DOI
10.11606/D.45.2018.tde-08042018-120458
Documento
Autor
Nome completo
Ronaldo Bezerra Nobre
E-mail
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2017
Druck, Iole de Freitas (Presidente)
Cerri, Cristina
Santos, Vinicio de Macedo
Título em português
Sobre possibilidades de ensino e aprendizagem dos números irracionais no 8º ano do Ensino Fundamental
Palavras-chave em português
Investigações matemáticas
Números irracionais no Ensino Fundamental II
Protagonismo dos estudantes
Resumo em português
Título em inglês
Learning and teaching possibilities towards irrational numbers in the 8th grade of Elementary School
Palavras-chave em inglês
Irrational numbers in Elementary Education II
Mathematical investigations
Student protagonism
Resumo em inglês
This dissertation presents a didactical work developed with 8th grade classes of Elementary School aiming a significant introduction to the irrational numbers in the sense that it confronts the conceptual difficulties related to the theme, as well the observation of the stimulating involvement of students in their learning process. In order to elaborate, apply and analyze the didactical activities, we considered as the main theoretical basis the doctoral thesis of Olga Corbo (CORBO,O., 2012) about the fundamental knowledge necessary for the exploration of irrational numbers in Basic Education and texts on mathematical investigations written by portuguese researchers and coordinated by João Pedro da Ponte (PONTE, JP, et al., 1998 and ABRANTES, P. et al., 1999). The activities were planned aiming to make the content approaches meaningful and accessible to the target age group. Eighth-grade students conducted researches and group presentations on the golden number and investigative activities to assess specific characteristics of rational and irrational numbers as: decimal representation, association to the measurement of straight segments, location in the numbered line, infinity, and density in this line. In 2017, new groups developed researches broadening the objectives to include the notion of commensurability of segments, in order to enable a debate in classroom about the demonstration of the incommensurability between the side and the diagonal of a square elaborated in ancient Greece. All of these steps contributed to the students understanding of the need for a multitude of new numbers besides rational ones.

AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2018-04-16

AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI