• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.48.2001.tde-04072011-084602
Document
Author
Full name
Lisbeth Kaiserlian Cordani
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2001
Supervisor
Committee
Machado, Nilson Jose (President)
Andrade, Dalton Francisco de
Gatti, Bernardete Angelina
Oliveira, Marcos Barbosa de
Wechsler, Sergio
Title in Portuguese
O ensino de estatística na universidade e a controvérsia sobre os fundamentos da inferência
Keywords in Portuguese
educação estatística
paradigmas da inferência Bayesiana
paradigmas da inferência clássica
princípios da lógica da inferência
Abstract in Portuguese
A maioria dos cursos universitários tem, em seu currículo, uma disciplina básica obrigatória de elementos de probabilidade e estatística. Além dos procedimentos de natureza descritiva, associados a análise de dados, fazem parte da ementa dessas disciplinas procedimentos inferenciais, geralmente apresentados dentro da teoria clássica(ou frequentista) de Neyman-Pearson. Não é costume nesta disciplina nem discutir aspectos epistemológicos ligados à inferência estatística e nem incluir a apresentação da escola Bayesiana, como uma possível alternativa. Sabidamente, tal disciplina é um entrave na vida escolar, tanto do aluno como do professor. Do aluno, porque este se depara, em boa parte das vezes, com um oferecimento mecânico da disciplina, sem motivação de natureza aplicada e sem vínculo aparente com sua realidade próxima curricular. Do professor, porque encontra geralmente alunos, além de despreparados com relação aos conceitos primários de incerteza e variabilidade, também com predisposição negativa, devido ao tabu associado à disciplina. Com o intuito de discutir a necessidade do oferecimento das primeiras noções inferenciais nessa disciplina, bem como responder a pergunta qual a inferência que deve ser ensinada numa disciplina básica de um curso universitário? buscamos caracterizar, ao longo de trabalho, as relações da estatística com: criação científica em geral e racionalismo e empirismo em particular; a existência ou não de um método científico; o objetivismo e o subjetivismo; os paradigmas das escolas clássica e Bayesiana; aprendizagem e cognição. Foram analisadas e comparadas as abordagens inferenciais feitas segundo cada escola, bem como apresentados alguns exemplos. A sugestão deste trabalho é de que o programa de uma primeira disciplina inclua os aspectos epistemológicos ligados à inferência, bem como a apresentação do tópico inferência estatística segundo as duas abordagens: clássica e Bayesiana. Isto eliminaria, pelo menos nos primeiros contatos do aluno com a área, a proposta de rompimento com a escola clássica preconizada por muitos adeptos da escola Bayesiana, bem como a proposta de resistência (manutenção do status quo), defendida por muitos elementos da escola clássica. Na verdade, a proposta preconiza a coexistência entre as duas escolas numa apresentação de curso básico, pois entendemos que o dever do professor é mostrar o estado da arte da área a seus alunos, deixando a opção (se isto fizer sentido) para uma etapa futura, seja acadêmica ou profissional.
Title in English
Teaching Statistics at the University and the inference controversy
Keywords in English
logic of inference
paradigms associated to classical and to Bayesian inference
statistical education
Abstract in English
In general most of the undergraduate courses in Brazil offer a basic discipline on probability and statistics. Beyond the descriptive procedures, associated with data analysis, these courses present to the students some inferential techniques, usually linked to the classical (frequentist) Neyman-Pearson school. It is not common to present the inferential aspects from the Bayesian point of view. Everybody knows that both student and teacher have problems with this basic discipline. The student, because he/she receives, in general, a mechanical course, without motivation, with no links to their other disciplines, and the teacher, because he/she usulally teaches to very naïve students concerning concept like uncertainty and variability. Added to that, students seem to have some fear towards the discipline (taboo). In order to discuss the first inferential notions presented in this discipline, and to answer the question which inference should we teach in a basic discipline of statistics to undergraduate students? we have tried, in this work, to characterise the relationship between statistics and the following aspects: scientific creation in general and empirism and rationalism in particular; the existence or not of a scientific method; objectivism and subjectivism; the paradigms associated to the classical and to the Bayesian schools; learning and some cognitive aspects. We have compared the inferential approaches, and some examples have been presented. This work suggests that the first program of a basic discipline of probability and statistics should include some epistemological inferential aspects as well as the introduction of inferential statistics by means of both approaches: classical and Bayesian. This action will prevent, at least at the first contact, the members of the Bayesian school from proposing the rupture with the classical, and also the members of the classical one from maintaining the status quo. In fact, the proposal is of coexistence of both schools in a first level, because we think it is a teachers duty to show the state of art to his/her students, giving the possibility of option (if necessary) for a following step.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
LisbethCordani.pdf (6.33 Mbytes)
Publishing Date
2011-08-02
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2021. All rights reserved.