O uso do marcador imunohistoquímico GATA3 no diagnóstico diferencial entre micose fungoide CD30-positivo e outras doenças linfoproliferativas CD30-positivo
ISABELLA PARENTE ALMEIDA

O uso do marcador imunohistoquímico GATA3 no diagnóstico diferencial entre micose fungoide CD30-positivo e outras doenças linfoproliferativas CD30-positivo

Dissertação apresentada à Faculdade de Medicina da Universidade de São Paulo para obtenção do título de Mestre em Ciências

Programa de Dermatologia

São Paulo
2023
Dados Internacionais de Catalogação na Publicação (CIP)
Preparada pela Biblioteca da
Faculdade de Medicina da Universidade de São Paulo
©reprodução autorizada pelo autor

Almeida, Isabella Parente
O uso do marcador imunohistoquímico GATA3 no
diagnóstico diferencial entre micose fungoide CD30-
positivo e outras doenças linfoproliferativas CD30-
positivo / Isabella Parente Almeida. -- São Paulo,
2023.
Dissertação (mestrado) -- Faculdade de Medicina da
Universidade de São Paulo.
Programa de Dermatologia.
Orientadora: Jade Cury Martins Asfora Lins.

Descritores: 1. Biópsia 2. Fatores de transcrição
GATA 3. Linfoma 4. Linfoma cutâneo de células T
5. Linfoma anaplásico de células grandes 6. Micose
fungoide 7. Neoplasias hematológicas

USP/FM/DBD-262/23

Responsável: Erinalva da Conceição Batista, CRB-8 6755
FOLHA DE AVALIAÇÃO

Nome: ALMEIDA, Isabella Parente
Título: O uso do marcador imunohistoquímico GATA3 no diagnóstico diferencial entre micose fungoide CD30-positivo e outras doenças linfoproliferativas CD30-positivo

Dissertação apresentada à Faculdade de Medicina da Universidade de São Paulo para obtenção do título de Mestre em Ciências.

Aprovado em: ___/___/____

Banca Examinadora

Prof. Dr. __
Instituição: __
Julgamento: __

Prof. Dr. __
Instituição: __
Julgamento: __
DEDICATÓRIA

Dedico essa vitória aos meus amados pais, José Wellington e Márcia Maria, por, desde cedo e com muito amor, me ensinarem a importância do estudo e do trabalho árduo.
AGRADECIMENTOS

A cada ciclo que se encerra em nossa vida, nos resta um momento de reflexão: quem foram aqueles que nos ajudaram a chegar aqui? Quem foram aqueles que nos incentivaram? Quem foram aqueles que não nos deixaram desistir? É chegado o momento de agradecer por mais essa conquista, sonhada há tantos anos, e real graças à presença, força e incentivo de muitas pessoas, com as quais tive a sorte de me deparar durante a minha caminhada.

Agradeço primeiramente a Deus, Senhor de tudo, fonte de toda a fortaleza necessária para que eu conseguisse concluir essa etapa.

Agradeço aos meus pais, José e Márcia, os maiores incentivadores que eu poderia ter tido! Obrigada por toda a educação e amor que me deram e por acreditarem e investirem tanto nos meus sonhos.

Agradeço às minhas irmãs, Camila e Geórgia, pelo companheirismo de vida e apoio mútuo. A jornada é mais leve porque tenho vocês comigo!

Agradeço à minha avó Maria da Cruz, pelo exemplo de mulher forte e batalhadora que sempre foi.

Agradeço ao Dr José Lira, ao Dr Luiz Guilherme, ao Dr Francisco Le Voci e ao Dr Ricardo Lemos (in memoriam), aos quais considero como verdadeiros “pais” na minha vida médica e profissional.

Agradeço à Dra Jade Cury, por ser uma verdadeira inspiração e uma orientadora irretocável.

Agradeço ao grupo de Oncologia Cutânea do Hospital das Clínicas da Faculdade de Medicina da USP, especialmente ao professor José Antônio Sanches Jr e ao Dr Denis, pelas ricas discussões desenvolvidas durante todos esses anos.

Agradeço ao Dr Marcelo Gianotti, à Dra Marcella, à Dra Sheilla e à Flávia Cristaldi, pela ajuda incansável e paciência.

Agradeço ao Dr Bruno Castro e à Dra Isadora Rosan, amigos dermatologistas que efetivamente me auxiliaram na realização desta pesquisa.

Por fim, agradeço aos meus queridos pacientes, razão de todo o meu estudo e dedicação e minha maior fonte diária de aprendizagem.
“Sempre busque ser o melhor. Mas não melhor que os outros, apenas o melhor de si.”

(Prof Marcílio Flávio Rangel de Farias)
RESUMO
Almeida IP. O uso do marcador imunohistoquímico GATA3 no diagnóstico diferencial entre micose fungoide CD30-positivo e outras doenças linfoproliferativas CD30-positivo [dissertação]. São Paulo: Faculdade de Medicina, Universidade de são Paulo; 2023.

INTRODUÇÃO: Linfomas que acometem a pele primária ou secundariamente podem exibir características clínicas semelhantes e positividade para o marcador imunohistoquímico CD30, tornando desafiadora a diferenciação entre micose fungoide CD30-positivo e outras doenças linfoproliferativas CD30-positivo. O presente estudo objetiva avaliar a utilização do marcador imunohistoquímico GATA3 como auxiliar no diagnóstico dos diversos linfomas T cutâneos CD30-positivo que acometem a pele. MÉTODOS: Estudo retrospectivo analítico observacional envolvendo 32 pacientes portadores de doenças linfoproliferativas CD30-positivo atendidos no ambulatório de Linfomas Cutâneos da Faculdade de Medicina da Universidade de São Paulo (FMUSP), distribuídos em grupos de acordo com o seu diagnóstico: grupo MFi (micose fungoide inicial), MFl (micose fungoide com acometimento linfonodal), MFa (micose fungoide avançada, tumoral ou transformada), LCPGCA (linfoma cutâneo primário de grandes células anaplásico), LSGCA (linfoma sistêmico de grandes células anaplásico), D (casos de pacientes com doença linfoproliferativa CD30-positivo em que não foi possível a definição diagnóstica exata até o momento). Biópsias de pele, linfonodos e outros órgãos foram analisadas e o percentual de positividade para o marcador imunohistoquímico GATA3 determinado. RESULTADOS: Um total de 32 pacientes foram incluídos no estudo (17 mulheres e 15 homens). A mediana de idade dos pacientes ao diagnóstico foi de 52 anos. A avaliação da positividade para GATA3 foi realizada em 35 anatomopatológicos, podendo ser de pele, linfonodo (nos casos de MFl) ou outros órgãos (para os casos de LSGCA). A média percentual de positividade para o GATA3 foi de 53,5% no grupo MFa, 20% no grupo MFl, 18,5% no grupo MFi, 11,3% no grupo LCPGCA e 30% no grupo LSGCA. O GATA3 foi determinado e discutido caso a caso no grupo D. Considerando um “cut-off” de 40%, o GATA3 foi capaz de diferenciar MFa de LCPGCA na amostra estudada. CONCLUSÃO: GATA3 parece ser um marcador imunohistoquímico útil na diferenciação entre micose fungoide CD30-positivo e outras doenças linfoproliferativas CD30-positivo. Mais estudos são necessários para definir o melhor “cut-off”.
ABSTRACT

INTRODUCTION: Lymphomas that affect primarily or secondarily the skin may exhibit similar clinical characteristics and positivity for the immunohistochemical marker CD30, making the differentiation between CD30-positive mycosis fungoides and other CD30-positive lymphoproliferative diseases a challenge. The present study aims to evaluate the use of the immunohistochemical marker GATA3 as an additional tool in the diagnosis of different cutaneous CD30-positive T-cell lymphomas affecting the skin. METHODS: An analytical retrospective observational study including, so far, 32 patients with CD30-positive lymphoproliferative disorders treated at the Cutaneous Lymphomas Clinic, School of Medicine, University of São Paulo (FMUSP). Patients were divided into six groups according to their diagnosis: MFi (initial mycosis fungoides), MFl (mycosis fungoides with lymph node involvement), MFa (tumor mycosis fungoides or transformed tumor mycosis fungoides), LCPGCA (primary cutaneous anaplastic large cell lymphoma), LSGCA (systemic anaplastic large cell lymphoma), D (cases of CD30-positive lymphoproliferative diseases in which an exact diagnostic definition has not yet been defined). Biopsies of skin, lymph nodes and other organs were analyzed and the percentage of positivity for the immunohistochemical marker GATA3 determined. RESULTS: A total of 32 patients have been enrolled in the study (17 women and 15 men) to date. The median age at diagnosis was 52 years. The assessment of positivity for GATA3 was performed in 35 samples so far (either skin, lymph node or other organs - for cases of LSGCA). The mean percentage of GATA3 positivity was 53,5% in the MFa group, 20% in the MFl group, 18,5% in the MFi group, 11,3% in the LCPGCA group and 30% in the LSGCA group. GATA3 was determined and discussed on a case-by-case basis in group D. Considering a cut-off of 40%, GATA3 was able to differentiate MFa from LCPGCA in the studied sample. CONCLUSION: GATA3 appears to be a useful immunohistochemical marker in differentiating between CD30-positive mycosis fungoides and other CD30-positive lymphoproliferative disorders. More studies are needed to define the best cut-off.

Keywords: Biopsy. GATA transcription factors. Lymphoma. Lymphoma, T-cell. cutaneous. Lymphoma, large-cell, anaplastic. Mycosis fungoides. Hematologic neoplasms.
LISTA DE ABREVIATURAS, SIGLAS E SÍMBOLOS

CHOEP Ciclofosfamida, Doxorubicina, Vincrítina, Etoposídeo e Prednisona
D Casos duvidosos
DLPCD30+ Doenças linfoproliferativas CD30-positivo
EORTC European European Organization for Research and Treatment of Cancer
IL Interleucina
LCPGCA Linfoma cutâneo primário de grandes células anaplásico
LSGCA Linfoma sistêmico de grandes células anaplásico
MF Micose fungoide
MFa Micose fungoide avançada (tumoral ou tumoral transformada)
MFi Micose fungoide em fase inicial
MF1 Micose fungoide com acometimento linfonodal
PL Papulose linfomatoide
UVB Ultravioleta B
VPP Valor preditivo positivo
VPN Valor preditivo negativo
WHO World Health Organization
LISTA DE TABELAS

Tabela 1. Classificação dos linfomas cutâneos primários de acordo com a revisão de 2018 da classificação WHO-EORTC.........................

Tabela 2. Classificação TNM para Micose Fungoide..........................

Tabela 3. Estadiamento clínico da micose fungoide segundo classificação TNMB........

Tabela 4. Sobrevida dos portadores de linfoma cutâneo primário de grandes células anaplásico segundo estadiamento..........................

Tabela 5. Casos duvidosos segundo gênero, idade ao diagnóstico, tipo de lesão biopsiada e positividade para os marcadores imunohistoquímicos CD3, CD4, CD8, CD7, CD30 e GATA3..

Tabela 6. Casos de MF avançada segundo gênero, idade ao diagnóstico, tipo de lesão biopsiada e positividade para os marcadores imunohistoquímicos CD3, CD4, CD8, CD7, CD30 e GATA3..

Tabela 7. Casos de LCPGCA segundo gênero, idade ao diagnóstico, tipo de lesão biopsiada e positividade para os marcadores imunohistoquímicos CD3, CD4, CD8, CD7, ALK, CD30 e GATA3..

Tabela 8. Casos de MF com acometimento linfonodal segundo gênero, idade ao diagnóstico, tipo de lesão biopsiada e positividade para os marcadores imunohistoquímicos CD3, CD4, CD8, CD7, ALK, CD30 e GATA3.............

Tabela 9. Casos de LSGCA com acometimento linfonodal segundo gênero, idade ao diagnóstico, tipo de lesão biopsiada e positividade para os marcadores imunohistoquímicos CD3, CD4, CD8, CD7, ALK, CD30, CD3, CD30 e GATA3..........

Tabela 10. Casos de MF inicial segundo gênero, idade ao diagnóstico, tipo de lesão biopsiada e positividade para os marcadores imunohistoquímicos CD3, CD4, CD8, CD7, CD30 e GATA3..

Tabela 11. Frequência absoluta, relativa, média percentual e desvio-padrão da positividade para GATA3, considerando os grupos LCPGCA, LSGCA, MFi, MFl e MFa ...

Tabela 12. Seleção de ponto de “cut-off” ótimo pela minimização de valor-p pelo Chi-Quadrado, utilizando a biblioteca de R “cutpointtr”..........................

Tabela 13. Comparação da positividade para GATA3 entre grupos com diferentes “cut-offs” (40%, 50% e 60%), através da realização do teste exato de Fisher............
LISTA DE FIGURAS

Figura 1. Parte do domínio estrutural do GATA3 em ilustração, representando a interação dos fatores de transcrição em dedo de zinco com a dupla hélice do DNA...

Figura 2. Quantificação percentual de achados imunohistoquímicos. O percentual de células positivas foi estimado visualmente...

Figura 3. Fotografia da paciente do caso 1 revelando: A) patches, pápulas agrupadas no dorso. B) placa arciforme com pápulas no ombro direito...

Figura 4. Fotografia da paciente do caso 1 mostrando a presença de patch em região de tronco...

Figura 5. Fotografia da paciente do caso 1 revelando placa infiltrada arciforme na região lombar...

Figura 6. Fotografia dos achados imunohistoquímicos da lesão lombar revelando positividade 80% para GATA3 (40x).

Figura 7. Linha do tempo correlacionando lesões de pele, tempo decorrido e tratamento instituído, até o presente momento, para paciente do caso 1...

Figura 8. Fotografia da paciente ao iniciar o acompanhamento com a equipe de Oncologia Cutânea do Hospital das Clínicas. A) Face com patches e placas eritematosesmacativos, com perda de pelos do supercílio D. B) Dorso com múltiplos patches e nóculo em dorso médio-superior...

Figura 9. Fotografia de lâmina de imunohistoquímica realizada na lesão tumoral revelando positividade de 90% para GATA 3 (40x).

Figura 10. Linha do tempo da paciente do caso 2, correlacionando lesões de pele, tempo decorrido e tratamento instituído, até o óbito...

Figura 11. Registros fotográficos referentes ao caso 3. A) Presença de múltiplos patches e placas compatíveis com o diagnóstico de Micose Fungoide. B) PET/CT revelando volumosa adenomegalia inguinal direita...

Figura 12. Fotografia da paciente do caso 3, mostrando tumor no antebraço esquerdo...

Figura 13. Linha do tempo da paciente do caso 3, correlacionando lesões de pele, tempo decorrido e tratamento instituído, até o óbito...

Figura 14. Fotografia do glúteo do paciente do caso 4, revelando a presença de patches e tumor...

Figura 15. Linha do tempo do paciente do caso 4, correlacionando lesões de pele e tratamento instituído até presente momento...

Figura 17. Diagrama quartil a quartil comparando os grupos LCGCA e MF avançada quanto ao percentual para GATA3, exibindo linha de “cut off” de 40%.

Figura 18. Sensibilidade, especificidade, valor preditivo positivo e valor preditivo negativo do GATA3 com “cut-off” de 40% para diferenciação entre MF avançada e LCGCA.
SUMÁRIO

1. INTRODUÇÃO .. 15
2. OBJETIVO .. 17
 2.1 Objetivos Específicos .. 17
3. REVISÃO DE LITERATURA ... 18
 3.1 Micose Fungoide .. 19
 3.2 Doenças linfoproliferativas cutâneas primárias CD30-positivo .. 22
 3.2.1 Papulose linfomatoide ... 22
 3.2.2 Linfoma cutâneo primário de grandes células anaplásico .. 23
 3.3 Linfomas sistêmico de grandes células anaplásico .. 25
 3.4 Imunohistoquímica e linfomas .. 26
 3.4.1 CD30 .. 26
 3.4.2 GATA 3 .. 26
 3.5 Aspectos imunológicos .. 28
4. MÉTODOS ... 30
 4.1. Tipo de estudo .. 30
 4.2. Critérios de inclusão .. 30
 4.3. Critérios de exclusão .. 30
 4.4. Distribuição dos pacientes ... 31
 4.5. Análise de dados clínicos ... 31
 4.6. Análise de dados anatomopatológicos ... 31
 4.7. Análise de dados imunohistoquímicos .. 31
 4.8. Análise estatística .. 33
5. RESULTADOS ... 34
 5.1 Grupo Duvidosos ... 34
 5.1.1 Caso 1 .. 34
 5.1.2 Caso 2 .. 37
 5.1.3 Caso 3 .. 39
 5.1.4 Caso 4 .. 41
 5.1.5 Imunohistoquímica dos casos duvidosos .. 42
 5.2 Grupos Controle .. 42
 5.2.1 Grupo MF avançada .. 43
 5.2.2 Grupo LCPCGA .. 43
 5.2.3 Grupo MF com acometimento linfonodal ... 44
 5.2.4 Grupo LSGCA .. 44
 5.2.5 Grupo MF inicial ... 45
6. DISCUSSÃO ... 50
7. CONCLUSÃO ... 54
8. REFERÊNCIAS BIBLIOGRÁFICAS .. 55
1. INTRODUÇÃO

CD30 é um receptor de superfície celular primeiramente identificado nas células de Reed-Sternberg dos linfomas de Hodgkin. Nos linfomas, pode ser expresso em linfócitos B ou T aberrantes, mas também está presente em infecções virais, tumores germinativos e picadas de insetos.¹ A expressão do marcador CD30 não é específica de nenhuma condição clínica, sendo necessário considerar a interação entre aspectos clínicos, anatomopatológicos e imunofenotípicos para então chegar-se ao diagnóstico.²

Doenças linfoproliferativas cutâneas primárias CD30-positivo (DLPCD30+) são o segundo grupo mais frequente de linfomas cutâneos de células T, superado apenas pela micose fungoide (MF). Tal grupo inclui a papulose linfomatoide (PL) e o linfoma cutâneo primário de grandes células anaplásico (LCPGCA).¹

Embora a MF não seja considerada uma doença linfoproliferativa CD30-positivo, o marcador imunohistoquímico CD30 pode ser detectado em lesões de MF nos mais diversos estágios, sendo mais frequente em lesões tumorais e na MF transformada, o que pode gerar confusão diagnóstica com as DLPCD30+.¹³ Além disso, vários estudos apontam que pacientes portadores de PL podem desenvolver uma segunda neoplasia hematológica, sendo mais comumente associadas a MF ou LCPGCA.¹

Linfomas sistêmicos primários de outros órgãos podem se disseminar para a pele, atingindo-a secundariamente e provocando lesões infiltrativas que podem apresentar positividade para CD30, citando-se entre eles o linfoma sistêmico de grandes células anaplásico (LSGCA), alguns casos de linfoma/leucemia de células T do adulto e linfoma de Hodgkin.²

Assim sendo, a enorme variedade de linfomas que pode acometer a pele primária ou secundariamente e que exibe positividade para o marcador imunohistoquímico CD30 somado à possibilidade das doenças linfoproliferativas associarem-se a uma segunda neoplasia apontam para o já conhecido desafio que dermatologistas e hematologistas enfrentam na diferenciação entre as supracitadas entidades.

A partir daí, tem-se buscado outros marcadores imunohistoquímicos que possam auxiliar no desafio diagnóstico exposto. Nesse contexto, está inserido o marcador GATA3, um regulador transcricional de diferenciação Th2, que pode ser útil na diferenciação entre MF tumoral e LCPGCA, sendo mais frequentemente positivo nos casos de MF.⁴⁵

A imunohistoquímica, somada à história clínica, tem se demonstrado um valoroso recurso na distinção entre neoplasias hematológicas diversas, pelo seu relativo baixo custo e
maior disponibilidade. Por esse motivo, a busca por marcadores que possam auxiliar nos diagnósticos diferenciais mais complexos tem sido objeto de diversos estudos na atualidade.
2. OBJETIVO

O presente estudo objetiva avaliar a utilização do marcador imunohistoquímico GATA3 como auxiliar no diagnóstico dos diversos linfomas T CD30-positivo que podem acometer a pele.

2.1 Objetivos Específicos

- Avaliar e comparar o percentual de positividade para GATA3 nas lesões de pele de pacientes portadores de micose fungoide inicial, micose fungoide tumoral ou tumoral transformada e linfoma cutâneo primário de grandes células anaplásico; nos linfonodos acometidos por micose fungoide e nos órgãos diversos acometidos de portadores de linfoma sistêmico de grandes células anaplásico.
- Avaliar o percentual de positividade para GATA3 em pacientes com doença linfoproliferativa CD30-positivo em que não foi possível a definição diagnóstica exata até o momento.
- Determinar, segundo a casuística do estudo, valores de “cut-off” para GATA3 a partir do qual seria possível diferenciar os grupos de linfomas CD30-positivo estudados.
- Fazer uma análise crítica comparando o percentual de positividade para GATA3 nos pacientes com diagnóstico confirmado e nos pacientes com diagnóstico duvidoso e avaliar se tal marcador imunohistoquímico favoreceria algum diagnóstico específico utilizando diferentes “cut-offs”.
3. REVISÃO DE LITERATURA

A pele humana pode ser afetada por doenças linfoproliferativas, seja através de linfomas originados na própria pele, como de linfomas originados em outros órgãos que se disseminam para a superfície cutânea. Assim, define-se linfoma primário cutâneo como aquele em que a pele é o órgão primariamente envolvido, na ausência de envolvimento extracutâneo ao diagnóstico e após avaliação inicial de estadiamento. Já o linfoma cutâneo secundário é aquele em que ocorre infiltração cutânea devido à disseminação para a pele de linfoma originado em outro órgão. O linfoma primário cutâneo é um tipo de linfoma não-Hodgkin extranodal. Dentre os linfomas não-Hodgkin extranodais, a pele é o segundo sítio mais importante de envolvimento, perdendo apenas para o trato gastrointestinal. Tais linfomas podem ser classificados, ainda, em linfomas cutâneos primários de células B e linfomas cutâneos primários de células T.

Existem inúmeras classificações que se propõem a categorizar os linfomas primários cutâneos. Em 2005, as classificações da World Health Organization (WHO) e da European Organization for Research and Treatment of Cancer (EORTC) foram analisadas por representantes de ambas as entidades e uniformizadas em um sistema classificatório único, a Classificação WHO-EORTC. Tal classificação, amplamente aceita, foi revisada nos anos de 2016 e 2018. Dessa forma, os linfomas cutâneos primários são classificados, segundo a revisão de 2018 da WHO-EORTC, em linfomas de células T/NK e linfomas de células B, conforme consta na tabela abaixo.

Tabela 1. Classificação dos linfomas cutâneos primários de acordo com a revisão de 2018 da classificação WHO-EORTC.

<table>
<thead>
<tr>
<th>Classificação WHO-EORTC revisada 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linfomas cutâneos de células T/NK</td>
</tr>
<tr>
<td>Micose fungoide</td>
</tr>
<tr>
<td>Variantes e subtipos da micose fungoide</td>
</tr>
<tr>
<td>• Micose fungoide foliculotrópica</td>
</tr>
<tr>
<td>• Reticulose pagetoide</td>
</tr>
<tr>
<td>• Cútis-laxa granulomatosa</td>
</tr>
<tr>
<td>Síndrome de Sezary</td>
</tr>
</tbody>
</table>

cont.
cont.

Classificação WHO-EORTC revisada 2018

<table>
<thead>
<tr>
<th>Linfoma/leucemia de célula T do adulto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desordens linfoproliferativas cutâneas primárias CD30-positivo</td>
</tr>
<tr>
<td>- Linfoma cutâneo primário de grande célula anaplásico</td>
</tr>
<tr>
<td>- Papulose linfomatoides</td>
</tr>
<tr>
<td>Linfoma subcutâneo de células T, tipo paniculite</td>
</tr>
<tr>
<td>Linfoma extranodal de células NK/T, tipo nasal</td>
</tr>
<tr>
<td>Linfoma cutâneo primário de célula T periférica, não especificado</td>
</tr>
<tr>
<td>- Linfoma cutâneo primário de células T gama-delta</td>
</tr>
<tr>
<td>- Linfoma cutâneo primário de célula T CD8+ epidermotrópico agressivo</td>
</tr>
<tr>
<td>- Desordem linfoproliferativa cutânea primária de pequena/média célula T CD4+</td>
</tr>
</tbody>
</table>

Linfomas de células B

| Linfoma de células B primário cutâneo de zona marginal |
| Linfoma primário cutâneo centro-folicular |
| Linfoma primário cutâneo difuso de grandes células B, tipo perna |

3.1 Micose Fungoide

Micose fungoide (MF) é um linfoma cutâneo de células T epidermotrópico caracterizado pela proliferação de pequenos e médios linfócitos T com núcleo cerebriforme.⁸ Trata-se de uma neoplasia clonal dos linfócitos T auxiliares CD4-positivo que habitam a superfície cutânea, sendo o tipo mais comum de linfoma cutâneo de células T, correspondendo a 60% deles.⁴⁸⁰ Ademais, a MF representa quase 50% dos linfomas cutâneos primários com incidência mundial de cerca de 5-6 casos por milhão de habitantes-ano.¹¹

A MF é mais comum em adultos por volta dos 55 aos 60 anos, com predomínio no gênero masculino.⁸

Clinicamente, se apresenta como patches que evoluem para placas infiltradas, com a possibilidade de surgimento de tumores.⁴ Há, ainda, a chance de transformação para linfoma de grandes células (micose fungoide transformada) ou envolvimento leucêmico, constituindo a chamada síndrome de Sezary.⁴
As lesões de MF ocorrem em qualquer parte do corpo, porém há um tropismo pelas áreas duplamente cobertas, como nádegas. Costuma ser uma doença indolente, entretanto em alguns pacientes há envolvimento linfonodal e de órgãos viscerais, com nítido comprometimento prognóstico.8

A histopatologia da micose fungoide varia conforme a lesão biopsiada. Assim, os patches de MF revelam infiltrado linfo-histiocitário liquenoide ou em faixa localizado superficialmente. Há presença de células atípicas pequenas a médias, com núcleo convoluto/cerebriforme, direcionadas à epiderme (epidermotropismo).8

Já as placas de MF costumam cursar com epidermotropismo ainda mais pronunciado associado à presença de coleções de linfócitos atípicos intraepidérmicos, chamadas de “microabscessos de Pautrier”.8 Os microabscessos de Pautrier são bastante típicos de MF, embora sejam vistos em uma minoria dos casos.6

No estágio tumoral, há uma perda do epidermotropismo e o infiltrado dérmico se torna difuso. Os microabscessos de Pautrier estão frequentemente ausentes.6 As células tumorais aumentam em número e tamanho, variando em pequenas, médias e grandes células cerebriformes.8 Comumente, observa-se bandas de fibrose na derme superior entremeadas por linfócitos anormais.6

A chamada MF transformada é definida histologicamente pela presença de mais de 25% de linfócitos grandes e atípicos (medindo mais de quatro vezes o tamanho de um linfócito normal) ou formando nódulos microscópicos.5 Usualmente, a MF transformada associa-se à presença de tumores e é considerada como fator de mau prognóstico.3,12

A MF caracteriza-se pelo fenótipo de células T auxiliares de memória.6 Assim, seu padrão imunohistoquímico típico cursa com positividade para CD3, CD4, CD5 e CD45RO, sendo negativas para CD8.6,8 Há, portanto, uma marcante elevação na relação CD4/CD8.4 Perda de expressão de CD7 também é tipicamente observada na MF.6 Há casos, no entanto, que exibem negatividade para CD4 e positividade para CD8.8 Eles são observados principalmente na população pediátrica e na MF hipocromiante.6

Positividade para CD30 também pode ser observada em pacientes com MF, sendo mais comum nos casos avançados (MF tumoral e MF transformada). Nesse contexto, a depender das lesões clínicas do paciente, é comum haver confusão diagnóstica com outras doenças linfoproliferativas CD30-positivo, como o linfoma cutâneo primário de grandes células anaplásico.1,6

A MF associa-se a uma desregulação imune, de forma que, nos estágios iniciais, demonstra um perfil imune compatível com exacerbação da resposta Th1, havendo um aumento
na liberação de citocinas como IL2 e INFγ. Já nos estágios mais tardios, a MF passa a exibir um perfil de resposta Th2, com predominio de produção de citocinas como IL4, IL5 e IL10, havendo uma cessação da resposta Th1.

O estadiamento da MF baseia-se na classificação do acometimento cutâneo (T), linfonodal (N), visceral (M) e hematológico e pode ser resumido na tabela abaixo.

Tabela 2. Classificação TNM para Micose Fungoide.

<table>
<thead>
<tr>
<th>ACOMETIMENTO CUTÂNEO (T)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Manchas (patches)/placas limitadas (envolvendo <10% da superfície total da pele)</td>
</tr>
<tr>
<td>T1A</td>
<td>Apenas patches</td>
</tr>
<tr>
<td>T1B</td>
<td>Placas ± patches</td>
</tr>
<tr>
<td>T2</td>
<td>Manchas (patches)/placas generalizadas (envolvendo ≥ 10% da superfície total da pele)</td>
</tr>
<tr>
<td>T2A</td>
<td>Apenas patches</td>
</tr>
<tr>
<td>T2B</td>
<td>Placas ± patches</td>
</tr>
<tr>
<td>T3</td>
<td>Tumor (es)</td>
</tr>
<tr>
<td>T4</td>
<td>Eritrodermia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACOMETIMENTO LINFONODAL (N)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N0</td>
<td>Sem linfonodos periféricos anormais do ponto de vista clínico</td>
</tr>
<tr>
<td>N1</td>
<td>Linfonodos periféricos clinicamente anormais; linfadenite dermatopática ou envolvimento histológico por linfócitos atípicos isolados sem alteração da arquitetura linfonodal</td>
</tr>
<tr>
<td>N1A</td>
<td>Clone negativo</td>
</tr>
<tr>
<td>N1B</td>
<td>Clone positivo</td>
</tr>
<tr>
<td>N2</td>
<td>Linfonodos periféricos clinicamente anormais; envolvimento histológico por agregados de linfócitos atípicos sem alteração da arquitetura linfonodal</td>
</tr>
<tr>
<td>N2A</td>
<td>Clone negativo</td>
</tr>
<tr>
<td>N2B</td>
<td>Clone positivo</td>
</tr>
<tr>
<td>N3</td>
<td>Linfonodos periféricos clinicamente anormais; comprometimento histológico franco com alteração parcial ou total da arquitetura linfonodal</td>
</tr>
<tr>
<td>N3</td>
<td>Sem confirmação histológica</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACOMETIMENTO VÍSCERAL (M)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M0</td>
<td>Sem envolvimento visceral</td>
</tr>
<tr>
<td>M1</td>
<td>Com envolvimento visceral</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACOMETIMENTO HEMATOLOGÍCO (B)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B0</td>
<td>Não há células atípicas (Sézary) circulantes (ou <5% de linfócitos atípicos)</td>
</tr>
<tr>
<td>B0A</td>
<td>Clone negativo</td>
</tr>
<tr>
<td>B0B</td>
<td>Clone positivo</td>
</tr>
<tr>
<td>B1</td>
<td>Baixa carga tumoral no sangue (≥ 5% dos linfócitos são células Sézary, mas não B2)</td>
</tr>
<tr>
<td>B1A</td>
<td>Clone negativo</td>
</tr>
<tr>
<td>B1B</td>
<td>Clone positivo</td>
</tr>
<tr>
<td>B2</td>
<td>Elevada carga tumoral no sangue e rearranjo clonal do TCR (≥ 1.000 células de Sézary/microL. e/ou CD4:CD8 ≥ 10, e/ou CD4+CD7 - ≥ 40%, e/ou CD4+CD26 - ≥30%)</td>
</tr>
</tbody>
</table>
Assim, a depender da classificação TNMB, a MF terá o seu estágio clínico definido conforme tabela 3. A sobrevida média de um paciente com MF é de 88% em 5 anos, sendo maior quanto menor for o seu estágio clínico.¹¹

Tabela 3. Estadiamento clínico da micose fungoide segundo classificação TNMB.

<table>
<thead>
<tr>
<th>ESTÁGIO CLÍNICO</th>
<th>CLASSIFICAÇÃO TNMB</th>
</tr>
</thead>
<tbody>
<tr>
<td>IA</td>
<td>T1</td>
</tr>
<tr>
<td>IB</td>
<td>T2</td>
</tr>
<tr>
<td>IIA</td>
<td>T1 ou T2</td>
</tr>
<tr>
<td>IIB</td>
<td>T3</td>
</tr>
<tr>
<td>IIIA</td>
<td>T4</td>
</tr>
<tr>
<td>IIIIB</td>
<td>T4</td>
</tr>
<tr>
<td>IVA1</td>
<td>T1 a T4</td>
</tr>
<tr>
<td>IVA2</td>
<td>T1 a T4</td>
</tr>
<tr>
<td>IVB</td>
<td>T1 a T4</td>
</tr>
</tbody>
</table>

Um dos grandes triunfos dos hematologistas e dermatologistas reside em reconhecer que doentes com formas mais brandas de MF não requerem medidas enérgicas de tratamento, podendo ser tratados com terapias dirigidas à pele.⁸

3.2 Doenças linfoproliferativas cutâneas primárias CD30-positivo

As doenças linfoproliferativas cutâneas primárias CD30-positivo correspondem a 25 a 30% dos linfomas cutâneos de células T, sendo o segundo grupo mais comum. A este grupo pertencem a papulose linfomatoide (PL), o linfoma cutâneo primário de grandes células anaplásico (LCPGCA) e os casos limítrofes (“borderline”).¹⁴,¹⁵ Entende-se por casos limítrofes aqueles em que não se consegue distinguir entre PL e LCPGCA mesmo com cuidadosa análise clinicopatológica.¹⁵

Tais condições apresentam “overlap” de características clínicas, histológicas e imunohistoquímicas, de forma a serem considerados espectros de uma mesma doença.¹⁴

3.2.1 Papulose linfomatoide

A papulose linfomatoide caracteriza-se pela presença de erupção papulonodular ou papulonecrotica recorrente, crônica e autoregressiva. As lesões surgem, portanto, em surtos e costumam remitir espontaneamente, sobretudo nas pernas e tronco.¹⁶,¹⁴,¹,¹⁵ Podem ser assintomáticas, pruriginosas e até dolorosas, sendo características a formação de cicatrizes e
hiper ou hipopigmentação pós-inflamatórias.¹ Usualmente, afeta adultos jovens, sendo até três vezes mais comuns no gênero masculino.⁶

Quanto aos achados histopatológicos, há uma ampla variação de padrões observados na PL, a depender do tempo de evolução da lesão. Três subtipos histológicos foram descritos e denominados de A, B e C.¹⁵ Mais recentemente, um quarto e quinto subtipos foram descritos e receberam o nome de D e E.¹⁶ Nas lesões de PL tipo A (tipo histiocítico), são visualizados aglomerados de células CD30-positivo pequenas ou grandes, por vezes multinucleadas ou semelhantes à célula de Reed-Sternberg, misturadas com células inflamatórias como histiócitos, neutrófilos, eosinófilos e linfócitos. Nas incomuns lesões de PL tipo B (tipo micose fungoide-like), surpreende-se um infiltrado epidermotrópico de células atípicas pequenas e com núcleo celerbriforme. Na PL tipo C (tipo “LCPGCA-like”), há uma monótona população ou grandes aglomerados de linfócitos T CD30-positivo com poucas células inflamatórias de permeio.¹⁵,¹⁷ Na PL tipo D, temos um fenótipo de linfócito T CD8-positivo com alterações pagetoides.⁶ Por fim, o subtipo E é caracterizado por infiltrado perivascular e intraluminal angiodestrutivo associado a células neoplásicas CD30-positivo.¹ Existem, ainda, três novos subtipos de PL propostos: tipo F (infiltrado perifolicular de linfócitos atípicos CD30-positivo), subtipo fenótipo γ/δ e subtipo rearranjo 6p25.3.¹

Em relação aos achados imunohistoquímicos, as células de PL tipo A e C exibem positividade para CD2, CD3, CD5, CD45RO, CD4 e CD30 e negatividade para CD8 e CD15. Já as células de PL tipo B apresentam fenótipo semelhante, porém são CD30-negativo.¹⁵,¹⁶ O prognóstico dos portadores de PL é excelente, apesar de não ser doença curável.¹⁵,¹⁶ Trata-se de doença indolente, com sobrevida específica em 10 anos de 100%.¹⁴ Há associação positiva entre PL e o desenvolvimento de outros linfomas, como MF, linfomas anaplásicos de grandes células ou linfoma de Hodgkin.¹⁵,¹⁶ Estima-se que 10 a 30% dos portadores de PL evoluam com um segundo linfoma.¹

3.2.2 Linfoma cutâneo primário de grandes células anaplásico

Os linfomas anaplásicos de grandes células podem se originar da pele, constituindo o linfoma cutâneo primário de grandes células anaplásico (LCPGCA) ou dos linfonodos, denominando-se de linfoma sistêmico de grandes células anaplásico (LSGCA).² O linfoma cutâneo primário de grandes células anaplásico se caracteriza por linfoma de grandes células T anaplásicas, pleomórficas ou imunoblasticas com expressão de CD30 em mais de 75% das células tumorais.⁸
Clinicamente, apresenta-se como nódulos ou tumores solitários e persistentes que frequentemente ulceram. Afeta sobretudo adultos de 50-70 anos do gênero masculino. Algumas pápulas podem ser observadas e, em 20% dos pacientes, as lesões são multifocais. Disseminação extracutânea envolvendo sobretudo os linfonodos é observada em 10% dos casos.

Quanto aos achados histopatológicos, caracteriza-se pela presença de infiltrado difuso e denso de células grandes CD30-positivo presente na derme e subcutâneo, geralmente sem epidermotropismo. Em 20 a 25%, as células exibem aspecto pleomórfico ou imunoblástico (não anaplásico). Células com citoplasma eosinófilo ou anfófilo e núcleos “em ferradura” são características, embora nem sempre estejam presentes. Linfócitos reativos são visualizados na periferia das lesões. Nas lesões ulceradas, observamos um aspecto histológico semelhante à PL tipo A, com abundante infiltrado inflamatório.

Na imunohistoquímica, há fenótipo de células T CD4-positivo nas quais surpreende-se a já comentada positividade para CD30 em mais de 75% das células somadas a perda variável de CD2, CD5 e CD3. Menos de 5% dos casos exibem fenótipo T CD8-positivo. A presença de positividade para ALK fala a favor de linfoma sistêmico de grandes células anaplásico e contra LCPGCA. No entanto, casos de LCPGCA ALK-positivo foram observados em crianças. A distinção entre LCPGCA e LSGCA com envolvimento secundário da pele é de suma importância, uma vez que tais entidades apresentam prognóstico muito diferente.

O tratamento do LCPGCA envolve excisão cirúrgica ou radioterapia, uma vez que se trata de doença isolada na grande maioria dos casos. Quimioterapia sistêmica é reservada aos casos que exibem lesões disseminadas.

O prognóstico é favorável, com sobrevida em 5 anos variando de 90 a 97,5% para doença T1, 93% para T2 e 77% para T3 (tabela 4). O envolvimento de perna se correlaciona a um prognóstico mais pobre independentemente de T.

Tabela 4. Sobrevida dos portadores de linfoma cutâneo primário de grandes células anaplásico segundo estadiamento.

<table>
<thead>
<tr>
<th>Estadiamento</th>
<th>Sobrevida em 5 anos</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1a</td>
<td>Lesão solitária < 5 cm</td>
</tr>
<tr>
<td>T1b</td>
<td>Lesão solitária ≥ 5 cm</td>
</tr>
</tbody>
</table>
3.3 Linfomas sistêmico de grandes células anaplásico

O linfoma sistêmico de grandes células anaplásico (LSGCA) é tipo agressivo de linfoma não-Hodgkin que envolve primeiramente o linfonodo. Trata-se, portanto, de linfoma sistêmico que apresenta na pele o seu principal sítio de envolvimento extranodal.¹

Clinicamente, apresenta-se com linfadenopatia indolor associada a sintomas B (febre, perda de peso, sudorese noturna). Outros sítios de envolvimento que não a pele são medula óssea, ossos e órgãos internos.¹² Infelizmente, cerca de 60% dos portadores dessa condição já a descobrem em estádios mais avançados, implicando em um pior prognóstico.²

À histopatologia, costuma cursar com presença de células multinucleadas e células semelhantes às de Reed-Sternberg que afetam os seios e região paracortical dos linfonodos.¹

Os achados imunohistoquímicos exibem positividade para CD30 e BCL2, além de positividade variável para ALK.¹ Positividade para ALK é marcador de melhor prognóstico no LSGCA, com sobrevida em 5 anos variando de 71 a 100%. Aqueles doentes ALK-negativo apresentam sobrevida em 5 anos de 15 a 45%.²

Trata-se de doença agressiva e de prognóstico mais pobre, necessitando de tratamento com poliquimioterapia.¹ Recentemente, o uso do brentuximabe, uma droga anti-CD30, vem apresentando resultados promissores nestes doentes.²
3.4 Imunohistoquímica e linfomas

A imunohistoquímica desempenha um importante papel na classificação dos linfomas cutâneos primários de acordo com a WHO-EORTC.⁶

3.4.1 CD30

O CD30 é um marcador imunohistoquímico pertencente à subfamília do receptor do fator de necrose tumoral. No início, pensava-se ser específico das células de Reed-Sternberg, presentes nos linfomas de Hodgkin. Posteriormente, demonstrou-se a sua presença em células B e T ativadas e em uma variedade de entidades reativas, incluindo picada de inseto, linfangiopatia dermatopática e eczemas.¹⁸,¹⁹

A molécula de CD30 exibe, ainda, homologia com o receptor do fator de crescimento neural, porém a sua função ainda carece de elucidação.¹⁸ Acredita-se que a interação entre CD30 e seu ligante (CD30L) medie os estágios proliferativos e antiproliferativos dos linfomas, de forma que se demonstrou que a expressão de CD30L era maior em lesões regressivas, apoiando os efeitos anti-proliferativos da ligação CD30-CD30L.¹⁹ Aparentemente, MF CD30-positivo, quando restrita a pele e não associada à PL, parece ter um melhor prognóstico do que MF CD30-negativo.¹⁸

Atualmente, sabe-se que CD30 é expresso em vários tipos de linfomas cutâneos, como a papulose linfomatoide, linfoma cutâneo primário de grandes células anaplásico, alguns casos de micose fungoide (sobretudo MF tumoral e MF transformada) e linfomas sistêmicos que afetam a pele secundariamente, como o linfoma sistêmico de grandes células anaplásico ALK-positivo ou ALK-negativo.¹⁴

Nesses casos, muitas vezes a diferenciação entre tais entidades não é possível apenas com ajuda da história clínica, exame físico e histologia, sendo necessário lançarmos mão de marcadores imunohistoquímicos diversos em busca de informações adicionais que nos auxiliem no diagnóstico.¹⁴

3.4.2 GATA 3

GATA 3 é um regulador transcricional de diferenciação Th2.¹³ Trata-se de uma proteína de ligação pertencente a uma família de fatores de transcrição composta por seis membros. Essas proteínas identificam sequências contendo G-A-T-A no gene alvo e se ligam ao alvo de DNA
por meio de dois domínios de dedos de zinco. Os membros da família GATA são divididos em dois subgrupos. O primeiro subgrupo inclui GATA1, GATA2 e GATA3, que participam principalmente do desenvolvimento dos sistemas hematopoético e nervoso. O segundo subgrupo consiste em GATA4, GATA5 e GATA6, que estão associados ao desenvolvimento mesodérmico e endodérmico dos órgãos.

O GATA3 desempenha papel importante na promoção e direcionamento da proliferação celular, bem como no desenvolvimento e diferenciação de muitos tecidos e células, de forma que alterações no GATA3 têm sido classicamente relacionadas ao desenvolvimento de carcinomas tanto em modelos animais como em humanos. A expressão forçada de GATA-3 nas células T tímicas de camundongos transgênicos resultou em um estado pré-maligno, com aumento da expressão do protooncogene C-MYC.

O gene GATA3 apresenta dois subdomínios funcionais descritos por Yang et al (1994), que são: o I, compreendendo os aminoácidos 31 a 59 e o II, compreendendo os aminoácidos 132 a 214. Tais domínios agem de forma independente ou como um domínio cooperativo único para conferir a transativação do GATA3. Também atuam, através do contato com fatores de transcrição, na modulação do DNA via ligantes. Os já citados dedos de zinco são proteínas que se enovelam em torno de um íon de zinco central gerando um domínio compacto a partir de uma cadeia polipeptídica. Eles são parte do domínio estrutural do GATA3 e recebem esse nome porque o diagrama bidimensional dessa estrutura se assemelha a um dedo (figura 1). A deleção do primeiro dedo de zinco aumenta a transativação, ao passo que a deleção do segundo dedo abole a ligação com o DNA e a ativação transcricional.

O GATA3 tem um papel essencial no desenvolvimento de estruturas epiteliais em tecidos embrionários e adultos. Ele participa da regulação de genes envolvidos na diferenciação luminal do epitélio mamário, desenvolvimento de células T e diferenciação Th2. O GATA3 é considerado o fator de transcrição mais prevalente envolvido na proliferação do epitélio ductal da mama, principalmente nas células luminais. Outra função reguladora do GATA3 é promover a diferenciação celular em uma variedade de tecidos e órgãos, incluindo pele, trofoblastos, glândulas paratireoides, sistema urotelial, rins e sistema nervoso central.
A expressão de GATA-3 tem sido estudada no contexto de vários tumores, principalmente mamários e uroteliais. No entanto, o seu papel entre as neoplasias linfoproliferativas de células T também tem sido analisado através de alguns estudos mais recentes. Zhang et al (2016) estudaram a expressão do GATA3 em linfomas de células T periférico e levantou a hipótese de que o GATA3 poderia aumentar a malignidade das células do linfoma por meio da regulação positiva ou negativa da transcrição de citocinas ou da ativação de vias de transdução de sinal.28 Geng et al (2022) conduziram estudo que comprovou que o GATA3 induziria o crescimento e proliferação celular, sendo um protooncogene em várias neoplasias de células T em todo o espectro de leucemias/linfomas de células T imaturas a maduras.29

A utilização do marcador GATA3 na diferenciação dos linfomas primários cutâneos de células T entre si ou com outras dermatoses também tem sido objeto de estudos de vários pesquisadores ao redor do mundo, inclusive motivando o presente estudo.4,13,30 Para que haja uma melhor compreensão do uso do GATA3 na diferenciação entre MF e as doenças linfoproliferativas CD30-positivo, faz-se necessário uma breve revisão sobre aspectos básicos da imunologia.13

3.5 Aspectos imunológicos

Os linfócitos T secretam citocinas quando ativados e, de acordo com o tipo de citocina secretado, poderão ser classificados em Th1 e Th2. Os linfócitos Th1 produzem interferon (INF) e interleucina 2 (IL2), enquanto os linfócitos Th2 secretam IL4, IL5, IL6, IL10 e IL13.13
Micose fungoide é uma neoplasia clonal de linfócitos T CD4-positivo auxiliares. Nas suas fases iniciais, exibe um aumento de interleucina 2 (IL2) e INF, o que é compatível com um perfil Th1. Logo, na MF inicial, esperamos encontrar negatividade para o marcador imunohistoquímico GATA3, já que se trata de um regulador transcricional de diferenciação Th2. Nos estágios mais avançados da MF, incluindo MF tumoral e MF transformada, há um aumento na produção de IL4, IL5 e IL10, compatíveis com perfil Th2, ao mesmo tempo em que há uma cessação da resposta Th1. Dessa forma, espera-se encontrar positividade para o marcador GATA3 nessa fase da doença.

Os LCPGCA apresentam imunopatogênese distinta da observada na MF, de forma que a literatura tem demonstrado negatividade para o marcador imunohistoquímico GATA3 nesse tipo de linfoma. Recentemente, Collins et al (2021) publicaram estudo em que propunham o uso do GATA3 na diferenciação entre micose fungoide transformada e doenças linfoproliferativas CD30-positivo cutâneas primárias, incluindo casos de papulose linfomatoide. Os autores concluíram que um ponto de corte de positividade de 50% para o GATA3 parece ser útil na diferenciação entre tais entidades, onde os casos avançados de micose fungoide foram associados a maior positividade para o referido marcador.
4. MÉTODOS

4.1. Tipo de estudo

Trata-se de um estudo retrospectivo analítico observacional envolvendo 32 pacientes portadores de doenças linfoproliferativas CD30-positivo atendidos no ambulatório de linfomas cutâneos da Faculdade de Medicina da Universidade de São Paulo (FMUSP), sejam elas micose fungoide inicial, micose fungoide tumoral ou tumoral transformada, micose fungoide com acometimento linfonodal, linfoma cutâneo primário grandes células anaplásico, linfoma sistêmico de grandes células anaplásico ou “overlap” dessas entidades ainda sem diagnóstico definitivo.

4.2. Critérios de inclusão

Pacientes com linfomas de células T com acometimento cutâneo e forte positividade para CD30 (igual ou superior a 50%) em pelo menos uma das análises imunohistoquímicas da lesão neoplásica, podendo corresponder a linfoma cutâneo primário de grandes células anaplásico ou sistêmico com acometimento secundário da pele, MF CD30-positivo, casos com “overlap” das entidades acima descritas ou com diagnóstico suspeito para pelo menos uma delas).

Pacientes com linfoma sistêmico de grandes células anaplásico, independentemente de envolvimento cutâneo.

Pacientes com MF inicial (forma patches e placas) independentemente da positividade para CD30 foram incluídos como um dos grupos controle.

4.3. Critérios de exclusão

Pacientes que por razões diversas não apresentem material de biópsia de lesão cutânea disponível para análise no respectivo hospital de estudo.

Pacientes que não apresentem os necessários dados clínico-laboratoriais nos prontuários, impedindo a avaliação final.

Pacientes portadores de papulose linfomatoide exclusivamente, por exibirem clínica bastante característica e prognóstico bastante distintos.
Pacientes infectados por HTLV.

4.4. Distribuição dos pacientes

Os pacientes foram distribuídos em grupos de acordo com o seu diagnóstico, da seguinte forma: no grupo MF inicial (MF\(i\)), incluímos os pacientes com diagnóstico de micose fungoide na fase inicial; no grupo MF avançadas (MF\(a\)), incluímos os pacientes com diagnóstico de micose fungoide tumoral ou tumoral transformada; no grupo MF com acometimento linfonodal (MF\(l\)), incluímos pacientes com linfonodo acometido por MF (confirmado histologicamente); no grupo LCPGCA, incluímos os pacientes com diagnóstico confirmado de linfoma cutâneo de grandes células anaplásico; no grupo LSGCA, incluímos os pacientes com diagnóstico confirmado de linfoma sistêmico de grandes células anaplásico; no grupo D, incluímos os pacientes com doença linfoproliferativa CD30-positivo em que não foi possível a diferenciação entre MF, LCPGCA ou outra doença linfoproliferativa CD30-positivo que curse com acometimento cutâneo ou nodal.

4.5. Análise de dados clínicos

Foram levantados os seguintes dados clínicos/laboratoriais a partir dos prontuários dos pacientes selecionados: idade, gênero, diagnóstico (se confirmado ou não), tipo de lesão de pele, envolvimento extracutâneo e linfonodal.

4.6. Análise de dados anatomopatológicos

Foram levantadas todas as biópsias de pele e outros órgãos referente ao diagnóstico da doença linfoproliferativa. Nas biópsias de pele, analisou-se epidermotropismo, ulceração da epiderme, infiltrado inflamatório associado (neutrofílico, eosinofílico e/ou linfocítico) e características das células neoplásicas (tamanho, pleomorfismo, mitose, grau de atipia).

4.7. Análise de dados imunohistoquímicos

Foi avaliado o percentual de positividade para os marcadores imunohistoquímicos CD30 e GATA3 nas lâminas de biópsias coletadas previamente dos pacientes selecionados, disponíveis no acervo da Patologia e do Laboratório de Dermatologia do Hospital das Clínicas. Tal análise foi realizada pelos mesmos avaliadores (dermatologista e dermatopatologista com expertise na área), sem o conhecimento prévio do diagnóstico do paciente em questão.
Amostras do tecido de interesse fixado em formol tamponado e incluído em parafina foram seccionadas por microtomia manual e coradas por hematoxilina e eosina (HE) para exame microscópico inicial.

Seções de tecido embebidas em parafina fixadas em formalina foram coradas usando um Ventana Ultra automatizado. A análise imunohistoquímica para determinação da positividade para CD30 foi feita utilizando anticorpo CD30 (clone BER-H2, referência 790-4858, Ventana) com tempo de incubação de 2 horas a 37°C e tempo de recuperação antigênica após desparafinização de 88 min a temperatura de 95°C usando a solução ULTRA Conditionin (Ultra CC, Ph 8,4 e referência 950-224). A amplificação foi feita utilizando o kit OptiView Amplification (referência 760-099, Ventana) com tempo de incubação de 12 minutos. Para detecção do marcador, utilizou-se kit OptView DAB IHC Detection (referência 760-700, Ventana) com tempo de incubação de 30 minutos a 37°C.

A análise imunohistoquímica para determinação da positividade para GATA3 foi feita utilizando anticorpo GATA3 (clone L50-823, referência 760-4897, Cellmarque) com tempo de incubação de 1 hora e 32 minutos a 37°C e tempo recuperação antigênica após desparafinização de 32 minutos a 95oC usando a solução ULTRA Conditioning (Ultra CC, Ph 8,4 e referência 950-224). Para detecção do marcador, foi utilizado o kit OptiView DAB IHC Detection (referência 760-700, Ventana) com tempo de incubação de 30 minutos a 37°C.

A avaliação da densidade de células foi feita através da avaliação de pelo menos 10 campos com aumento de 400x, considerando-se infiltrado dérmico e epidérmico. A expressão do GATA3 foi expressa em percentual do infiltrado e considerada positiva quando presente em pelo menos 10% das células do infiltrado. Para determinar o percentual do infiltrado, foi utilizada escala visual para quantificação de achados imunohistoquímicos, conforme determinado por Fitzgibbons et al.31 na figura 2:

Figura 2. Quantificação percentual de achados imunohistoquímicos. O percentual de células positivas foi estimado visualmente.

![Quantificação percentual de achados imunohistoquímicos](image)

Fonte: Confeccionada pela própria autoria. Imagem adaptada de Fitzgibbons et al.31
4.8. Análise estatística

A análise estatística será feita por meio da linguagem de programação estatística R (versão 4.3.1) considerando o nível de significância inferior a 5% para todos os testes estatísticos.

Para determinação do “cut-off”, análise e comparação entre os grupos quanto ao marcador GATA3 foram realizados os testes paramétrico de correlação ANOVA e não paramétricos Chi-quadrado e exato de Fisher.

Testes de Shapiro-Wilk e Kolmogorov-Smirnov foram realizados para avaliar a normalidade da distribuição das variáveis idade e GATA3.
5. RESULTADOS

Um total de 32 pacientes foram incluídos no estudo (17 mulheres e 15 homens), divididos em 6 grupos. As idades seguem uma distribuição normal (teste de Shapiro-Wilk), com mediana de idade dos pacientes ao diagnóstico de 52 anos e média de idade de 52,5 ± 18 anos. A avaliação da positividade para GATA3 foi realizada em 35 anatomopatológicos, podendo ser de pele, linfonodo ou outros órgãos (para os casos de LSGCA).

5.1 Grupo Duvidosos

O grupo de casos duvidosos foi composto por quatro pacientes cuja evolução clínica e dados anatomopatológicos não nos permitiram ter uma certeza do seu diagnóstico: se MF, linfoma anaplásico de grandes células (primário cutâneo ou sistêmico) ou associação das duas entidades.

Tais casos, descritos a seguir, foram avaliados quanto à expressão para GATA3 nas células de interesse da pele e linfonodo pelo presente estudo.

5.1.1 Caso 1

Paciente do gênero feminino, 49 anos, apresentava diagnóstico externo de papulose linfomatoide. Ao exame físico, exibia algumas pâpulas eritematosas agrupadas no dorso e lesão arciforme entremeada por pâpulas no ombro direito com biópsia evidenciando perfil imunohistoquímico compatível com linfoma primário de grandes células anaplásico (CD20 negativo, CD3 negativo, CD30 positivo, ALK negativo, Ciclina D1 negativo, CD10 negativo, MUM1 positivo, BCl2 positivo focal e BCl6 negativo) (figura 3).

Fonte: Arquivos fotográficos do Hospital das Clínicas – Faculdade de Medicina da Universidade de São Paulo.
Na avaliação da paciente, foi surpreendida a presença de múltiplos patches concomitantemente no tronco (figura 4), cujo anatomopatológico revelou paraqueratose, moderada espongiose e exocitose de linfócitos pequenos e médios, por vezes agrupados, favorecendo processo linfoproliferativo cutâneo epidermotrópico. Imunohistoquímica revelou positividade para CD3, CD4 (focal), CD8 (focal) e CD7 (semelhante ao CD3). CD30 mostrou-se negativo nessa amostra.

Figura 4. Fotografia da paciente do caso 1 mostrando a presença de patch em região de tronco.

Fonte: Arquivos fotográficos do Hospital das Clínicas – Faculdade de Medicina da Universidade de São Paulo.

Paciente recebeu diagnóstico inicial de papulose linfomatoide associada a micose fungoide (estadiamento T2aN0M0B0). A paciente foi tratada com fototerapia e esteroides tópicos, com melhora das lesões. Após cinco anos, evoluiu com surgimento de uma placa infiltrada e arciforme na região lombar (figura 5).

Figura 5. Fotografia da paciente do caso 1 revelando placa infiltrada arciforme na região lombar.

Fonte: Arquivos fotográficos do Hospital das Clínicas – Faculdade de Medicina da Universidade de São Paulo.
A lesão foi biopsiada e submetida a análise histopatológica, que revelou epiderme com acantose regular e espongiose moderada, com exocitose de linfócitos atípicos e derme com acentuada proliferação linfóide atípica com linfócitos pequenos, médios e grandes, se estendendo à hipoderme. Imunohistoquímica apresentou CD20 positivo em numerosas células, CD3 positivo em numerosas células na epiderme e derme, CD4 positivo semelhante ao CD3, CD8 positivo em moderado número de células, CD7 positivo em 80% das células CD3. Havia positividade para CD30 em 50% das células do infiltrado.

Diante da presença do diagnóstico prévio de MF associada a PL e frente ao surgimento de nova lesão infiltrada com positividade para CD30, uma dúvida paira sobre o caso: “a placa arciforme representaria uma doença do espectro das doenças linfoproliferativas CD30-positivo ou seria uma MF no estágio de placa infiltrada?”. O GATA3, realizado posteriormente no material obtido a partir da lesão lombar, revelou 80% de positividade nas células do infiltrado (figura 6).

Figura 6. Fotografia dos achados imunohistoquímicos da lesão lombar revelando positividade 80% para GATA3 (40x).

![Fotografia dos achados imunohistoquímicos da lesão lombar revelando positividade 80% para GATA3 (40x).](image)

Fonte: Lâmina fotografada pela autora.

Gráfico com a análise sequencial do caso da paciente pode ser conferido na figura 7.

Figura 7. Linha do tempo correlacionando lesões de pele, tempo decorrido e tratamento instituído, até o presente momento, para paciente do caso 1.

![Gráfico com a análise sequencial do caso da paciente](image)

Fonte: Gráfico elaborado pela autora.
5.1.2 Caso 2

Paciente do gênero feminino, 49 anos, apresentava múltiplos patches e placas eritemato-descamativos que foram tratadas como alergia por vinte anos em outro serviço, até que surgiram alguns tumores cutâneos, sendo encaminhada ao Hospital das Clínicas. Ao exame físico, além de patches e placas disseminados, apresentava duas lesões nodulares no tórax, uma no membro inferior esquerdo e uma no membro superior direito (figura 8). Foram realizadas biópsias em três pontos (membro inferior esquerdo, braço direito e dorso), que revelaram infiltrado linfóide atípico denso, ocupando toda a derme e sem epidermotropismo. Imunohistoquímica revelou positividade para CD3 (raras células), CD7 (raras células), CD4 e CD8 (raras células), além de CD30 negativo. Os achados foram compatíveis com linfoma de células T periféricas. O estudo imunohistoquímico para GATA3, posteriormente realizado em material de biópsia do membro inferior esquerdo, revelou positividade de 90% (figura 9).

Diante dos achados clínicos, anatomopatológicos e imunohistoquímicos, a paciente recebeu diagnóstico de micose fungoide em fase tumoral. Na ocasião, tomografias de tórax, abdome e pelve não revelaram envolvimento sistêmico. A pesquisa de clonalidade para células T foi positiva na pele e negativa no sangue.

Figura 8. Fotografia da paciente ao iniciar o acompanhamento com a equipe de Oncologia Cutânnea do Hospital das Clínicas. A) Face com patches e placas eritematos-desmacativos, com perda de pelos do supercílio D. B) Dorso com múltiplos patches e nódulo em dorso médio-superior.
Figura 9. Fotografia de lâmina de imunohistoquímica realizada na lesão tumoral revelando positividade de 90% para GATA 3 (40x).

Fonte: Lâmina fotografada pela autora.

Diante do diagnóstico, optou-se por tratamento com interferon e fototerapia UVA, com progressão da doença, motivo pelo qual a paciente foi conduzida com quimioterapia (CHOEP – ciclofosfamida, doxorrubicina, vincristina, etopósido e prednisona). Cursou com boa resposta, a qual foi mantida por dois anos com interferon e UVA. No entanto, paciente evoluiu com novas lesões tumorais com necessidade de radioterapia e “total skin irradiation”. Embora as lesões tumorais melhorassem, elas sempre recorriam.

Após cinco anos, paciente desenvolveu adenopatia inguinal esquerda unilateral cuja histologia revelou células grandes anaplásicas com positividade para CD30 e negatividade para CD15, CD20 e CD3. PET-CT demonstrou não haver envolvimento de outros sítios. Expressão de GATA3 também foi posteriormente avaliada na lesão do linfonodo, revelando-se negativa.

Paciente iniciou tratamento quimioterápico com ciclofosfamida, vincristina e prednisona e faleceu por sepse no segundo ciclo de quimioterapia.

Não foi possível afirmar se estivemos diante de um caso de Micose Fungoide transformada com envolvimento nodal ou um LSGCA no linfonodo em uma paciente com MF.

Gráfico com a análise sequencial do caso da paciente pode ser conferido abaixo:

Figura 10. Linha do tempo da paciente do caso 2, correlacionando lesões de pele, tempo decorrido e tratamento instituído, até o óbito.

Fonte: Gráfico elaborado pela autora.
5.1.3 Caso 3

Paciente feminina, 76 anos, apresentava história de sete anos de “alergia cutânea” e, ao exame físico, múltiplos patches e placas (figura 11A).

Foi submetida a biópsia cutânea, cujo anatomopatológico da lesão de patch/placa revelou infiltrado de linfócitos atípicos denso, confluentes, com espessamento da derme papilar e envolvimento da derme reticular associado a epidermotropismo basal e focal e microabscessos de Pautrier. Imunohistoquímica demonstrou positividade para CD3, CD4, CD8 e CD30 (raros linfócitos epidérmicos) e negatividade para CD20. Através do presente estudo, realizada pesquisa da expressão do GATA3 nas lesões iniciais da paciente, a qual revelou-se fortemente positiva (70%). Diagnosticada com micose fungoide, a paciente foi tratada com fototerapia UVB evoluindo com remissão completa.

Um ano após, paciente evoluiu com adenopatia inguinal direita rapidamente progressiva (figura 11B) cujos achados histológicos e imunohistoquímicos foram compatíveis com linfoma anaplásico de grandes células ALK-negativo. A pesquisa da positividade para GATA3 do linfonodo não foi realizada na ocasião e não pode ser realizada posteriormente, a título de estudo, por indisponibilidade do bloco.

Figura 11. Registros fotográficos referentes ao caso 3. A) Presença de múltiplos patches e placas compatíveis com o diagnóstico de Micose Fungoide. B) PET/CT revelando volumosa adenomegalia inguinal direita.

Fonte: Arquivos fotográficos do Hospital das Clínicas – Faculdade de Medicina da Universidade de São Paulo.

Na ocasião, pesquisa de clonalidade para células T na pele e no sangue foi indetectável. PET/CT revelou doença linfoproliferativa em linfonodos infradiafragmáticos, além da
linfonodomegalia na cadeia inguinal direita, motivo pelo qual a paciente foi submetida a seis ciclos de quimioterapia com ciclofosfamida, hidroxidaunorubicina, vincristina e etopósideo (CHOEP) e radioterapia, evoluindo com resposta nodal completa.

Paciente foi mantida em fototerapia e vinha apresentando boa evolução, porém o tratamento precisou ser interrompido devido ao diagnóstico de carcinoma basocelular supralabial.

Um ano após a suspensão da fototerapia, surgiram tumores cutâneos (figura 12) compostos por infiltrado difuso de células grandes e anaplásicas CD30-positivo envolvendo a derme sem sinais de envolvimento extracutâneo. No presente estudo, foi realizado análise da expressão do GATA3 nas células tumorais, o qual mostrou-se positivo em 80% das células de interesse.

Figura 12. Fotografia da paciente do caso 3, mostrando tumor no antebraço esquerdo.

A paciente faleceu por causa não-relacionada ao diagnóstico oncológico, porém resta uma dúvida a respeito do caso: a doença nodal representaria envolvimento nodal por MF transformada ou LSGCA?

Gráfico com a análise sequencial do caso da paciente pode ser conferido abaixo:

Figura 13. Linha do tempo da paciente do caso 3, correlacionando lesões de pele, tempo decorrido e tratamento instituído, até o óbito.

Fonte: Gráfico elaborado pela autora.
5.1.4 Caso 4

Masculino, 59 anos, apresentava patches cutâneos e tumor de crescimento progressivo no glúteo há seis meses, sem adenomegalia detectável e com exames laboratoriais normais (figura 14).

Figura 14. Fotografia do glúteo do paciente do caso 4, revelando a presença de patches e tumor.

Análise histopatológica do tumor revelou presença de células anaplásicas CD30-positivo e GATA negativo. A avaliação do patch demonstrou epiderme com hiperqueratose discreta a presença de linfócitos epidermotrópicos isolados ou alinhados ao longa da camada basal, com alguns abscessos de Pautrier (compatível com MF CD30-negativo), exibindo positividade para GATA3 (20%). PET/CT exluíu a presença de doença sistêmica.

Como os achados da biópsia da lesão tumoral poderiam corresponder a MF transformada ou linfoma de grandes células anaplásico, a presença de patches favoreceu o diagnóstico inicial de MF transformada no glúteo. O paciente foi encaminhado para radioterapia da lesão glútea, sendo submetido a 18 sessões com boa resposta.

No acompanhamento do paciente, observou-se o surgimento de várias lesões papulosas sugestivas de papulose linfomatoide nos membros superiores e inferiores, tratadas inicialmente com betametasona creme. Evoluiu um aumento do número de patches e placas, sendo encaminhado para tratamento com metotrexato com resposta parcial. No entanto, paira a dúvida: o paciente apresenta apenas MF transformada ou doença linfoproliferativa CD30 boderline (LCPGCA/ papulose linfomatoide)?

Gráfico com a análise sequencial do caso do paciente pode ser conferido a seguir:
Figura 15. Linha do tempo do paciente do caso 4, correlacionando lesões de pele e tratamento instituído até presente momento.

Fonte: Gráfico elaborado pela autora.

5.1.5 Imunohistoquímica dos casos duvidosos

A tabela 5 sumariza os quatro casos duvidosos segundo gênero, idade, tipo de lesão biopsiada e dados imunohistoquímicos. A média de idade dos pacientes do grupo foi de 58,25 ± 12,7 anos.

Tabela 5. Casos duvidosos segundo gênero, idade, tipo de lesão biopsiada e positividade para os marcadores imunohistoquímicos CD3, CD4, CD8, CD7, CD30, ALK e GATA3.

<table>
<thead>
<tr>
<th>Caso</th>
<th>Sexo</th>
<th>Diagnóstico</th>
<th>Idade</th>
<th>Tipo de lesão (biópsia)</th>
<th>Imunohistoquímica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CD3</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>Duvidoso</td>
<td>49</td>
<td>Placa</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>Duvidoso</td>
<td>49</td>
<td>Tumor</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Linfonodo</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>Duvidoso</td>
<td>76</td>
<td>Patch/placa</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Linfonodo</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tumor</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>Duvidoso</td>
<td>59</td>
<td>Tumor</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Patch</td>
<td>+</td>
</tr>
</tbody>
</table>

Legenda: + → positivo; - → negativo ou focal ou raras células; NA → não avaliado.

5.2 Grupos Controle

Foram incluídos como grupos controle os grupos MFa, LCPGCA, MF1, LSGCA e MFi. A inclusão de tais grupos como controle foi motivada pelas dúvidas diagnósticas que pairaram diante dos casos incluídos nos grupos duvidosos. Assim, diante da dúvida entre os diagnósticos de MF, MF linfonodal, LSGCA com acometimento de linfonodo ou MF avançada (tumoral ou
tumoral transformada), optou-se por incluir e analisar a positividade para GATA3 de pacientes com diagnóstico confirmado para tais entidades.

5.2.1 Grupo MF avançada

No grupo das MF avançadas, foram incluídos seis pacientes, com média de idade de ao diagnóstico de 56,3 ± 18,6 anos. Os dados imunohistoquímicos das lesões de interesse constam na tabela abaixo (tabela 6):

Tabela 6. Casos de MF avançada segundo gênero, idade ao diagnóstico, tipo de lesão biopsiada e positividade para os marcadores imunohistoquímicos CD3, CD4, CD8, CD7, CD30 e GATA3.

<table>
<thead>
<tr>
<th>Caso</th>
<th>Sexo</th>
<th>Diagnóstico</th>
<th>Idade</th>
<th>Tipo de lesão (biópsia)</th>
<th>Imunohistoquímica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CD3 CD4 CD8 CD7 CD30 GATA3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>MF</td>
<td>31</td>
<td>Tumor</td>
<td>+ + - - - 90%</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>MF</td>
<td>65</td>
<td>Placa</td>
<td>+ - - - - 80%</td>
</tr>
<tr>
<td>7</td>
<td>F</td>
<td>MF</td>
<td>51</td>
<td>Placa</td>
<td>+ + - - 30% 40%</td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>MF</td>
<td>87</td>
<td>Tumor</td>
<td>+ + CD3/CD8 = 3/2</td>
</tr>
<tr>
<td>9</td>
<td>M</td>
<td>MF</td>
<td>51</td>
<td>Placa</td>
<td>+ + - - 70% 10%</td>
</tr>
<tr>
<td>10</td>
<td>F</td>
<td>MF</td>
<td>53</td>
<td>Placa</td>
<td>+ + - - 50% 40%</td>
</tr>
</tbody>
</table>

Legenda: + → positivo; - → negativo ou focal ou raras células

5.2.2 Grupo LCPGCA

No grupo dos LCPGCA, foram incluídos quatro pacientes, com média de idade ao diagnóstico de 55,7 ± 9,1 anos. Dados demográficos e imunohistoquímicos referem às lesões de interesse estão disponíveis na tabela abaixo (tabela 7):

Tabela 7. Casos de LCPGCA segundo gênero, idade ao diagnóstico, tipo de lesão biopsiada e positividade para os marcadores imunohistoquímicos CD3, CD4, CD8, CD7, ALK, CD30 e GATA3.

cont.
5.2.3 Grupo MF com acometimento linfonodal

No grupo dos portadores de MF com acometimento linfonodal, foram incluídos cinco pacientes com média de idade ao diagnóstico de 48,8 ± 14,1 anos. Os dados demográficos e imunohistoquímicos estão descritos na tabela abaixo:

Tabela 8. Casos de MF com acometimento linfonodal segundo gênero, idade ao diagnóstico, tipo de lesão biopsiada e positividade para os marcadores imunohistoquímicos CD3, CD4, CD8, CD7, ALK, CD30 e GATA3.

<table>
<thead>
<tr>
<th>Caso</th>
<th>Sexo</th>
<th>Diagnóstico</th>
<th>Idade</th>
<th>Tipo de lesão (biópsia)</th>
<th>Imunohistoquímica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CD3</td>
</tr>
<tr>
<td>11</td>
<td>M</td>
<td>LCPGCA</td>
<td>70</td>
<td>Tumor</td>
<td>+</td>
</tr>
<tr>
<td>12</td>
<td>M</td>
<td>LCPGCA</td>
<td>59</td>
<td>Tumor</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>F</td>
<td>LCPGCA</td>
<td>66</td>
<td>Tumor</td>
<td>+</td>
</tr>
<tr>
<td>14</td>
<td>F</td>
<td>LCPGCA</td>
<td>42</td>
<td>Tumor</td>
<td>+</td>
</tr>
</tbody>
</table>

Legenda: + → positivo; - → negativo ou focal ou raras células; NA → não avaliado.

5.2.4 Grupo LSGCA

No grupo dos portadores de LSGCA, foram incluídos três pacientes com média de idade ao diagnóstico de 55,7 ± 9,1 anos. Os dados demográficos e imunohistoquímicos obtidos a partir da análise das lesões de interesse seguem na tabela abaixo:
Tabela 9. Casos de LSGCA segundo gênero, tipo de lesão biopsiada e positividade para os marcadores imunohistoquímicos CD3, CD4, CD8, CD7, CD30, GATA3 e ALK.

<table>
<thead>
<tr>
<th>Caso</th>
<th>Sexo</th>
<th>Diagnóstico</th>
<th>Idade</th>
<th>Tipo de lesão (biópsia)</th>
<th>Imunohistoquímica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CD3</td>
</tr>
<tr>
<td>20</td>
<td>M</td>
<td>LSGCA</td>
<td>46</td>
<td>Linfonodo</td>
<td>+</td>
</tr>
<tr>
<td>21</td>
<td>F</td>
<td>LSGCA</td>
<td>64</td>
<td>Estômago</td>
<td>+</td>
</tr>
<tr>
<td>22</td>
<td>M</td>
<td>LSGCA</td>
<td>57</td>
<td>Osso</td>
<td>+</td>
</tr>
</tbody>
</table>

Legenda: + → positivo; - → negativo ou focal ou raras células; NA → não avaliado

5.2.5 Grupo MF inicial

No grupo dos portadores de MF inicial, foram incluídos dez pacientes com média de idade ao diagnóstico de 46,1 ± 24,6 anos, cujos dados imunohistoquímicos, incluindo GATA3, estão dispostos na tabela abaixo:

Tabela 10. Casos de MF inicial segundo gênero, idade ao diagnóstico, tipo de lesão biopsiada e positividade para os marcadores imunohistoquímicos CD3, CD4, CD8, CD7, CD30 e GATA3.

<table>
<thead>
<tr>
<th>Caso</th>
<th>Sexo</th>
<th>Diagnóstico</th>
<th>Idade</th>
<th>Tipo de lesão (biópsia)</th>
<th>Imunohistoquímica</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>CD3</td>
</tr>
<tr>
<td>23</td>
<td>M</td>
<td>MF</td>
<td>25</td>
<td>Patch</td>
<td>+</td>
</tr>
<tr>
<td>24</td>
<td>F</td>
<td>MF</td>
<td>63</td>
<td>Patch</td>
<td>+</td>
</tr>
<tr>
<td>25</td>
<td>M</td>
<td>MF</td>
<td>41</td>
<td>Patch</td>
<td>+</td>
</tr>
<tr>
<td>26</td>
<td>M</td>
<td>MF</td>
<td>22</td>
<td>Patch</td>
<td>+</td>
</tr>
<tr>
<td>27</td>
<td>F</td>
<td>MF</td>
<td>48</td>
<td>Patch</td>
<td>+</td>
</tr>
<tr>
<td>28</td>
<td>F</td>
<td>MF</td>
<td>25</td>
<td>Patch</td>
<td>+</td>
</tr>
<tr>
<td>29</td>
<td>?</td>
<td>MF</td>
<td>79</td>
<td>Patch</td>
<td>+</td>
</tr>
<tr>
<td>30</td>
<td>F</td>
<td>MF</td>
<td>30</td>
<td>Patch</td>
<td>+</td>
</tr>
<tr>
<td>31</td>
<td>M</td>
<td>MF</td>
<td>35</td>
<td>Patch</td>
<td>+</td>
</tr>
<tr>
<td>32</td>
<td>F</td>
<td>MF</td>
<td>93</td>
<td>Patch</td>
<td>+</td>
</tr>
</tbody>
</table>

Legenda: + → positivo; - → negativo ou focal ou raras células; NA → não avaliado
A média percentual de positividade para o marcador GATA3 foi calculada considerando os grupos LCPGCA, LSGCA, MFa, MFi e MFl, sendo expressa na tabela abaixo:

Tabela 11. Frequências absoluta e relativa, média percentual e desvio-padrão da positividade para GATA3, considerando os grupos LCPGCA, LSGCA, MFa, MFi e MFl.

<table>
<thead>
<tr>
<th>Diagnóstico</th>
<th>Frequência Absoluta</th>
<th>Frequência Relativa (%)</th>
<th>Média (%)</th>
<th>Desvio-padrão</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCGCA</td>
<td>4</td>
<td>14,3</td>
<td>11,3</td>
<td>6,3</td>
</tr>
<tr>
<td>LSGCA</td>
<td>3</td>
<td>10,7</td>
<td>30,0</td>
<td>52,0</td>
</tr>
<tr>
<td>MF avançada</td>
<td>6</td>
<td>21,4</td>
<td>53,3</td>
<td>29,4</td>
</tr>
<tr>
<td>MF inicial</td>
<td>10</td>
<td>35,7</td>
<td>18,5</td>
<td>14,5</td>
</tr>
<tr>
<td>MF linfonodal</td>
<td>5</td>
<td>17,9</td>
<td>20,0</td>
<td>12,2</td>
</tr>
</tbody>
</table>

Legenda: LCGCA = linfoma cutâneo primários de grandes células analplásico; LSGCA = linfoma sistêmico de grandes células analplásico; MFa = MF avançada; MFi = MF inicial; MFl = MF linfonodal.

Os valores de GATA entre os grupos também foram apresentados através de um diagrama quartil-quartil, permitindo a análise dos quartis, medianas, intervalo de confiança, desvios-padrão e valores discrepantes (figura 16).

Figura 16. Diagrama quartil-quartil em relação ao percentual de positividade para GATA3 considerando os grupos LCGCA, LSGCA, MF avançada, MF inicial e MF linfonodal.

Legenda: MF = Micose fungoide; LCGCA = linfoma cutâneo primários de grandes células analplásico; LSGCA = linfoma sistêmico de grandes células analplásico.
Foram realizados os testes de Shapiro-Wilk e Kolmogorov-Smirnov para a variável GATA3, a qual exibiu uma distribuição normal. Seguidamente, realizou-se teste ANOVA para a mesma variável, comparando entre grupos, resultando em um p = 0,047 (nível de significância estatística p< 0,05).

Diante da possibilidade de uso do marcador imunohistoquímico GATA3 para diferenciação entre micose fungoide (inicial, com acometimento linfonodal e avançada) e as demais doenças linfoproliferativas CD30-positivo, buscou-se um ponto de “cut-off” ótimo para distinção entre tais entidades, comparando todos os grupos dois a dois, conforme mostra a tabela 12. A seleção do “cut-off” ótimo foi realizada através do teste de Chi-Quadrado, utilizando a biblioteca de R “cutpointr”. O nível de significância considerado para comparação entre os grupos foi de p < 0,05.

Tabela 12. Seleção de ponto de “cut-off” ótimo pela minimização de valor-p pelo Chi-Quadrado, utilizando a biblioteca de R “cutpointr”.33

<table>
<thead>
<tr>
<th>Positivo</th>
<th>Negativo</th>
<th>Cut-off</th>
<th>Valor-p</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCGCA</td>
<td>LSGCA</td>
<td>5%</td>
<td>0,053</td>
</tr>
<tr>
<td>MFa</td>
<td>LCGCA</td>
<td>40%</td>
<td>0,009*</td>
</tr>
<tr>
<td>MFi</td>
<td>LCGCA</td>
<td>30%</td>
<td>0,216</td>
</tr>
<tr>
<td>MFl</td>
<td>LCGCA</td>
<td>10%</td>
<td>0,235</td>
</tr>
<tr>
<td>MFa</td>
<td>LSGCA</td>
<td>10%</td>
<td>0,023*</td>
</tr>
<tr>
<td>MFl</td>
<td>LSGCA</td>
<td>10%</td>
<td>0,035*</td>
</tr>
<tr>
<td>MFa</td>
<td>MFl</td>
<td>40%</td>
<td>0,035*</td>
</tr>
<tr>
<td>MFa</td>
<td>MFi</td>
<td>60%</td>
<td>0,013*</td>
</tr>
</tbody>
</table>

Legenda: * p < 0,05; MFa = MF avançada; MFi = MF inicial; LCGCA = linfoma cutâneo primários de grandes células analplásico; LSGCA = linfoma sistêmico de grandes células analplásico. MFl = MF linfonodal.

Considerando o nível de significância estatística de p<0,05, foi possível estabelecer os seguintes “cut-offs” ótimos: “cut-off” de 10% para diferenciação entre MFa e LSGCA (p=0,023) e para diferenciação entre MFl e LSGCA (p=0,035); “cut-off” de 40% para diferenciação entre MFa e MFl (p=0,035) e “cut-off” de 60% para diferenciação entre MFa e MFi (p=0,013). O menor valor de p (p=0,009) foi encontrado para o cut-off de 40%, capaz de diferenciar MFa e LCPGCA. A representação do diagrama quartil a quartil exibindo o “cut off” de 40% para a última dupla é apresentada a seguir:
Figura 17. Diagrama quartil a quartil comparando os grupos LCGCA e MF avançado quanto ao percentual para GATA3, exibindo linha de “cut off” de 40%.

![Diagrama quartil a quartil para GATA3](image)

Legenda: MF = Micose fungoide; LCGCA = linfoma cutâneo primário de grandes células anaplásico.

Considerando-se o “cut-off” percentual de GATA3 de 40% para diferenciação entre MF avançada e LCGCA, determinou-se a sua sensibilidade, especificidade, valor preditivo positivo e valor preditivo negativo, conforme ilustrado na figura 17.

Figura 18. Sensibilidade, especificidade, valor preditivo positivo e valor preditivo negativo do GATA3 com “cut-off” de 40% para diferenciação entre MF avançada e LCGCA.

<table>
<thead>
<tr>
<th>GATA</th>
<th>MF avançado</th>
<th>LCGCA</th>
<th>PPV</th>
<th>NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>GATA+</td>
<td>5</td>
<td>0</td>
<td>100%</td>
<td>80,0%</td>
</tr>
<tr>
<td>GATA-</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sensitividade = 83,3% Especificidade = 100%

Legenda: MF = Micose fungoide; LCGCA = linfoma cutâneo primário de grandes células anaplásico; PPV = valor preditivo positivo; NPV = valor preditivo negativo.

Por fim, foi realizado teste exato de Fisher para comparação da positividade para GATA3 entre os diversos grupos utilizando o “cut-off” de 50%, conforme estabelecido pelo estudo de Collins et al (2021). “Cut-offs” de 60 e 40% também foram utilizados para avaliação entre grupos.
Tabela 13. Comparação da positividade para GATA3 entre grupos com diferentes “cut-offs” (40%, 50% e 60%), através da realização do teste exato de Fisher.

<table>
<thead>
<tr>
<th>Grupos comparado (2 a 2)</th>
<th>Cut-off 40%</th>
<th>Cut-off 50%</th>
<th>Cut-off 60%</th>
</tr>
</thead>
<tbody>
<tr>
<td>MFa x MFi</td>
<td>0,0357*</td>
<td>0,0357*</td>
<td>0,0357*</td>
</tr>
<tr>
<td>MFa x LCPGCA</td>
<td>0,0476*</td>
<td>0,2</td>
<td>0,2</td>
</tr>
<tr>
<td>MFa x LSGCA</td>
<td>0,226</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>MF1 x LCPGCA</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>MF1 x LSGCA</td>
<td>1</td>
<td>0,375</td>
<td>0,375</td>
</tr>
</tbody>
</table>

Legenda: * p < 0,05; MFa = MF avançada; MFi = MF inicial; LCGCA = linfoma cutâneo primários de grandes células analplásico; LSGCA = linfoma sistêmico de grandes células anaplásico. MF1 = MF linfonodal.
6. DISCUSSÃO

O presente estudo objetiva avaliar a utilidade do marcador imunohistoquímico GATA3 na diferenciação de casos de MF CD30-positivo e linfoma anaplásico de grandes células (cutâneo primário ou sistêmico), uma vez que existem alguns casos nos quais a evolução clínica e histopatológica motivam dúvidas quanto ao diagnóstico, exemplificados pelo “grupo duvidosos”.

Essa diferenciação é importante por apresentar implicações prognósticas. A MF transformada associa-se a uma evolução clínica desfavorável, ao passo que o LCPGCA exibe um prognóstico excelente.30

Classicamente, a MF se caracteriza por múltiplos patches e placas afetando principalmente áreas “duplamente cobertas” como mamas e glúteos. Na sua forma mais grave, cursa com tumores e adenomegalia. Já o LCPGCA apresenta-se como lesão nodular, tumoral ou placa infiltrada única ou poucas lesões envolvendo os membros inferiores, podendo associar-se a múltiplas pápulas (papulose linfomatoide).5 Tais lesões persistem por 3 a 4 semanas e, em 20-42% dos casos, exibem regressão espontânea, podendo recorrer em metade deles. Envolvimento extracutâneo é observado em 10% dos casos, predominando acometimento linfonodal.19

Histologicamente, a presença de epidermotropismo favorece o diagnóstico de MF, enquanto abundantes neutrófilos e/ou eosinófilos são visualizados nos casos de LCPGCA.5 No entanto, LCPGCA podem exibir epidermotropismo e envolvimento anexial19, ao passo que MF avançada pode apresentar perda do epidermotropismo e exibir infiltrado inflamatório que envolve derme e subcutâneo associado à presença de células grandes e pleomórficas.30 Assim, os achados histopatológicos de MF e LCPGCA podem se assemelhar, de maneira que recorremos à análise imunohistoquímica para melhor caracterização.

Quanto à imunohistoquímica, a MF clássica exibe linfócitos atípicos com positividade para CD3, CD4 e, muitas vezes, negatividade para CD8 e CD7. Já o LCPGCA demonstra fenótipo aberrante de células T, com perda de expressão de marcadores “pan-T” e expressão de marcadores citotóxicos como as perforinas.5,30 Em relação ao marcador CD30, ele necessariamente exibe positividade superior a 75% nas células tumorais em se tratando de LCPGCA. Todavia, a sua expressão também pode ser observada em casos de MF, sobretudo nas MFs avançadas (tumoral e transformada).19

Nesse contexto, estaria inserido o GATA3, um regulador transcricional de diferenciação Th2. Nos casos avançados, a MF exibe importante perfil Th2 cursando com positividade para
o GATA3. Nos LCPGCA, tal marcador seria negativo.4,13 A utilização do GATA3 já foi estudada como forma de distinguir dermatites espongióticas de micose fungoide e dermatoses inflamatórias de linfomas cutâneos de células T.4,13 Mais recentemente, Collins et al (2021) publicou estudo avaliando o seu uso como forma de distinguir micose fungoide transformada de desordens linfoproliferativas cutâneas primárias CD30-positivo, grupo composto majoritariamente por casos de papulose linfomatoide (MF transformada = 25 casos; papulose linfomadaide = 14 casos; LCPGCA = 6 casos; outros casos não especificados de desordem linfoproliferativa CD30+ = 4 casos). Tal estudo concluiu que, usando um “cut-off” de 50% para o valor de expressão do GATA3, tal marcador poderia ser útil para diferenciar tais entidades, de forma que positividade difusa para tal marcador falaria em favor do diagnóstico de MF transformada.30

O GATA3 também parece ser útil como fator prognóstico, uma vez que a sua expressão em altos percentuais se associou a uma menor sobrevida global livre de progressão de doença em linfomas periféricos de células T. Estudo conduzido por Zhang et al (2016) demonstrou correlação positiva entre expressão para GATA3 e para CD68, um dos marcadores de macrófagos associados a tumores, cuja infiltração no tecido tumoral se associa a pior prognóstico.28

No presente estudo, considerando-se o grupo “MF avançada”, tem-se GATA3 fortemente expresso (igual ou superior a 50%) em 50% das lesões analisadas e igual ou superior a 40% em 83,3% das lesões analisadas, com positividade média de 53,3% (tabelas 6 e 11, figura 16). Esses achados são semelhantes aos observados por Collins et al (2021), segundo o qual 60% dos casos de micose fungoide transformada exibiram positividade para GATA 3, considerando um “cut-off” de 50% (média 53,2%).30

A positividade para GATA3 nos linfonodos acometidos por MF (grupo “MF linfonodal”) também foi avaliada pelo presente estudo. A média percentual de expressão de GATA3 no referido grupo é de 20% (tabelas 8 e 11, figura 16). Na literatura, não foram encontrados estudos que tenham avaliado a expressão de GATA3 nos linfonodos acometidos por MF até o momento.

Nos casos de MF inicial (grupo “MF inicial”), nenhuma lesão exibiu positividade para GATA3 superior a 50%. A média percentual de expressão do marcador nesse grupo foi de 18,5%, achado esperado frente ao já comentado predomínio de perfil Th1 nas MFs iniciais (tabelas 10 e 11, figura 15). O presente achado assemelha-se ao observado no grupo MF em estágio de patch/placa no estudo conduzido por Hsi et al (2015), no qual o percentual médio de positividade para o GATA3 foi de 32,5%, analisando-se 21 casos de MF inicial.4
Em relação ao “Grupo LCPGCA”, o GATA3 não exibiu expressão superior a 50% em nenhuma das lesões avaliadas, com média percentual de 11,3% e maior valor de GATA de 20% (tabelas 7 e 11, figura 16). Tal percentual mostra-se semelhante ao observado por Collins et al (2021), no qual a média de expressão de GATA3 em grupo semelhante foi de 23,26%, com 83% dos casos exibindo positividade inferior a 40%.30

A positividade para GATA3 também foi verificada em casos de linfomas sistêmicos anaplásicos de grandes células (Grupo LSGCA), onde 66,7% dos pacientes apresentaram GATA3 negativo no órgão afetado pela neoplasia (tabelas 9 e 11, figura 16). Gerbe et al (2019) conduziram estudo com 37 pacientes (22 com LSGCA, 13 com LCPGCA e 2 com linfoma anaplásico de grandes células associado à prótese de silicone) no qual, entre outros marcadores, também avaliou a positividade para GATA3. No grupo LSGCA estudado por Gerbe et al (2019), surpreendeu-se uma negatividade para GATA3 de 90,5%, sendo superior ao observado na atual pesquisa.34

O estudo conduzido por Collins et al (2021)30 determinou um “cut-off” de 50% para diferenciação entre MF avançada (transformada) e doenças linfoproliferativas CD30-positivo, no qual um GATA3 acima de 50% seria considerado positivo, favorecendo o diagnóstico de MF. Ao utilizarmos o mesmo “cut-off” para comparação entre os nossos grupos MFa e LCPGCA, MFA e LSGCA, MFI e LCPGCA e MFI e LSGCA, não obtivemos uma diferença significativa entre os grupos (p>0,05), embora tal diferença tenha sido observada ao compararmos os grupos MFi e MFa, reforçando o perfil Th1 nas MFi e Th2 nas MFa (tabela 13).

Para a amostra estudada, o “cut-off” ótimo capaz de diferenciar MFA de LCPGCA foi de 40%. Assim, ao reduzirmos o “cut-off” para 40%, obtivemos diferença estatisticamente significativa entre os grupos MFA e LCPGCA (tabelas 12 e 13, figura 17), mostrando que um valor de GATA3 maior ou igual a 40% corroboraria com o diagnóstico de MF avançada, ao passo que um valor de GATA3 menor do que 40% corroboraria com o diagnóstico de LCPGCA. Mais estudos, com maior número de participantes, deverão ser conduzidos para determinar o melhor “cut-off” para tal diferenciação.

Considerando-se tal “cut-off” de 40%, determinou-se a sensibilidade, especificidade, valor preditivo positivo e valor preditivo negativo do teste diagnóstico GATA3 para diferenciação entre os grupos MFA e LCPGCA (figura 18). Foram encontradas uma alta especificidade (100%) e uma sensibilidade de 83%, associadas a um alto valor preditivo positivo (VPP, 100%) e um valor preditivo negativo (VPN) de 80%. Esses dados apontam para o fato de que, possivelmente, diante de um GATA3 positivo (maior ou igual a 40%) muito provavelmente
estaremos diante de um caso de MF avançada.

Sensibilidade, especificidade, VPP e VPN também foram determinados no já citado estudo de Collins et al (2021) para um “cut-off” de 50% e foram, respectivamente, de 56%, 71%, 67% e 61%, exibindo valores inferiores aos observados no presente estudo.³⁰

Por fim, a expressão do GATA3 foi avaliada nos quatro casos de difícil diferenciação diagnóstica, que compuseram o chamado “Grupo Duvidoso”, descritos nos resultados (tabela 5). A partir do exposto, comparando-se os dados atuais e já disponíveis na literatura, tentou-se concluir por um diagnóstico final nesses casos.

No caso 1, a presença de 80% de positividade para GATA3 no infiltrado da placa lombar favoreceria o diagnóstico de micose fungoide transformada.

No caso 2, observa-se positividade expressiva (90%) para GATA3 nos patches e placas da pele e GATA3 negativo no linfonodo. Altos níveis percentuais de GATA3 favoreceriam o diagnóstico de micose fungoide, todavia o linfonodo exibe negatividade para o mesmo marcador. O grupo “MF linfonodal” demonstrou baixo percentual de positividade para GATA3 quando se avalia o linfonodo acometido pela MF e não há dados semelhantes na literatura para embasamento (não foi encontrado estudo analisando GATA3 em linfonodos envolvidos por MF). Similarmente, o grupo “LSGCA” exibiu negatividade para o GATA3 na maioria dos órgãos acometidos avaliados. Considerando-se o “cut-off” 10%, determinado no presente estudo, uma negatividade para GATA3 no linfonodo teoricamente favoreceria o diagnóstico de LSGCA. No entanto, é importante ressaltar que o pequeno número de pacientes inclusos, principalmente considerando o grupo LSGCA, pode prejudicar a análise e determinação de um “cut-off” mais adequado. Assim sendo, mais estudos são necessários para uma melhor avaliação da expressão para GATA3 nos linfonodos acometidos por MF ou LSGCA.

O caso 3 exibe positividade expressiva para GATA 3 nos patches, placas (70%) e também nas lesões tumorais (80%). Há uma tendência em atribuir o diagnóstico de MF transformada para as lesões de pele, mas a dúvida com relação ao envolvimento nodal para o caso persiste, já que não foi possível a avaliação da expressão do GATA3 no linfonodo (pela ausência de material).

Por fim, em relação ao caso 4, a negatividade para GATA3 no tumor do glúteo, a baixa positividade (20%) para GATA3 nos patches do glúteo e a presença de lesões compatíveis com papulose linfomatoide na evolução do caso remete ao diagnóstico de MF associada a doença linfoproliferativa CD30-positivo, sendo a lesão tumoral do glúteo mais provável um LCPGCA e os patches, compatíveis com MF inicial.
7. CONCLUSÃO

O GATA3 parece ser marcador imunohistoquímico útil na diferenciação entre MFi e MFa, conforme observado na literatura. “Cut-off” de 40% ajudaria a discernir entre MFa e LCPGCA. Já um “cut-off” de 10% parece auxiliar na distinção entre MFi e LSGCA e entre MFa e LSGCA, mas ressalta-se a limitação do estudo frente ao pequeno número de pacientes com LSGCA inclusos. Estudos com casuísticas maiores são necessários para validação dos “cut-offs” encontrados para tal marcador.
8. REFERÊNCIAS BIBLIOGRÁFICAS

12. Scarisbrick JJ, Quaglino P, Prince HM, et al. The PROCLIPI international registry of
early-stage mycosis fungoides identifies substantial diagnostic delay in most patients.

