• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
https://doi.org/10.11606/D.45.2019.tde-07082019-123001
Document
Author
Full name
Wilian Oliveira Rocha
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2019
Supervisor
Committee
Druck, Iole de Freitas (President)
Giraldo, Victor Augusto
Melo, Severino Toscano do Rego
 
Title in Portuguese
Máximos e mínimos na Educação Básica: abordagens elementares sem derivadas
Keywords in Portuguese
Conhecimentos matemáticos especializados e de horizontes de conteúdo
Desigualdades entre médias
Máximos e mínimos
Médias
Abstract in Portuguese
Nosso objetivo com este trabalho é contribuir para o aperfeiçoamento da ação educativa do professor de matemática na Educação Básica, tanto em formação inicial quanto em formação continuada. Apresentamos algumas abordagens elementares para estudo de Máximos e Mínimos que utilizam conteúdos próprios dos anos finais do Ensino Fundamental e do Ensino Médio embasados principalmente na obra Maxima and Minima without Calculus (NIVEN, 1981). Discutimos os conceitos de Conhecimento Especializado e de Horizontes de Conteúdo Matemático como justificativa para a relevância do uso deste material, que foram cunhados por pesquisadores da Universidade de Michigan, liderados por Deborah Ball no artigo Content Knowledge for Teaching: What Makes it Special? (2008). Trazemos uma análise crítica da abordagem utilizada para o tema em alguns livros didáticos de Ensino Médio. Discorremos sobre os quatro conceitos de Médias aritmética, geométrica, harmônica e quadrática partindo de problemas que originaram tais conceitos. Mostramos ainda como podem ser naturalmente associados a medidas de segmentos definidos em quadrados, trapézios e semicírculos que evidenciam claramente certas desigualdades entre elas. A seguir, como aplicação de produtos notáveis e trinômios do segundo grau, apresentamos problemas algébricos e geométricos envolvendo máximos e mínimos e discutimos suas soluções. Estabelecemos e provamos algebricamente as desigualdades entre as quatro médias (de até quatro números positivos), que são aplicadas para a determinação de pontos de máximo ou mínimo de funções variadas em problemas contextualizados. Por fim generalizamos e provamos as desigualdades entre as médias para n números positivos e desenvolvemos várias outras aplicações.
 
Title in English
Maxima and minima in Basic Education: elementary approaches without derivatives
Keywords in English
Averages
Averages' inequalities
Maxima and minima
Specialized and horizons knowledge of mathematical content.
Abstract in English
This work intends to be a contribution to the improvement of the educational action of mathematics school teachers in both initial or continuous formation. We present some elementary approaches for the study of Maxima and Minima that use final years of Elementary and High School contents only, mainly based on Ivan Nivens book Maxima and Minima without Calculus (NIVEN, 1981). We discuss the concepts of Specialized and Horizons Knowledge of Mathematical Content as a justification for the relevance of the use of this material, which were been introducted by the University of Michigans researchers, led by Deborah Ball, in the article - Content Knowledge for Teaching: What Makes it Special? (2008). We bring a critical analysis of the approach employed for the topic (maxima and minima) in some high school textbooks. We discuss the four concepts of averages - arithmetic, geometric, harmonic and quadratic - starting from problems that originated them. We also show how they can be naturally associated with measures of segments defined in squares, trapezoids and semicircles so that we can clearly visualise certains inequalities between them. Next, as an application of notable products and of second degree trinomials, we present algebraic and geometric problems of maxima or minima and discuss their solutions. We establish and prove algebraically the inequalities between the four averages (up to four positive numbers), which are applied to determine maximum or minimum points of varied functions in contextualized problems. Finally we generalize and prove the averages inequalities for n positive numbers and we develop several applications.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2019-08-21
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors.
CeTI-SC/STI
© 2001-2024. Digital Library of Theses and Dissertations of USP.