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Resumo 

Morales-Vicente, D. A. Caracterização da evolução dos RNAs longos não-codificadores no 
transcriptoma do cortex cerebral em desenvolvimento. 2022. (80p). Tese (Doutorado) - 
Programa de Pós-Graduação em Bioquímica. Instituto de Química, Universidade de São Paulo, 
São Paulo. 

 

As excelentes habilidades cognitivas humanas são computadas no córtex cerebral. Essa 

estrutura cerebral específica de mamíferos, dotada de notável plasticidade, tem sido o lugar de 

inovações biológicas massivas ao longo da evolução. Na última década, RNAs longos não 

codificadores (lncRNAs) surgiram como moléculas reguladoras. Eles apresentam maior 

especificidade tecidual e turnover evolutivo do que genes codificadores de proteínas e são 

altamente expressos em tecidos neurais, tornando-os candidatos interessantes para plasticidade, 

evolução e doença do cortex cerebral. Como as mudanças na expressão de lncRNAs ou a 

expressão de novo de lncRNAs impactaram o desenvolvimento do córtex cerebral? Continua 

sendo uma questão aberta. Para caracterizar as mudanças evolutivas de lncRNAs no córtex 

cerebral em desenvolvimento, usamos abordagens biológicas de sistema; primeiro, para anotar 

de forma abrangente o repertório de lncRNAs em humanos, macacos rhesus, camundongos e 

galinhas; segundo, para identificar a conservação sintênica do repertório de lncRNAs corticais 

na linhagem humana, classificando-os em grupos evolutivos em função da idade mínima 

prevista. Esses grupos de lncRNAs apresentaram diferenças nas características genéticas e na 

dinâmica de expressão, indicando uma diferença em sua funcionalidade. Ao combinar a análise 

de single-cell-RNA-seq e RNA-seq, o contexto celular da inovação do repertório de lncRNAs 

foi revelado; lncRNAs mais antigos mostraram expressão preferencial em estágios iniciais do 

neurodesenvolvimento e zonas germinativas; enquanto lncRNAs humanos específicos 

mostraram expressão preferencial em neurônios glutamatérgicos, foram enriquecidos em 

módulos coexpressos de genes específicos de humanos e desregulados em Transtorno do 

Espectro Autista. Os resultados destacam os lncRNAs como fontes genéticas da evolução do 

córtex cerebral e diversificação dos neurônios glutamatérgicos. 

 

Palavras-chaves: Cortex cerebral. Elementos transponíveis. Evolução humana. 
Neurodesenvolvimento. Neurônios glutamatérgicos. RNAs longos não codificadores. 

  



 

 

 

Abstract 

Morales-Vicente, D. A. Characterization of the evolution of long non-coding RNAs in the 
developing cerebral cortex transcriptome. 2022. (80p). Tese (Doutorado) - Programa de Pós-
Graduação em Bioquímica. Instituto de Química, Universidade de São Paulo, São Paulo. 

 

The human outstanding cognitive abilities are computed in the cerebral cortex. This 

mammalian-specific brain structure has been the place of massive biological innovations 

throughout evolution. Over the past decade, long non-coding RNAs (lncRNAs) have emerged 

as gene regulatory elements with greater tissue-specificity and evolutionary turnover than 

mRNAs. lncRNAs are highly expressed in neural tissues, making them candidates for cerebral 

cortex plasticity, evolution, and disease. Whether changes in the expression or the de novo 

expression of lncRNAs have impacted the development and evolution of the human cerebral 

cortex remains an open question. To characterize the evolutionary changes of lncRNAs in the 

developing cerebral cortex, we used system biology approaches to comprehensively annotate 

the repertory of lncRNAs in humans, rhesus macaques, mice, and chickens; and to identify the 

syntenic conservation of the cortical lncRNA repertory in the human transcriptome, classifying 

human lncRNAs into evolutionary groups as a function of the predicted minimal age. Those 

groups of lncRNAs showed differences in genomic and regulatory features and expression 

dynamics, indicating differences in their functionality. By combining single-cell RNA-seq and 

weighted gene co-expression network analysis, the cellular context of the innovation of the 

lncRNAs repertory was unveiled; older lncRNAs showed preferential expression in early 

neurodevelopmental stages and germinative zones, while newer lncRNAs showed preferential 

expression in synaptogenic glutamatergic neurons and Human-specific gene co-expression 

modules. Additionally, newer lncRNAs were dysregulated in autism spectrum disorders, a 

Human-specific disease. These results highlight the de novo expression of lncRNAs as genetic 

sources of cerebral cortex evolution, especially for the diversification and dysfunction of 

glutamatergic neurons. 

 

Keywords: Cerebral cortex. Glutamatergic neurons, Human evolution. Long non-coding 
RNAs. Neurodevelopment. Transposable elements. 
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1 Introduction 

1.1 The cerebral cortex 

1.1.1 The cerebral cortex development 

The cerebral cortex is a primary information processing center of the central nervous 

system, key to the evolution of higher cognition, and affected in neurodevelopmental disorders.  

It comprises billions of excitatory projection neurons (glutamatergic) and inhibitory 

(GABAergic) interneurons assembled in local circuits intertwined with glial and vascular cells 

arranged in a six-layered architecture on the outer surface of the brain. This structure unique to 

mammals develops from the dorsal pallium in a precisely orchestrated process known as 

corticogenesis (Figure 1) (Libé-Philippot & Vanderhaeghen, 2021; Molnár et al., 2019).   

 

 

Figure 1. Schematic depiction of the distinct stages of cortical cell populations development. Apical 
progenitors on the dorsal pallium expand the cell progenitor pool by symmetric division at the beginning of 
corticogenesis. The neurogenic phase starts with the asymmetric division of aRGCs at the VZ, which directly 
produce immature projection neurons that will mainly populate the deep layers (DL) of the cortical plate, layers 5 
and 6. Additionally, aRGCs give rise to IP cells that populate the SVZ and undergo a few symmetric divisions 
before generating immature projection neurons. At late neurogenic stages, aRGCs detach from the VZ and occupy 
the SVZ, becoming oRGCs that divide asymmetrically to produce upper layer (UL) cortical projection neurons, 
layers 2, 3, and 4. After the neurogenic period, oRGCs become gliogenic and start the generation of OPCs and 
dividing astrocytes. OPCs perdure in adulthood and continuously produce oligodendrocytes. Cajal-Retzius cells, 
inhibitory interneurons, microglia, and vascular cells that populate the cortical plate originate outside the dorsal 
pallium and migrate tangentially at different stages of corticogenesis to integrate into the developing cortex.   
Abbreviations: aRGCs, apical radial glial cells; CP, cortical plate; CR, Cajal-Retzius cells; DL, deep layer; IP, 
intermediate progenitors; MZ, mantle zone; NE, neuroepithelial cells; OPC, oligodendrocyte progenitor cells, 
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oRGCs; outer radial glial cells; RBC, red blood cells; SP, subplate neurons; SVZ, subventricular zone; UL, Upper 
layer; VZ, ventricular zone.   

 

Corticogenesis begins with the progenitor pool expansion (Figure 1, dark blue box) by 

symmetric division of the neuroepithelial cells (NEs) in the ventricular zone (VZ) of the dorsal 

pallium. While dividing, NEs progressively transition into apical radial glial cells (aRGCs), 

which produce neurons directly or indirectly (Figure 1, light blue box). aRGCs can amplify 

themselves by symmetric division or divide asymmetrically to make immature glutamatergic 

neurons at the VZ.  Apical progenitors located at the VZ are characterized by the expression of 

the paired-box transcription factor (TF) PAX6. Morphologically, aRGCs are bipolar cells that 

extend a short apical process to the ventral surface of the dorsal pallium and a long basal process 

to the pial surface, generating radial scaffolds that expand across the cortical thickness. Newly 

established immature neurons that express the basic helix-loop-helix (bHLH) TFs NEUROD2 

and NEUROD6 use these scaffolds to migrate inside-out radially to their destination in the 

cortical plate (CP); neurons born at early neurogenesis will mainly produce transient subplate 

neurons (SP) at first, characterized by the expression of the TFs CRYM and NR4A2; and after 

that, projection neurons from deep cortical layers (DL) L6 and L5 that extend axons out of the 

telencephalon to the thalamus, brainstem, and spinal cord, and are molecularly characterized by 

the expression of the T-box brain TF TBR1 and the C2H2-type zinc finger TF BCL11B (Di 

Bella et al., 2021). 

Additionally, the asymmetric division of aRGCs gives rise to intermediate progenitor 

cells (IPCs) that may undergo a few symmetric divisions before going into terminal divisions 

generating immature projection neurons. Unlike aRGCs, IPCs cells have multipolar 

morphology, express the T-box brain TF TBR2, and populate the subventricular zone (SVZ) 

that lies on top of the VZ. aRGCs progressively change their molecular identity, losing their 

apical process, detaching from the ventricle, and moving toward the SVZ, becoming basal 

RGCs or neurogenic outer RGCs (oRGCs) (Figure 1, green box). At a molecular level, oRGCs 

are like aRGCs but have a more robust expression of MOXD1, HOPX, PTPRZ1, TNC, and 

FAM107A genes (Pollen et al., 2015). oRGCs undergo symmetric divisions at the SVZ to 

increase the cortical progenitor pool and asymmetric divisions to produce late-born projection 

neurons that mainly populate the upper cortical layers (UL) L4, L3, and L2 that extend 

intratelencephalic axons to other cortical locations.  At the molecular level, UL projection 

neurons express the homeobox TFs SATB2, CUX1, and CUX2. After their neurogenic period, 

oRGCs change their molecular identity to start the production of local glial progenitor cells 
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(Figure 1, brown box), which culminate in the production of oligodendrocyte progenitor cells 

(OPC), recognized by the expression of the bHLH TFs OLIG1 and OLIG2, which produce 

oligodendrocytes throughout the lifespan of the animal, and dividing astrocytes, that selectively 

express GFAP and the aquaporin AQP4 (Di Bella et al., 2021; Fan et al., 2018; Trevino et al., 

2021; Zhong et al., 2018).  

In addition to the locally originated excitatory projection neurons and glial cells, other 

cellular components of the cerebral cortex develop outside the dorsal pallium and migrate to be 

integrated into the developing cortical plate. Those cells include Cajal-Retzius cells (CRs), 

cortical interneurons, and microglia (Figure 1, left). CRs are developmental transient 

glutamatergic neurons that tangentially migrate from the pallial boundaries and populate the 

cortical mantle zone (MZ) or cortical layer L1 at the early stages of neurogenesis. They produce 

the extracellular matrix protein REELIN, which is crucial for proper cortical layering of 

glutamatergic neurons (Frotscher, 1998). GABAergic interneurons, the inhibitory neural 

component of the cortical circuitry, originate in the ventral pallium, mainly from the medial 

ganglionic eminence (MGE) and the caudal ganglionic eminence (CGE), from where they 

migrate tangentially to reach the developing cortical plate through different migratory streams. 

Interneurons typically express the homeobox TFs DLX1 and DLX2 and the glutamic acid 

decarboxylases GAD1 and GAD2. Meanwhile, microglia, the hematopoietic-derived cells that 

function as brain macrophages, originate from the yolk sac at the early embryonic stages, from 

where they migrate through the developing vasculature to infiltrate the cortical plate before the 

closure of the blood-brain barrier (Di Bella et al., 2021; Fan et al., 2018; Thion, Ginhoux, & 

Garel, 2018; Zhong et al., 2018).  

1.1.2 Evolution of the cerebral cortex 

Most of our understanding of corticogenesis comes from studies of model organisms, 

mainly from the developing cortex of mice. Although the cellular and molecular mechanisms 

of corticogenesis are conserved, clade-specific differences exist; understanding these 

differences at the molecular level is critical to unveiling the evolution of human higher 

cognition and having a deeper comprehension of how they are disrupted in disease (Silbereis, 

Pochareddy, Zhu, Li, & Sestan, 2016). 

The six-layered cerebral cortex or neocortex evolved from the dorsal pallium of 

mammals after they diverged from sauropsids, which include reptiles and birds, around 300 

million years ago (MYA). The dorsal pallium of sauropsids is arranged in different structures. 
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The anterior dorsal pallium is usually assembled in a three-layer cortex in reptiles. In birds, the 

pallium is organized as a series of nuclei, the largest of them being the dorsal ventricular ridge 

(DVR) located in the lateral and ventral pallium (Tosches, 2021), while the dorsal pallium is a 

reduced structure named hyperpallium.  The remarkable plasticity of pallial architectures is not 

limited to extensive divergence periods; in mammals, the cerebral cortex is endowed with 

incredible plasticity, evident in the diverse neocortical sizes and shapes (Lui, Hansen, & 

Kriegstein, 2011; Silbereis et al., 2016). Those differences have resulted from molecular 

changes at the regulatory and genetic level in corticogenesis that tuned the conserved 

transcriptional landscape to fit the neural processes demand of the host species. 

Primates present an expanded brain with an increased number of total neurons compared 

to most mammalian species. The human cerebral cortex has further expanded, differentiating 

us from our closest living relatives. These expansions are likely responsible for the augmented 

computational capacity of the human cerebral cortex and have been associated with the 

evolution of cognition in humans. At the cellular level, the human brain expansion is the result 

of an augmented proliferative capacity of RGCs, especially from the outer SVZ (oSVZ) (Lui et 

al., 2011). Using single-cell RNA-seq, it has been identified that human oRGCs express several 

protein-coding genes that self-sustain a niche that favors their self-renewal at the oSVZ (Pollen 

et al., 2015). Additionally, it has been found that modern segmental duplications lead to the 

evolution of Human-specific paralogs of the NOTCH signaling pathway, which are expressed 

in RGCs, enhancing their proliferative capacity (Fiddes et al., 2018).   

The further selective expansion of the oRGCs in human corticogenesis leads to the 

expansion of the cerebral cortex, especially UL pyramidal glutamatergic neurons, mainly 

derived from late neurogenesis at the oSVZ.  Human UL glutamatergic neurons present a high 

diversity measured at transcriptional and electrophysiological levels compared to the mouse 

(Berg et al., 2021). This expansion of the Human ULs has been associated with a more 

significant number of intratelencephalic neuron connections and the evolution of more efficient 

pyramidal neurons that leads to an increase in the computation capacity of the human brain.  

This extensive work has been done in elucidating the molecular basis of the evolution 

of the cerebral cortex in the human lineage is mainly focused on changes in protein-coding 

genes; expanding this analysis to the human non-coding genome would improve our 

understanding of the gene-regulatory changes that have been taken place throughout 

corticogenesis and lead to the evolution of the human cerebral cortex. 
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1.2 Long non-coding RNAs 

1.2.1 Genomic and molecular features of long non-coding RNAs 

 The central dogma of molecular biology state that genes are transcribed into messenger 

RNAs (mRNAs) to produce proteins, the functional blocks of life. Since the appreciation of the 

extensive transcription of the human genome outside protein-coding sequences, thousands of 

non-coding genes have been annotated. Long non-coding RNAs (lncRNAs) are non-coding 

genes transcribed into RNAs longer than 200 nucleotides that do not translate into functional 

proteins (Statello, Guo, Chen, & Huarte, 2021).  lncRNAs represent a heterogenous group of 

RNAs and can be classified regarding their genomic position to the nearest protein-coding 

genes. lncRNAs transcribed in the opposite strand of protein-coding genes are known as 

antisense lncRNAs if they overlap the gene body, and bidirectional lncRNAs if they overlap 

the promoter region; similarly, lncRNAs transcribed from protein-coding introns are known as 

intronic lncRNAs, and those overlapping a protein-coding gene in the same direction are 

classified as overlapping lncRNAs. Finally, lncRNAs that do not overlap any protein-coding 

locus are long intergenic non-coding RNAs (lincRNAs).  

This heterogeneous group of lncRNAs is transcribed by the RNA pol II and shares 

molecular features with mRNA, such as being 5’ capped, spliced, and polyadenylated. Despite 

the molecular similarities with mRNAs, lncRNAs also present features that differentiate them, 

including increased tissue-specificity compared to mRNAs, distinct chromatin modifications at 

the promoter region, cell nucleus enrichment, inefficient splicing, and less stability than 

mRNAs (Ransohoff, Wei, & Khavari, 2018; Rinn & Chang, 2020). Although these features 

may point to lncRNAs as mere transcriptional noise, it has been shown in the past decade that 

at least a fraction of lncRNAs or the act of their transcription have gene-regulatory functions. 

An excellent example of functional lncRNAs is XIST, one of the most extensively studied 

lncRNAs, which through interactions with RNA binding proteins, directs chromosome X 

inactivation in mammals. By silencing the expression of most of the genes from the 

chromosomes where it is expressed, XIST has a gene-regulatory effect in cis. Nevertheless, 

other lncRNAs may have gene regulatory functions in trans, away from the loci where they are 

expressed (Rinn & Chang, 2020).  

Interestingly, it has been shown that, after testes, neural tissues express the most 

significant number of lncRNAs in tetrapods (Anamaria Necsulea et al., 2014). Furthermore, 

several lncRNAs have been characterized as functional regulatory RNAs of different stages and 
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cell populations of mice corticogenesis, such as Pnky, Sox2ot, Evf2, and Nr2f1-as1 (Ang et al., 

2019; Cajigas et al., 2018; Knauss et al., 2018; Ramos et al., 2015).  

1.2.2 Evolution of long non-coding RNAs 

Unlike protein-coding genes that mainly have evolved by gene duplications, lncRNAs 

have preferentially evolved by de novo expression and exonization mediated by transposable 

elements (TEs). It has been shown that up to 75% of human lincRNAs transcripts harbor at least 

a fraction of a TE sequence in their transcript bodies. TEs contributes to every step of lncRNA 

biogenesis by providing sequence motif for splicing sites, polyadenylation signals, and 

regulatory sequences at promoter regions. Additionally, TE stretches in lncRNAs show more 

significant evolutionary constraints than non-TE sequences; even more, it has been proposed 

that TEs operate as functional modules of lncRNAs, by providing sequence motifs for 

interaction with RNA binding proteins. TEs also provide nuclear localization signals to 

lncRNAs, such as the primate-specific Alu sequences (Johnson & Guigó, 2014; Kapusta et al., 

2013; Lubelsky & Ulitsky, 2018). 

The de novo expression and the significant contributions of TEs to the evolution of 

lncRNAs explain the reduced constraint under which lncRNA evolved compared to protein-

coding genes. This faster evolutionary turnover of lncRNAs compared to mRNAs and their 

gene-regulatory functions make lncRNAs good candidates for molecular drivers of biological 

innovations. In fact, the first identified highly evolving Human-specific region (HAR, human 

accelerated region) was the lncRNA HAR1F, expressed in Cajal-Retzius cells of the developing 

neocortex (Katherine S. Pollard et al., 2006). In addition, it has been shown in mammals that 

lncRNAs are a source of cellular plasticity due to the capacity to acquire new functional 

modalities (Guo et al., 2020). Overall, the unique features of lncRNAs and their increased 

tissue-specificity and enrichment in neural tissues indicate that lncRNAs are good candidates 

for genetic sources of evolution and diversification of the human cerebral cortex.  

 

 



 

 

20

2 Aims and objectives 

2.1 Aims 

 Characterize the molecular basis of the evolution of the lncRNA repertory expressed 

throughout human corticogenesis and investigate the potential role of lncRNAs in the evolution 

of the cerebral cortex.   

2.2 Objectives 

1. Development of a bioinformatics pipeline to comprehensively annotate the repertory of 

lncRNAs in the developing brain of humans, macaques, mice, and chickens. 

2. Development of a bioinformatics methodology to identify the minimal evolutionary age 

of lncRNAs based on their syntenic conservation between species and cluster them into 

evolutionary groups. 

3. Identify the set of lncRNAs expressed throughout human corticogenesis and 

characterize the genomic similarities and differences of the distinct evolutionary groups 

of cortical lncRNAs. 

4. Examine the cellular and developmental context in which lncRNA innovations arise in 

human corticogenesis. 

5. Assessment of the contribution of distinct evolutionary groups of lncRNAs to preserved 

and lineage-specific modules of co-expressed genes in human corticogenesis. 

6.  Assessment of the dysregulation of the distinct evolutionary groups of cortical 

lncRNAs in neurodevelopmental disorders. 
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3 Materials and Methods 

3.1 Tissue collection, RNA extraction, and sequencing 

 Gallus gallus fertilized eggs were purchased from a local provider and incubated at 

38°C and 50% humidity for seven and ten days.  Embryos were collected and decapitated; 

brains were removed from the heads, and forebrains were further dissected.  For developmental 

day 7 (E7), the whole pallium and subpallium were retrieved; for developmental day 10 (E10), 

the entire subpallium, the dorsolateral pallium, and the medial pallium were retrieved. Three 

brain sections from different embryos were pooled per working sample without considering 

biological sex. Brain sections were dissociated using pestles in 1 ml TRIzol and frozen at -80 

°C until the day of RNA isolation.   

 For RNA isolation, 200 µL of chloroform was added per 1 ml TRIzol and centrifuged 

for 15 min and 16000 g at 4 °C; supernatants were transferred to new microtubes. One volume 

of ethanol 100% was added to each sample, then transferred to RNeasy Mini spin columns and 

the RNeasy Micro-kit protocol was followed.  

 RNA samples were quantified using Qubit2 Fluorometer (ThermoFisher), and their 

integrity was measured using Bioanalyzer 2100 (Agilent). RNA integrity number (RIN) of 

samples went from 7.5 to 8.5, which indicates the good quality of the samples.  For each tissue-

developmental window, four biological replicates were prepared and sent for sequencing to 

BGI Genomics (Shenzhen, China). 

3.2 Bulk RNA-seq processing 

 Public libraries reads were retrieved from the SRA repository at GenBank (NCBI, USA) 

using fasterq-dump with the following parameter “--split-files”; the integrity of the data was 

checked using vdb-validate, and all files were identified as consistent. Mapped bam files for 

the rhesus macaque were retrieved from the synapsis repository 

(https://www.synapse.org/#!Synapse:syn17093056/tables/Rhesus mRNA-seq) using the repository 

API for UNIX, then transformed into fastq files using the bedtools (Quinlan & Hall, 2010) 

bamtofastq function. Raw fastq files generated in the present work and sequenced at BGI 

Genomics were retrieved from a dedicated AMAZON Web services account. Raw fastq files 

from all sources were then processed with fastp (Chen, Zhou, Chen, & Gu, 2018) to remove 

read adapters and to check read quality before and after trimming. Trimmed fastq files were 

mapped to the reference genome using STAR (Dobin et al., 2013) version 2.5.4b using the 
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following parameters “--outReadsUnmapped Fastx --chimSegmentMin 12 --

chimJunctionOverhangMin 12 --alignSJDBoverhangMin 10 --alignMatesGapMax 100000 --

alignIntronMax 100000 --chimSegmentReadGapMax 3 --alignSJstitchMismatchNmax 5 -1 5 5 

--runThreadN 94 --outSAMstrandField intronMotif --outFilterMultimapNmax 20 --

outFilterType BySJout --outFilterMismatchNoverReadLmax 0.04 --alignIntronMin 20 --

outSAMtype BAM Unsorted”. The latest reference genomes available: are hg38, rheMac10 

(Warren et al., 2020), mm39 (Church et al., 2011), and galGal6 (Bellott et al., 2017; Steffen, 

Petti, Aach, D'Haeseleer, & Church, 2002). They were downloaded from the USCS Genome 

browser and used for humans, rhesus macaque, mice, and chickens, respectively. The resulting 

unsorted BAM files were sorted using samtools (H. Li et al., 2009). 

3.3 Iso-seq long reads processing 

 For the rhesus macaque, raw unmapped bam files from the SRA project PRJNA476474 

were downloaded directly from the SRA repository using GNU wget. Standard Isoseq3 pipeline 

was used to obtain polished, high-quality fasta files for all processed samples. Additionally, for 

the chicken (Gallus gallus), fasta files from Iso-seq sequencing deposited at SRA were 

downloaded using fasterq-dump, as described above. Detailed information on all libraries used 

can be found in supplementary table 1.   

 Long reads fasta files were mapped to the reference genomes using Minimap2 (H. Li, 

2018) with the following parameters “-ax splice -uf --secondary=no -C5 -O6,24 -B4”. Output 

sam files were converted to bam files, sorted, and indexed using samtools. All output sam files 

from the same species were collapsed into a gtf file using the function 

collapse_isoforms_by_sam.py from Cupcake with default parameters. Spurious transcripts 

were removed from the collapsed gtf file using the functions sqanti3_qc.py and 

sqanti3_RulesFilter.py from Squnti3 (Tardaguila et al., 2018) with default parameters. 

3.4 Bulk RNA-seq quantification and differential expression analysis 

 Gene expression was quantified by FeatureCounts from the Rsubread package (Liao, 

Smyth, & Shi, 2019) using the new assemblies for each assessed species as a reference with the 

following parameters “allowMultiOverlap = T, countMultiMappingReads = F, juncCounts = T, 

nthreads = 96”.  The raw expression matrix was batch corrected for humans using ComBat-seq 

(Zhang, Parmigiani, & Johnson, 2020) as it was done in the original PsychEncode publication 

(M. Li et al., 2018). TPM values were calculated from raw expression matrices, as previously 

shown by (Zhao et al., 2021): 
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𝑇𝑃𝑀𝑖 =  
௤௜/௟௜

∑ (௤௝/௟௝)ೕ
*106  

Where TPMi is the TPM value of gene i, qi is the number of reads mapped in gene i, li 

is the length in kilobases of gene i, and ∑ (𝑞𝑗/𝑙𝑗)௝  is the sum of counts/length ratios of all genes. 

Only genes with a TPM value greater than 0.5 for all samples from developmental 

window/brain region pairs were kept for the subsequent analyses. Filtered TPM matrices were 

normalized using variance stabilization normalization (Huber, von Heydebreck, Sültmann, 

Poustka, & Vingron, 2002).   

To identify differentially expressed genes (DEG), the R packages edgeR (McCarthy, 

Chen, & Smyth, 2012) was used. Briefly, lowly-expressed genes (less than 0.5 CPM in all 

samples of a variable) from raw count matrices were removed. Filtered matrices were used to 

identify DEG using the quasi-likelihood test; resulting P values were FDR corrected, and all 

genes with an FDR less than 0.05 were identified as DEGs.  

3.5 Single-cell RNA-seq processing 

 Fastq files were retrieved from SRA using fasterq-dump as described above but with 

the following parameters “fasterq-dump -S -O /output/dir -e 94 --include-technical”. Fastq files 

were then mapped to the reference genome using STARsolo (Kaminow, Yunusov, & Dobin, 

2021) version 2.7.9a with the following parameters “--soloType CB_UMI_Simple --

soloCBwhitelist /barcodes/dir --soloBarcodeMate 0   --soloBarcodeReadLength 0 --

soloCBstart 1 --soloCBlen 8 --soloUMIstart 9 --soloUMIlen 8 --readFilesCommand zcat --

runThreadN 94 --soloStrand Forward --clipAdapterType CellRanger4 --readFilesIn READ1.fq 

READ2.fq --soloCellFilter  None --soloFeatures Gene Velocyto GeneFull --soloMultiMappers 

PropUnique ”. Raw, sparse matrices from all samples were loaded into R (Team, 2018) and 

merged using Seurat (Hafemeister & Satija, 2019). Cells with less than ten thousand and more 

than one million UMIs, with less than a thousand detected genes, and with more than 5% of all 

counts mapped to mitochondrial genes were removed from further analysis.  Raw, sparse 

expression matrix was normalized using SCT transformation while regressing by the percentage 

of expressed mitochondrial genes, cellular-cycle score, number of UMIs, and the number of 

identified genes using the following parameters “method = "glmGamPoi", vst.flavor  = "v2", 

variable.features.n = 5000, vars.to.regress = c("percent.mt", "CC.Difference", "nCount_RNA", 

"nFeature_RNA")”.   
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   Single-cell clusters were identified using the Seurat function FindNeighbors 

considering the first fifty dimensions and the function FindClusters with resolution 2.5. Markers 

for all clusters were identified using the functions FindAllMarkers with the following 

parameters “assay = "SCT", test.use = "wilcox", only.pos = T, logfc.threshold = 0.25, min.pct 

= .25, return.thresh = 0.05, densify = T”. Known cell population gene markers in the literature, 

which are cited in the Introduction above, were used to annotate the identified clusters to 

different cortical cell-types. 

3.6 GTF building 

 To generate consensus gene models from short-reads, sorted bam files from bulk RNA-

seq libraries were processed using scallop (Shao & Kingsford, 2017) with the following 

parameters “--min_transcript_length_base 200 --min_mapping_quality 250 --

min_splice_bundary_hits 1”. To choose the correct parameter for “--library_type” the type of 

library was assessed before running scallop; for the parameter “--min_num_hits_in_bundle” 10 

was chosen if the library possesses less than 20 million uniquely mapped reads. Otherwise, 20 

was used. After generating gtf files for every sample, the monoexonic transcripts were removed 

from unstranded libraries. Additionally, the monoexonic transcripts were removed from rRNA-

depleted libraries using gffread (Pertea & Pertea, 2020) with the following parameter “gffread 

in_gtf_file -F -U -T -o  /out_put/file”.  

 GTF files from all samples of the same developmental window/brain region were 

merged into a consensus transcriptome using taco (Niknafs, Pandian, Iyer, Chinnaiyan, & Iyer, 

2017) before generating the final gtf files, to avoid overrepresentation of libraries of a 

tissue/brain region group, which would bias the construction of the final transcript model, with 

the following parameters “--gtf-expr-attr RPKM --filter-min-expr 0 --filter-min-length 200 --

isoform-frac 0.01”. Consensus transcriptomes were merged into a final gtf file using taco with 

similar parameters. The output consensus file was filtered for readthrough, mapping errors, 

intron-retention, and run-on polymerase transcripts using gffcompare (Pertea & Pertea, 2020) 

with the species reference transcriptome as a model to generate the final consensus gtf file. 

3.7 Coding potential identification 

 Coding potential was assessed for all transcripts in the final gtf files using  CPAT3 

(Wang et al., 2013), FEELnc (Wucher et al., 2017), and CPC2 (Kang et al., 2017).  For CPAT 

and CPC2, gtf files were transformed into fasta files, first generating intermediate bed files with 

gffread, then using getfasta from samtools with the following parameters “-split -name -s”. The 
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fasta files were used as input to generate coding potential values for each transcript. For 

FEELnc, the reference gtf files for each evaluated species were used to train the random forest 

model, running the tool with the following parameters “-n 6000,6000 --learnorftype=3 --

testorftype=3”.  Tables with output coding potential scores can be found in supplementary table 

2. 

3.8 Open reading frame identification and annotation 

 Transdecoder 5.5.0 (Douglas, 2018) was used to identify bona fide ORFs; additional 

Pfam and Uniprot matches were provided to improve the identification of ORFs. The HMMER 

3.1b2 tool  (Mistry, Finn, Eddy, Bateman, & Punta, 2013) was used to identify Pfam matches 

with the following parameters “hmmscan --domtblout pfam.domtblout --tblout file_name.tsv -

E 1e-5”. To identify Uniprot matches, blastp was used with the following parameters “-

max_target_seqs 1 -outfmt 6 -evalue 1e-5”. Final identification of ORFs was carried out using 

the function TransDecoder.Predict with the following parameters “--retain_pfam_hits 

pfam.domtblout --retain_blastp_hits blastp.outfmt6”. Additionally, gff3 files were generated 

for each species containing the genomic coordinates of the ORFs, information that was added 

to the final consensus transcriptomes. Finally, eggNOG-mapper (Huerta-Cepas et al., 2017) 

matches were identified for all identified ORFs using the UNIX standalone tool emapper 2.0.1 

with default parameters. Output annotations of identified ORFs are found in the supplementary 

table 2. 

3.9 Transposable element content identification 

 Repetitive elements from each studied species were downloaded from the UCSC 

Genome Browser database (https://genome.ucsc.edu), keeping only the records from 

Transposable elements (TE) families SINE, LINE, LTR, DNA, Retroposon, and RC. TE tables 

were converted to bed files using custom Rscripts and sorted using UNIX sort.  

 For identifying ORFs with more than 50% of their gene body coming from a TE 

element, protein-coding sequence (CDS) bed files were intersected with TE bed files using 

bedtools intersect function with the following parameters “-s -wo” to ensure strand-specificity 

of the intersection. The total sum of TEs intersection was divided by the length of the CDS; 

CDS with more than 50% of their gene body coming from a TE element were tagged as 

“Transposable element”. 
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 To identify the TE class distribution in CDS, mRNA untranslated regions (UTRs), 

pseudogenes, and lncRNAs bed files from the new assemblies of each species were intersected 

with the TE bed file. TEs that intersected at least ten bp with a gene were kept for further 

analysis. The percentage of the gene body containing TEs was calculated as the ratio of the total 

length of all TEs intersecting with a gene to the gene length.  

3.10 Identification of syntenic lncRNAs 

 To identify syntenic conserved lncRNAs between studied species, two approaches were 

used. Whole genome alignment and long transcript mapping. In both cases, all isoforms from a 

gene were merged into a metagene annotation generating new bed files of metagenes. Then, 

sequences matching with transposable elements were removed from the metagene coordinates 

using bedtools subtract. Fasta files for metagene annotations without TEs were generated using 

bedtools getfasta, as shown before. TEs were removed because their repetitive nature may 

complicate the mapping processes.   

 In the whole genome alignment approach (liftover), metagene bed files were lifted to 

the other species genome coordinates using the standalone liftover function from UCSC 

Genome Browser with the following parameters “-minBlocks=0.01 -minMatch=0.01”.   

 In the transcript mapping approach, metagene fasta files were mapped to the genome of 

the other species using Minimap2 with the following parameters “-ax splice -uf --secondary=no 

-C5 -O4,24 -A2 -B4 -G 100K”. The output sam files were converted to bam sorted files using 

samtools and then to bed files using bedtools bamtobed.  

 Bed files containing mapped lncRNAs from one species to the other genome were 

joined, removing all transferred genes from the transcript mapping approach if they were 

transferred using the whole genome alignment approach. The final set of transferred genes 

coordinates was used to identify the syntenic lncRNAs, as described in the results sections and 

shown in Figures 7A, 7B, and 7C. 

 TEs enormously contribute to the gene body of lncRNAs (Kapusta et al., 2013); 

removing TEs from the gene body of lncRNAs might misidentify some syntenic conservation. 

So, the same approaches were undertaken but without removing the TE insertions from the 

lncRNA body. The syntenic information was added when it identified a strong syntenic 

homologous in a more distant species. 

3.11 Identification of expression-matched genes 
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 The R package “optmatch” (Hansen & Klopfer, 2006) was used to identify the set of 

expression-matched genes among the evaluated gene categories, using the mean variance 

stabilized expression of all samples from the same gene as input. 

3.12 Identification of closest genes to lncRNAs 

 The bedtools function closest was used to identify the most proximal genes with the 

following parameters “-d”, and for that, a metagene bed file for protein-coding genes and small 

RNAs was built for each species. Only genes located in the genome around 100 kb of lncRNAs 

were kept for the following analysis. Gene ontology (GO) analysis of the closest protein-coding 

genes was undertaken using the R package clusterProfiler (Wu et al., 2021; Yu, Wang, Han, & 

He, 2012), and using as input the list of closest protein-coding genes to a minimal age (MA) 

category and the list of all closest protein-coding genes as background.   

3.13 ATAC-seq processing 

 To identify the open chromatin regions (OCR) of cortical tissues at mid-gestation stages, 

ATAC-seq libraries from the dbGaP project phs001438 were downloaded using fasterq-dump. 

Adapters were removed using fastp resulting in trimmed fastq files that were mapped to the 

human genome hg38 using bwa mem version 0.7.17-r1198-dirty (H. Li, 2013). Output sam files 

were further processed using PicardTools version 2.18.23-SNAPSHOT ("Picard toolkit," 

2019). First, sam files were sorted using the function SortSam, then deduplicated using the 

function MarkDuplicatesWithMateCigar. Output deduplicated bam files were sorted using 

samtools sort. Peaks were called for germinative zone and cortical zone samples, separately, 

using Genrich version 0.6.1 (Gaspar, 2018) with the following parameters “-j  -y  -r  -e chrM”.  

Peaks identified overlapping the exclusion list from ENCODE 

(https://www.encodeproject.org/files/ENCFF356LFX/) were removed from further analysis.  

3.14 Identification of promoter features 

 Chromatin modification peaks H3K27ac, H3K4me1, and H4K20me3 of cortical tissues 

at mid-gestation stages were downloaded from the GEO project GSE149268.  For every gene, 

the promoter (2 kb downstream and 1 kb upstream the TSS of a transcript) from the longest 

isoform with the most significant number of exons was retrieved and used in the following 

analysis. Additionally, a similar number of non-redundant random regions that did not overlap 

with the identified promoters of the same length (3 kb) were produced using bedtools shuffle 

for enrichment analysis.  
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 Promoters from expression-matched genes from all assessed categories were retrieved, 

and a set of an equal number of random genomic regions for further processing. OCRs, 

H3K27ac, H3K4me1, and H4K20me3 coordinates were intersected with the set of working 

promoters and random regions using bedtools intersect, and the number of chromatin features 

intersected for each gene category was assessed. Fisher hypergeometric test was performed 

between the set of random sequences and the promoters from a gene category. P values were 

FDR corrected, and all features with an FDR less than 0.05 were identified as enriched if the 

odds ratio is greater than one and depleted when the odds ratio is less than one.  

 Non-redundant remap 2022 data (Hammal, de Langen, Bergon, Lopez, & Ballester, 

2022) were retrieved and intersected with the set of working promoters and random regions 

using bedtools intersect. The absolute number of different proteins bound to each gene category 

and random genomic regions was assessed and compared. Significant differences in the 

distribution of the gene categories were assessed using Wilcoxon test. 

3.15 lncRNA expression dynamics modeling 

 The R package ggplot2 (Wickham, 2016) was used to plot the expression dynamics of 

the gene categories throughout human corticogenesis, using variance stabilized TPM as input 

values for the function geom_smooth. 

3.16 Statistical Analysis 

 All statistical plots and tests were obtained using the statistical package R version 

4.1.0 (Team, 2018). 
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4 Results 

4.1 Development of bioinformatic pipelines to assemble new transcriptomes help to 

improve the annotation of lncRNAs 

 It is possible that lncRNAs from scarce cell types of the brain or lncRNAs expressed at 

a low level might not have been annotated yet, as it has been reported that neural tissues are 

among those that express the most tissue-specific lncRNAs (Hezroni et al., 2015; A. Necsulea 

et al., 2014; Sarropoulos, Marin, Cardoso-Moreira, & Kaessmann, 2019) . To avoid 

misidentifying the syntenic conservation of lncRNAs because of the differences in 

completeness of the transcriptome annotation among the studied species, it is necessary to use 

their most comprehensive set of annotated lncRNA genes. Several publications have annotated 

long non-coding RNAs in an extensive collection of species, based on short-reads RNA-seq 

libraries (Hezroni et al., 2015; A. Necsulea et al., 2014; Sarropoulos et al., 2019). These 

reconstructions of transcript models require mapping the short reads to a reference genome, the 

inference of the transcript model in the set of mapped reads, and finally, the generation of 

consensus transcriptomes based on combining different transcript models.   

Following those guidelines, a bioinformatic pipeline was built for the present work 

using state-of-the-art bioinformatic tools (Figure 2A). First, for the adapter removal step, the 

fast fastp (Chen et al., 2018) tool was chosen; fastp additionally performs read quality 

assessment of raw and trimmed fastq files in parallel. Then, STAR (Dobin et al., 2013) was 

selected to map the trimmed fastq files to the reference species genomes using the two-pass 

mode with the ENCODE parameters to increase the number of identified splicing sites. Scallop 

was chosen to build transcript models for each mapped library because it shows a greater 

accuracy in reconstructing multiexon transcripts than similar tools (Shao & Kingsford, 2017). 

Finally, TACO was selected to generate a consensus transcriptome for each library set, as it 

outperforms similar tools in detecting the start and end of transcriptional sites (Niknafs et al., 

2017). As the core tools of the pipeline are the STAR mapper, the transcriptome modeler Scallop 

and the consensus transcriptome builder TACO, the pipeline was named SST. As proof of the 

reliability of the SST pipeline, new sets of lncRNAs for the parasite Schistosoma mansoni and 

Schistosoma japonicum were built using the same set of bioinformatic tools (L. F. Maciel et al., 

2019; Lucas F. Maciel, Morales-Vicente, & Verjovski-Almeida, 2020).  

 In recent years, third-generation high-throughput sequencers have been used to improve 

the quality of genomes and annotated genes of different species, including humans (Leung et 
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al., 2021; Nurk et al., 2022) , mice (Leung et al., 2021), macaques (Warren et al., 2020), and 

chickens (Kuo et al., 2017). The Iso-seq technology from PacBio, which generates long reads, 

has been used to identify new genes and improve transcriptome annotation in complex genomic 

regions that could not be solved in assemblies based on short-read technologies, especially for 

those species with poorly annotated transcriptomes. To help improve the quality of the reference 

transcriptomes of chicken and macaque that have poorly annotated reference transcriptomes, 

we used public Iso-seq libraries from these two species (Kuo et al., 2017; Warren et al., 2020) 

following a second pipeline (Figure 2B). For the macaque, unmapped bam files were 

downloaded, and the ISOSEQ3  pipeline was used to obtain high-quality, full-length transcripts 

in fasta format; for the chicken, fasta files were downloaded from SRA. Fasta files were mapped 

to reference genomes using Minimap2 (H. Li, 2018), concatenated with Cupcake, and spurious 

transcripts were filtered using SQANTI3 (Tardaguila et al., 2018), thus generating full-length 

transcript models that were merged with the transcriptome from Ensembl to create new 

reference transcriptomes for both species. 

  

 

Figure 2.  Depiction of computational pipelines used for assembling new transcriptomes. A. SST pipeline 
was developed to assemble new transcriptomes based on short reads. The pipeline uses STAR to map short reads, 
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Scallop to build transcriptional models for each library, and TACO to generate consensus transcriptomes based on 
a set of transcriptional models. B. Bioinformatic pipeline to build new transcriptomes based on Iso-seq long reads. 

 

In addition to the core steps used in the SST pipeline, control-quality checks in the 

building of new transcriptomes from short reads were introduced to remove libraries with 

sequencing bias towards the 3’ end, as they might not be able to reconstruct the entire length of 

new transcripts. To remove samples with the 3’ bias, the gene body coverage and the TIN 

median score were calculated using RSeQC (Wang et al., 2016; Wang, Wang, & Li, 2012), and 

the relationship between the TIN median and the gene body coverages of libraries was inferred 

by visualizing the distribution of reads alongside the transcript body and their associated TIN 

median score (Figure 3 A-D).   

Figure 3. Mapping quality of samples used to generate new transcriptome assemblies. A. Averaged 
distribution of short read percentage along all transcript bodies in each library and colored depending on the TIN 
median score. Library samples were separated by the public project and the tissues of origin. B. Like A but in the 
rhesus macaque. C. Like A but in mice, and libraries were separated only by the origin of public data. D. Like A 
but in chicken, and libraries were separated only by the origin of public data.  

 

Empirically, the threshold of the TIN median value was set at 65 for libraries from the 

PsychEncode project and at 70 for other libraries from humans and macaques, and a threshold 

TIN median value of 65 was set for all the libraries from mice and chickens. These thresholds 

made it possible to keep a high number of libraries with acceptable good quality (Figure 4 A-

A 

B 

C 

D 
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D). Additionally, readthrough transcripts that expanded two different coding or mixed coding-

non-coding loci were removed because they might complicate the large-scale annotation of 

lncRNAs at further steps, and monoexonic transcripts from unstranded libraries or rRNA-

depleted libraries were removed because they might be spurious transcripts that arise from 

contamination of rRNA or degraded introns. 

 

 



 

 

33

Figure 4. The number of samples used for annotating new transcriptome assemblies. A. Number of samples 
used for building the SST assembly of humans, grouped by the developmental time, tissue of origin, and the public 
data source; and colored by the PsychEncode developmental window. Developmental window W1, post-
conception weeks 8 and 9; W2, post-conception weeks 12 and 13; W3, post-conception weeks 16 and 17; W4, 
post-conception weeks 19, 21 and 22; W5, post-conception week 37 and post-natal day 100. B. Like A, but for 
macaques. The PsychEncode developmental windows of macaque represent different developmental days but 
reflect similar developmental stages to humans. C. Like A, but in mice, where there is no identification of matched 
developmental stages to humans, and samples span the cortical proliferative, early, and late neurogenesis stages. 
D. Like A, but in chickens, where there is no identification of matched developmental stages to humans, and 
samples span the pallial proliferative, early and late neurogenesis, and gliogenic stages. 

 

To produce the most comprehensive collection of cortical lncRNAs, it is essential to use 

a broad set of libraries from different regions of the developing brain. After filtering, a group 

of libraries that encompasses the neural progenitor pool expansion and neurogenic phases of 

cortical and pallial development was obtained for each species (Figure 4A-D). Additionally, 

samples from gliogenic stages of pallial development were obtained for all species except for 

the mouse (Figure 4A, 4B, and 4D), as gliogenesis starts at post-natal days in mice (Libé-

Philippot & Vanderhaeghen, 2021). For humans and rhesus macaque, the PsychEncode (M. Li 

et al., 2018; Zhu et al., 2018) library sets contain information on developmental-matched 

windows (Figure 4A and 4B). Those developmental windows roughly correspond to the cortical 

pool expansion phase W1, early and late neurogenesis phase, W2-W3, W3-W4, respectively, 

and gliogenic period W5. For chickens, the developmental days E5, E7, and E10 correspond 

roughly to the progenitor pool expansion, the early neurogenic phase, and the late neurogenic 

stage, respectively. Meanwhile, the developmental age E14 of chicken contains gliogenic radial 

glia. The list of accession numbers of all libraries is shown in Supplementary Table 1. 

New transcriptome assemblies were built for each species using the collected sets of 

libraries that expand the corticogenesis phases and the SST pipeline. Additional filters were 

applied to the raw assemblies to remove spurious transcripts that might arise from bioinformatic 

artifacts. First, the remnants of readthrough transcripts were identified and removed; then, the 

transcripts that likely originated from mapping errors, intron-retention, and polymerase run-on 

were identified using GffCompare (Pertea & Pertea, 2020) and removed from further analysis. 

After filtering, lncRNA genes were identified by combining two approaches: identifying 

annotated ORFs and calculating for each transcript the coding potential using three different 

tools. For the robust identification of ORFs, the Transdecoder (Douglas, 2018) tool was used. 

The ORFs were annotated using eggNOG-mapper (Huerta-Cepas et al., 2017) and PFAM 

databanks (El-Gebali et al., 2018). CPAT (Wang et al., 2013), CPC2 (Kang et al., 2017), and 

FEELnc (Wucher et al., 2017) were used to calculate the coding potential of transcripts. Each 
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of them uses different machine learning approaches to predict the coding potential of transcripts 

based on the set of coding mRNAs and lncRNAs of reference transcriptomes.   

Non-coding transcripts were identified as those that do not contain an annotated ORF, 

and at least two of the three coding potential calculators did not classify the transcripts as coding 

(Figure 5). When an annotated ORF had at least 50% of its gene body inside a TEs, the transcript 

was annotated as a “transposable element.” When two out of the three coding potential 

calculators classified the transcript as coding or at least one classifies it as coding and has an 

annotated ORF, the transcript is annotated as coding. Otherwise, the transcript was classified 

as a transcript of unknown coding potential (TUCP). Genes with all their transcripts being a 

non-coding or transposable element in humans and mice or only non-coding in macaque and 

chicken were classified as lncRNA genes. Genes with at least one coding transcript were 

classified as coding genes. In chicken and macaque, genes with all transcripts annotated as 

transposable elements were classified as TE; meanwhile, in humans and mice, where the set of 

protein-coding genes is thoroughly annotated, TE genes were included in the group of 

lncRNAs, as it is known that TEs are a source of lncRNA evolution. Genes with a least one 

TUCP and no coding transcripts were classified as genes of unknown coding potential (GUCP). 

Additional manual curation for chicken and macaques was implemented to classify GUCP into 

coding, lncRNAs, or pseudogenes, when possible. Finally, to generate a comprehensive catalog 

of lncRNAs of each species, lncRNAs from public lncRNA databanks (Hezroni et al., 2015; 

Sarropoulos et al., 2019) that contain syntenic evolution information of lncRNAs for amniotes 

and that were not annotated in the reference and SST assemblies were incorporated into the 

final transcriptome (Figure 5).  

Across all the species, lncRNAs represent the category with more genes (Figure 6 A-

D), corroborating the widespread expression of lncRNAs in vertebrates (A. Necsulea et al., 

2014). A large fraction of the annotated lncRNAs come from the SST pipeline in all species 

(Figure 6 E-H). These new transcriptomes also significantly improve the number of reads 

mapped to annotated features (Figure 6 I-M). In addition to contributing to the annotation of 

new lncRNAs, the implemented approach was able to identify new protein-coding genes, 

pseudogenes, and genes carrying TE-derived ORFs (grouped in figure 6 into the “other” gene 

types), showing the robustness of our approach to identifying coding and lncRNAs across 

different organisms, especially for species with poorly annotated transcriptomes, such as the 

chicken and rhesus macaque. 
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Figure 5. Scheme of the bioinformatic pipeline used for the annotation of lncRNAs. Raw assembled 
transcriptomes built using the SST pipeline underwent extensive filters, first to remove spurious transcripts; second 
to identify lncRNA genes and separate them from protein-coding isoforms. Additionally, transcripts from other 
public databases and the lncRNA set of reference transcriptomes were added to the final comprehensive 
transcriptome.    
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Figure 6. New comprehensive transcriptome assemblies improve the annotation of lncRNAs.  A-D. 
Distribution of gene types in the new comprehensive transcriptomes annotated for humans, macaques, mice, and 
chickens, respectively. E-H. Percentage of genes from different sources across the different gene types for humans, 



 

 

37

macaques, mice, and chickens, respectively. I-M. Percentage of uniquely mapped reads mapped to an annotated 
and unannotated region for humans, macaques, mice, and chickens, respectively. Statistics: All statistics are 
Wilcoxon-test. 

4.2 Identification of bona fide minimal evolutionary age of human cortical lncRNAs based 

on syntenic conservation 

To identify patterns of gene function and specialization of the lncRNAs throughout the 

evolution of the cerebral cortex, a methodology was developed to systematically classify 

lncRNAs into evolutionary ancestry groups based on syntenic conservation of lncRNAs among 

humans, rhesus macaque, mice, and chickens (Figure 7A and 7B).   

 

Figure 7. Identification of minimal evolutionary age and positional classification of lncRNAs. A. Depiction 
of the whole genome mapping approach used to identify syntenic lncRNAs between two species. B. Depiction of 
the genome mapping approach used for identifying syntenic lncRNAs between two species. C. Depiction of the 
final identification of synteny conservation of human lncRNAs. D. Landmarks of cerebral cortex evolution in the 



 

 

38

human lineage. E. Depiction of the classification of lncRNAs based on their position regarding protein-coding 
genes. 

The strategy takes advantage of two bioinformatic approaches; the first is based on 

genome-wide alignment between two species, followed by the transference of gene coordinates 

from one query species to the other reference species (liftover); the second approach makes use 

of long-read mappers to map the whole transcriptome set from one query species to the genome 

of the target species (genome mapping) (H. Li, 2018).  After mapping the lncRNA gene set of 

the query species to the genome of the target species, the group of transferred lncRNA genes 

was intersected with the collection of lncRNAs of the target species considering the strand of 

genes. The nearest one-to-one orthologous of the intersected pairs of lncRNAs between species 

were assessed; lncRNA pairs surrounded by the same one-to-one orthologous genes and 

expressed from the same strand were identified as syntenic lncRNAs (Figures 7A and 7B).  To 

reduce the chances of type I errors, it was required that the set of syntenic lncRNAs identified 

when using the human lncRNA transcriptome as query must be the same when using the other 

species as query (Figure 7C), thus allowing the annotation of strong syntenic conservation of 

lncRNAs between human and the other three species.  

To improve the classification of human lncRNAs into minimal-evolutionary-age (MA) 

groups, the syntenic conservation data from lncRNAs of public databases were integrated into 

the identified syntenic conservation of this work. The human lncRNAs identified as syntenic to 

chicken, mice, and macaque lncRNAs were clustered into 300 million years ago (MYA), 90 

MYA, and 25 MYA minimal-evolutionary-age groups, respectively.  LncRNAs that did not 

share synteny with any species using our approach or the public databases were classified as 

Human-specific lncRNAs.  LncRNAs that did not have strong syntenic signals and did not have 

syntenic conservation in a more distal species in public databases were grouped in the uncertain 

category. MA groups are clustered around landmarks of the cerebral cortex evolution (Figure 

7D): before the evolution of the cerebral cortex from the dorsal pallium, before the expansion 

of the cerebral cortex in the primate linage, before the further expansion of the cerebral cortex 

in apes, and the current evolution of the cerebral cortex in humans, respectively.  LncRNAs 

genes were also classified depending on their position concerning protein-coding genes. The 

different types of lncRNAs used in this work to typify them are depicted in Figure 7E. 

After classifying the human long non-coding transcriptome into lncRNA types and MA 

groups, the set of lncRNAs expressed throughout embryonic and fetal corticogenesis was 
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assessed. A collection of 189 libraries from the neocortex at developmental windows W1-W5 

from the PsychEncode was used (Table 1). 

Table 1. After filtering for low-quality sequencing, the number of bulk RNA-seq libraries from the 
PsychEncode data set per each developmental window (W1 to W5) and brain region were used for 
identifying the set of cortical lncRNAs. Developmental window W1, post-conception weeks 8 and 9; W2, post-
conception weeks 12 and 13; W3, post-conception weeks 16 and 17; W4, post-conception weeks 19, 21 and 22; 
W5, post-conception week 37 and post-natal day 100. 

Brain Region W1 W2 W3 W4 W5 
dorsolateral prefrontal cortex 2 6 4 4 3 

medial prefrontal cortex 2 6 4 4 4 
orbital prefrontal cortex 2 6 2 3 4 

ventrolateral prefrontal cortex 0 6 4 4 4 
primary motor-somatosensory cortex 2 0 3 0 0 

primary motor (m1) cortex 0 6 1 3 4 
primary somatosensory (s1) cortex 0 6 0 3 4 

occipital neocortex 2 0 0 0 0 
primary visual (v1) cortex 0 6 4 3 4 

parietal cortex 1 0 0 0 0 
posterior inferior parietal cortex 0 6 4 3 4 

primary auditory (a1) cortex 0 6 4 3 4 
inferior temporal cortex 0 6 2 2 4 
superior temporal cortex 0 4 4 3 4 

 

LncRNAs being expressed (> 0.5 TPM) in all the samples from the same developmental 

window/cortex region were classified as cortical lncRNAs. Because the lowly-expressed 

lncRNAs in bulk RNA-seq libraries may be highly expressed in sparse cell populations in the 

developing cerebral cortex, as was the case of the GABAergic-specific lncRNA DLX6-AS (Liu 

et al., 2016), it might be the case that those lncRNAs were removed from the set of expressed 

genes when the expression cut-off was applied. To accurately characterize the expressed genes 

in the developing cerebral cortex, including those lowly-expressed cell-type-specific genes, we 

re-analyzed public single-cell RNA-seq data sets of developing cerebral cortex cell populations 

(Gordon et al., 2015; Zhong et al., 2018) to identify coding and lncRNAs expressed in these 

cells, which were clustered according to their expression patterns (Figure 8A). We identified 

differentially expressed genes (DEGs) as markers of the cell clusters (Figure 8B) and added the 

newly identified genes to the final 40312 expressed genes. The collection of expressed lncRNAs 

in the developing cerebral cortex was named cortical lncRNAs.  Using this set of expressed 

genes, the 189 samples were clustered. The samples from the developing cerebral cortex 

clustered mainly by the developmental window, with a clear transition from prenatal windows 

W1-W4 to the W5, where the prenatal-post natal transition occurs (Figure 8C), as is shown in 
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the PsychEncode leading publication (M. Li et al., 2018), indicating the excellent quality of the 

transcriptional data. 

 

 

Figure 8.  Bulk and single-cell RNA-seq datasets were employed to identify the human cortical lncRNAs. A. 
UMAP representation of the scRNA-seq data set of 5183 cells of the human cerebral cortex development from 
conception week 8 to conception week 26, which were clustered according to their gene expression patterns and 
labeled by cell type (colors). B. Dotplot shows the average expression of the cell population marker genes related 
to the cluster with the maximum expression and the fraction of cells from the cluster expressing the markers. C. 
Dendrogram of 187 bulk RNA-seq libraries grouped with unsupervised clustering according to their gene 
expression patterns; for information purposes, the developmental stage and the region of origin of each library is 
indicated at the bottom with color. Abbreviations: UMAP, Uniform Manifold Approximation, and Projection; 
early RGCs, early radial glial cells; late RGCs, late radial glial cells; IPCs, intermediate progenitor cells; Migrating 
GlutN, migrating pyramidal glutamatergic neurons; Maturing GlutN, maturing pyramidal glutamatergic neurons; 
Mature GlutN, synaptogenic prenatal pyramidal glutamatergic neurons; SP, subplate neurons; mGPC, multipotent 
glial progenitor cells; OPC, oligodendrocyte progenitor cells; RBC, red blood cells; Inh. CGE, inhibitory 
GABAergic interneurons derived from the caudal ganglionic eminences; Inh. MGE, inhibitory GABAergic 
interneurons derived from the medial ganglionic eminences; Inh. SST, inhibitory GABAergic interneurons 
expressing somatostatin.  

 

Next, the phyloP score (K. S. Pollard, Hubisz, Rosenbloom, & Siepel, 2010) was used 

to test the conservation status among MA groups of cortical lncRNAs (Figure 9A). As expected, 

the conservation scores decreased throughout the evolution of cortical lncRNAs, indicating that 
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the implemented approach correctly classified lncRNAs into sequential evolutionary groups, 

with similar scores between the oldest MA group (300 Mya) and protein-coding UTRs. 

 

Figure 9.   Syntenic classification of human cortical lncRNAs. A. Distribution of the lncRNA genes in each 
category of minimal-evolutionary-age (MA) groups. B. Distribution of lncRNA types among the MA groups. C. 
Mean PhyloP conservation scores of gene types and MA groups.  Statistics: All statistics are one side (greater) 
Wilcoxon-test. 

 

All MA groups generally showed higher conservation scores than protein-coding 

introns, indicating the positive selection of lncRNAs as a group is higher than expected by 

chance (Figure 9A). The number of cortical lncRNAs increases throughout the evolution of the 

human lineage, with only 2.88% of them identified as arising before the onset of the cerebral 

cortex and around 42% of them being specific to humans (Figure 9B). The distribution of 

lncRNA types also changes through evolution, with older lncRNAs being mostly antisense 

lncRNAs, while overlapping, intergenic proximal, and intronic lncRNA fractions increase in 

newer lncRNAs (Figure 9C). Significantly, the number of intronic lncRNAs explodes in the 
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human lineage, as 80% of the total intronic lncRNAs are human-specific and are depleted in 

older lncRNAs (Figure 9C).  

 

4.3 Older lncRNAs have enhanced expression strength, splicing efficiency, and locus 

complexity 

 After proving the bona fide quality of the MA groups of cortical lncRNAs, differences 

in molecular features among them were assessed.  Surprisingly, the MA groups form an 

expression gradient where older lncRNAs reach more robust expression levels than younger 

lncRNAs. Interestingly, the oldest group of cortical lncRNAs achieves similar expression levels 

to protein-coding genes (Figure 10A), which shows that the general lower expression of 

lncRNAs compared to protein-coding genes (Hezroni et al., 2015; A. Necsulea et al., 2014) is 

masked by the significant difference in gene expression levels between old and younger 

lncRNAs. These differences in expression levels were replicated when considering the lncRNA 

types, except for intronic lncRNAs that are depleted in the oldest MA group (Figures 9C and 

10B), pointing to a negative selection in this type of lncRNAs in the oldest MA group. 

 

 

 

Figure 10. Expression level differences among human cortical lncRNA evolutionary groups.  A. Expression 
level distribution of protein-coding, pseudogenes, and lncRNA MA groups. B. Expression level distribution of 
MA groups split by lncRNA type. Statistics: All statistics are one side (greater) Wilcoxon-test. 

  

A B 



 

 

43

It has been shown that long intergenic non-coding RNAs (lincRNAs) are inefficiently 

transcribed by particular C-terminal-domain isoforms of Pol II, leading to reduced splicing and 

3’ UTR processing of lincRNAs (Schlackow et al., 2017); additionally, lncRNAs, in general, 

are shorter and have fewer exons than mRNAs (Hezroni et al., 2015). Previously documented 

differences between protein-coding and lncRNAs splicing efficiency might also be masked by 

the different MA groups, as is the case of gene expression levels. Therefore, differences in the 

splicing efficiency were assessed among the MA groups. The analyses were restricted to a set 

of expression and type-matched genes (Figures 11A and 11B), as differences in expression 

levels and lncRNA type may disguise the splicing differences among the MA groups.  

 

 

Figure 11. Set of expression and lncRNA type-matched cortical genes. A. Gene expression distribution of 
protein-coding genes, pseudogenes, and cortical lncRNA MA groups. B. Frequency of lncRNA types among the 
lncRNA MA groups.   

 

 The following splicing features were evaluated: number of exons, exon lengths, intron 

lengths, and splicing motif frequency.  Like the different gene expression levels previously 

observed, MA groups form a gradient where older lncRNA populations have significantly more 

exons on average than the younger ones (Figure 12A). Still, differently to expression levels, 

protein-coding genes present a significantly higher number of exons than all lncRNA MA 

groups (Figure 12A).  Simultaneously, older lncRNAs have shorter exon lengths and longer 

intron lengths, while protein-coding genes have, in general, shorter exon lengths than all 

lncRNA MA groups; interestingly, the oldest MA group has larger intron lengths than protein-

coding genes (Figures 12B and 12C). Further, older lncRNAs present stronger splicing motifs 

than younger lncRNAs (Figure 12D). Together, they indicate that lncRNAs are less spliced than 

mRNAs, but older lncRNAs have gained splicing efficiency throughout evolution. This splicing 

efficiency enhancement of older lncRNAs might be associated with a gain in functionality. It 
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has been shown that longer transcripts have features of dynamics expression associated with 

lncRNA functionality (Sarropoulos et al., 2019). To further evaluate a possible increase in 

functionality of older lncRNAs, the length of the transcripts and the number of isoforms among 

the MA groups were assessed. Concomitant with the increase in exon number, older lncRNA 

populations have longer transcripts and more isoforms than younger lncRNAs (Figures 12E and 

12F), indicating an increase in locus complexity for older lncRNAs; still, all lncRNAs have 

reduced locus complexity than protein-coding genes.  

 

 

Figure 12. Splicing efficiency and locus complexity of human cortical lncRNA evolutionary groups. A. 
Number of exon distribution among protein-coding genes, pseudogenes, and lncRNA MA groups. B-C. Like B 
but showing the distribution of exon and intron length, respectively. D. Frequency of splicing motifs among 
protein-coding genes, pseudogenes, and lncRNA MA groups. E-F. Distribution of transcript length and the number 
of isoforms among protein-coding genes, pseudogenes, and lncRNA MA groups. Statistics: All statistics are one 
side (greater) Wilcoxon-test. 

 

4.4 lncRNA evolutionary groups show distinct distributions of transposable element 

insertions but shared nuclear retention 
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 Transposable elements are the main drivers of lncRNA diversification and evolution 

(Kapusta et al., 2013); therefore, they might be involved in the differences in transcript length 

and locus complexity among lncRNA MA groups, where different lncRNAs might contain 

distinct types of TE sequences that reflect their evolutionary ancestry and might affect their 

functionality.  Several TE features were assessed among the lncRNA groups to test this 

hypothesis.  
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Figure 13. TE distribution in human cortical lncRNA evolutionary groups. A. Percentage of genes in a gene 
category carrying at least one TE insertion. B. Distribution of the percentage of the gene body made up of TEs in 
each gene category. C. Frequency of TE percentage inserted into the gene body of a gene category. D. Frequency 
of TEs families inserted into gene categories. E. Percentage of genes in a gene category carrying at least one TE 
family. F. Like E but separated by lncRNA type and Z-score normalized. The number shown represents the odds 
ratio concerning all lncRNA types together. Statistics: A and E mean Fisher hypergeometric tests, FDR corrected 
in E.  B represents one side (greater) Wilcoxon-test. 

  

First, the incidence of TE insertion was measured among the lncRNA groups; 

interestingly, all lncRNAs show a similar percentage of TE occurrence that differs from the 

depletion of TE insertion in pseudogenes and mRNA coding sequences (CDS); still, mRNA 

untranslated regions (UTRs) present increased incidence of TE insertions, even higher than 

lncRNAs (Figure 13A). Therefore, TE insertion is a shared feature among all non-coding 

sequences. Nevertheless, the extent of the gene body that contains a TE differs among lncRNA 

MA groups (Figure 13B). Older lncRNAs have a smaller percentage of their gene body made 

up of TEs than younger lncRNAs. Both untranslated and CDS mRNA regions have a lesser 

portion of their gene body made up of TEs, indicating that protein-coding genes are less tolerant 

to broad TE insertion than lncRNAs (Figure 13B). Although older lncRNAs have shorter TE 

patches related to their gene body, the size fraction of the TE that is inserted in older lncRNAs 

(72.2%) is larger than the fraction inserted in younger lncRNAs (57.7%) (Figure 13C). Together 

with the more extended transcript size of older lncRNAs, the data shows that older lncRNAs 

accept more extended TE insertions probably due to their larger gene body size compared to 

the shorter, younger lncRNAs.  

It has been hypothesized that lncRNAs coopt TEs as functional domains (Johnson & 

Guigó, 2014). Thus, the differences in the type of TE insertion among lncRNA MA groups 

might point to differences in their functionality. The distribution of the TE families among the 

different gene categories (mRNAs CDS and UTRs, pseudogenes, and lncRNA MA groups) was 

assessed to evaluate this possibility. All gene categories showed deviations from the genomic 

distribution of TE families. The LINE family L1 was depleted from all considered gene types 

(Figure 13D), especially from protein-coding genes; interestingly, pseudogenes are genes with 

the highest frequency of L1 insertion (Figure 13D), indicating that L1 insertion is a mark of 

pseudogenization of coding genes.  

Moreover, most of the lncRNA categories, except for the Human-specific lncRNAs, 

showed a marked increased frequency of endogenous retrovirus (ERVs); in particular, the 

ERVL-MaLR family, which is the most abundant ERV in the human genome (Figure 13D). 



 

 

47

Furthermore, the occurrence of TE families among gene categories was also evaluated with 

similar results (Figure 13E); CDS and pseudogenes are depleted, while UTRs and all lncRNAs 

are rich in TE insertions. ERV families are enriched in lncRNA MA groups, except for Human-

specific lncRNAs, and depleted from the other evaluated gene categories, indicating that ERVs 

insertions are a particular feature of lncRNAs (Figure 13E). Finally, L1 and Alu are the only 

TE families enriched in lncRNAs; in particular, Alu represents more than half of the TE 

insertion in the Human-specific group of lncRNAs (Figures 13D and 13E), which corroborates 

the novelty of these lncRNAs. Remarkably, Alu occurrence among lncRNA MA groups follows 

a gradient, where older lncRNAs are less tolerant, and younger lncRNAs are more pervasive to 

Alu insertions; inversely, ERVs are more prevalent in older than in younger lncRNAs.  

 To test whether the distinct patterns of distribution of lncRNA with respect to protein-

coding genes observed in the different MA groups (Figure 9C) might affect the tolerance of TE 

insertion within lncRNAs throughout evolution, the occurrence of TE insertion among the 

lncRNA MA groups and lncRNA types was assessed (Figure 13F). The SINE families Alu and 

MIR are preferentially inserted in lncRNAs near protein-coding genes, as they are more 

common in intronic and overlapping lncRNAs (Figure 13F, left). However, older lncRNAs 

present an increased frequency of Alu in divergent lncRNA types (Figure 13F, left). The L1 

family is more prevalent in lincRNAs (Figure 13F, middle), concomitant with the depletion of 

L1 insertions in protein-coding genes (Figure 13E). Likewise, ERVs are more commonplace in 

lincRNAs and divergent lncRNAs (Figure 13 F, right) and depleted from protein-coding genes 

(Figure 13E).  In summary, these data show that protein-coding genes constrain the nature of 

TE insertion in cortical lncRNAs. The differences in TE family content and possible differences 

in functionality might partially be explained by the distinct distribution of lncRNAs around 

protein-coding genes among the different MA groups.   

Several TE families have been recognized as signals of nuclear retention of lncRNAs 

(Carlevaro-Fita et al., 2019; Lubelsky & Ulitsky, 2018). As different lncRNA MA groups 

display distinct distributions of TEs, the nuclear retention feature of lncRNA might also differ 

among lncRNA MA groups. Thus, the distribution of lncRNAs among the nuclear and 

cytoplasmic compartments in fetal cortical tissues was assessed. Spuriously, the gene 

expression of all lncRNAs skewed toward the nuclear fraction (Figure 14A), and all lncRNA 

MA groups are proportionally enriched in the nucleus, despite differences in the percentage of 

genes enriched in that fraction (Figures 14 A and 14B). 
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It has been shown that the nuclear RNA exosome complex actively degrades lncRNAs, 

blocking their accumulation in the nucleoplasm (Schlackow et al., 2017). It is also partially 

responsible for the enrichment of lncRNAs in the chromatin fraction of human cell lines 

(Schlackow et al., 2017). The exosome complex might differentially recognize different 

lncRNA MA groups due to the differences in the molecular features among them. To test this, 

public libraries from HeLa cells where the nuclease component of the exosome complex 

EXOSOME3 was knocked down were reanalyzed, testing only the set of cortical genes. 

Interestingly, the localization of all lncRNAs, both in the chromatin fraction and in the 

nucleoplasm, is affected after the knock-down of EXOSOME3, different from protein-coding 

genes, which are not dislocated under the same conditions (Figure 14C). In summary, 

independently of their evolutionary time, lncRNAs are enriched in the nucleus of fetal tissues 

and actively degraded by the exosome complex in cycling human cell lines. 

 

 

Figure 14. Nuclear enrichment of human cortical lncRNA evolutionary groups. A. Cytoplasmic and nuclear 
compartments fold change expression distribution among protein-coding genes, pseudogenes, and lncRNA MA 
groups.  B. Enrichment of different gene types in a cellular compartment. C. Change in expression distribution 
among gene type categories after the knockdown of the exosome component EXOSC3. Statistics: Brackets in B 
mean Fisher hypergeometric tests P values. 

 

4.5 lncRNA evolutionary groups show distinct genomic distributions that highlight a 

potential functional specialization 
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 The lncRNA gene loci are intimately associated with their functionality, as shown for 

the topological anchor points RNAs (tapRNA), a group of syntenic conserved lncRNAs in 

mammals that co-expressed and regulated proximal developmental regulatory genes in a tissue-

specific fashion (Amaral et al., 2018). Thus, systematically inspecting protein-coding genes 

proximal to lncRNAs of MA groups might help to shed light on the function of those cortical 

lncRNAs and how their roles have changed during evolution.  

The nearest protein-coding genes were retrieved to a hundred kilobases surrounding the 

different lncRNA MA groups, then we assessed their enriched GO terms. Interestingly, it was 

found that MA groups evolved from loci near distinct types of developmental protein-coding 

genes that regulate various levels of neuron specification and maturation. Thus, ancient 

lncRNAs that appeared before the evolution of the cerebral cortex (300 MYA) are expressed 

from loci near to broad developmental genes, including TFs, which suggests a pleiotropic 

function of those lncRNAs (Figure 15A and supplementary table 3); meanwhile, lncRNAs that 

appeared before the expansion of primate cerebral cortex (90 MYA) are preferentially 

expressed from loci near to protein-coding genes associated to the development of axons; 

finally, Human-specific lncRNAs are preferentially expressed from loci proximal to genes 

associated to dendrite development, where synapsis are finely tuned (Figure 15A).  

Furthermore, one of the enriched GO terms of protein-coding genes from the vicinity of 

antique cortical lncRNAs (300 MYA) was “DNA-binding transcription activator activity” 

(supplementary table 3); therefore, we tested whether older lncRNAs are enriched for TFs in 

their proximity. It was found that only the older MA group is slightly increased for proximal 

TFs (Figure 15B). Due to the considerable fraction of TFs as the closest coding gene (8.96 to 

12.2%) and that TFs are the master regulators of biological functioning, we sought to identify 

the type of TFs proximal to lncRNAs of different MA groups. Surprisingly, lncRNAs of 

different MA groups are preferentially distributed around certain families of TFs. Older 

lncRNAs are preferentially expressed from loci close to the homeodomain-containing TFs 

(Figure 15C), master regulators of early development. Meanwhile, newer lncRNAs are 

preferentially expressed from loci near C2H2 zinger finger-containing (ZFs) TFs (Figure 15C) 

that present more specialized functions. It is essential to point out that hundreds of ZFs have 

evolved in the primate lineage in response to the expansion of retrovirus in primate genomes 

(Senft & Macfarlan, 2021), so it is plausible that a scenario where new ZFs protein-coding 

genes evolved in response to the expansion of TEs, led in turn to the evolution of new cortical 

lncRNAs around these new protein-coding genes in the primate lineage.  
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Figure 15. Genomic distribution of cortical lncRNA MA groups. A. Top10 gene ontology terms enriched in 
the closest protein-coding genes of different lncRNA MA groups. B. Percentage of transcription factors (TF) as 
the closest genes for each lncRNA MA group. C. Percentage of TF as the nearest gene separated by TF family; 
displayed number indicates the percentage. The FDR corrected Fisher hypergeometric P values are in parenthesis. 
D. Cumulative distribution of the distance to the nearest small RNA separated by lncRNA groups. E. Like C but 
for small RNAs as the closest gene (snRNA, small nuclear RNA; miRNA, microRNA; rRNA, ribosomal RNA; 
scaRNA, small Cajal body-specific RNA; sRNA, small RNA; snoRNA, small nucleolar RNA; scRNA, small 
cytoplasmic RNA).  

 

Finally, it was observed that a large percentage of the oldest lncRNA MA groups (300 

and 90 Mya) than of the younger lncRNAs (25 Mya and Human-specific) were proximal to 

small RNAs (Figure 15D); several lncRNAs have been identified as hosting small RNAs (Sun, 

Song, & Prasanth, 2021), therefore we tested whether old lncRNAs were enriched in these types 

of small RNA genes; remarkably, it was found that older lncRNAs preferentially host small 
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RNAs in their loci (Figure 15E), especially microRNAs, which points to a possible co-evolution 

of old cortical lncRNAs with microRNAs.  

Collectively, these data indicate that cortical lncRNAs did not evolve randomly in the 

genome but have followed an evolutionary path that resembles the development of the cerebral 

cortex, which might be reflected in their different functionality. 

4.6 Cortical lncRNAs shared chromatin features that differentiate them from other gene 

types 

 It has been shown that lincRNA promoters are depleted of most active chromatin marks 

compared to mRNAs (Mele et al., 2017). Still, they are particularly enriched in the chromatin 

repressive mark H3K9me3, which has been associated with the lower expression and tissue-

specificity of lincRNAs in human cell lines; and they also display less TF diversity than mRNAs 

(Mele et al., 2017). To test whether these chromatin differences between lincRNAs and mRNAs 

stand in our set of cortical lncRNAs, are masked by evolutionary ancestry, and extend to other 

types of lncRNAs, we assessed several repressive and active chromatin modifications 

(Markenscoff-Papadimitriou et al., 2020), ATAC-seq data (de la Torre-Ubieta et al., 2018), and 

protein binding data (Hammal et al., 2022) of a group of promoters of expression and type-

matched cortical genes at the mid developmental stages (Figures 16A and 16B).     
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Figure 16. Chromatin features in human cortical lncRNAs MA groups. A. Set of expression-matched cortical 
genes in human cortical tissues at mid-gestation, week 15-17. B. Distribution of lncRNA types among lncRNA 
MA groups in the set of expression-matched genes. C. Proportion of promoters with respective chromatin features 
of expression-matched genes. In parenthesis, FDR corrected P values of the Fisher hypergeometric test between 
the gene category and a set of random sequences. D. Distribution of the number of distinct proteins bound to the 
promoter of expression-matched cortical genes. E. Upset plot of enriched proteins bound to promoters compared 
to a set of random sequences identified in each gene category. ORC, open chromatin regions.  

 

In general, all gene type categories assessed showed an enrichment in chromatin 

modifications higher than expected by chance. Of note, this enrichment follows a gradient 

where older lncRNAs have fewer promoters with no chromatin modification features than 

younger lncRNAs (Figure 16C); older lncRNAs reached a similar proportion of promoters with 

no features (8.8 – 14%) as the mRNAs (12%), whereas Human-specific lncRNAs reached equal 

proportions as pseudogenes (41–42%) (Figure 16C), which indicated a gain in gene-regulation, 

and possible functionality of older cortical lncRNAs. mRNA promoters are depleted of the 

repressive mark H4K20me3 and most frequently contain active chromatin features (ORC, 

H3K27ac, and H3K4me1) (Figure 16C). Interestingly, the most abundant chromatin feature of 

all categories of lncRNAs is open chromatin regions (OCR) with chromatin bivalent marks 

(active: H3K27ac, H3K4me1, and repressive: H4K20me3) (Figure 16C), which differentiate 

lncRNAs from mRNAs, in agreement with the previous identification that lincRNA promoters 

are enriched in repressive chromatin marks (Mele et al., 2017).  

Furthermore, the diversity of proteins bound at promoters of the cortical expression-

matched genes was assessed. All lncRNA MA groups considered show an increased number of 

proteins bound to their promoter than a set of random genomic regions and pseudogenes (Figure 

16D); indicating that the set of cortical lncRNAs presents more features of gene-regulation than 

expected by chance, reducing the possibility of most of them being bioinformatic artifacts. 

Remarkably, older lncRNAs have a similar diversity of proteins bound to their promoters than 

mRNAs, and a higher number than younger lncRNAs, showing an increased regulation for 

older lncRNAs, comparable to the degree of regulation of protein-coding genes (Figure 16D). 

The enriched proteins bound at promoters of different gene categories were also 

assessed. Pseudogenes presented fewer enriched proteins, not identifying any protein specific 

to these genes (Figure 16E). Interestingly, lncRNA MA groups have group-specific proteins 

bound to their promoters, which form a gradient where older 300 Mya lncRNAs have eighteen 

group-specific proteins, 90 Mya lncRNAs have fifteen, and younger 25 Mya lncRNAs have 

seven group-specific proteins bound to their promoters (Figure 16E and Table 2); concomitant 
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with the increased regulatory marks of older lncRNAs. At the same time, expression-matched 

mRNAs showed a reduced number of these proteins, only three (Figure 16E), namely SIX4, 

NFIX, and ZNF408. Old lncRNAs (older than 90 Mya) share ten specific proteins bound to 

their promoters, including BDP1 (Table 2). BDP1 is a subunit of the Pol III transcription 

initiation factor III B that transcribes small RNAs in concordance to the increased number of 

older lncRNAs hosting small RNAs (Figures 15D and 15E).  

Additionally, all lncRNAs (and not protein-coding genes or pseudogenes) have eight 

proteins in common (Figure 16E, orange dots, and Table 2). Remarkably, the DNA 

methyltransferase DNMT1 is among the proteins enriched in all cortical lncRNA MA groups 

(Table 2). This protein plays a significant role in DNA methylation maintenance and is found 

in regions of gene repression, in concordance to the elevated repressive chromatin marks found 

in all cortical lncRNA groups.  

 

Table 2. Set of MA group-specific and shared proteins bound to the promoter of cortical lncRNAs. Summarized 

FDR aggregates the FDR from all collapsed gene categories using geometric mean.  

Protein Gene category Summarized FDR Protein Gene category Summarized FDR 

CASZ1 300 Mya 1.58E-04 ZNF248 Human-specific 0.0037 

ZNF197 300 Mya 4.36E-04 LHX2 Human-specific 0.00692 

ZNF681 300 Mya 5.64E-04 ZFP41 Human-specific 0.0242 

PTTG1 300 Mya 6.73E-04 ZNF132 Human-specific 0.0242 

ZKSCAN8 300 Mya 0.00176 ZNF430 Human-specific 0.0242 

ZNF485 300 Mya 0.00176 ZNF747 Human-specific 0.0242 

ETS2 300 Mya 0.00241 TOP2A Human-specific 0.0276 

ZNF304 300 Mya 0.003 ZNF624 All lncRNAs 1.36E-06 

SOX3 300 Mya 0.00622 FOSB All lncRNAs 3.44E-06 

GLI2 300 Mya 0.0127 DNMT1 All lncRNAs 8.23E-06 

ZNF17 300 Mya 0.0128 ZNF548 All lncRNAs 8.59E-05 

SMC4 300 Mya 0.0242 ZNF488 All lncRNAs 6.35E-04 

ZFP90 300 Mya 0.0242 MBD4 All lncRNAs 9.42E-04 

ZNF155 300 Mya 0.0242 ZNF266 All lncRNAs 0.00338 

ZNF432 300 Mya 0.0242 ZNF565 All lncRNAs 0.0187 

ZNF484 300 Mya 0.0242 KAT8 old lncRNAs 5.13E-06 

ZNF582 300 Mya 0.0242 PRMT5 old lncRNAs 1.33E-05 

ZNF7 300 Mya 0.0242 ZNF510 old lncRNAs 3.35E-04 

MCM2 90 Mya 0.0037 ZNF85 old lncRNAs 0.00103 

TRIP13 90 Mya 0.0037 BDP1 old lncRNAs 0.00555 

ZNF267 90 Mya 0.0037 ZNF776 old lncRNAs 0.00622 

ZNF426 90 Mya 0.00575 ZIK1 old lncRNAs 0.00945 

TP73 90 Mya 0.0122 ZNF77 old lncRNAs 0.00945 

ZNF808 90 Mya 0.0128 NUFIP1 old lncRNAs 0.0242 

ZNF585B 90 Mya 0.0162 PPARA old lncRNAs 0.0248 
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FOXF2 90 Mya 0.0221 GLYR1 young lncRNAs 3.10E-05 

HEY2 90 Mya 0.0242    

PPARGC1A 90 Mya 0.0242    

SALL1 90 Mya 0.0242    

ZNF483 90 Mya 0.0242    

ZNF493 90 Mya 0.0242    

ZNF658 90 Mya 0.0242    

MCM5 90 Mya 0.0487    

ZNF669 25 Mya 0.0037    

ZNF136 25 Mya 0.00622    

ZNF26 25 Mya 0.0235    

TFCP2 25 Mya 0.0242    

ZNF138 25 Mya 0.0242    

ZNF250 25 Mya 0.0242    

ZNF280C 25 Mya 0.0242    

ZNF491 25 Mya 0.0242    

 

4.7 lncRNA ancestry has a strong effect on the lncRNA expression dynamics 

 Here, it was shown that lncRNAs from different MA groups possess diverse splicing 

efficiency, locus complexity, TE content, diversity of proteins bound to their promoters, and 

genome distribution that might be reflected in distinct functionalities. These possible functional 

differences should be mirrored in their expression dynamics during the development of the 

cerebral cortex. To further explore it, the expression data from cortical tissues of PsychEncode 

was used (Table 1). The trend of expression of lncRNAs throughout the prenatal development 

of the human cerebral cortex along the post-conception days was plotted, grouped by type and 

MA group (Figure 17A). Of note, the most significant visual differences in the profiles are 

among the lncRNA types; there are differences among MA groups in their expression tendency, 

even among lncRNAs of the same type, which indicates that lncRNAs from similar MA groups 

may share similar expression dynamics that differ from other MA groups.  

To further corroborate the visual differences in the expression profiles, we tested 

whether the evolutionary ancestry (MA groups) and the lncRNA types can model the expression 

dynamics of the genes summarized by the Principal Component 1 (PC1), which accounts for 

83.79% of the variance of expression of the genes (Figure 17B). After visualizing the PC1 

distribution among MA groups, it was decided to use a GLM gamma model to account for the 

skewed distribution of the PC1 seen in Figure 17B; additionally, different models considering 

the lncRNA type and MA group were explored, being the best model the full interaction model, 

which includes the interaction between type and evolutionary ancestry (Figure 17C). After 
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modeling the PC1 based on the lncRNA type and MA group, the ANOVA test was used to see 

whether the ancestry has a significant effect on the model of expression dynamics, which was 

the case (Figure 17D). Accordingly, a cortical lncRNA's evolutionary ancestry impacts its 

expression dynamics throughout prenatal cortical development. 

 

 

Figure 17. lncRNAs of different evolutionary ancestry display distinct gene expression dynamics throughout 
the cerebral cortex development. A. Expression trend of lncRNA genes from 189 bulk RNA-seq libraries 
throughout the prenatal and early postnatal development of the human cerebral cortex along the post-conception 
days, clustered by minimal age (MA) (lines) and lncRNA type (columns). Transparent lines around solid lines 
represent the 95% confidence intervals. B. PC1 distribution (that accounts for 83.79% of the variation of the bulk 
RNA-seq data set) of lncRNAs clustered by MA (left panel) and lncRNA type (middle panel). C. GLM gamma 
model of the gene expression dynamics represented by the PC1 as a dependent factor of the lncRNA type (Type), 
of the evolutionary ancestry (MA, minimal age), and of the interaction of lncRNA Type:MA. D. ANOVA test of 
the full model to identify significant terms in the model. 
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4.8 cortical lncRNAs are conspicuously expressed in glutamatergic neurons  

Cortical lncRNAs display commonalities that differentiate them from protein-coding 

and pseudogenes and show differences among MA groups that point to functional specialization 

throughout evolution. However, the extent to which those features have impacted the evolution 

of the cerebral cortex has not been answered yet. For that, it is essential to identify which cells 

are expressing the different types of lncRNAs, and how those lncRNAs, in turn, modify 

ancestral gene modules to tune the molecular identity that impacts the diversification of cell 

types that give rise to the human cerebral cortex.  

Single-cell RNA-sequencing (scRNA-seq) has been used to elucidate the molecular 

landscape of the developing cerebral cortex at a cell-type resolution (Fan et al., 2018; Zhong et 

al., 2018). Thus, public scRNA-seq data from the developing human cerebral cortex was used 

to map the cortical lncRNAs to the cellular populations of the developing cerebral cortex. All 

identified cell populations (Figures 8A and 8B) express at least one member of each of the MA 

groups, indicating widespread expression of all cortical lncRNAs. However, several cell types 

preferentially expressed different cortical lncRNA MA groups (Figure 18A). The older MA 

group is enriched in all interneuron cell populations (Inh. CGE, Inh. SST, Inh. MGE), late 

(outer) RGCs, and migrating glutamatergic neurons; instead, younger lncRNAs (90 Mya, 25 

Mya, Human-specific) and pseudogenes are preferentially enriched in the synaptogenic 

glutamatergic neurons (Figure 18A). Additionally, lncRNAs from the 25 Mya and 90 Mya MA 

groups are enriched in Cajal-Retzius cells, while younger lncRNAs are enriched in vascular cell 

types (Pericytes, RBC, Endothelial cells), especially Human-specific cortical lncRNAs (Figure 

18A). Interestingly, cortical lncRNAs are depleted from cycling cell types (early and late RGCs, 

mGPC, IPCs, Microglia, Oligodendrocytes, Astrocytes, OPC); at the same time, protein-coding 

genes are enriched in those cell populations (Figure 18A). 

It has been shown that lowly expressed lncRNAs are specifically active in one cell 

population in the developing cerebral cortex (Liu et al., 2016). The specificity of cortical 

lncRNA expression was assessed in all gene categories to test whether this is a feature particular 

to a lncRNA MA group or shared among them. Of all gene categories assessed, protein-coding 

genes are the most broadly expressed in cell clusters, as only 20% of genes from this category 

are specific to a single cell type (Figure 18B). Among lncRNA MA groups, the oldest lncRNAs 

showed to be more broadly expressed among many cell clusters (only 31% of lncRNAs from 

this MA group are specific to a single cell cluster). Younger lncRNAs share a similar percentage 

of cell-type specificity (53% – 55%) (Figure 18B). The cell-type enrichment of the cluster-
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specific lncRNAs was assessed, finding that Cajal-Retzius cells and synaptogenic glutamatergic 

neurons conspicuously express higher fractions of cell type-specific lncRNAs compared with 

other cells (Figure 18C). In the case of Cajal-Retzius cells, the 90 Mya and 25 Mya are the 

lncRNA MA groups that are enriched, meanwhile for synaptogenic glutamatergic neurons, the 

25 Mya and, especially, the Human-specific lncRNAs are the enriched MA groups (Figure 

18C), indicating that glutamatergic neurons are particularly enriched in the expression of cell-

type specific cortical lncRNAs. 

 

 

 

Figure 18. Glutamatergic neurons conspicuously express cortical lncRNAs. A. Percentage of lncRNA groups 
differentially expressed (DE) in a given cell type (indicated on the right); in parenthesis are shown FDR corrected 
P values of Fisher hypergeometric tests. B. Frequency of the cell type-specificity of different gene types; for each 
gene type (column), the fraction of those genes that are differentially expressed (DE) in 1 to 6 or more cell clusters 
(as indicated by the color) is given inside the boxes; these DE genes are specific markers of those cell clusters. C. 
Frequency of cluster-specific genes colored by gene type. *, FDR is less than 0.05; **, FDR is less than 10-5; ***, 
FDR is less than 10-10. (GlutN, glutamatergic neurons; SP, subplate cells, RBC, red blood cells; RGCs, radial glial 
cells; mGPC, multipotent glial progenitor cells; IPCs, intermediate progenitor cells; OPC, oligodendrocyte 
progenitor cells; Inh. CGE, inhibitory GABAergic neurons derived from caudal ganglionic eminences; Inh. SST, 
inhibitory GABAergic neurons expressing somatostatin; Inh. MGE, inhibitory GABAergic neurons derived from 
medial ganglionic eminences). 
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4.9 Developing glutamatergic neurons pseudotime analysis identifies putative mechanistic 

players of differential cellular distribution of cortical lncRNA MA groups 

 The Remap data were inspected to understand better why cortical lncRNAs are highly 

expressed in glutamatergic neurons compared to other clusters. First, the total number of 

lncRNA MA group-specific TFs enriched at the promoters of cortical lncRNAs at mid-

gestational cerebral cortices (Table 2) were intersected with the scRNA-seq DE data 

(supplementary table 5), showing that TFs specific to 300 Mya and 90 Mya groups are 

preferentially expressed in cycling cortical progenitors (Figure 19A). In contrast, young cortical 

lncRNAs display similar numbers of specific TFs at promoters of cycling progenitors and 

postmitotic cells (Figure 19A). Consequently, the oldest MA group is enriched in germinal 

zones compared to the cortical plate at the mid-gestational stages of corticogenesis (Figure 

19B). Besides, cortical lncRNAs form a gradient where older lncRNAs are proportionally more 

abundant in the germinative zone than in the cortical plate (Figure 19B).    

Although younger lncRNAs show a similar number of specific TFs in RGCs as in 

synaptogenic glutamatergic neurons at mid-gestation (Figure 19A), it is in the later cell 

population that younger lncRNAs are highly expressed. Additionally, cortical lncRNAs are 

depleted in cycling progenitors. A possible explanation for this is the presence of a mechanism 

that represses the expression of cortical lncRNAs in mitotic progenitors. It was previously 

shown that the DNA methyl transferase DNMT1 is enriched in the promoters of all cortical 

lncRNAs (Table 2); it was also identified that DNMT1 is differentially expressed in cycling cell 

populations: early RGCs, IPCs, mGPC, and OPC. This is different from the DNA methyl 

transferase DNMT3A, which is preferentially expressed in postsynaptic cell populations: 

synaptogenic glutamatergic neurons, CRs, oligodendrocytes, pericytes, and MGE interneurons 

(supplementary table 4). Moreover, it has been shown that DNMT1 reads the chromatin mark 

H4K20me3, which is enriched in promoters of all cortical MA groups at mid-gestation (Figure 

16C), to reinforce repressive chromatin marks (Ren et al., 2021). Then, DNMT1 might be 

repressing the expression of cortical lncRNAs at the early stages of corticogenesis.  
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Figure 19. Identifying regulatory proteins involved in the differential expression pattern of lncRNA MA 
groups in the cortical glutamatergic lineage. A. DE genes were identified as lncRNA MA-specific TFs in the 
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cell population of the developing glutamatergic neurons. B. Percentage of DE genes by gene category in germinal 
or cortical plate zones of mid-gestation cerebral cortices. P values on the enriched gene categories come from 
Fisher’s hypergeometric test. C. UMAP reduction of the cell population of the glutamatergic neuron lineage. D. 
Pseudotime path interpolated using Monocle3. E. Normalized pseudotime values distribution on cells from 
different cell clusters on C. F. Expression dynamics across the normalized pseudotime space. G. Number of DE 
cortical lncRNAs hosting microRNAs in glutamatergic cell populations. 

 

To corroborate this, a pseudotime analysis using Monocle3 (Trapnell et al., 2014) was 

conducted in the glutamatergic neuron lineage (Figures 19D, 19E) to visualize the expression 

dynamics of DNMT1 throughout the specification of glutamatergic neurons. Cell populations 

are distributed along the predicted normalized pseudotime scores according to the expected 

biological distribution. Mitotic cortical progenitors present low pseudotime scores, and post-

mitotic neurons spread sequentially: immature, migrating, and synaptogenic glutamatergic 

neurons (Figure 19E).   DNMT1 expression is reduced alongside the pseudotime course (Figure 

19F), in harmony with the specific expression of DNMT1 in cortical progenitors. These results 

highlight DNMT1 as a potential active repressor of lncRNAs in cycling cell populations of the 

cerebral cortex.  

We further examined the expression dynamics of all lncRNA-specific TFs identified in 

at least 5% of the cells in the pseudotime space, finding that older specific TFs preferentially 

follow a descending expression path. In contrast, Human-specific lncRNAs preferentially 

follow an ascending path (Figure 19F). This is an indication that post-mitotic activation of 

positive regulators might be a mechanism of high expression of Human-specific lncRNAs in 

glutamatergic neurons. Remarkably, BDP1, a small RNA activator, is highly expressed at later 

stages of glutamatergic neurons specification (Figure 19F), as well as most of the cortical 

lncRNAs hosting microRNAs (Figure 19G), suggesting that BDP1 is a potential activator of 

antique microRNA-hosting cortical lncRNAs in synaptogenic glutamatergic neurons. 

 

4.10 Cortical lncRNAs are sources of molecular innovation in the developing cerebral 

cortex. 

 To understand how lncRNAs have impacted the evolution of human corticogenesis 

gene expression networks, weighted gene co-expression network analysis (WGCNA) 

(Langfelder & Horvath, 2008) was performed. A hundred eighty-seven bulk RNA-seq samples 

from the cerebral cortex, expanding the prenatal and early post-conception days, were assessed 

after filtering for libraries outliers; forty-four co-expressed modules were identified.  
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First, the question of how central the different lncRNA MA groups are for the cortical 

modules was inspected by comparing the intramodular connectivity (kIN) distribution. Protein-

coding genes are significantly more central than all lncRNA MA groups (Figure 20A). Cortical 

lncRNAs follow a gradient where older lncRNAs are more central than the younger lncRNAs, 

with Human-specific lncRNAs following similar distribution to pseudogenes (Figure 20A). 

These results indicate that protein-coding genes are pivotal for maintaining the networks, while 

lncRNA MA groups usually build up around central protein-coding genes following an 

ontological pattern, tunning the expression modules and potentially playing a role in plasticity. 

The role of lncRNAs in the cerebral cortex gene network plasticity was assessed by 

preservation network analyses, comparing seven network properties (Ritchie et al., 2016) of 

cortical gene modules with the co-expression networks of developing tissues of the human, 

macaque, mouse, and chicken forebrains. We found that modules M24, M29, M38 were not 

preserved in any other of the assessed species (Figure 20B, red dots in chicken pallium, mouse 

forebrain and cortex, and rhesus cortex); as well, modules M1, M17, and M34 were only weakly 

preserved with the rhesus macaque (Figure 20B, yellow dots only in rhesus cortex); therefore 

we identified modules M24, M29, and M38 as Human-specific, meanwhile the modules M1, 

M17, and M34 as primates-specific (Figure 20B). Interestingly, gene modules M1, M17, and 

M24 are enriched in younger lncRNAs, while M29 is enriched in pseudogenes (Figure 20C). 

Furthermore, when intersecting with the scRNA-seq DE data, it was possible to identify the 

cortical cell types impacted by these more divergent modules; in particular, synaptogenic 

glutamatergic neurons are highly associated with the Human-specific module M24, and the 

primate-specific modules M1, and M17 (Figures 20B and 20C), all of them enriched in Human-

specific lncRNAs, and module M1 and M17 also being enriched in primate-specific (25 Mya) 

lncRNAs (Figure 20C); indicating that lncRNAs evolution have preferentially impacted the 

molecular diversification of glutamatergic neurons. 
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Figure 20.  Cortical lncRNA are molecular sources of diversification. A. Intramodular connectivity distribution 
of protein-coding genes, pseudogenes, and lncRNA MA groups. B. Preservation analysis of 7 module statistics of 
the cortical modules in co-expression networks from forebrain tissues of humans, macaque, mice, and chicken. 
Strong preserved modules: all 7 module statistics were found preserved (Bonferroni transformed P value < 0.05); 
weak: between 6 and 1 module statistics were identified as preserved; none: no module feature was found 
preserved. C.  Intersection of cortical modules and scRNA-seq DE data, where heatmap displays odds ratio scaled 
by row. FDR corrected Fisher hypergeometric P value: *, < 0.05; **, < 10-5; ***, < 10-10. 

Cortical glutamatergic neurons are broadly clustered into deep layer (DL) and upper 

layer (UL) pyramidal neurons. Deep layers send axons out of the telencephalon, and upper 

layers send axons to intra-telencephalic structures. In primates, particularly humans, UL 

glutamatergic neurons are widely diversified, adopting distinct cellular shapes with different 

electrophysiological properties (Libé-Philippot & Vanderhaeghen, 2021). Here it was shown 
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that glutamatergic neurons are the cortical cell type where lncRNAs have played a pivotal role 

in their diversification. To further investigate whether lncRNAs have distinctly impacted the 

evolution of DL and UL neurons, the three synaptogenic glutamatergic subpopulations 

identified in the scRNA-seq data set were examined. DE analysis identified that the selective 

markers of UL neurons (CUX1, CUX2, and RORB) (Di Bella et al., 2021) were DE in the 

Synaptogenic GlutN subpopulation and the selective markers of DL neurons (BCL11B and 

TLE4)  (Di Bella et al., 2021) were DE in the Synaptogenic GlutN2 subpopulation (Figure 21A, 

supplementary table 5). Afterwards, enrichment in lncRNAs MA groups was assessed, 

identifying that the Synaptogenic GlutN subpopulation, enriched in UL markers, is enriched in 

Human-specific lncRNAs (Figure 21B). GO analysis was further assessed among those 

populations, finding that the Synaptogenic GlutN subpopulation enriched in UL markers and 

Human-specific lncRNAs also expresses genes involved in dendritic development (Figure 

21C). Together, these results suggest that human-specific lncRNAs have played a role in the 

diversification of UL glutamatergic neurons in the Human lineage, potentially by tuning the 

development of dendrites. 
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Figure 21. Upper layer glutamatergic neurons are enriched in Human-specific lncRNAs. A. UMAP reduction 
of three subpopulations of glutamatergic neurons. Synaptogenic GlutN (red), Synaptogenic GlutN2 (green), 
Synaptogenic GlutN3 (blue). Next to the UMAP plot, is the gene expression of upper (CUX1, CUX2, RORB) and 
deep layer markers (BCL11B, TLE4, TBR1) in those cells. B. Distribution of different gene categories of DE 
genes in each glutamatergic subpopulation. C. Gene ontology analysis of subpopulations enriched in UL and DL 
markers, respectively.      

 

4.11 Human-specific lncRNAs are molecular readouts of autism spectrum disorder (ASD) 

 Several studies have shown that neuropsychiatric disorders disrupt the homeostasis of 

post-mitotic developing glutamatergic neurons (M. Li et al., 2018; Parikshak et al., 2016; Ziffra 

et al., 2021). As lncRNAs are conspicuously expressed in this cell population and involved in 

its molecular diversification, we further investigated whether cortical lncRNAs are 

dysregulated in neuropsychiatric disorders. Public bulk RNA-seq data from prefrontal cortical 

tissues of normal and affected specimens from three studies (Figure 22A, three different SRA 

projects) were the subject of DE analysis. Remarkably, it was identified that Human-specific 

lncRNAs are highly dysregulated in ASD (Figure 22B). These results indicate that different 

upstream regulators of Human-specific cortical lncRNAs might be dysregulated in ASD and 

converged into the widespread upregulation of human-specific lncRNAs. 

 

 

Figure 22. Human-specific lncRNAs are highly expressed in autism spectrum disorder (ASD). A. Heatmap 
(unsupervised clustering) of DE genes in autism spectrum disorders B. Frequency of DE genes belonging to 
protein-coding genes, pseudogenes, or one of lncRNA MA groups. FDR corrected Fisher hypergeometric P value: 
*, < 0.05; **, < 10-5; ***, < 10-10
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5 Discussion 

 The low expression and tissue-specificity features of lncRNAs make them challenging 

to annotate. Additionally, corticogenesis is a highly dynamic process that integrates many cells 

from different developmental regions; in particular, human corticogenesis is lengthy and 

comprises more diverse cells than other mammals (Libé-Philippot & Vanderhaeghen, 2021; 

Molnár et al., 2019).  Consequently, many lowly expressed lncRNAs or lncRNAs restricted to 

rare embryonic cell types might not be annotated in public references such as Gencode, which 

is detrimental to studying the evolution of lncRNAs. We used the vast PsychEncode RNA-seq 

database that spans a significant period of pre-natal windows and brain regions (Figure 4A) to 

annotate a comprehensive set of cortical lncRNAs in humans and the rhesus macaque. 

Furthermore, we collected additional RNA-seq public data from forebrain structures throughout 

the corticogenesis in humans, rhesus macaque, and mice; in addition, we combined RNA-seq 

public data from pallial development of chicken with data obtained in the present work for two 

critical developmental stages that were missing in the public repository, namely E7 and E10 to 

generate similar comprehensive transcriptome annotations for all species (Figure 4). Those new 

transcriptome assemblies notably increased the number of annotated lncRNAs (Figures 6 A-

H). In addition, a new set of protein-coding genes and pseudogenes were annotated for all 

species (Figures 6 E-H). In summary, our new assemblies improved the annotation both 

quantitatively and qualitatively. Especially, they significantly helped to improve the annotation 

of macaque rhesus and chicken transcriptomes, which notoriously increased the number of 

reads mapped to an annotated feature (Figures 6M and 6J).   

 Thoroughly annotated transcriptomes were used to identify strong syntenic homologous 

genomic regions between humans and the other species, and jointly with the syntenic 

information from public databases, helped us to correctly classify lncRNAs into minimal 

evolutionary age (MA) groups, thus identifying that old lncRNAs show greater phyloP 

conservation scores than young lncRNAs (Figure 9A). lncRNA MA groups did not equally 

distribute; the 300 Mya group accounts for only 2.9% of the total cortical lncRNAs. In contrast, 

90 Mya, 25 Mya, and Human-specific lncRNAs account for 18.2%, 36.8%, and 42.1%, 

respectively (Figures 9A, 9B, and 9C). A similar gradient of conservation and distribution of 

lncRNAs into different MA groups was identified by Necsulea et al. 2014, who used a different 

approach to identify evolutionary groups among lncRNAs; this shows that the methods built 

here and used for syntenic lncRNA identification yielded accurate results and that cortical 

lncRNAs follow similar evolutionary rules as those of lncRNAs expressed on other tissues. 
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Interestingly, the oldest group of lncRNA, those that appeared before the divergence of 

amniotes 300 Mya, showed similar conservation scores to UTRs, and pseudogenes showed 

similar scores to CDS (Figure 9A), indicating that coding and non-coding sequences have 

similar evolutionary turnover, independently of the gene type. The large fraction of primate and 

Human-specific lncRNAs suggests a rapid expansion of de novo expression of lncRNAs, 

especially those expressed near protein-coding genes, as seen by the increased gradient of 

intronic and overlapping lncRNAs in young lncRNAs (Figure 9C).  

Identified lncRNA MA groups were used to evaluate shared and divergent molecular 

features of cortical lncRNAs, aiming to identify specialization signals of lncRNAs through 

evolution. First, we determined that lncRNAs form a gene expression gradient, where older 

lncRNAs have higher expression than younger lncRNAs, and this gradient is maintained when 

comparing lncRNAs of the same type (Figure 10). Additionally, we identified in a population 

of expression- and type-matched genes that older lncRNAs contain a greater diversity of TFs 

bound to their promoters than younger lncRNAs (Figure 16D); concomitant, older lncRNAs 

have an increased fraction of promoters containing activating chromatin features than younger 

lncRNAs (Figure 16C). Furthermore, an increasing number of exons and longer mature 

transcript sizes in conserved lncRNAs have been previously identified as signals of functional 

gain of lncRNAs (Hezroni et al., 2015; Sarropoulos et al., 2019). We identified similar 

differences when we assessed expression and type-matched lncRNAs. Cortical lncRNAs 

exhibit a gradient, where older lncRNAs have shorter exon lengths, higher exon numbers, 

increased intron sizes, larger mature transcript sizes, and a significantly higher number of 

isoforms (Figure 12). Those increases in locus complexity could be explained by the rise in the 

frequency of strong splicing signals in older lncRNAs (Figure 12D). Altogether, the results 

show an increase in gene regulation and locus complexity throughout lncRNAs evolution that 

might be associated with a gain of function of older lncRNAs. 

TEs are significant drivers of lncRNA evolution, as they extensively integrate into 

lncRNA loci, providing new regulatory sequences, splicing sites, polyadenylation signals, and 

RNA-binding sequences (Kapusta et al., 2013). Differences in loci complexity among lncRNAs 

throughout evolution could be explained by different distributions of TE insertion. Although 

we did not identify enrichment in the fraction of genes carrying at least one TE insertion among 

lncRNA MA groups (Figure 13E), we found differences in the distribution of TE families 

throughout evolution (Figure 13F). Remarkably, we found that ERVs are enriched specifically 

in lncRNAs, except Human-specific lncRNAs, and the percentage of lncRNAs from a MA 
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group carrying ERVs form a gradient where older lncRNAs are more tolerant to their insertion. 

At the same time, primate-specific Alu sequences are enriched in young lncRNAs, especially 

Human-specific lncRNAs, following an inverse gradient to ERVs (Figure 13E). The constrain 

exerted by protein-coding genes partially explained those differences in the distribution of TEs 

as is patent in UTRs that are depleted of ERVs and enriched in Alu sequences, indicating 

tolerance of mRNA loci to Alu insertions but not for ERVs. Intronic and overlapping lncRNAs, 

expressed near protein-coding genes (Figure 7E), are reduced in ERVs sequence insertions and 

augmented in Alu insertions (Figure 13F).  Human-specific lncRNAs are enriched in intronic 

and overlapping types; therefore, Alu insertions into a Human-specific lncRNAs or primate-

specific lncRNAs (25 Mya) have been more tolerated. Intronic ERVs are more prevalent in the 

300 Mya groups (Figure 13F), but the expression levels of those intronic lncRNAs are highly 

suppressed (Figure 10B), arguing in favor of the active repression of ERVs at protein-coding 

loci. It has been shown that ERVs inserted into lncRNAs expressed in embryonic stem cells 

and fetal development (Bakoulis, Krautz, Alcaraz, Salvatore, & Andersson, 2022; Wilson et al., 

2020). At the same time, Alu sequences were identified as dysregulated in autism spectrum 

disorder and Alzheimer’s disease, disorders that affect the homeostasis of neurons (Cheng et 

al., 2021; Saeliw et al., 2018). Those results indicate that different distributions of TE insertions 

across the evolution might lead to functional differentiation of lncRNAs.  

Despite differences in the distribution of TE families in the gene body of lncRNAs, all 

lncRNAs shared a similar percentage of genes with at least one TE insertion, around 56.51%-

59.88% (Figure 13A). The insertion of Alu, MIR, and L2 TE families into lncRNAs has been 

associated with nuclear enrichment of lncRNAs (Carlevaro-Fita et al., 2019; Lubelsky & 

Ulitsky, 2018). Notwithstanding the differential distribution of TE families throughout the 

evolution of cortical lncRNAs, we did not find differences when we examined the fraction of 

genes of lncRNA MA groups DE in the cytoplasm. However, the abundance of Human-specific 

lncRNAs in the nucleus is markedly higher than of other lncRNAs (Figure 14). Additionally, 

we found that all cortical lncRNAs are actively degraded by the exosome complex in the 

nucleus and enriched in the chromatin of HeLa cells, indicating that independently of the 

evolutionary age, all cortical lncRNAs share nuclear retention features and are actively 

degraded in human cell lines. 

lncRNAs might regulate the expression of neighbor genes in cis and be sources of 

different types of small RNAs (Statello et al., 2021); therefore, we decided to inspect the loci 

surrounding them, identifying that different lncRNA MA groups preferentially evolved near 
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distinct types of genes. The oldest group of lncRNAs are expressed near genes involved in 

embryonic regulation, including homeobox TFs and microRNAs (Figures 15C and 15E). 

Together with the high insertion of ERVs, typically expressed in embryonic and fetal 

development, and increased gene regulation of their promoters, these findings suggest that 

antique lncRNAs have evolved to function in development, possibly as TF regulatory tapRNAs, 

sources of microRNAs, or uncharacterized functionalities. Recently, a study on lncRNA 

evolution has reached a similar conclusion about conserved lncRNAs but proposed that they 

function primarily in an RNA-independent manner (Darbellay & Necsulea, 2020).  We disagree 

with that because, along with the increase in promoter regulation, antique lncRNAs have also 

gained loci complexity and strong splicing signals, indicating that RNAs have gained functional 

domains, although under a more relaxed evolutionary constraint than CDS (Figure 9A). Further 

functional analysis of such lncRNAs might help to elucidate whether conserved cortical 

lncRNAs have functionality and whether the relaxed pressure under which they have evolved 

plays a role in the plasticity of the brain.  

In contrast, lncRNAs that evolved in mammals (at least 90 MYA onwards) show 

preferential expression near genes involved in neuron maturation and synapsis formation. The 

older 90 Mya group is preferentially expressed near genes involved in axon development, and 

younger Human-specific lncRNAs are expressed near genes involved in dendrite development 

(Figure 15 A), concomitant with the enrichment of those lncRNA groups in synaptogenic 

glutamatergic neurons and Cajal-Retzius cells (Figure 18A), which indicates that functional 

lncRNAs of these categories might be co-expressed with proximal coding genes and regulate 

their expression in cis. We further evaluated the expression dynamics of lncRNAs throughout 

development and found that lncRNA evolutionary ancestry is highly influential in the 

expression dynamics of cortical lncRNAs (Figure 17). Overall, these differences in locus 

complexity, TE distribution, genomic distribution, and expression dynamics point to the 

specialization of the function of lncRNAs throughout evolution. 

It has been shown that lncRNAs are enriched in the repressive chromatin mark 

H3K9me3 in human cell lines (Mele et al., 2017); here, we extend those observations to the 

heterochromatin repressive mark H4K20me3 (Figure 16C). We also identify the enrichment of 

DNA methyltransferase DNMT1 in the promoter regions of cortical lncRNAs (Table 2). 

DNMT1 and H4K20me3 crosstalk might reinforce the repressive marks at lncRNAs in cortical 

cycling progenitors, as we showed that DNMT1 is preferentially expressed in the dividing cell 

types of the cerebral cortex (supplementary table 4), and using pseudotime analysis, we found 
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a marked reduction in the gene expression of DNMT1 in post-mitotic glutamatergic cells 

(Figure 19F).   The nature of the active repression of lncRNAs in mitotic cells is not well 

understood. However, it has been associated with increased tissue-specificity of lncRNAs; 

therefore, there might exist a mechanism by which the expression of lncRNAs is finely 

regulated (Mele et al., 2017).  Alternatively, it could be a collateral result of the extensive 

insertions of TEs in lncRNAs, as it has been shown that DNMT1 and H4K20me3 help to 

reinforce the repression of L1 elements in embryonic stem cells (Bulstrode et al., 2017; Ren et 

al., 2021). Another possibility would be that cortical lncRNAs might be repressed in cycling 

cells to avoid the formation of R-loops between lncRNAs and the replisome, which generates 

DNA damage, and is potentially toxic to the cell (Statello et al., 2021). Further mechanistic 

studies, namely DNMT1 knock-out experiments, are needed to understand why lncRNA 

promoters are actively repressed and how at a molecular level, this is achieved.  

We further examined the functional specialization of lncRNAs throughout evolution at 

single-cell resolution. Interestingly, antique lncRNAs are the only lncRNAs evolutionary group 

enriched in a cycling population, outer (late) RGCs (Figure 18A), which correlate with the 

enrichment of this group in the germinative zone of the developing cerebral cortex at mid-

gestation stages (Figure 19B), and with the enrichment of homeobox TF binding sites at 

promoters of conserved lncRNAs (A. Necsulea et al., 2014). Besides that, we identified that 

lncRNAs as a group are depleted from the progenitor cell populations and preferentially 

expressed in mature neurons (Figure 18A). Remarkably, the oldest group of lncRNAs is 

enriched in inhibitory GABAergic neurons, which are conserved cellular populations in the 

pallium of amniote (Colquitt, Merullo, Konopka, Roberts, & Brainard, 2021; Tosches et al., 

2018), indicating that antique lncRNAs expressed in interneurons are part of a profoundly 

conserved gene regulatory program that leads to the development and identification of 

GABAergic neurons of the cerebral cortex.  

On the other hand, the younger groups of lncRNAs are highly expressed and specific to 

glutamatergic neurons (Figure s18A and 18C), which are among the most divergent cell types 

of the cerebral cortex. This high plasticity of glutamatergic neurons is not only present at a 

significant evolutionary scale (Tosches et al., 2018), but it is evident in the cerebral cortex 

evolution of the human lineage, with the UL glutamatergic neurons showing a greater 

diversification than other hominids (Berg et al., 2021). The enrichment of 90 Mya, 25 Mya, and 

Human-specific lncRNA MA groups in the glutamatergic neurons raised the possibility that 

lncRNAs evolution after the divergence of amniotes has impacted the plasticity of this cell 
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population. When we combined preservation analysis and scRNA-seq expression data, we 

could identify that gene module M24 was not preserved in other of the studied species, was 

highly enriched in synaptogenic glutamatergic neurons, and was enriched in Human-specific 

lncRNAs (Figures 20B and 20C). At the same time, modules M1 and M17 were weakly 

preserved in the rhesus macaque, were enriched in synaptogenic glutamatergic neurons, and 

were enriched in younger lncRNAs (Figures 20B and 20C). UL cells were the glutamatergic 

cell subcluster with the most significant set of Human-specific lncRNA (Figure 21). Altogether 

indicating that lncRNAs de novo expression in primates and humans has contributed to the 

molecular innovation of transcriptional landscape in corticogenesis and might significantly 

impact the diversification of glutamatergic neurons. Further functional studies of the impact of 

Human-specific lncRNAs in the specification of UL cortical glutamatergic neurons are required 

to probe the role of lncRNAs in the rapid evolution of glutamatergic neurons.   

Finally, we not only identified younger lncRNAs as sources of glutamatergic neuron 

diversification, but we found that these cortical lncRNAs are upregulated in ASD, which raises 

the possibility of using younger lncRNAs, and especially Human-specific lncRNAs, as 

molecular readouts to diagnose the disorder. 
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6 Conclusions 

The cerebral cortex is endowed with remarkable plasticity as it is patent in the myriad 

diversity of neocortical structures across mammals. It has been proposed that this plasticity is 

responsible for the evolution of human cognitive abilities. lncRNAs have faster evolutionary 

turnover than coding genes, are more tissue-specific, and, in tetrapods, are enriched in neural 

tissues, which make lncRNAs good candidates for genomic sources of cortical plasticity, 

evolution, and disease. With that in mind, in this thesis, we assessed the evolution of the 

lncRNA repertory of the human developing cerebral cortex. The assessed lncRNA evolutionary 

groups were mapped to the cellular and molecular dynamics of corticogenesis to identify the 

regulatory mechanism that drives lncRNA expression and the impact of lncRNAs in the 

evolution of the human cerebral cortex.  

lncRNAs have gained different genetic features throughout evolution, namely: 

enhanced splicing efficiency, increased gene regulation and functional chromatin features, 

differential distribution of TEs, and expression dynamics that points to different functional 

specialization.  

Antique lncRNAs that appeared before the evolution of the cerebral cortex in mammals 

showed preferential expression in germinative zones and early stages of development. They are 

regulated by genes preferentially expressed in mitotic cortical progenitors. They are proximal 

to developmental regulatory genes such as homeodomain TFs and microRNAs and enriched in 

GABAergic neurons, a conserved neural type of the cerebral cortex. These features indicate 

that lncRNAs are part of conserved genetic programs regulating embryonic and fetal 

development, particularly the development of cortical GABAergic neurons.  

On the other hand, lncRNAs that evolved in parallel with the rise of the cerebral cortex 

in the dorsal pallium of mammals are enriched in transient (Cajal-Retzius) and mature 

glutamatergic neurons while depleted from mitotic cortical progenitors. They are expressed 

near genes involved in the specification of glutamatergic neurons, whereas the oldest (90 Mya) 

are expressed near genes involved in axon development. Meanwhile, Human-specific lncRNAs 

are expressed near genes involved in dendrite development. Additionally, young lncRNAs 

substantially contribute to primate and Human-specific gene modules of the developing 

cerebral cortex, which are enriched in synaptogenic glutamatergic neurons and, to a lesser 

extent, in vascular cell types. Human-specific lncRNAs are DE in the UL-like glutamatergic 

cells, the most divergent cell type of the cerebral cortex, and upregulated in ASD, a Human-



 

 

72

specific neurodevelopmental disease.  These indicate that the recent evolution of lncRNAs has 

impacted the diversification and disease of cortical glutamatergic neurons, although further 

mechanistic research is needed to understand how this is achieved. 

Finally, lncRNAs shared chromatin features, including enrichment in H3K9me3, 

H4K20me3 repressive histone marks, and concomitant DNA methylation, inferred from the 

collective enrichment of DNMT1 at their promoters.   This crosstalk between chromatin 

modification and DNA methylation represents a new exiting mechanism of gene regulation of 

lncRNAs that requires further research to understand their implication on homeostasis and 

disease. 
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