• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
https://doi.org/10.11606/T.5.2010.tde-10032010-115936
Documento
Autor
Nome completo
Valerio Garrone Barauna
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2010
Orientador
Banca examinadora
Krieger, Jose Eduardo (Presidente)
Casarini, Dulce Elena
Costa Neto, Claudio Miguel da
Fernandes, Denise de Castro
Negrão, Carlos Eduardo
Título em português
ECA e receptor AT1 participam da mecanotransdução de sinais hemodinâmicos independentemente da angiotensina II
Palavras-chave em português
Mecanotransdução celular
Peptidil dipeptidase A
Shear stress
Sistema renina-angiotensina
Resumo em português
No sistema cardiovascular, modificações de pressão e shear stress devido ao fluxo sanguíneo influenciam a morfologia e a patofisiologia dos vasos sanguíneos e do coração. Neste trabalho, estudamos o papel de duas moléculas transmembrânicas do Sistema Renina-Angiotensina: a Enzima Conversora de Angiotensina (ECA) e o Receptor de Angiotensina do tipo I (AT1) como mecanosensoras e mecanotransdutoras dessas forças físicas. A ECA foi por muito tempo conhecida somente por sua ação em converter Angiotensina I em Angiotensina II e por inativar a Bradicinina. Recentemente foi demonstrado que a ECA, além dos efeitos enzimáticos já conhecidos, pode ter sua cauda citoplasmática fosforilada e desencadear vias de sinalização intracelular. Observamos que o shear stress, mas não o estiramento, induziu a diminuição da fosforilação da porção citoplasmática da ECA após 5 minutos de estímulo e se mantém até 18 horas. Demonstramos também que a porção extracelular da ECA tem papel fundamental como mecanosensora e que a via intracelular da JNK participa da mecanotransdução em resposta ao shear stress. Além disto, demonstramos que a diminuição da fosforilação da ECA está associada na diminuição da sua expressão pelo shear stress. O receptor AT1 é a principal molécula efetora das ações da angiotensina II. Recentemente foi demonstrado que esse receptor pode também ser ativado por forças físicas, estiramento celular, independentemente da presença da angiotensina II. No presente estudo, observamos que o receptor AT1 é ativado pelo shear stress e que o Candesartan, mas não o Losartan, é capaz de impedir esta resposta. A via intracelular ativada é dependente de proteína-G e da entrada de cálcio do meio extracelular. Interessantemente, a pré-exposicao dos receptores ao shear stress diminuem a responsividade dos receptores ao peptídeo Angiotensina II porém a Angiotensina II não é capaz de inibir a ativação pelo shear stress.. Em conjunto, demonstramos novos mecanismos de ação da ECA e do AT1 que são duas importantes moléculas do sistema renina angiotensina. A modulação destes componentes por estímulos mecânicos traz novas possibilidades de intervenções farmacologicas sobre esse sistema bem como o melhor entendimento da participação dessas moléculas na fisiopatologia cardiovascular.
Título em inglês
ACE and AT1 receptor are involved in mechanotransduction by hemodynamica forces independently of angiotensin II
Palavras-chave em inglês
Cellular mechanotransduction
Dipeptidyl-carboxypeptidase
Renin-angiotensin system
Shear stress
Resumo em inglês
Hemodynamic forces such as pressure and shear stress modulate the patophysiolgy of the cardiovascular system. In this study, we investigated two transmembranic key molecules of the renin-angiotensin system (RAS) as mechanosensors and mechanotransducers of physical forces: Angiotensin Converting Enzyme (ACE) and Angiotensin II type 1 Receptor (AT1). ACE is an enzyme that converts angiotensin I in angiotensin II. Recently, it was demonstrated that ACE cytoplasmic tail can be phosphorylated by ACE inhibitors and elicited intracellular cell signaling. Here, we observed that shear stress, but not stretch, decreased ACE cytoplasmic phosphorylation after 5 minutes and maintained up to 18 hours. ACE extracellular portion act as mechanosensor and JNK pathway participate in the mechanotransduction activation. In addition, we also demonstrate that decrease in ACE phosphorylation is involved in ACE expression downregulation by shear stress. AT1 receptor is the main effector molecule of angiotensin II cellular responses. It has recently been shown that AT1 receptor can directly be activated by mechanical stretch stress through an angiotensin-II-independent mechanism. In the present study, we observed that shear stress also activates AT1 receptor which is blocked by Candesartan, but not by Losartan. The intracellular pathway activated by shear stress involves both G-protein and extracellular calcium. Interestingly, preconditioning of AT1 receptor by shear stress impairs its responsiveness to angiotensin II while the pretreatment with angiotensin II still allow AT1 responsiveness to shear stress. Altogether, we demonstrated that ACE and AT1 receptor activates intracellular signal in response to mechanical force. This new concept for the RAS, the modulation of these molecules by mechanical forces gives new insigh into the discovery for pharmacological interventions to the RAS
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
ValerioBarauna.pdf (5.03 Mbytes)
Data de Publicação
2010-03-11
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2024. Todos os direitos reservados.