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Abstract 
 

Fuentes, D.P. Development of methods for separation and determination of Pb, 
fractionation and speciation of As from waters using cellulose-based adsorbents. 
2023. 148p. PhD Thesis – Chemistry Graduate Program. Chemistry Institute, São Paulo 
University. 

The presence of potentially toxic elements, particularly lead and arsenic, in natural and 
drinking waters is of concern due to their widespread occurrence and harmful effects on 
human health. Therefore, developing materials and methods for removing, separating, 
and preconcentrating these elements is essential to mitigate contamination and for 
analytical purposes. Thus, the objective of the project was to develop methods for 
separation and determination of lead and fractionation and speciation of organic and 
inorganic species of arsenic in different water samples using cellulose-based adsorbent 
and detection by inductively coupled optical emission spectrometry (ICP OES) and 
graphite furnace atomic absorption spectroscopy (GF AAS). For the separation of lead 
from water, microcrystalline cellulose beads were prepared in 2 mol L-1 HNO3 as a 
coagulant medium, being named b-HNO3. The Pb(II) adsorption data fit to the Langmuir 
model, with a maximum adsorption capacity of 108 mg g-1. The b-HNO3 were 
characterized by SEM, FTIR, XPS, and elemental analysis, and the adsorption 
performance was evaluated by different methods such as zero charge point and 
adsorption isotherm. The methodology developed for separating Pb(II) was made in 
columns packed with b-HNO3. The adsorption efficiency depended on the pH between 6-
8 and flow rate of 0.5 mL min-1 of solution flowing through the column, making it possible 
to reuse the column for several separation cycles, with effective Pb(II) desorption with 2 
mol L-1 of HCl. Applying the optimized conditions for separating Pb(II) from tap water, dam 
water, and high salinity water, recoveries ranging from 94% to 102% were obtained. 
Microcrystalline cellulose modified with glycidyl trimethylammonium chloride (MCC-GTA) 
was used as adsorbent for the fractionation and speciation of arsenic. Elemental analysis 
confirmed the incorporation of quaternary ammonium groups in the cellulose chain. 
Optimization studies demonstrated that MCC-GTA exhibited high affinity for As(V) at pH 
6-7, with negligible adsorption of As(III), none of AsB, and moderate adsorption for MMAs 
and DMAs species, with percentages ranging from 30 to 50%, respectively. The 
adsorption process of As(V) was instantaneous and was not affected by the adsorbent 
mass. In this investigation, the studies were done in batch mode. The oxidation of As(III) 
to As(V) with sodium hypochlorite (NaClO) was one of the strategies for speciation, which 
did not affect the behavior of adsorption in MCC-GTA. Pre-concentration analysis and 
inorganic arsenic (iAs) speciation were performed in river water samples using batch 
MCC-GTA. The results showed that speciation of As(III) and As(V) was possible, with 
recoveries ranging from 93% to 109% for As(III) and 96% to 103% for As(V). Overall, the 
results demonstrated the efficiency of these materials, from natural sources, for 
separation of Pb(II) and speciation of As(III) from As(V) applied in natural water samples.  
 
Keywords: Arsenic, Lead, Speciation, Fractionation, Solid phase extraction   
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Resumo 
 

Fuentes, D.P. Desenvolvimento de métodos para separação e determinação de Pb, 
fracionamento e especiação de As em amostras de águas usando absorventes a 
base de celulose. 2023. 148p. Tese de Doutorado – Programa de Pós-Graduação em 
Química. Instituto de Química, Universidade de São Paulo. 

A presença de elementos potencialmente tóxicos, particularmente chumbo e arsênio, em 
águas naturais e potáveis é preocupante devido à sua ocorrência generalizada e aos 
efeitos nocivos para a saúde humana. Portanto, o desenvolvimento de materiais e 
métodos para remoção, separação e pré-concentração desses elementos é essencial 
para mitigar a contaminação e para fins analíticos. Assim o objetivo do projeto foi 
desenvolver métodos de separação e determinação de chumbo e fracionamento e 
especiação de espécies orgânicas e inorgânicas de arsênio em diferentes amostras de 
água utilizando adsorvente à base de celulose e detecção por espectrometria de emissão 
óptica com plasma indutivamente acoplado (ICP OES) e espectrometria de absorção 
atômica com forno de grafite (GF AAS). Para a separação do chumbo da água foram 
utilizadas esferas de celulose microcristalina preparadas em 2 mol L-1 de HNO3 como 
meio coagulante, denominadas b-HNO3. Os dados de adsorção de Pb(II) ajustaram-se 
ao modelo de Langmuir, com capacidade máxima de adsorção de 108 mg g-1. Os b-HNO3 
foram caracterizados por MEV, FTIR, XPS e análise elementar, e o desempenho de 
adsorção foi avaliado por diferentes métodos como ponto de carga zero e isoterma de 
adsorção. A metodologia desenvolvida para separação do Pb(II) foi feita em colunas 
preenchidas com b-HNO3. A eficiência de adsorção dependeu do pH entre 6-8 e vazão 
de 0,5 mL min-1 de solução passando pela coluna, possibilitando o reaproveitamento da 
coluna para vários ciclos de separação, com dessorção efetiva de Pb(II) com 2 mol L-1 de 
HCl. Aplicando as condições otimizadas para separação de Pb(II) de água de torneira, 
água de represa e água de alta salinidade, foram obtidas recuperações variando de 94% 
a 102%. Celulose microcristalina modificada com cloreto de glicidil trimetilamônio (MCC-
GTA) foi utilizada como adsorvente para fracionamento e especiação de arsênio. A 
análise elementar confirmou a incorporação de grupos quaternários de amônio na cadeia 
da celulose. Estudos de otimização demonstraram que o MCC-GTA exibiu alta afinidade 
por As(V) em pH 6-7, com adsorção desprezível de As(III), nenhuma de AsB, e adsorção 
moderada para espécies de MMAs e DMAs, com porcentagens variando de 30 a 50 %, 
respectivamente. O processo de adsorção foi instantâneo e não foi afetado pela massa 
do adsorvente. Nesta investigação, os estudos foram feitos em lote. A oxidação de As(III) 
a As(V) com hipoclorito de sódio (NaClO) foi uma das estratégias de especiação, o que 
não afetou o comportamento de adsorção no MCC-GTA. Análises de pré-concentração 
e especiação de arsênio inorgânico (iAs) foram realizadas em amostras de água de rio 
usando lote de MCC-TA. Os resultados mostraram que a especiação de As(III) e As(V) 
foi possível, com recuperações variando de 93% a 109% para As(III) e 96% a 103% para 
As(V). No geral, os resultados demonstraram a eficiência desses materiais, provenientes 
de fontes naturais, na separação de Pb(II) e especiação de As(III) de As(V) aplicados em 
amostras de águas naturais. 
 
Palavras-chave: Arsênio, Chumbo, Especiação, Fracionamento, Extração em fase 
sólida 
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1. Introduction 

 

With the rise of the industrial age, environmental issues have become more 

pressing. The global concern for the environment impacts due to urban, industrial, and 

population expansion, which can negatively affect air, water and soil quality is a 

discussion in the agenda for sustainable development (Spano et al. 2020). Water pollution 

is a particularly widespread problem, with causes ranging from agricultural runoff to 

sewage, wastewater, oil pollution up to radioactive substances. In general, industrial 

wastewater can contain a variety of potentially toxic elements (Ali Redha, 2020). 

Potentially toxic elements comprise a class of metallic or metalloid elements that 

can exert toxic effects at low concentrations. In addition to their toxicity, occur in the 

earth’s crust with a lower extent over the ecosystems, but become hazardous due to their 

widespread and rapid environmental cycling and higher potential toxicity and 

bioaccumulation in living beings, therefore, this behavior is highly influenced by anthropic 

intense competition activities to exploit natural resources (Machate, 2023). Potentially 

toxic elements, such as As, Cd, Cr, Cu, Ni, Pb, and Zn, are among the most hazardous 

chemicals present in industrial environments. Due to their high solubility, aquatic 

organisms can easily absorb them, eventually entering the food chain. If ingested in 

excessive amounts, these metals can accumulate in the human body and cause severe 

health disorders (Barakat, 2011). The 2022 Substance Priority List, provided by Agency 

for Toxic Substances and Disease Registry (ATSDR) listed arsenic and lead, as first and 

second hazardous substances based on a combination of their frequency, toxicity, and 

potential for human exposure (ATSDR, 2022). 
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The World Health Organization (WHO) has established limits for potentially toxic 

elements and the potential impacts on human health when those limits are exceeded in 

drinking and industrial wastewater (WHO, 2017). To reduce potentially toxic elements 

concentrations in wastewater to levels that are below the established limits, it must be 

subjected to a treatment process prior to being discharged into the environment or reused 

in industry. Not only must these levels not exceed the permissible limits for humans and 

animals, but they also need to be kept below the limits for plants (Shrestha et al., 2021). 

Considering the toxicity of arsenic and lead for the environment and for living 

beings, finding ways to prevent these elements from being increasingly dispersed into the 

environment is a task for specialists and scientists. Therefore, one of the most recognized 

ways of removing or separating these elements, or detecting them at trace levels, as 

established by regulators organization, is through inorganic, organic or mixed adsorbents, 

seeking whenever possible separation efficiency, selectivity, and lower production cost, 

as was the aim of this research. 

 

1.1. Arsenic occurrence and health effects 

 

Arsenic is an abundantly available element (1.8 mg kg-1) at earth crust ranging 

from trace levels to hundreds of milligrams per kilogram widely distributed in the 

environment (Anand et al., 2022). The contamination of soil and groundwater occurs due 

to its discharge from natural and anthropogenic sources. Natural processes such as 

weathering of rocks, volcanic emissions, and various anthropogenic activities such as 

industrial activities, excess utilization of agrochemicals, improper disposal of waste, 
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application of wood preservatives, and mining operations are among some of the main 

sources of environmental contamination (Yuan et al. 2022). In the past 20 years, there 

has been a significant amount of attention given to the presence, spread, source, and 

movement of arsenic in the environment. In order to have a better understanding of the 

contamination caused by As, it is important to have knowledge about the natural 

geochemical and biological processes that influence its transport and transformation 

(Asere et al., 2019). At the Figure 1, as presented by Aktar et al. (2023), is illustrated the 

arsenic cycle in the environment. As it is possible to observe, arsenic is naturally occurring 

element present in all environmental media (air, soil, and water). It can enter to the food 

chain through plants and animals, leading to human exposure through various pathways 

such as ingestion of contaminated food and water, inhalation of arsenical dust, and 

dermal uptake from contaminated soil. The use of arsenic-containing pesticides, 

herbicides, and insecticides can also lead to the accumulation of arsenic in crops. 

Groundwater contaminated with elevated levels of naturally occurring inorganic arsenic 

is a direct exposure pathway and can result in mass poisoning. Organic arsenic 

accumulation in organisms, can also contribute to arsenic exposure (Aktar et al., 2023). 

Constant use of arsenic-contaminated groundwater for irrigation of crops is one of the 

most hazardous situations for humans (Chakrabarti et al., 2019). 

According to a Scientific Report published by the European Food Safety Authority 

(EFSA), the foods that mostly contributing to As exposure are cereal grains and cereal-

based products, followed by foods for special dietary uses, bottled water, coffee and beer, 

rice grains and rice-based products, fish and vegetables (Baer et al., 2011). Water 

contamination by arsenic is a concern worldwide. The WHO recommends that the arsenic 
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content in drinking water should be below 10 μg L-1 (WHO 2017), meanwhile high arsenic 

concentrations in groundwater have been recorded in many parts of the world (Morales-

Simfors and Bundschuh, 2022; Matos et al., 2022; Viana et al., 2022; Adeloju et a., 2021). 

Arsenic contamination of water resources and other environments at toxic levels has been 

reported in 20 Latin American countries (Bundschuh et al., 2021). 

 

 

Figure 1. Arsenic cycle in the environment. Reproduced from: Arsenic removal from 

aqueous solution: A comprehensive synthesis with meta-data. (Aktar et al., 2023). 

Copyright (2023) with permission of Elsevier. 

 

Podgorski and Berg (2020), constructed a global prediction map of areas with 

arsenic concentrations above 10 μg L−1, using global arsenic prediction model with 

household groundwater usage statistics. They estimated that 94 million to 220 million 

people are potentially exposed to high arsenic concentrations in groundwater, the vast 

majority (94%) being in Asia (Podgorski and Berg, 2020). Shaji et al.  present an overview 
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of the current scenario of arsenic contamination of groundwater in various countries 

across the globe with an emphasis on the Indian Peninsula. It was estimated that nearly 

108 countries are affected by arsenic contamination in groundwater (with concentration 

beyond maximum permissible limit of 10 µg L-1, recommended by the World Health 

Organization. The highest among these are from Asia (32) and Europe (31), followed by 

regions like Africa (20), North America (11), South America (9) and Australia (4) (Shaji et 

al. 2021). 

There are four main species of As in groundwater, including two inorganic species 

– arsenate “As(V)” and arsenite “As(III)”, and two organic species – monomethyl arsenic 

acid (MMA) and dimethyl arsenic acid (DMA) (Tao et al., 2022). The toxicity of arsenic 

depends very much on its chemical forms, inorganic oxyanions are predominant forms, 

which exhibit higher toxicity over other forms: As(III) > As(V) > MMA > DMA (Hughes 

2002; Tao et al., 2022). The arsenic species are causes of diseases such as skin, lung, 

bladder, liver, kidney, and prostate cancers, cardiovascular diseases, abnormal glucose 

metabolism, type II diabetes and neurotoxicity (Matos et al., 2022). Other organics 

species as arsenobetaine (AsB), the main As compound in most marine organisms is not 

metabolized in the human body and, therefore, no toxic effect is associated with AsB 

exposure (Popowich et al., 2016). 

The main arsenic species and their structures are shown in Figure 2. As stated by 

Altowayti et al. (2022), certain key organic and inorganic compounds in living organisms 

can undergo biochemical changes due to the highly reactive nature of arsenic. The 

existence of inorganic arsenic in a solution is primarily governed by two key factors: the 

pH and the potential for oxidation or reduction (Altowayti et al., 2022). 
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Figure 2. Chemical structure for most abundant arsenic species. 

 

The predominance of arsenic species in the system As–O–H, at different pH, 25°C 

and 1 bar, is showed in Figure 3. Arsenite species, including H3AsO3, H2AsO3
−, and 

HAsO3
2−, are present in anoxic reduction conditions such as groundwater. The uncharged 

form of H3AsO3 dominates the pH 9.2 environment. On the other hand, arsenate species 

such as H3AsO4, H2AsO4
−, HAsO4

2−, and AsO4
3− are stable in aerobic oxidation 

environments and have a higher oxidation potential than arsenite species. While H3AsO4 

and AsO4
3− are found, respectively, in highly acidic and alkaline environments, H2AsO4

− 

is predominant in the low to middle pH range (2–6.9) and HAsO4
2− in the middle to high 

pH range (6.9–11.8) (Najib and Christodoulatos, 2019). 
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Figure 3. Eh–pH diagram for the system As–O–H at 25°C and 1 bar. Source: Arsenic Eh–

pH diagrams at 25°C and 1 bar. (Lu and Zhu, 2010). Copyright (2010) with permission of 

Springer Nature. 

 

Precise determination of amounts of different arsenic species in real samples is 

necessary to estimate the environmental impact and potential health risks. In view of the 

above facts, fast, sensitive, accurate and simple analytical methods for the speciation of 

inorganic arsenic is necessary (Montoro et al., 2018). So far, most of the methods 

reported for arsenic speciation analysis are chromatographic methods, which are very 

precise. However, consume substantial amounts of reagents and time, not well 

recommended for many samples. In this way, non-chromatographic methods for arsenic 

speciation can be attractive due to some characteristics, such as are faster, low cost and 

can be used for screening analysis for many samples. 
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1.2. Lead occurrence and health effects 

 

Lead is a potentially toxic elements that could exist in both organic and inorganic 

states. Inorganic lead (Pb) is primarily present in dust, soil, aged paint, and various 

consumer goods, while organic lead was found in gasoline, especially tetraethyl and 

tetramethyl lead. Both of these Pb forms are toxic, however, organic Pb complexes pose 

an excessive level of toxicity to biological systems compared to inorganic Pb (Kumar et 

al., 2020). Lead is being the second most hazardous substances (ATSDR, 2022). 

Naturally occurring lead ores comprise 0.002% of the Earth’s crust. Furthermore, its 

natural concentration remains below 50 mg kg−1 (Tarragó and Brown, 2017). 

The Pb cycle in the environment at the different pathways for human exposure are 

represented in Figure 4. In general, human exposure to Pb occurs through various 

pathways, including atmospheric dust, automobile exhaust, paint, polluted food, and 

water (Kumar et al., 2020; Shan et al., 2021). Precipitation removes lead from the 

atmosphere, transferring it to soil or surface water. In addition, lead was used as a 

pesticide in vegetable and fruit cultivation (Gall et al., 2015). Rainwater carries these soil 

particles, leading to the introduction of lead into water bodies and lakes. Consequently, 

the cycle continues as lead is transferred to animals and plants from air, water, and soil 

(ATSDR, 2002). Despite the pervasive presence of Pb in aqueous ecosystems, elevated 

concentrations can arise due to human-induced actions such as the production of 

batteries, paint, and cement, as well as mining and smelting operations (Lee et al., 2019). 

Currently, human exposure to Pb is mainly through the ingestion of dust particles from 

soil in homes , drinking water and contaminated food (Shan et al., 2021). 
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Figure 4. The pathway of lead in the biogeochemical cycle. Source: A review on 

mechanism of biomineralization using microbial-induced precipitation for immobilizing 

lead ions. (Shan et al., 2021). Copyright (2021) with permission of Springer Nature. 

 

In Brazil, lead has not been used in automotive gasoline since 1993, and in 1996, 

primary lead smelting facilities ceased operations. The main causes of known poisoning 

in Brazil are lead-acid battery production, recycling plants and mining areas (Ferron et 

al., 2012). Although not considered an important source of lead contamination, the 

gasoline used in airplanes in Brazil, until 2009, had lead as an additive (Resolução ANP 

No 5 DE 03/02/2009 - Federal - LegisWeb, 2009). 

Some investigations have examined the occurrence of lead poisoning in Brazilian 

children, with two studies specifically focusing on children residing in areas without prior 

reports of environmental lead contamination. In a study conducted by Carvalho et al. 

(2000), in Salvador, the authors observed the prevalence of 33% of Pb in children aged 

from two to 39 months, with blood lead levels exceeding 10 µg dL-1. In this work, no 
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specific sources of lead contamination were identified (Carvalho et al., 2000). 

Furthermore, a study from Oliveira et al. (2009) conducted in a community in Rio de 

Janeiro assessed the blood lead levels of 64 children and teenagers. The study revealed 

a lead poisoning prevalence of 5% of the population studied. The sources of lead 

exposure within this population were associated with local traffic, industrial plants, and 

household dust (Oliveira et al., 2009). Ferron et al. (2012) investigated lead poisoning in 

children in Porto Alegre state, the results show that the 16.5% of the children studied 

present blood lead levels exceeding 10 µg dL-1. The study also analyzed soil 

contamination on the studied area, the plausible causes of soil contamination can be 

related to the process of land use and previous informal garbage dump. Some 

environmental contaminations resulting from this garbage dump could be responsible for 

the elevated level of lead found in the soil. Also the area was located close to a region of 

industrial plants, including some secondary metal processing industries; they might have 

contributed to previous deposition of lead in the soil (Ferron et al., 2012). It is also 

important to manage and control lead contamination levels in food and waters to avoid 

human poisoning. Recent research from Cabral et al. (2019) reported lead levels in 

different food produced and consumed in Brazil, higher levels of Pb were observed in 

infant food, vegetables, meat, and meat products. Lead levels obtained in this study for 

most of the food categories are: beverages (0.0483 mg kg-1), fruits and fruit products 

(0.0472 mg kg-1), vegetables and vegetable products (0.1671 mg kg-1), and meat and 

meat products (0.1248 mg kg-1) (Cabral et al., 2019). 

According to International Agency for Research on Cancer (IARC), Pb is classified 

as carcinogenic (Group 2B) to humans (IARC, 2023). The human body absorbs a 
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considerable amount of ingested Pb, ranging from 20% to 70%, and this values are known 

to be higher in children, and can suffer profound and permanent adverse health impacts, 

particularly on the development of the brain and nervous system (WHO, 2022). Lead can 

accumulate in the human body and distributed in the brain, kidney, liver, and bonds. Lead 

primarily impacts the nervous system, leading to disruptions in its normal functioning 

when individuals are exposed to it over extended periods. Furthermore, prolonged 

exposure to lead also results in significant adverse effects on both the kidneys and the 

brain (ATSDR, 2002). Lead poisoning also can damage reproductive system. It is well 

reported by Wu et al. (2012), that high level of lead in semen reduce the sperm count and 

contributed to infertility, also was affected the motility and the morphology of the sperm 

(Wu et al., 2012). A review by Bellinger (2005) demonstrated the impact of lead exposure 

on the reproductive system, elevated paternal lead exposure exceeding 40 μg dL-1 or a 

cumulative exposure of over 25 μg dL-1 for several years has been associated with 

diminished fertility, heightened chances of spontaneous abortion, and impaired fetal 

growth, including preterm delivery and low birth weight. Maternal blood lead levels around 

10 μg dL-1 have been correlated with elevated risks of pregnancy-induced hypertension, 

spontaneous abortion, and compromised neurobehavioral development in offspring 

(Bellinger, 2005). Lead contamination affects children more severely than adults, children 

have higher absorption rates of lead compared to adults, particularly those aged 6 and 

younger, as their developing bodies and organs are more vulnerable to the harmful effects 

of lead (Levin et al., 2008). The developing nervous system in children is highly 

susceptible to the detrimental effects of lead. Lead interferes with the formation of myelin, 

a substance that protects nerve fibers, and disrupts the transmission of signals between 
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brain cells, impairing neurodevelopment. This can lead to cognitive and behavioral 

problems, including learning difficulties, decreased attention span, and behavioral issues 

such as hyperactivity and aggression (Olympio et al. 2010; Grandjean and Landrigan 

2014). 

Analytical methods are of utmost importance in monitoring and remediating lead 

contamination in environmental samples. Among the various environmental matrices, 

water is one of the primary sources of lead exposure in humans. Therefore, it is crucial to 

implement robust techniques for remediation lead levels in water sources. Accurate and 

sensitive analysis allows for the identification of lead-contaminated water bodies, 

assessment of the extent of contamination, and implementation of appropriate 

remediation measures. By regularly monitoring water sources for lead, we can effectively 

safeguard human health and reduce the risk of lead exposure-related health problems. 

 

1.3. Methods for remediation, recovering and monitoring potentially toxic 

elements 

 

Potentially toxic elements have been removed from industrial effluents by 

conventional treatment methods such as reverse osmosis (Zhang et al., 2021), 

electrodialysis (Juve et al., 2022), ultrafiltration (Ren et al., 2021), ion exchange (Korak 

et al., 2023), chemical precipitation (Wu, 2019), and adsorption (Arora, 2019). Some of 

these methodologies have some disadvantages for removing potentially toxic elements 

such as high cost, high energy needs, ineffectiveness at removing metals at low 

concentrations (1-50 mg L-1), large amounts of reagents required, and potential for 
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secondary pollution through the creation of chemical sludge and disposal of floc residues 

(Ali Redha 2020). 

Adsorption can be advantageous in terms of cost, adaptability, and environmental 

impact when compared to other remediation methods. There are some recent review 

articles that demonstrate the efficiency, capacity of a wide variety of adsorbent materials 

used for the remediation and monitoring of potentially toxic elements (Arora, 2019; Gupta 

et al., 2021; Llompart et al., 2019; Redha, 2020). Over the past few decades, the use of 

environmentally friendly and cost-effective materials such as agricultural, industrial, or 

urban residues for the adsorption of potentially toxic elements has emerged as a 

promising technique for the elimination of pollutants from wastewater. 

Potentially toxic elements can be adsorbed onto solid surfaces and this process is 

called adsorption. Adsorption is a process in which a particular compound attaches to the 

solid surface by physical forces or by chemical bonds (Shrestha et al., 2021). There are 

mainly three steps involved in potentially toxic elements adsorption: (I) the transport of 

potentially toxic elements from the bulk solution to the absorbent surface; (II) frontier 

diffusion, layer of stagnant solution adjacent to the surface of the particle; (III) adsorption 

on particle surface; and (IV) finally the transport within the adsorbent particle. There are 

some factors affecting the adsorption such as temperature, nature of the adsorbate and 

adsorbent, presence of other species, and experimental conditions (pH, the concentration 

of metal species, contact time, and particle size of the adsorbent) (Pandey, 2021). 

For many years, adsorption has been utilized for metal separations on a small 

scale to yield a product of extremely high purity or to achieve exceptionally challenging 

separations. This technique is based on the concept of using a reactive material to 
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selectively take in the desired metals from an aqueous solution, such as a mineral or 

leachate derived from waste. The solid utilized will usually have a strong attraction to the 

adsorption of a particular metal or set of metals when compared with any other co-existing 

species (Brewer et al., 2022). The materials used in adsorption systems are often 

inexpensive to acquire or produce and can be reused, increasing the cost-effectiveness 

of the process. Additionally, the technique is highly adjustable to meet the needs of a 

variety of inputs, making it a viable choice for metal purification and recovery. The 

utilization of adsorption for metal recovery boasts a great deal of variety, as the functional 

groups present on the material’s surface can be naturally occurring or artificially modified, 

this promotes good selectivity for the recovery of a wide variety of metals from wide variety 

of matrices (Brewer et al., 2019). However, the use of adsorbents for wastewater 

treatment is limited due to various drawbacks, including the long time required to reach 

equilibrium, unsatisfactory removal efficiency, and unsuitability for low-concentration 

applications (Garba et al., 2020). To be effective, an adsorbent must have some 

characteristics such as cellular structure, abundant functional groups, and high 

mechanical and chemical stability, which allow for a large contact area, adsorption 

selectivity, and structural stability (Gupta et al., 2021; Cao et al., 2017). 

Microcrystalline cellulose (MCC) has a highly crystalline structure, unique 

mechanical and chemical properties and is a suitable candidate as a framework for 

synthesizing adsorbents. However, the adsorption capacity of MCC may not be optimal 

without modification, as it lacks strong binding sites for potentially toxic elements (Garba 

et al., 2020).  
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1.4. Cellulose 

 

Cellulose is the most abundant renewable biopolymer in nature with an annual 

production estimated above 7.5 × 1010 tons. Obtaining of cellulose and cellulose 

derivatives for use in different fields from alternative sources of raw materials have gained 

importance. Currently, cellulose has been used in industry as both raw material and 

product for thousands of years (Başaran et al., 2020). Due to the strong intermolecular 

and hydrogen bonds between the hydroxyl groups, cellulose tends to aggregate into 

bundles and form highly crystalline structure, which limits its elemental ions removal 

performance. On the other hand, the large number of hydroxyl groups endow chemical 

modification characteristics of cellulose to obtain better adsorption performance and 

provide the possibility of large-scale application (Fakhre and Ibrahim, 2018). 

Cellulose as natural polymer is highly attractive owing to its unique properties and 

characteristics, such as excellent thermal stability, chemical resistance, and 

biodegradability. Cellulose has been used as an emerging adsorbents, alternative to 

synthetic polymers to solve important environmental issues such as removal of dyes and 

potentially toxic elements (Garba et al., 2020). Cellulose consists of glucose repeating 

units, as represented in Figure 5, with abundant hydroxyl groups, which not only enable 

extensive hydrogen bonding, but also provides excellent reactive sites to incorporate a 

range of chemical functionalities to achieve desirable properties (Choi et al., 2020; Wang 

et al., 2017). 
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Figure 5. Chemical structure of cellulose. Source: Glucose, not cellobiose, is the 

repeating unit of cellulose and why that is important (French 2017). Copyright (2017) with 

permission of Springer Nature. 

 

Since the mid-19th century, the properties of cellulose have been changed by 

chemical modification for commercial and scientific purposes, and their substituted 

polymers have found a wide range of applications. However, the inherent polydispersity 

and supramolecular organization of starch and cellulose cause the products resulting 

from their modification to display high complexity (Mischnick and Momcilovic, 2010). 

Cellulose is often functionalized through various methods to improve the 

adsorption capacity and effectiveness to make it a better adsorbent. Various chemical 

modifications of its surface have been reported in the literature (Hokkanen et al., 2016). 

For instance, esterification (Choi et al., 2020), etherification (Oyewo et al., 2019), 

sulfonation (Suopajärvi et al., 2015), and oxidation (Sharma et al., 2018) , which resulted 

in improved physical and chemical properties are usually the most used. Several studies 

indicate that specific functional groups such as amino (-NH2), carboxyl (-COOH), hydroxyl 

(-OH), and/or thiol (-SH) can provide adsorption sites for potentially toxic elements ions. 

Modified cellulose containing carboxyl and amino groups has been found to exhibit 

greater capacity for adsorbing potentially toxic elements ions and organic pollutants than 
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unmodified cellulose, after undergoing chemical treatment (Wu et al., 2020; Fakhre and 

Ibrahim, 2018; Alila and Boufi, 2009). 

As discussed earlier, cellulose, whether chemically modified or in its natural form, 

has reached a considerable field of application in environmental and analytical chemistry 

as an adsorbent material, in the stage of pre-concentration and separation of chemical 

elements and organic compounds. The most used forms for analytical purposes are the 

following: 

❖ Beads: Were simply prepared by hand-dropping a viscose solution into an 

aqueous coagulation bath. Since that report, various procedures for obtaining cellulose 

beads with diameters ranging from about 10 μm to 1-3 mm have been developed using 

different solvents and techniques to obtain spherical particles (Gericke et al., 2013; Nie 

et al., 2021). Cellulose beads are excellent filling materials for chromatographic 

applications (Du et al., 2010). They have also been used as metal ion exchange and 

water treatment (Wang et al., 2019; Luo et al., 2016). 

❖ Membrane/Filter: Cellulose is modified chemically, generally to obtain 

cellulose esters, providing greater mechanical strength (Qiu and Hu, 2013), and are 

subsequently used as drug delivery (Reid et al., 2008), separation (Güell et al., 2011), 

water treatment (Choi et al., 2020), bio-membrane (Perendija et al., 2021), and adsorption 

(Pei et al., 2021). 

❖ Aerogel: Functional cellulose aerogels are the next generation of eco-

friendly porous materials (after silica aerogels and organic polymer aerogels) with some 

extraordinary physicochemical properties such as low density, high surface area, and 

tunable surface chemistry. Drying methods, such as freeze and supercritical drying are 
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routinely used to remove the liquid phase of hydrogels, while maintaining a highly porous 

solid structure (Li et al., 2019). They have been widely used as catalyst supports (Li et 

al., 2018, Li et al., 2017), thermal insulator (Han et al., 2015), energy storage materials 

(Yang et al., 2015) and environmental remediation materials (Syeda and Yap, 2022). 

 

1.4.1. Adsorption methods using cellulose-base adsorbent for fractionation 

and speciation of As 

 

Besides the total concentration of some elements for quantitative analysis in a 

sample, the qualitative analysis to know the species related to these elements has been 

quite common to answer several questions about the toxicity, mobility, bioavailability, 

essentiality, etc. The term speciation has often been used to indicate the analytical activity 

of identifying chemical species and measuring their distribution. Sometimes, it is used to 

indicate that a method gives more information on the form in which the element is present 

than other more commonly applied techniques. In some cases, some species are stable 

and differentiable enough to allow direct determination. This does not mean that 

speciation was determined only by the concentration of one or a few species was found. 

In many cases, many individual species will make it impossible to determine speciation. 

In practice, it is possible to identify several classes of species of the same element and 

determine the sum of their concentrations in each class. Such subdivisions can be based 

on many different properties of the chemical species, such as size, solubility, affinity, 

charge, and hydrophobicity. Fractionation may involve a physical separation (e.g., 

filtering, size exclusion chromatography). In some cases, the fractionation can be refined 
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by supplementary speciation analysis in each of the separate fractions (Templeton et al., 

2000; Templeton and Fujishiro, 2017). 

Speciation analysis of trace elements has become increasingly important due to 

the impact of a given element in an environmental or biological system depends critically 

on its chemical form. Arsenic is an omnipresent toxic trace element and is mainly found 

in environmental water with its inorganic species, As(III) and As(V). It is well known that 

As(III) is the most toxic form of the water-soluble species while As(V) is also relatively 

toxic. Thus, separation of As(III) and As(V) for speciation analysis of arsenic is very 

necessary (Li et al., 2014). 

Organic arsenic compounds such as monomethyl arsenic acid (MMA), dimethyl 

arsenic acid (DMA), arsenocholine (AsC), arsenobetaine (AsB), trimethyl arsine oxide 

(TMAO), tetramethylarsenic (TETRA), arsenosugars and arsenolipids (AsLp), are 

common forms detected in marine organisms, terrestrial plants, and mushroom. 

Methylated arsenic species, such as MMA and DMA, have been confirmed to be much 

less toxic (Li et al., 2017). The toxicity of arsenic not only depends on their chemical forms 

but also their bioavailability. The toxicity of As(III) and As(V) was reported to be related to 

their high bioavailability, as their absorption rate in the human gastrointestinal tract was 

over 80% (Zou et al., 2019). 

Thus, it is important to the development of new methods that can be used quickly, 

efficiently and at low cost for the monitoring of inorganic arsenic species since this can 

be a routine analysis in many water and food quality control laboratories. So far, most of 

the methods reported for this analysis are chromatographic methods (B’Hymer and 

Caruso, 2004; Reid et al., 2020; Virk et al., 2023), which are very precise. However, 
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because the consume of substantial amounts of reagents and time, it is not well 

recommended for many samples analysis. In this way, non-chromatographic methods 

can be attractive due to some characteristics, such as are faster, low cost and can be 

used for a screening analysis for a large number of samples (Ferreira et al., 2020). 

In recent years, there has been a growing interest in developing "green" methods 

that promote a cleaner and more sustainable environment. The use of natural adsorbents 

(biosorbents) has been a clear alternative in the development of analytical methods. 

Biosorbents of vegetable origin (lignocellulosic) are abundant in nature and can be 

modified chemically or physically to improve their adsorptive capacity while meeting most 

of the criteria established for an analytical method to be considered sustainable. Studies 

have shown that biosorbents can be used to remove or determine toxic metals in 

effluents. The biosorbents commonly exhibit various functional groups such as hydroxyl, 

carboxyl, phenolic, amino, sulfhydryl, alcoholic and ester groups. These functional groups 

possess a considerable potential for removing As species from water by means of 

sorption, complexation, ion exchange, diffusion, or co-precipitation reactions (Asere et 

al., 2019), as illustrated in Figure 6. 
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Figure 6. Arsenic sorption mechanism on the biosorbent surface. Source : Remediation 

of arsenic-contaminated water using agricultural wastes as biosorbents. (Shakoor et al. 

2016). Copyright (2016) with permission of Taylor & Francis. 

 

Several techniques, including flame atomic absorption spectrometry (FAAS), cold 

vapor atomic absorption spectrometry (CV AAS), hydride generation atomic absorption 

spectrometry (HG AAS), graphite furnace atomic absorption spectrometry (GF AAS), 

inductively coupled plasma optical emission spectrometry (ICP-OES), inductively coupled 

plasma mass spectrometry (ICP-MS), and X-ray fluorescence (XRF), can be employed 

in association with preconcentration strategies, using lignocellulosic adsorbents, for the 

determination of metals and metalloids in food, water, and environmental samples (Dias 

et al., 2023). 

The adsorption capacity of cellulosic materials is improved through pretreatment 

and chemical modification. Adsorbents are prepared through various methods including 
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acidic and/or basic reactions, impregnation with metal ions or oxides, and reactions with 

organic compounds (Maia et al, 2021; Guisela et al., 2022; Asere et al., 2019). 

Deng et al. (2016) reported the preparation of hyperbranched polyethylenimine 

modified cellulose fiber as an effective biosorbent for the removal of inorganic arsenic 

from aqueous solution. The adsorption mechanism for arsenic adsorption occurred 

through to electrostatic attraction and surface complexation with the amine groups on the 

modified surface of the fiber. The experimental data fit the Langmuir model and the 

maximum adsorption capacity for As(III) and As(V) were 54.13 mg g-1 and 99.35 mg g-1, 

respectively (Deng et al. 2016). However, the authors did not explore the modified 

cellulose for application in water samples. Hokkanen et al. (2015) prepared a 

microfibrillated cellulose with magnetic iron nanoparticles for As(V) removal from waters. 

The uptake properties of the modified fiber show an improvement respect to the original 

Fe nanoparticles, the adsorption take place at lower pH values, with maximum adsorption 

capacity of 2.460 mmol g-1 of As(V), at pH 2, and best adjust the Langmuir model 

(Hokkanen et al., 2015). Santra and Sarkar (2016) synthetize a cellulose nanocomposite 

by a sol gel technique, using cellulose powder and cerium ammonium nitrate for As(V) 

removal from water. The adsorption mechanism of As(V) adsorption is assessed to be 

electrostatic rather than ion exchange, and pH dependent reaching the best performance 

at lower pH values (Santra and Sarkar, 2016). X. Yu et al. (2013), synthetized multi-

amino-functionalized cellulose with glycidyl methacrylate grafted onto the surface of 

cotton cellulose using ceric ammonium nitrate, and then the introduced epoxy groups 

reacted with tetraethylenepentamine to obtain it the multi-amino-functionalized adsorbent 

for inorganic arsenic removal from water. The adsorption process is pH dependent, the 
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optimal pH for the removal of arsenic was 7 for As(III) and 5 for As(V), the experimental 

data fit the Langmuir model and the adsorption capacities were 5.71 mg g-1 and 75.13 mg 

g-1 for As(III) and As(V) respectively, and the adsorbent show good reuse capabilities (Yu 

et al., 2013). Yousif et al. (2016) synthesized a cooper containing modified cellulose for 

As(V) purification on different waters. The adsorption process show a fast (equilibrium 

adsorption at 5 min) and adsorption capacities of 1.32 mmol g-1 towards As(V) from 

aqueous media at natural pH (8.4) (Yousif et al., 2016). Pereira et al. (2020) prepared a 

bioadsorbent by tosylation of microcrystalline cellulose and nucleophilic substitution of 

the tosyl group by ethylenediamine for the simultaneous removal of Cu(II) and As(V). The 

adsorption is dependent on the pH reaching the best performance for As(V) removal at 

pH 3, and the maximum adsorption capacity of the bioadsorbent for As(V) adsorption was 

1.62 mmol g−1. Multicomponent adsorption experiments show that SO4
2− inhibited As(V) 

adsorption (Pereira et al., 2020). Singh et al. (2015) prepared a functionalized 

nanocrystalline cellulose by selective oxidation of the nanocrystalline cellulose with 

sodium periodate and then grafting of diethylene triamine to obtain their amine 

derivatives, for As(III) and As(V) removal from aqueous solution. The adsorption 

isotherms were best adjusted with Langmuir model and the maximum adsorption capacity 

were 10.56 mg g-1 and 12.06 mg g-1 for As(III) and As(V), respectively. The adsorption of 

the different species was proven to be dependent on the pH of the solution, optimum 

conditions were pH 7.5 for As(III) (92.84%) and 2.5 for As(V) (97.86%) removal (Singh et 

al., 2015). 

In aqueous systems contaminated with arsenic, the removal of As(III) is typically 

more challenging than that of As(V). This phenomenon can be attributed to the 
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predominant neutral state of As(III) under natural water pH conditions (6-9), whereas 

As(V) is more commonly found in negatively charged forms (Guisela et al., 2022). The 

trivalent state of arsenic “As(III)” maintains a neutral charge up to pH 9.2, rendering it 

resistant to removal from contaminated water. Hence, most remediation technologies 

exhibit greater efficacy towards the pentavalent state of arsenic “As(V),” which typically 

exists in negatively charged in pH > 2. 

 

1.4.2. Adsorption methods using cellulose-base adsorbents for remediation 

and recovery of Pb 

 

There is some work in the literature from the past years, using cellulose as a base 

polymer to develop new absorbent materials for Pb remediation. Most of this work use 

chemical modification to incorporate new functional groups to improve their adsorption 

properties. 

Modification with amino group is a common strategy, O’Connell et al. (2006) 

reported a glycidyl methacrylate-modified cellulose material functionalized with imidazole 

for the removal of Pb(II). This material showed selectivity towards Pb(II) ion over a wide 

pH range (pH 1–9), the adsorption process was best described by the Langmuir 

adsorption model and the maximum adsorption capacity was 72 mg g-1 of Pb(II) from 

aqueous solution at 23°C (O’Connell et al., 2006). Barsbay et al. (2018) reported a γ-

initiated grafting of poly(glycidyl methacrylate) from cellulose substrate and subsequent 

modification with iminodiacetic acid for Cd(II), Pb(II) and Cu(II) removal from aqueous 

media. Experimental results showed that pH 5 was the best condition for Pb(II) removal 
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and the adsorption capacity was 52 mg g-1 in batch adsorption condition (Barsbay et al., 

2018). Wu et al. (2020) reported a multiple active sites cellulose-based adsorbent using 

epichlorohydrin cross-linking MCC with tetraethylenepentamine and grafting with 

bis(carboxymethyl) trithiocarbonate for the removal of low-level Cu(II), Pb(II) and Cr(VI). 

The experimental result showed the influence on the pH of the solution reaching 100% of 

Pb(II) adsorption at initial concentration of 1 mg L-1 at ≤ pH 6 (Wu et al., 2020). Sun et al. 

(2017) reported a cellulosic adsorbent prepared by halogenation of MCC and 

functionalized with pyridone diacid for the removal of Pb(II) and Co(II) from aqueous 

solutions. Results showed that the best Pb(II) adsorption performance occurred at ≤ pH 

4, the adsorption process could be described by the Langmuir adsorption model and the 

maximum adsorption capacity for Pb was 177.75 mg g-1, with possibility of regeneration 

of the material (Sun et al., 2017). Huang et al. (2018) described the production of 

adsorbents based on cellulose acetate modified by polyethyleneimine grafting and 

subsequently by ethylenediamine, for Cu(II) and Pb(II) removal from water. The 

adsorbent show best adsorption performance for Pb(II), the process is best describe for 

Langmuir adsorption model achieving a maximum adsorption capacity of 2.01 mg g-1 at 

pH 4 (Huang et al., 2018). Kenawy et al. (2018) synthesized a guanyl-modified cellulose 

for the adsorption of Cu(II), Cd(II), Hg(II), Pb(II) and Zn(II) ions from aqueous solution. 

For the synthesis, cellulose was pretreated with periodate prior to its condensation with 

aminoguanidine for the formation of cellulose aldehyde-guanyl Schiff’s. The adsorption of 

Pb(II) was carried out at pH 6 and the maximum adsorption capacity was 52 mg g-1, 

obtained thought Langmuir isotherm model (Kenawy et al., 2018). Q. Wu et al. (2020) 

prepared a multiple active sites cellulose-based adsorbent with multiple active adsorption 
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sites (N, O, S) by using epichlorohydrin cross-linking microcrystalline cellulose with 

tetraethylenepentamine, followed by grafting with bis(carboxymethyl) trithiocarbonate for 

the removal of low-level Cu(II), Pb(II) and Cr(VI) from aqueous solutions. The adsorption 

mechanism studies indicated that the S and O atoms were the dominant adsorption sites 

for cationic potentially toxic elements ions Cu(II) and Pb(II), and N atoms were the 

dominant adsorption sites for the anion potentially toxic elements Cr(VI). The material 

exhibit a 100% removal of Pb(II) in pH above 6 (Wu et al., 2020). Sun et al. (2017) 

obtained a cellulose-base adsorbent by halogenation of microcrystalline cellulose and 

functionalized with pyridone diacid for removing Pb(II) and Co(II) from aqueous solutions. 

The maximum adsorption capacity described by the Langmuir model for the material 

towards Pb(II) was 177.75 mg g-1. The adsorption process was pH dependent, reaching 

the best performance at pH range 4-6 (Sun et al., 2017). Kumar and Sharma (2019) 

prepared functional copolymers by graft copolymerization of cellulose extracted from rice 

husk with n-isopropylacrylamide and comonomer acrylic acid to obtain two materials for 

removal of Ni(II), Cu(II) and Pb(II) ions from aqueous solutions. The Pb(II) adsorption data 

was best fitted using Langmuir adsorption isotherm model and the maximum adsorption 

capacity for Pb(II) was 118.3 mg g-1 at pH 5 (Kumar and Sharma, 2019). 

Some cases include nanoparticles and metallic oxides incorporation, Zhang et al. 

(2017) reported the use of cellulose fibers for substrates to induce the formation of nano-

TiO2 under microwave irradiation, to produce hierarchical mesoporous nano-

TiO2/cellulose composites for Pb(II) adsorption. The adsorption rate is pH dependent and 

increase within the pH, reaching the highest adsorption at pH 6, the maximum adsorption 

capacity of 42.5 mg g-1 was reported (Zhang et al., 2017). Luo et al. (2016) produced a 
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magnetic cellulose-based nanocomposite beads, blending cellulose with the carboxyl-

functionalized magnetite nanoparticles and acid-activated bentonite in NaOH/urea 

aqueous solution for Pb(II) removal from aqueous solution. The adsorption process was 

pH dependent and the removal efficiency decrease from pH 6 to 2, Freundlich isotherm 

model best adjust to the experimental data and the maximum adsorption capacity was 

estimated as 2,86 mg g-1 (Luo et al., 2016). Fu and Xie (2020) synthesized a 

microcrystalline cellulose-manganese dioxide nanocomposite by the redox reaction 

between potassium permanganate and ethanol based on microcrystalline cellulose for 

removal of Pb(II) and Cd(II) from water. Experimental results show that the Pb(II) 

adsorption was a rapid process, and the maximum adsorption capacities of Pb(II) with 

Langmuir model was 290.8 mg g-1, at pH 6. The adsorption mechanism is mainly 

attributed to surface complexation and electrostatic attraction (Fu and Xie, 2020). Luo et 

al. (2016) prepared a magnetic cellulose nanocomposite beads via extrusion dropping 

technology by blending cellulose with the carboxyl-functionalized Fe3O4 nanoparticles 

and acid-activated bentonite in NaOH/urea aqueous solution, for Pb(II) removal from 

water. They found that complexation, ion exchange, and electrostatic interactions are all 

involve in the adsorption mechanism of Pb(II) onto the magnetic cellulose beads, the 

adsorption is pH dependent and the best performance was obtain in a pH 4.5-6 and the 

maximum adsorption capacity was 2.862 mg g−1 (Luo et al., 2016). 

For carboxylic groups incorporation, Vadakkekara, Thomas, and Nair (2019) 

prepared a maleic acid modified cellulose in different fibrillary size (macro, micro and 

nano) by the reaction of cellulose with maleic anhydride followed by sodium exchange of 

protons for Pb(II) from contaminated waters. They demonstrated that the adsorption 
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occurred trough chemisorption and the experimental data best adjust Freundlich model, 

the maximum chemisorption capacities of macro, micro and nano for Pb(II) were 20 mg 

g-1, 40 mg g-1 and 115 mg g-1, respectively, at pH of 5.5 (Vadakkekara et al., 2019).  

Combination of different polymers are common strategy, Vijayalakshmi et al. 

(2017) prepared a nanochitosan/sodium alginate/microcrystalline cellulose bead for the 

removal of Pb(II) from aqueous solution. The experimental results showed that the best 

pH condition to follow the adsorption was at pH 6, among various adsorption equilibrium 

isotherms models where applied and Freundlich was found as the best adjust, the 

maximum adsorption capacity was estimated as 114.47 mg g-1 (Vijayalakshmi et al., 

2017). Zhao et al. (2021) prepared beads of cellulose nanofiber and sodium alginate path, 

a simple cross-linking method for the removal of Pb(II). The adsorption process adjust 

Langmuir adsorption isotherm model, and the maximum adsorption capacity was 318.47 

mg g-1 and the best pH condition for the adsorption process was above pH 3 (Zhao et al., 

2021). Y. Li et al. (2019) prepared an aerogel with oriented microchannel structure via a 

directional freeze-drying approach using chitosan and nanofibrillated cellulose for efficient 

removal of Pb(II) from aqueous solutions. The best adsorption performance was observed 

at pH 5, with maximum adsorption capacity of 248.5 mg g-1, Langmuir isotherm model 

best adjust the experimental data. The kinetic of the adsorption was relatively high 

reaching good removal after 5 min, the reusability of the material was achieve through 

desorption experiments using Na2EDTA, keeping 85% of removal after 5 cycles (Li et al., 

2019). Qu et al. (2020) obtained a functionalized cellulose derived from rice husk, under 

microwave irradiation reaction with CS2 in NaOH medium for adsorption of Pb(II), Cd(II) 

and Ni(II) and application for electroplating wastewater purification. The adsorbent exhibit 
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adsorption capacity of 295.20 mg g-1 for Pb(II), within the equilibrium time of 30 min at pH 

5.5. Experimental results show that both ion exchange and chelation were involve in the 

metal ions uptake, while physical interaction was also involved in the adsorption process 

(Qu et al., 2020). Qu, Yuan, et al. (2020) prepared a β-cyclodextrin functionalized rice 

husk-based cellulose using epichlorohydrin as the cross-linking agent for removal of 

atrazine and Pb(II). The adsorbent presented a pH-dependent adsorption performance 

for Pb(II) with best performance at pH range of 4-6, with an adsorption capacity of 283.00 

mg g-1, adjusting the Langmuir model. The Pb(II) adsorption was associated with 

complexation and electrostatic interaction (Yuan et al., 2020). Xu et al. (2021) prepared 

carboxylated chitosan/carboxylated nanocellulose hydrogel beads for Pb(II) removal from 

aqueous solutions. The best pH for the adsorption was at pH 4, the adsorption data fitted 

the Langmuir model and the maximum adsorption capacity was 334.92 mg g−1 (Xu et al., 

2021). Hu et al. (2018) prepared a carboxylated cellulose nanocrystal-sodium alginate 

hydrogel beads using cross-linking method, first microcrystalline cellulose was treated 

with ammonium persulfate and citric acid under ultrasonic treatment to obtain the 

carboxylated cellulose nanocrystals and then mixed with the alginate solution to form the 

beads, the beads were used for adsorption of Pb(II) from aqueous solution. The 

equilibrium was reached after 3 h and the best pH condition for the adsorption took place 

was pH 5. The Langmuir model was used for determination of the maximum adsorption 

capacity that was 338.98 mg g−1 (Hu et al., 2018). Mohammadabadi and Javanbakht 

(2020) prepared alginate/lignocellulosic compounds (cellulose, hemicellulose, and lignin 

extracted from barley straw) hybrid gel beads for removing Pb(II) ions from aqueous 

solution. The experimental data best fit Langmuir model and the maximum adsorption 
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capacities were obtained for the different materials 206.75 mg g-1, 244.50 mg g-1, and 

365.43 mg g-1 for cellulose, hemicellulose, and lignin-based biocomposites, respectively, 

and all presented best performance at pH > 3.5 (Mohammadabadi and Javanbakht, 

2020). 

In this way, it is possible to see that cellulose-based materials have been 

extensively studied as a base polymer to develop absorbent materials for the remediation 

of Pb from aqueous solutions. Researchers have used chemical modification techniques 

to incorporate new functional groups to improve their adsorption properties. Several 

studies have shown that the adsorption of Pb(II) ions on these materials is pH-dependent 

and that the Langmuir adsorption model is best suited for describing the adsorption 

process. Advantages of cellulose-based materials include their biodegradability, low cost, 

and high availability. However, a major limitation of these materials is their low mechanical 

strength, which can be addressed by incorporating reinforcement materials. Overall, 

these materials have demonstrated high selectivity and adsorption capacity for Pb(II) and 

others ions over a wide pH range, making them a promising candidate for water treatment 

applications. 
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2. Objective 

 

The goal of this project is to develop methods for lead separation and 

determination and fractionation and speciation of organic and inorganic arsenic species 

in different water samples using cellulose-base adsorbent and detection by inductively 

coupled plasma optical emission spectrometry (ICP OES) and graphite furnace atomic 

absorption spectrometry (GF AAS). 

 

2.1. Specific Objective 

 

❖ Preparation and characterization of different cellulose-base adsorbent 

materials for Pb separation and determination, and As fractionation and 

speciation. 

❖ Morphological characterization of the materials using Infrared 

Spectroscopy, Scanning Electron Microscopy, X-ray Photoelectron 

Spectroscopy and CNH elemental analysis. 

❖ Optimization of the experimental adsorption parameters for the separation 

of Pb(II) from different water (potable, lake and saline) samples using ICP 

OES as detector.  

❖ Optimization of the experimental parameters for the separation, pre-

concentration, and determination of inorganic arsenic species from river 

water sample, using GF AAS as detector. 
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3. Experimental Section 

 

3.1. Instrumental 

 

For As and Pb detection was used an inductively coupled plasma optical emission 

spectrometer (ICP-OES) (Thermo Fisher Scientific Inc.), model iCAP 7400 Duo, with dual 

view, CID (Charge Injection Device) detector, wavelength range from 166.4 to 847.0 nm, 

Echelle polychromator and focal length of 383 mm, that provides an optical resolution 

from 19 pm to 200 nm, and 27.12 MHz radiofrequency sources, being able to adjust the 

applied power from 750 to 1350 W. Argon (99.998% v v-1) (Air Liquid Brasil, São Paulo, 

Brazil) was used to generate and maintain the plasma and sample aerosol transportation. 

Table 1 shows the set up instrumental parameters for Pb determination by ICP OES. 

 

Table 1. Instrumental set up of ICP OES for As and Pb detection. 

Parameters Selected condition 

Power supply 1350 W 

Nebulizer Meinhard 

Spray chamber Cyclonic 

Plasma gas-flow 12 L min-1 

Auxiliary gas-flow 0.2 L min-1 

Nebulizer gas-flow 0.5 L min-1 

Sample introduction 2 mL min-1 

Wavelength As (I) 189.042 nm 

Pb (I) 220.353 nm 

(I) Ionic emission 
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The determination of the limit of detection (LOD) and limit of quantification (LOQ) 

for ICP-OES measurements were calculated according to the International Union of Pure 

and Applied Chemistry (IUPAC), LOD=3SB/m, and LOQ=10SB/m, where SB is the 

standard deviation of several consecutive measurements of the blank signal, and m is the 

calibration curve slope (Naught and Wilkinson 2019). 

For As detection was also used a ZEEnit® 60 atomic absorption spectrometer 

(Analytik Jena AG, Jena, Germany), equipped with a transversely heated graphite 

atomizer automatic, an inverse and transversal 2- and 3-field mode Zeeman-effect 

background corrector, and an automatic sampling to deliver precise volumes of liquid 

analytical solutions into the graphite tube, pyrolytic graphite tube atomizer and boat-type 

platform were used throughout. The spectrometer was operated with a hollow cathode 

lamp for As (wavelength=193.6 nm, lamp current=6.0 mA, and bandpass=0.8 nm). The 

magnetic field strength used for 3-field mode Zeeman-effect background corrector was 

0.8 T. All measurements were based on integrated absorbance values controlled by 

Windows NT+ software. Argon 99.998% (v v-1) (Air Liquid Brasil, São Paulo, Brazil) was 

used as protective and purge gas. The heating program of the graphite tube is showed in 

Table 2. 

The heating program was set up pyrolysis an atomization temperature. Aliquots of 

10 µL of As solution was co-injected to the boat type platform with 10 µl of a solution of 

500 mg L-1 of Pd2+ (Pd(NO3)2) + 300 mg L-1 Mg2+ (Mg(NO3)2) as chemical modifier. The 

limit of detection (LOD) and limit of quantification (LOQ) for GFAAS were calculated 

according to IUPAC, LOD=3SB/m, and LOQ=10SB/m, as describe in previously for ICP-

OES (SB = standard deviation of blank, n=10, and m = curve slope). 
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Table 2. Heating program for the transversally heated graphite atomizer for As 

determination. 

Step Temperature  

(oC) 

Ramp 

(oC s-1) 

Hold time 

(s) 

Argon flow-rate 

(L min-1) 

Drying  80 10 10 1.0 

Drying 130 20 5 1.0 

Pyrolysis 450 50 10 1.0 

Pyrolysis 1450 100 30 1.0 

Auto Zero 1450 0 5 0 

Atomization 2450 FP 5 0 

Cleaning 2500 500 3 1.0 

 

A Fourier Transform Infrared Spectrophotometer (FT-IR), model Frontier FT-IR 

(PerkinElmer) was used to identify the characteristic bands of beads produced by different 

approaches. KBr pellets containing dry powder of different materials were prepared for 

FT-IR analyses. 

The morphology of beads was analyzed by scanning electron microscopy (SEM) 

in a model MEE JEOL Neoscope JCM-500). Dried beads were coated with a thin (∼2 nm) 

gold nanoparticles layer prior to the analyses. 

X-ray photoelectron spectroscopy (XPS) analyses were performed for beads 

before and after lead adsorption. The XPS spectra were obtained using Specs – XPS, 

with the instrumental configuration, Slit: 4:7x20c / C:mesh, Mode: Fixed Analyzer 

Transmission, Excitation Energy (1486.71 eV), Detector Voltage (1800 V), Bias Voltage 

(90.00 V). XPS high resolution spectra of C 1s, O 1s, and Pb 4f were obtained with a pass 

energy of 50 eV and 0.3 eV/step, accumulating 30 scans. 
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Elemental analysis using Elemental Analyzer - Perkin Elmer 2400 series II was 

used for CNH quantification. Its operation is based on the Pregl-Dumas method, in which 

the samples are subjected to combustion in an atmosphere of pure oxygen, and the 

resulting gases are released Combustion is quantified in a TCD detector (thermal 

conductivity detector). 

For the As speciation study, a chromatograph (Shimadzu Corporation, Kyoto, 

Japan) equipped with a degassing system (DGU-20 A3), reciprocating piston pumps (LC-

6 AD) and a 100µL sampling loop. The separation of As species was carried out on an 

anion exchange column, model PRP X-100 (Hamilton, Reno, USA). The column output 

was connected directly to the ICP-OES nebulizer. The instrumental parameters of the 

ICP-OES for obtaining the As chromatograms were the same shown in Table 1. 

To prepare solutions at different pHs, a pH meter, model DM-22 (Digimed 

Analytical Instrumentation) was used. 

An IPC Series peristaltic pump (Ismatec, Switzerland) was used to prepare the 

beads and to control the flow through the columns. 

 

3.2. Material and reagents 

 

All the chemicals and reagents used were analytical reagents. All the solutions 

were prepared with high purity water (18.2 MΩ cm), obtained from a Milli-Q® water 

purification system (Millipore Corporation, EUA). 

Single-element standard solution containing 1,000 ± 1 mg L-1 of lead (PbNO3) in 

5% (w v-1) in HNO3 (Specpure®, Alfa Aesar, USA) and 1,000 ± 1 mg L-1 of arsenic (V) 5% 
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(w v-1) in HNO3 (Specpure®, Alfa Aesar, USA) were used to prepare the references 

solution for analysis by dilution with deionized water. As(III) and As(V) standard solution 

were prepared by dissolving salts sodium arsenite (NaAsO2) and sodium arsenate 

hydrate (Na2HAsO4.7H2O), respectively, in deionized water. 

Concentrated HNO3 (65% w v-1) and HCl (35% w v-1), from Merck, were used. The 

pH of the solutions was adjusted using 0.1 mol L-1 of NaOH solution (from Merck) and 0.1 

mol L-1 of HCl solution (from Merck). 

Microcrystalline cellulose (MCC) with a particle size of less than 20 µm (SPEX 

SamplePrep) was used to prepare beads. For the modification of MCC was used Glycidyl 

trimethylammonium chloride (GTAC), purchased from Sigma Aldrich. 

For the oxidation of As(III) was used Sodium Hypochlorite (NaClO), purchased 

from Sigma Aldrich. 

 

3.3. Samples 

 

✓ High salinity water (HS water): Sea water from the coast of the state of São 

Paulo, was collected and transported in polyethylene vials of 5 L. This water 

was filtered and HCl was added to adjust the pH at 2 for preservation of the 

dissolved ions, the water was kept in the refrigerator at temperature of 4-5 °C 

until analysis. This sample was diluted, used as a water sample with high 

salinity water (HSW), and tested for Pb separation. 

✓ Tap water: Tap water was collected at the Chemical Institute at the São Paulo 

University previously to analysis. This sample was tested for Pb removal. 
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✓  Dam water: Dam water from the Guarapiranga dam, at the Embu-Guaçu 

sampling point was sampling and preserved as previously described (Mota, 

2021). This sample was tested for Pb removal. 

✓ River water: River water from “Corrego das Corujas” in the region of Vila 

Madalena state of São Paulo was collected and transported to the laboratory 

in polyethylene vials of 2 L. This water was filtered and HCl was added to 

adjust the pH at 2 for preservation, the water was kept in the freezer at 

temperature of 4-5 °C until analysis. This water was used for As species 

fractionation-speciation and inorganic As preconcentration. 

 

3.4. Cellulose beads preparation 

 

Cellulose beads are spherical particles with diameters in the micro to millimeter 

range and it has been used in many advanced applications such as adsorbent material, 

chromatography on solid supported synthesis and protein immobilization and delayed 

drug release. Beads preparation is easy, allowing large scale production of batches. 

Functional materials for specific applications have been reported, prepared by introducing 

chemical functionalities or by mixing cellulose with organic and inorganic compounds 

(Gericke et al., 2013). 

Preparation of the cellulose beads was carried out according to the procedure 

previously described in the literature (Gericke et al., 2013). A solution of 7% (w v-1) of 

NaOH + 12% (w v-1) urea-water was added to 5% (w v-1) microcrystalline cellulose, MCC 
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solubilization; the mixture was agitated for 20 min, until a clean solution was obtained, 

and kept at 10 ºC. 

Afterward, the cellulose solution was dripped in an acidic coagulant bath, at 25°C, 

using an IPC Series peristaltic pump (100 pump rotation) with connection tubes of the 

Tygon type (1.6 mm inner diameter) for propulsion and a polypropylene tube (0.55 mm 

inner diameter) for dripping microcrystalline cellulose solution at the coagulating bath. As 

coagulating medium was used 0.1, 0.5, 1.0, 2.0 and 8 mol L-1 HNO3 and HCl 1 mol L-1. 

Figure 7 shows the schematic procedure for bead preparation and a photographic of final 

bead after formation in solution. 

 

 

 

 

 

Figure 7. (A) Schematic setting up for the bead preparation and (B) photography of bead 

formation. 

 

After formation of beads, they were separated by decantation and the supernatants 

were separated from the beads. The beads were washed with deionized water and 

neutralized with 0.1 mol L-1 NaOH solution to eliminate the excess of acid on the beads 

Cellulose 5% (m v-1) 

Ureia 12% (m v-1) 

NaOH 7% (m v-1) 

Coagulant medium 

HNO3 0.1 a 8.0 mol L-1 

HCl 1 mol L-1 

Washing with 0.1 

mol L-1 NaOH and 

deionized water 

Drying at 60oC 

for 12 h 

A B 
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surface, which can affect adsorption experiments that are sensitive to pH changes, again 

washed with deionized water, dried in an oven at 60 oC and storage for further use.  

 

3.5. Cellulose beads characterization 

 

Beads was characterized by Fourier transform infrared spectrophotometry (FT-IR), 

scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), 

elemental analysis, as described in section 3.1. 

 

3.5.1. Point of zero charge determination for b-HNO3 

 

Point of zero charge (pzc) is defined as pH values for which one or more of the 

surface-charge components is equal to zero at a given temperature, pressure, and 

aqueous solution composition. The (pzc) of the b-HNO3 adsorbents, prepared in 2.0 mol 

L-1 of HNO3), was determined by potentiometric titration using a pH meter, model DM-22 

(Digimed Analytical Instrumentation, São Paulo). Amounts of absorbent (0.200 ± 0.001 

g) were placed in Erlenmeyer flasks and added 25 ml of 0.05 mol L-1 KNO3 solution, which 

was used as the background electrolyte. The titration was carried out by adding aliquots 

of 0.02 mol L-1 of HCl and 0.02 mol L-1 of NaOH and stirring for 5 min in order to change 

the initial solution pH, which was measured with a glass electrode. The amount of protons 

(Q, in moles) consumed or released by each gram of adsorbent was calculated using 

equation 1 (Puziy et al., 2004): 
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Q = [(Vo+Vt)/m]×([H+]i-[OH-]i-[H+]e+[OH-]e)                         Equation 1 

 

where V0 and Vt are the volumes of the background electrolyte and the titrant, 

respectively, and m is the mass of the adsorbent. The subscripts “i” and “e” refer to the 

initial and equilibrium concentrations, respectively. The initial concentration of protons 

was calculated through the added amount of the titrant. The equilibrium proton 

concentration was calculated using the measured pH value. Background electrolyte (0.05 

mol L-1 KNO3) solution was also titrated, as reference. 

 

3.5.2. Adsorption isotherm of Pb(II) onto b-HNO3 in batch 

 

Adsorption isotherms is a useful strategy to describe the relationship between the 

adsorbate concentration in solution (liquid phase) and the adsorbent (solid phase) at a 

constant temperature and design adsorption systems (Tran et al. 2017). To evaluate the 

performance of the different cellulosic materials (b-HCl and b-HNO3) on Pb(II) adsorption 

efficiency, batch experiment was carried out using the Equation 2 and Equation 3 to obtain 

the nonlinear and linear fit for Langmuir isotherm to estimation of different parameters) 

(Foo and Hameed 2010): 

 

qe = qmax*Kl*Ce/(1+Kl*Ce                                       Equation 2 

 

Ce/qe = 1/bQ0 + Ce/Q0                                           Equation 3 
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where the Ce is the equilibrium concentration (mg L-1), qe is the amount adsorbed at 

equilibrium (mg g-1), qmax is the maximum saturated monolayer adsorption capacity of 

an adsorbent (mg g-1), and Kl is the equilibrium adsorption constant related to the affinity 

between an adsorbent and adsorbate (L mg-1). 

The essential characteristics of the Langmuir isotherm model can be expressed by 

a dimensionless constant called the separation factor or equilibrium parameter RL, which 

is defined as follows (Tran et al. 2017): 

 

Rl = 1/(1+Kl*C0)                                           Equation 4 

 

where Rl is a constant separation factor (dimensionless) of the solid-liquid adsorption 

system, Kl is the Langmuir equilibrium constant, and Co (mg L-1) is the initial adsorbate 

concentration (Zhou et al. 2014). The value of Rl describes the tendency of the adsorption 

process, which is either unfavorable (Rl > 1), linear (Rl = 1), favorable (0 < Rl < 1), or 

irreversible (Rl = 0). Greater affinity between the adsorbent and the adsorbate is inferred 

when Rl is smaller (Zhou et al. 2014). 

To evaluate the maximum Pb(II) adsorption capacity of the different materials 

(MCC and beads of MCC prepared in 2.0 mol L-1 of HCl (b-HCl) and 2.0 mol L-1 of HNO3 

(b-HNO3) media), adsorption experiments were carried out as follow. 2 mL of Pb(II) 

solutions with concentrations ranging from 1 to 200 mg L-1, at pH 6, were put in contact 

with 8 mg of each different materials (b-HCl and b-HNO3), and shaking for 24 h, in a 

horizontal rotary shaker, at 300 rpm. After centrifugation for 5 min, at 3000 rpm, the 

supernatant was analyzed by ICP OES. 
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3.6. Optimization of Pb(II) adsorption onto b-HNO3 in a fixed-bed column 

 

Beads prepared in 2.0 mol L-1 of HNO3, named b-HNO3, was used for Pb(II) 

separation and preconcentration in waters samples. 

Continuous flow adsorption experiments were conducted with a polypropylene 

column (internal diameter of 0.8 cm) and porous polyethylene chips (0.8 cm in diameter; 

pore size <1 µm) filled with different beads (b-HCl and b-HNO3). The cartridges used were 

from Eichrom Technologies Inc. (Darien, IL, USA). The columns were prepared using 150 

mg of each bead. For packaging of column, a suspension of the bead was prepared in 

water and subsequently added to the top of column and the packing occurs only by 

gravity. The column output was connected to silicone Tygon® tubes attached to a 

peristaltic pump (Ismatec, Switzerland). The experiments were performed in flow, for the 

optimization of the column adsorption process were evaluated different experimental 

conditions such as pH, flow rate of solution passing through the column, repeatability, 

and reusability. 

 

3.6.1. Adsorption rate as function of pH 

 

To evaluate the Pb(II) separation using b-HNO3 against different pH, solutions of 

1 mg L-1 of Pb(II) in different pH (2 to 8) were prepared. The pH values were adjusted 

using HCl (0.1 mol L-1) or NaOH (0.1 mol L-1) solutions. The experiment was carried out 

using 10 ml of the different solutions that were passed through the column with a flow-



   

 

61 
 

rate of 1 ml min-1. Subsequently, the eluate solution was analyzed by ICP OES for the 

determination of Pb(II). The separation capacity was calculated as: 

 

𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑖𝑜𝑛 (%) =  
𝐶𝑜−𝐶𝑒

𝐶𝑜
× 100                              Equation 5 

 

were Co is the initial concentration and Ce is the concentration at the eluate. A solution 

of HCl (1 mol L-1) was used for desorbing, after that the concentration of Pb(II) desorbed 

was analyzed by ICP-OES and the recovery (%) was calculated as: 

 

𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦(%) =
𝐶𝑜−𝐶

𝐶𝑜
𝑥 100                                          Equation 6 

 

were Co is the initial concentration and C is the concentration eluted after desorption. 

 

3.6.2. Flow-rate optimization 

 

To evaluate the influence of flow-rate on the Pb(II) adsorption using b-HNO3, 10 

mL of 1 mg L-1 of Pb(II) solution, at pH 6, was passed through the column at different 

flow-rate (0.5 to 2 ml min-1). Subsequently, the eluate solution was analyzed by ICP OES 

for the determination of lead. 
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3.6.3. Intra e inter column repeatability and type of eluent for desorption 

 

To evaluate the repeatability of the adsorption process, 5 b-HNO3 columns were 

prepared with the same masses of beads (150 mg) and in each one was passed through 

10 mL of 1 mg L-1 of Pb(II) solution, at pH 6, with a flow-rate of 0.5 ml min-1. Volumes of 

2 mL of 1 mol L-1 of HCl were used for desorbing and the eluates were analyzed by ICP-

OES for the recoveries’ calculation. 

For the reusability investigation, in each of these 5 b-HNO3 column (150 mg) was 

passed 10 mL of 1 mg L-1 of Pb(II) solution, at pH 6, with a flow-rate of 0.5 ml min-1. A 

volume of 2 mL of 1 mol L-1 of HCl was used as desorbing solution and the eluate was 

analyzed by ICP-OES. The process (loaded and desorption) was repeated 9 times for the 

same b-HNO3 column. 

Different acids were evaluated as desorbing solutions at different concentration for 

lead desorption from the column, such as sodium citrate (10-4 mol L-1 and 10-5 mol L-1), 

HCl (1 mol L-1 and 2 mol L-1), HNO3 (1 mol L-1 and 2 mol L-1) and H2SO4 (1 mol L-1 and 2 

mol L-1). After the adsorption process using b-HNO3 column (10 mL of 1 mg L-1 of Pb(II) 

solution, at pH 6) and a flow-rate of 0.5 ml min-1), 2 ml of each desorbing were used for 

desorption and the concentration on the eluent solutions was analyzed using ICP OES, 

to evaluate the elution efficiency. 
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3.6.4. Breakthrough curve for Pb(II) adsorption onto b-HNO3 column 

 

In practical applications of full-scale adsorption processes, continuous-flow fixed 

bed columns are commonly favored. These systems exhibit spatial and temporal 

variations in concentration profiles within the liquid and adsorbent phases. Consequently, 

designing and optimizing fixed bed columns in advance without a quantitative modeling 

approach becomes challenging. Process modeling allows us to describe the dynamic 

behavior of a fixed bed column in terms of the effluent concentration-time profile, 

commonly known as the breakthrough curve. The breakthrough curve represents the ratio 

of the effluent concentration (Ct) to the influent concentration (C0) plotted against time or 

throughput volume. The shape of this curve is determined by the equilibrium isotherm 

and is influenced by the distinct transport processes occurring within the column and the 

adsorbent material (K. H. Chu 2004). A polluted stream undergoes adsorption as it 

passes through a fixed bed column packed with adsorbent particles. The adsorbent 

particles attract and retain the pollutants, resulting in the production of a purified stream 

at the exit of the column. As the adsorption capacity of the bed is finite, the concentration 

of pollutants in the column effluent progressively increases with time. The breakthrough 

experiment holds significant importance as it represents the most probable mode of 

operation for any potential commercialized adsorbent. Therefore, conducting dynamic 

column breakthrough experiments plays a critical role in evaluating newly developed 

adsorbents (Tan and Hameed 2017). 

The breakthrough curve was obtained by online coupled b-HNO3 column (150 mg 

of bead) to the ICP-OES for the determination of the Pb(II) concentration until the 
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saturation of the adsorption column. A volume of 120 mL of 5 mg L-1 of Pb(II) solution, at 

pH 6, was prepared and passed through the column at flow rate of 1 mL min-1 and the 

eluate directly introduced at the ICP nebulizer system. Thomas model was used for data 

treatment (Khim Hoong Chu 2020). 

 

𝐶𝑡

𝐶𝑜
=

1

1 +𝑒𝑥𝑝[
𝐾𝑇ℎ

𝑣
 𝑞𝑜𝑚 − 𝐾𝑇ℎ𝐶𝑜𝑡]

                            Equation 7 

 

were KTh is the rate constant (L mg−1 min−1), m is the mass of adsorbent, qo is the maximal 

adsorption capacity (mg g−1) and v is the flow rate (mL min−1). 

 

3.7. Separation-removal of Pb(II) from water samples using b-HNO3 

column 

 

According to the “Conselho Nacional do Meio Ambiente – CONAMA” of the Minister of 

the Environment, through the Resolution CONAMA No. 430, from May 13, 2011, the maximum 

concentration of Pb that can be discarded into the environment is 0.5 mg L-1 (CONAMA, 2011). 

In this way, tests using water samples with distinct matrix composition were investigated 

to evaluate the performance of b-HNO3 column for separation and preconcentration of 

Pb(II). 

After optimizing the different parameters for separation of Pb(II) onto b-HNO3 (150 

mg of bead, pH 6 and flow-rate 0.5 mL min-1), different samples (tap water, dam water, 

and high salinity water) as described in section 3.3 were spiked with 1 mg L-1 of Pb(II) 

and passed through the column to investigate the efficiency of separation processes 
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using these real samples. For this, 10 mL or 25 mL of each sample, without and with 

spikes, was passed through the separation b-HNO3 column and then the adsorbed Pb(II) 

was desorbing with 2 mL of HCl 1 mol L-1 and analyzed by the ICP-OES. 

Standard solutions of concentration 0.5, 1.0, 2.5, and 5.0 mg L-1 of Pb(II) in 2.0 mol 

L-1 of HCl were prepared and used for ICP-OES calibration. The LOD and LOQ were 

calculated as describe in section 3.1. Also, standard calibration using preconcentration of 

25 mL of low concentrations (2.0, 5.0, 10, 20 and 50 µg L-1) of Pb(II) solutions were used 

for calibration the ICP-OES. After de adsorption process the desorbing was carried out 

with 1 mL of HCl 1 mol L-1 and analyzed by the ICP-OES. The concentration of Pb(II) was 

determined in the eluate solution and calculated the percentage of separation/removal 

and the recovery of each sample. 

 

3.8. Microcrystalline cellulose with glycidyl trimethylammonium chloride 

(MCC-GTA) preparation for As fractionation and speciation 

 

The first part of process was to increase the reactivity of the hydroxyl groups of 

MCC to guarantee the best efficiency of modification with glycidyl trimethylammonium 

groups. For this, 10 % (w v-1) of NaOH and 2.5 % (w v-1) of MCC was added in a flask 

under constant stirring (5 rpm) at 25 ± 1 °C for two days (Siqueira Petri et al. 1999). For 

the second part of modification, a procedure describe elsewhere (Najib and 

Christodoulatos 2019) was follow. After two days (48 h), to the suspension (10 % (w v-1) 

of NaOH and 2.5 % (w v-1) of MCC) was added 9% (w v-1), 18 % (w v-1) and 36 % (w v-1) 

of glycidyl trimethylammonium group (GTA) under constant stirring (5 rpm) and keep at 
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75 ºC for 8 h. At the end of the reaction, the mixture was neutralized with HCl, filtered and 

then, washed with deionized water and centrifuged at 5000 rpm, for five consecutive 

cycles. The MCC-GTA was freeze-drying at -40°C for 2 days before further use. Figure 8 

shows the schematic procedure for MCC-GTA preparation and a photographic of final 

product. 

 

 

 

 

 

 

 

 

 

Figure 8. Schematic setting up for the MCC-GTA preparation. 

 

3.9. Macrocrystalline cellulose with glycidyl trimethylammonium chloride 

(MCC-GTA) characterization 

 

Macrocrystalline cellulose with glycidyl trimethylammonium chloride (MCC-GTA) 

was characterized by Fourier transform infrared spectrophotometry (FT-IR), and 

elemental analysis (CNH), as described in section 3.1. 

 

Washing  Centrifugation  

MCC 2.0 wt%  

NaOH 10.0 wt%  

48 h  

80 °C /  8 h Lyophilization  

-40 °C / 48 h 

Glycidyl 

trimethylammonium 

chloride  

9.0 wt%   
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3.10. Optimization of As species adsorption onto MCC-GTA in batch 

 

3.10.1. Adsorption rate as function of pH 

 

To evaluate the arsenic species adsorption rate at different pH (2-8), 2 mL of 0.1 

mg L-1 of arsenic species (As(III), As(V) , AsB, MMA and DMA) solutions were prepared 

and put in contact with MCC-GTA for 30 min, under stirring using a 360° motion 

homogenizer at 8rpm. Then centrifuged for 10 min at 5000 rpm and the supernatant 

solution was separated and analyzed by GF AAS to determine the non-adsorbed 

concentration of As species. 

 

3.10.2. Contact time and adsorbent mass 

 

To evaluate the influence of contact time (1-60 min) and adsorbent mass (10-20 

mg) on the adsorption efficiency of the different arsenic species (As(III), As(V), AsB, MMA 

and DMA) onto MCC-GTA, 2 mL of 0.1 mg L-1 of each species of arsenic, at pH 6-7, were 

put in contact with different masses or during different contact times. For contact time 

investigation, a mass of 10 mg of MCC-GTA was kept constant and for mass 

investigations, the contact time was kept constant at 1 min. After centrifugation for 5 min 

at 5000 rpm, the supernatants of these solutions were separated and analyzed in GF 

AAS. 

 



   

 

68 
 

3.10.3. Oxidation of arsenic species and monitoring by LC-ICP-OES 

 

As the As(V) species had the best adsorption efficiency, a procedure to 

investigate the influence of As(III) oxidation was investigated. For this, NaClO in different 

molar ratios (RNaClO/tAs = 1, 2 and 3) was investigated to the preoptimized adsorption 

conditions (pH 6-7, contact time = 1 min, adsorbent mass = 10 mg). The oxidation 

efficiency of As(III) to As(V) and the influence on the other arsenic species were followed 

by liquid chromatography coupled to the inductively coupled plasma optical emission 

spectrometry (LC-ICP-OES). 

Speciation of As was done for 10 mg L-1 of each species or using a mixture of of 

As III 10 mg L-1 + As V 10 mg L-1, AsB 10 mg L-1, MMA 10 mg L-1 and DMA 10 mg L-1 

before and after the oxidation process with NaClO in different molar ratios  (RNaClO/tAs = 1, 

2 and 3). Species separation was performed on an anion exchange column (PRP X-100, 

Hamilton), using a 100µL sampling loop and a phosphate buffer (30 mmol L-1 - pH 6.0 

adjusted with NH4OH) as mobile phase, with a flow rate of 1.0 mL min-1. The column 

output was connected to the ICP-OES nebulizer for online detection in transient mode. 

Ammonium acetate buffers (pH = 4.7) with concentrations of 10 mM (phase A) and 250 

mM (phase B) were used as a mobile phase with gradient elution (0 - 5 min: 0% B; 5-15 

min: 0% - 100% B; 25 - 26 min: 100% - 0% de B; 26 - 35 min: 100% B) and flow rate of 

1.5 mL min-1.  
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3.11. Arsenic speciation and fractioning using MCC-GTA in batch 

 

After optimizing the different parameters for adsorption (pH 6-7, contact time = 1 

min, adsorbent mass = 10 mg, and RNaClO/As = 2), the optimization of fractionation and 

speciation was applied to standard solutions and a river water samples spiked with 

different concentration ( 20-100 mg L-1) of As(III), As(V), MMA, DMA and AsB. The 

sequence of procedure followed for As fractionation is depicted in Figure 9.  

 

Figure 9. Experimental set up used for arsenic fractionation and speciation: 1. Total 

determination of As by GF AAS; 2. Separation of arsenic species and determination by 

GFT AAS before addition of NaClO; and 3. Separation of arsenic species and 

determination by GF AAS after addition of NaClO. 
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In the first step, the total concentration of all species of As was determined by GF 

AAS (Fig. 10.1). Afterwards, an aliquot of the mixture of As species was put in contact 

with MCC-GTA, using optimized conditions (pH 6-7, contact time = 1 min, adsorbent mass 

= 10 mg) for adsorption procedure without oxidation, then centrifugated for 10 min at 5000 

rpm for separation of MCC-GTA from the solution with a micropipette. The MCC-GTA 

was washed with 1 mL of deionized water and subsequently subjected to desorption with 

1 mL of HCl (1 mol L-1). The supernatants of these solutions and desorption HCl solution 

were analyzed in GF AAS (Fig. 10.2). In the third step, an aliquot of the mixture of As 

species was put in contact with MCC-GTA, using optimizing conditions (pH 6-7, contact 

time = 1 min, adsorbent mass = 10 mg) for adsorption procedure after addition of NaClO 

(RNaClO/As = 2) as oxidant. After centrifugation for 5 min at 5000 rpm for separation of 

MCC-GTA from the solution. The supernatants of these solutions were analyzed in GF 

AAS (Fig. 10.3). With these results it is possible to estimate the contents of the different 

species in the samples, by the difference between the total concentration and the 

concentration after different adsorption steps, following Equation 8 to Equation 12 

described later in section 4.8. The mass balance for total arsenic concentration was 

calculated as followed: 

 

3.12. Preconcentration and speciation of inorganic arsenic in water 

samples using MCC-GTA 

 

Figure 10 show the procedure for preconcentration of inorganic arsenic species 

using MCC-TA in water samples (standard solutions and river water described in section 
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3.3) containing different amounts of As(III) and As(V) in low concentrations (2 µg L-1) were 

prepared, 25 mL of solution at pH 6-7 were placed in 50 mL falcon tubes containing 50 

mg of MCC-TA, the procedure was repeated for each sample adding NaClO allowing 

preconcentration of both iAs species (As(III) and As(V)) and without addition of NaClO 

only preconcentrating or As(V) present in the solution. 

 

 

Figure 10. Schematic setting up for preconcentration of inorganic As species in water. 

 

The tubes were shaken for 30 min and later filtered using a polypropylene column 

(internal diameter of 0.8 cm) and at the bottom a porous polyethylene frits (0.8 cm in 

diameter; pore size <1 µm) to separate the solution from the solid. The material was 

washed with 1 mL of deionized water and subsequently subjected to elution with 1 mL of 

HCl (1 mol L-1). The concentration of As in the eluate was determined using GF AAS. 
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4. Results and Discussion 

 

4.1. Preparation and characterization of microcrystalline cellulose beads 

 

Cellulose beads were prepared according to the procedure proposed previously 

(Gericke et al., 2013), however, some adjustments were made in order to obtain particles 

with the smallest possible sizes. In this way, the optimization of the peristaltic pump 

rotation and the diameter of the Tygon and the polypropylene tubes, which dispense the 

cellulose solution in the coagulant medium were mandatory to obtain beads with 

diameters size around of 0.5 mm to 1 mm (before drying) and smaller than 0.5 mm (after 

drying in an oven, at 60 oC for 12 hours). Figure 11 shows the photographic register of 

the beads prepared in 1 mol L-1 of HCl and 2 mol L-1 HNO3 media before and after drying. 

In this composition of coagulant media, both materials have a droplet shape and rough 

surface area as seen in the picture. 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 11. Photo of cellulose beads prepared in 1 mol L-1 of HCl (a and b) and 2 mol L-1 

of HNO3 (c and d) media, wet (a and c) and after drying at 60 oC for 12 hours (b and d). 

 

4.1.1. Characterization using SEM 

 

To evaluate the morphological structure and correlate with the material 

adsorption rate, high-resolution images from surface morphology were obtained by 

(SEM), using 6 mA and 10 kV-accelerated electrons sputter coating with golden (Figure 

12). Different concentration of HNO3 (0.5, 1, 2, 4, and 8 mol L-1) were evaluated to 

optimize the beads formation process. 
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Figure 12. Photography of beads prepared in different acid concentrations (a,d,g,j) and 

SEM images of dry microcrystalline cellulose beads prepared in 0.5 mol L-1 of HNO3 (a, 

b, c), in 1 mol L-1 of HNO3 (d, e, f), in 2 mol L-1 of HNO3 (g, h, i), and in 8 mol L-1. 

 

Figure 12 shows the photographic register of the beads prepared in different acid 

concentrations (a,d,g,j) and SEM images at different magnification of 1 mm (b,e,h,k) and 

200 m (c,f,i,l). As it can be seeing the beads obtained at 1 and 2 mol L-1 of HNO3 has a 

droplet shape and rough surface area. At 8 mol L-1 of HNO3 the beads formed where 
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brittle and has irregular shape. The beads formed in 2 mol L-1 of HNO3 have a more 

regular and uniform shape, therefore were selected for the following experiments, and 

are designated as b-HNO3. 

 

4.1.2. Characterization using FTIR 

 

Figure 13 shows the FTIR spectra of microcrystalline cellulose (MCC) as a control 

sample for comparison purpose, and using beads prepared in 2.0 mol L-1 of HNO3 (b-

HNO3) and b-HNO3 loaded with 100 mg L-1 of Pb(II), with 1 h of contact time in the 

wavenumber range of 500-4000 cm−1. The three spectra have similar characteristic bands 

corresponding to microcrystalline cellulose. 

Previous study reported the oxidation of microcrystalline cellulose using 45-55% 

of HNO3, acting as a deposited form of catalyst of cellulose oxidation (Gert et al. 2006). It 

can be seen in the Figure 13 that it is not possible to identify new bands with difference 

from the MCC spectrum. In view of this, there is no evidence of the formation of new 

identifiable functional groups during the bead formation process in HNO3 media. It is 

important to emphasize that modification was not observed even in the 8 mol L-1 of HNO3 

as coagulant medium. 

Peaks at approximately 3500-3300 cm−1 are due to the O-H stretching vibrations, 

at ~2900 cm−1 belong to C-H stretching vibrations, at 1000–1100 cm-1 due to stretching 

vibrations (Wang et al., 2017), at 1000–1100 cm-1 due to stretching vibrations of C–O, 

and 1250–1420 cm−1 due to bending vibrations of O–H (Kenawy et al., 2018). 
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Figure 13. FTIR spectra of beads prepared in 2,0 mol L-1 of HNO3 (b-NHO3) beads, beads 

loaded with Pb (b-HNO3 +Pb) and pure MCC. 

 

4.1.3. Characterization using XPS 

 

To clarify the adsorption mechanism on the beads, XPS analysis was done using 

beads prepared in 2.0 mol L-1 of HNO3 (b-HNO3) and b-HNO3 loaded with 100 mg L-1 of 

Pb(II), with 1 h of contact. Figure 14(a) shows a XPS spectrum of the beads before and 

after the lead adsorption experiments. Before lead adsorption there are only typical 

signals of carbon (C 1s) and oxygen (O 1s), which are atoms that correspond to the 

cellulose molecule. After the lead adsorption experiments, it is possible to see that the 

lead signal (Pb 4f) is present, indicating that a sorption process has taken place. Figure 

14(b), (c) and (d) shows high resolution XPS spectra for Pb 4f, O1s, before lead 
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adsorption and O 1s after leads adsorption, respectively. These signals were curve fitting 

by Gauss-Lorentz and the background eliminated using the Shirley method (Sheng et al. 

2004). 

Two energy peaks for Pb 4f are show at Figure 14(b), at 137.93 eV and 142.84 

eV, assigned to Pb 4f7/2 and Pb 4f5/2, respectively, corresponding with divalent state of 

Pb. Similar results are reported by Li et al. and these peaks are attributed to the formation 

of Pb–O bond between Pb(II) and function groups of the material (Li et al. 2011). Figure 

14(c) and (d) shows that O1s spectra, could be splited into two peaks of C-OH, and C-O-

C. After Pb(II) adsorption, peaks of C-OH and C-O-C shifted from 531.09 eV and 529.92 

eV to higher binding energy of 531.3 eV and 530.2 eV, respectively. These increase in 

the binding energies infers that hydroxyl and ester groups are involved in the adsorption 

of Pb(II) on the beads through dipole-induced dipole attraction and surface complex (Yu 

et al. 2020). 
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Figure 14. XPS survey spectrum of the beads (a) before (black) and after (red) the lead 

adsorption (a). XPS high resolution spectra of Pb 4f (b) for beads after lead adsorption, 

O 1s (c) before lead adsorption and O 1s (d) after lead adsorption. 
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4.1.4. Characterization using PZC 

 

Figure 15 shows the experimental potentiometric titration curves obtained for the 

background electrolyte (0.05 mol L-1 of KNO3) (red) and for the b-NHO3 sample (black), 

being (a) titration with 0.02 mol L-1 of NaOH and (b) titration with 0.02 mol L-1 of HCl. 
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Figure 15. Experimental potentiometric titration curves with (a) 0.02 mol L-1 of NaOH and 

(b) with 0.02 mol L-1 of HCl, obtained for background electrolyte (0.05 mol L-1 of KNO3) 

(red) and for the b-NHO3 sample (black). 

 

The pH in which the number of protons consumed or released (Q) is zero define 

the point of zero charges (pzc), that means at this point there is a balance between the 

adsorption and release of protons, and there is no excess of positive or negative charge 

on the material surface (Ogeda 2011). Figure 16 shows the isotherm of number of protons 

released or adsorbed resulting from the potentiometric titration of the background 

electrolyte and b-HNO3 (Q/ mmol L-1 x pH), calculated according to equation 1 (section 

3.5.1). The point of zero charge of 4,90 ± 0,05 was determined for b-HNO3. Positive 
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values of Q indicate that there is adsorption of protons, while negative values of Q 

represent release of protons. At pH values above 4.90, the surface of the material is 

negatively charged, favoring the adsorption of positive ions such as Pb(II) through 

electrostatic interactions between the ions and b-HNO3. 

 

 

 

 

 

 

 

 

Figure 16. Isotherm of the number of protons released or adsorbed obtained for b-HNO3. 

 

4.1.5. Adsorption isotherm of Pb(II) 

 

The adsorption studies of 1 to 200 mg L-1 of Pb(II), at pH 6, on 8 mg of bead 

prepared in 2.0 ml L-1 of HNO3 (b-HNO3) and 2.0 mol L-1 of HCl (b-HCl) as coagulant 

media and pure MCC were done keeping the contact time constant as 24 hour, and 

supernatant analyzed by ICP OES. Figure 17 shows the Pb(II) adsorption isotherm on b-

HNO3, b-HCl and pure MCC with nonlinear fitting for Langmuir isotherm and the estimated 

3 4 5 6 7 8 9 10 11

-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Q
 (

m
m

o
l/
g

)

pH

 b-HNO3



   

 

81 
 

parameter are show at Table 3. Figure 18 shows the Pb(II) adsorption isotherm on b-

HNO3, b-HCl, and MCC with linear fitting for Langmuir isotherm and the estimated 

parameters are show at  

 

 

Table 4. The parameters determined from the nonlinear fittings with the Langmuir 

model, showed that the b-HNO3 presented the best fitting quality, yielding qmax value of 

108.4 ± 7.7 mg g-1, affinity constant of 0.5 ± 0.1 L mg-1 and separation factor of 0.69. The 

parameters determined from the linear fittings with the Langmuir model, showed that the 

b-HNO3 presented the best fitting quality too, yielding qmax value of 110.5 mg g-1, affinity 

constant of 0.4 L mg-1 and separation factor of 0,72. The affinity constant of b-HNO3 using 

the linearized adjust is greater than MCC and b-HCl, indicating a more efficient interaction 

between lead ions and the surface of the b-HNO3, therefore based on the qmax and Kl 

values b-HNO3 was selected as the best material for lead adsorption.  
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Figure 17. Adsorption isotherms Langmuir nonlinear adjusted for b-HNO3, b-HCl, and 

pure MCC. 
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Figure 18. Adsorption isotherms Langmuir linear adjusted for b-HNO3, b-HCl, and pure 

MCC. 

 

Table 3. Adsorption isotherms Langmuir nonlinear adjust parameters. 

 pure MCC b- HNO3 b- HCl 

Model qe = qmax*Kl*Ce/(1+Kl*Ce) (Foo and Hameed 2010) 

qmax 101.4 ± 6.4 108.4 ± 7.7 100.2 ± 4.4 

Kl 0.403 ± 0.045 0.455 ± 0.112 0.411 ± 0.069 

R-Square 0.98325 0.97129 0.96821 

Rl 0.76 0.69 0.71 
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Table 4. Adsorption isotherms Langmuir linear adjust parameters. 

 pure MCC b- HNO3 b- HCl 

Equation Ce /qe =1/bQ0 + Ce/Q0 (Foo and Hameed 2010) 

qmax 102.6 110.5 91.2 

Kl 0.181 0.390 0.143 

R-Square 0.98088 0.98779 0.98056 

Rl 0.84 0.72 0.87 

 

The adsorption capacity for Pb(II) removal obtained for b-HNO3 is comparable or 

better than previously reported cellulosic materials. Vijayalakshmi et al. (2017) prepared 

a nanochitosan/sodium alginate/microcrystalline cellulose bead with maximum 

adsorption capacity of 114.47 mg g-1; Zhang et al. (2017) reported mesoporous nano-

TiO2/cellulose composites with maximum adsorption capacity of 42.5 mg g-1; Luo et al. 

(2016) prepared a magnetic cellulose-based nanocomposite beads with maximum 

adsorption capacity of 2.86 mg g-1; Vadakkekara, Thomas, and Nair (2019) prepared a 

maleic acid modified cellulose (macro, micro and nano) with maximum chemisorption 

capacities of macro, micro and nano for Pb(II) of 20 mg g-1, 40 mg g-1 and 115 mg g-1, 

respectively; Kumar and Sharma (2019) prepared cellulose extracted from rice husk with 

N-isopropylacrylamide with maximum adsorption capacity for Pb(II) of 118.3 mg g-1. The 

adsorption capacity obtained demonstrates that b-HNO3 could be a promising adsorbent 

material for Pb(II) to be used for water treatment especially given it easy production with 

no chemical modifications and an eco-friendly material. Additionally, b-HNO3 showed very 
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good performance for separation and preconcentration of Pb(II) from water with a 

considerable amount of concomitants. 

 

4.2. Optimization of Pb(II) adsorption onto b-HNO3 in a fixed-bed column 

 

4.2.1. Effect of pH on the Pb(II) adsorption 

 

The effect of pH on the Pb(II) removal was investigated using b-HNO3 at Pb(II) 

concentration of 1 mg L-1 and a flow rate through the column of 1 ml min-1. The pH values 

were adjusted using HCl (0.1 mol L-1) and NaOH (0.1 mol L-1) solutions before the 

adsorption experiments. Figure 19 shows that the optimal pH was ≥ 6. At pH values above 

the point of zero charges (4,90 ± 0,05) the surface of the material had an excess of 

negative charge that favor the adsorption of Pb(II). One reason for low removal efficiency 

at low pH can be attribute to the surface protonation of the adsorbent. At low pH value, 

high concentrations of hydrogen ions will compete with free lead ions for the same 

adsorption sites in the solution (Fu and Xie 2020). Other crucial factor is the chemical 

form of Pb in the solution that also depend on the pH. Pb(II) species varies in proportion 

based on their hydrolysis constants (log k1 = 6.48, log k2 = 11.16, and log k3 = 14.16). 

Typically, when the pH is below 7.0, the solution is predominantly composed of divalent 

free Pb(II) ions (Al-Degs, Khraisheh, and Tutunji 2001). The pH in the range 6 was 

selected to perform the subsequent adsorption experiments, preventing the formation of 

Pb(OH)2, therefore, limiting the adsorption process to divalent free Pb(II) ions.  
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Figure 19. Effect of pH on adsorption of Pb(II) (1 mg L-1, 1 ml min-1) onto 150 mg of b-

HNO3 column, at pH=6. 

 

4.2.2. Effect of flow rate thought the column on the Pb(II) adsorption 

 

The flow rate of the solution through the column is an experimental parameter that 

contributes to the equilibrium between analyte and adsorbent. Moreover, the sample 

solution flow rate influences the analyte contact with the adsorbent and directly affects 

the application of solid-phase extraction processes (Ozdemir et al. 2021). The impact of 

the flow rate on the removal of Pb(II) on b-HNO3 was examined between the range of 

0.25–2.0 mL min−1 at pH 6.  

Figure 20 shows that 0.5 ml min-1, reaching 100 % of removal with relatively low 

standard deviation (n=3), was the best condition to perform the following experiments. At 
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a flow rate higher than 0.5 mL min−1, there was a reduction in the removal due to not 

having enough contact time to reach equilibrium between Pb(II) and b-HNO3. 
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Figure 20. Flow rate optimization of Pb(II) (1 mg L-1) onto 150 mg of b-HNO3 column, at 

pH=6. 

 

 Considering this, pH = 6 and flow-rate of 0.5 mL min-1 was chosen as the best 

conditions to investigate the repeatability and the type of effluent to release the Pb(II) 

adsorbed over b-HNO3 column. 

 

4.2.3. Intra and inter column repeatability and type of eluent for desorption  
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Adopting the best pH (6) and flow rate (0.5 mL min-1), experiments were executed 

to investigate the performance of adsorption of 1 mg L-1 of Pb(II) using 5 different columns 

(inter) and in the same time the repeatability using 2 adsorption-desorption cycle (n=2) 

for each one (intra). Figure 21 shows the repeatability (adsorption-desorption cycle) and 

performance obtained using columns with 150 mg of b-HNO3. 
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Figure 21. Inter repeatability using 5 different columns and intra repeatability for 

adsorption-desorption (n=2): 1 mg L-1 of Pb(II), mass 150 mg of b-HNO3, flow rate 0.5 mL 

L-1, and pH 6. 

 

The performance of 1 mg L-1 of Pb(II) adsorption was practically the same between 

the 5 columns (100.9 ± 2.8), showing the good repeatability inter b-HNO3 columns. The 
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overall adsorption/desorption cycles (n=2 for each column) also showed good 

performance with relative standard deviation below 2%. 

The repeatability of the adsorption process promoted by the adsorbent is an 

important characteristic for analytical or separation/removal in an industrial applications 

based on cost benefit of the system for practical use in real operation (Awual et al. 2015). 

For this matter, it is preferable the elution of the adsorbed Pb(II) from the adsorbent and 

perform the regeneration for several cycles without losing its adsorption capacity. 

Additionally, separation allows pollutants removal and for valuable materials (c.a, metallic 

elements) the recovery for reusability in technological industry, protecting the 

environment. The reuse for one b-HNO3 column was evaluated for nine adsorption-

desorption cycle as shown in Figure 22. After adsorption and desorption with 2.0 mol L-1 

of HCl, the b-HNO3 column was regenerated with deionized water into the initial pH 

conditions (pH 6). The removal efficiency was calculated for each cycle and after nine 

reuse cycle, using the same column, was observed only 5% of loss in the separation-

removal capacity. 

The correct choice of eluent for analyte desorption is important for the quantitative 

elution and regeneration of the column, allowing practical applications and reuse of with 

efficiency and selectivity. In Figure 23 is showed the results of elution using 2 mL of 

different acids solutions (HCl, HNO3 and H2SO4) and citrate as complexing ligand. 
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Figure 22. Reuse cycle of Pb(II) separation for nine adsorption-desorption cycle: 2 mL of 

eluent, 1 mg L-1 of Pb(II), mass 150 mg of b-HNO3, flow rate 0.5 ml L-1, and pH 6. 
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Figure 23. Recoveries of Pb after adsorption/desorption using different type of eluent for 

Pb(II) desorption: 2 mL of eluent, 1 mg L-1 of Pb(II), mass 150 mg of b-HNO3, flow rate 

0.5 ml L-1, and pH 6. 
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The eluent should be able to quantitatively desorb the analyte of interest and not 

interfere with the detection method. The choice of eluent can also affect the stability of 

the column and its lifetime (Liu 2021). Metals adsorbed in cellulosic materials can be 

eluted using various eluents such as HNO3, HCl, H2SO4, NaOH, EDTA (Nag and Biswas 

2021; Malik, Jain, and Yadav 2017), depends on the type of metal ions being adsorbed 

and the type of cellulosic material used.  

Different concentrations sodium citrate, HCl, HNO3 and H2SO4 were evaluated as 

eluent solution for Pb desorption from the columns, using 2 mL of each and making the 

experiment in duplicate. Sodium citrate at pH 8 is a good complexing agent for Pb(II) ions, 

but as eluant showed the lower performance with recovery around 50 % (Figure 23). All 

acid eluent showed good performance, with recoveries of Pb(II) ranging to 83% to 100%. 

The better recoveries were found for 1.0 mol L-1 of HCl with standard deviation around 

2% (n=3).  

 

4.2.4. Breakthrough curve for Pb(II) on b-HNO3 

 

The capacity of adsorption of higher concentration of Pb(II) (5 mg L-1) onto 0.150 

g of b-HNO3 column and using a continuous flow rate (1 ml min-1) was tested using the 

breakthrough curve (Figure 24). The end of the column was coupled to the ICP OES 

nebulizer and Pb emission was continuously monitored. As can be seen in the Figure 24, 

the plateau considering the total concentration measured by ICP OES (Ct) and the initial 

concentration (Co) was reached after 40 min.  
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Figure 24. The breakthrough curve for Pb(II) onto b-HNO3 showing nonlinear fittings for 

the Thomas model: 5 mg L-1 Pb(II) (C0), mass 150 mg of b-HNO3, flow rate 0.5 ml L-1, and 

pH 6. 

 

The experimental data was fitted for the Thomas model to gain insight into the 

dynamic behavior of the column. The Thomas model, which assumes Langmuir 

adsorption characteristics, is more realistic and provides a better fit to breakthrough data 

(Tan and Hameed 2017), according equation 7. 

The parameters determined from nonlinear fitting with Thomas model are KTh value 

(0.353×10−3 L mg-1 min- 1) and the qmax value (7.00 mg g-1) was smaller than that estimated 

from the Langmuir model (108.4 mg g-1). In continuous processes the sorption capacity 

depends on several factors such as initial concentration, bed height, flow-rate, etc.(Cruz-

Olivares et al. 2010) 
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4.3. Analytical characteristics for the detection of Pb using ICP OES 

 

External calibration was applied for lead determination in ICP OES, using 

standard solution of 0.5, 1, 2.5, and 5 mg L-1 of Pb(II) at pH 6 without preconcentration, 

and using 25 mL of standard solutions of 2.0, 5.0, 10, 20 and 50 µg L-1 of Pb(II) at pH 6 

with adsorption-preconcentration, as depicted in Figure 25.  

 

Figure 25. Calibration curves of Pb without (black) and with preconcentration step (red) 

for the ICP OES. 

 

After the adsorption process the elution of the adsorbed Pb was carried out with 

1 mL HCl (1 mol L-1). The LOD and LOQ were calculated as describe in section 3.1 and 
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the found values were LOD = 4 µg L-1 and LOQ = 12 µg L-1 without preconcentration. 

After preconcentration the LOD and LOQ were 0.4 µg L-1 and 1.2 µg L-1, respectively.  

The enrichment factor refers to the concentration of the components adsorbed 

and retained on the solid phase, which was eluted by a small volume of eluent and whose 

concentration was measured from the eluent after the preconcentration step. The 

enrichment factor (EF) can be calculated from the division of the slope of the standard 

calibration without and the slope of the calibration using preconcentration as follow 

EF=Bprec/Bstd, being Bstd the slope of the standard calibration and Bprec the slope of the 

standard calibration after preconcentration. The enrichment factor was 48.6, 

demonstrating the efficiency of the adsorption system for determination of low 

concentration of Pb(II). 

 

4.4. Separation-removal of Pb(II) from water using b-HNO3 column 

 

The optimized adsorption procedure using b-HNO3 column (m = 0.150 mg, flow 

rate = 1 ml min-1, and pH = 6) was applied for the removal of Pb(II) in drinking water, dam 

water, and high salinity water (HS water, diluted sea water x 4), using addition and 

recovery method, as showed in Figure 26. The removal presented in Figure 26 represents 

the concentration of Pb determined in the eluate (after percolate through the column) and 

the recovery was obtained after adsorption and desorption using 1 mol L-1 of HCl and 

determined by ICP OES. 
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Figure 26. Removal and recovery in water samples spiked with 1 mg L -1 and Pb(II), using 

0.150 g of b-HNO3 column, pH 6, desorption with 1 mol L-1 HCl: Drinking water, Dam 

water, and HS water 1 with flow rate 0.5 mL min-1 and HS water 2 with flow rate 0. 25 mL 

min-1. 

 

For all samples spiked with 1 mg L-1 of Pb(II), removal was 100% for standard 

solution, 100% for drinking water, 98.6% for dam water, and 40.6% for HS water 1 

(seawater four-time diluted ) with flow rate 0.5 mL min-1 and 88.4% HS water 2 (seawater 

four-time diluted ) with flow rate 0.25 mL min-1. This result shows that increase of the 

contact time with the diminution in the flow rate improves the removal of Pb(II) in more 

complex matrixes such as water with high salinity. 

To obtain more information about the influence of the salinity on the adsorption of 

Pb(II), sea water samples with different dilutions factor of 2, 4, 8, and 10 (conductivity of 

7.13, 6.38, 5.40 and 4.99 µS cm-1, respectively) were spiked with 1 mg L-1 of Pb(II), using 
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flow rate 0.5 mL min-1 though the column during the adsorption step. The result is shown 

in Figure 27. 

The removal of different dilution (2, 4, 8, e 10) were in the range of 25.33%, 

40.46%, 85.01%, and 87.49% respectively. With a decrease in the conductivity the 

recovery values increase until stabilization above 8-time dilution. Similar result were 

reported by Yang et al. (W. Yang et al. 2019) showed that an increase in solution salinity 

led to a significant decrease in Cu(II) and Pb(II) adsorption by Enteromorpha derived 

biochar. A decrease in adsorption with increasing salinity can be attributed to the 

competition of ions in the solution. Seawater have high concentrations of ions, such as 

Cl- with a medium concentration of 38,4 g L-1 (Shehata and Nasr-El-Din 2015). The 

distribution for the Pb(II) species was simulated using the Visual MINTEQ software, taking 

into account the pH conditions and seawater dilution with an estimated Cl- concentration 

of 9 mg L-1 for the adsorption experiments. Chloride ions could form different complex 

with Pb(II) such as, PbCl+, PbCl2 (aq), PbCl3-, PbCl4-2, competing with the adsorption of 

Pb(II) on the b-HNO3 column. 
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Figure 27. Performance of Pb(II) removal and recovery in different dilutions of HS water 

samples using b-HNO3 column: 0.150 g b-HNO3, samples spiked with 1 mg L-1 Pb(II), pH 

6 and flow rate 0.5 mL min-1. 

 

The influence of Cl- concentration (1 to 20 mg L-1) on the Pb(II) adsorption process 

is show at Figure 28. As can be seen, with the increase of the Cl- concentrations the 

removal of Pb(II) decrease up to 46.7 % at Cl- concentration of 20 mg L-1. Although the 

concentration of Cl- employed is lower than the natural seawater concentration, its impact 

on Pb(II) adsorption is discernible. Notably, the influence of Cl on adsorption is more 

pronounced in a simplified system compared to a real sample. Furthermore, the presence 

of other ions in the sample can induce synergistic or antagonistic effects on the 

interference caused by Cl- in Pb(II)  adsorption. However, comparing the results obtained 

in the Figure 28, it can be considered that the greatest influence is related to the presence 

of high concentrations of Cl. 
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Figure 28. Influence of Cl- concentration on the removal of Pb(II) using b-HNO3 column, 

solutions with 1 mg L-1 Pb(II) and different Cl- (1-20 mg L-1) with flow rate 0,5 mL min-1. 

 

These results show that in the case of high salinity water samples analysis, two 

strategies can be applied to improve the recovery of Pb(II), reduce a flow rate or increase 

the dilution factor lowering the salinity, demonstrating that the proposed method is 

suitable for the removal of Pb(II) in environmental waters. At the same time, the high 

enrichment factor observed, and the good recovery obtained demonstrate that the 

method can also be used for the determination of trace Pb concentrations by ICP OES. 
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4.5. Preparation of modified MCC with Glycidyl trimethylammonium 

chloride (MCC-GTA) 

 

The functionalization of microcrystalline cellulose with glycidyl trimethylammonium 

was started using a fixed amount of MCC in a mild alkaline solution with 5 % (w v-1) of 

NaOH. The suspension was then subjected to sonication at 20 kHz for 10 h. Sonication 

was used to enhance the reactivity of hydroxyl groups (OH−) of MCC and increase the 

amount of trimethylammonium groups introduced onto the final material (Najib and 

Christodoulatos 2019). However, it was not possible to reproduce this procedure, 

because after sonication an amorphous mass of the MCC was yield, making it impossible 

to obtain fine particles for further studies. In addition, e procedure involving 10 % (w v-1) 

of NaOH and 2.5 % (w v-1) of MCC with constant stirring during 48h showed the best 

results (Siqueira Petri et al. 1999). The reaction for functionalization of de MCC-GTA is 

represented below: 

 

 

Scheme 1. Reaction for MCC functionalization with Glycidyl trimethylammonium chloride 

(MCC-GTA) 
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Figure 29 shows the FTIR spectrum of microcrystalline cellulose (MCC) as a 

control sample for comparison purpose, and MCC-GTA prepared using different amounts 

of glycidyl trimethylammonium chloride (GTAC) (9%, 18% and 36%). The three spectra 

have similar characteristic bands for that observed for pure microcrystalline cellulose 

(MCC). The most prominent bands are the O-H stretching at around 3340 cm-1, the C-H 

stretching band at around 2900 cm-1, the C-O-C stretching band at around 1050 cm-1, 

and O–H bending vibrations 1250–1420 cm−1 (Momzyakova et al. 2021). Glycidyl 

trimethylammonium has several characteristic bands that could overlap characteristics 

band of MCC, N-H stretching band at around 3300 cm-1, the C-H stretching band at 

around 2900 cm-1, and the C-N stretching band at around 1000-1200 cm-1 (M. Wang et 

al. 2022). It is also possible that the modification caused a change in the crystallinity of 

the cellulose, which could affect the intensity of the absorption bands (Momzyakova et al. 

2021), this was observe in slightly decrease in the intensity of the bans at 3340 cm-1 and 

1050 cm-1. 
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Figure 29. FTIR spectra of pure MCC and after functionalization with different amounts of 

glycidyl trimethylammonium chloride (9%, 18% and 36%). 

 

Although it was not possible to clearly identify the modification of MCC with CTAC 

by FTIR, elemental analysis showed promised results (Table 5). In Table 5 is showed the 

elemental analysis of carbon (%C), hydrogen (%H), and nitrogen (%N) in MCC and its 

derivatives, varying percentages of modifications using GTAC. The results indicate that 

as the percentage of modification increases, there is a gradual decrease in the %C and 

%H content. This suggests that the modification process leads to a reduction in the carbon 

and hydrogen composition in the modified compounds. 
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Table 5. CNH elemental analysis of MCC and MCC-GTA with different % of GTAC 

 %C %H %N 

MCC 41.47±0.13 6.55±0.01 0.02±0.01 

MCC-GTA (9%) 41.02±0.01 6.67±0.11 0.31±0.01 

MCC-GTA (18%) 40.60±0.02 6.48±0.18 0.62±0.03 

MCC-GTA (36%) 36.29±0.08 6.75±0.08 0.65±0.02 

 

Additionally, the %N content shows a significant increase with increasing 

modification percentage until stabilization over 18% (m v-1), indicating that the introduction 

of quaternary ammonium group on the cellulose structure resulting in a higher nitrogen 

content in the modified compounds. For this reason, the functionalization material using 

18% (m v-1) was selected to continue with the adsorption experiments. These findings 

provide valuable insights into the structural changes occurring during the modification 

process and highlight the impact of GTAC on the elemental composition of the resulting 

MCC-GTA derivatives. 

 

4.6. Arsenic species adsorption optimization  

 

It is important to highlight that all the experiments of fractionation and speciation 

of As was done using batch mode separation. 

 

4.6.1. Arsenic species removal as a function of pH onto MCC-GTA 
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The effect of pH on the adsorption of arsenic species (AsIII, AsV, AsB, MMA and 

DMA) onto MCC-GTA is showed in Figure 30. Each of the systems with the different 

species studied, presents a different behavior depending on the pH of the solution. MCC-

GTA shows a high affinity for As(V) between pH 6 and 7. In this interval, it can be seen 

that almost 100% of adsorption of As(V), since concentration of As in the supernatant 

was below LOD. A similar behavior of As(V) adsorption on cellulosic materials modified 

with amino groups is also reported in the literature (Anirudhan et al. 2012). However, 

these experiments did not explore the possibility to apply for speciation analysis of As. 

At pH 8, the percentage of desorption of As(V) decreased to 75% and at pH 10 it 

already decreased to almost 60%. Taking into account the speciation of As(V), it is 

important to considerer the formation of H3AsO4, H2AsO4
−, HAsO4

2− and AsO4
3−, which 

are the dominant species of As(V) in water in the pH ranges of <2.0, 2.0–6.1, 6.1–11.5, 

and >11.6, respectively (Najib and Christodoulatos 2019). 
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Figure 30. Arsenic species adsorption as a function of pH using 10 mg of MCC-GTA at 

pH 2-10. 

 

In a pH range of 6-7, H2AsO4
− is the predominant As(V) species and can be 

electrostatically attracted by the positively charged amine groups on MCC-GTA. At pH > 

8, the number of OH- groups increases and they can compete with the adsorption of As(V) 

on the material. In this pH range 6-7 where the adsorption of As(V) is maximum, species 

such as As(III) and AsB present a completely different behavior with adsorption % values 

close to 0 for As(III), and the methylated species MMA and DMA, present adsorption of 

30% and 50%, respectively. For the optimization of the adsorption parameters for the 
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development of arsenic fractionation and speciation procedure the pH was maintained 

between 6-7. 

For comparison, experiments were carried out to verify the adsorption efficiency of 

the different As species on MCC without treatment and the MCC after the activation 

process using NaOH (10 mol L-1), but without modification with GTA and the results are 

shown in Figure 31 and Figure 32, respectively. Both materials present a low adsorption 

for the species studied in the different pH conditions. These results are evidence that the 

MCC modification process with the introduction of quaternary amino groups was 

satisfactory and that these groups are directly related to the adsorption mechanism of As 

species on the modified MCC-GTA. 
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Figure 31. Arsenic species adsorption as a function of pH using pure MCC, mass 10 mg 

and at pH 6-7. 
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Figure 32. Arsenic species adsorption as a function of pH using activated MCC with NaOH 

(10 mol L-1), without modification with GTA, mass 10 mg and at pH 6-7. 

 

4.6.2. Contact time and adsorbent mass for arsenic species adsorption onto 

MCC-GTA 

 

The contact time and the mass of adsorbent are important parameters to be 

evaluated, which are related to the kinetics of the adsorption process and the adsorption 

capacity of the material, respectively. The experimental results shown in Figure 33 show 

that there were no significant differences in the adsorption of 100 g L-1 of the different 

species in different contact times of 1 - 60 min. It can be seen that the adsorption for 

As(V), at pH 6-7, is fast and efficient (almost 100% adsorption). 
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Figure 33. Contact time for arsenic species adsorption using 10 mg MCC-GTA, initial 

concentration 100 g L-1 of As species, at pH 6-7. 

 

The variation in the adsorbent mass (Figure 34) from 10 mg to 20 mg did not 

present significant differences in the adsorption profile of the varied species. For the 

following experiments, the experimental parameters were set at 1 min of contact time and 

adsorbent dose of 10 mg. 
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Figure 34. Adsorbent dose for arsenic species adsorption using MCC-GTA, initial 

concentration 0,1 mg/L and pH 6-7. 

 

4.6.3. LC-ICP OES arsenic species monitoring and oxidation process 

 

Some of the strategies for As remediation, such as precipitation combined with 

reverse osmosis or ion exchange, achieve good removal rates only if As(III) is oxidized 

(Sorlini and Gialdini 2010). With the results obtained at pH 6-7, the adsorption efficiency 

of As(V) was maximum while As(III) and AsB practically did not adsorb on the material 

under these conditions. The fractionation of the inorganic arsenic species (iAs) would be 

possible if, prior to adsorption, through an oxidation process, transforming As(III) to As(V), 
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thus allowing the adsorption of the iAs species. For this reason, the need to find some 

oxidizing agent that can provide the oxidation of As(III) without interfering in the 

adsorption and in the adsorbent structure is a challenge. Some oxidants have been 

previously reported such as chlorine dioxide, hypochlorite, potassium permanganate, and 

monochloramine for the oxidation of As(III) species to As(V) (Sorlini and Gialdini 2010). 

In this study, NaClO was selected as the oxidizing agent. 

Figure 35 shows the chromatogram for the arsenic species using anion exchange 

column PRP X-100 and ICP OES as detector. First, the elution of As(III) and AsB with 

similar retention time occurs, followed by the elution of DMA after MMA and finally As(V), 

similar results are reported in the literature (Carioni et al. 2017; Minami F. 2017). 

The oxidation of As(III) was monitored in the presence of the other species. Figure 

36 shows the chromatogram of the mixture of the arsenic species (As(III), As(V), AsB, 

MMA and DMA) before and after the oxidation process with different molar ratio between 

NaClO and the concentration of total As (R NaClO/As). As can be seen, after the oxidation 

process, occurs the decrease of the first peak (t = 120 sec) and an increase in the last 

peak (t = 350 sec) corresponding to the oxidation of As(III) to As(V). The peaks 

corresponding to AsB, MMA, and DMA appear unchanged after the oxidation process, 

which indicates that the oxidizing agent does not affect the stability of these species. The 

redox reaction involved in this process can be find below: 

 

H3AsO3  +  NaClO  ⇋  H2AsO4
-  +  Na+  +  Cl-  +  H+ 
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Figure 35. Anion exchange chromatogram of As species by LC-ICP OES: dimethyl 

arsenic (DMA), monomethyl arsenic (MMA), arsenobethaine AsB), As(V) and As(III). 
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Figure 36. Anion exchange chromatogram of As species mixture by LC-ICP OES: Mix 

(without oxidant), Mix RNaClO/As=1 (after oxidation with same molar ratio between NaClO 

and As species) and Mix RNaClO/As=2 (after oxidation with twice molar ratio between NaClO 

and As species). 
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4.6.4. Influence of sodium hypochlorite as oxidant agent on the adsorption 

of As species on MCC-GTA 

 

To verify the results obtained by LC-ICP OES for the oxidation of As(III) to As(V) 

with NaClO and using the optimized conditions for the adsorption process, the adsorption 

of the different species was studied using MCC-GTA before and after the oxidation  with 

different conditions of R NaClO/As and the results are in the Figure 37. 

0 1 2 3

0

20

40

60

80

100

%
 A

d
s

R NaClO/As

 As (V)

 As (III)

 AsB

 MMA

 DMA

 

Figure 37. Arsenic species adsorption using MCC-GTA at pH 6-7: 0 (without oxidant) and 

1, 2 and 3 (after oxidation with NaClO). 
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The presence of NaClO does not affect the adsorption of As(V) since both in the 

absence or in different concentrations of oxidant the percentage of adsorption remains 

close to 100%, the MMA and DMA methylated seems to be unaffected by NaClO keeping 

the percentage of adsorption around 50% and 30%, respectively. In the case of AsB, the 

sorption is not influenced by the presence of NaClO and is kept below 5% under different 

conditions. As expected, the adsorption of As(III) without NaClO is insignificant, in the 

presence of oxidant in different molar ratios the adsorption increases to almost 100% 

adsorption. With these results, we can conclude that the selective separation of the iAs 

species is possible through a previous oxidation process that allows transforming As(III) 

into As(V) and adsorbed on MCC-GTA.  

However, the methylated species of arsenic are not completely adsorbed, 

however, throughout the various experiments was observed systematic maintenance of 

absorption of MMAs and DMAs, which allowed proposing a fractionation and 

semiquantitative analysis of the set of the most toxic species (AsIII, AsV , MMAs, and 

DMAs) from the non-toxic specie (AsB). 

 

4.7. Analytical characteristics for the detection of As using GF AAS 

 

The optimization of GF AAS was done and standard calibration using 5, 10, 20, 

40, 60, 80 and 120 µg L-1 in pH 6-7 was used for arsenic determination. Figure 38 (blue) 

show the calibration using the standard solutions above mentioned. The LOD and LOQ 

were calculated according to IUPAC recommendations (LOD=3SB/m and LOQ=10SB/m). 

The obtained values were LOD= 7 µg L-1 and LOQ= 22 µg L-1.  
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The high efficiency of adsorption observed for As(V) and none for As(III) on the 

MCC-GTA allowed the speciation of inorganic arsenic (iAs). The calibration was 

performed in absence and presence of NaClO, as As(III) oxidant. The calibration using 

preconcentration procedure was done using a mixture of 0.25, 0.5, 1, 2 and 3 µg L-1 of 

As(III) plus 0.25, 0.5, 1, 2 and 3 µg L-1 of As(V) in pH 6-7. For calibration using As(V) 

preconcentration, volumes of 25 mL of standard solution was put in contact with 50 mg 

of MCC-TA, manually agitated for 1 min, separated, washed with 1 mL of deionized water 

and subsequently desorption was carried out with 1 mL of HCl (1 mol L-1). The 

concentration of As(V) in the eluate of standards was determined using GF AAS and 

results are show in Figure 38 (black). Afterwards, NaClO was added in all standards and 

again put in contact with 50 mg of MCC-GTA, manually agitated for 1 min, separated, 

washed with 1 mL of deionized water and subsequently desorption was carried out with 

1 mL of HCl (1 mol L-1). The concentration of As(III) + As(V) in the eluate of standards 

was determined using GF AAS and results are show in Figure 38 (red). 
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Figure 38. GF AAS standard calibration of As (blue) without preconcentration, with 

preconcentration of As(V) (black) and with preconcentration of As(III) and As(V) after 

oxidation of As(III) with NaClO (red). 

 

As can be seen in Figure 38 (red) the slope of calibration curve (0.04) from the 

preconcentration of As(III) + As(V) is almost twice the slope of calibration curve (0.02) 

observed for the preconcentration of As(V) (Figure 38, black), demonstrating the 

efficiency of the oxidation and As(V) adsorption. The LOD and LOQ were calculated 

according to IUPAC recommendations (LOD=3SB/m and LOQ=10SB/m) and the values 

for the preconcentration without NaClO, that refer only to As(V) were LOD= 0.6 µg L-1 and 
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LOQ= 2 µg L-1, and for the preconcentration with NaClO, that refer As(III) + As(V) were 

LOD= 1 µg L-1 and LOQ= 3.4 µg L-1. Comparing the slope of calibration curve without 

preconcentration with the slope of calibration curve after preconcentration, using NaClO 

(AsII + AsV), the enrichment factor was 24.3, demonstrating the capacity of concentration 

and trace analyses of inorganic species of As. 

 

4.8. Fractionation of arsenic species in water samples using MCC-GTA as 

adsorbent 

 

The identification and quantification of individual arsenic species is essential for 

understanding the distribution, environmental fate and behavior, metabolism, and toxicity 

of arsenic. Understanding arsenic speciation in water is important for managing the 

potential health risks associated with chronic arsenic exposure. Most arsenic monitoring 

studies to date include measured total arsenic and some looking at arsenic species 

(Rajakovic and Rajakovic-Ognjanovic 2018). Determination of arsenic species is of 

crucial importance to define the limits and safety of drinking water as well as in selection 

of arsenic removal technology for groundwater applications.  

By using the NaClO treatment in the fractionation of arsenic in water samples, it 

becomes possible to determine the class of species that are adsorbed or not after each 

process. Since the adsorption of the different species (AsV, MMA, DMA and AsB) onto 

MCC-GTA keep the same profile without and with the use of NaClO, and As(III) was only 

adsorbed after the oxidation to As(V) with NaClO, was possible to stablish equations to 

estimate the concentration of some species on each phase.  
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                                CAs(total)  =  CAs(ads)  +  CAs(sol)                                                        Equation 8 

 

By using Equation 9 is possible to obtain the concentration of As remained in the 

solution and by Equation 10 is possible to determine the concentration of As adsorbed 

onto MCC-GTA without the use on NaClO: 

 

CAs(sol) (I)  =  CAs(III)  +  CAsB  +  50% CMMA  +  70% CDMA             Equation 9 

CAs(ads) = CAs(V) + 50% CMMA + 30% CDMA                          Equation 10 

 

were CAs(sol) is the arsenic concentration non-adsorbed onto the MCC-GTA and reminded 

in solution, CAs(ads) is the arsenic concentration adsorbed onto the MCC-GTA, and CAs(III), 

CAs(V), CMMA, CDMA, and CAsB is the concentration of As(III), As(V), MMA, DMA and AsB, 

respectively. After use of NaClO the concentration of different species of arsenic 

adsorbed and in the solution was calculated using the same way: 

 

CAs(sol NaClO) (II) = CAsB + 50% CMMA + 70% CDMA             Equation 11 

 

CAs(ads NaClO) = CAs(V) + CAs(III) + 50% CMMA + 30% CDMA   Equation 12 

 

were CAs(sol NaClO) is the arsenic concentration non-adsorbed onto the MCC-GTA and 

reminded in solution, after NaClO addition, CAs(ads NaClO) is the arsenic concentration 

adsorbed onto the MCC-GTA, after NaClO addition and CAs(III), CAs(V), CMMA, CDMA, and 

CAsB is the concentration of As(III), As(V), MMA, DMA and AsB, respectively. Combining 

Equation 9 and Equation 11 it is possible to estimate the concentration of As(III) in the 

sample: 
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CAs(III) = CAs sol (I) - CAs sol (II)                                            Equation 13 

 

By employing these equations and analyzing the concentrations of different 

arsenic species, it becomes possible to determine which species are adsorbed onto 

MCC-GTA and which ones remain in solution through Equation 8 to Equation 12. 

Additionally, the concentration of As(III) can be determined using Equation 13, and the 

recoveries were calculated for the determined concentration of As(III) in the sample 

providing insights into the presence and distribution of this specific arsenic species in the 

water samples and the results are show in Table 6.  
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Table 6. Concentrations of As after fractionation in aqueous solution and water samples. 

1 Equation 10 (without NaClO) CAs sol (I)  =  CAs(III)  +  CAsB  +  50% CMMA  +  70% CDMA 
2 Equation 9 (without NaClO) CAs(sol)  =  CAs(III)  +  CAsB  +  50% CMMA  +  70% CDMA 
3 Equation 12 (with NaClO) CAs ads NaClO = CAs(V) + CAs(III) + 50% CMMA + 30% CDMA 

4 Equation 11 (with NaClO) CAs sol (II) = CAsB + 50% CMMA + 70% CDMA 

5 Equation 13 CAs(III) = Equation 9 – Equation 11 = CAs sol (I) - CAs sol (II)                                       

Solutions or 

River Sample 

µg L-1 added Without NaClO 

(µg L-1) 

With NaClO 

(µg L-1) 

 After addition of 

NaClO 

As total As(III) As(V) MMA DMA AsB CAs ads
1 CAs sol 

2 CAs ads 
3 CAs sol 

4 As(III) 5 As III Recovery % 

Aqueous solution  100 100 - - - - 1.6 98.4 100 < LOD 98.4 98.4  

Aqueous solution  100 - 100 - - - 100 < LOD 100 < LOD - - 

Aqueous solution  50 - - 50 - - 24.3 25.7 24.2 25.8 - - 

Aqueous solution  50 - - - 50 - 15.4 34.6 15.2 34.8 - - 

Aqueous solution  100 - - - - 100 2.1 97.9 1.7 98.3 - - 

Aqueous solution  100 50 50 - - - 49.7 50.3 100 < LOD 50.3 101  

Aqueous solution  200 50 50 - - 100 46.9 153.1 102.5 97.5 55.1 110  

Aqueous solution  100 - - 50 50 - 48.1 51.9 46.0 54.0 - - 

Aqueous solution  75 - - 24 27 24 18.4 56.6 13.1 61.9 - - 

Aqueous solution  100 25 25 - 25 25 34.0 66.0 61.9 38.1 27.9 112  

Aqueous solution 100 24 24 16 19 17 28.8 72.2 53.5 47.5 24.8 95  

River water - - - - - - - < LOD - < LOD - - 

River water  50 50 - - - - 0.3 49.7 50.0 < LOD 49.7 99.4  

River water  50 - 50 - - - 50 < LOD 50 < LOD - - 

River water  45 - - 45 - - 22.71 22.29 21.28 23.72 - - 

River water  50 - - - 50 - 16.22 33.78 15.6 34.4 - - 

River water  42 - - - - 42 0.13 41.87 0.03 41.97 - - 

River water  100 50 50 - - - 44.9 55.1 100 < LOD 55.1 110 

River water  149 52 52 45 - - 73.6 75.4 124.66 24.34 51.06 98.2 

River water  199 52 52 45 50 - 88.9 110.1 141.09 57.91 52.19 100 

River water  241 52 52 45 50 42 90.5 150.5 142.7 98.3 52.2 100 
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The results in Table 6 show that the recovery of As(III) occurs with high efficiency 

when the oxidant is used. The effective oxidation of As(III) by NaClO allows to determine 

quantitatively the concentration of As(III) in a sample. 

The concentration of As in the River Sample was below to the LOD. However, even 

considering a complex sample, the recoveries of As(III) in the sample are between 98%-

111%. Since AsB is not toxic and did not adsorb on the MCC-GTA, and after oxidation 

As(V) and As(III) (the more toxic species) are fully adsorbed on the solid phase and a 

50% of MMA and 30% of DMA (less toxic than iAs) are adsorbed on the MCC-GTA it is 

possible to do the fractionation and speciation of arsenic using a non-chromatographic 

method for screening. Important qualitative information on the arsenic toxicity present in 

the sample could be inferred from that and using this information a decision can be made 

about performing a more thorough speciation analysis. 

 

4.9. Preconcentration and speciation of iAs from water samples using 

MCC-TA 

 

Preconcentration of inorganic arsenic in water prior to detection is important 

because the concentration of inorganic arsenic in water is often extremely low and can 

be below the detection limit of the analytical method used for detection. The results of the 

iAs preconcentration and speciation analysis in water samples are presented in the Table 

7. The table provides information on the concentration of arsenic species (As(III) and 

As(V)) in the samples, both before and after the addition of known amounts of arsenic.  
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These results demonstrate the effectiveness of the preconcentration and 

speciation analysis method for arsenic in water samples. The method allows for accurate 

quantification and differentiation of As(III) and As(V) species, and the recoveries indicate 

a high level of accuracy in the analysis with values between 93%-109% for As(III) and 

96%-103% for As(V). The findings provide valuable information for assessing the 

contamination levels and potential risks associated with inorganic arsenic in water 

sources. 
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Table 7. iAs preconcentration and speciation analysis in water samples. 

Samples µg L-1 Added µg L-1 Found % Recovery 

As(III) As(V) As(III) As(V) As(III) As(V) 

Aqueous solution 2 - 1.88 ± 0.06 - 94.0 - 

Aqueous solution - 2 - 2.07 ± 0.08 - 103.5 

Aqueous solution 2 2 2.19 ± 0.09 1.92 ± 0.04 109.6 96.2 

River water - - < LOD < LOD - - 

River water 2 - 1.87 ± 0.12 - 93.6 - 

River water - 2 - 1.92 ± 0.02 - 95.9 

River water 2 2 2.18 ± 0.14 1.94± 0.05 109.2 96.9 
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5. Conclusions 

 

Microcrystalline cellulose beads (b-HNO3) were prepared in HNO3 coagulant 

medium for removal of Pb in water. The adsorption process is pH dependent, the best 

condition to carry out the removal process is at pH 6 . The reusability of b-NHO3 was 

demonstrated for nine cycles and the material showed excellent results with only a 5% 

loss in removal efficiency. For complex samples (high salinity), the adsorption process is 

dependent on the flow rate of the solution through the column and the salinity of the 

sample. A decrease in flow rate and salinity increases the Pb removal efficiency. Different 

samples of Pb(II) enriched water were tested, using the optimized conditions for 

adsorption, obtaining recoveries between 94% and 102%. Cellulose beads proved to be 

efficient for separating Pb(II) from natural water samples, and can be used for removal 

and pre-concentration for analytical determinations. The beads has an easy preparation 

as an eco-friendly material, for its use in water treatment applications. 

Microcrystalline cellulose modified with glycidyl trimethylammonium chloride (MCC-

TA) exhibits selective adsorption to As(V) at pH 6-7. NaClO is a suitable oxidizing agent 

for the transformation of As (III) into As (V), allowing the selective separation of the iAs 

species through a previous oxidation process that allows transforming As (III) into As (V) 

and adsorbed on MCC-TA. The fractionation and speciation of As in water samples allows 

obtaining important quantitative and qualitative information about the toxicity of As 

present in the samples. MCC-TA demonstrated efficiency in the quantitative separation 

of As(V), and can be used as adsorbent material for removal and preconcentration aiming 

at analytical determinations. Quantitative oxidation of As(III) to As(V) with subsequent 
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adsorption on MCC-TA can be applied as a method of speciation of iAs. The non-

adsorption of AsB and partial adsorption of MMA and DMA by cellulose modified with 

glycidyl trimethylammonium allows the fractionation of toxic species (AsIII, AsV, MMA and 

DMA) from non-toxic ones, and can be applied as a screaning method. The 

preconcentration and speciation analysis of iAs from water samples using MCC-TA 

demonstrated accurate quantification and differentiation of As(III) and As(V) species, with 

high recovery percentages ranging from 93% to 109% for As(III) and 96% to 103% for 

As(V). These results validate the effectiveness of the developed non chromatographic 

method for assessing inorganic arsenic contamination levels and potential risks in water 

sources. 
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