• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  Bookmark and Share
Doctoral Thesis
Full name
Antonio Carlos Brolezzi
Knowledge Area
Date of Defense
São Paulo, 1997
Machado, Nilson Jose (President)
Domite, Maria do Carmo Santos
Gomide, Elza Furtado
Moura, Manoel Oriosvaldo de
Soares, Maria Tereza Carneiro
Title in Portuguese
A tensão entre o discreto e o contínuo na história da matemática e no ensino de matemática.
Keywords in Portuguese
Educação matemática
História da matemática
Abstract in Portuguese
Discreto e contínuo são termos que se referem respectivamente a duas das ações básicas na elaboração da Matemática: contar e medir. Neste trabalho examinamos o problema pedagógico que surge da tendência de se abordar os temas de Matemática elementar optando por um ou outro aspecto, sem explorar a interação entre eles. Nossa ideia é que isso se resolve através da administração da tensão conceitual entre essas noções. Trata-se de caminhar com ambas as pernas, a da ideia do discreto e a da continuidade, na construção dos conceitos matemáticos. Este trabalho é baseado na pesquisa em História da Matemática, justificada pela visão do conhecimento como uma rede conceitual, uma rede de significações em permanente transformação. Procuramos assim fazer uso da História para repensar aspectos do ensino de Matemática elementar, especialmente relacionados ao nosso tema: a construção da ideia de Número; o nascimento do Cálculo Diferencial e Integral; as relações entre qualidade/quantidade. Ao final, mostramos exemplos de Oficinas Temáticas para a formação de professores, nas quais procuramos aplicar a abordagem histórica visando administrar o par conceitual discreto/contínuo dentro de assuntos do currículo elementar de matemática.
Title in English
The discrete and the continuous in the history of mathematics and in mathematics education
Keywords in English
History of mathematics
Mathematics education
Abstract in English
Discrete and continuous are concepts related respectively to two basic actions in Mathematics: to count and to measure. In this work we examine the pedagogical problem originated in the tendency of approaching elementary Mathematics by making an option between either one or other feature, without exploring the relationship between them. Our idea is that it can be solved by managing the conceptual tension between those notions. It is a matter of getting along with both ideas, the discreteness and the continuity, in the construction of mathematical concepts. The present work is based on Mathematics History research, justified by the image of knowledge as a conceptual net, a net of meanings which always change. We make use of the History to think over certain features of Mathematics elementary teaching specially meaningful to our work: the construction of the idea of Number, the birth of the Differential and Integral Calculus, the relationship between quality and quantity. At last, we show examples of Thematical Workshops to teachers training, in which our aim is to apply the historical approach in order to deal with the conceptual pair discrete/continuous in topics of the mathematical elementary curriculum.
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
doutoradobrolezzi.pdf (756.41 Kbytes)
Publishing Date
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2024. All rights reserved.