (ITGB1). Recentemente, ITGB1 foi proposto como possível alvo terapêutico na SS, pelo fato de ser um achado comum entre diferentes estudos de análises de expressão gênica em pacientes com SS (Cristofoletti et al. 2022). A imensa heterogeneidade entre as células tumorais de pacientes SS (Borcherding et al.

2022, Rassek and Iżykowska 2020, Buus et al. 2018) tem sido um desafio no melhor entendimento da patogênese da doença.

Identificamos também outras moléculas de adesão nos preparados de sEV-LCCT, ALCAM/CD166 e MCAM/CD146, com maior abundância na amostra representativa da forma leucêmica SS, sEV-Hut78, em ambos os casos. As duas moléculas podem estar relacionadas com progressão tumoral no LCCT, visto que ALCAM/CD166, tem participação na internalização de sEV tumorais por células receptoras (Cardeñes et al. 2022) e a forma solúvel de MCAM/CD146, é relacionada com angiogênese e metástase, sendo considerada mau prognostico em diversos canceres (Du et al. 2022, Nollet et al. 2022, Sharma et al. 2022, Abu El-Asrar et al. 2021, Obu et al. 2021).

Dentre as proteínas detectadas nas sEV-LCCT relacionadas a processos de tumorigênese, o papel da LGALS3BP (*galectin 3 binding protein*) na progressão tumoral foi avaliada em diversos cânceres (Capone, lacobelli and Sala 2021). De fato, nossos resultados mostram que LGALS3BP é expressa em maior abundância nas sEV-Hut78. A LGALS3BP está relacionada com o processo de metástase, pois induz degradação da molécula de adesão caderina E (CDH1), desestabilizando junções de aderência presente em células epiteliais, e facilitando a mobilidade de células tumorais (Park et al. 2017). Além disso, LGALS3BP também funciona como fator pró-angiogênico ao induzir a secreção de VEGF (Piccolo et al. 2013). Curiosamente, dentre os resultados de queratinócitos tratados com sEV-LCCT, apresentados na próxima seção, houve regulação positiva em diversas moléculas angiogênicas concomitantemente com uma redução na expressão de diferentes caderinas, moléculas de adesão no epitélio, inclusive CDH1. Assim, é possível que LGALS3BP, vesiculada pelas células tumorais LCCT, seja uma das moléculas envolvidas na regulação desses fatores.

Assim constatamos que as sEV-LCCT exibem um arsenal de moléculas com potencial imunomodulador que podem contribuir para o processo inflamatório e de angiogênese, observado nos pacientes com LCCT. Demonstramos então, por diferentes ensaios de imunofluorescência, citometria de fluxo e de imagem e microscopia confocal, que sEV tumorais são captadas e internalizadas de maneira ativa por células epiteliais. Dessa forma, o conteúdo proteico detectado nas sEV é absorvido por células epiteliais e pode modular a resposta das células alvo.

Para investigar os efeitos das sEV-LCCT induzidos em células epiteliais, avaliamos os transcritos por sequenciamento de RNA e RT-qPCR.

6.2 Efeito da captação das sEV-LCCT por queratinócitos

Apesar do progresso considerável em compreender os mecanismos moleculares envolvidos na transformação maligna das células T, as causas do comportamento disfuncional da barreira cutânea e comprometimento do epitélio ainda não foram completamente elucidadas. Ainda não há indícios suficientes para identificar quais fatores são mais importantes na indução das alterações observadas no epitélio seja indução direta pelas células T malignas, sinais de uma resposta antitumoral ineficaz ou eventos secundários à colonização bacteriana da pele afetada. Os nossos dados sugerem possível via de contribuição direta das células tumorais para as alterações observadas no epitélio via captação de componentes biológicos carreados por nanovesículas tumorais (sEV-LCCT) por células epiteliais.

Queratinócitos tratados com sEV foram avaliados por RT-qPCR e sequenciamento de RNA quanto à expressão gênica. Assim como os dados obtidos do ensaio de proteômica, as abordagens de enriquecimento de vias e análises de GO e KEGG estão em desenvolvimento, portanto os resultados são preliminares.

O LCCT compartilha muitas características clínicas e histológicas com outras doenças de pele inflamatórias como a dermatite atópica (DA) e a psoríase (Roediger and Schlapbach 2022). Além da apresentação clínica, acumulam também características imunológicas em comum e infiltração na pele por células T de origem cutânea (Miyagaki and Sugaya 2011, Suga et al. 2014). Diversos estudos evidenciam barreira cutânea prejudicada com diminuição de proteínas do envelope cornificado e peptídeos antimicrobianos na pele em DA, o que resulta em maior suscetibilidade à colonização por Staphylococcus aureus e infecções (Suga et al. 2014). Apesar de sepse, derivada de infecções cutâneas recorrentes, ser a maior causa de morbidade e mortalidade nos LCCT (Mirvish et al. 2011), ainda há poucos relatos sobre o perfil de expressão de proteínas do envelope cornificado ou moléculas relacionadas a integridade da barreira cutânea.

Nossos resultados apontam que o tratamento de sEV-LCCT em queratinócitos alterou a expressão de diversas moléculas relacionadas à formação doa camada córnea, em sua maioria relacionadas ao complexo diferenciação epidérmica (do inglês, *epidermal differentiation complex* -EDC). Genes do EDC codificam proteínas precursoras da diferenciação da camada córnea (Wu et al. 2009), que incluem as duas maiores precursoras do envelope cornificado involucrina (IVL) e loricrina (LOR) (Steinert and Marekov 1995) e outras quatro famílias de proteínas: proteínas S100 (S100A1-9), pequenas proteínas ricas em prolina (*small proline-rich proteins;* SPRRs), proteínas

LCE (*late cornified envelope*; LCE) e as proteínas S100 SFTP (*fused-type proteins*; SFTPs) (Schäfer et al. 1995). Observamos alterações na expressão da maioria dos genes EDC, sendo modulação negativa na expressão de IVL, LOR e LCE e modulação positiva na expressão de S100A8 e diferentes SPRRs (SPRR2D, SPRR2F, SPRR2A e SPRR1B). Genes do complexo EDC são chaves no processo de queratinização do epitélio, essencial para o funcionamento da barreira cutânea. Em DA, diversos estudos demonstraram que alterações na expressão de diversas proteínas do envelope cornificado na pele impacta o desenvolvimento e o curso da doença (Trzeciak et al. 2020, Trzeciak et al. 2017b, Trzeciak et al. 2017a, Trzeciak et al. 2016). Assim como em DA, a suscetibilidade à infecção bacteriana cutânea pelos pacientes com LCCT pode estar relacionada com a integridade da barreira cutânea.

Nossos resultados mostraram também a regulação negativa da expressão de hornerina (do inglês, *hornerin;* HRNR) e de filagrina (FLG), ambas membras da família de proteínas S-100 SFTP do complexo EDC. A FLG é uma proteína epidérmica que agrega os filamentos de queratina e fornece citoesqueleto para o envelope cornificado. O mecanismo de funcionamento da HRNR foi pouco estudado, mas há indícios de que a sua função seja similar a FLG no epitélio (Henry et al. 2011, Thyssen et al. 2020). Camundongos incapazes de produzir HRNR apresentam comprometimento de fatores hidratantes naturais (NMF) e maior rigidez no epitélio (Thyssen et al. 2020). Assim como a FLG, estudos reportam mutações no gene codificante de HRNR em pacientes com DA (Wu et al. 2009, Elias and Wakefield 2014) e psoríase (Wu et al. 2009), porém ainda não há relatos da expressão desse gene no LCCT. A redução de HRNR e FLG é associada a defeitos na barreira cutânea, o que sugere a contribuição das sEV-LCCT para a comprometimento dessa barreira observado nos pacientes com LCCT.

Nossos resultados mostram a redução na expressão de LOR e FLG apenas nas avaliações por RT-qPCR e não nas avaliações por sequenciamento de RNA (transcriptoma). Acreditamos que a razão pela discrepância destes dados seja o número amostral avaliado (n=8-14 nos ensaios de RT-qPCR e n=3-4 nas avaliações por transcriptoma), porém a expressão de LOR mostrou-se mais específica para DA do que para LCCT em um estudo anterior (Suga et al. 2014, Trzeciak et al. 2020). Além disso, Suga et al. evidenciaram que a expressão de FLG e LOR, encontra-se reduzida em biopsias de pele lesionadas de pacientes LCCT, a nível proteico e transcricional (Suga et al. 2014). Apesar de poucos estudos terem investigado o perfil de expressão proteínas do envelope cornificado em pacientes com LCCT, os níveis de expressão de FLG correlacionaram-se negativamente com níveis séricos de marcadores de doença (Suga et al. 2014). Assim, o perfil

de expressão proteínas do envelope cornificado parece estar relacionado com o funcionamento da barreira cutânea e as sEV-LCCT, ao alterar a expressão de genes do complexo EDC, pode contribuir para o comportamento disfuncional da barreira cutânea. Porém se faz necessário maiores investigações sobre o perfil e funcionamento desses genes no LCCT.

Algumas proteínas precursoras do envelope cornificado codificadas pelo EDC, como as S100A1-9, são peptídeos microbianos (do inglês, *antimicrobial peptides* - AMP). Nossos resultados também mostraram alteração na expressão de AMPs nos queratinócitos tratados, com redução na expressão de S100A5 e aumento na expressão de S100A8. Esse achado corrobora com a literatura, já que a expressão de S100A8 é aumentada em pacientes com LCCT avançado em comparação com a pele saudável (Suga et al. 2014).

Recentemente mostrou-se que as pequenas proteínas ricas em prolina (SPPRs) também atuam como AMPs (Zhang et al. 2022). Identificamos diversas SPRRs com expressão alterada nos queratinócitos após o tratamento com as sEV-LCCT: SPRR2D, SPRR2F, SPRR2A e SPRR1B. Em todos os casos a expressão foi regulada positivamente. Porém, é curioso que a expressão proteica de SPPRs na pele de pacientes com LCCT encontra-se reduzida (Trzeciak et al. 2020), o que vai de encontro com os nossos achados. É possível que esse seja um viés do protocolo de estimulo adotado por nós, ao termos optado por estímulo único das sEV-LCCT nos queratinócitos. Assim, talvez o efeito observado fosse diferente no caso de tratamento prolongado dos queratinócitos com sEV-LCCT, situação mais próxima da realidade em que células epiteliais estão sob constante influência das sEV tumorais. Estudos relatam a expressão alterada de AMPs em pele de pacientes com LCCT (Wehkamp et al. 2020, Nakajima et al. 2018, Suga et al. 2014). Tem sido proposto que esse fato pode ter relação com a alta incidência de infecções bacterianas observada no LCCT. É possível também que a mudança na expressão de AMPs pode ser devido as células tumorais, produzindo a inflamação e uma sinalização subsequentemente desregulada.

Nossos resultados também apontam que o tratamento dos queratinócitos com as sEV-LCCT induziu regulação negativa na expressão de Satb1. O gene Satb1 é descrito como regulador da transcrição de diversos genes EDC em queratinócitos (Moltrasio et al. 2022), com participação central nos mecanismos de regulação epigenética da diferenciação dérmica. Assim, pode ter participação direta com a alteração na expressão observada por nós dos diversos genes do complexo diferenciação EDC. De fato, a contribuição do Satb1 na patogênese do LCCT tem sido investigada no contexto de escape tumoral. A perda de Satb1 em células tumorais na síndrome de Sézary (SS) pode estar relacionada com a resistência das células tumorais a apoptose (Wang

et al. 2011). Na pele, a expressão de Satb1 em pacientes com MF é heterogênea (Gao et al. 2021), porém a diminuição da expressão foi correlacionada com o estágio de MF, sendo mais proeminente nos casos avançados de LCCT e considerada indicador de mau prognostico (Fredholm et al. 2018, Grzanka et al. 2012, Grzanka et al. 2015). Assim, os resultados sugerem que o gene Satb1 pode estar intimamente envolvido com a regulação da diferenciação dérmica modulada pelas sEV-LCCT nos queratinócitos.

Para a barreira cutânea ser totalmente funcional os queratinócitos devem ser conectados uns aos outros por junções intercelulares, por exemplo os desmossomos. Notamos regulação na expressão das desmocolinas 1 e 3 (DSC1 e DSC3) e desmogleínas 1 e 4 (DSG1 e DSG4) após o tratamento com sEV-LCCT, ambas famílias de ancoragem presentes nas porções extracelulares dos desmossomos.

De fato, a alteração de desmossomos e suas estruturas foi evidenciada em queratinócitos após ensaios *in vitro* com meio condicionado de células tumorais LCCT (Thode et al. 2015). Thode et al., observaram redução na função dos desmossomos e perda de adesão entre as camadas de queratinócitos em cultura organotípica de pele. Além disso, relataram também redução de marcadores de diferenciação celular também observados em nosso estudo, como a involucrina (IVL), citoqueratina 10 (KRT10) e as moléculas de adesão celular integrinas (Thode et al. 2015). Thode et. al., relata em seu estudo que ao depletar galectina-3 e galectina-1 do meio condicionado de células tumorais, os efeitos observados nos queratinócitos são revertidos (Thode et al. 2015). Apesar de não termos identificado galectina-3, apenas galectina-1, em nossos preparados de sEV-LCCT, galactinas são frequentes em sEV tumorais (Bänfer and Jacob 2020). É possível que parte dos achados observados seja de fato devido a ação de galactinas presentes nos preparados de sEV e que por limitação de detecção do ensaio não foram detectadas pela espectroscopia de massa. É possível também que haja outros fatores além de galectinas envolvidos na modulação desses componentes da barreira cutânea.

Citoqueratinas (KRT) são proteínas estruturais que formam filamentos intermediários no epitélio e medeiam a ligação entre os desmossomos. Estudos apontam a relevância da expressão das KRT em doenças de pele inflamatórias (Zhang et al. 2019), entretanto até o momento não há a descrição do perfil de expressão dessas proteínas em pacientes com LCCT. Nossos resultados mostram redução na expressão de diversas citoqueratinas (KRTs) e aumento na expressão de KRT23, KRT6, KRT16 e KRT17. As KRT6, KRT16 e KRT17 são consideradas marcadores de hiperproliferação em condições de tumor e psoríase. Essas KRTs em particular são consideradas

alarminas por contribuírem para ativação de processo inflamatório em queratinócitos e em células T na epiderme (Zhang et al. 2019). As sEV-LCCT por induzir a expressão desses marcadores em queratinócitos poderiam contribuir para a inflamação crônica observada no LCCT, entretanto é necessário maior investigação para estabelecer relação entre esses dois fenômenos.

A associação entre angiogênese e o prognostico está bem estabelecida no LCCT (Miyagaki et al. 2017, Mazur et al. 2004). Os principais fatores relacionados com o processo de angiogênese são membros da família VEGF (subtipos A, B, C e D) e o fator de crescimento da placenta (PGF) (Miyagaki et al. 2017). Nossos resultados indicam que as sEV-LCCT induziram aumento na expressão dos fatores VEGF-A, VEGF-C e PIGF nos queratinócitos tratados. Os fatores VEGF-A e PGF além de estarem aumentados no soro e na pele lesionada de pacientes com LCCT, correlacionam-se com marcadores de severidade da doença (Miyagaki et al. 2017). Além das células tumorais espontaneamente produzirem fatores angiogênicos, também induzem a produção desses fatores in vitro em fibroblastos saudáveis (Pedersen et al. 2013). Outro fator importante na angiogênese é a molécula ESM1 (Endothelial cell-specific molecule 1). A ESM1 induz a produção de VEGF-A em células endoteliais e está relacionada com processo de angiogênese e permeabilidade vascular (Rocha et al. 2014). Observamos que o tratamento com sEV-LCCT alterou significativamente a expressão de ESM1, sendo um dos seis genes com maior regulação positiva nos queratinócitos tratados com sEV-LCCT por 4h. A expressão de ESM1 é fator de mau prognostico em leucemia mieloide aguda (AML) (Chen et al. 2022) e outros cânceres (Liu et al. 2022, Huang et al. 2021, Wang, Li and Li 2021). Nossos resultados sugerem que sEV tumorais podem estar relacionadas com a alta expressão de fatores angiogênicos observados nos pacientes com LCCT e indicam que as células tumorais LCCT modulam células do epitélio para criar um ambiente pró-oncogênico.

O prurido é sintoma comum em doenças inflamatórias da dele, como LCCT (Demierre et al. 2006). O fator de crescimento de nervo (NGF), que estimula o surgimento de fibras nervosas na pele, está associado à gravidade do prurido na dermatite atópica. Os níveis séricos de NGF estão elevados em pacientes com a variante de SS, forma leucêmica de LCCT (Suga et al. 2013). Os autores do estudo sugerem que a expressão aumentada de NGF pode estar associada ao prurido na SS (Suga et al. 2013). Além disso, o NGF também está envolvido no processo de regeneração tecidual, proliferação de queratinócitos e no processo de angiogênese (Troullinaki et al. 2019, Liu, Wu and Huang 2021). Nossos resultados também apontam significativa modulação positiva na

expressão de NFG, o que pode indicar a contribuição de sEV-LCCT para o prurido e o processo de angiogênese.

Infecções bacterianas crônicas são comuns nestes pacientes, sendo sepse a maior causa de mortalidade e morbidade observada nos pacientes com LCCT avançado. O comprometimento da barreira cutânea pode favorecer a suscetibilidade dos pacientes às infecções bacterianas cutâneas. Em paralelo, fatores angiogênicos estão intimamente relacionados a progressão da doença no LCCT. sEv tumorais ao alterar a expressão de fatores relacionados a esses dois processos em queratinócitos podem, indiretamente, contribuir para o agravamento da doença no LCCT.

7. CONCLUSÃO E CONSIDERAÇÕES FINAIS

Os resultados permitem concluir que:

- As linhagens tumorais de LCCT, Hut78 e Myla 2059, secretam nanovesículas de maneira espontânea e constante. Essas podem ser obtidas de meio condicionado por protocolo baseado em centrifugação diferencial, ultrafiltração e cromatografia por exclusão de tamanho.
- As nanovesículas LCCT exibem arsenal de moléculas com potencial imunomodulador em processos de inflamação e de angiogênese;
- Queratinócitos imortalizados podem captar e internalizar as nanovesículas LCCT in vitro;
- As nanovesículas LCCT induzem menor expressão de genes relacionados com a manutenção do envelope cornificado em queratinócitos imortalizados;
- As nanovesículas LCCT induzem aumento na expressão de genes pró-angiogênicos, prurigênicos e de ação pró-inflamatória.

Constatamos que as sEV-LCCT exibem uma vasta gama de moléculas com potencial imunomodulador. Demonstramos por diferentes ensaios que sEV-LCCT tumorais são captadas e internalizadas de maneira ativa por células epiteliais. Dessa forma, o conteúdo proteico detectado nas sEV-LCCT é absorvido por células epiteliais e pode modular a resposta das células alvo.

Nosso estudo é o primeiro a sugerir a contribuição de sEV derivadas de células tumorais para dois processos centrais na patogênese do LCCT, comprometimento da barreira cutânea e angiogênese.

8. ANEXOS

Produção científica

Miyashiro, D., B. C. E. Souza, **M. P. Torrealba**, K. C. G. Manfrere, M. N. Sato & J. A. Sanches (2022) The Role of Tumor Microenvironment in the Pathogenesis of Sézary Syndrome. *Int J Mol Sci*, 23.

Torrealba, M. P., K. C. G. Manfrere, F. S. Y. Yoshikawa, N. Z. Pereira, A. Branco, F. M. E. Teixeira, D. R. Miyashiro, J. C. Martins, A. J. S. Duarte, J. A. Sanches & M. N. Sato (2021) IFN-γ reshapes monocyte responsiveness in Sezary syndrome. *Int J Dermatol*, 60, e3-e6.

Branco, A., N. Z. Pereira, F. S. Y. Yoshikawa, L. Oliveira, F. M. E. Teixeira, L. M. Oliveira, A. J. Pietrobon, **M. P. Torrealba**, J. F. de Lima, A. Duarte & M. N. Sato (2019) Proinflammatory profile of neonatal monocytes induced by microbial ligands is downmodulated by histamine. *Sci Rep*, 9, 13721.

Torrealba, M. P., K. C. Manfrere, D. R. Miyashiro, J. F. Lima, M. O. L. de, N. Z. Pereira, J. Cury-Martins, J. Pereira, A. J. S. Duarte, M. N. Sato & J. A. Sanches (2018) Chronic activation profile of circulating CD8+ T cells in Sézary syndrome. *Oncotarget*, 9, 3497-3506.

Colaborações internacionais

Doutorado Sanduíche – Edital CAPES/Print 01/2019 - sob supervisão do Prof. Dr. Anders Woetmann na Universidade de Copenhagen (2019-2021).

Participação em eventos

Summer School Skin Immunology – Leo Foundation Skin Immunology Research Center – University of Copenhagen, Denmark - 2021.

7th Annual International Society for Extracellular Vesicles – Annual Meeting – Barcelona, Spain – 2018;

Atividades extracurriculares desenvolvidas no período

Representação discente no Derpartamento – Dermatologia, na qualidade de titular (2018/2019);

VI Curso de Férias em Imunologia – Instituto de Ciências Biomédicas/USP – 2018 – Comissão organizadora.

VII Curso de Férias em Imunologia – Instituto de Ciências Biomédicas/USP – 2019 – Comissão organizadora.

9. REFERÊNCIAS

- Abu El-Asrar, A. M., M. I. Nawaz, A. Ahmad, M. M. Siddiquei, E. Allegaert, P. W. Gikandi, G. De Hertogh & G. Opdenakker (2021) CD146/Soluble CD146 Pathway Is a Novel Biomarker of Angiogenesis and Inflammation in Proliferative Diabetic Retinopathy. *Invest Ophthalmol Vis Sci*, 62, 32.
- Agar, N. S., E. Wedgeworth, S. Crichton, T. J. Mitchell, M. Cox, S. Ferreira, A. Robson, E. Calonje, C. M. Stefanato, E. M. Wain, B. Wilkins, P. A. Fields, A. Dean, K. Webb, J. Scarisbrick, S. Morris & S. J. Whittaker (2010) Survival outcomes and prognostic factors in mycosis fungoides/Sezary syndrome: validation of the revised International Society for Cutaneous Lymphomas/European Organisation for Research and Treatment of Cancer staging proposal. J Clin Oncol, 28, 4730-9.
- Alenquer, M. & M. J. Amorim (2015) Exosome Biogenesis, Regulation, and Function in Viral Infection. *Viruses*, **7**, 5066-83.
- Allen, P. B., J. Switchenko, A. Ayers, E. Kim & M. J. Lechowicz (2020) Risk of bacteremia in patients with cutaneous T-cell lymphoma (CTCL). *Leuk Lymphoma*, 61, 2652-2658.
- Andreu, Z. & M. Yáñez-Mó (2014) Tetraspanins in Extracellular Vesicle Formation and Function. Frontiers in Immunology, 5.
- Asadullah, K., W. D. Döcke, A. Haeussler, W. Sterry & H. D. Volk (1996) Progression of mycosis fungoides is associated with increasing cutaneous expression of interleukin-10 mRNA. J Invest Dermatol, 107, 833-7.
- Axelrod, P. I., B. Lorber & E. C. Vonderheid (1992) Infections complicating mycosis fungoides and Sezary syndrome. *JAMA*, 267, 1354-8.
- Blanc, L. & M. Vidal (2018) New insights into the function of Rab GTPases in the context of exosomal secretion. *Small GTPases*, 9, 95-106.
- Bonin, S., S. M. Tothova, R. Barbazza, D. Brunetti, G. Stanta & G. Trevisan (2010) Evidence of multiple infectious agents in mycosis fungoides lesions. *Exp Mol Pathol*, 89, 46-50.
- Bonsergent, E., E. Grisard, J. Buchrieser, O. Schwartz, C. Théry & G. Lavieu Quantitative characterization of extracellular vesicle uptake and content delivery within mammalian cells.
- Borcherding, N., K. J. Severson, N. T. Henderson, L. Dos Santos Ortolan, A. C. Rosenthal, A. M. Bellizzi, V. Liu, B. K. Link, A. R. Mangold & A. Jabbari (2022) Single-cell analysis of Sézary syndrome reveals novel markers and shifting gene profiles associated with treatment. Blood Adv.
- Bromberg, J. F., M. H. Wrzeszczynska, G. Devgan, Y. Zhao, R. G. Pestell, C. Albanese & J. E. Darnell (1999) Stat3 as an oncogene. *Cell*, 98, 295-303.
- Buus, T. B., A. Willerslev-Olsen, S. Fredholm, E. Blümel, C. Nastasi, M. Gluud, T. Hu, L. M. Lindahl,
 L. Iversen, H. Fogh, R. Gniadecki, I. V. Litvinov, J. L. Persson, C. M. Bonefeld, C. Geisler, J.
 P. Christensen, T. Krejsgaard, T. Litman, A. Woetmann & N. Ødum (2018) Single-cell heterogeneity in Sézary syndrome. *Blood Adv*, 2, 2115-2126.
- Bänfer, S. & R. Jacob (2020) Galectins in Intra- and Extracellular Vesicles. *Biomolecules*, 10.
- Campbell, J. J., R. A. Clark, R. Watanabe & T. S. Kupper (2010) Sezary syndrome and mycosis fungoides arise from distinct T-cell subsets: a biologic rationale for their distinct clinical behaviors. *Blood*, 116, 767-71.
- Candi, E., R. Schmidt & G. Melino (2005) The cornified envelope: a model of cell death in the skin. *Nat Rev Mol Cell Biol*, 6, 328-40.
- Capone, E., S. Iacobelli & G. Sala (2021) Role of galectin 3 binding protein in cancer progression: a potential novel therapeutic target. *Journal of Translational Medicine*, 19, 405.
- Cardeñes, B., I. Clares, T. Bezos, V. Toribio, S. López-Martín, A. Rocha, H. Peinado, M. Yáñez-Mó & C. Cabañas (2022) ALCAM/CD166 Is Involved in the Binding and Uptake of Cancer-Derived Extracellular Vesicles. Int J Mol Sci, 23.

- Chen, W., D. Liu, G. Wang, Y. Pan, S. Wang & R. Tang (2022) Screening diagnostic markers for acute myeloid leukemia based on bioinformatics analysis. *Transl Cancer Res*, 11, 1722-1729.
- Cheung, K. L., R. Jarrett, S. Subramaniam, M. Salimi, D. Gutowska-Owsiak, Y. L. Chen, C. Hardman,
 L. Xue, V. Cerundolo & G. Ogg (2016) Psoriatic T cells recognize neolipid antigens
 generated by mast cell phospholipase delivered by exosomes and presented by CD1a. J
 Exp Med, 213, 2399-2412.
- Clark, R. A., B. Chong, N. Mirchandani, N. K. Brinster, K. Yamanaka, R. K. Dowgiert & T. S. Kupper (2006) The vast majority of CLA+ T cells are resident in normal skin. *J Immunol*, 176, 4431-9.
- Colombo, M., C. Moita, G. van Niel, J. Kowal, J. Vigneron, P. Benaroch, N. Manel, L. F. Moita, C. Thery & G. Raposo (2013) Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci, 126, 5553-65.
- Colombo, M., G. Raposo & C. Théry (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. *Annu Rev Cell Dev Biol*, 30, 255-89.
- Cristofoletti, C., A. Bresin, M. Fioretti, G. Russo & M. G. Narducci (2022) Combined High-Throughput Approaches Reveal the Signals Driven by Skin and Blood Environments and Define the Tumor Heterogeneity in Sézary Syndrome. *Cancers (Basel)*, 14.
- Culley, F. J., Johnson , M. Evans. 2009. Natural Killer cell signal integration balances synapse symmetry and migração" .
- Demierre, M. F., S. Gan, J. Jones & D. R. Miller (2006) Significant impact of cutaneous T-cell lymphoma on patients' quality of life: results of a 2005 National Cutaneous Lymphoma Foundation Survey. *Cancer*, 107, 2504-11.
- Di Raimondo, C., Z. Han, C. Su, X. Wu, H. Qin, J. F. Sanchez, Y. C. Yuan, X. Martinez, F. Abdulla, J. Zain, C. W. Chen, S. T. Rosen & C. Querfeld (2021) Identification of a Distinct miRNA Regulatory Network in the Tumor Microenvironment of Transformed Mycosis Fungoides. *Cancers (Basel)*, 13.
- Du, X., Q. Zhang, S. Wang, X. Chen & Y. Wang (2022) MCAM is associated with metastasis and poor prognosis in osteosarcoma by modulating tumor cell migration. *J Clin Lab Anal*, 36, e24214.
- Dummer, R., M. H. Vermeer, J. J. Scarisbrick, Y. H. Kim, C. Stonesifer, C. P. Tensen, L. J. Geskin, P. Quaglino & E. Ramelyte (2021) Cutaneous T cell lymphoma. *Nat Rev Dis Primers*, **7**, **61**.
- Echchakir, H., M. Bagot, G. Dorothée, D. Martinvalet, S. Le Gouvello, L. Boumsell, S. Chouaib, A. Bensussan & F. Mami-Chouaib (2000) Cutaneous T cell lymphoma reactive CD4+ cytotoxic T lymphocyte clones display a Th1 cytokine profile and use a fas-independent pathway for specific tumor cell lysis. *J Invest Dermatol*, 115, 74-80.
- Elias, P. M. & J. S. Wakefield (2014) Mechanisms of abnormal lamellar body secretion and the dysfunctional skin barrier in patients with atopic dermatitis. *Journal of Allergy and Clinical Immunology*, 134, 781-791.e1.
- Eriksen, K. W., K. Kaltoft, G. Mikkelsen, M. Nielsen, Q. Zhang, C. Geisler, M. H. Nissen, C. Ropke,
 M. A. Wasik & N. Odum (2001) Constitutive STAT3-activation in Sezary syndrome:
 tyrphostin AG490 inhibits STAT3-activation, interleukin-2 receptor expression and
 growth of leukemic Sezary cells. *Leukemia*, 15, 787-93.
- Eyerich, S., K. Eyerich, C. Traidl-Hoffmann & T. Biedermann (2018) Cutaneous Barriers and Skin Immunity: Differentiating A Connected Network. *Trends Immunol*, 39, 315-327.
- Ferenczi, K., R. C. Fuhlbrigge, J. Pinkus, G. S. Pinkus & T. S. Kupper (2002) Increased CCR4 expression in cutaneous T cell lymphoma. *J Invest Dermatol*, 119, 1405-10.
- Fredholm, S., A. Willerslev-Olsen, Ö. Met, L. Kubat, M. Gluud, S. L. Mathiasen, C. Friese, E. Blümel, D. L. Petersen, T. Hu, C. Nastasi, L. M. Lindahl, T. B. Buus, T. Krejsgaard, M. A. Wasik, K. L. Kopp, S. B. Koralov, J. L. Persson, C. M. Bonefeld, C. Geisler, A. Woetmann,

L. Iversen, J. C. Becker & N. Ødum (2018) SATB1 in Malignant T Cells. *J Invest Dermatol*, 138, 1805-1815.

- Fried, I. & L. Cerroni (2012) FOXP3 in sequential biopsies of progressive mycosis fungoides. *Am J Dermatopathol*, 34, 263-5.
- Fromme, J. E. & P. Zigrino (2022) The Role of Extracellular Matrix Remodeling in Skin Tumor Progression and Therapeutic Resistance. *Front Mol Biosci*, **9**, 864302.
- Fuchs, E. & D. W. Cleveland (1998) A Structural Scaffolding of Intermediate Filaments in Health and Disease. *Science*, 279, 514-519.
- Fuchs, E. & H. Green (1980) Changes in keratin gene expression during terminal differentiation of the keratinocyte. *Cell*, 19, 1033-42.
- Furudate, S., T. Fujimura, A. Kakizaki, Y. Kambayashi, M. Asano, A. Watabe & S. Aiba (2016) The possible interaction between periostin expressed by cancer stroma and tumor-associated macrophages in developing mycosis fungoides. *Exp Dermatol*, 25, 107-12.
- Gao, Y., F. Liu, J. Sun, Y. Wen, P. Tu, M. E. Kadin & Y. Wang (2021) Differential SATB1 Expression Reveals Heterogeneity of Cutaneous T-Cell Lymphoma. *J Invest Dermatol*, 141, 607-618.e6.
- Gardiner, C., D. Di Vizio, S. Sahoo, C. Théry, K. W. Witwer, M. Wauben & A. F. Hill (2016) Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey. *J Extracell Vesicles*, 5, 32945.
- Gazdar, A. F., D. N. Carney, P. A. Bunn, E. K. Russell, E. S. Jaffe, G. P. Schechter & J. G. Guccion (1980) Mitogen requirements for the in vitro propagation of cutaneous T-cell lymphomas. *Blood*, 55, 409-17.
- Gill, R. P. K., J. Gantchev, A. Martínez Villarreal, B. Ramchatesingh, E. Netchiporouk, O. E. Akilov, N. Ødum, R. Gniadecki, S. B. Koralov & I. V. Litvinov (2022) Understanding Cell Lines, Patient-Derived Xenograft and Genetically Engineered Mouse Models Used to Study Cutaneous T-Cell Lymphoma. *Cells*, 11.
- Ginini, L., S. Billan, E. Fridman & Z. Gil (2022) Insight into Extracellular Vesicle-Cell Communication: From Cell Recognition to Intracellular Fate. *Cells*, 11.
- Giordano, M., D. O. Croci & G. A. Rabinovich (2013) Galectins in hematological malignancies. *Curr Opin Hematol*, 20, 327-35.
- Gluud, M., S. Fredholm, E. Blümel, A. Willerslev-Olsen, T. B. Buus, C. Nastasi, T. Krejsgaard, C. M. Bonefeld, A. Woetmann, L. Iversen, T. Litman, C. Geisler, N. Ødum & L. M. Lindahl (2021)
 MicroRNA-93 Targets p21 and Promotes Proliferation in Mycosis Fungoides T Cells. Dermatology, 237, 277-282.
- Gluud, M., A. Willerslev-Olsen, L. M. R. Gjerdrum, L. M. Lindahl, T. B. Buus, M. H. Andersen, C. M. Bonefeld, T. Krejsgaard, I. V. Litvinov, L. Iversen, J. C. Becker, J. L. Persson, S. B. Koralov, T. Litman, C. Geisler, A. Woetmann & N. Odum (2020) MicroRNAs in the Pathogenesis, Diagnosis, Prognosis and Targeted Treatment of Cutaneous T-Cell Lymphomas. *Cancers (Basel)*, 12.
- Grabbe, S., G. Varga, S. Beissert, M. Steinert, G. Pendl, S. Seeliger, W. Bloch, T. Peters, T. Schwarz,
 C. Sunderkötter & K. Scharffetter-Kochanek (2002) Beta2 integrins are required for skin homing of primed T cells but not for priming naive T cells. *J Clin Invest*, 109, 183-92.
- Grzanka, A., D. Grzanka, M. Gagat, T. Tadrowski, M. Sokołowska-Wojdyło, A. Marszałek & W. Placek (2012) Correlation of SATB1 expression with clinical course of cutaneous T-cell lymphomas. *Pol J Pathol*, 63, 101-5.
- Grzanka, D., M. Gagat, M. Izdebska & A. Marszałek (2015) Expression of special AT-rich sequence-binding protein 1 is an independent prognostic factor in cutaneous T-cell lymphoma. Oncol Rep, 33, 250-66.
- Han, Z., R. J. Estephan, X. Wu, C. Su, Y. C. Yuan, H. Qin, S. H. Kil, C. Morales, D. Schmolze, J. F. Sanchez, L. Tian, J. Yu, M. Kortylewski, S. T. Rosen & C. Querfeld (2022) MicroRNA Regulation of T-Cell Exhaustion in Cutaneous T Cell Lymphoma. *J Invest Dermatol*, 142, 603-612.e7.

- Heid, J. B., A. Schmidt, N. Oberle, S. Goerdt, P. H. Krammer, E. Suri-Payer & C. D. Klemke (2009) FOXP3+CD25- tumor cells with regulatory function in Sézary syndrome. J Invest Dermatol, 129, 2875-85.
- Henry, J., C. Y. Hsu, M. Haftek, R. Nachat, H. D. de Koning, I. Gardinal-Galera, K. Hitomi, S. Balica,
 C. Jean-Decoster, A. M. Schmitt, C. Paul, G. Serre & M. Simon (2011) Hornerin is a component of the epidermal cornified cell envelopes. *Faseb j*, 25, 1567-76.
- Hong, S. W., E. B. Choi, T. K. Min, J. H. Kim, M. H. Kim, S. G. Jeon, B. J. Lee, Y. S. Gho, Y. K. Jee, B. Y. Pyun & Y. K. Kim (2014) An important role of α-hemolysin in extracellular vesicles on the development of atopic dermatitis induced by Staphylococcus aureus. *PLoS One*, 9, e100499.
- Hong, S. W., M. R. Kim, E. Y. Lee, J. H. Kim, Y. S. Kim, S. G. Jeon, J. M. Yang, B. J. Lee, B. Y. Pyun,
 Y. S. Gho & Y. K. Kim (2011) Extracellular vesicles derived from Staphylococcus aureus induce atopic dermatitis-like skin inflammation. *Allergy*, 66, 351-9.
- Hoshino, A., B. Costa-Silva, T. L. Shen, G. Rodrigues, A. Hashimoto, M. Tesic Mark, H. Molina, S. Kohsaka, A. Di Giannatale, S. Ceder, S. Singh, C. Williams, N. Soplop, K. Uryu, L. Pharmer, T. King, L. Bojmar, A. E. Davies, Y. Ararso, T. Zhang, H. Zhang, J. Hernandez, J. M. Weiss, V. D. Dumont-Cole, K. Kramer, L. H. Wexler, A. Narendran, G. K. Schwartz, J. H. Healey, P. Sandstrom, K. J. Labori, E. H. Kure, P. M. Grandgenett, M. A. Hollingsworth, M. de Sousa, S. Kaur, M. Jain, K. Mallya, S. K. Batra, W. R. Jarnagin, M. S. Brady, O. Fodstad, V. Muller, K. Pantel, A. J. Minn, M. J. Bissell, B. A. Garcia, Y. Kang, V. K. Rajasekhar, C. M. Ghajar, I. Matei, H. Peinado, J. Bromberg & D. Lyden (2015) Tumour exosome integrins determine organotropic metastasis. *Nature*, 527, 329-35.
- Hsi, A. C., S. J. Lee, I. S. Rosman, K. R. Carson, A. Kelley, V. Viele, X. Pang, A. Musiek & A. Schaffer (2015) Expression of helper T cell master regulators in inflammatory dermatoses and primary cutaneous T-cell lymphomas: diagnostic implications. J Am Acad Dermatol, 72, 159-67.
- Huang, Y. G., Y. Wang, R. J. Zhu, K. Tang, X. B. Tang & X. M. Su (2021) EMS1/DLL4-Notch Signaling Axis Augments Cell Cycle-Mediated Tumorigenesis and Progress in Human Adrenocortical Carcinoma. *Front Oncol*, 11, 771579.
- Hyenne, V., O. Lefebvre & J. G. Goetz (2017) Going live with tumor exosomes and microvesicles. *Cell Adh Migr*, 1-14.
- Iliadis, A., T. Koletsa, A. Patsatsi, E. Georgiou, D. Sotiriadis & I. Kostopoulos (2016) The cellular microenvironment and neoplastic population in mycosis fungoides skin lesions: a clinicopathological correlation. *Eur J Dermatol*, 26, 566-571.
- Jeppesen, D. K., A. M. Fenix, J. L. Franklin, J. N. Higginbotham, Q. Zhang, L. J. Zimmerman, D. C. Liebler, J. Ping, Q. Liu, R. Evans, W. H. Fissell, J. G. Patton, L. H. Rome, D. T. Burnette & R. J. Coffey (2019) Reassessment of Exosome Composition. *Cell*, 177, 428-445.e18.
- Jiang, M., H. Fang, S. Shao, E. Dang, J. Zhang, P. Qiao, A. Yang & G. Wang (2019) Keratinocyte exosomes activate neutrophils and enhance skin inflammation in psoriasis. *Faseb j*, 33, 13241-13253.
- Jiao, Q., L. Yue, L. Zhi, Y. Qi, J. Yang, C. Zhou & Y. Jia (2022) Studies on stratum corneum metabolism: function, molecular mechanism and influencing factors. *J Cosmet Dermatol*, 21, 3256-3264.
- Jones, M. T., S. W. Manioci & A. E. Russell (2022) Size Exclusion Chromatography for Separating Extracellular Vesicles from Conditioned Cell Culture Media. *J Vis Exp*.
- Jun, S. H., J. H. Lee, S. I. Kim, C. W. Choi, T. I. Park, H. R. Jung, J. W. Cho, S. H. Kim & J. C. Lee (2017) Staphylococcus aureus-derived membrane vesicles exacerbate skin inflammation in atopic dermatitis. *Clin Exp Allergy*, 47, 85-96.
- Kalra, H., R. J. Simpson, H. Ji, E. Aikawa, P. Altevogt, P. Askenase, V. C. Bond, F. E. Borras, X. Breakefield, V. Budnik, E. Buzas, G. Camussi, A. Clayton, E. Cocucci, J. M. Falcon-Perez, S. Gabrielsson, Y. S. Gho, D. Gupta, H. C. Harsha, A. Hendrix, A. F. Hill, J. M. Inal, G. Jenster, E. M. Kramer-Albers, S. K. Lim, A. Llorente, J. Lotvall, A. Marcilla, L. Mincheva-

Nilsson, I. Nazarenko, R. Nieuwland, E. N. Nolte-'t Hoen, A. Pandey, T. Patel, M. G. Piper, S. Pluchino, T. S. Prasad, L. Rajendran, G. Raposo, M. Record, G. E. Reid, F. Sanchez-Madrid, R. M. Schiffelers, P. Siljander, A. Stensballe, W. Stoorvogel, D. Taylor, C. Thery, H. Valadi, B. W. van Balkom, J. Vazquez, M. Vidal, M. H. Wauben, M. Yanez-Mo, M. Zoeller & S. Mathivanan (2012) Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. *PLoS Biol*, 10, e1001450.

- Kaltoft, K., S. Bisballe, T. Dyrberg, E. Boel, P. B. Rasmussen & K. Thestrup-Pedersen (1992) Establishment of two continuous T-cell strains from a single plaque of a patient with mycosis fungoides. *In Vitro Cell Dev Biol*, 28a, 161-7.
- Kawamoto, E., A. Masui-Ito, A. Eguchi, Z. Y. Soe, O. Prajuabjinda, S. Darkwah, E. J. Park, H. Imai & M. Shimaoka (2019) Integrin and PD-1 Ligand Expression on Circulating Extracellular Vesicles in Systemic Inflammatory Response Syndrome and Sepsis. *Shock*, 52, 13-22.
- Kim, J., B. H. Bin, E. J. Choi, H. G. Lee, T. R. Lee & E. G. Cho (2019) Staphylococcus aureus-derived extracellular vesicles induce monocyte recruitment by activating human dermal microvascular endothelial cells in vitro. *Clin Exp Allergy*, 49, 68-81.
- Kinoshita, T. (2016) Glycosylphosphatidylinositol (GPI) Anchors: Biochemistry and Cell Biology: Introduction to a Thematic Review Series. *J Lipid Res*, 57, 4-5.
- Kopp, K. L., U. Ralfkiaer, L. M. Gjerdrum, R. Helvad, I. H. Pedersen, T. Litman, L. Jønson, P. H. Hagedorn, T. Krejsgaard, R. Gniadecki, C. M. Bonefeld, L. Skov, C. Geisler, M. A. Wasik, E. Ralfkiaer, N. Ødum & A. Woetmann (2013a) STAT5-mediated expression of oncogenic miR-155 in cutaneous T-cell lymphoma. *Cell Cycle*, 12, 1939-47.
- Kopp, K. L., U. Ralfkiaer, B. S. Nielsen, R. Gniadecki, A. Woetmann, N. Odum & E. Ralfkiaer (2013b) Expression of miR-155 and miR-126 in situ in cutaneous T-cell lymphoma. *Apmis*, 121, 1020-4.
- Krejsgaard, T., C. S. Vetter-Kauczok, A. Woetmann, P. Lovato, T. Labuda, K. W. Eriksen, Q. Zhang,
 J. C. Becker & N. Odum (2006) Jak3- and JNK-dependent vascular endothelial growth factor expression in cutaneous T-cell lymphoma. *Leukemia*, 20, 1759-66.
- Laukkanen, K., M. Saarinen, F. Mallet, M. Aatonen, A. Hau & A. Ranki (2020) Cutaneous T-Cell Lymphoma (CTCL) Cell Line-Derived Extracellular Vesicles Contain HERV-W-Encoded Fusogenic Syncytin-1. J Invest Dermatol, 140, 1466-1469.e4.
- Li, B., Y. Song, T. J. Liu, Y. B. Cui, Y. Jiang, Z. S. Xie & S. L. Xie (2013) miRNA-22 suppresses colon cancer cell migration and invasion by inhibiting the expression of T-cell lymphoma invasion and metastasis 1 and matrix metalloproteinases 2 and 9. Oncol Rep, 29, 1932-8.
- Li, Y., L. Meng, B. Li, T. Shen & B. Zhao (2022) The Exosome Journey: From Biogenesis to Regulation and Function in Cancers. *J Oncol*, 2022, 9356807.
- Lindahl, L. M., S. Fredholm, C. Joseph, B. S. Nielsen, L. Jonson, A. Willerslev-Olsen, M. Gluud, E. Blumel, D. L. Petersen, N. Sibbesen, T. Hu, C. Nastasi, T. Krejsgaard, D. Jaehger, J. L. Persson, N. Mongan, M. A. Wasik, I. V. Litvinov, D. Sasseville, S. B. Koralov, C. M. Bonefeld, C. Geisler, A. Woetmann, E. Ralfkiaer, L. Iversen & N. Odum (2016) STAT5 induces miR-21 expression in cutaneous T cell lymphoma. *Oncotarget*.
- Liu, L., H. Zhu, P. Wang & S. Wu (2022) Construction of a Six-Gene Prognostic Risk Model Related to Hypoxia and Angiogenesis for Cervical Cancer. *Front Genet*, **13**, 923263.
- Liu, Y., Y. Gu & X. Cao (2015) The exosomes in tumor immunity. *Oncoimmunology*, 4, e1027472.
- Liu, Z., H. Wu & S. Huang (2021) Role of NGF and its receptors in wound healing (Review). *Exp Ther Med*, 21, 599.
- López-Pacheco, C., A. Bedoya-López, R. Olguín-Alor & G. Soldevila. 2021. Analysis of Tumor-Derived Exosomes by Nanoscale Flow Cytometry. In *Cancer Cell Signaling: Methods and Protocols,* ed. M. Robles-Flores, 171-191. New York, NY: Springer US.
- Matsuda, Y., S. Ikeda, F. Abe, Y. Takahashi, A. Kitadate, N. Takahashi, H. Wakui & H. Tagawa (2022) Downregulation of miR-26 promotes invasion and metastasis via targeting interleukin-22 in cutaneous T-cell lymphoma. *Cancer Sci*, 113, 1208-1219.

- Mazur, G., Z. Woźniak, T. Wróbel, J. Maj & K. Kuliczkowski (2004) Increased angiogenesis in cutaneous T-cell lymphomas. *Pathol Oncol Res*, 10, 34-6.
- Mirvish, E. D., R. G. Pomerantz & L. J. Geskin (2011) Infectious agents in cutaneous T-cell lymphoma. *J Am Acad Dermatol*, 64, 423-31.
- Miyagaki, T. & M. Sugaya (2011) Erythrodermic cutaneous T-cell lymphoma: how to differentiate this rare disease from atopic dermatitis. *J Dermatol Sci*, 64, 1-6.
- Miyagaki, T., M. Sugaya, T. Oka, N. Takahashi, M. Kawaguchi, H. Suga, H. Fujita, A. Yoshizaki, Y. Asano & S. Sato (2017) Placental Growth Factor and Vascular Endothelial Growth Factor Together Regulate Tumour Progression via Increased Vasculature in Cutaneous T Cell Lymphoma. Acta Derm Venereol.
- Miyagaki, T., M. Sugaya, H. Suga, K. Akamata, H. Ohmatsu, H. Fujita, Y. Asano, Y. Tada, T. Kadono & S. Sato (2012) Angiogenin levels are increased in lesional skin and sera in patients with erythrodermic cutaneous T cell lymphoma. *Arch Dermatol Res*, 304, 401-6.
- Moltrasio, C., M. Romagnuolo & A. V. Marzano (2022) Epigenetic Mechanisms of Epidermal Differentiation. *Int J Mol Sci*, 23.
- Moosbrugger-Martinz, V., C. Leprince, M. C. Méchin, M. Simon, S. Blunder, R. Gruber & S. Dubrac (2022) Revisiting the Roles of Filaggrin in Atopic Dermatitis. *Int J Mol Sci*, 23.
- Morales-Kastresana, A., B. Telford, T. A. Musich, K. McKinnon, C. Clayborne, Z. Braig, A. Rosner, T. Demberg, D. C. Watson, T. S. Karpova, G. J. Freeman, R. H. DeKruyff, G. N. Pavlakis, M. Terabe, M. Robert-Guroff, J. A. Berzofsky & J. C. Jones (2017) Labeling Extracellular Vesicles for Nanoscale Flow Cytometry. *Sci Rep*, 7, 1878.
- Moyal, L., C. Arkin, B. Gorovitz-Haris, C. Querfeld, S. Rosen, J. Knaneh, I. Amitay-Laish, H. Prag-Naveh, J. Jacob-Hirsch & E. Hodak (2021) Mycosis fungoides-derived exosomes promote cell motility and are enriched with microRNA-155 and microRNA-1246, and their plasma-cell-free expression may serve as a potential biomarker for disease burden. *Br J Dermatol*, 185, 999-1012.
- Moyal, L., S. Yehezkel, B. Gorovitz, A. Keren, A. Gilhar, I. Lubin, S. Sherman & E. Hodak (2017) Oncogenic role of microRNA-155 in mycosis fungoides: an in vitro and xenograft mouse model study. *Br J Dermatol*, 177, 791-800.
- Murata, T., T. Honda, A. Mostafa & K. Kabashima (2022) Stratum corneum as polymer sheet: concept and cornification processes. *Trends Mol Med*, 28, 350-359.
- Najafi, M., N. Hashemi Goradel, B. Farhood, E. Salehi, M. S. Nashtaei, N. Khanlarkhani, Z. Khezri,
 J. Majidpoor, M. Abouzaripour, M. Habibi, I. R. Kashani & K. Mortezaee (2019)
 Macrophage polarity in cancer: A review. *J Cell Biochem*, 120, 2756-2765.
- Nakajima, R., T. Miyagaki, H. Kamijo, T. Oka, N. Shishido-Takahashi, H. Suga, M. Sugaya & S. Sato (2018) Decreased progranulin expression in Mycosis fungoides: a possible association with the high frequency of skin infections. *Eur J Dermatol*, 28, 790-794.
- --- (2019) Possible therapeutic applicability of galectin-9 in cutaneous T-cell lymphoma. J Dermatol Sci, 96, 134-142.
- Netchiporouk, E., J. Gantchev, M. Tsang, P. Thibault, A. K. Watters, J. M. Hughes, F. M. Ghazawi, A. Woetmann, N. Ødum, D. Sasseville & I. V. Litvinov (2017) Analysis of CTCL cell lines reveals important differences between mycosis fungoides/Sézary syndrome. Oncotarget, 8, 95981-95998.
- Nickoloff, B. J. & E. M. Griffiths (1990) Abnormal cutaneous topobiology: the molecular basis for dermatopathologic mononuclear cell patterns in inflammatory skin disease. *J Invest Dermatol*, 95, 128s-131s.
- Nielsen, M., C. G. Kaestel, K. W. Eriksen, A. Woetmann, T. Stokkedal, K. Kaltoft, C. Geisler, C. Röpke & N. Odum (1999) Inhibition of constitutively activated Stat3 correlates with altered Bcl-2/Bax expression and induction of apoptosis in mycosis fungoides tumor cells. *Leukemia*, 13, 735-8.
- Nollet, M., R. Bachelier, A. Joshkon, W. Traboulsi, A. Mahieux, A. Moyon, A. Muller, I. Somasundaram, S. Simoncini, F. Peiretti, A. S. Leroyer, B. Guillet, B. Granel, F. Dignat-

George, N. Bardin, A. Foucault-Bertaud & M. Blot-Chabaud (2022) Involvement of Multiple Variants of Soluble CD146 in Systemic Sclerosis: Identification of a Novel Profibrotic Factor. *Arthritis Rheumatol*, 74, 1027-1038.

- Obu, S., K. Umeda, H. Ueno, M. Sonoda, K. Tasaka, H. Ogata, K. Kouzuki, S. Nodomi, S. Saida, I. Kato, H. Hiramatsu, T. Okamoto, E. Ogawa, H. Okajima, K. Morita, Y. Kamikubo, K. Kawaguchi, K. Watanabe, H. Iwafuchi, S. Yagyu, T. Iehara, H. Hosoi, T. Nakahata, S. Adachi, S. Uemoto, T. Heike & J. Takita (2021) CD146 is a potential immunotarget for neuroblastoma. *Cancer Sci*, 112, 4617-4626.
- Osteikoetxea, X., B. Sódar, A. Németh, K. Szabó-Taylor, K. Pálóczi, K. V. Vukman, V. Tamási, A. Balogh, Á. Kittel, É. Pállinger & E. I. Buzás (2015) Differential detergent sensitivity of extracellular vesicle subpopulations. *Org Biomol Chem*, 13, 9775-82.
- Parish, C. R. (1999) Fluorescent dyes for lymphocyte migration and proliferation studies. *Immunology & Cell Biology*, 77, 499-508.
- Park, S. Y., S. Yoon, E. G. Sun, R. Zhou, J. A. Bae, Y. W. Seo, J. I. Chae, M. J. Paik, H. H. Ha, H. Kim & K. K. Kim (2017) Glycoprotein 90K Promotes E-Cadherin Degradation in a Cell Density-Dependent Manner via Dissociation of E-Cadherin-p120-Catenin Complex. *Int J Mol Sci*, 18.
- Pathan, M., P. Fonseka, S. V. Chitti, T. Kang, R. Sanwlani, J. Van Deun, A. Hendrix & S. Mathivanan (2019) Vesiclepedia 2019: a compendium of RNA, proteins, lipids and metabolites in extracellular vesicles. *Nucleic Acids Res*, 47, D516-d519.
- Pedersen, I. H., A. Willerslev-Olsen, C. Vetter-Kauczok, T. Krejsgaard, B. Lauenborg, K. L. Kopp, C. Geisler, C. M. Bonefeld, Q. Zhang, M. A. Wasik, S. Dabelsteen, A. Woetmann, J. C. Becker & N. Odum (2013) Vascular endothelial growth factor receptor-3 expression in mycosis fungoides. *Leuk Lymphoma*, 54, 819-26.
- Perez-Villar, J. J., I. Melero, A. Gismondi, A. Santoni & M. Lopez-Botet (1996) Functional analysis of alpha 1 beta 1 integrin in human natural killer cells. *Eur J Immunol*, 26, 2023-9.
- Phanse, Y., A. E. Ramer-Tait, S. L. Friend, B. Carrillo-Conde, P. Lueth, C. J. Oster, G. J. Phillips, B. Narasimhan, M. J. Wannemuehler & B. H. Bellaire (2012) Analyzing cellular internalization of nanoparticles and bacteria by multi-spectral imaging flow cytometry. *J Vis Exp*, e3884.
- Piccolo, E., N. Tinari, D. Semeraro, S. Traini, I. Fichera, A. Cumashi, R. La Sorda, F. Spinella, A. Bagnato, R. Lattanzio, M. D'Egidio, A. Di Risio, P. Stampolidis, M. Piantelli, C. Natoli, A. Ullrich & S. Iacobelli (2013) LGALS3BP, lectin galactoside-binding soluble 3 binding protein, induces vascular endothelial growth factor in human breast cancer cells and promotes angiogenesis. J Mol Med (Berl), 91, 83-94.
- Pietrowska, M., A. Wlosowicz, M. Gawin & P. Widlak (2019) MS-Based Proteomic Analysis of Serum and Plasma: Problem of High Abundant Components and Lights and Shadows of Albumin Removal. Adv Exp Med Biol, 1073, 57-76.
- Posner, L. E., B. E. Fossieck, Jr., J. L. Eddy & P. A. Bunn, Jr. (1981) Septicemic complications of the cutaneous T-cell lymphomas. *Am J Med*, 71, 210-6.
- Rassek, K. & K. Iżykowska (2020) Single-Cell Heterogeneity of Cutaneous T-Cell Lymphomas Revealed Using RNA-Seq Technologies. *Cancers (Basel)*, 12.
- Rivitti, E. A. 2018. Dermatologia de Sampaio e Rivitti. São Paulo: Artes Médicas.
- Rocha, S. F., M. Schiller, D. Jing, H. Li, S. Butz, D. Vestweber, D. Biljes, H. C. Drexler, M. Nieminen-Kelhä, P. Vajkoczy, S. Adams, R. Benedito & R. H. Adams (2014) Esm1 modulates endothelial tip cell behavior and vascular permeability by enhancing VEGF bioavailability. *Circ Res*, 115, 581-90.
- Roediger, B. & C. Schlapbach (2022) T cells in the skin: Lymphoma and inflammatory skin disease. *J Allergy Clin Immunol*, 149, 1172-1184.
- Royston, J. P. (1982) An Extension of Shapiro and Wilk's W Test for Normality to Large Samples. Journal of the Royal Statistical Society. Series C (Applied Statistics), 31, 115-124.

- Sakamoto, M., T. Miyagaki, H. Kamijo, T. Oka, N. Takahashi, H. Suga, A. Yoshizaki, Y. Asano, M. Sugaya & S. Sato (2018) Serum vascular endothelial growth factor A levels reflect itch severity in mycosis fungoides and Sezary syndrome. *J Dermatol*, 45, 95-99.
- Samimi, S., B. Benoit, K. Evans, E. J. Wherry, L. Showe, M. Wysocka & A. H. Rook (2010) Increased programmed death-1 expression on CD4+ T cells in cutaneous T-cell lymphoma: implications for immune suppression. *Arch Dermatol*, 146, 1382-8.
- Sant'Anna Addor, F. A. & V. Aoki. 2010. Barreira cutânea na dermatite atópica. Anais Brasileiros de Dermatologia SBD.
- Schlapbach, C., A. Ochsenbein, U. Kaelin, A. S. Hassan, R. E. Hunger & N. Yawalkar (2010) High numbers of DC-SIGN+ dendritic cells in lesional skin of cutaneous T-cell lymphoma. J Am Acad Dermatol, 62, 995-1004.
- Schäfer, B. W., R. Wicki, D. Engelkamp, M. G. Mattei & C. W. Heizmann (1995) Isolation of a YAC clone covering a cluster of nine S100 genes on human chromosome 1q21: rationale for a new nomenclature of the S100 calcium-binding protein family. *Genomics*, 25, 638-43.
- Shao, S., H. Fang, Q. Li & G. Wang (2020) Extracellular vesicles in Inflammatory Skin Disorders: from Pathophysiology to Treatment. *Theranostics*, 10, 9937-9955.
- Shao, Y., Y. Shen, T. Chen, F. Xu, X. Chen & S. Zheng (2016) The functions and clinical applications of tumor-derived exosomes. *Oncotarget*, **7**, 60736-60751.
- Sharma, A., A. Joshkon, A. Ladjimi, W. Traboulsi, R. Bachelier, S. Robert, A. Foucault-Bertaud, A. S. Leroyer, N. Bardin, I. Somasundaram & M. Blot-Chabaud (2022) Soluble CD146 as a Potential Target for Preventing Triple Negative Breast Cancer MDA-MB-231 Cell Growth and Dissemination. *Int J Mol Sci*, 23.
- Shi, Y., D. Tang, X. Li, X. Xie, Y. Ye & L. Wang (2022) Galectin Family Members: Emerging Novel Targets for Lymphoma Therapy? *Front Oncol*, 12, 889034.
- Shu, S., C. L. Allen, S. Benjamin-Davalos, M. Koroleva, D. MacFarland, H. Minderman & M. S. Ernstoff (2021) A Rapid Exosome Isolation Using Ultrafiltration and Size Exclusion Chromatography (REIUS) Method for Exosome Isolation from Melanoma Cell Lines. *Methods Mol Biol*, 2265, 289-304.
- Shu, S., Y. Yang, C. L. Allen, E. Hurley, K. H. Tung, H. Minderman, Y. Wu & M. S. Ernstoff (2020) Purity and yield of melanoma exosomes are dependent on isolation method. *J Extracell Vesicles*, 9, 1692401.
- Sommer, V. H., O. J. Clemmensen, O. Nielsen, M. Wasik, P. Lovato, C. Brender, K. W. Eriksen, A. Woetmann, C. G. Kaestel, M. H. Nissen, C. Ropke, S. Skov & N. Ødum (2004) In vivo activation of STAT3 in cutaneous T-cell lymphoma. Evidence for an antiapoptotic function of STAT3. *Leukemia*, 18, 1288-95.
- Steinert, P. M. & L. N. Marekov (1995) The proteins elafin, filaggrin, keratin intermediate filaments, loricrin, and small proline-rich proteins 1 and 2 are isodipeptide cross-linked components of the human epidermal cornified cell envelope. J Biol Chem, 270, 17702-11.
- Stolearenco, V., M. R. J. Namini, S. S. Hasselager, M. Gluud, T. B. Buus, A. Willerslev-Olsen, N. Ødum & T. Krejsgaard (2020) Cellular Interactions and Inflammation in the Pathogenesis of Cutaneous T-Cell Lymphoma. *Front Cell Dev Biol*, 8, 851.
- Suga, H., M. Sugaya, T. Miyagaki, H. Ohmatsu, H. Fujita, S. Kagami, Y. Asano, Y. Tada, T. Kadono & S. Sato (2013) Association of nerve growth factor, chemokine (C-C motif) ligands and immunoglobulin E with pruritus in cutaneous T-cell lymphoma. *Acta Derm Venereol*, 93, 144-9.
- Suga, H., M. Sugaya, T. Miyagaki, H. Ohmatsu, M. Kawaguchi, N. Takahashi, H. Fujita, Y. Asano,
 Y. Tada, T. Kadono & S. Sato (2014) Skin barrier dysfunction and low antimicrobial peptide expression in cutaneous T-cell lymphoma. *Clin Cancer Res*, 20, 4339-48.
- Sugaya, M., T. Miyagaki, H. Ohmatsu, H. Suga, H. Kai, M. Kamata, H. Fujita, Y. Asano, Y. Tada, T. Kadono, H. Okochi & S. Sato (2012) Association of the numbers of CD163(+) cells in

lesional skin and serum levels of soluble CD163 with disease progression of cutaneous T cell lymphoma. *J Dermatol Sci*, 68, 45-51.

- Takahashi, N., M. Sugaya, H. Suga, T. Oka, M. Kawaguchi, T. Miyagaki, H. Fujita & S. Sato (2016) Thymic Stromal Chemokine TSLP Acts through Th2 Cytokine Production to Induce Cutaneous T-cell Lymphoma. *Cancer Res*, 76, 6241-6252.
- Thery, C., M. Ostrowski & E. Segura (2009) Membrane vesicles as conveyors of immune responses. *Nat Rev Immunol*, 9, 581-93.
- Thode, C., A. Woetmann, H. H. Wandall, M. C. Carlsson, K. Qvortrup, C. S. Kauczok, M. Wobser, A. Printzlau, N. Odum & S. Dabelsteen (2015) Malignant T cells secrete galectins and induce epidermal hyperproliferation and disorganized stratification in a skin model of cutaneous T-cell lymphoma. J Invest Dermatol, 135, 238-246.
- Thyssen, J. P., I. Jakasa, C. Riethmüller, M. P. Schön, A. Braun, M. Haftek, P. G. Fallon, J. Wróblewski, H. Jakubowski, L. Eckhart, W. Declercq, S. Koppes, K. A. Engebretsen, C. Bonefeld, A. D. Irvine, S. Keita-Alassane, M. Simon, H. Kawasaki, A. Kubo, M. Amagai, T. Matsui & S. Kezic (2020) Filaggrin Expression and Processing Deficiencies Impair Corneocyte Surface Texture and Stiffness in Mice. J Invest Dermatol, 140, 615-623.e5.
- Théry, C., K. W. Witwer, E. Aikawa, M. J. Alcaraz, J. D. Anderson, R. Andriantsitohaina, A. Antoniou, T. Arab, F. Archer, G. K. Atkin-Smith, D. C. Ayre, J. M. Bach, D. Bachurski, H. Baharvand, L. Balaj, S. Baldacchino, N. N. Bauer, A. A. Baxter, M. Bebawy, C. Beckham, A. Bedina Zavec, A. Benmoussa, A. C. Berardi, P. Bergese, E. Bielska, C. Blenkiron, S. Bobis-Wozowicz, E. Boilard, W. Boireau, A. Bongiovanni, F. E. Borràs, S. Bosch, C. M. Boulanger, X. Breakefield, A. M. Breglio, M. Brennan, D. R. Brigstock, A. Brisson, M. L. Broekman, J. F. Bromberg, P. Bryl-Górecka, S. Buch, A. H. Buck, D. Burger, S. Busatto, D. Buschmann, B. Bussolati, E. I. Buzás, J. B. Byrd, G. Camussi, D. R. Carter, S. Caruso, L. W. Chamley, Y. T. Chang, C. Chen, S. Chen, L. Cheng, A. R. Chin, A. Clayton, S. P. Clerici, A. Cocks, E. Cocucci, R. J. Coffey, A. Cordeiro-da-Silva, Y. Couch, F. A. Coumans, B. Coyle, R. Crescitelli, M. F. Criado, C. D'Souza-Schorey, S. Das, A. Datta Chaudhuri, P. de Candia, E. F. De Santana, O. De Wever, H. A. Del Portillo, T. Demaret, S. Deville, A. Devitt, B. Dhondt, D. Di Vizio, L. C. Dieterich, V. Dolo, A. P. Dominguez Rubio, M. Dominici, M. R. Dourado, T. A. Driedonks, F. V. Duarte, H. M. Duncan, R. M. Eichenberger, K. Ekström, S. El Andaloussi, C. Elie-Caille, U. Erdbrügger, J. M. Falcón-Pérez, F. Fatima, J. E. Fish, M. Flores-Bellver, A. Försönits, A. Frelet-Barrand, et al. (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles, 7, 1535750.
- Tian, Y., M. Gong, Y. Hu, H. Liu, W. Zhang, M. Zhang, X. Hu, D. Aubert, S. Zhu, L. Wu & X. Yan (2020) Quality and efficiency assessment of six extracellular vesicle isolation methods by nano-flow cytometry. *J Extracell Vesicles*, 9, 1697028.
- Tokura, Y., P. W. Heald, S. L. Yan & R. L. Edelson (1992) Stimulation of cutaneous T-cell lymphoma cells with superantigenic staphylococcal toxins. *J Invest Dermatol*, 98, 33-7.
- Trajkovic, K., C. Hsu, S. Chiantia, L. Rajendran, D. Wenzel, F. Wieland, P. Schwille, B. Brugger & M. Simons (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. *Science*, 319, 1244-7.
- Troullinaki, M., V. I. Alexaki, I. Mitroulis, A. Witt, A. Klotzsche-von Ameln, K. J. Chung, T. Chavakis & M. Economopoulou (2019) Nerve growth factor regulates endothelial cell survival and pathological retinal angiogenesis. *J Cell Mol Med*, 23, 2362-2371.
- Trzeciak, M., B. Olszewska, M. Sakowicz-Burkiewicz, M. Sokołowska-Wojdyło, J. Jankau, R. J. Nowicki & T. Pawełczyk (2020) Expression Profiles of Genes Encoding Cornified Envelope Proteins in Atopic Dermatitis and Cutaneous T-Cell Lymphomas. *Nutrients*, 12.
- Trzeciak, M., M. Sakowicz-Burkiewicz, M. Wesserling, D. Dobaczewska, J. Gleń, R. Nowicki & T. Pawelczyk (2017a) Expression of Cornified Envelope Proteins in Skin and Its Relationship with Atopic Dermatitis Phenotype. Acta Derm Venereol, 97, 36-41.

- Trzeciak, M., M. Sakowicz-Burkiewicz, M. Wesserling, J. Gleń, D. Dobaczewska, T. Bandurski, R. Nowicki & T. Pawelczyk (2017b) Altered Expression of Genes Encoding Cornulin and Repetin in Atopic Dermatitis. *Int Arch Allergy Immunol*, 172, 11-19.
- Trzeciak, M., M. Wesserling, T. Bandurski, J. Glen, R. Nowicki & T. Pawelczyk (2016) Association of a Single Nucleotide Polymorphism in a Late Cornified Envelope-like Proline-rich 1 Gene (LELP1) with Atopic Dermatitis. *Acta Derm Venereol*, 96, 459-63.
- Tune, B. X. J., M. S. Sim, C. L. Poh, R. M. Guad, C. K. Woon, I. Hazarika, A. Das, S. C. B. Gopinath, M. Rajan, M. Sekar, V. Subramaniyan, N. K. Fuloria, S. Fuloria, K. Batumalaie & Y. S. Wu (2022) Matrix Metalloproteinases in Chemoresistance: Regulatory Roles, Molecular Interactions, and Potential Inhibitors. J Oncol, 2022, 3249766.
- Tuzova, M., J. Richmond, D. Wolpowitz, C. Curiel-Lewandrowski, K. Chaney, T. Kupper & W. Cruikshank (2015) CCR4+T cell recruitment to the skin in mycosis fungoides: potential contributions by thymic stromal lymphopoietin and interleukin-16. *Leuk Lymphoma*, 56, 440-9.
- Vacca, A., S. Moretti, D. Ribatti, A. Pellegrino, N. Pimpinelli, B. Bianchi, E. Bonifazi, R. Ria, G. Serio & F. Dammacco (1997) Progression of mycosis fungoides is associated with changes in angiogenesis and expression of the matrix metalloproteinases 2 and 9. *Eur J Cancer*, 33, 1685-92.
- van Doorn, R., M. S. van Kester, R. Dijkman, M. H. Vermeer, A. A. Mulder, K. Szuhai, J. Knijnenburg, J. M. Boer, R. Willemze & C. P. Tensen (2009) Oncogenomic analysis of mycosis fungoides reveals major differences with Sezary syndrome. *Blood*, 113, 127-36.
- Viguier, M., T. Advedissian, D. Delacour, F. Poirier & F. Deshayes (2014) Galectins in epithelial functions. *Tissue Barriers*, 2, e29103.
- Vowels, B. R., M. Cassin, E. C. Vonderheid & A. H. Rook (1992) Aberrant cytokine production by Sezary syndrome patients: cytokine secretion pattern resembles murine Th2 cells. J Invest Dermatol, 99, 90-4.
- Vowels, B. R., S. R. Lessin, M. Cassin, C. Jaworsky, B. Benoit, J. T. Wolfe & A. H. Rook (1994) Th2 cytokine mRNA expression in skin in cutaneous T-cell lymphoma. *J Invest Dermatol*, 103, 669-73.
- Wang, F., A. Zieman & P. A. Coulombe.
- Wang, Y., B. X. Li & X. Li (2021) Identification and Validation of Angiogenesis-Related Gene Expression for Predicting Prognosis in Patients With Ovarian Cancer. Front Oncol, 11, 783666.
- Wang, Y., M. Su, L. L. Zhou, P. Tu, X. Zhang, X. Jiang & Y. Zhou (2011) Deficiency of SATB1 expression in Sezary cells causes apoptosis resistance by regulating FasL/CD95L transcription. *Blood*, 117, 3826-35.
- Watt, F. M. (1983) Involucrin and other markers of keratinocyte terminal differentiation. *J Invest Dermatol*, 81, 100s-3s.
- Wehkamp, U., M. Jost, K. Wehkamp & J. Harder (2020) Dysregulated Expression of Antimicrobial Peptides in Skin Lesions of Patients with Cutaneous T-cell Lymphoma. Acta Derm Venereol, 100, adv00017.
- Wen, P., Y. Xie & L. Wang (2021) The Role of microRNA in Pathogenesis, Diagnosis, Different Variants, Treatment and Prognosis of Mycosis Fungoides. *Front Oncol*, **11**, 752817.
- Wilcox, R. A., A. L. Feldman, D. A. Wada, Z. Z. Yang, N. I. Comfere, H. Dong, E. D. Kwon, A. J. Novak, S. N. Markovic, M. R. Pittelkow, T. E. Witzig & S. M. Ansell (2009) B7-H1 (PD-L1, CD274) suppresses host immunity in T-cell lymphoproliferative disorders. *Blood*, 114, 2149-58.
- Wilcoxon, F. (1945) Individual Comparisons by Ranking Methods. *Biometrics Bulletin*, 1, 80-83.
- Willemze, R., L. Cerroni, W. Kempf, E. Berti, F. Facchetti, S. H. Swerdlow & E. S. Jaffe (2019) The 2018 update of the WHO-EORTC classification for primary cutaneous lymphomas. *Blood*, 133, 1703-1714.

- Willemze, R., E. Hodak, P. L. Zinzani, L. Specht, M. Ladetto & E. G. Committee (2018) Primary cutaneous lymphomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol, 29, iv30-iv40.
- Willemze, R., E. S. Jaffe, G. Burg, L. Cerroni, E. Berti, S. H. Swerdlow, E. Ralfkiaer, S. Chimenti, J. L. Diaz-Perez, L. M. Duncan, F. Grange, N. L. Harris, W. Kempf, H. Kerl, M. Kurrer, R. Knobler, N. Pimpinelli, C. Sander, M. Santucci, W. Sterry, M. H. Vermeer, J. Wechsler, S. Whittaker & C. J. Meijer (2005) WHO-EORTC classification for cutaneous lymphomas. *Blood*, 105, 3768-85.
- Willerslev-Olsen, A., T. Krejsgaard, L. M. Lindahl, I. V. Litvinov, S. Fredholm, D. L. Petersen, C. Nastasi, R. Gniadecki, N. P. Mongan, D. Sasseville, M. A. Wasik, C. M. Bonefeld, C. Geisler, A. Woetmann, L. Iversen, M. Kilian, S. B. Koralov & N. Odum (2016) Staphylococcal enterotoxin A (SEA) stimulates STAT3 activation and IL-17 expression in cutaneous T-cell lymphoma. *Blood*, 127, 1287-96.
- Woetmann, A., P. Lovato, K. W. Eriksen, T. Krejsgaard, T. Labuda, Q. Zhang, A. M. Mathiesen, C. Geisler, A. Svejgaard, M. A. Wasik & N. Odum (2007) Nonmalignant T cells stimulate growth of T-cell lymphoma cells in the presence of bacterial toxins. *Blood*, 109, 3325-32.
- Wu, F., J. Yang, G. Shang, Z. Zhang, S. Niu, Y. Liu, H. Liu, J. Jing & Y. Fang (2022) Exosomal miR-224-5p from Colorectal Cancer Cells Promotes Malignant Transformation of Human Normal Colon Epithelial Cells by Promoting Cell Proliferation through Downregulation of CMTM4. Oxid Med Cell Longev, 2022, 5983629.
- Wu, X., B. C. Schulte, Y. Zhou, D. Haribhai, A. C. Mackinnon, J. A. Plaza, C. B. Williams & S. T. Hwang (2014) Depletion of M2-like tumor-associated macrophages delays cutaneous T-cell lymphoma development in vivo. *J Invest Dermatol*, 134, 2814-2822.
- Wu, Z., U. Meyer-Hoffert, K. Reithmayer, R. Paus, B. Hansmann, Y. He, J. Bartels, R. Gläser, J. Harder & J. M. Schröder (2009) Highly complex peptide aggregates of the S100 fused-type protein hornerin are present in human skin. *J Invest Dermatol*, 129, 1446-58.
- Yang, L., L. Jin, Y. Ke, X. Fan, T. Zhang, C. Zhang, H. Bian & G. Wang (2018) E3 Ligase Trim21 Ubiquitylates and Stabilizes Keratin 17 to Induce STAT3 Activation in Psoriasis. *Journal of Investigative Dermatology*, 138, 2568-2577.
- Yumeen, S. & M. Girardi (2020) Insights Into the Molecular and Cellular Underpinnings of Cutaneous T Cell Lymphoma. *Yale J Biol Med*, 93, 111-121.
- Zhang, C., Z. Hu, A. G. Lone, M. Artami, M. Edwards, C. C. Zouboulis, M. Stein & T. A. Harris-Tryon (2022) Small proline-rich proteins (SPRRs) are epidermally produced antimicrobial proteins that defend the cutaneous barrier by direct bacterial membrane disruption. *Elife*, 11.
- Zhang, X., M. Yin & L.-j. Zhang (2019) Keratin 6, 16 and 17—Critical Barrier Alarmin Molecules in Skin Wounds and Psoriasis. *Cells*, 8, 807.
- Zhao, Z. L., C. Liu, Q. Z. Wang, H. W. Wu & J. W. Zheng (2022) Engineered exosomes for targeted delivery of miR-187-3p suppress the viability of hemangioma stem cells by targeting Notch signaling. *Ann Transl Med*, 10, 621.
- Łukaszewicz-Zając, M., S. Pączek & B. Mroczko (2022) A Disintegrin and Metalloproteinase (ADAM) Family-Novel Biomarkers of Selected Gastrointestinal (GI) Malignancies? *Cancers (Basel)*, 14.

10. APÊNDICES

APÊNDICE A – 620 proteínas expressas nas amostras sEV-LCCT (1/6)

N٥	Proteína (ID)	Gene	sEV-Hut78	sEV Myla2059	Valor de p	N٥	Proteína (ID)	Gene	sEV-Hut78	sEV-Myla2059	Valor de p
1	P21709	EPHA1	19,4460	19,0253	0,1563	41	P06312		14,2880	13,7735	0,0010
2	O75460	ERN1	17,0509	16,2294	0,0028	42	P10412	H1-4	14,6206	13,2939	0,0079
3	P62249	RPS16	16,6597	16,5074	0,4192	43	P43652	AFM	13,9705	13,8614	0,1416
4	P01619		16,1035	16,1880	0,9182	44	P06276	BCHE	14,0833	13,7166	0,0468
5	P02750	LRG1	16,1309	15,9828	0,1841	45	Q6EMK4	VASN	14,1120	13,6728	0,0043
6	P62851	RPS25	15,7820	16,0897	0,0504	46	P00918	CA2	13,9406	13,8399	0,5678
7	P02790	HPX	15,8545	15,8054	0,5866	47	P43251	BTD	14,1085	13,6606	0,0137
8	P08637	FCGR3A	15,5404	15,6512	0,5235	48	075144	ICOSLG	14,0801	13,6858	0,0084
9	P04217	A1BG	15,4718	15,3827	0,6749	49	P15153	RAC2	13,7669	13,8707	0,5776
10	P04217	A1BG	15,4060	15,3931	0,9083	50	P00915	CA1	14,0617	13,5720	0,0006
11	P07437	TUBB	15,1146	15,1429	0,8873	51	P78417	GSTO1	13,7111	13,9175	0,3080
12	P61254	RPL26	14,9718	15,1453	0,1173	52	P69905	HBA1, HBA2	13,6815	13,8405	0,1281
13	P00738	HP	15,0219	15,0366	0,8787	53	P05155	SERPING1	13,7360	13,7402	0,9734
14	P01023	A2M	14,5321	15,3806	0,0365	54	Q96PD5	PGLYRP2	13,6884	13,7873	0,4243
15	P62714	PPP2CB	14,7706	15,1409	0,0229	55	P05090	APOD	13,7931	13,6719	0,6471
16	P15880	RPS2	15,0089	14,8693	0,2202	56	Q6ZNG0	ZNF620	13,7292	13,7197	0,9551
17	P20742		14,4899	15,3622	0,0063	57	P00450	CP	13,7887	13,5328	0,0057
18	P51884	LUM	15,0097	14,7802	0,2575	58	P01009	SERPINA1	13,7528	13,5390	0,0797
19	Q8WUX9	CHMP7	14,7517	15,0212	0,2105	59	O95445	APOM	13,7886	13,4979	0,0434
20	P01834		15,1355	14,4870	0,0002	60	P23396	RPS3	13,6691	13,5707	0,1266
21	Q12913	PTPRJ	14,7442	14,6959	0,6229	61	P02765	AHSG	13,7036	13,5303	0,0418
22	Q8TEZ7	PAQR8	12,9267	16,4488	0,0020	62	P01857		13,7934	13,4093	0,2916
23	P35268	RPL22	15,1701	14,1320	0,0002	63	P19652	ORM2	13,5364	13,6593	0,8371
24	P02768	ALB	14,5385	14,5813	0,7105	64	P68871	HBB	13,5351	13,5622	0,7727
25	P02766	TTR	15,0856	14,0283	0,0007	65	P04406	GAPDH	13,2584	13,8382	0,0002
26	O95497	VNN1	14,5958	14,4467	0,3240	66	P0C0L5	C4B, C4B_2	13,8733	13,1916	0,0013
27	P37837	TALDO1	14,3639	14,4955	0,3690	67	Q7Z7G0	ABI3BP	13,7250	13,3366	0,0248
28	P07339	CTSD	14,2417	14,3192	0,6706	68	P01042	KNG1	13,7367	13,2842	0,0001
29	P0CF74		14,5260	14,0186	0,1119	69	P08185	SERPINA6	13,6896	13,3080	0,0027
30	O43432	EIF4G3	14,5719	13,9182	0,0150	70	Q9Y646	CPQ	13,6613	13,3256	0,1064
31	P02656	APOC3	14,9018	13,5830	0,0554	71	P68363	TUBA1B	13,2722	13,6192	0,0074
32	Q9NZP8	C1RL	14,3653	14,0703	0,0805	72	P55209	NAP1L1	13,3189	13,5625	0,1513
33	Q13748	TUBA3CD	13,9703	14,4517	0,2523	73	P20774	OGN	13,3827	13,4984	0,3324
34	P01859		14,3280	14,0759	0,2026	74	P62805	H4C1-12	13,4632	13,3697	0,8013
35	P05543	SERPINA7	14,2485	14,1271	0,1806	75	P01308	INS	13,6849	13,0200	0,1170
36	P60709	ACTB	13,5528	14,8085	0,0000	76	A0A0A0MR		13,3627	13,3356	0,8789
37	P62269	RPS18	13,9986	14,3605	0,0203	77	P10909	CLU	13,5664	13,0657	0,0645
38	P80108	GPLD1	14,2428	14,0098	0,0245	78	P07737	PFN1	13,2602	13,3576	0,2755
39	P62913	RPL11	14,2827	13,9258	0,2523	79	P32970	CD70	13,6319	12,9312	0,0494
40	P02760	AMBP	14,2620	13,8024	0,0002	80	P02749	APOH	13,3627	13,1589	0,1896

APÊNDICE A - 620 proteínas expressas nas amostras sEV-LCCT (2/6)

N٥	Proteína (ID)	Gene	sEV-Hut78	sEV Myla2059	Valor de p	N⁰	Proteína (ID)	Gene	sEV-Hut78	sEV-Myla2059	Valor de p
241	P08708	RPS17	11,8164	11,6833	0,3631	281	Q99832	CCT7	11,1949	11,6021	0,0151
242	Q15185	PTGES3	12,8903	10,5767	0,0000	282	P22314	UBA1	11,3549	11,4358	0,5625
243	Q01813	PFKP	11,3639	12,0916	0,0002	283	Q06830	PRDX1	11,6090	11,0979	0,0366
244	P30153	PPP2R1A	11,8482	11,6072	0,3289	284	P62879	GNB2	11,3668	11,3274	0,7195
245	P16070	CD44	12,7938	10,6397	0,0002	285	Q16853	AOC3	11,4832	11,2007	0,0852
246	P61158	ACTR3	11,0299	12,3711	0,0001	286	O43684	BUB3	11,0703	11,6129	0,0003
247	P19823	ITIH2	11,7098	11,6515	0,8234	287	Q96EK6	GNPNAT1	10,5013	12,1215	0,0004
248	P22090	RPS4Y1	11,2918	12,0688	0,0001	288	P08134	RHOC	11,1706	11,4121	0,5298
249	P16930	FAH	11,5949	11,7389	0,2722	289	P40227	CCT6A	11,1359	11,4390	0,1263
250	P62910	RPL32	11,8019	11,5279	0,5119	290	P07359	GP1BA	12,2380	10,3362	0,0090
251	P27695	APEX1	11,5688	11,7475	0,4809	291	P23526	AHCY	11,0874	11,4848	0,0336
252	P49368	CCT3	11,4684	11,8454	0,0281	292	P00751	CFB	11,1600	11,4114	0,1835
253	Q8WZ75	ROBO4	11,7360	11,5426	0,3795	293	P55290	CDH13	11,4699	11,0710	0,0709
254	P60866	RPS20	11,5613	11,7017	0,4902	294	P27635	RPL10	11,1144	11,4175	0,1761
255	Q01459	CTBS	11,7758	11,4655	0,0041	295	P34896	SHMT1	10,2031	12,3232	0,0000
256	Q14141	SEPTIN6	11,8043	11,4365	0,0542	296	Q13347	EIF3I	11,0244	11,4838	0,0504
257	P60953	CDC42	12,1363	11,1026	0,0018	297	P01033	TIMP1	11,7977	10,6699	0,0334
258	P55010	EIF5	11,3552	11,8824	0,0006	298	P35579	MYH9	11,1834	11,2573	0,1416
259	P01877		11,5071	11,6953	0,2306	299	P68104	EEF1A1	11,0099	11,4148	0,0658
260	O15143	ARPC1B	10,6682	12,5253	0,0001	300	P68431	H3C1-12	11,4915	10,9124	0,0781
261	Q9NSD9	FARSB	11,3580	11,8323	0,0009	301	P46778	RPL21	10,9786	11,4053	0,0927
262	Q9Y4D7	PLXND1	11,9445	11,2448	0,0165	302	Q92900	UPF1	10,9971	11,3614	0,0502
263	P46783	RPS10	11,5763	11,6061	0,8840	303	P06748	NPM1	12,0170	10,3406	0,0002
264	Q9NTK5	OLA1	11,5608	11,5669	0,4079	304	P04066	FUCA1	11,2997	11,0568	0,0725
265	Q15019	SEPTIN2	11,5092	11,5891	0,5895	305	P62263	RPS14	11,0955	11,2460	0,1088
266	P04075	ALDOA	11,5584	11,5370	0,8926	306	Q9Y3I0	RTCB	10,4578	11,8687	0,0002
267	Q9HB07		11,4821	11,5788	0,7494	307	P13473	LAMP2	11,8331	10,4933	0,0179
268	P52888	THOP1	11,4181	11,5872	0,2794	308	P54578	USP14	10,6861	11,6245	0,0115
269	P28838	LAP3	12,0161	10,9751	0,0115	309	P26640	VARS1	11,4929	10,8141	0,0036
270	Q6UXB8	PI16	11,9523	11,0340	0,0171	310	Q9UBG0	MRC2	11,4822	10,8177	0,1347
271	P38919	EIF4A3	11,5684	11,3979	0,5135	311	P33992	MCM5	11,4053	10,8918	0,0126
272	B5ME19	EIF3CL	11,2172	11,7318	0,2458	312	P08865	RPSA	10,9480	11,3377	0,1267
273	P13639	EEF2	11,2941	11,6398	0,0839	313	P53999	SUB1	10,9578	11,3217	0,2105
274	P12004	PCNA	12,3803	10,5530	0,0001	314	P48444	ARCN1	10,6243	11,6488	0,0000
275	O00186	STXBP3	11,4769	11,4302	0,8321	315	P54687	BCAT1	8,3001	13,9574	0,0000
276	P62917	RPL8	11,8615	11,0376	0,0020	316	Q9Y230	RUVBL2	11,2905	10,9469	0,0327
277	P05362	ICAM1	11,2523	11,6314	0,0467	317	Q13283	G3BP1	11,0658	11,1708	0,7577
278	Q14213	EBI3	8,6288	14,2081	0,0002	318	P08133	ANXA6	11,7523	10,4336	0,0027
279	P05546	SERPIND1	11,4800	11,3340	0,6461	319	P61026	RAB10	11,4471	10,7282	0,0052
280	Q92598	HSPH1	11,4270	11,3760	0,7850	320	P54289	CACNA2D1	11,2285	10,9395	0,0365

APÊNDICE A - 620 proteínas expressas nas amostras sEV-LCCT (3/6)

Nº	Proteína (ID)	Gene	sEV-Hut78	sEV Myla2059	Valor de p	Nº	Proteína (ID)	Gene	sEV-Hut78	sEV-Myla2059	Valor de p
321	P54577	YARS1	10,9061	11,2587	0,0025	361	Q9UMS4	PRPF19	11,1880	10,4531	0,0160
322	P01008	SERPINC1	11,0496	11,1125	0,4936	362	P46782	RPS5	11,1138	10,5225	0,1474
323	O75533	SF3B1	10,3447	11,8152	0,0000	363	Q14204	DYNC1H1	10,7150	10,8629	0,5492
324	P10768	ESD	11,4228	10,7287	0,0923	364	P0C0S5	H2AZ1	11,3372	10,2385	0,0712
325	P07237	P4HB	11,6219	10,5247	0,0003	365	P27348	YWHAQ	10,9493	10,6224	0,3463
326	P25205	MCM3	11,9343	10,2041	0,0001	366	P52566	ARHGDIB	10,8570	10,7119	0,4079
327	Q14240	EIF4A2	12,3154	9,8229	0,0008	367	P29692	EEF1D	10,5134	11,0416	0,0152
328	Q00610	CLTC	10,9754	11,1558	0,3915	368	P11586	MTHFD1	10,5301	11,0155	0,0077
329	Q16555	DPYSL2	11,2118	10,9150	0,0385	369	P09211	GSTP1	10,6156	10,8866	0,7577
330	P15090	FABP4	11,1676	10,9585	0,2991	370	Q9Y333	LSM2	11,1557	10,3462	0,0009
331	Q99873	PRMT1	10,9536	11,1719	0,2135	371	P84095	RHOG	10,1640	11,2928	0,0060
332	P78371	CCT2	11,0407	11,0701	0,8806	372	P33991	MCM4	11,2033	10,2271	0,0001
333	P06576	ATP5F1B	9,8353	12,2712	0,0000	373	P31146	CORO1A	10,9689	10,4480	0,0033
334	Q9Y265	RUVBL1	11,2211	10,8300	0,0603	374	P48643	CCT5	10,5048	10,9052	0,0110
335	P61160	ACTR2	10,4095	11,6320	0,0001	375	Q9UBE0	SAE1	10,8566	10,5472	0,2480
336	P62277	RPS13	11,4981	10,5427	0,0201	376	P17987	TCP1	10,7061	10,6906	0,9301
337	P36578	RPL4	11,7712	10,2642	0,0002	377	Q9Y285	FARSA	10,2574	11,1256	0,0000
338	Q08380	LGALS3BP	13,3354	8,6922	0,0000	378	Q9Y3F4	STRAP	9,4423	11,9326	0,0000
339	P62841	RPS15	11,0621	10,9378	0,2523	379	P41252	IARS1	10,6286	10,7440	0,7047
340	P62318	SNRPD3	11,0999	10,8744	0,2579	380	Q02878	RPL6	10,8090	10,5613	0,2534
341	P49189	ALDH9A1	10,5397	11,4296	0,1091	381	P04792	HSPB1	8,5796	12,7906	0,0002
342	P49736	MCM2	11,4902	10,4640	0,0021	382	P09960	LTA4H	10,5442	10,8187	0,0745
343	P50990	CCT8	10,8052	11,1399	0,1407	383	Q6UX71	PLXDC2	11,0883	10,2310	0,0011
344	Q13838	DDX39B	11,4525	10,4904	0,0006	384	Q9Y4L1	HYOU1	10,5348	10,7680	0,1318
345	P61163	ACTR1A	9,7549	12,1357	0,0002	385	P16401	H1-5	13,6984	7,5965	0,0000
346	P05556	ITGB1	11,5150	10,3754	0,0159	386	P24534	EEF1B2	10,6827	10,5953	0,8422
347	P02144	MB	10,7347	11,1219	0,0646	387	P36873	PPP1CC	10,2166	11,0519	0,1738
348	O43776	NARS1	10,4979	11,3580	0,0009	388	P55884	EIF3B	10,4327	10,8311	0,1301
349	Q9P258	RCC2	11,4651	10,3692	0,0001	389	P49591	SARS1	10,1567	11,0697	0,0002
350	P60842	EIF4A1	11,7186	10,1041	0,0004	390	Q9Y617	PSAT1	9,5858	11,5878	0,0000
351	Q15233	NONO	11,6794	10,1247	0,0002	391	P04216	THY1	13,1417	8,0201	0,0000
352	P57721	PCBP3	10,6837	11,0703	0,3785	392	P26992	CNTFR	10,7021	10,4064	0,1809
353	P22234	PAICS	10,5948	11,1554	0,0418	393	O75608	LYPLA1	10,2452	10,8606	0,2280
354	P19623	SRM	10,7913	10,9522	0,3316	394	Q09028	RBBP4	10,6822	10,4192	0,3000
355	P15311	EZR	11,4223	10,3104	0,0000	395	P98160	HSPG2	11,0913	9,9667	0,0009
356	Q16186	ADRM1	10,7677	10,9586	0,3554	396	Q02750	MAP2K1	9,5266	11,5181	0,0000
357	Q9UBQ0	VPS29	10,8770	10,8333	0,2991	397	P14866	HNRNPL	10,4893	10,5546	0,7689
358	P62491	RAB11A	10,9852	10,7248	0,6577	398	P42025	ACTR1B	9,7164	11,3242	0,0000
359	O43148	RNMT	11,4444	10,2463	0,0001	399	P12956	XRCC6	10,6095	10,4254	0,2353
360	Q04760	GLO1	10,1264	11,5361	0,0001	400	Q6UXN9	WDR82	10,4679	10,5606	0,7633

APÊNDICE A - 620 proteínas expressas nas amostras sEV-LCCT (4/6)

Nº	Proteína (ID)	Gene	sEV-Hut78	sEV Myla2059	Valor de p	N٥	Proteína (ID)	Gene	sEV-Hut78	sEV-Myla2059	Valor de p
401	P49915	GMPS	11,0852	9,8991	0,0080	441	P31431	SDC4	9,7637	10,5697	0,1738
402	P41091	EIF2S3	10,3284	10,6443	0,2805	442	O95456	PSMG1	10,3060	9,9519	0,1722
403	Q13619	CUL4A	10,3037	10,6647	0,1668	443	Q02790	FKBP4	9,2506	10,9582	0,0000
404	P13760		12,8280	8,1401	0,0000	444	Q04917	YWHAH	10,2720	9,9301	0,4553
405	Q8NCC3	PLA2G15	10,4413	10,4881	0,8490	445	P29965	CD40LG	8,7104	11,4853	0,0008
406	P60033	CD81	10,6904	10,2295	0,2739	446	P18124	RPL7	9,5180	10,6295	0,0842
407	P05455	SSB	9,8092	11,0816	0,0000	447	P53621	COPA	9,9537	10,1778	0,5208
408	P08195	SLC3A2	11,5487	9,3395	0,0007	448	P52597	HNRNPF	11,2103	8,8974	0,0000
409	P63241	EIF5A	10,5864	10,2934	0,0403	449	P00966	ASS1	11,8970	8,2092	0,0000
410	P16152	CBR1	10,8208	10,0309	0,0002	450	P53396	ACLY	10,0245	10,0740	0,8572
411	P19338	NCL	12,2409	8,6002	0,0000	451	P08670	VIM	9,1711	10,9195	0,0001
412	P11908	PRPS2	8,3011	12,5339	0,0000	452	P17812	CTPS1	10,0209	10,0496	0,8918
413	P55786	NPEPPS	9,9927	10,8367	0,0001	453	Q92563	SPOCK2	11,8340	8,2358	0,0000
414	Q9P2J5	LARS1	10,3569	10,4677	0,5724	454	P41250	GARS1	10,0014	10,0679	0,6295
415	P29144	TPP2	10,1189	10,6830	0,3048	455	O15145	ARPC3	8,9637	11,0822	0,0000
416	P51149	RAB7A	10,8442	9,9464	0,0005	456	Q14764	MVP	8,9220	11,1198	0,0002
417	P50991	CCT4	10,1721	10,5995	0,0544	457	P55263	ADK	9,9191	10,1159	0,6426
418	O43175	PHGDH	12,5679	8,1889	0,0000	458	O00571	DDX3X	10,7427	9,2732	0,0004
419	P49327	FASN	10,2313	10,5246	0,1833	459	P30044	PRDX5	9,7778	10,2188	0,0253
420	P09874	PARP1	10,9287	9,7588	0,0002	460	P17174	GOT1	10,0906	9,8426	0,2924
421	O43488	AKR7A2	9,4401	11,2438	0,0002	461	P81605	DCD	9,8536	10,0790	0,8604
422	P40926	MDH2	10,2329	10,4442	0,4910	462	Q9Y490	TLN1	9,9200	10,0123	0,5008
423	P61081	UBE2M	10,2958	10,3696	0,8983	463	P05156	CFI	9,6155	10,2517	0,0061
424	P63151	PPP2R2A	8,6667	11,9870	0,0000	464	Q9BUF5	TUBB6	9,5625	10,2959	0,1101
425	O43172	PRPF4	10,5076	10,1250	0,1726	465	P47897	QARS1	10,1313	9,7175	0,0698
426	P09651	HNRNPA1	10,7398	9,8721	0,0014	466	P18669	PGAM1	9,5942	10,2494	0,0019
427	P07814	EPRS1	10,2494	10,3511	0,6608	467	P06681	C2	9,9489	9,8878	0,7691
428	Q99729	HNRNPAB	9,7043	10,8820	0,0006	468	P21333	FLNA	9,9016	9,9283	0,8468
429	Q99497	PARK7	10,7222	9,8470	0,0098	469	Q13085	ACACA	10,7282	9,0963	0,0002
430	Q86SQ4	ADGRG6	10,8221	9,7152	0,0160	470	O15371	EIF3D	9,6635	10,1607	0,0019
431	P26368	U2AF2	11,0942	9,4005	0,0000	471	P27930	IL1R2	8,6051	11,2171	0,0052
432	Q7KZF4	SND1	10,1376	10,3014	0,3428	472	P42224	STAT1	9,6871	10,1317	0,3112
433	Q16531	DDB1	10,0024	10,4273	0,3820	473	P51991	HNRNPA3	10,8108	8,9940	0,0005
434	Q15181	PPA1	9,9394	10,4850	0,0004	474	O43143	DHX15	10,0053	9,7896	0,3119
435	P07858	CTSB	10,4473	9,9755	0,0858	475	P55058	PLTP	10,2101	9,5835	0,0907
436	P51665	PSMD7	9,9892	10,4291	0,1738	476	O75083	WDR1	9,9241	9,8677	0,7630
437	O43390	HNRNPR	10,1343	10,2811	0,5073	477	P27708	CAD	11,4266	8,3295	0,0000
438	P09661	SNRPA1	9,6488	10,7476	0,0007	478	P34897	SHMT2	8,7233	11,0260	0,0000
439	Q92841	DDX17	10,1498	10,2197	0,7312	479	P45877	PPIC	8,6427	11,0927	0,0016
440	P17844	DDX5	10,9524	9,4128	0,0004	480	Q9BQ52	ELAC2	9,7359	9,9956	0,5126
APÊNDICE A - 620 proteínas expressas nas amostras sEV-LCCT (5/6)

Nº	Proteína (ID)	Gene	sEV-Hut78	sEV Myla2059	Valor de p	N⁰	Proteína (ID)	Gene	sEV-Hut78	sEV-Myla2059	Valor de p
481	O00231	PSMD11	9,7013	10,0225	0,4462	521	P49773	HINT1	9,0035	9,9966	0,0387
482	P27694	RPA1	10,6688	9,0507	0,0000	522	P60510	PPP4C	9,6701	9,3298	0,2178
483	P43034	PAFAH1B1	9,5712	10,1318	0,0590	523	Q96FX7	TRMT61A	9,6248	9,3651	0,2514
484	Q9H4A4	RNPEP	9,3801	10,3209	0,0002	524	P62140	PPP1CB	9,0711	9,9145	0,1025
485	P05067	APP	11,8153	7,8690	0,0000	525	P30520	ADSS2	9,5554	9,4288	0,4188
486	P61011	SRP54	9,6858	9,9902	0,1294	526	P49588	AARS1	9,2018	9,7413	0,0513
487	P05107	ITGB2	11,2644	8,4081	0,0000	527	P04222		11,5094	7,4224	0,0000
488	P48147	PREP	10,4128	9,2468	0,0010	528	O95433	AHSA1	10,0574	8,8652	0,0052
489	P20042	EIF2S2	10,0655	9,5859	1,0000	529	P02533	KRT14	9,4669	9,4327	0,9258
490	Q14974	KPNB1	10,2058	9,4225	0,1939	530	P35908	KRT2	9,7024	9,1729	0,3131
491	P02786	TFRC	10,9923	8,6073	0,0000	531	P43487	RANBP1	9,3826	9,4819	0,7635
492	P01903	HLA-DRA	11,2117	8,3665	0,0000	532	P22102	GART	9,5643	9,2978	0,3811
493	Q9UHD8	SEPTIN9	11,1984	8,3708	0,0002	533	P31153	MAT2A	10,1036	8,7568	0,0000
494	P38606	ATP6V1A	10,1738	9,3924	0,0449	534	P52209	PGD	9,7445	9,0311	0,0374
495	Q9Y5B9	SUPT16H	10,6312	8,9307	0,0001	535	P62888	RPL30	10,3274	8,4388	0,0214
496	P13674	P4HA1	10,9963	8,5194	0,0000	536	O15144	ARPC2	9,3285	9,4328	0,6526
497	Q9UBQ7	GRHPR	8,9211	10,5712	0,0000	537	O14744	PRMT5	8,7463	9,9935	0,0001
498	Q99615	DNAJC7	9,4945	9,9721	0,0707	538	P35998	PSMC2	9,0992	9,6374	0,1418
499	Q9NVP1	DDX18	9,1604	10,3007	0,0164	539	P61981	YWHAG	10,1402	8,5892	0,0004
500	Q9NR45	NANS	9,5172	9,9430	0,3211	540	P55769	SNU13	8,8007	9,8954	0,0059
501	O00429	DNM1L	9,3973	10,0561	0,0412	541	P23258	TUBG1	10,0448	8,5458	0,0015
502	P11766	ADH5	10,1867	9,2542	0,0046	542	Q2TAY7	SMU1	9,3248	9,2652	0,7877
503	P00338	LDHA	9,7870	9,6379	0,4781	543	Q9Y262	EIF3L	8,7772	9,7565	0,0142
504	P04264	KRT1	9,7070	9,7098	0,9914	544	Q86VP6	CAND1	8,9452	9,5822	0,0151
505	Q13045	FLII	9,5393	9,8748	0,0342	545	P37802	TAGLN2	9,2566	9,2574	0,9971
506	P35527	KRT9	9,6132	9,7962	0,6079	546	P35244	RPA3	9,0879	9,4101	0,5374
507	P54136	RARS1	9,6531	9,7177	0,6075	547	Q99972	MYOC	10,0589	8,4070	0,0087
508	Q15046	KARS1	9,2810	10,0647	0,0362	548	P26038	MSN	10,1787	8,2329	0,0046
509	P34932	HSPA4	9,3680	9,9727	0,0003	549	P09382	LGALS1	8,5292	9,8812	0,0459
510	O43242	PSMD3	9,6668	9,6627	0,9854	550	Q9BPX5	ARPC5L	8,3517	10,0585	0,0004
511	P33993	MCM7	10,2511	9,0391	0,0000	551	P60891	PRPS1	8,6510	9,7324	0,0030
512	P50552	VASP	9,6651	9,5536	0,6491	552	O60832	DKC1	8,9714	9,3966	0,1637
513	Q9Y316	MEMO1	9,0868	10,0874	0,0094	553	P39748	FEN1	9,8960	8,4652	0,2523
514	P13645	KRT10	9,7366	9,4101	0,3606	554	Q14232	EIF2B1	9,5717	8,7874	0,1448
515	Q14152	EIF3A	9,6329	9,5091	0,5839	555	P62495	ETF1	9,1669	9,1735	0,9821
516	O00303	EIF3F	8,7301	10,3795	0,0000	556	P02538	KRT6A	9,3070	8,9683	0,3593
517	P11940	PABPC1	9,4913	9,6067	0,7335	557	Q99460	PSMD1	8,9046	9,3626	0,3734
518	P43686	PSMC4	9,3670	9,6856	0,4970	558	Q9BXJ9	NAA15	9,1337	9,1086	0,9062
519	Q96DI7	SNRNP40	9,1231	9,8932	0,0028	559	O00487	PSMD14	8,4702	9,7064	0,0071
520	P07093	SERPINE2	10,5990	8,4080	0,0000	560	Q9NUU7	DDX19A	9,4140	8,6767	0,0230

APÊNDICE A - 620 proteínas expressas nas amostras sEV-LCCT (6/6)

N⁰	Proteína (ID)	Gene	sEV-Hut78	sEV Myla2059	Valor de p	Nº	Proteína (ID)	Gene	sEV-Hut78	sEV-Myla2059	Valor de p
561	O60678	PRMT3	8,4351	9,6435	0,0002	601	P15927	RPA2	8,6734	8,0630	0,1542
562	Q9ULC4	MCTS1	10,2047	7,8197	0,0000	602	P62195	PSMC5	8,1753	8,5160	0,3884
563	Q15717	ELAVL1	9,8213	8,1824	0,0006	603	P78406	RAE1	8,4260	8,2595	0,6039
564	Q9HB71	CACYBP	8,3217	9,6679	0,0004	604	P47755	CAPZA2	8,3554	8,3171	0,2991
565	Q9NQR4	NIT2	8,2244	9,7646	0,0003	605	Q9BQA1	WDR77	7,7643	8,8853	0,0968
566	Q92979	EMG1	8,8241	9,1596	0,3120	606	P51659	HSD17B4	8,2064	8,4264	0,5858
567	Q9BS26	ERP44	9,9111	8,0554	0,0001	607	Q96QK1	VPS35	8,3786	8,2476	0,6395
568	Q13200	PSMD2	8,5542	9,4056	0,0239	608	Q9BZQ8	NIBAN1	8,1458	8,4487	0,5274
569	Q01581	HMGCS1	10,4087	7,4985	0,0000	609	Q9NYF8	BCLAF1	8,4565	8,1202	0,2529
570	Q14697	GANAB	9,0595	8,7781	0,4548	610	Q96LI5	CNOT6L	8,0229	8,3053	0,4323
571	Q969U7	PSMG2	8,5686	9,2637	0,0476	611	Q12906	ILF3	8,5104	7,8099	0,2164
572	Q09161	NCBP1	9,5281	8,3001	0,0002	612	P46976	GYG1	8,1587	8,1529	0,9822
573	Q15029	EFTUD2	8,6687	9,1491	0,0649	613	Q93009	USP7	7,8756	8,4030	0,1442
574	P04745	AMY1A-C	8,6965	9,0802	1,0000	614	P78527	PRKDC	8,1927	7,9897	0,6806
575	Q9H223	EHD4	8,6714	9,0882	0,3911	615	Q8N1G4	LRRC47	8,2190	7,9060	0,4267
576	P11216	PYGB	9,8133	7,9256	0,0000	616	P51003	PAPOLA	7,5877	8,5121	0,1002
577	Q06203	PPAT	8,1562	9,5612	0,0004	617	Q14103	HNRNPD	7,8719	8,1793	0,4521
578	Q15008	PSMD6	8,7895	8,9155	0,7680	618	Q9P287	BCCIP	8,0037	7,9621	0,8997
579	O43818	RRP9	8,9395	8,6546	0,3310	619	Q9H7D7	WDR26	7,5873	7,8220	0,5072
580	O95757	HSPA4L	8,6098	8,9423	0,3382	620	O76094	SRP72	7,7525	7,4692	0,5682
581	P47756	CAPZB	9,0739	8,4617	0,2732						
582	P31943	HNRNPH1	9,2896	8,1561	0,0163						
583	Q9Y696	CLIC4	9,1611	8,2747	0,0498						
584	Q96RU3	FNBP1	8,4432	8,9436	0,0131						
585	O14980	XPO1	8,5280	8,8502	0,2371						
586	Q01518	CAP1	8,5003	8,8474	0,1366						
587	O95671	ASMTL	8,7309	8,6044	0,7059						
588	P26639	TARS1	8,8606	8,3834	0,1373						
589	Q9NTX5	ECHDC1	9,0741	8,1565	0,0427						
590	P19971	TYMP	8,4307	8,7715	0,3000						
591	Q9UK59	DBR1	8,7928	8,3631	0,0164						
592	P42285	MTREX	8,5008	8,5337	0,8758						
593	Q9GZZ1	NAA50	8,2420	8,7462	0,1378						
594	P13647	KRT5	8,6522	8,3112	0,1431						
595	Q53EL6	PDCD4	8,7010	8,2346	0,1391						
596	P09972	ALDOC	7,8261	9,0782	0,0028						
597	P62829	RPL23	8,4253	8,4262	0,9975						
598	Q9Y5X3	SNX5	8,3388	8,4927	0,4079						
599	Q13813	SPTAN1	8,4496	8,3524	0,7011						
600	P52907	CAPZA1	8,6066	8,1342	0,1301						

APÊNDICE B - 1950 DEGs em queratinócitos após tratamento com sEV-LCCT por 4h (1/17)

N⁰ Gene	Valor de p	Foldchange	N⁰ Gene	Valor de p	Foldchange	N⁰ Gene	Valor de p	Foldchange
1 CSF2	0.0007	7.1927	41 CXorf49	0.0096	3.8073	81 CLDN6	0.0049	3.1297
2 CXCL8	0.0001	6.9068	42 CD7	0.0087	3.7850	82 ADAM19	< 0.0001	3.1084
3 KRTAP2-3	0.0005	6.1016	43 LINC01705	0.0076	3.7734	83 TNFRSF9	0.0200	3.1067
4 SPRR2D	< 0.0001	6.0106	44 LIF	< 0.0001	3.7513	84 PLXNA4	0.0105	3.0848
5 SPRR2A	< 0.0001	5.6613	45 DUSP5	< 0.0001	3.7451	85 KCCAT198	0.0316	3.0765
6 ESM1	0.0031	5.5602	46 LHX9	0.0109	3.7052	86 KRTAP1-5	0.0027	3.0749
7 CREB5	0.0021	5.5297	47 LINC02457	0.0279	3.6987	87 MIR6772	0.0029	3.0749
8 MMP20	0.0018	5.5253	48 LINC01828	0.0114	3.6875	88 MPP4	0.0027	3.0749
9 HSPA6	0.0043	5.2833	49 C5orf67	0.0011	3.6538	89 INGX	0.0024	3.0749
10 SERPINB2	< 0.0001	4.9075	50 LINC01943	0.0069	3.6538	90 DUSP6	< 0.0001	3.0583
11 CXCL1	< 0.0001	4.8906	51 VNN1	0.0086	3.5813	91 CD274	0.0001	3.0407
12 FOSL1	< 0.0001	4.8301	52 C3orf36	0.0239	3.5784	92 LINC00452	0.0018	3.0276
13 ADGRF2	< 0.0001	4.7846	53 ZFP57	0.0189	3.5784	93 HSD11B1	0.0016	3.0224
14 CCDC13	0.0001	4.7514	54 PRR9	0.0010	3.5718	94 WAKMAR2	< 0.0001	2.9998
15 EGR3	0.0002	4.7042	55 LINC02783	0.0491	3.5666	95 YWHABP2	0.0485	2.9994
16 BMP6	0.0060	4.6857	56 ARHGAP20	0.0039	3.5357	96 HBEGF	< 0.0001	2.9893
17 SLC24A3	0.0150	4.6350	57 SOCS1	< 0.0001	3.5347	97 DCLK2	0.0192	2.9872
18 IL1RL1	0.0005	4.6099	58 SHISA2	0.0347	3.4994	98 RUBCNL	0.0001	2.9582
19 SPRY4	0.0003	4.5227	59 LRRC4	0.0002	3.4910	99 AREG	0.0001	2.9581
20 KRTAP3-1	0.0218	4.5055	60 OACYLP	0.0110	3.4401	100 GJB6	0.0015	2.9366
21 SAA4	0.0007	4.4648	61 NHSL2	0.0005	3.4153	101 PERM1	0.0065	2.9344
22 CCDC190	0.0149	4.4071	62 TRIM67	0.0046	3.4082	102 LINC00565	0.0006	2.9253
23 LINC02539	0.0119	4.3402	63 RN7SKP116	0.0348	3.3926	103 CCL2	< 0.0001	2.9185
24 TRPV3	0.0129	4.3257	64 GJA3	0.0051	3.3814	104 SLC10A1	0.0273	2.9147
25 EGR4	0.0001	4.2698	65 SAMD14	0.0249	3.3332	105 NOG	0.0007	2.9139
26 KRT23	0.0051	4.1973	66 TUBB8B	0.0078	3.3205	106 PTGS2	0.0002	2.9115
27 TNFAIP3	< 0.0001	4.1970	67 FGF19	0.0002	3.3035	107 CHRNA2	0.0011	2.8799
28 PCNPP3	0.0052	4.1939	68 FOXC2	0.0125	3.2899	108 EBI3	0.0011	2.8799
29 IGSF11	0.0060	4.1826	69 KLHDC7B	0.0001	3.2633	109 RNA5SP123	0.0011	2.8799
30 PDCD1LG2	0.0001	4.0580	70 PLAUR	< 0.0001	3.2371	110 SLN	0.0011	2.8799
31 ADAMTS9	0.0038	4.0467	71 LSAMP	0.0013	3.2151	111 TRBC1	0.0011	2.8799
32 TRBV30	0.0058	4.0425	72 LINC01426	< 0.0001	3.2132	112 S1PR3	0.0045	2.8754
33 IRAG1	0.0003	4.0093	73 LMO7DN	< 0.0001	3.2132	113 C1DP1	0.0200	2.8611
34 MIR6090	0.0006	3.9872	74 SERPINB9	0.0051	3.2132	114 SNORA80C	0.0216	2.8506
35 NPAS3	0.0112	3.9684	75 PLAU	< 0.0001	3.1965	115 C15orf54	0.0259	2.8493
36 G0S2	0.0240	3.9579	76 IL1R2	0.0005	3.1950	116 SERPINB10	0.0007	2.8201
37 TNF	0.0012	3.9365	77 LRIT3	0.0216	3.1944	117 BIRC3	< 0.0001	2.8170
38 LINC01127	0.0003	3.9042	78 FST	< 0.0001	3.1812	118 TCTEX1D4	0.0001	2.7992
39 ERG	0.0192	3.8568	79 MIR5700	0.0314	3.1651	119 TGFA	< 0.0001	2.7921
40 KRTAP4-12	0.0198	3.8504	80 BTBD19	0.0017	3.1425	120 TNS4	< 0.0001	2.7863

APÊNDICE B - 1950 DEGs em queratinócitos após tratamento com sEV-LCCT por 4h (2/17)

N⁰ Gene	Valor de p	Foldchange	N⁰ Gene	Valor de p	Foldchange	N⁰ Gene	Valor de p	Foldchange
121 UBE2FP1	0.0130	2.7853	161 KCNH5	0.0018	2.5465	201 CCN2	0.0004	2.2605
122 TRAF3IP3	< 0.0001	2.7800	162 KRTAP5-10	0.0015	2.5465	202 PHLDA1	< 0.0001	2.2478
123 CXCL6	0.0001	2.7795	163 LINC00535	0.0018	2.5465	203 CSTP1	0.0488	2.2468
124 LINC0130	3 0.0474	2.7781	164 MRAP	0.0018	2.5465	204 HOXB2	0.0494	2.2468
125 MYO1G	0.0476	2.7752	165 PNPLA5	0.0015	2.5465	205 MAFF	< 0.0001	2.2318
126 MIR3682	0.0468	2.7752	166 TGFA-IT1	0.0015	2.5465	206 F3	< 0.0001	2.2289
127 KRT17	< 0.0001	2.7656	167 MFAP2	0.0015	2.5465	207 BACH2	0.0088	2.2280
128 GRK5-IT1	0.0072	2.7415	168 MTCYBP43	0.0015	2.5465	208 SEMA7A	< 0.0001	2.2196
129 LINC0088	0.0072	2.7415	169 OR2T8	0.0015	2.5465	209 TMEM121B	0.0050	2.2174
130 DRGX	0.0063	2.7415	170 SPRR2F	0.0015	2.5465	210 ASH1L-IT1	< 0.0001	2.2132
131 OTOP2	0.0063	2.7415	171 WFDC5	0.0015	2.5465	211 BEST2	< 0.0001	2.2132
132 PAX5	0.0063	2.7415	172 SPRR1B	0.0006	2.5436	212 IKZF3	< 0.0001	2.2132
133 RBMXP5	0.0063	2.7415	173 HS3ST2	< 0.0001	2.5410	213 NKX2-5	< 0.0001	2.2132
134 CDK5R1	0.0001	2.7343	174 LINC01787	0.0483	2.5307	214 RN7SKP130	< 0.0001	2.2132
135 KPNA7	0.0274	2.7285	175 SULT2B1	0.0075	2.5128	215 RNA5SP435	< 0.0001	2.2132
136 IL6	0.0006	2.7261	176 LINC02768	0.0075	2.5077	216 RNA5SP477	< 0.0001	2.2132
137 BMPR1AF	0.0342	2.7109	177 ADAMTS15	0.0009	2.4939	217 SNORA28	< 0.0001	2.2132
138 LINC0143	3 0.0493	2.7009	178 ADGRF4	< 0.0001	2.4923	218 TBC1D3B	< 0.0001	2.2132
139 DUSP4	< 0.0001	2.7003	179 SAA2	0.0003	2.4866	219 THBD	< 0.0001	2.2132
140 LINC0162	9 0.0102	2.6993	180 PGDP1	0.0291	2.4711	220 SERPINB4	0.0215	2.2000
141 PAX1	0.0260	2.6904	181 RPS4XP2	0.0291	2.4711	221 CD83	0.0001	2.1822
142 TMEM171	< 0.0001	2.6874	182 ANTXR2	< 0.0001	2.4696	222 MIR3176	0.0076	2.1818
143 LINC0097	3 0.0005	2.6853	183 LINC02551	0.0002	2.4528	223 MICAL2	< 0.0001	2.1784
144 GJB2	< 0.0001	2.6843	184 AEN	< 0.0001	2.4462	224 PDE2A	0.0185	2.1608
145 CXCL2	0.0437	2.6543	185 C22orf24	0.0001	2.4157	225 DUSP2	< 0.0001	2.1512
146 BCL3	0.0001	2.6243	186 IER3	< 0.0001	2.3935	226 CHSY3	0.0094	2.1486
147 PDGFB	< 0.0001	2.6214	187 JUN	0.0001	2.3916	227 SLC5A1	0.0359	2.1433
148 ANGPTL4	0.0008	2.6209	188 CLDN4	< 0.0001	2.3916	228 HAS2	0.0012	2.1124
149 PHACTR3	0.0030	2.6179	189 EREG	< 0.0001	2.3906	229 NTSR1	0.0078	2.1101
150 ADORA2E	P1 0.0264	2.5936	190 CTRB1	0.0195	2.3803	230 GADD45A	< 0.0001	2.1035
151 C11orf91	0.0021	2.5870	191 NGF	0.0029	2.3730	231 MIR221	0.0295	2.1015
152 PLK3	< 0.0001	2.5846	192 NOCT	< 0.0001	2.3636	232 GJB4	0.0002	2.0930
153 ANKRD1	0.0001	2.5693	193 SH2D5	0.0006	2.3631	233 MFSD2A	< 0.0001	2.0655
154 ARC	0.0309	2.5625	194 SPOCD1	0.0001	2.3490	234 HIC1	0.0014	2.0539
155 SYT14	< 0.0001	2.5565	195 TAGLN	< 0.0001	2.3477	235 PHLDA2	< 0.0001	2.0521
156 RASL10B	< 0.0001	2.5508	196 MYEOV	0.0004	2.3372	236 TMEM200A	< 0.0001	2.0476
157 FOXD4L6	0.0015	2.5465	197 RELB	< 0.0001	2.3039	237 CD38	0.0040	2.0459
158 GPR85	0.0018	2.5465	198 KBTBD8	0.0001	2.2917	238 IL1B	0.0003	2.0381
159 GREM1	0.0015	2.5465	199 RPSAP52	0.0003	2.2787	239 TSPAN2	0.0074	2.0347
160 GRM4	0.0018	2.5465	200 HMGA2	< 0.0001	2.2680	240 LINC02454	< 0.0001	2.0320

APÊNDICE B - 1950 DEGs em queratinócitos após tratamento com sEV-LCCT por 4h (3/17)

N٥	Gene	Valor de p	Foldchange	N⁰ Gene	Valor de p	Foldchange	N⁰ Gene	Valor de p	Foldchange
241	VEGFA	< 0.0001	2.0213	281 MARCHF4	0.0031	1.7922	321 ZNF365	< 0.0001	1.6155
242	EDN1	< 0.0001	2.0166	282 B3GNT7	0.0020	1.7912	322 B3GNT3	< 0.0001	1.6146
243	POLR1G	< 0.0001	2.0046	283 SERPINB8	< 0.0001	1.7821	323 FZD10	0.0219	1.6082
244	SLC9A2	0.0027	1.9987	284 C1orf74	< 0.0001	1.7797	324 DAPP1	< 0.0001	1.6022
245	ADAM8	< 0.0001	1.9919	285 ETS1	< 0.0001	1.7794	325 CCND1	< 0.0001	1.6010
246	TLR4	0.0001	1.9904	286 IL36G	0.0390	1.7768	326 DUSP7	< 0.0001	1.5961
247	CAMK1G	0.0089	1.9648	287 HS3ST1	< 0.0001	1.7743	327 CEMIP	0.0001	1.5930
248	SERPINE1	0.0024	1.9600	288 CHST2	0.0305	1.7730	328 ZNF750	0.0003	1.5903
249	IL11	0.0043	1.9598	289 SNAI1	0.0278	1.7730	329 YRDC	0.0001	1.5840
250	ERMN	0.0042	1.9435	290 FSCN2	0.0047	1.7592	330 CDKN1A	< 0.0001	1.5798
251	CLCF1	< 0.0001	1.9395	291 POTEE	0.0137	1.7533	331 NEK7	< 0.0001	1.5783
252	SNORD15B	0.0401	1.9299	292 HK2	< 0.0001	1.7398	332 FJX1	< 0.0001	1.5754
253	MIR5008	0.0002	1.9240	293 EPHA2	< 0.0001	1.7340	333 MYADM	< 0.0001	1.5699
254	NACAD	0.0036	1.9232	294 ITGB6	0.0003	1.7289	334 TFPI2	< 0.0001	1.5695
255	F2RL1	0.0001	1.9213	295 NFATC2	0.0153	1.7174	335 VGF	0.0060	1.5690
256	MIR155HG	0.0099	1.9189	296 THBS1	0.0001	1.7144	336 WNT7A	< 0.0001	1.5682
257	VASN	0.0036	1.9041	297 AQP6	0.0185	1.7027	337 GALNT5	< 0.0001	1.5652
258	KRT16	0.0002	1.9027	298 LGALS2	0.0117	1.6922	338 CTRB2	0.0008	1.5634
259	IL23A	0.0002	1.9015	299 MAP3K14	0.0001	1.6906	339 URB2	< 0.0001	1.5566
260	RIPOR3	0.0289	1.8976	300 IL1R1	0.0001	1.6858	340 ARNTL	< 0.0001	1.5544
261	PNMA2	0.0066	1.8917	301 SRMS	0.0002	1.6845	341 NRG1	0.0001	1.5544
262	MALL	< 0.0001	1.8899	302 NHLH1	0.0066	1.6845	342 HAS3	0.0003	1.5507
263	EMP1	< 0.0001	1.8870	303 SELPLG	0.0139	1.6799	343 IL1A	0.0027	1.5495
264	KHSRPP1	0.0381	1.8841	304 NUAK2	0.0001	1.6787	344 PLEC	< 0.0001	1.5481
265	PGBD5	0.0019	1.8731	305 CYSRT1	0.0001	1.6783	345 METRNL	< 0.0001	1.5442
266	FGF5	0.0017	1.8702	306 DUSP8	0.0202	1.6769	346 ERICD	0.0228	1.5400
267	LUCAT1	0.0070	1.8660	307 ARHGAP25	0.0080	1.6734	347 EFNB2	< 0.0001	1.5391
268	TNFRSF10A	< 0.0001	1.8654	308 MYC	< 0.0001	1.6715	348 POU3F1	0.0012	1.5383
269	RELN	0.0022	1.8647	309 MARS2	0.0001	1.6691	349 NFKB2	< 0.0001	1.5374
270	MIR17HG	< 0.0001	1.8395	310 MUC16	0.0004	1.6683	350 RND3	< 0.0001	1.5346
271	LINC02605	0.0070	1.8291	311 OSBP2	0.0008	1.6663	351 ITGA2	< 0.0001	1.5314
272	CYP26B1	0.0004	1.8275	312 LRRC8A	< 0.0001	1.6559	352 LINC01776	0.0019	1.5287
273	ARL4C	0.0001	1.8263	313 N4BP3	0.0001	1.6559	353 IGFL1	0.0141	1.5261
274	CCN1	< 0.0001	1.8120	314 SLC25A33	< 0.0001	1.6538	354 SOX9	0.0002	1.5242
275	IFFO2	0.0001	1.8099	315 NAV3	0.0001	1.6533	355 TRIM47	< 0.0001	1.5219
276	TNFRSF12A	< 0.0001	1.8027	316 DOK7	< 0.0001	1.6331	356 NMNAT2	0.0001	1.5217
277	TNFRSF21	< 0.0001	1.8017	317 MROH2A	0.0434	1.6321	357 ISM1	0.0001	1.5093
278	BCAR3	< 0.0001	1.8012	318 TICAM1	0.0001	1.6274	358 JPH2	0.0001	1.5081
279	CDC42EP1	< 0.0001	1.8012	319 LAMA3	< 0.0001	1.6194	359 MYRFL	0.0193	1.5077
280	SLC10A6	0.0052	1.7992	320 GJB3	< 0.0001	1.6192	360 FOSB	0.0009	1.5049

APÊNDICE B - 1950 DEGs em queratinócitos após tratamento com sEV-LCCT por 4h (4/17)

N٥	Gene	Valor de p	Foldchange	N⁰ Gene	Valor de p	Foldchange	N⁰ Gene	Valor de p	Foldchange
361	TARS3	0.0004	1.4951	401 PIK3CD	< 0.0001	1.3797	441 CDRT1	0.0004	1.2811
362	MIR22HG	< 0.0001	1.4885	402 SLC20A1	< 0.0001	1.3769	442 WNT9A	0.0001	1.2800
363	HSH2D	0.0023	1.4885	403 PLAAT2	0.0363	1.3746	443 SNX22	0.0089	1.2770
364	PAPPA	0.0068	1.4854	404 CCDC71L	0.0010	1.3721	444 GNG4	0.0007	1.2744
365	TMEM217	0.0006	1.4826	405 EMSLR	< 0.0001	1.3713	445 STC2	< 0.0001	1.2665
366	SPNS2	0.0194	1.4818	406 C12orf54	0.0345	1.3630	446 NKX2-1	0.0108	1.2642
367	CGAS	< 0.0001	1.4815	407 TRIB1	< 0.0001	1.3613	447 NIPAL1	< 0.0001	1.2622
368	MIR429	0.0112	1.4669	408 MDFI	0.0001	1.3606	448 PANX1	< 0.0001	1.2584
369	TMED6	0.0358	1.4651	409 TMEM158	0.0001	1.3582	449 CALD1	0.0001	1.2579
370	TNNT2	0.0077	1.4647	410 PTPRE	0.0039	1.3580	450 DCUN1D3	< 0.0001	1.2524
371	FERMT2	0.0003	1.4592	411 ACTBL2	0.0284	1.3519	451 BCL2	0.0013	1.2506
372	MAT2A	< 0.0001	1.4558	412 ACTG1	< 0.0001	1.3511	452 C10orf55	0.0061	1.2485
373	MFNG	0.0004	1.4525	413 MIR4479	0.0375	1.3509	453 BMPER	0.0082	1.2432
374	BCAR1	< 0.0001	1.4506	414 MAFK	< 0.0001	1.3501	454 CLCA4	0.0385	1.2398
375	SNHG15	< 0.0001	1.4466	415 SOCS3	0.0370	1.3487	455 MAP2K3	< 0.0001	1.2362
376	MUC1	0.0002	1.4462	416 PRAG1	< 0.0001	1.3441	456 ZFP36L1	0.0002	1.2361
377	KLF6	< 0.0001	1.4441	417 TACR2	0.0271	1.3437	457 SNORD14A	0.0144	1.2356
378	ADAMTS14	0.0263	1.4434	418 HSD17B2	0.0308	1.3383	458 PDLIM2	< 0.0001	1.2352
379	KRT6A	< 0.0001	1.4432	419 PRDM8	0.0002	1.3309	459 EZR	< 0.0001	1.2335
380	AKAP12	0.0011	1.4366	420 PTGER4	0.0001	1.3309	460 SLFNL1	0.0186	1.2311
381	ZFP36	0.0001	1.4339	421 MMP9	0.0396	1.3305	461 ZNF296	0.0006	1.2290
382	SH3TC2	0.0004	1.4334	422 LGALSL	0.0001	1.3302	462 EPB41L5	0.0001	1.2212
383	TNFSF15	0.0013	1.4300	423 SLC20A2	< 0.0001	1.3282	463 LINC00513	0.0088	1.2207
384	MIR222HG	< 0.0001	1.4287	424 MFAP3L	0.0002	1.3275	464 TRAF1	0.0025	1.2190
385	PPP1R15A	0.0001	1.4281	425 PTGS1	< 0.0001	1.3242	465 IL1RN	0.0001	1.2186
386	GPR3	0.0273	1.4225	426 SCN9A	0.0166	1.3226	466 VGLL2	0.0142	1.2168
387	PRSS51	0.0163	1.4200	427 MIR100HG	0.0012	1.3221	467 SENCR	0.0353	1.2153
388	RAB43	0.0004	1.4165	428 CCDC85B	0.0001	1.3187	468 MARCO	0.0285	1.2141
389	SPHK1	0.0003	1.4142	429 GFOD1	< 0.0001	1.3141	469 FSTL3	0.0034	1.2131
390	ADAM32	0.0082	1.4078	430 LRP12	< 0.0001	1.3063	470 GJC2	0.0426	1.2054
391	LAMA2	0.0076	1.4018	431 UBASH3B	0.0003	1.3012	471 RELT	0.0001	1.2036
392	ASB2	0.0359	1.3985	432 TACSTD2	< 0.0001	1.3008	472 LAMC2	0.0001	1.2027
393	TMC1	0.0030	1.3957	433 MSC	0.0248	1.2994	473 WWTR1	< 0.0001	1.2018
394	PTHLH	0.0001	1.3955	434 CARD10	< 0.0001	1.2976	474 IRAK2	0.0151	1.2006
395	DNMBP	0.0001	1.3950	435 PLSCR3	0.0156	1.2936	475 WDR43	< 0.0001	1.1971
396	PLD6	0.0002	1.3943	436 SSH1	< 0.0001	1.2935	476 RASSF10	0.0005	1.1947
397	LINC02803	0.0273	1.3889	437 FGD2	0.0005	1.2904	477 RNF224	0.0129	1.1930
398	LINC00702	0.0135	1.3868	438 NFKBIE	0.0001	1.2891	478 HELZ2	< 0.0001	1.1922
399	SLC34A3	0.0137	1.3851	439 SGK1	0.0032	1.2873	479 SLC25A25	< 0.0001	1.1914
400	SPTB	0.0016	1.3807	440 RRS1	0.0001	1.2814	480 TRAF4	< 0.0001	1.1906

APÊNDICE B - 1950 DEGs em queratinócitos após tratamento com sEV-LCCT por 4h (5/17)

N⁰ Gene	Valor de p	Foldchange	N⁰ Gene	Valor de p	Foldchange	N⁰ Gene	Valor de p	Foldchange
481 SFN	< 0.0001	1.1878	521 SGMS2	0.0001	1.1288	561 AJAP1	0.0019	1.0779
482 BLZF1	< 0.0001	1.1848	522 ALDH1A3	< 0.0001	1.1286	562 C4BPB	0.0078	1.0768
483 ZMYND15	0.0041	1.1847	523 LRRC8C	0.0004	1.1281	563 LINC01909	0.0108	1.0758
484 SORCS3	0.0096	1.1828	524 PPP2R5B	< 0.0001	1.1280	564 PROSER2	< 0.0001	1.0758
485 FHL2	0.0001	1.1805	525 ZSWIM4	0.0009	1.1278	565 FBXW10	0.0019	1.0729
486 NFKBIA	< 0.0001	1.1800	526 TMCC3	0.0001	1.1272	566 PHLDB2	< 0.0001	1.0725
487 KLF4	< 0.0001	1.1787	527 ATAD3B	0.0007	1.1217	567 MAP3K9	< 0.0001	1.0712
488 MYO1E	0.0001	1.1777	528 MACC1	0.0001	1.1214	568 TAF13	< 0.0001	1.0708
489 GRHL3	0.0010	1.1772	529 SEMA3A	< 0.0001	1.1205	569 NOP16	< 0.0001	1.0692
490 COA7	0.0001	1.1751	530 IL1RL2	0.0003	1.1197	570 LINC00472	0.0010	1.0684
491 PPRC1	< 0.0001	1.1749	531 IL4R	< 0.0001	1.1185	571 ARTN	0.0011	1.0674
492 IL4I1	0.0480	1.1743	532 NR4A1	0.0050	1.1152	572 NLRC5	0.0004	1.0672
493 KRTAP5-8	0.0034	1.1743	533 ERRFI1	0.0001	1.1111	573 ACTBP2	0.0010	1.0661
494 SPTBN5	0.0030	1.1740	534 INA	0.0030	1.1097	574 BNC1	0.0003	1.0660
495 LYST	< 0.0001	1.1729	535 SYNE3	0.0103	1.1069	575 KAZN	0.0001	1.0650
496 ATP8A2	0.0020	1.1703	536 CAPN3	0.0130	1.1067	576 B4GALT4	< 0.0001	1.0631
497 ZNF35	0.0003	1.1696	537 NRP1	0.0001	1.1055	577 CDR2L	< 0.0001	1.0626
498 IL16	0.0242	1.1635	538 ZNF202	0.0001	1.1051	578 TRAF3	< 0.0001	1.0623
499 MIR6835	0.0201	1.1608	539 VEGFC	0.0005	1.1035	579 FLNB	0.0002	1.0596
500 CYP27B1	0.0046	1.1600	540 TLNRD1	< 0.0001	1.1010	580 ACTL10	0.0016	1.0593
501 CEBPD	0.0005	1.1600	541 GADD45B	0.0014	1.1009	581 SACS	0.0004	1.0586
502 TM4SF1	0.0001	1.1562	542 SOWAHC	0.0005	1.0990	582 LCP1	0.0011	1.0578
503 CDCP1	< 0.0001	1.1535	543 TWNK	0.0001	1.0981	583 P2RY11	0.0014	1.0576
504 SIAH2	0.0001	1.1527	544 CDC25A	< 0.0001	1.0975	584 USP36	< 0.0001	1.0569
505 PAG1	0.0092	1.1520	545 KIAA1549L	0.0012	1.0974	585 ADRB2	< 0.0001	1.0566
506 NIP7	< 0.0001	1.1510	546 OSMR	0.0019	1.0970	586 CHSY1	< 0.0001	1.0556
507 SH3PXD2A	0.0001	1.1505	547 ATG16L1	< 0.0001	1.0964	587 SDR16C5	0.0002	1.0538
508 PLEKHF1	< 0.0001	1.1488	548 SERPINB5	< 0.0001	1.0964	588 ACTB	< 0.0001	1.0519
509 IL32	0.0084	1.1471	549 BYSL	0.0001	1.0963	589 VCL	< 0.0001	1.0505
510 KIF26B	0.0404	1.1460	550 TNFRSF25	0.0022	1.0962	590 CHRNA10	0.0119	1.0503
511 TXK	0.0167	1.1457	551 GPAT3	0.0002	1.0927	591 RPS10	0.0004	1.0488
512 EPPK1	0.0001	1.1448	552 ANKK1	0.0236	1.0915	592 CCDC86	< 0.0001	1.0484
513 FOXD1	0.0009	1.1404	553 GJB5	0.0001	1.0863	593 MAB21L4	0.0045	1.0468
514 TMEM47	0.0040	1.1400	554 EHD1	< 0.0001	1.0858	594 DDX21	< 0.0001	1.0462
515 RUNX1	0.0004	1.1359	555 SGPP2	0.0085	1.0853	595 LINC02166	0.0081	1.0448
516 PVR	0.0001	1.1329	556 RNASE7	0.0242	1.0845	596 PROKR2	0.0004	1.0447
517 TRMT61A	0.0001	1.1303	557 IFIT5	0.0002	1.0829	597 LINC01910	0.0074	1.0433
518 GAS2L2	0.0072	1.1302	558 AMD1	< 0.0001	1.0809	598 CAPRIN2	< 0.0001	1.0431
519 SNHG17	0.0001	1.1292	559 ADAMTS6	0.0047	1.0808	599 RAET1L	< 0.0001	1.0417
520 ADGRF1	0.0004	1.1290	560 CFAP20DC	0.0065	1.0803	600 CEACAM1	0.0150	1.0391

APÊNDICE B - 1950 DEGs em queratinócitos após tratamento com sEV-LCCT por 4h (6/17)

N⁰ Gene	Valor de p	Foldchange	№ Gene	Valor de p	Foldchange	№ Gene	Valor de p	Foldchange
601 NKX3-1	0.0111	1.0372	641 SLC9A4	0.0338	-1.0071	681 AMIGO1	0.0010	-1.0275
602 LIME1	0.0134	1.0364	642 TPRXL	0.0003	-1.0076	682 PAPLN	0.0153	-1.0278
603 PHC2	0.0001	1.0364	643 CEP250	< 0.0001	-1.0084	683 MFSD13A	< 0.0001	-1.0283
604 RNA5SP108	3 0.0488	1.0360	644 ZNF682	0.0079	-1.0086	684 VWA7	0.0037	-1.0285
605 ICAM1	0.0008	1.0343	645 HSD17B11	< 0.0001	-1.0087	685 INSIG1	0.0006	-1.0294
606 KLF16	< 0.0001	1.0297	646 IGSF9	0.0016	-1.0091	686 SCAMP5	0.0167	-1.0300
607 TRIM16	0.0001	1.0291	647 CEP126	0.0007	-1.0094	687 ZNF580	0.0003	-1.0309
608 ST6GALNA	C5 0.0001	1.0285	648 AIFM3	0.0070	-1.0094	688 PTPN6	< 0.0001	-1.0314
609 PPAN	0.0185	1.0252	649 NUDT7	0.0004	-1.0097	689 ERICH5	0.0149	-1.0315
610 MCL1	< 0.0001	1.0228	650 SPTLC3	< 0.0001	-1.0102	690 UBN2	0.0016	-1.0315
611 IRF6	< 0.0001	1.0209	651 AK7	0.0010	-1.0111	691 ZNF829	0.0224	-1.0317
612 ADGRL2	0.0001	1.0205	652 EME1	0.0001	-1.0121	692 INSR	0.0032	-1.0324
613 C6orf141	0.0008	1.0198	653 SLC35E2B	< 0.0001	-1.0122	693 TRIQK	< 0.0001	-1.0324
614 GBP1	0.0002	1.0170	654 KIF18A	0.0005	-1.0125	694 APOLD1	0.0001	-1.0325
615 MON1A	0.0002	1.0145	655 SPECC1	< 0.0001	-1.0131	695 HSD3BP5	0.0398	-1.0328
616 LTO1	< 0.0001	1.0139	656 CCDC144B	0.0021	-1.0138	696 CXXC5	0.0005	-1.0329
617 RAB3IP	< 0.0001	1.0124	657 LAMA4	0.0014	-1.0154	697 CENPC	0.0001	-1.0332
618 PNO1	0.0003	1.0111	658 KLK13	0.0212	-1.0155	698 ZNF225	0.0205	-1.0338
619 CCNA1	0.0045	1.0105	659 MAMDC2	0.0006	-1.0155	699 GUCY1B1	0.0455	-1.0341
620 MAK16	0.0002	1.0103	660 EFNA3	0.0015	-1.0161	700 CEP57L1	< 0.0001	-1.0343
621 CFAP57	< 0.0001	1.0095	661 IL15	0.0078	-1.0169	701 SLC16A13	0.0001	-1.0343
622 OTUD6B	< 0.0001	1.0086	662 ABRAXAS1	0.0029	-1.0186	702 MR1	< 0.0001	-1.0348
623 KIF9	< 0.0001	1.0075	663 CAMKK1	< 0.0001	-1.0189	703 GJD3	0.0095	-1.0353
624 PLEKHN1	0.0002	1.0074	664 CEP170	0.0001	-1.0190	704 KNDC1	0.0185	-1.0355
625 RGS20	0.0004	1.0074	665 CDK19	< 0.0001	-1.0194	705 PRKAB2	0.0003	-1.0363
626 MIDN	< 0.0001	1.0058	666 ANKRD18A	0.0174	-1.0195	706 DNAH11	0.0120	-1.0373
627 PMEPA1	0.0036	1.0029	667 SMPDL3A	0.0005	-1.0196	707 BBX	< 0.0001	-1.0379
628 DAPK3	0.0001	1.0011	668 ASPDH	< 0.0001	-1.0207	708 CBX7	0.0001	-1.0379
629 ZNF681	0.0093	-1.0002	669 RTN1	< 0.0001	-1.0207	709 MRTFA	< 0.0001	-1.0380
630 DCP1B	0.0037	-1.0007	670 GNAO1	0.0065	-1.0213	710 ELAVL2	< 0.0001	-1.0382
631 FAM86JP	0.0001	-1.0015	671 BOLA1	0.0004	-1.0224	711 EHHADH	0.0002	-1.0389
632 CPT1C	0.0009	-1.0015	672 TIGD3	0.0178	-1.0229	712 TMEM144	0.0097	-1.0392
633 MAGI3	0.0001	-1.0018	673 DCAKD	0.0013	-1.0234	713 VEPH1	0.0055	-1.0396
634 SPATA9	0.0285	-1.0027	674 GPRC5C	0.0003	-1.0245	714 HSF4	0.0050	-1.0399
635 HAAO	0.0334	-1.0032	675 C17orf107	0.0481	-1.0245	715 ZNF563	0.0105	-1.0400
636 LINC02532	0.0171	-1.0032	676 EFCAB6	0.0105	-1.0255	716 ATF2	0.0005	-1.0405
637 AGR2	0.0029	-1.0042	677 JADE2	0.0001	-1.0257	717 DLG2	0.0028	-1.0413
638 ZNF441	0.0023	-1.0046	678 TMEM107	0.0001	-1.0263	718 CEP57	< 0.0001	-1.0418
639 KIZ	< 0.0001	-1.0048	679 RAB17	0.0007	-1.0265	719 GABRE	0.0005	-1.0442
640 SRD5A3	0.0003	-1.0060	680 PLCXD3	0.0067	-1.0267	720 LRCH2	0.0001	-1.0443

APÊNDICE B - 1950 DEGs em queratinócitos após tratamento com sEV-LCCT por 4h (7/17)

N ⁰ Gene	Valor de p	Foldchange	N ⁰ Gene	Valor de n	Foldchange	N ⁰ Gene	Valor de p	Foldchange
721 CPP61		1 0/056			1 0699			1 0052
	0.0027	-1.0450	762 KATEB	0.0020	-1.0000		0.0001	-1.0952
722 NONI 2	0.0400	1.0407	762 TNE425	0.0002	1 0700	802 DUSD16	< 0.0002	1 0059
723 INFF 33	0.0019	-1.0407	703 2111 423	0.0024	-1.0709	803 DUSF 10	< 0.0001	-1.0950
724 ZINF240	0.0010	-1.0462	704 00312	0.0011	-1.0712	804 PAX9	0.0006	-1.0959
725 25CAN2	0.0010	-1.0467	700 000	0.0004	-1.0713		0.0259	-1.0962
726 ACP7	0.0155	-1.0490	766 SPATA1	0.0164	-1.0713	806 KIAA1217	0.0001	-1.0964
727 ARHGAP30	0.0082	-1.0500	767 GOLGA8UP	0.0266	-1.0713	807 HNF4G	0.0009	-1.0965
728 SNX30	0.0001	-1.0501	768 CASP9	0.0007	-1.0730	808 IFDP2	< 0.0001	-1.0965
729 CLUAP1	0.0003	-1.0506	769 LETMD1	0.0001	-1.0730	809 H2BC8	0.0004	-1.0966
730 GOLPH3L	< 0.0001	-1.0509	770 PLD1	< 0.0001	-1.0736	810 PHLPP1	< 0.0001	-1.0970
731 RRM2B	0.0001	-1.0514	771 NFIA	0.0015	-1.0744	811 CCDC121	0.0139	-1.0976
732 NBR1	< 0.0001	-1.0528	772 BDNF-AS	0.0022	-1.0755	812 POLI	0.0002	-1.0985
733 SHBG	0.0154	-1.0538	773 TOR1AIP2	0.0001	-1.0755	813 ARNT2	0.0059	-1.0987
734 TMEM8B	0.0128	-1.0543	774 CNRIP1	0.0033	-1.0758	814 FAM8A1	0.0003	-1.0987
735 GLRX	0.0009	-1.0553	775 ALDH3B1	0.0001	-1.0770	815 ARMCX1	0.0004	-1.0990
736 SIPA1	0.0003	-1.0565	776 TMEM42	0.0035	-1.0770	816 C11orf71	0.0007	-1.1005
737 AKAP7	0.0153	-1.0572	777 FRS3	0.0246	-1.0773	817 FRAT2	0.0011	-1.1013
738 CUTALP	0.0009	-1.0573	778 IGKV10R2-108	0.0481	-1.0773	818 CCDC113	0.0003	-1.1025
739 BTN3A2	0.0002	-1.0574	779 NHLRC4	0.0489	-1.0773	819 GGACT	0.0001	-1.1029
740 KCNG1	0.0234	-1.0585	780 SEPSECS	0.0002	-1.0778	820 TMEM191C	0.0047	-1.1054
741 POU6F1	0.0016	-1.0588	781 PPP1R3E	0.0047	-1.0779	821 PTP4A3	0.0044	-1.1054
742 FAM102B	0.0005	-1.0593	782 ZMYND8	0.0002	-1.0779	822 ARHGAP33	0.0029	-1.1068
743 ZNF43	0.0453	-1.0606	783 ZNF599	0.0014	-1.0789	823 HFE	0.0003	-1.1070
744 SLC27A1	0.0031	-1.0610	784 MEGF9	< 0.0001	-1.0823	824 CIT	< 0.0001	-1.1070
745 LRRC37BP1	0.0025	-1.0620	785 PCLO	0.0002	-1.0830	825 PXYLP1	0.0002	-1.1072
746 DENND10	0.0003	-1.0623	786 ESRP1	< 0.0001	-1.0833	826 IQSEC2	0.0001	-1.1077
747 CFAP52	0.0027	-1.0627	787 DPYSL2	0.0001	-1.0848	827 FLJ37453	0.0009	-1.1084
748 C14orf28	0.0008	-1.0631	788 C4orf19	0.0009	-1.0849	828 PLEKHA6	< 0.0001	-1.1088
749 SCNN1A	0.0002	-1.0632	789 SGTB	< 0.0001	-1.0853	829 SHROOM4	0.0006	-1.1100
750 CREB3L4	0.0001	-1.0636	790 ABTB1	0.0001	-1.0862	830 NEFM	0.0255	-1.1105
751 PSD3	0.0001	-1.0638	791 ZFYVE1	0.0005	-1.0864	831 COL9A2	0.0054	-1.1110
752 ABCB9	< 0.0001	-1.0643	792 SNN	< 0.0001	-1.0868	832 ZNF385A	0.0001	-1.1115
753 SLC16A4	0.0284	-1.0651	793 PSRC1	< 0.0001	-1.0884	833 BUB1B	< 0.0001	-1.1118
754 DTX4	0.0007	-1.0667	794 HMMR	< 0.0001	-1.0888	834 RNF166	0.0003	-1.1121
755 NUDT6	0.0003	-1.0668	795 UNC5B	< 0.0001	-1.0889	835 CARF	0.0009	-1.1133
756 C5orf34	0.0003	-1.0669	796 HPDL	0.0001	-1.0903	836 THAP2	0.0005	-1.1137
757 GSDMB	< 0.0001	-1.0676	797 OSBPL7	0.0006	-1.0906	837 GPR19	0.0037	-1.1138
758 ZDBF2	0.0103	-1.0679	798 PATL2	0.0347	-1.0912	838 REEP4	0.0001	-1.1141
759 LINC02236	0.0111	-1.0680	799 KIF20A	< 0.0001	-1.0925	839 ACSM3	0.0047	-1.1144
760 ZNF519	0.0168	-1.0683	800 LINC01515	0.0002	-1.0936	840 ABCC5	0.0001	-1.1148

APÊNDICE B - 1950 DEGs em queratinócitos após tratamento com sEV-LCCT por 4h (8/17)

N ⁰	Gene	Valor de p	Foldchange	Nº Gene	Valor de p	Foldchange	N⁰ Gene	Valor de p	Foldchange
841	DOCK8	0.0079	-1.1150	881 CNGA4	0.0138	-1.1379	921 CROCC	< 0.0001	-1.1711
842	C8orf44	0.0003	-1.1168	882 OLMALINC	0.0001	-1.1387	922 EEF2K	< 0.0001	-1.1713
843	CYP4F2	0.0285	-1.1172	883 GPRASP2	0.0001	-1.1392	923 SYNGR3	0.0226	-1.1730
844	H3C10	0.0070	-1.1176	884 ANKMY2	< 0.0001	-1.1406	924 SYCE1L	0.0126	-1.1731
845	PLCE1	< 0.0001	-1.1199	885 EFNA5	< 0.0001	-1.1408	925 FBXL8	0.0008	-1.1735
846	DSTNP2	0.0134	-1.1205	886 C1orf210	0.0039	-1.1422	926 INSYN2B	0.0159	-1.1738
847	RFESD	0.0323	-1.1206	887 C21orf58	0.0005	-1.1424	927 PIM2	0.0010	-1.1743
848	ZNF362	0.0001	-1.1211	888 GATAD2B	< 0.0001	-1.1425	928 ENG	0.0371	-1.1743
849	EFNA4	0.0010	-1.1215	889 SSPN	0.0025	-1.1433	929 RLN2	0.0165	-1.1746
850	GTF2IP13	0.0117	-1.1229	890 TEF	0.0001	-1.1439	930 LRATD1	0.0001	-1.1747
851	LINC01011	0.0066	-1.1231	891 HELLPAR	0.0081	-1.1439	931 NONOP2	0.0231	-1.1754
852	LINC02453	0.0072	-1.1231	892 GPR155	0.0170	-1.1455	932 MYRF	0.0004	-1.1757
853	SCNN1D	0.0249	-1.1231	893 ANG	0.0072	-1.1468	933 KIAA0586	< 0.0001	-1.1758
854	CBR3	< 0.0001	-1.1236	894 ZNF488	0.0023	-1.1469	934 ZNF493	0.0015	-1.1761
855	KANK2	< 0.0001	-1.1239	895 OTUD1	0.0001	-1.1472	935 TRIM2	0.0029	-1.1778
856	H2BC15	< 0.0001	-1.1239	896 MVB12B	0.0033	-1.1476	936 GVQW3	0.0038	-1.1787
857	HNMT	0.0030	-1.1243	897 PTCH1	0.0001	-1.1477	937 PAMR1	0.0034	-1.1799
858	LINC02700	0.0003	-1.1245	898 NEIL2	0.0002	-1.1496	938 PIP5KL1	0.0048	-1.1812
859	PDE6C	0.0131	-1.1258	899 UTS2B	0.0362	-1.1514	939 AGO4	< 0.0001	-1.1829
860	KIAA0513	< 0.0001	-1.1258	900 CEP44	0.0007	-1.1544	940 LDB3	0.0144	-1.1846
861	ANKRA2	0.0001	-1.1264	901 PLSCR4	0.0002	-1.1544	941 SLC11A1	0.0340	-1.1846
862	CHD6	< 0.0001	-1.1271	902 BCORL1	< 0.0001	-1.1545	942 TCAF2	0.0153	-1.1850
863	HECA	0.0001	-1.1275	903 LNCOC1	0.0249	-1.1546	943 SPC24	< 0.0001	-1.1863
864	FLRT2	0.0002	-1.1277	904 LMO4	0.0002	-1.1554	944 MTA3	< 0.0001	-1.1868
865	SEMA3B	0.0127	-1.1280	905 GALM	0.0001	-1.1560	945 PRKAG3	0.0358	-1.1873
866	SLC28A2	0.0071	-1.1280	906 SLC47A2	0.0019	-1.1563	946 RETREG1	0.0001	-1.1880
867	OGDHL	0.0053	-1.1280	907 CLN3	0.0251	-1.1571	947 RNF43	0.0010	-1.1886
868	NR6A1	0.0007	-1.1292	908 GIMAP2	0.0074	-1.1586	948 ACP3	0.0036	-1.1888
869	CCNG1	< 0.0001	-1.1303	909 CASTOR3	0.0061	-1.1603	949 ADCY5	< 0.0001	-1.1915
870	YPEL5	< 0.0001	-1.1303	910 LRRC20	0.0001	-1.1606	950 RAET1G	0.0095	-1.1933
871	APBB1	0.0016	-1.1314	911 LGALS7B	0.0043	-1.1613	951 PHF13	< 0.0001	-1.1939
872	MAML3	0.0078	-1.1328	912 ZNF658B	0.0301	-1.1613	952 FLJ20021	0.0010	-1.1946
873	VSIG10L	0.0136	-1.1333	913 ASPM	0.0001	-1.1620	953 NR4A2	0.0013	-1.1950
874	NMNAT3	0.0397	-1.1334	914 ZNF516	< 0.0001	-1.1635	954 HMGB2	< 0.0001	-1.1960
875	SCEL	0.0010	-1.1353	915 IGIP	0.0001	-1.1636	955 ACVR2B	0.0043	-1.1964
876	NLRX1	< 0.0001	-1.1356	916 RUNX2	0.0008	-1.1652	956 FILIP1L	0.0008	-1.1972
877	CEP76	0.0005	-1.1371	917 PBXIP1	< 0.0001	-1.1654	957 HOXC4	0.0004	-1.1986
878	CEP19	0.0072	-1.1372	918 NBR2	0.0004	-1.1664	958 FZD7	0.0002	-1.2000
879	MYO1F	0.0278	-1.1373	919 ARHGEF10L	0.0012	-1.1678	959 XYLT2	0.0001	-1.2003
880	GSEC	0.0003	-1.1378	920 MIR3936HG	0.0073	-1.1711	960 ZNF114	0.0004	-1.2013

APÊNDICE B - 1950 DEGs em queratinócitos após tratamento com sEV-LCCT por 4h (9/17)

N⁰ Gene	Valor de p	Foldchange	N⁰ Gene	Valor de p	Foldchange	N⁰ Gene	Valor de p	Foldchange
961 FBXO36	0.0016	-1.2014	1001 TRPV6	0.0001	-1.2309	1041 GPR68	0.0005	-1.2700
962 MMP13	0.0016	-1.2017	1002 ZBTB22	< 0.0001	-1.2312	1042 TNS3	< 0.0001	-1.2725
963 CA9	0.0107	-1.2030	1003 LRRC37B	0.0008	-1.2316	1043 ZNF318	0.0001	-1.2727
964 BRD8	< 0.0001	-1.2032	1004 PXMP4	< 0.0001	-1.2328	1044 LIPE	0.0001	-1.2732
965 CHROMR	0.0018	-1.2037	1005 USP51	0.0080	-1.2336	1045 MFSD4A	0.0071	-1.2738
966 H1-10	< 0.0001	-1.2039	1006 IL22RA1	0.0011	-1.2336	1046 MORN4	0.0001	-1.2739
967 H1-0	< 0.0001	-1.2040	1007 PDCD4	0.0001	-1.2341	1047 LNP1	0.0013	-1.2749
968 ABHD8	0.0005	-1.2046	1008 DLK2	0.0001	-1.2343	1048 LURAP1L	0.0009	-1.2754
969 BORCS6	0.0019	-1.2051	1009 CKMT2	0.0178	-1.2362	1049 ACSS2	0.0001	-1.2758
970 ING4	< 0.0001	-1.2052	1010 CFAP43	0.0006	-1.2371	1050 RUNDC3B	0.0158	-1.2758
971 FOXO1	0.0002	-1.2063	1011 BTBD11	0.0001	-1.2377	1051 H3C8	0.0019	-1.2779
972 SLC15A2	0.0023	-1.2069	1012 TGFB3	0.0123	-1.2380	1052 MAMSTR	0.0041	-1.2790
973 MEX3A	0.0033	-1.2071	1013 FBXO16	0.0083	-1.2380	1053 TRIM38	0.0001	-1.2828
974 PRB3	0.0033	-1.2081	1014 FRY	0.0002	-1.2383	1054 GPER1	0.0035	-1.2829
975 DCST2	0.0102	-1.2084	1015 LNC-LBCS	0.0219	-1.2390	1055 HSPA1L	0.0011	-1.2834
976 MEIS1	0.0007	-1.2086	1016 MIR4258	0.0052	-1.2391	1056 PLEKHH2	0.0001	-1.2839
977 TBX6	0.0236	-1.2095	1017 GP1BA	0.0239	-1.2394	1057 POU2F3	0.0026	-1.2842
978 NEK6	0.0008	-1.2098	1018 HOXA11-AS	0.0001	-1.2406	1058 SAMD12	0.0004	-1.2849
979 MESP2	0.0396	-1.2109	1019 ANKZF1	0.0001	-1.2463	1059 ANKRD34A	0.0317	-1.2852
980 ZNF10	0.0221	-1.2110	1020 C12orf76	0.0003	-1.2469	1060 GBGT1	0.0006	-1.2864
981 DNAH2	0.0061	-1.2116	1021 LINC01348	0.0152	-1.2479	1061 TMPRSS13	0.0077	-1.2869
982 FAM171A2	0.0460	-1.2119	1022 MARCKS	0.0001	-1.2490	1062 HCG25	0.0365	-1.2870
983 LINC01133	0.0121	-1.2121	1023 EDDM13	0.0264	-1.2497	1063 ATF3	0.0029	-1.2875
984 SUFU	< 0.0001	-1.2122	1024 OCEL1	0.0019	-1.2498	1064 JAG2	< 0.0001	-1.2885
985 NAP1L2	0.0002	-1.2130	1025 NAA80	0.0071	-1.2513	1065 SPAG8	0.0037	-1.2898
986 SYT15	0.0017	-1.2151	1026 HOXA3	0.0002	-1.2514	1066 LINC01355	0.0009	-1.2913
987 HEPH	0.0495	-1.2156	1027 PIGZ	0.0020	-1.2516	1067 SERPINF2	0.0013	-1.2920
988 GTF2H4	0.0476	-1.2156	1028 ASTN2	0.0042	-1.2541	1068 TTC33	0.0001	-1.2924
989 PYY	0.0491	-1.2156	1029 HNF4A	0.0191	-1.2541	1069 THRA	< 0.0001	-1.2939
990 ZNF772	0.0170	-1.2156	1030 MLXIPL	0.0038	-1.2555	1070 PCYT1B	< 0.0001	-1.2943
991 GABRA3	0.0208	-1.2210	1031 BCL11A	0.0001	-1.2559	1071 FAM13A	0.0012	-1.2946
992 SYTL3	0.0002	-1.2213	1032 FAT4	0.0001	-1.2572	1072 HLTF	0.0001	-1.2949
993 ASAP3	0.0001	-1.2217	1033 SYNPO2	0.0015	-1.2577	1073 ETV1	0.0001	-1.2958
994 LRRC27	0.0013	-1.2220	1034 NTN4	< 0.0001	-1.2582	1074 KCTD7	0.0006	-1.2966
995 HOXC13-AS	0.0001	-1.2227	1035 LINC00653	0.0018	-1.2587	1075 RAB3D	0.0021	-1.2967
996 ARMH1	0.0467	-1.2231	1036 H2AW	0.0003	-1.2609	1076 PGAP1	< 0.0001	-1.2971
997 FAM201A	0.0007	-1.2247	1037 KCNMB4	0.0022	-1.2630	1077 GSTA4	0.0076	-1.2973
998 FRK	0.0018	-1.2257	1038 MUC3A	0.0097	-1.2639	1078 GOLGA6L10	0.0006	-1.2986
999 IVL	0.0004	-1.2286	1039 SPATA6	0.0024	-1.2687	1079 DLEC1	0.0467	-1.2993
1000 MYEF2	0.0011	-1.2286	1040 NDC80	0.0002	-1.2688	1080 TUBBP5	0.0001	-1.2999

APÊNDICE B - 1950 DEGs em queratinócitos após tratamento com sEV-LCCT por 4h (10/17)

N⁰ Gene	Valor de p	Foldchange	N⁰ Gene	Valor de p	Foldchange	N⁰ Gene	Valor de p	Foldchange
1081 ELL3	0.0178	-1.3006	1121 PLEKHM3	< 0.0001	-1.3281	1161 PRSS8	0.0001	-1.3567
1082 PCSK4	0.0072	-1.3011	1122 LPAR6	< 0.0001	-1.3281	1162 LINC01226	0.0140	-1.3568
1083 CCDC85A	0.0004	-1.3014	1123 ZNF396	0.0153	-1.3283	1163 FAM218A	0.0158	-1.3572
1084 CYP2A13	0.0002	-1.3016	1124 ST6GAL1	0.0001	-1.3283	1164 VASH2	0.0285	-1.3593
1085 TNFAIP2	0.0012	-1.3025	1125 CTF1	0.0005	-1.3285	1165 OTULINL	0.0232	-1.3598
1086 ADRB1	0.0021	-1.3042	1126 H3C6	0.0010	-1.3286	1166 KDM3A	< 0.0001	-1.3602
1087 OTX1	0.0002	-1.3045	1127 FAM117B	0.0035	-1.3288	1167 GAREM1	0.0003	-1.3618
1088 RDH5	0.0416	-1.3046	1128 SYNPO	< 0.0001	-1.3295	1168 CRYBG2	0.0016	-1.3618
1089 FOXN3	0.0001	-1.3051	1129 PPP1R1C	0.0024	-1.3295	1169 SV2A	< 0.0001	-1.3626
1090 ATF7IP2	0.0024	-1.3055	1130 S1PR5	0.0001	-1.3306	1170 XPC	0.0001	-1.3638
1091 TUBA3FP	< 0.0001	-1.3067	1131 UCP2	0.0143	-1.3309	1171 CASTOR1	0.0003	-1.3642
1092 BTG1	< 0.0001	-1.3071	1132 NSUN7	0.0063	-1.3333	1172 NUDT18	0.0001	-1.3651
1093 FAM122C	0.0001	-1.3079	1133 PIK3R3	0.0001	-1.3334	1173 SREBF1	< 0.0001	-1.3652
1094 PLEKHG6	0.0004	-1.3079	1134 VSTM5	0.0012	-1.3344	1174 FIGN	0.0001	-1.3659
1095 IL6R	0.0037	-1.3083	1135 FHDC1	0.0002	-1.3344	1175 DET1	0.0206	-1.3660
1096 CCDC169	0.0008	-1.3092	1136 CLIP3	0.0108	-1.3356	1176 C2orf27A	0.0005	-1.3671
1097 FZD2	0.0001	-1.3118	1137 CLDN8	0.0034	-1.3368	1177 GLCCI1	0.0006	-1.3671
1098 BTN2A2	< 0.0001	-1.3129	1138 H2BC9	0.0004	-1.3370	1178 H2BC18	0.0022	-1.3694
1099 AMOTL1	< 0.0001	-1.3132	1139 SESN1	0.0004	-1.3374	1179 LMCD1	0.0014	-1.3714
1100 KDM4D	0.0016	-1.3137	1140 RWDD2A	0.0052	-1.3387	1180 TCEANC	0.0014	-1.3718
1101 ETFBKMT	0.0138	-1.3160	1141 LGR4	< 0.0001	-1.3392	1181 TLR3	0.0018	-1.3739
1102 ESPL1	< 0.0001	-1.3163	1142 GGT1	0.0261	-1.3396	1182 KLF8	< 0.0001	-1.3743
1103 TNFAIP8L1	0.0001	-1.3185	1143 LINC02035	0.0004	-1.3397	1183 ALPK1	0.0006	-1.3754
1104 ZNF483	0.0029	-1.3187	1144 PCAT6	0.0071	-1.3398	1184 EDA	0.0028	-1.3762
1105 ZSCAN31	0.0001	-1.3198	1145 TNRC6B	0.0003	-1.3421	1185 PCDHGA7	0.0369	-1.3775
1106 LINC02672	0.0245	-1.3208	1146 GLS2	0.0221	-1.3426	1186 GGT6	0.0058	-1.3781
1107 RTL8B	0.0237	-1.3217	1147 RFXAP	0.0013	-1.3426	1187 LINC02298	0.0011	-1.3792
1108 SUOX	< 0.0001	-1.3224	1148 ATF7IP	< 0.0001	-1.3444	1188 DOCK3	0.0064	-1.3794
1109 LINC01695	0.0029	-1.3230	1149 FAM161A	0.0002	-1.3459	1189 PBX1	< 0.0001	-1.3794
1110 LINC02861	0.0287	-1.3230	1150 SP5	0.0027	-1.3463	1190 MNX1	0.0008	-1.3796
1111 MT1G	0.0424	-1.3230	1151 SYTL5	0.0001	-1.3473	1191 TTC32	0.0003	-1.3810
1112 HSD52	0.0072	-1.3230	1152 ZBED3	0.0001	-1.3476	1192 BAZ2B	< 0.0001	-1.3815
1113 MEX3B	0.0122	-1.3232	1153 UBALD2	< 0.0001	-1.3477	1193 SULT1A1	< 0.0001	-1.3817
1114 PPP1R32	0.0438	-1.3232	1154 FAHD2CP	0.0034	-1.3482	1194 SRRM3	0.0007	-1.3841
1115 CENPF	< 0.0001	-1.3238	1155 RCOR2	0.0047	-1.3492	1195 B3GNT8	0.0149	-1.3844
1116 ZFP14	0.0019	-1.3238	1156 PDGFC	< 0.0001	-1.3538	1196 BCL11B	0.0017	-1.3846
1117 GCNT4	0.0017	-1.3246	1157 SCN1B	0.0209	-1.3540	1197 CYP39A1	0.0010	-1.3854
1118 PHLDB1	0.0001	-1.3260	1158 TMEM61	0.0448	-1.3540	1198 SLC46A3	0.0011	-1.3861
1119 VMAC	0.0047	-1.3262	1159 EXOC3L4	0.0089	-1.3543	1199 SULF1	0.0001	-1.3868
1120 ZSCAN30	0.0003	-1.3267	1160 CAPN11	0.0119	-1.3548	1200 ILDR1	0.0013	-1.3883

APÊNDICE B - 1950 DEGs em queratinócitos após tratamento com sEV-LCCT por 4h (11/17)

N⁰ Gene	Valor de p	Foldchange	Nº Gene	Valor de p	Foldchange	N⁰ Gene	Valor de p	Foldchange
1201 PCMTD1	< 0.0001	-1.3911	1241 LIN7B	0.0096	-1.4292	1281 CROT	< 0.0001	-1.4808
1202 CYP3A7	0.0249	-1.3923	1242 GNG2	0.0257	-1.4303	1282 BCL2L10	0.0440	-1.4828
1203 TMPRSS11E	0.0090	-1.3931	1243 SRGAP3	0.0015	-1.4308	1283 TSHZ1	< 0.0001	-1.4830
1204 TMEM191B	0.0028	-1.3947	1244 KCNH2	0.0215	-1.4341	1284 DIO2	0.0008	-1.4831
1205 CBLB	< 0.0001	-1.3951	1245 MARK1	0.0004	-1.4343	1285 MLLT3	< 0.0001	-1.4836
1206 ADGRF3	0.0058	-1.3952	1246 RAB3A	0.0029	-1.4344	1286 WDR31	0.0001	-1.4840
1207 TMEM139	0.0001	-1.3954	1247 SLC30A4	0.0003	-1.4350	1287 LINC02593	0.0045	-1.4866
1208 DMRTA1	0.0212	-1.3971	1248 TBX20	0.0427	-1.4366	1288 MIR762HG	0.0003	-1.4879
1209 TRIM17	0.0044	-1.3985	1249 C3orf18	0.0048	-1.4378	1289 CD86	0.0208	-1.4888
1210 PPFIBP2	0.0003	-1.3998	1250 FAM167B	0.0065	-1.4408	1290 SPATA7	0.0003	-1.4916
1211 HEXIM2	0.0026	-1.4020	1251 C1orf115	0.0202	-1.4424	1291 ZNF711	< 0.0001	-1.4926
1212 DLEU2L	0.0154	-1.4020	1252 FBXO44	0.0075	-1.4433	1292 HOXA5	0.0001	-1.4935
1213 H2AC11	0.0003	-1.4036	1253 JMY	0.0011	-1.4437	1293 TRAM1L1	0.0197	-1.4936
1214 PLIN4	0.0156	-1.4047	1254 RGS17	0.0003	-1.4485	1294 PGM2L1	0.0001	-1.4940
1215 ARMCX2	0.0014	-1.4050	1255 LINC02731	0.0311	-1.4491	1295 AGPAT4	0.0012	-1.4954
1216 LNX1	0.0018	-1.4072	1256 PCDHGA10	0.0166	-1.4491	1296 MIR4477B	0.0110	-1.4963
1217 NUTM2D	0.0256	-1.4093	1257 STX1B	0.0391	-1.4495	1297 MAML2	< 0.0001	-1.4973
1218 ANGPTL1	0.0162	-1.4106	1258 DUSP19	0.0440	-1.4520	1298 AKAP3	0.0306	-1.4980
1219 GRIN3B	0.0327	-1.4106	1259 PTPRS	< 0.0001	-1.4520	1299 ACACB	< 0.0001	-1.5014
1220 OR1F1	0.0015	-1.4106	1260 RAB26	0.0001	-1.4539	1300 ALDH3B2	0.0055	-1.5018
1221 LRRIQ3	0.0485	-1.4106	1261 PAIP2B	0.0001	-1.4563	1301 MPHOSPH9	< 0.0001	-1.5023
1222 LIPH	0.0001	-1.4109	1262 LINC00551	0.0336	-1.4567	1302 FUT9	0.0004	-1.5025
1223 HOXA6	0.0008	-1.4120	1263 GPX8	0.0001	-1.4576	1303 VEGFD	0.0332	-1.5031
1224 TRIM31	0.0005	-1.4128	1264 USH1G	0.0022	-1.4606	1304 NEAT1	0.0001	-1.5068
1225 LINC01232	0.0004	-1.4152	1265 BANK1	0.0321	-1.4613	1305 TSPAN10	0.0407	-1.5071
1226 NODAL	0.0495	-1.4159	1266 C1QL4	0.0065	-1.4613	1306 OVOL2	< 0.0001	-1.5084
1227 PHF7	0.0002	-1.4175	1267 C2CD4A	0.0387	-1.4613	1307 ICAM5	0.0001	-1.5097
1228 ST6GALNAC1	0.0052	-1.4176	1268 LRRC4B	0.0490	-1.4613	1308 CLEC2D	0.0006	-1.5117
1229 ZNF311	0.0295	-1.4180	1269 TRAFD1	< 0.0001	-1.4614	1309 RNFT2	0.0190	-1.5143
1230 H2BC6	0.0420	-1.4195	1270 ZNF85	0.0171	-1.4615	1310 ZNF726	0.0140	-1.5179
1231 HOXC6	0.0029	-1.4212	1271 TWIST1	0.0175	-1.4624	1311 LYRM9	0.0059	-1.5187
1232 TTC25	0.0062	-1.4216	1272 CCDC89	0.0184	-1.4667	1312 LINC00672	0.0094	-1.5188
1233 LINC01176	0.0061	-1.4219	1273 ATP8B3	0.0295	-1.4708	1313 MPP2	0.0001	-1.5188
1234 MXI1	0.0001	-1.4226	1274 S100A5	0.0018	-1.4708	1314 MISP3	0.0101	-1.5190
1235 RFX3	0.0008	-1.4226	1275 ANXA2R	0.0077	-1.4717	1315 STRA6	0.0003	-1.5203
1236 SHC3	0.0497	-1.4233	1276 BTN3A1	0.0002	-1.4728	1316 DIXDC1	0.0033	-1.5213
1237 CDC25C	< 0.0001	-1.4247	1277 GABARAPL1	< 0.0001	-1.4751	1317 HECW2	0.0005	-1.5215
1238 SWT1	0.0027	-1.4251	1278 RGS2	0.0001	-1.4768	1318 RAPGEFL1	0.0002	-1.5257
1239 NLGN4X	0.0088	-1.4258	1279 ARL17B	0.0367	-1.4794	1319 TBX19	< 0.0001	-1.5272
1240 ZNF182	0.0004	-1.4275	1280 PRANCR	0.0031	-1.4808	1320 SATB1	0.0002	-1.5329

APÊNDICE B - 1950 DEGs em queratinócitos após tratamento com sEV-LCCT por 4h (12/17)

N⁰ Gene	Valor de p	Foldchange	N⁰ Gene	Valor de p	Foldchange	N⁰ Gene	Valor de p	Foldchange
1321 KIF21B	0.0351	-1.5345	1361 CASTOR2	< 0.0001	-1.5903	1401 LINC01703	0.0004	-1.6511
1322 LGALS7	0.0495	-1.5354	1362 GRID2IP	0.0015	-1.5908	1402 GASK1B	0.0124	-1.6515
1323 PPIAP53	0.0427	-1.5354	1363 FAM106A	0.0205	-1.5934	1403 APH1B	0.0197	-1.6523
1324 ZNF404	0.0211	-1.5354	1364 MYCL	0.0007	-1.5992	1404 CAPS2	0.0001	-1.6525
1325 ZC4H2	0.0233	-1.5376	1365 SIDT1	0.0003	-1.5993	1405 PHF21A	< 0.0001	-1.6526
1326 DNMT3B	0.0002	-1.5379	1366 LINC00324	0.0159	-1.6019	1406 ZNF433	0.0014	-1.6554
1327 DAPK2	0.0025	-1.5416	1367 LINC00649	0.0015	-1.6028	1407 LINC02043	0.0104	-1.6563
1328 LINC00910	0.0001	-1.5426	1368 LINC02057	0.0067	-1.6035	1408 PALMD	0.0008	-1.6566
1329 WNK2	0.0277	-1.5474	1369 SLC16A12	0.0021	-1.6045	1409 GHET1	0.0005	-1.6570
1330 FLG2	0.0111	-1.5475	1370 RAB11FIP4	< 0.0001	-1.6054	1410 FAM182B	< 0.0001	-1.6581
1331 GHDC	0.0122	-1.5490	1371 SPEF1	0.0265	-1.6056	1411 FAM227A	0.0047	-1.6587
1332 SCUBE3	0.0213	-1.5490	1372 PRR34	0.0339	-1.6068	1412 NOTCH3	0.0002	-1.6631
1333 STX19	0.0004	-1.5490	1373 SYT16	0.0278	-1.6089	1413 LINC00920	0.0023	-1.6650
1334 CCDC30	0.0235	-1.5532	1374 LINC01534	0.0310	-1.6092	1414 HOXA13	< 0.0001	-1.6660
1335 H2BU1	0.0034	-1.5536	1375 TMEM187	0.0001	-1.6093	1415 RAG1	0.0374	-1.6678
1336 HEG1	< 0.0001	-1.5592	1376 SPTSSB	0.0051	-1.6100	1416 ZNF618	< 0.0001	-1.6679
1337 FOXL2NB	0.0002	-1.5597	1377 SOST	0.0002	-1.6140	1417 PDE5A	< 0.0001	-1.6685
1338 OOEP	0.0079	-1.5605	1378 KMT5C	0.0024	-1.6156	1418 MSH5-SAPCD1	0.0024	-1.6689
1339 TTC28	0.0209	-1.5612	1379 IL20RB	< 0.0001	-1.6157	1419 ATP8A1	0.0004	-1.6692
1340 CDKN2B	0.0001	-1.5613	1380 KLHDC9	0.0003	-1.6173	1420 ROR2	0.0001	-1.6695
1341 ANK1	0.0010	-1.5613	1381 FRAT1	0.0084	-1.6243	1421 NRG4	0.0006	-1.6707
1342 NYAP2	0.0033	-1.5645	1382 ZNF774	0.0011	-1.6248	1422 TTBK2	< 0.0001	-1.6716
1343 LINC00847	0.0003	-1.5658	1383 MAFA	0.0082	-1.6253	1423 C6orf58	0.0430	-1.6738
1344 GLUL	< 0.0001	-1.5659	1384 MMP12	0.0201	-1.6253	1424 LINC00598	0.0381	-1.6738
1345 KLLN	0.0003	-1.5671	1385 LINC00471	0.0134	-1.6253	1425 DHRS3	< 0.0001	-1.6761
1346 B4GAT1	0.0003	-1.5672	1386 BTN3A3	< 0.0001	-1.6264	1426 WIPF3	0.0337	-1.6798
1347 LINC01126	0.0477	-1.5722	1387 HEY1	0.0034	-1.6292	1427 ADAM1B	0.0446	-1.6798
1348 LINC00884	0.0349	-1.5750	1388 AK8	0.0206	-1.6316	1428 XKR9	0.0312	-1.6798
1349 DYRK1B	< 0.0001	-1.5751	1389 MYLIP	< 0.0001	-1.6326	1429 GDF9	0.0305	-1.6812
1350 EPHA4	< 0.0001	-1.5762	1390 INHA	0.0026	-1.6358	1430 SLC35E2A	0.0248	-1.6815
1351 HOGA1	0.0037	-1.5771	1391 CIART	0.0051	-1.6394	1431 H2BC10	0.0078	-1.6873
1352 LINC01521	0.0009	-1.5795	1392 ARHGEF19	< 0.0001	-1.6401	1432 SIAH3	0.0075	-1.6873
1353 MICE	0.0279	-1.5800	1393 CYRIA	0.0001	-1.6426	1433 CYP2U1	0.0481	-1.6886
1354 LINC00449	0.0373	-1.5813	1394 ANKRD6	0.0413	-1.6427	1434 ZNF385C	0.0462	-1.6890
1355 GIPR	0.0025	-1.5816	1395 MMP11	0.0168	-1.6441	1435 ZFHX4	0.0035	-1.6903
1356 AKR7A3	0.0282	-1.5826	1396 GUCA1B	0.0302	-1.6445	1436 TMEM221	0.0139	-1.6933
1357 LYPD6	< 0.0001	-1.5828	1397 FAM131B	0.0004	-1.6476	1437 SASH1	< 0.0001	-1.6940
1358 GAS1	0.0052	-1.5888	1398 MAP2K6	< 0.0001	-1.6489	1438 RNF122	0.0006	-1.6944
1359 KAZALD1	0.0012	-1.5890	1399 LINC00526	0.0267	-1.6491	1439 CEBPA	0.0088	-1.6955
1360 FAM229A	0.0165	-1.5895	1400 PRICKLE1	0.0001	-1.6502	1440 LY6D	0.0149	-1.6973

APÊNDICE B - 1950 DEGs em queratinócitos após tratamento com sEV-LCCT por 4h (13/17)

Nº Gene	Valor de p	Foldchange	N⁰ Gene	Valor de p	Foldchange	№ Gene	Valor de p	Foldchange
1441 PALM	0.0104	-1.7070	1481 LINC01554	0.0057	-1.7999	1521 PNPLA3	0.0008	-1.8824
1442 DMRT2	0.0011	-1.7077	1482 NPBWR1	0.0005	-1.8011	1522 C17orf113	0.0075	-1.8831
1443 C14orf132	0.0013	-1.7086	1483 MEF2C	0.0002	-1.8025	1523 ARID3A	0.0001	-1.8891
1444 CASKIN1	0.0022	-1.7129	1484 FGF1	0.0003	-1.8040	1524 CERNA1	0.0071	-1.8941
1445 FOXD2	0.0093	-1.7165	1485 TMEM131L	< 0.0001	-1.8044	1525 HOXC13	0.0002	-1.8962
1446 WDR88	0.0269	-1.7166	1486 AZIN2	0.0009	-1.8051	1526 PRX	0.0001	-1.8979
1447 LINC02615	0.0001	-1.7174	1487 SALL4	0.0016	-1.8074	1527 CEP68	< 0.0001	-1.8995
1448 LINC01637	0.0002	-1.7216	1488 WNT5A	0.0298	-1.8094	1528 H3C1	0.0216	-1.9019
1449 LRRC73	0.0274	-1.7226	1489 CDNF	0.0182	-1.8104	1529 BNC2	0.0008	-1.9024
1450 KBTBD3	0.0001	-1.7267	1490 NATD1	< 0.0001	-1.8112	1530 JADE1	0.0001	-1.9027
1451 FTCDNL1	0.0114	-1.7304	1491 LINC00271	0.0328	-1.8143	1531 EYA1	0.0040	-1.9034
1452 CASP14	0.0009	-1.7313	1492 DMBX1	0.0009	-1.8194	1532 HBP1	< 0.0001	-1.9098
1453 SLITRK6	0.0082	-1.7368	1493 KANTR	0.0010	-1.8200	1533 ARHGAP28	0.0020	-1.9148
1454 SBK1	0.0041	-1.7393	1494 EPOR	0.0015	-1.8289	1534 PSCA	0.0050	-1.9158
1455 H2BC7	0.0175	-1.7394	1495 TRANK1	< 0.0001	-1.8338	1535 DLX4	< 0.0001	-1.9163
1456 MIR4263	0.0487	-1.7440	1496 PRKG2	0.0083	-1.8347	1536 ZKSCAN3	< 0.0001	-1.9177
1457 FAM184B	0.0164	-1.7440	1497 CAPNS2	0.0012	-1.8378	1537 FBXL20	0.0005	-1.9194
1458 RAP2CP1	0.0058	-1.7440	1498 PIK3IP1	< 0.0001	-1.8390	1538 LINC01719	0.0036	-1.9253
1459 TECTA	0.0002	-1.7440	1499 C17orf100	0.0004	-1.8413	1539 MIR646HG	0.0233	-1.9254
1460 LINC00479	0.0002	-1.7441	1500 SCN8A	0.0066	-1.8441	1540 LINC01852	0.0394	-1.9254
1461 CDRT4	0.0124	-1.7480	1501 YPEL3	0.0001	-1.8447	1541 GSE1	< 0.0001	-1.9285
1462 C14orf93	< 0.0001	-1.7486	1502 BTBD8	0.0007	-1.8474	1542 PPM1H	0.0002	-1.9305
1463 CYP3A4	0.0342	-1.7539	1503 IKZF2	0.0005	-1.8496	1543 DLX6	0.0031	-1.9313
1464 MEIS2	< 0.0001	-1.7544	1504 LINC02637	0.0020	-1.8513	1544 LINC01970	0.0042	-1.9320
1465 SMAD6	< 0.0001	-1.7551	1505 IL2RB	0.0025	-1.8513	1545 FAM43A	0.0006	-1.9380
1466 EYA2	0.0124	-1.7563	1506 NALT1	0.0007	-1.8648	1546 SEMA3E	0.0321	-1.9489
1467 LOXL4	0.0176	-1.7602	1507 LINC00899	0.0001	-1.8670	1547 NRG2	< 0.0001	-1.9502
1468 HOXC12	0.0001	-1.7607	1508 CRNDE	0.0001	-1.8674	1548 PLAG1	0.0035	-1.9516
1469 C17orf78	0.0422	-1.7615	1509 STAG3	0.0402	-1.8699	1549 ZNF837	0.0017	-1.9538
1470 LIX1L	0.0118	-1.7643	1510 ULK1	< 0.0001	-1.8712	1550 SP8	0.0105	-1.9564
1471 SLC25A42	0.0029	-1.7668	1511 BMP3	0.0027	-1.8714	1551 PIK3C2B	0.0001	-1.9723
1472 CNTRL	< 0.0001	-1.7706	1512 EFCAB12	0.0068	-1.8747	1552 GRB7	0.0001	-1.9724
1473 ULBP1	0.0004	-1.7746	1513 DNMT3A	< 0.0001	-1.8762	1553 FOXO6	0.0020	-1.9768
1474 PPM1K	0.0062	-1.7823	1514 RHEBL1	0.0026	-1.8770	1554 TNFRSF13C	0.0018	-1.9786
1475 ZMYM3	< 0.0001	-1.7835	1515 SNAI3	0.0022	-1.8799	1555 C7orf61	0.0350	-1.9788
1476 ELF3	0.0007	-1.7847	1516 METTL7A	0.0002	-1.8800	1556 STOX2	0.0304	-1.9817
1477 SPATA25	0.0131	-1.7850	1517 ETV2	0.0022	-1.8814	1557 CDKN2C	< 0.0001	-1.9819
1478 SPACA6P-AS	0.0009	-1.7935	1518 KRT71	0.0259	-1.8823	1558 PRSS36	0.0031	-1.9824
1479 RNA5SP37	0.0081	-1.7946	1519 KCNV1	0.0002	-1.8823	1559 LINC02541	0.0003	-1.9831
1480 HCG4	0.0140	-1.7946	1520 LUNAR1	0.0158	-1.8823	1560 HOXA2	0.0001	-1.9847

APÊNDICE B - 1950 DEGs em queratinócitos após tratamento com sEV-LCCT por 4h (14/17)

Nº Gene	Valor de p	Foldchange	N⁰ Gene	Valor de p	Foldchange	N⁰ Gene	valor de p	Foldchange
1561 RBP3	0.0018	-1.9859	1601 ZNF821	0.0039	-2.1033	1641 GRA	MD2A 0.0001	-2.2313
1562 NPIPA2	0.0461	-1.9896	1602 TMEM86A	0.0141	-2.1075	1642 ADH ²	1C < 0.0001	-2.2339
1563 PAUPAR	0.0071	-1.9896	1603 FGD3	< 0.0001	-2.1092	1643 ARL5	AP3 < 0.0001	-2.2339
1564 TUSC1	0.0332	-1.9896	1604 GAPDHP22	0.0421	-2.1096	1644 BHLH	HE22 < 0.0001	-2.2339
1565 TCP11L2	0.0001	-1.9917	1605 LINC01546	0.0139	-2.1144	1645 BRIN	P3 < 0.0001	-2.2339
1566 H3C14	0.0418	-1.9995	1606 LINC01224	0.0021	-2.1203	1646 C9orf	50 < 0.0001	-2.2339
1567 HOTAIR	< 0.0001	-1.9997	1607 ZBTB7C	0.0014	-2.1203	1647 CICP	18 < 0.0001	-2.2339
1568 PROCA1	0.0001	-2.0037	1608 GPRIN2	0.0072	-2.1204	1648 CTSL	_P3 < 0.0001	-2.2339
1569 PITX2	0.0003	-2.0073	1609 P2RX7	0.0062	-2.1204	1649 CTXN	v3 < 0.0001	-2.2339
1570 ADORA1	0.0164	-2.0131	1610 TDRD5	0.0317	-2.1280	1650 DCT	< 0.0001	-2.2339
1571 GOLGA8H	0.0164	-2.0131	1611 ZNF93	0.0472	-2.1280	1651 ESX1	< 0.0001	-2.2339
1572 GCOM1	0.0010	-2.0146	1612 APOBR	0.0168	-2.1320	1652 F2	< 0.0001	-2.2339
1573 DNAJB4	0.0001	-2.0170	1613 MINDY1	< 0.0001	-2.1375	1653 FLJ4	0194 < 0.0001	-2.2339
1574 VANGL2	0.0016	-2.0289	1614 KLHL10	0.0491	-2.1439	1654 FMO	1 < 0.0001	-2.2339
1575 LINC00663	0.0008	-2.0314	1615 LINC00427	0.0489	-2.1439	1655 H2A0	< 0.0001	-2.2339
1576 LINC02175	0.0117	-2.0355	1616 FOXN1	0.0002	-2.1455	1656 KIAA	0895LP1 < 0.0001	-2.2339
1577 MGC16275	0.0061	-2.0363	1617 GDPD1	0.0102	-2.1503	1657 LINC	00381 < 0.0001	-2.2339
1578 RHOU	0.0009	-2.0399	1618 MIR1915HG	0.0001	-2.1514	1658 LINC	01543 < 0.0001	-2.2339
1579 ZNF775	0.0004	-2.0401	1619 ZSCAN23	0.0286	-2.1514	1659 LINC	01600 < 0.0001	-2.2339
1580 ZNF442	0.0231	-2.0403	1620 FITM1	0.0058	-2.1514	1660 LINC	02284 < 0.0001	-2.2339
1581 RNF225	0.0212	-2.0403	1621 WNT8B	0.0097	-2.1514	1661 M1A	> < 0.0001	-2.2339
1582 TMCC2	0.0003	-2.0476	1622 DNAJC22	0.0040	-2.1516	1662 MIR5	48N < 0.0001	-2.2339
1583 FAM214A	< 0.0001	-2.0530	1623 PXDNL	0.0302	-2.1724	1663 PDX1	< 0.0001	-2.2339
1584 JAK3	0.0019	-2.0538	1624 CCNG2	0.0001	-2.1749	1664 RPS/	AP76 < 0.0001	-2.2339
1585 FAM117A	< 0.0001	-2.0560	1625 DENND5B	< 0.0001	-2.1829	1665 TBC1	D26 < 0.0001	-2.2339
1586 LINC02643	0.0126	-2.0599	1626 CD164L2	0.0118	-2.1846	1666 TTBK	< 0.0001	-2.2339
1587 NANOS1	0.0001	-2.0606	1627 CORT	0.0030	-2.1846	1667 UGT:	3A1 < 0.0001	-2.2339
1588 RBM43	0.0001	-2.0615	1628 H2AC17	0.0325	-2.1846	1668 DNA	JB5 0.0005	-2.2403
1589 NOL4L	< 0.0001	-2.0618	1629 PTGIS	0.0193	-2.1899	1669 WSC	D2 0.0031	-2.2407
1590 ANGPT1	0.0074	-2.0638	1630 ARID5B	0.0001	-2.1917	1670 SPA1	A12 < 0.0001	-2.2412
1591 TMEM185AP1	0.0068	-2.0638	1631 ARHGAP24	0.0001	-2.2030	1671 MXD	3 0.0001	-2.2501
1592 ZNF846	< 0.0001	-2.0695	1632 PROC	< 0.0001	-2.2048	1672 GNR	HR2 < 0.0001	-2.2506
1593 ZC3H6	< 0.0001	-2.0742	1633 H3C2	0.0195	-2.2106	1673 SOX	12 < 0.0001	-2.2519
1594 LINC02328	0.0023	-2.0773	1634 KLHDC1	0.0015	-2.2123	1674 LINC	00939 0.0029	-2.2587
1595 GKAP1	0.0001	-2.0823	1635 RNA5SP18	0.0224	-2.2169	1675 PLIN	1 0.0038	-2.2587
1596 PER1	< 0.0001	-2.0840	1636 ORAI3	< 0.0001	-2.2201	1676 PPFI	A4 0.0178	-2.2632
1597 PRDM16	0.0034	-2.0895	1637 KRBA2	0.0003	-2.2214	1677 GPR	1 0.0031	-2.2648
1598 SLITRK4	0.0001	-2.0994	1638 ZBTB10	0.0007	-2.2256	1678 GLI1	0.0077	-2.2663
1599 ANKRD65	< 0.0001	-2.1014	1639 CREBRF	< 0.0001	-2.2274	1679 LINC	00885 0.0096	-2.2693
1600 ZNF844	0.0230	-2.1014	1640 LINC02031	0.0033	-2.2284	1680 APOI	_4 0.0041	-2.2723

APÊNDICE B - 1950 DEGs em queratinócitos após tratamento com sEV-LCCT por 4h (15/17)

N⁰ Gene	Valor de p	Foldchange	N⁰ Gene	Valor de p	Foldchange	Nº Gene	Valor de p	Foldchange
1681 SOD2-OT1	0.0103	-2.2723	1721 LINC00052	0.0470	-2.4772	1761 RARB	0.0137	-2.6261
1682 CAVIN2	0.0009	-2.2747	1722 LYPD2	0.0480	-2.4772	1762 MYZAP	0.0021	-2.6266
1683 LFNG	0.0006	-2.2786	1723 LINC01229	0.0291	-2.4870	1763 DRAIC	0.0390	-2.6292
1684 MIR659	0.0459	-2.2821	1724 C11orf72	0.0445	-2.4908	1764 PNRC1	< 0.0001	-2.6442
1685 TSPO2	0.0447	-2.2822	1725 SLC12A3	0.0450	-2.4908	1765 IGHE	0.0008	-2.6466
1686 ZNF878	0.0443	-2.2958	1726 CRB2	0.0270	-2.5006	1766 ADAD2	0.0066	-2.6563
1687 BCL2L14	0.0070	-2.3046	1727 PPIAP51	0.0270	-2.5006	1767 CYP26A1	0.0002	-2.6616
1688 SAMD11	0.0012	-2.3054	1728 RPRML	0.0270	-2.5006	1768 RGS9	0.0008	-2.6663
1689 RNF144B	0.0002	-2.3084	1729 TSPOAP1	0.0270	-2.5006	1769 TRIM6	< 0.0001	-2.6666
1690 CBFA2T3	0.0093	-2.3094	1730 KRT74	0.0069	-2.5179	1770 LINC00957	0.0010	-2.6711
1691 FAM181B	0.0028	-2.3121	1731 TBC1D9	< 0.0001	-2.5339	1771 RN7SKP150	0.0498	-2.6820
1692 ARRDC3	< 0.0001	-2.3178	1732 BBC3	0.0001	-2.5392	1772 CCR7	0.0237	-2.6956
1693 LINC02606	0.0045	-2.3230	1733 CCDC33	0.0004	-2.5411	1773 LINC00412	0.0241	-2.6956
1694 FILIP1	0.0051	-2.3230	1734 CALCRL	0.0091	-2.5414	1774 TRPC4	0.0235	-2.6956
1695 LINC00900	0.0011	-2.3230	1735 ATP6V1G2	0.0129	-2.5443	1775 FSIP2	0.0465	-2.6956
1696 LINC01529	0.0036	-2.3230	1736 ATOH8	0.0103	-2.5490	1776 LINC00525	0.0484	-2.6956
1697 GRAMD1C	0.0001	-2.3403	1737 MYB	< 0.0001	-2.5520	1777 MST1L	0.0240	-2.6957
1698 TESK2	0.0005	-2.3411	1738 HK3	0.0014	-2.5672	1778 PCDHB11	0.0240	-2.6957
1699 CFAP206	0.0090	-2.3464	1739 LUARIS	0.0014	-2.5672	1779 LINC00426	0.0236	-2.6957
1700 GLIPR1L1	0.0096	-2.3464	1740 SSC5D	0.0014	-2.5672	1780 N4BP2L1	0.0001	-2.6976
1701 SLC16A14	0.0003	-2.3478	1741 SYNPO2L	0.0014	-2.5672	1781 KLHL3	0.0038	-2.7070
1702 RGS9BP	0.0326	-2.3525	1742 LINC02889	0.0017	-2.5672	1782 TMEM37	0.0197	-2.7129
1703 LCA5	0.0001	-2.3574	1743 MIR4432HG	0.0017	-2.5672	1783 ABCB4	0.0239	-2.7227
1704 TP53INP1	< 0.0001	-2.3703	1744 MIR6510	0.0017	-2.5672	1784 HIPK4	0.0241	-2.7227
1705 MTUS2	< 0.0001	-2.3752	1745 MLXP1	0.0015	-2.5672	1785 CLEC3A	0.0119	-2.7304
1706 NBEAP2	< 0.0001	-2.3796	1746 PLSCR2	0.0017	-2.5672	1786 PPP1R3G	0.0231	-2.7365
1707 TUB	0.0464	-2.3895	1747 PPIAP45	0.0015	-2.5672	1787 SLIT1	0.0234	-2.7365
1708 SLC25A27	0.0007	-2.4022	1748 RNU4-1	0.0015	-2.5672	1788 TMC2	0.0084	-2.7380
1709 SMAD9	0.0032	-2.4063	1749 RNVU1-4	0.0017	-2.5672	1789 FAM96AP2	0.0444	-2.7425
1710 NEURL1B	0.0004	-2.4111	1750 ST6GALNAC3	0.0017	-2.5672	1790 MYOCD	0.0027	-2.7431
1711 FPGT-TNNI3K	< 0.0001	-2.4303	1751 TSPAN32	0.0017	-2.5672	1791 RAET1E	0.0107	-2.7514
1712 TET1	0.0013	-2.4328	1752 LINC01023	0.0064	-2.5875	1792 POLR2KP1	0.0425	-2.7538
1713 ERVH48-1	0.0396	-2.4342	1753 OXGR1	0.0013	-2.5893	1793 LINC00498	0.0434	-2.7539
1714 HRNR	0.0061	-2.4366	1754 ID1	< 0.0001	-2.5917	1794 HTR1E	0.0060	-2.7622
1715 BCL6	0.0007	-2.4418	1755 LINC02004	0.0206	-2.5984	1795 KRTAP29-1	0.0069	-2.7622
1716 PKD1L2	0.0015	-2.4451	1756 PLXDC1	0.0001	-2.6104	1796 MRRFP1	0.0060	-2.7622
1717 PAX6	< 0.0001	-2.4512	1757 HAND1	0.0102	-2.6144	1797 SIRPAP1	0.0060	-2.7622
1718 LINC00519	0.0006	-2.4643	1758 GUCY2D	0.0253	-2.6154	1798 MORN3	0.0084	-2.7672
1719 C11orf52	0.0300	-2.4771	1759 MPPED2	< 0.0001	-2.6157	1799 PPP1R3C	0.0014	-2.7783
1720 HCG14	0.0464	-2.4771	1760 SLC29A3	< 0.0001	-2.6157	1800 TMEM200C	0.0024	-2.7805

APÊNDICE B - 1950 DEGs em queratinócitos após tratamento com sEV-LCCT por 4h (16/17)

N⁰ Gene	Valor de p	Foldchange	N⁰ Gene	Valor de p	Foldchange	N⁰	Gene	Valor de p	Foldchange
1801 LINC01287	0.0250	-2.8339	1841 KCNK2	0.0200	-3.0153	1881	SMIM32	0.0046	-3.2339
1802 RBP7	0.0463	-2.8339	1842 LRRC19	0.0200	-3.0153	1882	LINC00964	0.0051	-3.2339
1803 POM121L2	0.0449	-2.8341	1843 UPB1	0.0200	-3.0153	1883	MDGA2	0.0186	-3.2610
1804 MIR4783	0.0467	-2.8341	1844 CPAMD8	0.0153	-3.0207	1884	FLJ31356	0.0053	-3.2763
1805 FOLR3	0.0345	-2.8441	1845 TNNC1	0.0184	-3.0229	1885	KCTD16	0.0300	-3.3017
1806 CCDC110	0.0004	-2.8513	1846 DNAI3	0.0466	-3.0289	1886	INHBC	0.0117	-3.3487
1807 PELI2	0.0001	-2.8524	1847 IGSF22	0.0182	-3.0289	1887	ZNF608	0.0040	-3.3592
1808 FIBIN	0.0187	-2.8907	1848 TSC22D3	< 0.0001	-3.0374	1888	LINC01843	0.0101	-3.4129
1809 H4C11	0.0129	-2.9005	1849 ENPP5	0.0018	-3.0420	1889	MGAT3	0.0012	-3.4205
1810 HAS1	0.0010	-2.9005	1850 HCG27	0.0004	-3.0663	1890	RFPL3S	0.0200	-3.4228
1811 HRCT1	0.0011	-2.9005	1851 SLC2A4	0.0023	-3.0912	1891	CACNA1A	0.0050	-3.4288
1812 INSL6	0.0008	-2.9005	1852 DDIT4	< 0.0001	-3.0934	1892	LINC01889	0.0046	-3.4288
1813 KIF25	0.0008	-2.9005	1853 ESRRB	0.0024	-3.0955	1893	MIR6512	0.0001	-3.4288
1814 LINC00111	0.0008	-2.9005	1854 PRAMEF1	0.0024	-3.0955	1894	UPP2	0.0001	-3.4288
1815 LINC00637	0.0010	-2.9005	1855 RAD21L1	0.0028	-3.0955	1895	SMIM10L2A	< 0.0001	-3.4688
1816 MIR548AC	0.0008	-2.9005	1856 MIR210HG	< 0.0001	-3.1110	1896	ERVE-1	0.0103	-3.4696
1817 RSPH14	0.0008	-2.9005	1857 ACKR3	< 0.0001	-3.1164	1897	MAST1	0.0018	-3.4797
1818 SLC19A3	0.0008	-2.9005	1858 NAPSA	0.0494	-3.1318	1898	C6orf223	0.0288	-3.5018
1819 TEKT5	0.0119	-2.9005	1859 DLX5	0.0009	-3.1367	1899	KLHL24	< 0.0001	-3.5114
1820 ID3	< 0.0001	-2.9113	1860 MAB21L3	0.0272	-3.1418	1900	C7orf65	0.0027	-3.5179
1821 COLCA2	0.0001	-2.9156	1861 LENEP	0.0313	-3.1439	1901	LINC01962	0.0063	-3.5361
1822 KLHDC8B	0.0375	-2.9177	1862 VPS37D	0.0026	-3.1464	1902	OR10H1	0.0071	-3.5361
1823 DBP	< 0.0001	-2.9236	1863 STPG3	0.0179	-3.1537	1903	LINC02613	0.0117	-3.5436
1824 MGAT4EP	0.0488	-2.9276	1864 LINC01359	0.0172	-3.1673	1904	LINC02607	0.0005	-3.5524
1825 CNOT6LP1	0.0002	-2.9350	1865 BHLHE41	0.0005	-3.1678	1905	LINC01132	0.0109	-3.5572
1826 SLC52A1	0.0048	-2.9468	1866 OLFM4	0.0437	-3.1771	1906	ZNF610	0.0270	-3.5671
1827 PPIAP4	0.0254	-2.9487	1867 SKIDA1	< 0.0001	-3.1892	1907	MIR4795	0.0004	-3.5672
1828 CDH10	0.0060	-2.9514	1868 AADACP1	0.0496	-3.1968	1908	SLC1A6	0.0004	-3.5672
1829 ZNF233	0.0031	-2.9586	1869 LINC01783	0.0497	-3.1968	1909	AXIN2	0.0089	-3.5943
1830 ID4	0.0001	-2.9702	1870 TNFSF10	< 0.0001	-3.1980	1910	LINC01124	0.0320	-3.6230
1831 KLF9	0.0004	-2.9719	1871 YPEL2	< 0.0001	-3.1982	1911	H3-4	0.0140	-3.6292
1832 STON1	< 0.0001	-2.9734	1872 PLCH1	0.0210	-3.2004	1912	LINC01952	0.0267	-3.6647
1833 ZBTB8B	0.0063	-2.9820	1873 TP73	0.0014	-3.2037	1913	PDK4	0.0002	-3.6763
1834 ZNF467	0.0003	-2.9964	1874 LINC00865	0.0133	-3.2103	1914	CHST4	0.0122	-3.6957
1835 ZNF843	0.0204	-3.0055	1875 IGFALS	0.0209	-3.2141	1915	FBXO32	0.0004	-3.6985
1836 EID2B	0.0007	-3.0076	1876 HTR6	0.0126	-3.2241	1916	MIR2116	0.0256	-3.7387
1837 FSTL4	0.0187	-3.0078	1877 ID2	< 0.0001	-3.2269	1917	RBBP8NL	0.0069	-3.7616
1838 SOX2	0.0061	-3.0080	1878 SESN3	0.0001	-3.2305	1918	KIT	0.0105	-3.8128
1839 TLCD3B	0.0005	-3.0131	1879 LINC02137	< 0.0001	-3.2339	1919	SH2D3C	0.0026	-3.8450
1840 INSYN1	0.0198	-3.0153	1880 PXT1	0.0046	-3.2339	1920	GRIA4	0.0114	-3.8595

APÊNDICE B - 1950 DEGs em queratinócitos após tratamento com sEV-LCCT por 4h (17/17)

N٥	Gene	Valor de p	Foldchange	N⁰ Gene	Valor de p	Foldchange	№ Gene	Valor de p	Foldchange
1921	PDE3A	0.0242	-3.9102	1931 FBXO43	0.0122	-4.1782	1941 MPIG6B	0.0003	-4.7818
1922	CHAD	0.0016	-3.9167	1932 LGALS4	< 0.0001	-4.2339	1942 NAP1L3	0.0194	-4.7977
1923	LINC02560	0.0083	-3.9843	1933 GDF6	0.0036	-4.2910	1943 BMF	< 0.0001	-4.8374
1924	ISLR	0.0074	-4.0153	1934 ESRRG	0.0022	-4.3978	1944 PCDH18	< 0.0001	-4.8867
1925	ADAMTS5	0.0081	-4.0229	1935 VSX2	< 0.0001	-4.4485	1945 TXNIP	< 0.0001	-4.9943
1926	RCSD1	0.0112	-4.0313	1936 COLCA1	< 0.0001	-4.5111	1946 VAV3	< 0.0001	-4.9958
1927	CA3	0.0205	-4.0797	1937 TREHP1	0.0037	-4.5943	1947 LINC01271	0.0001	-5.2683
1928	SOSTDC1	0.0208	-4.0905	1938 IL21R	0.0003	-4.6337	1948 PPARGC1A	0.0021	-5.3229
1929	KCNH4	< 0.0001	-4.0955	1939 ISLR2	0.0032	-4.7217	1949 SEMA6D	< 0.0001	-5.5731
1930	SALL2	0.0003	-4.1213	1940 LINC02635	0.0130	-4.7278	1950 LEXM	< 0.0001	-5.7128

APÊNDICE C - 641 DEGs em queratinócitos após tratamento com sEV-LCCT por 24 h (1/6)

N⁰ Gene	Valor de p	Foldchange	N⁰ Gene	Valor de p	Foldchange	N⁰ Gene	Valor de p	Foldchange
1 CSF2	0.0007	7.1927	41 GPATCH4	0.0451	2.2314	81 IRAK2	0.0140	1.7877
2 CXCL8	0.0001	6.9068	42 INHBE	< 0.0001	2.2235	82 MIR3176	0.0077	1.7788
3 KRTAP2-3	0.0005	6.1016	43 LINC01322	< 0.0001	2.2235	83 SH2D5	0.0090	1.7517
4 SPRR2D	< 0.0001	6.0106	44 LRRN3	< 0.0001	2.2235	84 EDNRA	0.0415	1.7506
5 SPRR2A	< 0.0001	5.6613	45 SHISAL2B	< 0.0001	2.2235	85 DUSP6	0.0002	1.7451
6 ESM1	0.0031	5.5602	46 PDCD1LG2	0.0002	2.2235	86 TLR4	0.0001	1.7415
7 CREB5	0.0021	5.5297	47 MIR7111	0.0462	2.2209	87 DUSP4	< 0.0001	1.7340
8 MMP20	0.0018	5.5253	48 GPR179	0.0385	2.1305	88 BIRC3	0.0431	1.7243
9 HSPA6	0.0043	5.2833	49 CAPN14	0.0399	2.1276	89 MYL12BP1	0.0278	1.7134
10 SERPINB2	< 0.0001	4.9075	50 TBPL2	0.0405	2.1276	90 MYH15	0.0088	1.7002
11 CXCL1	< 0.0001	4.8906	51 TMEM156	0.0405	2.1276	91 CXCL6	0.0496	1.6952
12 FOSL1	< 0.0001	4.8301	52 BMPR1AP1	0.0273	2.1250	92 MYH16	0.0370	1.6900
13 ADGRF2	< 0.0001	4.7846	53 ACMSD	0.0417	2.1171	93 SLC16A6	0.0107	1.6643
14 CCDC13	0.0001	4.7514	54 ATP5MGL	0.0408	2.1171	94 SLC16A9	0.0011	1.6534
15 EGR3	0.0002	4.7042	55 LINC00484	0.0408	2.1171	95 PHLDA1	0.0001	1.6409
16 BMP6	0.0060	4.6857	56 LRRC43	0.0442	2.1171	96 CEACAM1	0.0010	1.6406
17 SLC24A3	0.0150	4.6350	57 SMLR1	0.0433	2.1171	97 ARHGAP20	0.0128	1.6275
18 IL1RL1	0.0005	4.6099	58 FOSL1	0.0001	2.0387	98 GJA3	0.0425	1.6251
19 SPRY4	0.0003	4.5227	59 DSCAM	0.0014	2.0293	99 IER3	0.0021	1.5938
20 KRTAP3-1	0.0218	4.5055	60 ADORA2A	0.0476	2.0252	100 HBEGF	0.0007	1.5870
21 SAA4	0.0007	4.4648	61 KCNN3	0.0274	2.0242	101 FAM166C	0.0088	1.5806
22 CCDC190	0.0149	4.4071	62 DUSP5	0.0001	2.0185	102 TENT5C	0.0183	1.5623
23 LINC02539	0.0119	4.3402	63 FBLN7	0.0363	1.9843	103 LINC00706	0.0288	1.5557
24 TRPV3	0.0129	4.3257	64 LINC02365	0.0380	1.9843	104 SOCS1	0.0057	1.5377
25 EGR4	0.0001	4.2698	65 SLC8A2	0.0373	1.9843	105 LINC02803	0.0101	1.5264
26 KRT23	0.0051	4.1973	66 C1DP1	0.0396	1.9814	106 CTSE	0.0004	1.5193
27 TNFAIP3	< 0.0001	4.1970	67 SCARNA1	0.0396	1.9814	107 TNFRSF1B	0.0193	1.5072
28 PCNPP3	0.0052	4.1939	68 LINC01561	0.0389	1.9709	108 LINC01127	0.0375	1.5049
29 IGSF11	0.0060	4.1826	69 S1PR3	0.0052	1.9704	109 IL12A	0.0169	1.5009
30 PDCD1LG2	0.0001	4.0580	70 IL1B	0.0026	1.9455	110 ETV1	< 0.0001	1.4933
31 ADAMTS9	0.0038	4.0467	71 GPR3	0.0048	1.9397	111 MIR155HG	0.0101	1.4523
32 TRBV30	0.0058	4.0425	72 LINC02605	0.0384	1.9372	112 NGF	0.0023	1.4501
34 MIR6090	0.0006	3.9872	73 PGF	0.0009	1.9165	113 CHSY3	0.0119	1.4470
33 IRAG1	0.0003	4.0093	74 ISM1	0.0001	1.9023	114 TRIB2	0.0006	1.4371
35 NPAS3	0.0112	3.9684	75 ABCA1	0.0110	1.8899	115 GJB2	0.0013	1.4250
36 G0S2	0.0240	3.9579	76 NTSR1	0.0084	1.8830	116 ARL4C	0.0007	1.4238
37 TNF	0.0012	3.9365	77 TNFAIP3	0.0131	1.8507	117 ST6GALNAC6	0.0196	1.4210
38 LINC01127	0.0003	3.9042	78 ETV5	0.0001	1.8402	118 MARCHF4	0.0044	1.4116
39 CH25H	0.0060	2.3467	79 CHAC1	0.0004	1.8289	119 CSAG3	0.0303	1.4066
40 IL1A	0.0039	2.3185	80 TMEM171	0.0020	1.8221	120 TSPAN2	0.0190	1.4006

APÊNDICE C - 641 DEGs em queratinócitos após tratamento com sEV-LCCT por 24 h (2/6)

N⁰ Gene	Valor de p	Foldchange	N⁰ Gene	Valor de p	Foldchange	Nº C	Gene	Valor de p	Foldchange
121 HS3ST1	0.0012	1.3838	161 ANKRD22	0.0128	1.1570	201 0	GTF2IRD2	0.0425	-1.0011
122 PAPPA	0.0057	1.3679	162 ITPR1	0.0068	1.1562	202 A	ATP6V1G2	0.0238	-1.0017
123 SNORA79B	0.0064	1.3525	163 SPRR1B	0.0087	1.1483	203 A	ACAA2	0.0001	-1.0029
124 PLA2G7	0.0001	1.3494	164 TGFA	0.0002	1.1476	204 S	SSPN	0.0010	-1.0063
125 ECM2	0.0030	1.3388	165 ANO7	0.0036	1.1388	205 H	H2BC7	0.0317	-1.0109
126 RGPD6	0.0330	1.3374	166 VEGFA	0.0014	1.1371	206 Z	ZDHHC1	0.0059	-1.0109
127 RELB	0.0123	1.3315	167 ANTXR2	0.0011	1.1331	207 T	FSPAN8	0.0173	-1.0116
128 CDK5R1	0.0003	1.3284	168 LUCAT1	0.0202	1.1326	208 H	H2AC13	0.0103	-1.0116
129 HAS3	0.0004	1.3275	169 LINC00216	0.0104	1.1291	209 F	PAPLN	0.0069	-1.0137
130 CHGB	0.0235	1.2890	170 AEN	< 0.0001	1.1243	210 F	-SCN2	0.0119	-1.0167
131 ADAMTS14	0.0098	1.2861	171 PLAC4	0.0068	1.1208	211 S	SYNPO	0.0059	-1.0180
132 ZDHHC20-IT1	0.0104	1.2793	172 SNORD6	0.0051	1.1184	212 E	DIT4	0.0010	-1.0187
133 TMEM200A	0.0002	1.2772	173 ASB2	0.0308	1.1158	213 5	SOD2-OT1	0.0225	-1.0187
134 RIPOR3	0.0430	1.2704	174 CD83	0.0125	1.1115	214 F	-MO4	0.0328	-1.0197
135 ANGPTL4	0.0005	1.2618	175 EREG	0.0019	1.1106	215 S	SLC25A42	0.0078	-1.0208
136 TFPI2	< 0.0001	1.2595	176 IL37	0.0438	1.1062	216 A	ALDH6A1	0.0006	-1.0210
137 SPRY1	0.0028	1.2551	177 RNA5SP317	0.0497	1.1047	217 H	H2BC21	0.0069	-1.0213
138 UPP1	< 0.0001	1.2512	178 GPRC5B	0.0011	1.1045	218 H	H2AC11	0.0004	-1.0226
139 NR4A3	0.0075	1.2491	179 SLCO2A1	0.0075	1.0982	219 5	STX19	0.0313	-1.0241
140 KBTBD8	0.0089	1.2487	180 MGLL	0.0034	1.0952	220 N	NLGN4X	0.0037	-1.0246
141 SPNS2	0.0140	1.2448	181 STEAP1	< 0.0001	1.0940	221 A	ALDH3B2	0.0290	-1.0291
142 ARHGAP25	0.0117	1.2438	182 SNORD14A	0.0092	1.0930	222 0	CCDC85A	0.0113	-1.0310
143 TAGLN3	0.0043	1.2381	183 RAPSN	0.0240	1.0926	223 T	ГМЕМ176А	0.0243	-1.0371
144 DPF3	0.0111	1.2376	184 MIR100HG	0.0010	1.0925	224 8	SIGLEC15	0.0061	-1.0386
145 LINC02584	0.0371	1.2374	185 SLC10A6	0.0107	1.0917	225 L	_INC00638	0.0012	-1.0396
146 ADAM8	0.0030	1.2340	186 PLAUR	0.0172	1.0901	226 5	SPOCK2	0.0449	-1.0404
147 SLC6A15	0.0116	1.2330	187 LINC00973	0.0152	1.0891	227 E	ENO4	0.0220	-1.0416
148 EVI2B	0.0008	1.2308	188 TACR2	0.0345	1.0882	228 T	FMEM59L	0.0306	-1.0418
149 JUN	0.0011	1.2218	189 TFCP2L1	0.0006	1.0705	229 F	PIK3IP1	< 0.0001	-1.0453
150 AREG	0.0013	1.2149	190 VGLL2	0.0039	1.0695	230 Z	ZBTB20	0.0089	-1.0457
151 PHACTR3	0.0303	1.2062	191 SACS	< 0.0001	1.0616	231 k	<lhl24< td=""><td>0.0079</td><td>-1.0521</td></lhl24<>	0.0079	-1.0521
152 NEK10	0.0423	1.2035	192 MUC1	0.0194	1.0599	232 H	HOXC4	0.0015	-1.0530
153 MMP9	0.0120	1.1917	193 LINC02809	0.0300	1.0594	233 Z	ZNF704	0.0011	-1.0545
154 ADD2	0.0079	1.1888	194 PLAU	0.0315	1.0450	234 F	PLCD4	0.0352	-1.0548
155 MFSD2A	0.0002	1.1875	195 PLD6	0.0018	1.0397	235 L	_INC01126	0.0190	-1.0567
156 GLYATL1	0.0411	1.1852	196 NKX3-1	0.0015	1.0390	236 N	MEGF6	0.0016	-1.0588
157 NTM	0.0105	1.1813	197 LIF	0.0360	1.0315	237 8	SLC39A2	0.0092	-1.0593
158 HYDIN	0.0066	1.1778	198 GLB1L3	0.0112	1.0216	238 Z	ZNF345	0.0129	-1.0599
159 FST	0.0055	1.1683	199 PMP22	0.0354	1.0161	239 C	CEL	0.0381	-1.0626
160 PLK3	0.0001	1.1659	200 BMX	0.0473	-1.0006	240 C	JSCAR	0.0112	-1.0657

APÊNDICE C - 641 DEGs em queratinócitos após tratamento com sEV-LCCT por 24 h (3/6)

N٥	Gene	Valor de p	Foldchange	N⁰ Gene	Valor de p	Foldchange	N⁰ Gene	Valor de p	Foldchange
241	IL36RN	0.0105	-1.0657	281 PGLYRP3	0.0204	-1.1503	321 CYP2A13	0.0013	-1.2694
242	GDF9	0.0095	-1.0666	282 ZNF425	0.0007	-1.1525	322 ATP8A1	0.0049	-1.2727
243	CFAP52	0.0032	-1.0683	283 LINC02057	0.0034	-1.1528	323 NOTCH3	0.0135	-1.2758
244	AHNAK2	0.0003	-1.0707	284 ACKR2	0.0387	-1.1529	324 VWA7	0.0385	-1.2810
245	SYNC	0.0171	-1.0754	285 FBP1	0.0182	-1.1530	325 SCARF1	0.0385	-1.2878
246	EPHA4	0.0083	-1.0763	286 SALL2	0.0105	-1.1538	326 GPR173	0.0185	-1.2887
247	LGR6	0.0021	-1.0769	287 VAV3	0.0005	-1.1566	327 NANOS1	0.0001	-1.2954
248	CFAP70	0.0433	-1.0769	288 DYRK1B	0.0103	-1.1670	328 CYP3A7	0.0311	-1.3006
249	ACSM3	0.0034	-1.0776	289 SCGB1A1	0.0024	-1.1680	329 EYA2	0.0010	-1.3025
250	RTL8B	0.0077	-1.0796	290 TP53INP2	0.0044	-1.1701	330 ABCA4	0.0155	-1.3029
251	JAK3	0.0067	-1.0811	291 NPAS1	0.0002	-1.1708	331 B3GALT4	0.0126	-1.3039
252	RHOBTB3	0.0086	-1.0851	292 NATD1	0.0037	-1.1767	332 GPER1	0.0003	-1.3135
253	SEC14L5	0.0123	-1.0898	293 STX1B	0.0210	-1.1776	333 BEST1	0.0084	-1.3138
254	LINC01224	0.0264	-1.0916	294 HOTAIR	0.0025	-1.1785	334 GRAMD2A	0.0123	-1.3150
255	ZNF396	0.0070	-1.0942	295 CYP26A1	0.0041	-1.1809	335 GDF6	0.0013	-1.3213
256	FLJ37453	0.0019	-1.0944	296 GPR1	0.0033	-1.1887	336 H3C2	0.0184	-1.3239
257	GSTA4	0.0372	-1.0983	297 KRT13	0.0001	-1.1953	337 TMEM191B	0.0018	-1.3267
258	CYP27A1	0.0106	-1.1020	298 RAET1E	0.0326	-1.2038	338 C12orf54	0.0192	-1.3272
259	DUOXA2	0.0055	-1.1029	299 KLHDC9	0.0026	-1.2048	339 DLX4	0.0092	-1.3298
260	FAM66C	0.0178	-1.1041	300 CTF1	0.0001	-1.2063	340 SLC29A3	0.0002	-1.3299
261	AGR2	0.0038	-1.1060	301 WFDC3	0.0323	-1.2072	341 SOST	0.0023	-1.3345
262	GLUL	0.0003	-1.1072	302 FAM181B	0.0209	-1.2072	342 SOX5	0.0097	-1.3391
263	TCEANC	0.0006	-1.1081	303 TBC1D10C	0.0111	-1.2097	343 RNA5SP311	0.0046	-1.3437
264	HOXC13	0.0015	-1.1082	304 LINC01970	0.0017	-1.2122	344 LINC02004	0.0069	-1.3480
265	ADA2	0.0418	-1.1112	305 ABTB1	0.0113	-1.2162	345 ABAT	0.0075	-1.3501
266	NEURL1B	0.0190	-1.1140	306 LINC01704	0.0246	-1.2214	346 SDK1	0.0096	-1.3575
267	H2BC9	0.0054	-1.1200	307 ELMOD1	0.0403	-1.2261	347 PCDH18	0.0017	-1.3617
268	H3C15	0.0474	-1.1226	308 NALT1	0.0257	-1.2288	348 CHAD	0.0374	-1.3623
269	MYL9	0.0036	-1.1238	309 CLU	0.0001	-1.2311	349 RN7SKP23	0.0306	-1.3641
270	ZNF837	0.0113	-1.1280	310 COL5A1	0.0066	-1.2324	350 LZTS1	0.0035	-1.3643
271	HOXC13-AS	0.0030	-1.1301	311 YPEL2	0.0375	-1.2344	351 WNT5B	0.0107	-1.3738
272	BLNK	0.0177	-1.1313	312 SHF	0.0013	-1.2366	352 KCNH3	0.0012	-1.3739
273	MPPED1	0.0432	-1.1315	313 LINC01226	0.0471	-1.2382	353 NPSR1	0.0494	-1.3770
274	UPK2	0.0054	-1.1334	314 RAD51AP2	0.0437	-1.2399	354 LINC02298	< 0.0001	-1.3826
275	PADI3	0.0235	-1.1335	315 PRRT2	0.0345	-1.2461	355 ZBTB8B	0.0159	-1.3828
276	PSCA	0.0069	-1.1373	316 ID1	0.0177	-1.2492	356 MYO1A	0.0286	-1.3833
277	HECW2	0.0101	-1.1377	317 LRRC29	0.0266	-1.2506	357 OR2B6	0.0054	-1.3880
278	CTSF	0.0001	-1.1396	318 HMCN1	0.0021	-1.2577	358 VWA5B2	0.0064	-1.3885
279	EFNB3	0.0140	-1.1455	319 MYO1F	0.0035	-1.2625	359 TSC22D3	0.0005	-1.3990
280	XKRX	0.0285	-1.1460	320 SALL4	0.0019	-1.2659	360 PELI2	0.0060	-1.4034

APÊNDICE C - 641 DEGs em queratinócitos após tratamento com sEV-LCCT por 24 h (4/6)

N⁰ Gene	Valor de p	Foldchange	N⁰ Gene	Valor de p	Foldchange	N⁰ Gene	Valor de p	Foldchange
361 POU5F1B	0.0187	-1.4130	401 VSX2	0.0182	-1.5788	441 KLHDC8B	0.0232	-1.7152
362 ADAM1B	0.0499	-1.4195	402 CAPNS2	0.0003	-1.5874	442 HSPB3	0.0001	-1.7185
363 FAM184B	0.0454	-1.4208	403 MTUS2	0.0004	-1.5882	443 TXNIP	0.0007	-1.7249
364 STPG3	0.0150	-1.4270	404 CACNG4	0.0012	-1.5892	444 LGALS7B	0.0113	-1.7266
365 CAMK2A	0.0170	-1.4280	405 FAM201B	0.0060	-1.5910	445 WSCD2	0.0327	-1.7454
366 RAB26	0.0091	-1.4300	406 KCTD16	0.0043	-1.5992	446 ZNF610	0.0356	-1.7470
367 FGD3	0.0003	-1.4323	407 ST6GALNAC1	0.0022	-1.5996	447 ALPP	0.0045	-1.7476
368 LINC02541	0.0030	-1.4350	408 TLCD3B	0.0083	-1.6066	448 LINC02481	0.0491	-1.7550
369 CFAP94	0.0012	-1.4355	409 ID3	0.0007	-1.6077	449 LINC01952	0.0306	-1.7577
370 MPPED2	0.0003	-1.4434	410 BTBD16	0.0180	-1.6094	450 AOC1	0.0003	-1.7613
371 LINC01679	0.0008	-1.4435	411 DNAAF1	0.0336	-1.6105	451 LINC01348	0.0009	-1.7679
372 CYRIA	0.0070	-1.4471	412 ANXA9	0.0035	-1.6122	452 VTCN1	0.0010	-1.7688
373 PPARGC1A	0.0047	-1.4501	413 CYP4F3	0.0154	-1.6132	453 TP53INP1	0.0024	-1.7727
374 CDKN2B	0.0014	-1.4502	414 ID2	0.0151	-1.6137	454 FAM131B	0.0015	-1.7770
375 NPBWR1	0.0043	-1.4514	415 PKD1L2	0.0014	-1.6178	455 TNFRSF18	0.0107	-1.8022
376 RIMKLBP2	0.0002	-1.4578	416 TNNT2	0.0053	-1.6229	456 COLCA1	0.0129	-1.8057
377 KLK13	< 0.0001	-1.4596	417 PROC	0.0003	-1.6348	457 RBBP8NL	0.0072	-1.8071
378 TNFSF10	0.0021	-1.4620	418 HOGA1	0.0345	-1.6404	458 WTAPP1	0.0186	-1.8170
379 ASCL5	0.0405	-1.4652	419 NAALADL2	0.0130	-1.6450	459 CBFA2T3	0.0373	-1.8303
380 DAPK2	0.0033	-1.4715	420 NEBL	0.0011	-1.6463	460 DIO2	0.0012	-1.8319
381 GPR132	0.0030	-1.4735	421 GRID2IP	0.0106	-1.6546	461 SYTL5	0.0244	-1.8382
382 ACKR3	0.0007	-1.4786	422 STON1	0.0004	-1.6591	462 MYOCD	0.0022	-1.8474
383 DNAJC22	0.0003	-1.4882	423 H2BC17	0.0334	-1.6611	463 PAUPAR	0.0226	-1.8535
384 SCN5A	0.0049	-1.4926	424 LAMB4	0.0293	-1.6690	464 EIF4EBP3	0.0203	-1.8614
385 ALDH3B1	0.0001	-1.4967	425 CCDC151	0.0318	-1.6695	465 APCDD1	0.0002	-1.8703
386 IFITM10	0.0013	-1.4972	426 GPR45	0.0304	-1.6700	466 BMF	0.0023	-1.8800
387 SCEL	0.0007	-1.4974	427 CTXN3	0.0491	-1.6837	467 ACTBL2	0.0106	-1.8862
388 YPEL3	0.0041	-1.5076	428 RFX8	0.0491	-1.6837	468 ID4	0.0016	-1.8947
389 STRA6	0.0167	-1.5184	429 RPS27AP11	0.0491	-1.6837	469 LDB3	0.0309	-1.9005
390 CYP4F12	0.0150	-1.5332	430 BHLHE22	0.0489	-1.6842	470 MIR2116	0.0112	-1.9355
391 SVOPL	0.0089	-1.5353	431 JAKMIP2	0.0489	-1.6842	471 LYNX1	0.0456	-1.9519
392 ITGA11	0.0015	-1.5387	432 MYOM3	0.0489	-1.6842	472 SPON2	0.0024	-1.9814
393 PTGIS	0.0177	-1.5413	433 PRAC2	0.0489	-1.6842	473 DPP6	0.0185	-1.9919
394 SLC7A7	0.0005	-1.5457	434 SULT4A1	0.0489	-1.6842	474 LINC01144	0.0114	-1.9922
395 TMEM37	0.0080	-1.5509	435 UGT3A1	0.0489	-1.6842	475 C7orf65	0.0162	-1.9935
396 FOLR1	0.0032	-1.5597	436 ZNF608	0.0025	-1.7021	476 HSPB9	0.0403	-2.0022
397 RAET1G	0.0056	-1.5606	437 GAS1RR	0.0183	-1.7054	477 RPL35AP26	0.0394	-2.0022
398 DOCK8	0.0030	-1.5608	438 FLJ31356	0.0200	-1.7056	478 RPL35AP9	0.0403	-2.0022
399 MAFTRR	0.0421	-1.5627	439 LY6D	0.0092	-1.7084	479 SNORD124	0.0403	-2.0022
400 DLX5	0.0033	-1.5697	440 PDE3A	0.0217	-1.7108	480 METTL7A	0.0002	-2.0058

APÊNDICE C - 641 DEGs em queratinócitos após tratamento com sEV-LCCT por 24 h (5/6)

N⁰ Gene	Valor de p	Foldchange	N⁰ Gene	Valor de p	Foldchange	№ Gene	Valor de p	Foldchange
481 VWF	0.0158	-2.0072	521 MIR4505	< 0.0001	-2.2339	561 NLGN3	0.0452	-2.5835
482 LINC01695	0.0018	-2.0077	522 MIR548N	< 0.0001	-2.2339	562 ALPG	0.0007	-2.5868
483 ACE	0.0387	-2.0085	523 SLC14A2	< 0.0001	-2.2339	563 USH1G	0.0002	-2.5980
484 HK3	0.0376	-2.0085	524 TTBK1	< 0.0001	-2.2339	564 SULT1E1	0.0080	-2.6010
485 MIR4432HG	0.0387	-2.0085	525 ZFP28	< 0.0001	-2.2339	565 ATP6V1B1	0.0226	-2.6031
486 SINHCAFP1	0.0376	-2.0085	526 LINC01873	0.0248	-2.2420	566 ALDH1A1	0.0018	-2.6165
487 VIL1	0.0378	-2.0085	527 MMP13	< 0.0001	-2.2743	567 MST1L	0.0431	-2.6201
488 C8orf74	0.0366	-2.0170	528 TMPRSS11E	0.0008	-2.2788	568 CYP4F2	0.0030	-2.6246
489 INHCAP	0.0355	-2.0170	529 EPX	0.0131	-2.2860	569 LINC02747	0.0139	-2.6338
490 5S_rRNA	0.0356	-2.0176	530 UPP2	0.0327	-2.3051	570 ATP5MGP1	0.0229	-2.6689
491 MIR4666A	0.0364	-2.0176	531 LINC02021	0.0322	-2.3051	571 LINC00964	0.0214	-2.6837
492 NFATC4	0.0356	-2.0176	532 MIR6512	0.0323	-2.3051	572 PPIAP51	0.0092	-2.6837
493 RPL10AP1	0.0364	-2.0176	533 TRPC4	0.0322	-2.3051	573 UBXN10	0.0394	-2.7061
494 RSF1-IT2	0.0364	-2.0176	534 LGALS4	0.0361	-2.3105	574 IL21R	0.0263	-2.7104
495 POU2F3	0.0015	-2.0311	535 CLIC3	0.0010	-2.3151	575 IVL	0.0001	-2.7344
496 LINC01058	0.0152	-2.0334	536 PSG5	0.0019	-2.3338	576 WFDC10B	0.0171	-2.7403
497 SEMA6D	0.0001	-2.0384	537 CCDC180	0.0237	-2.3356	577 ACTN2	0.0017	-2.7622
498 DSG4	0.0042	-2.0407	538 LINC00637	0.0235	-2.3356	578 LINC01395	0.0017	-2.7622
499 LNC-LBCS	0.0187	-2.0461	539 INSL6	0.0219	-2.3418	579 SLC2A10	0.0015	-2.7622
500 CYP4B1	0.0179	-2.0661	540 PKHD1	0.0400	-2.3503	580 SAMD11	0.0036	-2.7663
501 LINC02593	0.0014	-2.0679	541 CYP2C18	0.0205	-2.3509	581 GRK7	0.0240	-2.7762
502 DACH1	0.0030	-2.0768	542 HRCT1	0.0213	-2.3509	582 MIR646HG	0.0434	-2.8269
503 CADM2	0.0081	-2.0812	543 KLHL33	0.0205	-2.3509	583 EFHB	0.0149	-2.8335
504 HS3ST6	0.0152	-2.0938	544 KRT3	0.0146	-2.3514	584 PRR29	0.0345	-2.8382
505 FOXN1	0.0119	-2.0980	545 ATOH8	0.0202	-2.3720	585 PSORS1C2	0.0202	-2.8488
506 MIR3124	0.0295	-2.1037	546 IGHE	0.0056	-2.4288	586 LINC00639	0.0194	-2.8639
507 SLC27A6	0.0298	-2.1037	547 MIR4795	0.0292	-2.4520	587 LINC01889	0.0186	-2.8639
508 CRB2	0.0378	-2.1250	548 LINC02672	0.0012	-2.4562	588 NAT16	0.0088	-2.8639
509 ZNF665	0.0472	-2.1778	549 CGB8	0.0282	-2.4588	589 CA9	0.0001	-2.8692
510 FDPSP5	0.0297	-2.1962	550 PALM	0.0022	-2.4892	590 FILIP1	0.0116	-2.8776
511 MAFA	0.0020	-2.2077	551 MMP10	0.0123	-2.4972	591 CCDC187	0.0001	-2.9005
512 KRTAP29-1	0.0383	-2.2126	552 EIF4EP1	0.0217	-2.5368	592 CD38	0.0001	-2.9005
513 CALML5	0.0026	-2.2139	553 EVPLL	0.0212	-2.5368	593 CD5	0.0001	-2.9005
514 PSAPL1	0.0006	-2.2184	554 CNR1	0.0117	-2.5605	594 CEACAMP10	0.0001	-2.9005
515 CRTAC1	< 0.0001	-2.2339	555 SSC5D	0.0002	-2.5672	595 KIF25	0.0001	-2.9005
516 F2	< 0.0001	-2.2339	556 SYNPO2L	0.0002	-2.5672	596 LINC00316	0.0002	-2.9005
517 IL9RP1	< 0.0001	-2.2339	557 LINC02889	0.0003	-2.5672	597 RNASEK-C17orf49	0.0001	-2.9005
518 LINC02284	< 0.0001	-2.2339	558 RNU4-1	0.0002	-2.5672	598 SEMA5B	0.0002	-2.9005
519 LINC02577	< 0.0001	-2.2339	559 RNVU1-4	0.0003	-2.5672	599 WEE2	0.0033	-2.9005
520 M1AP	< 0.0001	-2.2339	560 RPL23AP95	0.0003	-2.5672	600 LINC01639	0.0162	-2.9462

APÊNDICE C - 641 DEGs em queratinócitos após tratamento com sEV-LCCT por 24 h (6/6)

N⁰ Gene	Valor de p	Foldchange	N⁰ Gene	Valor de p	Foldchange	N⁰ Gene	Valor de p	Foldchange
601 KRT4	0.0004	-2.9469	615 OLFM4	0.0298	-3.1368	629 MMP12	0.0024	-3.4249
602 C10orf82	0.0297	-2.9512	616 MPIG6B	0.0400	-3.1729	630 POU2AF1	0.0010	-3.4288
603 UPB1	0.0306	-2.9534	617 CPAMD8	0.0008	-3.1770	631 KRT77	0.0075	-3.4726
604 COL3A1	0.0193	-2.9712	618 KIT	0.0263	-3.1859	632 LCE1E	0.0041	-3.4995
605 KCNH4	0.0113	-2.9872	619 LINC01132	0.0101	-3.1907	633 RNF225	0.0271	-3.5000
606 RNF157	0.0092	-3.0022	620 LINC00113	0.0221	-3.2120	634 CLEC3A	0.0090	-3.5486
607 MIR4783	0.0186	-3.0022	621 CFAP206	0.0465	-3.2693	635 GLULP4	0.0033	-3.6378
608 MIR454	0.0060	-3.0078	622 CLCA4	0.0196	-3.2805	636 ADAMTS18	< 0.0001	-3.7622
609 DYNLRB2	0.0269	-3.0551	623 TRAV38-1	0.0065	-3.3045	637 C1QTNF8	< 0.0001	-3.7622
610 CASP14	0.0010	-3.0620	624 LINC02560	0.0210	-3.3574	638 LINC01239	< 0.0001	-3.8188
611 BCAS1	0.0265	-3.0918	625 LUM	0.0041	-3.3922	639 CCN5	0.0180	-3.9447
612 LDLRAD1	0.0403	-3.0933	626 SLC12A3	0.0070	-3.3922	640 KRT1	0.0012	-4.1542
613 MOV10L1	0.0006	-3.0955	627 ISLR	0.0182	-3.4038	641 ADAMTS5	0.0054	-4.6942
614 RAD21L1	0.0006	-3.0955	628 ADAD2	0.0349	-3.4201			