
Anytime BDI

A time-bounded agent architecture

Márcio Fernando Stabile Junior

Thesis presented to the
Institute of Mathematics and Statistics

of the University of São Paulo
in partial fulfillment
of the requirements
for the degree of
Doctor of Science

Program: Ciência da Computação
Advisor: Prof. Dr. Jaime Simão Sichman

This work was supported by CNPq, Brazil, Grant 140448/2016-0.

São Paulo
December, 2022

Anytime BDI

A time-bounded agent architecture

Márcio Fernando Stabile Junior

This version of the thesis includes the
corrections and modifications suggested
by the Examining Committee during the

defense of the original version of the work,
which took place on December 2, 2022.

A copy of the original version is available
at the Institute of Mathematics and

Statistics of the University of São Paulo.

Examining Committee:

Prof. Dr. Jaime Simão Sichman – IME-USP
Prof. Dr. Rafael Heitor Bordini – PUC
Prof. Dr. Jomi Fred Hübner – UFSC
Prof. Dr. Gustavo Enrique de Almeida P.Alves Batista – UNSW
Profª. Drª. Anarosa Alves Franco Brandão – EP-USP

The content of this work is published under the CC BY-NC 4.0 license

(Creative Commons Attribution-NonCommercial 4.0 International License)

Ficha catalográfica elaborada com dados inseridos pelo(a) autor(a)
Biblioteca Carlos Benjamin de Lyra
Instituto de Matemática e Estatística

Universidade de São Paulo

Stabile Junior, Márcio Fernando
Anytime BDI: a time-bounded agent architecture /

Márcio Fernando Stabile Junior; orientador, Jaime Simão
Sichman. - São Paulo, 2022.

134 p.: il.

Tese (Doutorado) - Programa de Pós-Graduação em Ciência
da Computação / Instituto de Matemática e Estatística
/ Universidade de São Paulo.

Bibliografia
Versão corrigida

1. AGENTES INTELIGENTES. I. Simão Sichman,
Jaime. II. Título.

Bibliotecárias do Serviço de Informação e Biblioteca
Carlos Benjamin de Lyra do IME-USP, responsáveis pela

estrutura de catalogação da publicação de acordo com a AACR2:
Maria Lúcia Ribeiro CRB-8/2766; Stela do Nascimento Madruga CRB 8/7534.

https://creativecommons.org/licenses/by-nc/4.0/

i

Acknowledgments

To Professor Jaime Simão Sichman for his guidance and trust and for all the time he
dedicated to this work.

To CNPq for enabling and funding this research.

To all the teachers who put their trust in me, believing that I could go further.

To all my family members who encouraged me to keep learning more.

To my wife Barbara, who always believed in me, even when I didn’t.

Lastly and most importantly, to God for making all of this possible.

Resumo

Márcio Fernando Stabile Junior. Anytime BDI:Umaarquitetura de agentes limitada
no tempo. Tese (Doutorado). Instituto de Matemática e Estatística, Universidade de São
Paulo, São Paulo, 2022.

Quando se integram agentes BDI a ambientes onde o tempo de resposta do agente interfere na qualidade
de suas ações, fica aparente o problema da ausência de controle sobre o tempo de processamento do agente.
Não havendo alguma forma de realizar esse controle, não há garantias de que o agente irá conseguir deliberar
sobre as informações percebidas e executar uma ação no ambiente dentro de um limite de tempo esperado.
Com o objetivo de prover esse tipo de controle sobre o tempo de processamento de agentes BDI, este trabalho
apresenta um modelo de agente BDI chamado Anytime BDI. Esse modelo utiliza algoritmos anytime, técnicas
de profiling e técnicas de otimização multiobjetivo para garantir que o agente execute ações no ambiente
dentro de um limite de tempo pré estabelecido, minimizando a perda de qualidade das ações decorrente
desse controle. Através da implementação deste modelo na linguagem Jason e de validações estatísticas
apropriadas, mostramos que existem cenários onde conseguimos aumentar a qualidade do agente e cenários
onde conseguimos reduzir o tempo de processamento do agente sem prejuízo na resposta do mesmo.

Palavras-chave: agentes autônomos. agentes BDI. algoritmos anytime. profiling de agentes.

Abstract

Márcio Fernando Stabile Junior. Anytime BDI: A time-bounded agent architecture.
Thesis (Doctorate). Institute of Mathematics and Statistics, University of São Paulo, São
Paulo, 2022.

When integrating BDI agents into environments where the agent’s response time interferes with the
quality of their actions, the problem of lack of control over the agent’s processing time becomes apparent.
As there is no way to perform this control, there is no guarantee that the agent will be able to deliberate on
the perceived information and perform an action in the environment within an expected time-bound. In
order to provide this type of control over the processing time of BDI agents, this work presents a BDI agent
model called Anytime BDI. This model uses anytime algorithms, profiling techniques, and multiobjective
optimization techniques to ensure that the agent executes actions in the environment within a pre-established
time-bound, minimizing the loss of quality of actions resulting from this control. Through the implementation
of this model in Jason language and appropriate statistical validations, we show that there are scenarios
where we can increase the agent’s quality and scenarios where we can reduce the agent’s processing time
without prejudice to the agent’s response.

Keywords: autonomous agents. BDI agents. anytime algorithms. agent profiling.

vii

List of abbreviations

IME Instituto de Matemática e Estatística
USP Universidade de São Paulo
BDI Belief Desire Intention

MAPC Multi-agent programming contest
MCDM Multiple Criteria Decision Making

viii

List of Figures

2.1 Reasoning cycle of a Jason agent presented by Bordini, Hübner, et al., 2007. 15
2.2 Jason Semantic Rules execution flow. 17

3.1 Traveling salesman anytime solution. 20
3.2 Quality map of an anytime algorithm. (From Zilberstein, 1993) 21
3.3 Performance profile of an anytime algorithm. (From Zilberstein, 1993) . 21
3.4 Anytime algorithm compilation example. 22

4.1 𝜖-constraint method example. 26

6.1 Agent execution. 39

7.1 Act function for implementing the Intention Executor. 52

8.1 Single-threaded agent model. (From Kostiadis and Hu, 2000) 55
8.2 Multithreaded agent model. (From Kostiadis and Hu, 2000) 56
8.3 General model for parallel BDI agents. (Taken from Zhang and Huang,

2007) . 57
8.4 Jason Semantic Rules execution flow by Zatelli, 2017. 59
8.5 Example of tree of plans and objectives (Taken from Yao and Logan, 2016) 60

9.1 Normal quantile-quantile plots constructed by Jain, 1991. 70
9.2 Scatterplots constructed by Jain, 1991. 70

10.1 Environment used in the experiments. 72
10.2 Points scored in the single-agent bounded response time experiment. . . 73
10.3 Response times for the single-agent bounded response time experiment. 74
10.4 Insects captured in the single-agent unbounded response time experiment. 75
10.5 Response time in the single-agent unbounded response time experiment. 76
10.6 Insects captured in the second single-agent unbounded response time

experiment. 77

ix

10.7 Response time in the second single-agent unbounded response time exper-
iment. 78

10.8 Average points scored in the multi-agent bounded response time experiment. 79
10.9 Box plot of points scored in the multi-agent bounded response time exper-

iment. 80
10.10 Insects captured in the multi-agent unbounded response time experiment. 81
10.11 Response time in the multi-agent unbounded response time experiment. 82
10.12 Insects captured in the multi-agent unbounded response time experiment. 83
10.13 Response time in the multi-agent unbounded response time experiment. 84
10.14 Insects captured in the multi-agent unbounded response time experiment. 85
10.15 Response time in the multi-agent unbounded response time experiment. 86

11.1 Maps used in the MAPC experiments. 88
11.2 Points scored in the default MAPC experiment. 89
11.3 Actions lost in the default MAPC experiment. 90
11.4 Points scored in the reduced response time MAPC experiment. 91
11.5 Actions lost in the reduced response time MAPC experiment. 92
11.6 Points scored in the no random failure MAPC experiment. 93
11.7 Actions lost in the no random failure MAPC experiment. 94
11.8 Points scored in the performance profile evaluation experiment. 95

A.1 Visual diagnostic tests for experiment E1 in Section 10.1.1. 101
A.2 Visual diagnostic tests for captures variation in experiment E2 on Section

10.1.2. 102
A.3 Visual diagnostic tests for response time variation in experiment E2 on

Section 10.1.2. 102
A.4 Visual diagnostic tests for captures variation in experiment E2 on Section

10.1.2.1. 102
A.5 Visual diagnostic tests for response time variation in experiment E2 on

Section 10.1.2.1. 103
A.6 Visual diagnostic tests for experiment E3 in Section 10.2.1. 103
A.7 Visual diagnostic tests for captures variation in experiment E4 on Section

10.2.2. 103
A.8 Visual diagnostic tests for response time variation in experiment E4 on

Section 10.2.2. 104
A.9 Visual diagnostic tests for captures variation in experiment E4 on Section

10.2.2.1. 104

x

A.10 Visual diagnostic tests for response time variation in experiment E4 on
Section 10.2.2.1. 104

A.11 Visual diagnostic tests for captures variation in experiment E4 on Section
10.2.2.2. 105

A.12 Visual diagnostic tests for response time variation in experiment E4 on
Section 10.2.2.2. 105

A.13 Visual diagnostic tests for experiment E5 in Section 11.1. 105
A.14 Visual diagnostic tests for experiment E6 in Section 11.2. 106
A.15 Visual diagnostic tests for experiment E7 in Section 11.3. 106
A.16 Visual diagnostic tests for experiment E8 in Section 11.4. 106

xi

List of Tables

2.1 Comparative table between OOP and AOP presented by Shoham, 1993 . 9

5.1 Result of search strings in each knowledge base 30
5.2 Articles analyzed . 31
5.3 Publications per year . 32

7.1 Plan execution order on default Jason. 53
7.2 Plan execution order on Anytime Jason. 54

8.1 Synthesis of the related work. 63

9.1 Number of insects caught after one minute. 68

10.1 Points scored by the agents. 73
10.2 Variation attributed to each factor. 73
10.3 Insects captured by the agents. 75
10.4 Average response time by the agents. 75
10.5 Variation attributed to each factor regarding captures. 76
10.6 Variation attributed to each factor regarding response time. 76
10.7 Insects captured by the agents. 77
10.8 Average response time by the agents. 78
10.9 Variation attributed to each factor regarding captures. 78
10.10 Variation attributed to each factor regarding response time. 78
10.11 Points scored by the agents. 79
10.12 Variation attributed to each factor. 80
10.13 Insects captured by the agents. 81
10.14 Average response time by the agents. 82
10.15 Variation attributed to each factor regarding captures. 82
10.16 Variation attributed to each factor regarding response time. 82
10.17 Insects captured by the agents. 83

xii

10.18 Average response time by the agents. 84
10.19 Variation attributed to each factor regarding captures. 84
10.20 Variation attributed to each factor regarding response time. 84
10.21 Insects captured by the agents. 85
10.22 Average response time by the agents. 86
10.23 Variation attributed to each factor regarding captures. 86
10.24 Variation attributed to each factor regarding response time. 86

11.1 Points scored by the agents in the default MAPC experiment. 89
11.2 Variation attributed to each factor. 90
11.3 Actions lost by the agents due to timeout in the default MAPC experiment. 90
11.4 Points scored by the agents in the reduced response time MAPC experiment. 91
11.5 Variation attributed to each factor. 92
11.6 Actions lost by the agents due to timeout in the reduced response time

MAPC experiment. 92
11.7 Points scored by the agents in the no random failure MAPC experiment. 93
11.8 Variation attributed to each factor. 94
11.9 Actions lost by the agents due to timeout in the no random failure MAPC

experiment. 94
11.10 Points scored by the agents in the performance profile evaluation experiment. 95
11.11 Variation attributed to each factor. 95

xiii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 3
1.3 Methodology . 3
1.4 Contributions . 4
1.5 Document structure . 4

I Background 7

2 Agent Oriented Programming 9
2.1 BDI Model . 9
2.2 3APL . 12
2.3 Jadex . 12
2.4 AgentSpeak . 13
2.5 Jason . 14

3 Anytime Algorithhms 19
3.1 Performance profiles . 20
3.2 Compilation . 21
3.3 Programming environment . 22

4 Multiobjective optimization 25
4.1 Weighting Method . 25
4.2 𝜖-constraint method . 26

5 Systematic literature review 29
5.1 Protocol . 29
5.2 Data sources . 29
5.3 Search results . 30

xiv

5.4 Analysis . 31

II Proposal 33

6 Anytime BDI Agent 35
6.1 General View . 35
6.2 Formal Description . 37
6.3 Belief Manager . 39
6.4 Intention Generator . 40
6.5 Intention Executor . 41
6.6 Monitor . 43

7 Anytime Jason 45
7.1 Belief Manager Implementation . 48
7.2 Intention Generator Implementation . 50
7.3 Intention Executor Implementation . 51
7.4 Monitor Implementation . 54

8 Related work 55
8.1 Parallel agent architectures . 55
8.2 Control of reasoning time on intentions. 59
8.3 Control of reasoning time over perceptions. 60
8.4 Real-Time BDI . 62
8.5 Synthesis . 62

III Evaluation 65

9 Experimental Design 67
9.1 Definitions . 67
9.2 Example . 68
9.3 Validation . 69

10 Insect capture scenario 71
10.1 Single agent experiment . 71

10.1.1 Bounded response time (E1) . 71
10.1.2 Unbounded response time (E2) 74

10.2 Multi-agent experiment . 77
10.2.1 Bounded response time (E3) . 77

xv

10.2.2 Unbounded response time (E4) 81

11 Multi-agent Programming Contest scenario 87
11.1 Default competition response time (E5) 89
11.2 Reduced response time (E6) . 91
11.3 Reduced response time without random failure (E7) 93
11.4 Performance profile evaluation (E8) . 95

12 Conclusions and further work 97
12.1 Conclusions . 97
12.2 Future work . 98

A Experiments visual validations 101

B Anytime Jason specific commands 107
B.1 Architecture usage . 107
B.2 Perception filters . 107
B.3 Plan priority . 109

Bibliography 111

1

Chapter 1

Introduction

1.1 Motivation
The agent-based modeling paradigm originates from the concept of components that

interact autonomously, maintain control over their state, and can perform tasks. When
agents can incorporate reasoning and learning mechanisms, they become intelligent
agents. Among the most known agent models, there is the BDI model (Belief, Desire,
Intention) proposed by Bratman (1987) and formalized by Rao and Georgeff (1991).
Ziafati and Dastani, 2013 reasons that the authors designed this model to implement
autonomous systems with deliberative behaviors inspired by the model of practical human
reasoning.

Due to this capability, Tweedale et al., 2007 states that the BDI agent model is the
right paradigm to be chosen when using agents in complex systems because it combines
several desirable attributes. Such as:

a) The authors based it on a respected philosophical theory - Bratman, 1987’s theory
of human reasoning;

b) It has been implemented several times in several languages;

c) Many complex applications use it;

d) The BDI theory has been rigorously formalized.

On the other hand, according to Kostiadis and Hu, 2000, conducting competitions
between intelligent agents such as RoboCup1 and MAPC2 is an attempt to foster AI
and research in intelligent robotics, providing a standard problem where a wide range of
technologies can be integrated and examined. Some fields include multi-agent collaboration,
strategy acquisition, real-time planning and reasoning, strategic decision making, and
machine learning. The use of BDI agents in this type of competition allows the development
of behaviors closer to human reasoning, increasing the realism in representing these
behaviors.

1 RoboCup: http://www.robocup.org/
2 MAPC: https://www.multiagentcontest.org/

http://www.robocup.org/
https://www.multiagentcontest.org /

2

1 | INTRODUCTION

In addition to simulation systems, there is a growing interest in the use of embedded
BDI agents, either in UAVs (Santos et al., 2015), or in land vehicles (Pantoja et al., 2016)
and robots (Ziafati and Dastani, 2013). Whether in simulation systems or embedded in
robots, the BDI model is a fundamental tool for developing intelligent agents with a high
level of reasoning.

One obstacle that prevents the perfect use of BDI agents in these environments is that
BDI architectures traditionally do not have control over their execution time. So, when an
agent starts to process its actions, there is no guarantee whether it will finish its processing
and perform an action in a bounded time. When integrating BDI agents with simulators,
the agent response time can negatively influence their performance. This influence is even
more concerning when we look at discrete event simulators. The main characteristic of
discrete event simulators is that they execute in steps and the simulator constantly pauses
its processing. During the intervals between the steps, the agents receive information
from the simulator containing their percepts, and have to decide on their actions and
communicate them back to the simulator until the beginning of the next step. As a result,
the time taken by the agent to find the best action is often longer than the time-bound
set by the simulator, which leads to the agent’s loss of action and inertia throughout the
step. In addition, the more complex the agents become, the longer the time taken to decide
an action, further aggravating the problem. This problem occurs similarly in embedded
BDI agents. For example, an agent embedded in a UAV can spend all of its battery time
processing its actions and crash before being able to execute them. In contrast, an agent
embedded in a land vehicle can collide with other objects if it does not dodge in time.

A commonly applied methodology to alleviate the problem is the use of hybrid agent
architectures. These architectures combine reactive and cognitive capabilities to enable
a shorter response time if there is a need for the agent to act quickly. The most famous
of these architectures is the “Architecture of Three Layers” with models described by
Gat, 1998 and Ferguson, 1992. In this type of architecture, there are three different
processing layers. Usually, the bottom layer (or execution layer) is reactive to allow for a
quick response. In contrast, the upper layer is cognitive to allow a better representation
of the world and a higher level of reasoning. The problem with this type of architecture,
according to Ziafati and Dastani, 2013 is first that the redundancy of having to keep
the same information in different models puts an additional burden on maintaining the
system and can lead to inconsistencies. Second, diagnosing plan failures can be difficult, as
the deliberative component may not have relevant information about the causes of failure
of an action taken by another component. Third, the execution of the plan may be less
efficient because the execution layer does not have a global view of the plan. An agent
with a single deliberative layer would be free of these problems.

In order to employ BDI architectures without the risks presented, it is then necessary
to do some form of control on the agent’s response time. This control would ensure that
the reasoning time of the agent does not exceed some pre-established bound. This solution
would allow for better integration of these agents into simulation systems and embedded
environments such as those described above, reducing the risk of using BDI agents. This
reduction could encourage using BDI architectures and provide greater realism to the
behaviors presented.

1.2 | OBJECTIVES

3

1.2 Objectives
This research aims to propose a model and an implementation of a BDI agent architec-

ture capable of controlling its reasoning execution time to execute within a pre-established
time-bound.

In particular, we want to be able to answer three research questions:

• Q1: Given a specific time response upper bound, is it possible to guarantee that a BDI
agent can often enough process perceptions, deliberate on them, and determine the
action it wants to perform within the time limit while simultaneously guaranteeing
a minimum quality of actions?

• Q2: How to define in advance the minimum time necessary for the agent to produce
a response with the desired quality?

• Q3: What is the impact of processing time on response quality?

The first step to achieving these objectives is to formalize an agent execution model
with controllable time. Since we want to set an upper bound on execution time and a
minimum limit on response quality, indiscriminately reducing processing time can cause
a significant drop in response quality. Thus, a more sophisticated control of the reasoning
cycle is necessary to answer the main question.

Second, to evaluate the proposed architecture and answer the secondary issues, it will
be necessary to implement the architecture accompanied by the implementation of agents
based on this architecture. Finally, the analysis of the agents’ response times, jointly with
the analysis of the responses, should make it possible to identify the minimum response
times and the interference of the response time control in the quality of the generated
actions.

1.3 Methodology
As previously described, this work presents three research questions. These questions

are related to the ability to control or adapt the runtime of a BDI agent. The main question
(Q1) contains the core of the problem to be solved. The secondary questions (Q2 and Q3)
describe examinations of the built architecture to identify its limitations and validate if the
proposed architecture solves the proposed problem. Thus, questions Q2 and Q3 directly
depend on the solution of question Q1.

To answer Q1, we propose some activities that include:

1. Analysis of the literature on anytime algorithms, parallel algorithms, and other
techniques that may influence the execution time of the BDI architecture;

2. Formalization of a BDI architecture whose maximum execution time is controllable;

3. Implementation of the formalized architecture;

4. Creation of test scenarios to analyze the quality of actions performed by agents;

5. Dissemination of results through one or more publications.

4

1 | INTRODUCTION

To answer Q2 and Q3, we propose:

1. Creation or modification of test scenarios and definition of action quality metrics;

2. Use of data analysis techniques experiments, as in Jain, 1991 to analyze the impact
of processing time on the quality of responses and possible impacts caused by other
factors.

3. Comparison of agents implemented in the proposed architecture with agents imple-
mented in other BDI architectures to evaluate the difference between the execution
times and the quality of the actions performed;

1.4 Contributions
The main contributions of this work are:

• To bring results from anytime algorithms to the BDI model, allowing control of the
execution time of BDI agents. Thus, improving the performance in scenarios where
the agent’s processing time impacts the result of its actions.

• To propose a model of BDI agent that controls its execution time, formalizing
the investigated concepts in a model that is sufficiently generic to be used in any
application of BDI agents.

• To define an architecture that describes the functioning of this model, suggesting
possible implementation methods.

• To implement the proposed model in an existing BDI agent programming language
(Jason) to assess whether the proposed architecture achieves its objectives through
appropriate statistical methods.

Finally, we provide the implementation of the architecture at https://github.com/
mfstabile/AnytimeJason.

1.5 Document structure
In the following chapters, we describe the details of the proposed BDI model and its

implementation. In Chapter 2, we introduce the concepts of agent-oriented programming,
including the BDI model and agent-oriented programming languages. In Chapter 3, we
present concepts related to anytime algorithms, such as performance profiles and the
compilation process of anytime algorithms. Chapter 5 contains the details of the systematic
review carried out at the beginning of the project, looking for works that would help us
solve the investigated problem. We present in Chapter 6 the formal description of the
proposed model and in Chapter 7 the implementation of this model in Jason language. Then,
Chapter 8 contains related works and details on how our proposal differs from existing
works. Next, in Chapter 9, we describe the methodology of analysis of experiments that
guided the evaluations carried out. After that, Chapter 10 contains a set of experiments in
a simple scenario created to allow an in-depth evaluation of the proposed model. Similarly,
Chapter 11 contains a set of experiments carried out in the MAPC simulator, analyzing

https://github.com/mfstabile/AnytimeJason
https://github.com/mfstabile/AnytimeJason

1.5 | DOCUMENT STRUCTURE

5

more complex agents. Finally, Chapter 12 presents the conclusions and the next steps of
the research.

7

Part I

Background

9

Chapter 2

Agent Oriented Programming

According to Wooldridge, 2009, Shoham, 1993 proposed a new paradigm for program-
ming, which was called Agent-Oriented Programming (AOP), considered as a specialization
of Object Oriented Programming (OOP). In this paradigm, developers can design intelligent
agents using mental states, such as beliefs, desires, and intentions. The reason for this
proposal was the use of these concepts by human beings as an abstraction mechanism
to represent the properties of complex systems in the same way they are used to explain
human behavior.

According to Shoham, 1993, while OOP proposes to consider a computer system as a
set of modules that communicate with each other, AOP adds mental states to each module,
now calling them agents that contain belief and decision-making mechanisms. These
agents can then exchange information, make requests and offers, compete and help each
other. The 2.1 table summarizes the relationship between AOP and OOP.

OOP AOP
Basic unit object agent

Parameters defining
state of basic unit

unconstrained beliefs, commitments„
capabilities, choices, ...

Process of computation message passing and
response methods

message passing and
response methods

Types of message unconstrained inform, request, offer,
promise, decline, ...

Constraints on methods none honesty, consistency, ...

Table 2.1: Comparative table between OOP and AOP presented by Shoham, 1993

2.1 BDI Model
According to Wooldridge, 1997, one of the most successful agent theories is the

belief-desire-intention (BDI) model of Rao and Georgeff, 1991. The beliefs represent

10

2 | AGENT ORIENTED PROGRAMMING

the agent’s information about the world, such as its perceptions. The desires are tasks
assigned to the agent. An agent may not be able to achieve all its desires, and as in human
beings, its desires may even be inconsistent, in the sense that achieving one of them may
make it impossible to achieve the others. As agents are not generally able to achieve all
of their desires (even consistent ones), they must therefore choose some subset of these
desires and commit to achieving them. The agent’s intentions represent the desires it has
committed to achieving. These intentions will then be part of future decision-making
where, for example, an agent must not adopt intentions that conflict with those to which
it is committed.

For the BDI model, Wooldridge, 2000, p. 26 proposes a basic agent design. We present
the more formalized version of this design in Algorithm 1. In this basic design, the agent
is supposed to observe the world (line 4) and update its internal model based on this
observation (line 5). It should then deliberate about what intentions to achieve next given
its current world model (line 6), use means-ends reasoning to get a plan for the intentions
(line 7), and finally, execute the generated plan (line 8).

Algorithm 1 A basic control loop from Wooldridge, 2000, p. 31.
1: 𝐵 ∶= 𝐵0; / ∗ 𝐵0 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑏𝑒𝑙𝑖𝑒𝑓 𝑠 ∗ /

2: 𝐼 ∶= 𝐼0; / ∗ 𝐼0 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑖𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑠 ∗ /

3: 𝑤ℎ𝑖𝑙𝑒 𝑡𝑟𝑢𝑒 𝑑𝑜

4: 𝑔𝑒𝑡 𝑛𝑒𝑥𝑡 𝑝𝑒𝑟𝑐𝑒𝑝𝑡 𝜌;

5: 𝐵 ∶= 𝑏𝑟𝑓 (𝐵, 𝜌);

6: 𝐼 ∶= 𝑑𝑒𝑙𝑖𝑏𝑒𝑟𝑎𝑡𝑒(𝐵);

7: 𝜋 ∶= 𝑝𝑙𝑎𝑛(𝐵, 𝐼);

8: 𝑒𝑥𝑒𝑐𝑢𝑡𝑒(𝜋);

9: 𝑒𝑛𝑑 − 𝑤ℎ𝑖𝑙𝑒

The model present in Algorithm 1 is, according to the author, a basic model and does not
allow some desirable behaviors to the agent, such as commitment strategies and intention
reconsideration. To make the agents present these behaviors, the author constructs a more
sophisticated version of the same model adding these new capabilities. We present this
version in Algorithm 2.

The first change happens in the deliberation process. The author suggests that in the
deliberation process, an agent typically analyzes its options, chooses some, and finally
commits to some. Given this behavior, he suggests separating the deliberate function into
two. One is for option generation, where the agent generates a set of possible alternatives,
and another is called filtering, where the agent chooses among the generated alternatives
and commits to achieving them. Thus, two functions replace the deliberate function in the
model. These are the options and filter functions, present in lines 6 and 7 respectively.

The second change concerns the agent’s commitment to its plans. In the basic model
of Algorithm 1, once the agent chooses a plan to execute, it will perform all steps of
that plan. This behavior can bring many issues. As we discussed earlier, while the agent
performs his actions, it is possible that some of them fail or that the environment changes
in a way that they are impossible to perform. To address this problem, Wooldridge,
2000 adds mechanisms in the Algorithm 2 model for reactivity and dropping intentions.

2.1 | BDI MODEL

11

Algorithm 2 A more sophisticated control loop from Wooldridge, 2000, p. 37.
1: 𝐵 ∶= 𝐵0; / ∗ 𝐵0 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑏𝑒𝑙𝑖𝑒𝑓 𝑠 ∗ /

2: 𝐼 ∶= 𝐼0; / ∗ 𝐼0 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑖𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑠 ∗ /

3: 𝑤ℎ𝑖𝑙𝑒 𝑡𝑟𝑢𝑒 𝑑𝑜

4: 𝑔𝑒𝑡 𝑛𝑒𝑥𝑡 𝑝𝑒𝑟𝑐𝑒𝑝𝑡 𝜌;

5: 𝐵 ∶= 𝑏𝑟𝑓 (𝐵, 𝜌);

6: 𝐷 ∶= 𝑜𝑝𝑡𝑖𝑜𝑛𝑠(𝐵, 𝐼);

7: 𝐼 ∶= 𝑓 𝑖𝑙𝑡𝑒𝑟(𝐵, 𝐷, 𝐼);

8: 𝜋 ∶= 𝑝𝑙𝑎𝑛(𝐵, 𝐼);

9: 𝑤ℎ𝑖𝑙𝑒 𝑛𝑜𝑡 (𝑒𝑚𝑝𝑡𝑦(𝜋) 𝑜𝑟 𝑠𝑢𝑐𝑐𝑒𝑒𝑑𝑒𝑑(𝐼 , 𝐵) 𝑜𝑟 𝑖𝑚𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒(𝐼 , 𝐵)) 𝑑𝑜

10: 𝛼 ∶= ℎ𝑒𝑎𝑑(𝜋);

11: 𝑒𝑥𝑒𝑐𝑢𝑡𝑒(𝛼);

12: 𝜋 ∶= 𝑡𝑎𝑖𝑙(𝜋);

13: 𝑔𝑒𝑡 𝑛𝑒𝑥𝑡 𝑝𝑒𝑟𝑐𝑒𝑝𝑡 𝜌;

14: 𝐵 ∶= 𝑏𝑟𝑓 (𝐵, 𝜌);

15: 𝑖𝑓 𝑟𝑒𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟(𝐼 , 𝐵) 𝑡ℎ𝑒𝑛

16: 𝐷 ∶= 𝑜𝑝𝑡𝑖𝑜𝑛𝑠(𝐵, 𝐼);

17: 𝐼 ∶= 𝑓 𝑖𝑙𝑡𝑒𝑟(𝐵, 𝐷, 𝐼);

18: 𝑒𝑛𝑑 − 𝑖𝑓

19: 𝑖𝑓 𝑛𝑜𝑡 𝑠𝑜𝑢𝑛𝑑(𝜋, 𝐼 , 𝐵) 𝑡ℎ𝑒𝑛

20: 𝜋 ∶= 𝑝𝑙𝑎𝑛(𝐵, 𝐼);

21: 𝑒𝑛𝑑 − 𝑖𝑓

22: 𝑒𝑛𝑑 − 𝑤ℎ𝑖𝑙𝑒

23: 𝑒𝑛𝑑 − 𝑤ℎ𝑖𝑙𝑒

For this, he defined a loop, present in lines 9 to 22 that modifies the execute function.
Instead of executing the entire plan at one time, line 10 selects only the first action to be
performed, which is performed on line 11 and removed from the plan in line 12. This loop
allows performing other verifications between the execution of two actions. One of these
verifications is to analyze whether the plan failed. After acting, the agent again perceives
the environment on lines 13 and 14, and on line 19, the agent checks if the plan failed
through the sound function. If the agent believes the plan failed, it will try to find a new
plan to reach its goal (line 20). Another verification is to analyze intentions. The functions
succeeded and impossible are added on line 9. If the agent realizes its goal is complete
while executing the plan, it does not have to carry on execution. Likewise, if it believes
the goal is impossible to achieve, it is not rational to continue executing the plan. These
two functions then make these verifications respectively and terminate the plan execution
in these cases.

According to the author, the basic agent never stops to reconsider whether its intentions
are still appropriate. Once the agent decides to reach a goal, it will only stop when it
reaches the objective. This type of agent is said to have a blind commitment. This type
of commitment may not be the most appropriate in some situations. Thus, the third and
final change intends to add the possibility of reconsidering its intentions to the agent. The
author defines the reconsider function in line 15 to make this possible. This function has
the purpose of deciding whether the agent should stop to reconsider its actions (which can

12

2 | AGENT ORIENTED PROGRAMMING

be a costly process) or not. If it judges that the agent should reconsider, the options and
filter functions on lines 16 and 17 are performed to reevaluate the agent’s intentions.

Similarly, the sound function verifies if the plan can still succeed. If not, the plan

function generates a new plan. According to how this structure was defined, the agent only
generates a new plan if the current plan fails. Hence, If the environment changes during
the execution of a plan, and such a change makes a second plan much more efficient, that
second plan will not be analyzed if the first one is sound.

2.2 3APL
3APL (An Abstract Agent Programming Language) is a programming language for

implementing cognitive agents designed by Hindriks et al., 1999 apud Bordini, Braubach,
et al., 2006. In it, agents have beliefs, goals, and plans as mental attitudes. Agents can
generate and review their plans to achieve goals and interact with each other and the
environment they share with other agents.

One of the main features of 3APL is the implementation of an agent’s mental attitudes
and the deliberation process that manipulates them. In particular, 3APL allows the di-
rect specification of mental attitudes, such as beliefs, goals, plans, actions, and rules of
reasoning.

The 3APL programming language design respects software engineering and program-
ming principles. Such principles include separation of concerns, modularity, abstractions,
and reusability. It also allows integration with the Prolog (declarative) and Java (Object
Oriented) programming languages.

An example of an agent developed in 3APL was presented by Dastani et al., 2003 and
found in the code 3. In this example, a robot aims to transport boxes to a specific room
while minimizing the cost of transport. In the first and second actions (lines 3 to 5 and 7
to 9) the robot can go from the room 𝑅1 to room 𝑅2 if it is already in room 𝑅1 (𝑝𝑜𝑠(𝑅1)).
After executing the move, if the agent is prohibited from making that move, its cost is
5. Otherwise, its cost is only 1. The third and fourth actions (lines 11 to 13 and 15 to 17)
represent the transition when the agent picks up or places a box on the floor. The belief
base (lines 19 to 22) shows the initial state of the agent, containing its initial position,
the position of the boxes, and which movements are prohibited. This agent has only one
objective (line 24): transport boxes. To achieve it, the agent uses its rule base (lines 26 to
28) to plan its movements.

2.3 Jadex
Jadex is a software framework for creating goal-oriented agents that follow the belief-

desire-intention (BDI) model that was developed by Braubach et al., 2003 apud Bordini,
Braubach, et al., 2006. The framework is composed of a rational agent that sits in a layer
on top of a middleware agent infrastructure like JADE by Bellifemine et al., 1999 and
allows agent development with well-established technologies such as Java and XML.

Jadex has been used to build applications in different domains like simulation, task

2.4 | AGENTSPEAK

13

Algorithm 3 3APL agent example from Dastani et al., 2003
1: 𝑃𝑅𝑂𝐺𝑅𝐴𝑀 }}𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑟𝑜𝑏𝑜𝑡 1ε

2: 𝐶𝐴𝑃𝐴𝐵𝐼𝐿𝐼 𝑇 𝐼𝐸𝑆 ∶

3: 𝑝𝑜𝑠(𝑅1), 𝑐𝑜𝑠𝑡(𝑋), 𝑛𝑜𝑡 𝑓 𝑜𝑟𝑏𝑖𝑑(𝑅1, 𝑅2)

4: 𝐺𝑜(𝑅1, 𝑅2)

5: 𝑛𝑜𝑡 𝑝𝑜𝑠(𝑅1), 𝑝𝑜𝑠(𝑅2), 𝑐𝑜𝑠𝑡(𝑋 + 1),

6:
7: 𝑝𝑜𝑠(𝑅1), 𝑐𝑜𝑠𝑡(𝑋), 𝑓 𝑜𝑟𝑏𝑖𝑑(𝑅1, 𝑅2)

8: 𝐺𝑜(𝑅1, 𝑅2)

9: 𝑛𝑜𝑡 𝑝𝑜𝑠(𝑅1), 𝑝𝑜𝑠(𝑅2), 𝑐𝑜𝑠𝑡(𝑋 + 5),

10:
11: 𝑏𝑜𝑥(𝑠𝑒𝑙𝑓), 𝑑𝑒𝑙𝑝𝑜𝑠(𝑅), 𝑝𝑜𝑠(𝑅)

12: 𝑃𝑢𝑡𝐵𝑜𝑥()

13: 𝑛𝑜𝑡 𝐵𝑜𝑥(𝑠𝑒𝑙𝑓), 𝑏𝑜𝑥(𝑅),

14:
15: 𝑝𝑜𝑠(𝑅), 𝑏𝑜𝑥(𝑅)

16: 𝐺𝑒𝑡𝐵𝑜𝑥()

17: 𝑛𝑜𝑡 𝑏𝑜𝑥(𝑅), 𝑏𝑜𝑥(𝑠𝑒𝑙𝑓)

18: 𝐵𝐸𝐿𝐼𝐸𝐹𝐵𝐴𝑆𝐸 ∶

19: 𝑝𝑜𝑠(𝑟4), 𝑏𝑜𝑥(𝑟2), 𝑑𝑒𝑙𝑝𝑜𝑠(𝑟1), 𝑔𝑎𝑖𝑛(5), 𝑐𝑜𝑠𝑡(0), 𝑓 𝑜𝑟𝑏𝑖𝑑(𝑟4, 𝑟2),

20: 𝑑𝑜𝑜𝑟(𝑟1, 𝑟2), 𝑑𝑜𝑜𝑟(𝑟1, 𝑟3), 𝑑𝑜𝑜𝑟(𝑟2, 𝑟4), 𝑑𝑜𝑜𝑟(𝑟3, 𝑟4),

21: 𝑑𝑜𝑜𝑟(𝑅1, 𝑅2) ∶ −(𝑅2, 𝑅1),

22: 𝑓 𝑜𝑟𝑏𝑖𝑑(𝑅1, 𝑅2) ∶ −𝑓 𝑜𝑟𝑏𝑖𝑑(𝑅2, 𝑅1)

23: 𝐺𝑂𝐴𝐿𝐵𝐴𝑆𝐸 ∶

24: 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝐵𝑜𝑥()

25: 𝑅𝑈𝐿𝐸𝐵𝐴𝑆𝐸 ∶

26: 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝐵𝑜𝑥() ← 𝑝𝑜𝑠(𝑅1), 𝑏𝑜𝑥(𝑅2), 𝑑𝑒𝑙𝑝𝑜𝑠(𝑅3)|𝑔𝑜𝑥𝑦(𝑅1, 𝑅2); 𝐺𝑒𝑡𝐵𝑜𝑥(); 𝑔𝑜𝑥𝑦(𝑅2, 𝑅3); 𝑃𝑢𝑡𝐵𝑜𝑥(),

27: 𝑔𝑜𝑥𝑦(𝑅1, 𝑅2) ← 𝑝𝑜𝑠(𝑅1), 𝑑𝑜𝑜𝑟(𝑅1, 𝑅3), 𝑛𝑜𝑡𝑅1 = 𝑅2|𝐺𝑜(𝑅1, 𝑅3); 𝑔𝑜𝑥𝑦(𝑅3, 𝑅2),

28: 𝑔𝑜𝑥𝑦(𝑅1, 𝑅2) ← 𝑅1 = 𝑅2|𝑆𝐾𝐼𝑃.

planning, and mobile computing. For example, Jadex was used to develop a multi-agent
application for negotiating treatment schedules in hospitals.

2.4 AgentSpeak
The AgentSpeak language is an abstract agent-oriented programming language based

on a constrained first-order language with events and actions. It was created by Rao, 1996
to allow programming of the behavior of BDI agents and multi-agent systems.

Rao, 1996 defines that the language consists of a set of base beliefs (or facts, in the
context of logic programming) and a set of plans. Plans are context-sensitive, event-invoked
recipes that allow the hierarchical decomposition of objectives and the execution of actions.
The plans aim to achieve the agent’s goals. Thus, the plans selected for execution would
be the agent’s intentions.

However, the AgentSpeak language is abstract, and its authors did not build a compiler

14

2 | AGENT ORIENTED PROGRAMMING

or interpreter for the language, thus holding no practical use.

2.5 Jason
Jason is an open-source interpreter implemented in the Java language for an extended

version of the AgentSpeak language, developed by Bordini, Hübner, and Wooldridge
(2007), which implements the operational semantics of the language and provides a platform
for the development of multi-agent systems.

According to Bordini, Braubach, et al., 2006, besides those defined by the AgentSpeak
language, some of the features available in Jason are:

1. Communication between agents based on speech acts (and annotations on beliefs
about information sources);

2. Annotations on plan labels, which more elaborate selection functions can use;

3. Selection functions, trust functions, and general agent architecture (perception,
belief revision, communication between agents and actions) fully customizable (in
Java);

4. Extendability (and use of legacy code) through user-defined “internal actions”;

5. A clear notion of environment for multi-agent scenarios, implemented in Java.

Reasoning cycle
The Jason framework executes the agents through a reasoning cycle divided into ten

main steps, as seen in Figure 2.1. During each reasoning cycle, the agent receives the
percepts from the environment and the messages from other agents, deliberates, chooses
an intention, and performs an action.

The internal process is described by Bordini, Hübner, et al., 2007 as follows:

1. Perceiving the Environment
The first step in executing the agent is to perceive the environment. Perceptions are
a set of literals where each literal represents a property in the current state of the
environment.

2. Updating the Belief Base
The belief base is updated to reflect changes in the environment by a customizable
update function. The default Jason’s implementation assumes that everything the
agent can perceive will be on the percepts set sent to the agent by the environment.
So the standard belief update function goes through the belief base and percepts set
to include the new literals, remove the literals that are no longer perceived, and keep
the ones that were already known. Each literal inclusion or exclusion generates an
event and adds it to an event list.

3. Receiving Communication from Other Agents
At this stage, the interpreter checks if the agent has received any messages from
another agent. If so, one message is selected to be processed.

2.5 | JASON

15

Figure 2.1: Reasoning cycle of a Jason agent presented by Bordini, Hübner, et al., 2007.

4. Selecting “Socially Acceptable" Messages
Before being processed, messages go through a check to determine whether or not
they should be accepted by the agent, verifying the sender and the content through
a customizable function.

5. Selecting an Event
From the list of events created in the belief update phase, the event selection function
chooses an event for execution. The default selection function chooses the oldest
event in the list.

6. Retrieving all Relevant Plans
Once an event is selected, it is necessary to find a plan that allows the agent to act
to deal with the event. The first step is to go through the list of plans and find all
those invoked by the selected event.

7. Determining the Applicable Plans
With the list of relevant plans, it is necessary to verify which of them can be executed,
that is, whose preconditions are valid.

8. Selecting One Applicable Plan
At this point, the architecture has determined all possible plans to handle the selected
event. So, theoretically, any plan can be used for this purpose. The architecture then
uses another customizable selection function to decide which plan to execute and
adds the selected one to the existing list of intentions.

9. Selecting an Intention for Further Execution
During execution, an agent typically has more than one intention to execute, each
representing a different focus of attention. However, the architecture can carry out
only one intention at a time. Thus, it is necessary to choose a single intention.

16

2 | AGENT ORIENTED PROGRAMMING

10. Executing One Step of an Intention
In this last stage, the agent has updated its information about the environment, dealt
with one of the generated events, and must now perform an action. From the chosen
intention, the first action not yet performed is selected and executed.

Jason’s compiler performs this process through nine Semantic Rules 1. They are Java
methods that implement the following behaviors:

• buf
It receives a list of new environmental perceptions and updates the belief base by
adding new beliefs, removing beliefs that are no longer perceived, and generating
the respective events.

• ProcMsg If there are messages, select one, check the sender and content and add
the events resulting from the message.

• SelEv Selects one event from the list and stores it in a variable to be analyzed by
the FindOp function. Without customization, this function always selects the oldest
event not yet analyzed.

• FindOp This function identifies the plans relevant to the event chosen by the SelEv

function (which have the same trigger) and analyzes them looking for an applicable
plan. The first applicable plan found is selected and stored.

• AddIM Creates a new intention by merging the chosen event in SelEv and the
chosen plan in FindOp and adds that intention to the agent’s intention set.

• ProcAct Checks for existence and analyzes so-called Feedback Actions. These ob-
jects contain the result of the execution of an action in the environment performed
in some previous reasoning cycle (if it was successful or unsuccessful). After, in
case of successful execution, the intention can continue to execute. An unsuccessful
execution generates a failure event and removes the intention.

• SelInt Selects one of the agent’s intentions and separate it for execution by removing
it from the agent’s intention list. Jason’s default behavior defines the intention chosen
as the one that is not chosen the longest, as in a round-robin mechanism.

• ExecInt Identifies the next step of the plan selected in the SelInt function and
executes it. The corresponding behavior is carried out for each type of command,
whether adding or removing a belief or objective, performing rule tests, or other
internal actions. One difference is concerning external actions. Instead of immedi-
ately acting, the ExecInt function creates an ActionExec type object that stores the
intention and the action to be performed.

• ClrInt Inspections if the plan has not finished and if the intention the plan seeks to
achieve is still active. If both conditions are valid, the rule returns the plan to the set
so it can be selected again.

We present the execution flow of these functions in Figure 2.2. A Jason agent’s reasoning
cycle begins with the Sense function, which calls the buf function and then the ProcMsg

1 Although the buf function is not a semantic rule, we describe it together with semantic rules for simplicity.

2.5 | JASON

17

function. Then, the Deliberate function calls the SelEv function. Then, the execution
proceeds to the Act function if there are no events to handle. If there is, the FindOp

functions are executed, and then the AddIM function before passing the execution to the
Act function.

Similarly, the Act function calls the ProcAct function and then the SelInt function. The
reasoning cycle ends if there are no intentions/plans to execute. If there are intentions,
ExecInt and ClrInt execute. After executing the ClrInt function, the Act function checks
for the existence of an ActionExec type object that the ExecInt function may have created.
If it exists, it performs this action. Thus the reasoning cycle of a Jason agent is composed
of the sequential execution of the functions described above.

Figure 2.2: Jason Semantic Rules execution flow.

Code example
We present an example of an agent built in Jason in code 4. In this example, an agent is

responsible for cleaning a room, provided with Jason2 source code. The agent performs this
task by going through the grid’s squares, and when it finds garbage in one of the squares,
it carries this garbage to the incinerator. The agent will perceive the environment at each
step and obtain information about its current position “𝑝𝑜𝑠(𝑟1, 0, 0)”, the position of the
incinerator “𝑝𝑜𝑠(𝑟2, 10, 10)” and whether there is garbage in the space where “𝑔𝑎𝑟𝑏𝑎𝑔𝑒(𝑟1)”
is. At the beginning of the execution, the agent has the objective of traversing the grid in
search of garbage (line 7). The agent’s plan checks for garbage in the same space as the
agent (lines 11 to 14). If empty, the agent moves to the next space. If the agent notices that
there is garbage in the space it occupies (line 16), it takes the garbage (line 17), carries it to
the incinerator (lines 19 to 24) and returns to the same position where it previously was
(lines 25 to 27).

Since the Jason interpreter is implemented in the Java language, it is possible to
use methods developed in the Java language for tasks where using a BDI abstraction
would make its execution inefficient. Such tasks include mathematical calculations and
file readings.

Using these mechanisms, Jason can run the agents so that they interact with the
environment when necessary and perform the specified tasks.

2 http://jason.sourceforge.net/wp/

http://jason.sourceforge.net/wp/

18

2 | AGENT ORIENTED PROGRAMMING

Algorithm 4 Jason agent code example
1: / ∗ 𝐼 𝑛𝑖𝑡𝑖𝑎𝑙 𝑏𝑒𝑙𝑖𝑒𝑓 𝑠 ∗ /

2:
3: 𝑎𝑡(𝑃) ∶ −𝑝𝑜𝑠(𝑃, 𝑋 , 𝑌) & 𝑝𝑜𝑠(𝑟1, 𝑋 , 𝑌).

4:
5: / ∗ 𝐼 𝑛𝑖𝑡𝑖𝑎𝑙 𝑔𝑜𝑎𝑙 ∗ /

6:
7: !𝑐ℎ𝑒𝑐𝑘(𝑠𝑙𝑜𝑡𝑠).

8:
9: / ∗ 𝑃 𝑙𝑎𝑛𝑠 ∗ /

10:
11: +!𝑐ℎ𝑒𝑐𝑘(𝑠𝑙𝑜𝑡𝑠) ∶ 𝑛𝑜𝑡𝑔𝑎𝑟𝑏𝑎𝑔𝑒(𝑟1)

12: < − 𝑛𝑒𝑥𝑡(𝑠𝑙𝑜𝑡);

13: !!𝑐ℎ𝑒𝑐𝑘(𝑠𝑙𝑜𝑡𝑠).

14: +!𝑐ℎ𝑒𝑐𝑘(𝑠𝑙𝑜𝑡𝑠).

15:
16: +𝑔𝑎𝑟𝑏𝑎𝑔𝑒(𝑟1) ∶ 𝑛𝑜𝑡 .𝑑𝑒𝑠𝑖𝑟𝑒(𝑐𝑎𝑟𝑟𝑦_𝑡𝑜(𝑟2))
17: < − !𝑐𝑎𝑟𝑟𝑦_𝑡𝑜(𝑟2).
18:
19: +!𝑐𝑎𝑟𝑟𝑦_𝑡𝑜(𝑅)
20: < −//𝑟𝑒𝑚𝑒𝑚𝑏𝑒𝑟 𝑤ℎ𝑒𝑟𝑒 𝑡𝑜 𝑔𝑜 𝑏𝑎𝑐𝑘

21: ?𝑝𝑜𝑠(𝑟1, 𝑋 , 𝑌);

22: − + 𝑝𝑜𝑠(𝑙𝑎𝑠𝑡, 𝑋 , 𝑌);

23: //𝑐𝑎𝑟𝑟𝑦 𝑔𝑎𝑟𝑏𝑎𝑔𝑒 𝑡𝑜 𝑟2

24: !𝑡𝑎𝑘𝑒(𝑔𝑎𝑟𝑏, 𝑅);

25: //𝑔𝑜𝑒𝑠 𝑏𝑎𝑐𝑘 𝑎𝑛𝑑 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒 𝑡𝑜 𝑐ℎ𝑒𝑐𝑘

26: !𝑎𝑡(𝑙𝑎𝑠𝑡);

27: !!𝑐ℎ𝑒𝑐𝑘(𝑠𝑙𝑜𝑡𝑠).

28:
29: +!𝑡𝑎𝑘𝑒(𝑆, 𝐿) ∶ 𝑡𝑟𝑢𝑒

30: < − !𝑒𝑛𝑠𝑢𝑟𝑒_𝑝𝑖𝑐𝑘(𝑆);
31: !𝑎𝑡(𝐿);

32: 𝑑𝑟𝑜𝑝(𝑆).

33:
34: +!𝑒𝑛𝑠𝑢𝑟𝑒_𝑝𝑖𝑐𝑘(𝑆) ∶ 𝑔𝑎𝑟𝑏𝑎𝑔𝑒(𝑟1)

35: < − 𝑝𝑖𝑐𝑘(𝑔𝑎𝑟𝑏);

36: !𝑒𝑛𝑠𝑢𝑟𝑒_𝑝𝑖𝑐𝑘(𝑆).
37: +!𝑒𝑛𝑠𝑢𝑟𝑒_𝑝𝑖𝑐𝑘(_).
38:
39: +!𝑎𝑡(𝐿) ∶ 𝑎𝑡(𝐿).

40: +!𝑎𝑡(𝐿) < − ?𝑝𝑜𝑠(𝐿, 𝑋 , 𝑌);

41: 𝑚𝑜𝑣𝑒_𝑡𝑜𝑤𝑎𝑟𝑑𝑠(𝑋 , 𝑌);

42: !𝑎𝑡(𝐿).

43:

19

Chapter 3

Anytime Algorithhms

The term anytime algorithm emerged in research conducted by Dean and Boddy, 1988.
They studied the problem of planning actions in scenarios where the time available to
generate a plan is variable, and the decision process for formulating the plans is complex.
Dean and Boddy, 1988 named anytime algorithms those algorithms that had two charac-
teristics: a) The algorithm can be terminated at any time and will return some response;
b) The returned answers improve in some well-behaved way as a function of time.

Building on the work of Dean and Boddy, 1988, Zilberstein, 1993 proposed using this
class of algorithms for planning and all kinds of bounded rationality. With this, he proposed
ways to analyze and compose different anytime algorithms to create complex systems
formed by multiple anytime algorithms that maintain the same property of allowing
the balance between processing time and quality of results. With that, he examined the
problem of real-time decision-making by intelligent agents. This examination resulted in an
efficient bounded optimization model based on anytime computation, offline compilation,
and runtime monitoring.

To illustrate how anytime algorithms work, we present an example of an anytime
algorithm that seeks to solve the classic traveling salesperson problem based on the
example presented by Zilberstein, 1993. In this problem, the salesperson must go through
all the cities and return to the city of origin. When initializing this algorithm, a random
path between the cities would be generated, like the one in Figure 3.1a. That way, it would
be possible to generate an answer rather quickly. Thus, if the algorithm terminates, it can
already provide an answer to the problem, even if it is not the best one. If there is still
processing time, the algorithm will randomly select two edges from the path and replace
them with two new ones that are not in the current path, as illustrated in Figure 3.1b. If
the new path is worse than the existing one, it is discarded. If it is better, the new path
is stored, as in Figure 3.1c. If the algorithm is interrupted at this point, it will provide an
answer better than the previous one. Thus, the algorithm will look for better answers as
long as there is processing time.

There are two categories of anytime algorithms: interruptible algorithms and contract
algorithms. Interruptible algorithms can be interrupted at any point in their execution
and will produce results with the expected quality. Contrary to interruptible algorithms,

20

3 | ANYTIME ALGORITHHMS

(a) Random path (b) Random change (c) New best path

Figure 3.1: Traveling salesman anytime solution.

contract algorithms require the time allocation to be known in advance to provide outputs
whose quality varies with the time allocation. A contract algorithm may produce useless
results if it terminates at any moment before the contract period. However, despite this
disadvantage, it is much easier to build contract algorithms than interruptible algorithms.
Thus, it is necessary to consider the advantages and disadvantages of each of these cate-
gories when building an anytime algorithm.

3.1 Performance profiles

The main characteristic of anytime algorithms is the ability to exchange processing
time for the quality of results. So, it is desirable to know the expected quality of the result
for a given available execution time and what is the minimum necessary time to reach
the desired minimum quality. We can then describe an anytime algorithm’s performance
profiles to achieve these goals. Based on the activation of an anytime algorithm with a
given time allocation, these performance profiles provide a range of values for the quality
of the algorithm’s result.

There are three main methods for calculating performance profiles. The first is through
a structural analysis of the algorithm. In many iterative algorithms, we can calculate the
result’s error as a function of the number of iterations performed by the algorithm. So, we
can calculate its performance by knowing the time taken to execute each iteration. The
problem, however, is when the iterations of the algorithm do not all take the same amount
of time to execute or when the increase in quality cannot be well described. In these cases,
we can calculate the performance profile through a series of simulations. These simulations
use representative domain cases and analyze statistics from different executions. Finally, a
third method combines the simulation technique with a learning technique. In this method,
we create an approximate performance profile using the simulation method. Then, as
the system runs in the environment, it updates the performance profile according to its
experience.

Figure 3.2 shows a possible quality map for an anytime algorithm. Each point on
the plot corresponds to one execution. This map is a base to generate the equivalent
performance profile, shown in Figure 3.3.

3.2 | COMPILATION

21

Figure 3.2: Quality map of an anytime algorithm. (From Zilberstein, 1993)

Figure 3.3: Performance profile of an anytime algorithm. (From Zilberstein, 1993)

3.2 Compilation
Zilberstein, 1993 describes a process for creating complex systems by putting together

several so-called elementary anytime algorithms. Elementary anytime algorithms are those
not formed by combining other anytime algorithms. Zilberstein, 1993 calls this creation
process compilation of anytime algorithms.

Figure 3.4 illustrates a compilation example. The compiler receives a module with some
elementary anytime algorithms and their respective performance profiles as input. The
compiler must then parse this input and produce an anytime executable module consisting
of a compiled version of the original module, a predefined runtime monitor, and the system
performance profile, which may include some auxiliary time allocation information. The
compiler analyzes the performance profiles of each elementary anytime algorithm. Then,
it calculates for each possible execution time what time allocation for each elementary
anytime algorithm will maximize the quality of the final result. As an example, in Figure
3.4, it is possible to verify from the performance profiles that the 𝐴𝐴2 and 𝐴𝐴4 algorithms
present higher quality results in less time. Thus, the compiler may allocate more time to

22

3 | ANYTIME ALGORITHHMS

algorithms 𝐴𝐴1 and 𝐴𝐴3 to compensate for the delay in obtaining improvements in the
quality of the result. If the performance profiles of the elementary algorithms change (as
in the learning method), the compilation must happen again.

Figure 3.4: Anytime algorithm compilation example.

3.3 Programming environment
Beyond performance and compilation profiles of anytime algorithms, in Zilberstein,

1993 the authors describe how to execute anytime algorithms on a standard computer. For
this execution, the programming language used to implement the algorithms, the operating
system that executes the algorithm, and the scheduler of processes of the operating system
must show the following characteristics:

1. The programming language must support:

(a) Functions as first class objects.

(b) Functions can take optional and keyword arguments.

(c) Execution is deterministic over time. That is, every deterministic function’s
run-time is consistent across activations using the same input.

2. The operating system must support the following operations:

(a) A program can create processes and control their execution.

(b) The scheduling of processes is based on priorities. At each point of time the
running process is the one with the highest priority among all the ready
processes.

(c) The system maintains a real-time clock.

(d) A process can sleep until a certain event occurs. The process becomes ready
immediately after the event occurs.

(e) Events can be triggered by any process or by the real-time clock.

3.3 | PROGRAMMING ENVIRONMENT

23

3. The scheduler of processes of the operating system must behave as follows:

(a) The scheduler must be event-driven. The process with the greatest priority
continues to run if no event happens. One ready process is chosen at random
for execution if two ready processes have the same priority.

(b) When a process is active and another with a higher priority becomes available,
the later instantly becomes active.

(c) The scheduler’s overhead must have very little impact on the performance
profiles of the active algorithms.

Analyzing the restrictions, although possible, the execution of truly anytime algorithms
depends on the choice of an operating system and a programming language capable of
meeting all these restrictions. Conventional operating systems are incapable of meeting
these requirements because the scheduling of processes is not only based on priorities,
for example. Many programming languages use garbage collection mechanisms, making
execution time not deterministic. Programming languages and operating systems specially
designed for real-time applications are necessary for true anytime execution.

25

Chapter 4

Multiobjective optimization

According to Miettinen (2008), many planning and decision-making tasks entail
various competing priorities that need to be taken into account concurrently. These
tasks are frequently referred to as multiple criteria decision making (MCDM) problems.
Depending on the specific situation at hand, there are numerous ways that MCDM problems
might be categorized.

Scenarios where there is a set of unknown possible solutions, and that can be described
by constraint functions are called multiobjective optimization problems. No single solution
to a multiobjective optimization problem exists, but a number of mathematically equivalent
solutions can be found. These answers are referred to as Pareto optimal solutions.

The idea of addressing a multiobjective optimization problem is typically viewed as
assisting a human decision maker (DM) in taking into account numerous objectives at
once and in locating a Pareto optimal solution that appeals to him/her the most adequate.
As a result, the DM must participate in the solution process by providing preference
information, and in one way or another, his or her choices will affect the ultimate solution.
That is, preference data is used to create a more or less explicit preference model, which is
then used to find solutions that better suit the DM’s preferences.

Two methods are so widely used that they have become known as basic methods. In
the following sections we explain their functionality.

4.1 Weighting Method
Miettinen (2008) describes the weighting method as solving the problem:

minimize

𝑘

∑

𝑖=1

𝑤𝑖𝑓𝑖(𝑥)

subject to 𝑥 ∈ 𝑆

where 𝑤𝑖 ≥ 0 for all 𝑖 = 1, ..., 𝑘, S and, typically, ∑𝑘

𝑖=1
𝑤𝑖 = 1.

26

4 | MULTIOBJECTIVE OPTIMIZATION

In this method, the result of each of the 𝑘 functions 𝑓𝑖 on the parameters 𝑥 is weighted
by a weight 𝑤𝑖 . The values of 𝑥 that minimize the sum are the possible solutions to the
problem.

The weighting method can be employed as an a posteriori method, in which case the
DM is asked to choose the best Pareto optimal option after various weights are applied to
produce various Pareto optimal solutions. As an alternative, the method can be utilized as
an a priori method by asking the DM to provide the weights.

However, the weighting approach has a significant flaw. It has been demonstrated that
all Pareto optimal solutions can only be discovered by adjusting the weights in convex
problems. As a result, it is possible that no matter how the weights are chosen, some
Pareto optimal solutions to nonconvex problems cannot be discovered. This is due to the
possibility that when changing the weights, the technique may leap from one vertex to
another, hence failing to discover intermediate solutions.

4.2 𝜖-constraint method
In the 𝜖-constraint method, according to Miettinen (2008), one of the objective func-

tions is selected to be optimized, and the others are converted into constraints. Therefore,
the problem gets the following form:

minimize 𝑓𝑙(𝑥)

subject to 𝑓𝑗(𝑥) ≤ 𝜖𝑗 for all 𝑗 = 1, ..., 𝑘, 𝑗 ≠ 𝑙,

𝑥 ∈ 𝑆,

where 𝑙 ∈ {1, ..., 𝑘} and 𝜖𝑗 are upper bounds for the objectives (𝑗 ≠ 𝑙).

Figure 4.1: 𝜖-constraint method example.

We present in Figure 4.1 an example with two functions. In this example, function

4.2 | 𝜖-CONSTRAINT METHOD

27

𝑓1 is optimized and function 𝑓2 is converted into a constraint. The red lines symbolize
possible constraints for 𝑓2 and the point on the line is the point that minimizes 𝑓1 within
the imposed constraint. By varying the constraints, we can find all the Pareto optimal
solutions.

Finding any Pareto optimal solution does not require convexity, which is a positive fac-
tor when compared with the weighting method. Consequently, both convex and nonconvex
problems can be solved using this approach.

29

Chapter 5

Systematic literature review

In 2018, we conducted a systematic literature review to answer the proposed research
questions and identify existing works in related areas. After identifying such works, it
became possible to verify the techniques developed to solve similar problems and verify
the aspects not yet solved. In addition, it was also possible to validate whether the research
questions were meaningful.

5.1 Protocol
Since questions 2 and 3 are directly dependent on the answer to the first question, the

focus of the review was to answer the first research question:

• Q1: Given a specific time response upper bound, is it possible to guarantee that a BDI
agent can often enough process perceptions, deliberate on them, and determine the
action it wants to perform within the time limit while simultaneously guaranteeing
a minimum quality of actions?

In order to try to find answers to this question, the review focused on the following
topics:

• Use of BDI agents in simulators and embedded in robots;

• Analysis of performance and techniques to reduce the execution time of BDI agents;

• Runtime controlled BDI agents.

5.2 Data sources
We performed searches in the following knowledge bases:

• ACM Digital Library;

• Engineering Village;

• IEEE Xplore;

30

5 | SYSTEMATIC LITERATURE REVIEW

• Science Direct

• Springer

• Web of Science

We used four search strings in each base according to the syntax accepted by each
one.

For the “ACM Digital Library” base:

• String 1: +(bdi) +(robot robotic simulator simulated)

• String 2: +(bdi) +(parallel performance)

• String 3: +(bdi) +(anytime "real-time" "time limited" "time bounded")

• String 4: +(agent bdi "autonomous system") +(anytime "real-time" "time limited"
"time bounded") +(robot robotic simulator simulated) +(parallel performance)

For the “Engineering Village”, “IEEE Xplore”, “Science Direct”, “ Springer” and “Web of
Science” databases:

• String 1: (bdi) AND (robot OR robotic OR simulator OR simulated)

• String 2: (bdi) AND (parallel OR performance)

• String 3: (bdi) AND (anytime OR real-time OR "time limited" OR "time bounded")

• String 4: (agent OR bdi OR "autonomous system") AND (anytime OR real-time
OR "time limited" OR "time bounded") AND (robot OR robotic OR simulator OR
simulated) AND (parallel OR performance)

5.3 Search results
We present the results of applying the search strings in the knowledge bases in Table

5.1.

Base SB1 SB2 SB3 SB4
ACM Digital Library 60 46 15 147
Engineering Village 532 400 104 1744
IEEE Xplore 68 65 19 302
Science Direct 539 840 5868 17884
Springer 4868 10928 2660 41397
Web of Science 145 769 73 360

Table 5.1: Result of search strings in each knowledge base

In some of the knowledge bases, searches returned thousands of results. After some
analysis, we found that some databases show within the search results works that do
not present all the searched terms. For example, a search for “(bdi) AND (parallel OR
performance)” displayed results where the term BDI was absent. In other cases, the acronym
BDI matched terms from other areas, such as psychology.

5.4 | ANALYSIS

31

In order to solve this sort of problem, we added some inclusion criteria to help us
identify the relevant research. The titles of the 300 most relevant works of each search
string in each knowledge base were analyzed (when more than 300 results were present)
according to the following criteria:

• Works whose area is computing;

• Works that help to understand the BDI paradigm;

• Jobs dealing with limiting, controlling, or analyzing an agent’s runtime;

• Jobs that address the time aspect when linking a BDI agent to a simulator or robot.

The first step was listing all titles and removing any duplicated works. Afterward, we
evaluated each paper’s abstracts to verify if they fit the inclusion criteria. We present the
number of papers in each step in Table 5.2.

Filter SB1 SB2 SB3 SB4
Total results 6212 13048 8739 61834
Results analyzed 1405 1411 811 1709
Selected titles 61 42 39 23
Selected abstracts 45 26 24 11

Table 5.2: Articles analyzed

Following, we separated the selected articles in each survey by year. This separation is
presented in Table 5.3.

5.4 Analysis
Among the analyzed articles, those that presented the greatest correlation with this

research were the works of Kostiadis and Hu, 2000, Zatelli et al., 2016 and multiple
papers by Zhang and Huang, including Zhang and Huang, 2005 and Zhang and Huang,
2007. The content of the articles and how they compare to the model proposed in this
work will be presented in Chapter 8.

The evaluation of the selected articles made it possible to identify some interesting
information. An analysis of the years of publications shows that about 90% of the works
were published in the previous 15 years. This fact suggests that although the BDI paradigm
emerged from the work of Rao and Georgeff, 1991, the concern with execution time and
the attempt to control or adapt it to be used in applications with real-time characteristics
is recent, and there is still interest from researchers in the subject.

Another verified fact is that the problem encountered when using BDI agents in time-
bounded simulators also occurs when trying to use BDI agents embedded in robots. Both
require the time interval between executing two actions by the agent to be small. In
simulators, a high interval will make the agent stop performing its actions. In a robot,
although nothing deliberately prevents it from performing its action, it may no longer
be possible due to changes in the environment caused by the dynamic characteristic of
the real world. This fact indicates that works developed for the robotics area may have

32

5 | SYSTEMATIC LITERATURE REVIEW

Year SB1 SB2 SB3 SB4
1994 0 0 0 1
1995 1 1 0 0
1998 0 1 0 1
1999 2 1 1 0
2001 0 1 0 0
2003 1 1 2 0
2004 1 1 1 0
2005 5 2 3 1
2006 2 2 3 0
2007 0 2 0 0
2008 4 0 1 0
2009 0 0 3 0
2010 6 1 6 3
2011 3 2 1 0
2012 3 3 1 2
2013 3 2 1 1
2014 2 0 0 0
2015 1 1 0 1
2016 7 2 1 1
2017 4 2 0 0
2018 0 1 0 0

Table 5.3: Publications per year

beneficial results for the research questions of this work. Furthermore, the answers to the
research questions could also represent exciting results in the robotics community.

33

Part II

Proposal

35

Chapter 6

Anytime BDI Agent

In this chapter, we describe our BDI agent model that allows control of its runtime and
was initially introduced in Stabile Jr., 2022. We present both its formal description and
possible implementation of this model.

6.1 General View
One of the significant issues of the BDI architecture is the need for deliberation and

means-ends reasoning to compute in a small amount of time. The main characteristic
of anytime algorithms is the possibility of controlling the execution time by achieving
sub-optimal results. Therefore, it seems logical to use the anytime algorithms approach to
design more efficient BDI agents.

In the sequence, we consider that perception acquisition and action execution depend
on the environment in which the agent is inserted and can hardly be constrained. For
example, a BDI agent embedded in a robot can not perform a moving action faster by
simply activating its motor wheels faster than its maximum limit. Based on this fact,
we assume the perception and execution steps take constant time. So, we focus here on
controlling the three central parts of the agent’s execution, updating the agent’s internal
model, deliberating, and means-ends reasoning (lines 5, 6, and 7, from Algorithm 1).

We can then define the functions of updating the internal agent model (belief revision
function - 𝑏𝑟𝑓), deliberation (𝑑𝑒𝑙𝑖𝑏𝑒𝑟𝑎𝑡𝑒), and means-ends reasoning (𝑓 𝑖𝑛𝑑𝑃𝑙𝑎𝑛) as con-
tract anytime algorithms. Thus, we can define time values 𝑡𝑏𝑟𝑓 , 𝑡𝑑𝑒𝑙𝑖𝑏 e 𝑡𝑝𝑙𝑎𝑛, respectively
for the brf, deliberation, and findPlan, which will represent the time that each of these
functions will execute. Algorithm 5 presents the concept of the Anytime BDI control
mechanism, which is the idea behind the architecture proposed in Section 6.2.

Assuming the perception acquisition will take a time 𝑡𝑝 and an action execution a time
𝑡𝑎 to perform, the total time 𝑇 for an anytime cycle to complete (executing lines 3 to 8) will
be 𝑇 = 𝑡𝑝 + 𝑡𝑏𝑟𝑓 + 𝑡𝑑𝑒𝑙𝑖𝑏 + 𝑡𝑝𝑙𝑎𝑛 + 𝑡𝑎. By controlling 𝑡𝑏𝑚, 𝑡𝑑𝑒𝑙𝑖𝑏, and 𝑡𝑝𝑙𝑎𝑛, we have a better control
of 𝑇 . Consequently, we can increase or reduce the response time needed to improve the
reasoning response.

36

6 | ANYTIME BDI AGENT

Algorithm 5 Simple anytime BDI control mechanism.
1: 𝐵 ∶= 𝐵0; / ∗ 𝐵0 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑏𝑒𝑙𝑖𝑒𝑓 𝑠 ∗ /

2: 𝐼 ∶= 𝐼0; / ∗ 𝐼0 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑖𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑠 ∗ /

3: 𝑤ℎ𝑖𝑙𝑒 𝑡𝑟𝑢𝑒 𝑑𝑜

4: 𝑔𝑒𝑡 𝑛𝑒𝑥𝑡 𝑝𝑒𝑟𝑐𝑒𝑝𝑡 𝜌;

5: 𝐵 ∶= 𝑏𝑟𝑓 (𝐵, 𝜌, 𝑡𝑏𝑟𝑓);

6: 𝐼 ∶= 𝑑𝑒𝑙𝑖𝑏𝑒𝑟𝑎𝑡𝑒(𝐵, 𝑡𝑑𝑒𝑙𝑖𝑏);

7: 𝜋 ∶= 𝑓 𝑖𝑛𝑑𝑃𝑙𝑎𝑛(𝐵, 𝐼 , 𝑡𝑝𝑙𝑎𝑛);

8: 𝑒𝑥𝑒𝑐𝑢𝑡𝑒(𝜋);

9: 𝑒𝑛𝑑 − 𝑤ℎ𝑖𝑙𝑒

The next question is then how to choose 𝑡𝑏𝑟𝑓 , 𝑡𝑑𝑒𝑙𝑖𝑏, and 𝑡𝑝𝑙𝑎𝑛? Since we are focused in
the three intermediate processes, we define 𝑡Δ = 𝑡𝑏𝑟𝑓 + 𝑡𝑑𝑒𝑙𝑖𝑏 + 𝑡𝑝𝑙𝑎𝑛. What we want is to find
out which values of 𝑡𝑏𝑟𝑓 , 𝑡𝑑𝑒𝑙𝑖𝑏, and 𝑡𝑝𝑙𝑎𝑛 maximize the utility value of the agent, given a
value of 𝑡Δ. For this, Zilberstein, 1993 proposes using performance profiles and compiling
anytime algorithms. According to Zilberstein, 1996, “A Performance Profile of an anytime

algorithm, Q(t), denotes the expected output quality with execution time t”. Thus, we can
perform simulations in the brf, deliberate, and plan algorithms to identify the performance
profiles of each one, that is, the expected quality of the result for different time allocations.
The compilation process of the anytime algorithm will then define for a range of values in
𝑡Δ, which are the values of 𝑡𝑏𝑟𝑓 , 𝑡𝑑𝑒𝑙𝑖𝑏, 𝑎𝑛𝑑𝑡𝑝𝑙𝑎𝑛 that maximize the expected output.

In order to execute anytime algorithms, Zilberstein, 1995 describes the need for a
monitoring mechanism. According to the author, "Without such a mechanism, anytime

components of a system are worthless." The monitoring mechanism is responsible for
controlling the execution of anytime algorithms. It controls the moment when they begin
to run and the moment when they should stop. According to Zilberstein, 1995, there are
two types of monitoring, the passive and the active ones: “A monitoring scheme is said to

be passive if the corresponding time allocation mapping is completely determined prior to

the activation of the system. A monitoring scheme is said to be active if it is not passive. The

corresponding time allocation mapping is partially determined while the system is active.”

Thus, we must add a monitoring mechanism to the model, which will be responsible for
the correct activation of the brf, deliberate, and plan algorithms.

When we look at the changes between the Basic Algorithm (Algorithm 1) and the
Complete Algorithm (Algorithm 2), we can see that the ability to reconsider the intentions
and the current plan arises from the fact that the plan stops being executed entirely and
starts to be executed one action at a time. The primary evidence is that there are no new
functions with new behaviors. When we analyze the added functions to the Complete
Algorithm, we verify that their function is to avoid the execution of the option, filter, and
plan functions, which are considered computationally costly. Since we want to be able to
control the execution time of the functions, we no longer need to avoid executing them.
We can then describe a new anytime control loop with the same capabilities to reconsider
plans and intentions without using extra functions. Furthermore, to reduce the agent
processing effort, instead of the agent being responsible for planning, which is usually a
very computationally expensive task, the agent will consult a pre-built plan library. Finally,

6.2 | FORMAL DESCRIPTION

37

we present this new Anytime BDI control mechanism in Algorithm 6.

Algorithm 6 Anytime BDI control mechanism.
1: 𝐵 ∶= 𝐵0; / ∗ 𝐵0 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑏𝑒𝑙𝑖𝑒𝑓 𝑠 ∗ /

2: 𝐼 ∶= 𝐼0; / ∗ 𝐼0 𝑎𝑟𝑒 𝑡ℎ𝑒 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑖𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑠 ∗ /

3: 𝑤ℎ𝑖𝑙𝑒 𝑡𝑟𝑢𝑒 𝑑𝑜

4: 𝑔𝑒𝑡 𝑛𝑒𝑥𝑡 𝑝𝑒𝑟𝑐𝑒𝑝𝑡 𝜌;

5: 𝐵 ∶= 𝑏𝑟𝑓 (𝐵, 𝜌, 𝑡𝑏𝑟𝑓);

6: 𝐼 ∶= 𝑑𝑒𝑙𝑖𝑏𝑒𝑟𝑎𝑡𝑒(𝐵, 𝑡𝑑𝑒𝑙𝑖𝑏);

7: 𝜋 ∶= 𝑓 𝑖𝑛𝑑𝑃𝑙𝑎𝑛(𝐵, 𝐼 , 𝑡𝑝𝑙𝑎𝑛);

8: 𝑒𝑥𝑒𝑐𝑢𝑡𝑒(ℎ𝑒𝑎𝑑(𝜋));

9: 𝑒𝑛𝑑 − 𝑤ℎ𝑖𝑙𝑒

6.2 Formal Description
In order to achieve the goal of allowing the execution of a BDI agent with control of its

execution time, in this section we formalize the model we call Anytime BDI Agent. First, it
is necessary to define three terms: Internal actions, external actions, and plans. As defined
by Schut et al., 2004, external actions are the ones that affect the agent’s environment.
Internal actions are the ones that affect the internal state of the agent. We formally define
these elements below:

Definition 6.2.1. External action (𝛼): An external action (𝛼) is an action that the agent

performs in the environment.

Examples of external actions include agent movement, activating a button, and carrying
an item.

Definition 6.2.2. Internal action (𝛽): An internal action (𝛽) is an action that the agent

performs and does not directly change the environment. Instead, it affects the internal state of

the agent.

Internal actions include creating a new belief or acquiring a new goal.

Definition 6.2.3. Plan (𝜋): A plan (𝜋) is a pre-defined sequence of external (𝛼) and internal

(𝛽) actions.

Having made these definitions, we formalize the model of the Anytime BDI
Agent:

Definition 6.2.4. (ABDIA) An Anytime BDI Agent is an intelligent agent architecture com-

posed of two layers. One is the Agent Data Layer, which contains all the agent’s data structures.

The other is the Agent Control Layer, composed of the mechanisms that control the agent

execution. We define an ABDIA as:

𝐴𝐵𝐷𝐼𝐴 = ⟨𝐴𝐷𝐿, 𝐴𝐶𝑡𝑟𝐿⟩

where

38

6 | ANYTIME BDI AGENT

• The Agent Definition Layer 𝐴𝐷𝐿 = ⟨𝑃, 𝐵,Π, 𝐷, 𝐼 , 𝛼𝑑𝑒𝑓 𝑎𝑢𝑙𝑡 , 𝑡Δ, 𝐷𝐼 , 𝑃𝑃⟩ is the set of
structures that store the necessary data for the execution of the agent;

• The Agent Control Layer 𝐴𝐶𝑡𝑟𝐿 = ⟨𝐵𝑀, 𝐼𝐺, 𝐼𝐸,𝑀, 𝐻𝑃⟩ is the set of control struc-
tures used to control the agent’s execution;

Definition 6.2.5. (ADL) The Agent Data Layer comprises all the structures that store the

necessary data for the agent’s execution. We define the ADL as:

𝐴𝐷𝐿 = ⟨𝑃, 𝐵,Π, 𝐷, 𝐼 , 𝛼𝑑𝑒𝑓 𝑎𝑢𝑙𝑡 , 𝑡Δ, 𝐷𝐼 , 𝑃𝑃⟩

where

• 𝑃 is the agent’s set of percepts;

• 𝐵 is the agent’s set of beliefs;

• Π is the agent’s set of plans;

• 𝐷 is the agent’s set of desires;

• 𝐼 = {𝑖1, 𝑖2, ..., 𝑖𝑛|𝑖 = ⟨𝑑, 𝜋⟩ ∧ 𝑑 ∈ 𝐷 ∧ 𝜋 ∈ Π} is the agent’s set of intentions, where
each one is a pair formed by a desire (𝑑 ∈ 𝐷) and a plan (𝜋 ∈ Π);

• 𝛼𝑑𝑒𝑓 𝑎𝑢𝑙𝑡 is the default action executed by the agent if it was unable to find a better
action;

• 𝑡Δ is the maximum time interval between the execution of two external actions (𝛼)
by the agent;

• 𝐷𝐼 ⊆ 𝐼 is a queue of delayed intentions ordered by function 𝐻𝑃 . Delayed intentions
are the intentions whose external actions the agent is waiting to execute;

• 𝑃𝑃 is the set of performance profiles for the agent components;

Definition 6.2.6. (ACtrL) The Agent Control Layer comprises the processes responsible for

running the Anytime BDI Agent and ensuring its execution within the specified time. We

define the ACtrL as:

𝐴𝐶𝑡𝑟𝐿 = ⟨𝐵𝑀, 𝐼𝐺, 𝐼𝐸,𝑀, 𝐻𝑃⟩

where

• The Belief Manager 𝐵𝑀 ∶ (𝐵 × 𝑃 → ) is the anytime component responsible for
based on current beliefs (𝐵) and perceptions (𝑃), produce a new set of beliefs (𝐵);

• The Intention Generator 𝐼𝐺 ∶ (𝐵 × 𝐷 × 𝐼×Π→ 𝐼) is the anytime component respon-
sible for based on current beliefs (𝐵), desires (𝐷), and current intentions (𝐼), produce
a new set of intentions (𝐼) and their respective plans (Π);

• The Intention Executor 𝐼 𝐸 ∶ (𝐵 × 𝐼 × 𝐻𝑃 × 𝐷𝐼 → 𝛼, 𝐷𝐼) is the anytime component
responsible for based on current beliefs (𝐵), intentions (𝐼), priority function (𝐻𝑃) and
delayed actions (𝐷𝐼), choose an external action (𝛼) to be executed on the environment
and select actions to be executed in the future (𝐷𝐼);

6.3 | BELIEF MANAGER

39

• The Monitor 𝑀 ∶ (𝑃𝑃×𝑡Δ → 𝑡𝑏𝑚, 𝑡𝑖𝑔 , 𝑡𝑖𝑒) is the component responsible for based
on the performance profiles and 𝑡Δ, start and finish the 𝐵𝑀, 𝐼𝐺, and 𝐼 𝐸 modules
executions in order to execute an external action 𝛼 by the end of time 𝑡Δ. Each
module runs for a time determined by the values of 𝑡𝑏𝑚, 𝑡𝑖𝑔 , and 𝑡𝑖𝑒 respectively, that
are calculated by the Monitor;

• The highest priority function 𝐻𝑃 ∶ ({𝛼1, 𝛼2, ...} → 𝛼𝑥) returns the external action
with highest priority from a set.

This model aims to make the agent perform an external action 𝛼 in the environment
at each time interval 𝑡Δ. For this to happen, three modules were defined, 𝐵𝑀, 𝐼𝐺, and
𝐼 𝐸, which are anytime algorithms that are responsible for analyzing perceptions, beliefs,
desires, plans, and intentions in order to generate an external action to perform in the
environment. In order to ensure that these modules run within the time-bound, the monitor
module analyzes the performance profiles of each algorithm involved and executes them
for the calculated time. When the time ends, the monitor module receives the generated
external action and executes it in the environment. We illustrate this concept in Figure
6.1.

Figure 6.1: Agent execution.

As described earlier, runtime control is possible because the Belief Manager, Intention

Generator, and Intention Executor components are anytime algorithms. Algorithms 7, 8,
and 9, presented in the sequence, describe the operation of these components.

6.3 Belief Manager
The Belief Manager, described in Algorithm 7, assumes that there is a list of percepts

to evaluate. As long as the processing time set by the Monitor is not over, the component
uses the getNextPercept function (line 3) to choose the subsequent perception to analyze.

40

6 | ANYTIME BDI AGENT

This selection follows a user-defined policy based on the remaining perceptions and time.
Next, the brf function incorporates this perception into the belief base (line 4). Finally,
line 5 removes the perception from the list of pending perceptions. This behavior allows
the agent to analyze the most critical perceptions in case there is no time to analyze all of
them.

These user-defined policies vary according to the scenario and the agent created. For
example, in the getNextPercept function, we can have a priority mechanism where the
most critical perception of the agent’s reasoning is selected first. An example would be an
agent who drives a vehicle first to analyze the perception that there is a wall in front of it
and only later if there is time, the perception of a tree beside it. Another possibility is the
choice of perception based on the time remaining. For example, the agent may decide not
to choose a particular perception if it knows that the perception would need more time
than available to be included in the belief base through the brf method. A third possibility
would be the inclusion of perception filters, as described by Stabile Jr and Sichman,
2015b. Depending on the time remaining, it would be possible to use more restrictive or
less restrictive perception filters to make the selection of perceptions.

For the brf function, it is possible to define behaviors based on time. One possibility
is that if there is not enough time, to not analyze the entire belief base in search for
inconsistencies. Another possibility is to perform a more straightforward operation, such
as updating the belief base, performing an insertion, or removing a belief without analyzing
inconsistencies.

Algorithm 7 Belief Manager
1: 𝑡𝑖𝑚𝑒𝑟.𝑠𝑡𝑎𝑟𝑡()

2: 𝑤ℎ𝑖𝑙𝑒 𝑒𝑙𝑎𝑝𝑠𝑒𝑑𝑇 𝑖𝑚𝑒() < 𝑡𝑏𝑚 𝑎𝑛𝑑 𝑃 ≠ ∅

3: 𝑝 ∶= 𝑔𝑒𝑡𝑁 𝑒𝑥𝑡𝑃𝑒𝑟𝑐𝑒𝑝𝑡(𝐵, 𝑃, 𝑡𝑏𝑚 − 𝑡𝑖𝑚𝑒𝑟.𝑒𝑙𝑎𝑝𝑠𝑒𝑑𝑇 𝑖𝑚𝑒())

4: 𝐵 ∶= 𝑏𝑟𝑓 (𝐵, 𝑝, 𝑃 , 𝑡𝑏𝑚 − 𝑡𝑖𝑚𝑒𝑟.𝑒𝑙𝑎𝑝𝑠𝑒𝑑𝑇 𝑖𝑚𝑒())

5: 𝑟𝑒𝑚𝑜𝑣𝑒𝐹𝑟𝑜𝑚(𝑃, 𝑝)

6: 𝑒𝑛𝑑 − 𝑤ℎ𝑖𝑙𝑒

6.4 Intention Generator
The Intention Generator presented in Algorithm 8 analyses the Beliefs, Desires, Plans,

and Intentions sets and controls the inclusion and exclusion of intentions in the Intentions
set, joining desires and plans that the agent must execute in order to achieve them. While
there is time left, the agent iterates through the algorithm, and in each iteration, the
reconsider function on line 3 decides if the time of the iteration should be used to generate
new intentions or to reconsider one of the current intentions. If the function chooses to
reconsider, line 4 selects an intention, line 5 analyzes the intention and checks if the agent
should keep it. If not, line 6 drops the intention. If the decision is to keep it, line 8 checks
if there is a better plan to achieve the intention. Conversely, if the function chooses not to
reconsider, the function getDesire selects a new desire in line 11. The function evaluate

(line 12) checks if the selected desire can become an intention, for instance, by verifying if
the desire does not cause conflict with other intentions or if it is possible to achieve it. If

6.5 | INTENTION EXECUTOR

41

this evaluation succeeds, the algorithm finds a plan to achieve the desire (line 13), creating
an intention 𝑖 composed of the desire 𝑑 and the chosen plan 𝜋 and adds it to the intention
set (line 14).

Algorithm 8 Intention Generator
1: 𝑡𝑖𝑚𝑒𝑟.𝑠𝑡𝑎𝑟𝑡()

2: 𝑤ℎ𝑖𝑙𝑒 𝑡𝑖𝑚𝑒𝑟.𝑒𝑙𝑎𝑝𝑠𝑒𝑑𝑇 𝑖𝑚𝑒() < 𝑡𝑖𝑔

3: 𝑖𝑓 𝑟𝑒𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟(𝐵, 𝐼 , 𝑡𝑖𝑔 − 𝑡𝑖𝑚𝑒𝑟.𝑒𝑙𝑎𝑝𝑠𝑒𝑑𝑇 𝑖𝑚𝑒()) 𝑡ℎ𝑒𝑛

4: 𝑖 = 𝑔𝑒𝑡𝐼 𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐵, 𝐼 , 𝑡𝑖𝑔 − 𝑡𝑖𝑚𝑒𝑟.𝑒𝑙𝑎𝑝𝑠𝑒𝑑𝑇 𝑖𝑚𝑒())

5: 𝑖𝑓 𝑑𝑟𝑜𝑝(𝐵, 𝑖, 𝑡𝑖𝑔 − 𝑡𝑖𝑚𝑒𝑟.𝑒𝑙𝑎𝑝𝑠𝑒𝑑𝑇 𝑖𝑚𝑒())

6: 𝑟𝑒𝑚𝑜𝑣𝑒𝐹𝑟𝑜𝑚(𝐼 , 𝑖)

7: 𝑒𝑙𝑠𝑒

8: 𝑐ℎ𝑜𝑜𝑠𝑒𝑃𝑙𝑎𝑛(𝐵, 𝑖, Π, 𝑡𝑖𝑔 − 𝑡𝑖𝑚𝑒𝑟.𝑒𝑙𝑎𝑝𝑠𝑒𝑑𝑇 𝑖𝑚𝑒())

9: 𝑒𝑛𝑑 − 𝑖𝑓

10: 𝑒𝑙𝑠𝑒

11: 𝑑 ∶= 𝑔𝑒𝑡𝐷𝑒𝑠𝑖𝑟𝑒(𝐵, 𝐷, 𝐼 , 𝑡𝑖𝑔 − 𝑡𝑖𝑚𝑒𝑟.𝑒𝑙𝑎𝑝𝑠𝑒𝑑𝑇 𝑖𝑚𝑒())

12: 𝑖𝑓 (𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝐵, 𝑑, 𝐼 , 𝑡𝑖𝑔 − 𝑡𝑖𝑚𝑒𝑟.𝑒𝑙𝑎𝑝𝑠𝑒𝑑𝑇 𝑖𝑚𝑒()))

13: 𝑖𝑑,𝜋 ∶= 𝑐ℎ𝑜𝑜𝑠𝑒𝑃𝑙𝑎𝑛(𝐵, 𝑑, Π, 𝑡𝑖𝑔 − 𝑡𝑖𝑚𝑒𝑟.𝑒𝑙𝑎𝑝𝑠𝑒𝑑𝑇 𝑖𝑚𝑒())

14: 𝑎𝑑𝑑𝑇𝑜(𝐼 , 𝑖𝑑,𝜋)

15: 𝑒𝑛𝑑 − 𝑖𝑓

16: 𝑒𝑛𝑑 − 𝑤ℎ𝑖𝑙𝑒

6.5 Intention Executor
As our goal is to ensure that the agent executes an action in the environment by the

end of 𝑡Δ time, the Intention Executor must be able to choose an external action to be
executed by the Monitor before the time runs out. The proposed Intention Executor uses a
concept we call default action. If 𝑡𝑖𝑒 is not long enough for the Intention Executor to find
an action to perform, the agent will, at the end of time 𝑡𝑖𝑒 , perform this default action.
This action is domain-dependent, and the agent designer is responsible for defining it in
the agent description. However, nothing prevents it from being changed during agent
execution. This default action ensures that at the end of time 𝑡Δ, the agent will act on the
environment.

In order to execute the selected plans, we propose a mechanism for the Intention

Executor where the algorithm iterates through the plan’s actions contained in the agent’s
intentions, executing their internal actions and adding the external actions to a priority
queue of delayed intentions (). At the end of the time 𝑡𝑖𝑒 , the monitor module executes
the action with the most significant priority value.

Another concept used in Intention Executor is the concept of Delayed Intention. During
the execution of the Intention Executor, the agent may have more than one intention, which
means that there is more than one plan being executed by the agent simultaneously. Thus,
given that the purpose of the Intention Executor is to select a single external action to
be performed, in case the two plans have external actions, only one can be selected for
each execution. To not waste processing time, we created a memory mechanism called

42

6 | ANYTIME BDI AGENT

Delayed Intention Queue (𝐷𝐼) that stores the information that the following action in
the plan present in the intention is external. Thus, the next time the Intention Executor

executes, this information can be retrieved quickly so that with low time consumption,
the component can select an action for 𝛼 . Being a priority queue, we can store intentions
in the desired order to retrieve first the most relevant intentions according to the highest
priority function 𝐻𝑃 .

We present the Intention Executor on Algorithm 9. The objective of this module is to
choose an external action to be 𝛼 so that the monitor component executes this 𝛼 action in
the environment.

Algorithm 9 Intention Executor
1: 𝑡𝑖𝑚𝑒𝑟.𝑠𝑡𝑎𝑟𝑡()

2: 𝛼 = 𝑑𝑒𝑓 𝑎𝑢𝑙𝑡𝐴𝑐𝑡𝑖𝑜𝑛

3: 𝑤ℎ𝑖𝑙𝑒 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦(𝐷𝑒𝑙𝑎𝑦𝑒𝑑𝐼)

4: 𝑖 = 𝑝𝑜𝑝(𝐷𝑒𝑙𝑎𝑦𝑒𝑑𝐼)

5: 𝑖𝑓 𝑠𝑜𝑢𝑛𝑑(𝐵, 𝐼 , 𝑖, 𝑡𝑖𝑒 − 𝑡𝑖𝑚𝑒𝑟.𝑒𝑙𝑎𝑝𝑠𝑒𝑑𝑇 𝑖𝑚𝑒())

6: 𝛼 = ℎ𝑒𝑎𝑑(𝑖𝜋)

7: 𝑏𝑟𝑒𝑎𝑘

8: 𝑒𝑙𝑠𝑒

9: 𝑟𝑒𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟(𝑖)

10: 𝑒𝑛𝑑 − 𝑖𝑓

11: 𝑒𝑛𝑑 − 𝑖𝑓

12: 𝑤ℎ𝑖𝑙𝑒 𝑡𝑖𝑚𝑒𝑟.𝑒𝑙𝑎𝑝𝑠𝑒𝑑𝑇 𝑖𝑚𝑒() < 𝑡𝑖𝑒

13: 𝑖 ∶= 𝑛𝑒𝑥𝑡𝐼𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐼 , 𝐷𝑒𝑙𝑎𝑦𝑒𝑑𝐼 , 𝛼, 𝑡𝑖𝑒 − 𝑡𝑖𝑚𝑒𝑟.𝑒𝑙𝑎𝑝𝑠𝑒𝑑𝑇 𝑖𝑚𝑒())

14: 𝑖𝑓 𝑛𝑜𝑡 (𝑒𝑚𝑝𝑡𝑦(𝑖𝜋) 𝑜𝑟 𝑠𝑢𝑐𝑐𝑒𝑒𝑑𝑒𝑑(𝐵, 𝐼 , 𝑖, 𝑡𝑖𝑒 − 𝑡𝑖𝑚𝑒𝑟.𝑒𝑙𝑎𝑝𝑠𝑒𝑑𝑇 𝑖𝑚𝑒())

𝑜𝑟 𝑖𝑚𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒(𝐵, 𝐼 , 𝑖, 𝑡𝑖𝑒 − 𝑡𝑖𝑚𝑒𝑟.𝑒𝑙𝑎𝑝𝑠𝑒𝑑𝑇 𝑖𝑚𝑒()))

15: 𝑖𝑓 𝑡𝑦𝑝𝑒(ℎ𝑒𝑎𝑑(𝑖𝜋)) = 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝐴𝑐𝑡𝑖𝑜𝑛

16: 𝑖𝑓 𝐻 𝑖𝑔ℎ𝑒𝑠𝑡𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑖𝜋 , 𝛼) = 𝑖𝜋

17: 𝑎𝑑𝑑𝑇𝑜(𝐷𝑒𝑙𝑎𝑦𝑒𝑑𝐼 , 𝑖𝛼)

18: 𝛼 = ℎ𝑒𝑎𝑑(𝑖𝜋)

19: 𝑒𝑙𝑠𝑒

20: 𝑎𝑑𝑑𝑇𝑜(𝐷𝑒𝑙𝑎𝑦𝑒𝑑𝐼 , 𝑖)

21: 𝑒𝑛𝑑 − 𝑖𝑓

22: 𝑒𝑙𝑠𝑒

23: 𝑒𝑥𝑒𝑐𝑢𝑡𝑒(ℎ𝑒𝑎𝑑(𝑖𝜋))

24: 𝑒𝑛𝑑 − 𝑖𝑓

25: 𝑒𝑙𝑠𝑒

26: 𝑟𝑒𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟(𝑖)

27: 𝑒𝑛𝑑 − 𝑖𝑓

28: 𝑒𝑛𝑑 − 𝑤ℎ𝑖𝑙𝑒

Line 2 illustrates the default action concept. The 𝛼 variable stores the default action
𝛼𝑑𝑒𝑓 𝑎𝑢𝑙𝑡 . If by the end of time 𝑡𝑖𝑒 no better action was found and stored on this variable,
the Monitor will execute the 𝛼𝑑𝑒𝑓 𝑎𝑢𝑙𝑡 action on the environment. The rest of the algorithm

6.6 | MONITOR

43

consists of two steps. A step that evaluates actions found in previous executions and a
step that searches for new actions to perform.

Lines 3 through 11 feature the step where actions found in previous executions are
evaluated. If 𝐷𝐼 is not empty (line 3), the intention with the highest priority is selected for
evaluation (line 4). This evaluation (line 5) checks if executing the action in the environment
is still possible. If positive, the action is selected for execution being stored in 𝛼 (line 6).
If not, the algorithm marks this intention for reconsideration, as the current plan is no
longer sound (line 9).

Lines 12 through 28 feature the step responsible for executing internal actions and
seeking new external actions. While there is time left (line 12), the algorithm chooses
an intention 𝑖 for execution that is both not in the delayed intention queue 𝐷𝐼 and not in
alpha (line 13). Not selecting intentions in 𝐷𝐼 or alpha means that analyzed intentions
whose external action was not yet performed are not analyzed. Then, the algorithm checks
whether it can carry on with the intention by analyzing whether the intention’s plan (𝑖𝜋)

is empty, the intention was achieved, or the intention is impossible to achieve through
this plan (line 14). If the algorithm does not find any of these situations, it checks whether
the type of the first action in the intention’s plan is internal or external (line 15). If it is an
internal action, the agent performs it at line 23. If it is external, the action is analyzed, and
using the function 𝐻𝑃 , the component compares the action’s priority with the priority
of the current action selected for execution (line 16). In case this new action from 𝑖 has
a higher priority, the algorithm selects it for execution by storing the first action of the
intention’s plan in the 𝛼 variable (line 17) and adds the intention of the previously selected
action (𝑖𝛼) to the delayed intention queue (line 18). If the new action from 𝑖 has a lower
priority, the algorithm adds this intention to the delayed intention queue (line 20). If the
plan is empty, the intention was achieved, or the intention is impossible to achieve through
this plan, the component marks the intention for reconsidering (line 26).

6.6 Monitor
The Monitor component shown in Algorithm 10 is responsible for controlling the

execution of the other modules of the architecture. In line 1, the algorithm divides the time
𝑡Δ for each of the modules in the best way found. In lines 3 to 5, the algorithm executes
each module with its own execution time. The monitor can then execute each module
according to that choice and interrupt execution at the end of the determined time.

As soon as the modules’ execution times end, the monitor algorithm executes the
action stored in the 𝛼 variable by the Intention Executor (line 6). This action may be
the default action or an action of some plan, ensuring that an action is performed in the
environment after 𝑡Δ time has passed. The action’s execution by the monitor, instead of
the Intention Executor, guarantees that the action will execute precisely at the end of 𝑡Δ
time. Executing the action through the Intention Executor could generate a situation where
some other section of the module had a longer execution time than expected, which would
delay the execution of the action, loosing the expected time guarantee.

44

6 | ANYTIME BDI AGENT

Algorithm 10 Monitor
1: 𝑡𝑏𝑚, 𝑡𝑖𝑔 , 𝑡𝑖𝑒 = 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑇 𝑖𝑚𝑒(𝑡Δ)

2: 𝑤ℎ𝑖𝑙𝑒(𝑎𝑙𝑖𝑣𝑒(𝑎𝑔𝑒𝑛𝑡))

3: 𝑒𝑥𝑒𝑐𝑢𝑡𝑒(𝑏𝑒𝑙𝑖𝑒𝑓𝑀𝑎𝑛𝑎𝑔𝑒𝑟, 𝑡𝑏𝑚)

4: 𝑒𝑥𝑒𝑐𝑢𝑡𝑒(𝑖𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 , 𝑡𝑖𝑔)

5: 𝑒𝑥𝑒𝑐𝑢𝑡𝑒(𝑖𝑛𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝐸𝑥𝑒𝑐𝑢𝑡𝑜𝑟 , 𝑡𝑖𝑒)

6: 𝑎𝑐𝑡(𝛼)

7: 𝑒𝑛𝑑 − 𝑤ℎ𝑖𝑙𝑒

45

Chapter 7

Anytime Jason

In order to validate the model and show that it allows achieving the research objectives,
we chose to implement the model and carry out experiments using the BDI Jason agent
programming language. The main reasons are its popularity in the area of multi-agent
systems and because it is a well-documented open-source language. Using an existing
and well-accepted language allows us to compare the agents’ behavior and identify the
proposed architecture’s positive and negative points.

We then adopted as a starting point the architecture described in section 2.5 and
made the necessary changes to create a Jason architecture whose execution follows the
theoretical model described in section 2.1. We named this architecture Anytime Jason.
However, it is impossible to change how the language works entirely. For example, Jason,
being an implementation of the AgentSpeak language, uses events as one of its primary
mechanisms. Neither the model proposed in Wooldridge, 2000 nor the model we defined
in the section 6 has any mention of events.

On the other hand, ignoring the event mechanism would completely mischaracterize
the Jason language, indicating that the model defined here is not flexible enough to be
implemented by the existing languages. We then decided to draw the best possible parallels
to bring the language as close to the theoretical model presented.

In the following sections, we will present the implementation made for the construction
of Anytime Jason with the parallel components based on Jason version 2.5 available at
http://jason.sourceforge.net/.

The first and foremost necessary modification is due to the time requirement. Rather
than repeatedly executing the steps in the reasoning cycle, as done by default architecture,
it is necessary to link the agent’s reasoning cycle to the agent’s expected response time.
Thus, we draw a parallel between the Belief Manager and the Sense function, the Intention

Generator and the Deliberate function, and the Intention Executor and Act function. In this
way, by implementing the behaviors defined for the Belief Manager, Intention Generator,
and Intention Executor modules to the Sense, Deliberate, and Act methods, we can control
the execution of the agent’s reasoning cycle. It is also interesting to elucidate the difference
between the classic Jason reasoning cycle and the Anytime Jason cycle. In the reasoning
cycle of a Jason agent, the architecture executes each of the internal functions (Sense,

http://jason.sourceforge.net/

46

7 | ANYTIME JASON

Deliberate, and Act) only once. That is, it analyses one event, creates a maximum of one
intention, and executes only one action (internal or external). In the Anytime Jason cycle,
the architecture may evaluate multiple events, create multiple intentions, and execute
multiple internal actions. What indicates the end of an Anytime Jason cycle is the
execution of an action in the environment.

The first step was to make the calling of these functions and their execution time
managed by the monitor module. For this, when creating an Anytime Jason agent, the
Jason compiler creates a monitor module and informs it of the response time defined in the
agent’s creation code. The monitor then calculates the time the action has to execute (the
current time plus the maximum response time) and starts executing the Sense, Deliberate,
and Act functions.

The second modification aims to make the Sense, Deliberate, and Act functions reach
one of the desired capabilities of Anytime Algorithms. The algorithm can be interrupted
and continued later. This capability allows us a behavior where, during the execution of
the agent, if time runs out in the middle of a process, when the compiler gets back to it, it
can continue executing instead of having to restart it. Let us use the Deliberate function as
an example again. For example, suppose during the execution of Deliberate, the Semantic
Rules SelEv and FindOp concluded, but AddIM has not executed. It means that the compiler
has selected an event and already found the plan it will use to respond to it but has not
yet added this information to the agent’s intentions. If the time runs out at that point, we
would have to interrupt the execution, and we would lose information about the event
and the chosen plan since the execution of the Deliberate function always starts with the
semantic rule SelEv. To solve this issue, we changed the operation of each function so that
if they are interrupted before the execution of all Semantic Rules, they will continue where
they left off instead of starting the process again. This behavior also gives us a compelling
advantage in cases where the agent’s response time is shorter than the time to execute all
Semantic Rules. For example, suppose the response time is only sufficient to execute a few
Semantic Rules. In this case, the default Jason architecture would execute all the Semantic
Rules and never execute an action in time. However, the Anytime Jason architecture
would execute those few Semantic Rules and perform a default action. On the next cycle, it
would then continue from the last executed Semantic Rule and find an action that moves
the agent towards its goal. This feature reduces the minimum processing time required for
the agent to be used compared to the default architecture.

However, making the Sense, Deliberate, and Act functions interruptable at any moment
is a more complex problem to be solved. This complexity happens because the Seman-
tic Rules make several changes in the agent’s state, either by removing elements from
queues and lists or changing state variables. Besides, the Java language used in Jason’s
implementation neither allows a function to be interrupted at any time nor to resume
execution later. As a result, interrupting an execution is exceptionally problematic. Even if
it was viable, the interruption might occur in code sections where relevant information
changed. The inability to resume execution from the point where it stopped causes a high
risk of generating inconsistent states, where beliefs, messages, events, or intentions are
inconsistent. What can be done in this case is to select some particular points in the code
where the interruption can happen safely. The agent executes, and if the time runs out,
the execution terminates as soon as it reaches an interruption point. In the next cycle, the

7 | ANYTIME JASON

47

agent continues from the point of interruption. Creating these breakpoints is a complex
task; the more points, the more complex the code.

Additionally, inserting too many breakpoints can cause much time to be wasted while
trying to figure out whether the component should stop or not. It is, therefore, necessary
to balance the number of points. The intuitive idea is to place these points between the
Semantic Rules since, by definition, each one executes independently and is responsible
for specific behavior. We then define that once a Semantic Rule starts, it will execute until
the end. When finished, if there is still time to process, the next Semantic Rule is executed,
and so on.

However, this behavior is not ideal since we would like the execution to stop immedi-
ately after the time-bound expires. Instead, we would have the modules continue to run for
an indefinite time after the time-bound expires. The solution we proposed to this problem
is only to execute the next Semantic Rule if there is enough time for it to execute before
time runs out. Thus, we would guarantee that all modules have finished processing at the
end of the time-bound. This behavior is related to one of the requirements of implementing
anytime algorithms: “Execution is deterministic over time”. That is, the elapsed runtime of
any deterministic function is consistent over repeated activations with the same input.
Thus, knowing the entry, we could predict precisely how long it would take to execute
the next Semantic Rule. The problem is that the Java language does not guarantee this
property. Besides, the most used operating systems also do not guarantee other properties
required to guarantee this property, like the following ones:

• Scheduling processes are based on priorities. At each moment, the process with the
highest priority among all ready processes is running;

• If no events occur, the highest priority process will remain active. If two ready pro-
cesses have the same priority, one of them will be selected at random for execution;

• When a process is running and a process with a higher priority is ready, the latter
becomes immediately active;

• A process can sleep until a specific event occurs. The process is ready immediately
when the event occurs.

As such, we have no guarantee of how long a Semantic Rule will take to run. So we
can estimate how likely a given Semantic Rule is to finish before time runs out. If the
probability is large enough, the Semantic Rule executes. We calculate this probability
according to the time the Semantic Rule takes to execute. However, since we do not have
a deterministic execution concerning time, we can only use the time taken by previous
executions as a basis for calculating these probabilities.

In order to acquire information on the execution times, we have two possibilities. One
is to measure the time while the agent runs and create a mechanism that updates the
probabilities. However, this type of behavior has a significant disadvantage: the overhead
produced by the inclusion of mechanisms that will execute during the reasoning cycle of the
agent. Since we want to make the agent more responsive, adding even more mechanisms
does not seem to be the ideal solution. Besides that, when the agent starts, there would be
no information available on the execution time of the Semantic Rules for a decision to be

48

7 | ANYTIME JASON

made.

The second possibility, adopted in this work, is to create a profiling step for the agent.
In this step, we execute the agent in the environment (or in a simulation) to measure
the execution times, record them, and calculate all the probabilities. In this way, it is
not necessary to use the agent’s processing time to calculate them. Performing time
measurement during the agent’s execution has the advantage that we can take into account
information such as the agent’s domain, its definition (code), and the computational
capacity of the computer on which it will execute. Besides that, one may dynamically
identify how much the passage of time affects agent processing times. For instance, more
execution time can lead to a more extensive base of beliefs, resulting in a longer belief
update. In the profiling stage, the agent executes similarly to the default architecture,
where each Semantic Rule is executed once for each reasoning cycle, and its execution
time is stored. Also, we store information about the number of percepts evaluated, events
generated, intentions created, internal and external actions, and other performance data
for the agent. Based on this information, we generate the performance profiles of each
component in each agent, which are estimates of the performance of each one. The quality
of the Sense component is measured by how many percent of the total beliefs it was able
to assess. Deliberate’s measures how many percent of the events it would evaluate. On
the other hand, the quality of the Act’s response is measured based on the probability of
finding an external action within the given time. As the quality of the result of a component
depends on the quality of the previous, we use for the Deliberate and Act components a type
of performance profile called Conditional Performance Profile, described in Zilberstein,
1993. Thus, we have three quality functions (performance profiles), and we aim to maximize
the qualities of the responses given by the components.

We then use the 𝜖-constraint method described in Miettinen, 2008 to optimize the
time allocation. This method optimizes one of the functions while defining constraints
for the others. So, in our case, the agent designer can, for example, state that the Sense
component can never evaluate less than 20% of the total perceptions. Thus, the 𝜖-constraint
method will calculate a set of time allocations that maximize the quality of the responses
within these restrictions. Then, based on the user restrictions, the Monitor  selects one
of the time allocations in the set and executes the other modules accordingly.

With this information, the architecture can better calculate where to allocate the
available time and guarantee that the processing will finish before the time-bound with a
probability that we can also control.

The following sections present the changes to the Sense, Deliberate, and Act functions
to behave according to the definitions of Belief Manager, Intention Generator, and Intention

Executor. We detail the code changes required to make a Jason agent run through the
Anytime Jason architecture in Appendix B.

7.1 Belief Manager Implementation
The next objective was to change the behavior of the Sense function to suit the Algo-

rithm 7. The most noticeable problem is that within the Sense function, there is not only
the updating of beliefs but also the Semantic Rule ProcMsg that deals with receiving and

7.1 | BELIEF MANAGER IMPLEMENTATION

49

analyzing messages. Removing this Semantic Rule would be theoretically possible since
communication between agents could carry out through the environment. However, it
is not in our interest to remove language capabilities. Even more, because it is a widely
used capacity in multi-agent systems. Therefore, we proposed to divide time between
the buf and ProcMsg functions, depending on the agent’s domain. In scenarios with little
communication and the agent having many perceptions, assigning more execution time
to the buf function is possible. In contrast, in the opposite case, in negotiation scenarios,
for example, it is possible to analyze several messages in the same Anytime Jason cycle.
This division can be automatically calculated by considering the number of perceptions,
the size of the belief base, and the number of messages received.

The next step is to change the buf function. The Algorithm 11 presents a simplified
pseudo-code that illustrates the operation of the buf function.

Algorithm 11 Jason buf function
1: 𝑙𝑒𝑡 𝑝𝑒𝑟𝑐 𝑏𝑒 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑎𝑠 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

2: 𝑓 𝑜𝑟 𝑒𝑎𝑐ℎ 𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑜𝑛 𝑏 𝑖𝑛 𝑡ℎ𝑒 𝐵𝑒𝑙𝑖𝑒𝑓 𝐵𝑎𝑠𝑒

3: 𝑖𝑓 𝑏 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛 𝑝𝑒𝑟𝑐

4: 𝑟𝑒𝑚𝑜𝑣𝑒 𝑏 𝑓 𝑟𝑜𝑚 𝑡ℎ𝑒 𝐵𝑒𝑙𝑖𝑒𝑓 𝐵𝑎𝑠𝑒

5: 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑡𝑟𝑖𝑔𝑔𝑒𝑟 𝑓 𝑜𝑟 𝑏 𝑟𝑒𝑚𝑜𝑣𝑎𝑙

6: 𝑒𝑙𝑠𝑒

7: 𝑟𝑒𝑚𝑜𝑣𝑒 𝑏 𝑓 𝑟𝑜𝑚 𝑝𝑒𝑟𝑐

8: 𝑒𝑛𝑑 − 𝑖𝑓

9: 𝑒𝑛𝑑 − 𝑓 𝑜𝑟

10: 𝑓 𝑜𝑟 𝑒𝑎𝑐ℎ 𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑜𝑛 𝑝 𝑖𝑛 𝑝𝑒𝑟𝑐

11: 𝑎𝑑𝑑 𝑝 𝑡𝑜 𝑡ℎ𝑒 𝐵𝑒𝑙𝑖𝑒𝑓 𝐵𝑎𝑠𝑒

12: 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑡𝑟𝑖𝑔𝑔𝑒𝑟 𝑓 𝑜𝑟 𝑏 𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛

13: 𝑒𝑛𝑑 − 𝑓 𝑜𝑟

As analyzed by Stabile Jr and Sichman, 2015b, the buf function is one of the most
time-consuming functions in all of Jason’s architecture. With this information, it is not
feasible to execute the buf function only when there is time for it to complete, as there is
a high chance that the time needed would be longer than the time-bound. Therefore, it is
necessary to add breakpoints within the function. The problem with adding breakpoints in
the function is that all beliefs that came from perceptions are removed, and new perceptions
are evaluated only after that. Therefore, if there is no time to execute the entire function,
the section that will not execute is the section that brings new information to the agent,
negatively affecting its reactivity.

In order to reduce the occurrence of this problem and bring the buf function closer to
the theoretical definition of Belief Manager, we inverted the logic and added breakpoints
so that perceptions evaluate first. We present the simplified pseudo-code of the modified
buf function in Algorithm 12.

With this construction of the algorithm, we can analyze the perceptions first, increasing
the reactivity of the agent since the insertion events are generated before the removal
events, allowing the Intention Generator to choose them earlier. Besides, through the

50

7 | ANYTIME JASON

Algorithm 12 Anytime buf function
1: 𝑙𝑒𝑡 𝑝𝑒𝑟𝑐 𝑏𝑒 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑎𝑠 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

2: 𝑜𝑙𝑑𝐵𝐵 = 𝐵𝑒𝑙𝑖𝑒𝑓 𝐵𝑎𝑠𝑒

3: 𝑟𝑒𝑚𝑜𝑣𝑒 𝑎𝑙𝑙 𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑠 𝑓 𝑟𝑜𝑚 𝐵𝑒𝑙𝑖𝑒𝑓 𝐵𝑎𝑠𝑒

4: 𝑤ℎ𝑖𝑙𝑒 𝑝𝑒𝑟𝑐 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑚𝑝𝑡𝑦

5: 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑛𝑜𝑢𝑔ℎ 𝑡𝑖𝑚𝑒 𝑓 𝑜𝑟 𝑡ℎ𝑒 𝑙𝑜𝑜𝑝, 𝑠𝑡𝑜𝑝

6: 𝑝 = 𝑔𝑒𝑡𝑁 𝑒𝑥𝑡𝑃𝑒𝑟𝑐𝑒𝑝𝑡(𝑝𝑒𝑟𝑐, 𝑡)

7: 𝑎𝑑𝑑 𝑝 𝑡𝑜 𝑡ℎ𝑒 𝐵𝑒𝑙𝑖𝑒𝑓 𝐵𝑎𝑠𝑒

8: 𝑖𝑓 𝑝 𝑖𝑠 𝑖𝑛 𝑜𝑙𝑑𝐵𝐵

9: 𝑟𝑒𝑚𝑜𝑣𝑒 𝑝 𝑓 𝑟𝑜𝑚 𝑜𝑙𝑑𝐵𝐵

10: 𝑒𝑙𝑠𝑒

11: 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑒𝑣𝑒𝑛𝑡 𝑓 𝑜𝑟 𝑝 𝑐𝑟𝑒𝑎𝑡𝑖𝑜𝑛

12: 𝑒𝑛𝑑 − 𝑖𝑓

13: 𝑒𝑛𝑑 − 𝑤ℎ𝑖𝑙𝑒

14: 𝑓 𝑜𝑟 𝑒𝑎𝑐ℎ 𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑜𝑛 𝑏 𝑖𝑛 𝑜𝑙𝑑𝐵𝐵

15: 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑛𝑜𝑢𝑔ℎ 𝑡𝑖𝑚𝑒 𝑓 𝑜𝑟 𝑡ℎ𝑒 𝑙𝑜𝑜𝑝, 𝑠𝑡𝑜𝑝

16: 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 𝑒𝑣𝑒𝑛𝑡 𝑓 𝑜𝑟 𝑏 𝑟𝑒𝑚𝑜𝑣𝑎𝑙

17: 𝑒𝑛𝑑 − 𝑓 𝑜𝑟

getNextPercept function, it is possible to choose the most critical perceptions for the agent.
If there is not enough time to select all perceptions, the most important ones will be
analyzed, and the agent will have the most relevant information for its decision-making.
This function can take into account if the perception is used in triggers, if it is part of
a plan context, it can contain perception filters such as those described by Stabile Jr
and Sichman, 2015b and many other behaviors that can be customized depending on the
agent’s domain.

We also proposed a mechanism of relevance for perception filters based on the work by
Lorini and Piunti, 2010 and Stabile Jr and Sichman, 2015a. In this mechanism, the agent
designer can define a series of perception filters and their relevance. When one of these
filters is active, the function getNextPercept will return first the percepts that go through
the filter. As an example, the internal action “.filter.create(insectfilter,1,[[0,ne,insect]]);”
would create a filter named ‘ìnsectfilter” with a relevance of 1 where every percept not
started with ‘ìnsect” would be evaluated first. Only after that percepts started with “in-
sect” would be evaluated. In case multiple filters are active, the function getNextPercept

would select percepts based on the relevance value of the filters (biggest relevance first).
Filters are named so the agent can create, delete, activate and deactivate filters as internal
actions.

7.2 Intention Generator Implementation
Let us first remember the Intention Generator algorithm. The Intention Generator

consists of two main parts. One is responsible for carrying out intention reconsidering, and
the other is responsible for analyzing and including new intentions. The first problem is
that Jason has no default mechanism for intention reconsideration. Creating an intention

7.3 | INTENTION EXECUTOR IMPLEMENTATION

51

reconsideration mechanism to make Jason fit the theoretical model would need another
research. Thus, we only have the option of not considering this part of the model. For
better visualization, the Intention Generator algorithm without intention reconsidering is
presented again in Algorithm 13.

Algorithm 13 Intention Generator
1: 𝑡 = 0

2: 𝑤ℎ𝑖𝑙𝑒 𝑡 < 𝑡𝑖𝑔

3: 𝑑 ∶= 𝑔𝑒𝑡𝐷𝑒𝑠𝑖𝑟𝑒(𝐵, 𝐷, 𝐼 , 𝑡)

4: 𝑖𝑓 (𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒(𝐵, 𝑑, 𝐼 , 𝑡𝑖𝑔 − 𝑡))

5: 𝜋𝑑 ∶= 𝑓 𝑖𝑛𝑑𝑃𝑙𝑎𝑛(𝐵, 𝑑, 𝑃 , 𝑡𝑖𝑔 − 𝑡)

6: 𝑎𝑑𝑑𝑇𝑜(𝐼 , 𝑑)

7: 𝑎𝑑𝑑𝑇𝑜(Π, 𝜋𝑑)

8: 𝑒𝑛𝑑 − 𝑤ℎ𝑖𝑙𝑒

Interestingly, we can trace a considerable correlation between the methods described
in the theoretical model and Jason’s Semantic Rules. In line 3, the getDesire method selects
an agent’s desire to be evaluated and possibly become an intention. Likewise, Semantic
Rule SelEv selects an agent event to be evaluated and possibly become an intention. By
language definition, the SelEv function is customizable, which allows us to implement
event selection behaviors based on the agent’s domain.

In line 4, we have the function evaluate that checks whether the desire should become
an intention by analyzing current beliefs and intentions. In line 5, the findPlan function
searches for a plan to achieve the desire by searching its library of plans. Similarly, Semantic
Rule FindOp analyzes the selected event and checks if there is a plan that responds to the
event according to the agent’s beliefs.

Finally, lines 6 and 7 add the new intention and plan to their respective sets. Semantic
Rule AddIm performs the same task.

Thus, we have to execute the Deliberate function, which is already very similar to
the Intention Generator, and no significant changes are necessary to control its execution
time.

7.3 Intention Executor Implementation
The first necessary modification to adapt the Act function to the Intention Executor

was to add the Delayed Intention Queue  to the architecture. Therefore, we added a
priority list that stores DelayedIntention objects. These objects contain an intention, as
defined in the formal model.

The second modification aimed to add the mechanism described in the lines 3 to 11 of
the Algorithm 9, that evaluates actions found in previous executions. The algorithm goes
through  and analyzes the previously found actions. This mechanism works through a
new Semantic Rule called CheckDI that is executed by the Act function before the other
Semantic Rules start.

52

7 | ANYTIME JASON

Following the end of the  set analysis, the module executes the Semantic Rules as
long as there is time. Since Semantic Action ProcAct aims to verify the result of executing
an action in the environment, it does not perform more than once. Thus, in the Anytime
Jason cycle, the only semantic rules that can execute multiple times are SelInt, ExecInt,
and ClrInt.

Following the theoretical model, after analyzing the delayed actions, the next step
is to execute internal actions and seek new external actions. The first step is to choose
an intention to be executed. This selection is made on Jason by the Semantic Rule SelInt.
Then, it checks if the plan is not empty, completed, or unachievable. If none of these issues
appear, the module checks whether the next step will be an internal or external action. In
case it is an internal action, it executes immediately. Otherwise, the module calculates its
utility value, and the action is added to 𝛼 or  depending on the calculated utility value.
In Jason, the Semantic Rule ExecInt is responsible for these processes. Thus, a change was
made to the Semantic Rule ExecInt so that when detecting the execution of external action,
it creates a DelayedIntention object and adds it to variable 𝛼 or to the  queue.

Finally, it is necessary to execute the Semantic Rule ClrInt in order to check whether
the plan should continue to be executed or not (if it has finished or if the intention has
been achieved, for example).

With that, we can illustrate the flow of execution of the Act function with Figure 7.1.
In it, we show that the processing starts with the Semantic Rule CheckDI, followed by
ProcAct, and after that, the functions SelInt, ExecInt, and ClrInt execute in a loop.

Figure 7.1: Act function for implementing the Intention Executor.

To illustrate how adding the Delayed Intentions queue impacts the plans execution
order and how this benefits agent responsiveness, we will present an example of how Jason
and Anytime Jason would execute the same set of plans. Algorithm 14 contains three
plans. Each plan contains a number of internal actions (I) and external actions (E).

Jason’s default architecture runs plans on a round-robin basis. Thus, the order of execu-
tion of the actions would be: 𝐼 1.1, 𝐸2.1, 𝐸3.1, 𝐼 1.2, 𝐼 2.2, 𝐼 3.2, 𝐼 1.3, 𝐼 2.3, 𝐼 3.3, 𝐼 1.4, 𝐼 2.4, 𝐸3.4, 𝐸1.5.
If this agent were being executed in a scenario such as the MAPC, where it is necessary

7.3 | INTENTION EXECUTOR IMPLEMENTATION

53

Algorithm 14 Plans to be executed.
1: 𝑃𝑙𝑎𝑛1 ∶ 𝐼1.1, 𝐼 1.2, 𝐼 1.3, 𝐼 1.4, 𝐸1.5

2: 𝑃𝑙𝑎𝑛2 ∶ 𝐸2.1, 𝐼 2.2, 𝐼 2.3, 𝐼 2.4

3: 𝑃𝑙𝑎𝑛3 ∶ 𝐸3.1, 𝐼 3.2, 𝐼 3.3, 𝐸3.4

to execute an external action every 4 seconds, the executions would be distributed as
presented in Table 7.1 in each of the steps of the simulator.

Step Actions analysed External action
executed

1 I1.1, E2.1 E2.1
2 E3.1 E3.1
3 I1.2, I2.2, I3.2, I1.3, I2.3, I3.3, I1.4, I2.4, E3.4 E3.4
4 E1.5 E1.5

Table 7.1: Plan execution order on default Jason.

This execution order presents two problems. The first happens in Steps 2 and 4, where
the agent finds an external action so fast that it does not process anything else and waits
for the action to be executed in the environment, thus wasting processing time. The second
problem happens in Step 3, when the agent needs to execute many internal actions until it
finds another external action. This may cause the agent to exceed the time limit to find
the action 𝐸3.4, causing it to fail to execute in the particular simulator step.

In Anytime Jason, it is possible to add priorities to each plan through annotations.
Thus, we can define, for example, that Plan 1 has the highest priority, followed by Plan
3 and finally, Plan 2. The execution order is presented in Table 7.2. Anytime Jason also
executes the plans in round-robin mode. Thus, the first two actions executed are 𝐼 1.1

and 𝐸2.1. The first difference is that instead of immediately executing action 𝐸2.1 on
the environment, Anytime Jason stores this action in a so-called alpha action. This
alpha action is the external action that will be executed when processing time ends. The
architecture thus continues executing the actions of the plans. The following external
action is 𝐸3.1. As this is an external action of a higher priority plan, the architecture
exchanges the alpha action: now 𝐸3.1 is stored as the current alpha action, and 𝐸2.1 is
placed in the DelayedIntentions queue. Continuing the processing, 𝐼 1.2 is executed, as
it is an internal action. Let us assume that the module’s processing time is sufficient for
analysing four actions. Thus, in Step 1 of the simulator, the 𝐸3.1 action, which is the alpha
action, is executed in the environment.

Next, the following action that should be analyzed is action 𝐼 2.2. However, as this plan
is part of a DelayedIntention, while action 𝐸2.1 is not executed in the environment, the
following actions of Plan 2 cannot be analyzed. Thus, the architecture performs actions
𝐼 3.2, 𝐼 1.3, 𝐼 3.3, and 𝐼 1.4. We can see that, at the end of the processing time, the architecture
has not evaluated any external action. However, the architecture had already stored the
𝐸2.1 action as a DelayedIntention. So the architecture can run it in the environment as the
action for Step 2.

54

7 | ANYTIME JASON

Step Actions analysed External action
executed

1 I1.1, E2.1, E3.1, I1.2 E3.1
2 I3.2, I1.3, I3.3, I1.4 E2.1
3 I2.2, E3.4, E1.5, I2.3 E1.5
4 I2.4 E3.4

Table 7.2: Plan execution order on Anytime Jason.

Now that the architecture executes action 𝐸2.1 on the environment, action 𝐼 2.2 can
also be executed. Thus, the execution of the rest of the actions continues in the same
way. Actions 𝐼 2.2, 𝐸3.4, 𝐸1.5, and 𝐼 2.3 are analysed. As Plan 1 has a higher priority, 𝐸1.5 is
chosen as the current alpha action and 𝐸3.4 is placed in the DelayedIntention queue. At
the end of the time, the architecture executes 𝐸1.5 on the environment for Step 3. In Step
4, the last internal action executes (𝐼 2.4) and 𝐸3.4 is executed on the environment.

It is then possible to verify that the Anytime Jason architecture analyses the actions
evenly among the Steps, reducing the incidence of both problems presented by the default
architecture.

7.4 Monitor Implementation
According to the definition of the theoretical model, the Monitor module is responsible

for starting the execution of the other modules and executing the action in the environment.
For this, the Monitor creates one Java process for each module. Next, the Monitor calculates
the total time each module will run based on the profiling data available, the response
time, and the restrictions provided in the agent description file.

Based on empirical analysis, we found that the Jason standard architecture benefits
from the interleaving of the three modules. Thus, to maximize agent performance, the
Monitor executes each Semantic Rule only once and records the time used by the module.
For example, consider a scenario where the Sense module should run for 10ms, Deliberate
for 15ms, and Act for 20ms in a given Anytime Jason cycle. Then, the Monitor starts up
by running the Sense module. Due to many percepts, it is impossible to update them all.
Thus, after 10ms, the Monitor stops executing the Sense module. Then, Monitor executes
each Semantic Rule of the Deliberate module once. This process consumes 8ms, which
the Monitor logs. The Monitor then executes each Semantic Rule of the Act module once.
This process consumes 5ms. At the end of this iteration, the Sense module has no more
processing time, while the Deliberate module has 7ms and the Act 15ms. Starting a new
iteration, the Monitor will not run the Sense module as it has run out of time. Starting the
Deliberate module, the 7ms was insufficient to complete all the Semantic Rules. Thus, the
Monitor interrupts the execution and registers that the execution must continue where it
left off in the next Anytime Jason cycle. Then the Monitor will run the Act module until
its time runs out. Once the processing times are over, the Monitor executes the best action
found in the environment and starts a new cycle.

55

Chapter 8

Related work

8.1 Parallel agent architectures
While participating in the RoboCup soccer simulation competition, Kostiadis and

Hu, 2000 encountered the same problem described in Section 1.1. Given the nature of the
RoboCup simulator, the response time of a soccer player agent is critical, as the server
operates with 100ms cycles to execute actions and 150ms cycles to provide perception data.
Kostiadis and Hu, 2000 describe that first, the agent needs to receive sensory information
from the server. Then the agent needs to “reason” to produce the desired action. Finally,
the agent must send this action back to the server. Analyzing the implementations of
other RoboCup teams, Kostiadis and Hu, 2000 realized that most agent implementations
performed these steps using a single thread per agent in a serial processing loop, as shown
in Figure 8.1.

Figure 8.1: Single-threaded agent model. (From Kostiadis and Hu, 2000)

Kostiadis and Hu, 2000 proposed that instead of a single thread, a process can have
several threads, performing different operations independently and without affecting each
other. This architecture allows the agent to use a separate thread for the three tasks. Figure
8.2 shows the proposed multi-thread model.

The agent performs the three main tasks simultaneously (or in parallel on multipro-
cessor hardware), minimizing delays in communication operations. This way, the agent
can dedicate the maximum amount of processing power and time to its reasoning process.
Kostiadis and Hu, 2000 then conducted a comparative evaluation between the single

56

8 | RELATED WORK

Figure 8.2: Multithreaded agent model. (From Kostiadis and Hu, 2000)

thread model and the multiple thread model. Its objective was to evaluate the number of
actions its agents lost due to the high processing time.

The authors’ results show a significant reduction in the loss of actions. This model
does not solve the problem proposed in Section 1.1 because it still presents losses and is
not a BDI model. However, it offers a concept of internal separation of the agent that can
facilitate the control of an agent’s processing time by controlling the execution of less
complex parts.

Based on the work of Kostiadis and Hu, 2000, Zhang and Huang, 2005 proposed
to apply a similar model to the BDI architecture since the processing of BDI agents can
also be divided into “perception”, “reasoning” and “action” and are commonly performed
sequentially. In this work, the authors claim that an agent built with this parallel BDI
architecture can deliberate on new beliefs and execute intentions simultaneously, in
addition to responding quickly to changes in the environment. Thus, such an agent would
have a more natural way of simulating human reasoning since humans can perform all
three tasks simultaneously.

Zhang and Huang, 2007 formalize this architecture into a general framework for the
parallel BDI agent model. Under this general framework, parallel BDI agents with different
configurations can be built, depending on the availability of physical resources, such as
sensors and actuators. Figure 8.3 illustrates this model.

The authors divide the architecture into three main components. The Belief Manager’,
the Intention Generator’ and the Intention Executor’. Each major component is composed
of smaller parts. Are they:

• Belief Manager: Responsible for detecting changes in the environment and man-
aging the agent’s beliefs;

– EM (Environment Monitor): Each EM serves as a collector of information
from heterogeneous sensors that an agent may have, monitoring information
from the environment through some sensor or sensory organs, such as a camera
or human eyes, and converts the information into an abstract representation.
Each EM sends the converted information to the BG;

– BG (Belief Generator): The BG merges the information passed by EMs and
converts it into beliefs. For example, a person’s eyes see, and the ears hear a
car coming. The visual and audio information will come through two separate

8.1 | PARALLEL AGENT ARCHITECTURES

57

Figure 8.3: General model for parallel BDI agents. (Taken from Zhang and Huang, 2007)

EMs, and the BG combines the information to form a new belief. Each belief is
assigned an urgency value;

• Intention Generator: Responsible for reasoning about new beliefs. This component
includes managing the agent’s desires (goals) and deliberating on plans to achieve
those desires;

– DG (Desire Generator): The DG produces new desires according to new
beliefs. A new desire will have the same priority level as the belief that triggered
its generation. A new belief can also make a current desire no longer desirable
because it becomes obsolete or is not consistent with the new belief;

– DS (Desire Scheduler): Identifies the most important desires to be achieved
(using urgency values) and allocates them according to availability in one of
the plan generator components (PG);

– PG (Plan Generator): Defines the plan to be executed to achieve a specific
intention, either through planning or by choosing from a plan repository. The
architecture allows the use of more than one plan generator, which generates
plans for different intentions;

• Intention Executor: Responsible for the agent’s actions, interleaving and executing
them;

– IM (Intention Manager): Similar to the DG, this component receives the

58

8 | RELATED WORK

plans generated by the PGs and can add and remove them from the intention
queue.

– IS (Intention Scheduler): This component schedules, suspends, and resumes
the execution of intentions in Plan Executors (PEs).

– PE (Plan Executor): Sends the plan action to the actuators to execute. The
architecture allows the use of an executor for each agent’s actuator.

Generally, this architecture receives information from the sensors, converts it into
perceptions, re-evaluates the intentions, finds plans for them, and executes them. This
architecture is interesting because the three main components (Belief Manager, Intention

Generator and Intention Executor), just as done by Kostiadis and Hu, 2000, run in parallel.
Thus, when urgent information appears, it is the first to be evaluated by the DG, is quickly
inserted into the queue of intentions, and executed by the actuators. This behavior can
be directly related to the main advantage of the Three-Layer Architecture. For example,
when there is a need for a fast response in the Three-Layer Architecture, the reactive
module provides it without the need to execute the rest of the architecture. Similarly, the
architecture of Zhang and Huang, 2007 allows for immediately evaluating a high-priority
belief and performing all related processing without waiting for all previous information
to be processed.

Like the work of Kostiadis and Hu, 2000, this model offers a concept of internal
separation of an agent, which this time is BDI, aiming to reduce its execution time. This
model allows better identification of the internal components of a BDI agent in order to
facilitate the control of the processing time.

From the work of Zhang and Huang, 2007, we used as a basis for our model the idea
of separating the architecture into three components: Belief Manager, Intention Generator

and Intention Executor. We identified a complex problem when we tried to combine the
parallelization method with our theoretical model based on the work of Wooldridge, 2000.
In the Wooldridge (2000) model, the agent receives a set of perceptions representing what
the agent perceives from the environment. The analysis of perceptions is then done one at
a time. For example, suppose the scenario where the agent receives a set of perceptions
𝑝1, 𝑝2, 𝑝3, ..., 𝑝𝑛. Also, suppose there is an intention 𝑖 that depends on information from 𝑝1

and 𝑝𝑛 to execute. As soon as the Belief Manager updates the perception 𝑝1, the agent’s
belief base is in an invalid state, as the belief 𝑝1 is up-to-date while the belief 𝑝𝑛 is out-of-
date. Thus, the 𝑖 intention cannot use the information in the belief base until it is fully
updated, or it would run the risk of performing an invalid action in the environment. The
options for the other modules are to wait for the belief update to finish (which damages
the agent’s responsiveness) or to execute other intentions while waiting for the update to
finish. The problem with this second option is that as the components are not synchronized,
it is possible that when the other modules try again to use the belief base, it has finished
the previous update and started a new one. Because of this problem, we decided not to
incorporate parallelism mechanisms in the proposed architecture.

Intending to improve the Jason language’s performance through parallelism, Zatelli,
2017 proposed a new agent Jason architecture called Asynchronous, inspired by Zhang
and Huang, 2005. In this architecture, the Sense, Deliberate, and Act functions are now

8.2 | CONTROL OF REASONING TIME ON INTENTIONS.

59

executed in parallel, as shown in Figure 8.4. The internal behavior of these functions,
however, remains the same. Even not using parallelism methods, the work of Zatelli, 2017
provided a basis for the implementation of our theoretical model in the Jason language by
using its separation of Sense, Deliberate, and Act functions in different threads.

Figure 8.4: Jason Semantic Rules execution flow by Zatelli, 2017.

8.2 Control of reasoning time on intentions.
According to Yao and Logan, 2016, BDI agents typically pursue multiple goals in

parallel. However, interleaving steps with different intents can result in conflicts. For
example, executing a step in one plan can make it impossible to execute a step in another
concurrent execution plan.

Previous approaches treated plans as atomic units and attempted to merge plans to
minimize conflicts. Since ordering plans can not resolve some conflicts, the authors present
the SA algorithm, which is an approach to Intention selection based on a Tree Search
via the single-player Monte Carlo method. This algorithm is responsible for analyzing an
agent’s intentions and respective plans and deciding which action to take next. For this to
be possible, a tree of plans and objectives must be built, like the one shown in Figure 8.5
that represents the relationships between goals, plans, and actions of an agent.

The root of a tree of plans and goals is a top-level goal (goal node). Its children are the
plans that can achieve that goal (plan nodes). Plans can, in turn, contain subgoals (goal
nodes), giving rise to a tree structure representing all possible ways an agent can achieve
the higher-level goal.

Each goal plan tree records information about the conditions necessary to achieve a
(sub)goal or successfully execute a plan or an action in preconditions, in-conditions, and
postconditions associated with objectives, plans, and action nodes. Preconditions must be
valid for executing a plan or action. In-conditions are conditions that must be maintained
while pursuing an objective or plan; If a condition becomes false during the execution of

60

8 | RELATED WORK

Figure 8.5: Example of tree of plans and objectives (Taken from Yao and Logan, 2016)

an objective or plan, the objective or plan fails. Postconditions are conditions that become
true after a plan or an action executes. With access to each of the trees for the agent’s
intentions and beliefs, the SA algorithm will decide which action to perform.

The work of Yao and Logan, 2016 is particularly relevant for our work because the SA
algorithm is an anytime algorithm. Therefore, it is possible to control the time used by
an agent so that, based on its intentions, it can decide which action to perform. We then
worked on extending these capabilities to the rest of the BDI architecture.

8.3 Control of reasoning time over perceptions.
According to Van Oijen and Dignum (2011), one of the problems of the BDI paradigm

when linking agents to virtual environments is the lack of control over perceptions. If
there is not some form of goal-directed perception, the agent will inundate with sensory
information, which can result in reasoning about an enormous amount of irrelevant
information. Furthermore, the absence of control is also unrealistic when we look at the
physiology of human perception. Attention is considered a limited resource; for example,
one cannot attend to all aspects of the environment. Also, during the execution of a task,
humans tend to direct their attention to selected information from the environment that
can support them in carrying out a task. This behavior suggests we should also consider a
similar approach for BDI agents.

Lorini and Piunti, 2010 state that realistic cognitive agents should not waste time
and energy reasoning about each piece of information obtained. For this reason, they
require precise allocation strategies better to balance the use of their limited computa-
tional resources. The authors then present a computational model of a relevance-based
belief update mechanism. This mechanism is responsible for filtering out all non-relevant
information and considering only relevant information to the current task an agent tries to
solve. The authors proposed a modification in the cycle of the BDI agent that we present

8.3 | CONTROL OF REASONING TIME OVER PERCEPTIONS.

61

in the Algorithm 15. Before updating the belief base, each percept goes through a function
that calculates its relevance based on the agent’s current intentions (line 5). The more
present the percept in the agent’s intentions, the greater its relevance value. After being
evaluated, the percept is only considered in the belief base update process if its relevance
value exceeds a certain threshold.

Algorithm 15 BDI agent working cycle of Lorini and Piunti, 2010
1: 𝐵 ∶= 𝐵0;

2: 𝐼 ∶= 𝐼0;

3: 𝑤ℎ𝑖𝑙𝑒 𝑡𝑟𝑢𝑒 𝑑𝑜

4: 𝑔𝑒𝑡 𝑛𝑒𝑥𝑡 𝑝𝑒𝑟𝑐𝑒𝑝𝑡 𝑝;

5: 𝑖𝑓 𝑅𝐸𝐿(𝐼 , 𝑝, 𝐵) > Δ

6: 𝐵 ∶= 𝑏𝑟𝑓 (𝐵, 𝑝);

7: 𝑒𝑛𝑑 𝑖𝑓

8: 𝐵 ∶= 𝑏𝑟𝑓 (𝐵, 𝑝);

9: 𝐷 ∶= 𝑜𝑝𝑡𝑖𝑜𝑛𝑠(𝐵, 𝐼);

10: 𝐼 ∶= 𝑓 𝑖𝑙𝑡𝑒𝑟(𝐵, 𝐷, 𝐼);

11: 𝜋 ∶= 𝑝𝑙𝑎𝑛(𝐵, 𝐼);

12: 𝑒𝑥𝑒𝑐𝑢𝑡𝑒(𝜋)

13: 𝑒𝑛𝑑 𝑤ℎ𝑖𝑙𝑒

Van Oijen and Dignum, 2011 addresses the same problem by creating a middleware
positioned between a simulator and the BDI agent. This middleware is responsible for
identifying the perceptions of interest to the agent and sending it only the relevant
perceptions. This process happens through a mechanism called “interest subscription
management”. This mechanism accesses the agent’s goals and analyzes the information
available in the environment. When the agent adopts an objective, the system automatically
creates a set of signatures for the environment information. From that moment on, the
agent will receive percepts about that information. Likewise, when an agent no longer has
a goal, either because it has achieved it or given up, the system unsubscribes, ceasing to
receive percepts about this information set.

In Stabile Jr and Sichman, 2015a, we proposed to give the agent the ability to control
the received perceptions through the definition of predefined perception filters. We posi-
tioned these filters within the agent’s execution engine, similar to the relevance filter of
Lorini and Piunti, 2010. As part of its plan to achieve an intention, the agent can activate
one of the perception filters that will restrict the perceptions it will receive from the
environment. This mechanism allows the agent to refrain from receiving and processing
information about the environment that does not affect or is of no use to the agent. Finally,
we demonstrated that the use of such a mechanism could provide a significant reduction
in the response time of an agent.

We used the ideas proposed in Lorini and Piunti, 2010 and Stabile Jr and Sichman,
2015a to develop the mechanism of relevance for perception filters presented in Section
7.1.

62

8 | RELATED WORK

8.4 Real-Time BDI
Traldi et al., 2022 recently presented research that aims to control the response time

of BDI agents. In this work, the authors proposed a Real-Time BDI-based architecture
that aims to ensure predictability of execution, considering concepts like computational
capacity, deadline, scheduling constraints, durative actions, periodic tasks, and temporal
planning deliberation. The authors structured the proposed architecture in three layers:
the BDI layer, responsible for handling beliefs, desires, and intentions; the Execution and
Monitoring layer, responsible for executing and monitoring plans; and the Real-Time layer,
which handles the low-level execution of tasks.

Despite seeking to solve a very similar problem to ours, the architecture proposed by
Traldi et al., 2022 presents some undesirable aspects related to our research problem. The
first problem is that the Real-Time BDI is composed of multiple layers, making it difficult
for the agent to reason. The second problem is that the authors implemented the proposed
model in a new agent programming language that has not yet been made available. Thus,
it would be necessary to recreate the agents in a new architecture. Our work, however,
seeks to use well-established languages and make it possible to control the execution time
of agents with minimal change to their source code. Finally, as the language has not yet
been made available, it is impossible to compare the model proposed in this work with the
model proposed by Traldi et al., 2022.

8.5 Synthesis
In this chapter, we present our proposed BDI agent model that allows the control of

its runtime. We present both its formal description and possible implementation of this
model. In this section, we present a synthesis of the works described above. The Table 8.1
contains a representation of the main aspects used by our proposal to solve the problem
and how each work relates to them. The first column, Parallel, informs if the work makes
use of algorithms executing parallelly. The BDI column tells you whether the solution
proposed at work is related to the BDI model. The Established language column shows
whether the job uses popular BDI agent programming languages. The Controls intentions

column shows whether the proposed work controls the execution time of intentions and
plans. Finally, the Controls percepts column shows whether the proposed work controls
the execution time of the analysis of percepts and management of beliefs.

The work proposed by Kostiadis and Hu, 2000 is quite relevant to emphasize that
there are scenarios that benefit from a shorter processing time for agents. However, it
does not apply the parallelism model to BDI agents. The work of Zhang and Huang,
2007 extends the work of Kostiadis and Hu, 2000 to the BDI model but provides only
theoretical tooling for this. Zatelli, 2017 then applies the proposed parallelism model to
an established agent programming language, Jason; however, there is no effective control
over agents’ processing time.

In work presented by Yao and Logan, 2016, the authors propose a way to control the
execution of intentions and plans through anytime algorithms. However, there is only
control over this part of agent processing.

8.5 | SYNTHESIS

63

Paper Parallel BDI Established
language

Controls
intentions

Controls
percepts

Kostiadis and Hu, 2000 ✔

Zhang and Huang, 2007 ✔ ✔

Zatelli, 2017 ✔ ✔ ✔

Yao and Logan, 2016 ✔ ✔ ✔

Lorini and Piunti, 2010 ✔ ✔

Van Oijen and Dignum, 2011 ✔ ✔

Traldi et al., 2022 ✔ ✔ ✔

Anytime BDI architecture ✔ ✔ ✔ ✔ ✔

Table 8.1: Synthesis of the related work.

Similarly, Lorini and Piunti, 2010 and Van Oijen and Dignum, 2011 seek to reduce
the processing time of analyzing perceptions and creating beliefs. However, there is no
direct control of the processing time.

Finally, Traldi et al., 2022 presented the work closest to ours. In it, the authors seek to
control the execution time of the agent as a whole. However, the proposed model does not
use any available BDI agent programming language, making it necessary to rewrite the
agents to use it. On the other hand, our model aims to be used with any well-established
agent programming language, making it possible to use already created agents without
new effort.

Through this comparison, we can see that the Anytime BDI architecture described in
this work is the only one that proposes the control of all aspects of the agent’s reasoning
through well-established agent programming languages.

65

Part III

Evaluation

67

Chapter 9

Experimental Design

To validate the model and verify if it can answer the research questions, we used
techniques from the performance analysis domain in our experiments, following the
experimental design guidelines presented in Jain, 1991. According to the author, the
objective of a proper experiment design is to obtain the maximum information with the
minimum number of experiments. The process separates the effects of various factors that
can affect performance and allows us to determine whether a factor significantly affects
the performance or whether the observed difference is simply due to random variations
caused by measurement errors or uncontrolled parameters.

9.1 Definitions
It is important to define the meaning of four terms:

• Response variable is the result of an experiment. In the experiments conducted in
this thesis, the response variables are the response time of the agent’s actions, and
the number of points scored.

• Factors are the variables that influence the response variable. For example, the
number of perceptions affects the time it takes for an agent to respond to the server.
Factors can be primary or secondary. Primary factors are those whose effects need
to be quantified, while secondary factors affect performance but whose effects we
do not want to quantify.

• Levels are the values that a factor can take. For example, the levels of the factor
"number of percepts" are the number of percepts the agent receives in the experiment,
e.g. 80 or 910 percepts.

• Repetition is a rerun of some or all of the experiments. For example, if we did three
runs of the same experiment, the experiment had three repetitions.

According to Jain, 1991, the 2𝑘𝑟 factorial experimental design is one of the best experi-
mental designs because one can check whether or not the factors have a significant effect
on the response variable with the least number of experimental runs. As pointed out by
the author, in the 2

𝑘
𝑟 factorial experimental design, the variable 𝑘 stands for the number

68

9 | EXPERIMENTAL DESIGN

of factors in the experiment; the number 2 stands for the number of levels in each factor,
here set to two, since this is the smallest possible value to identify variations. The variable
𝑟 represents the number of repetitions of each experiment. Repetitions can help determine
if unanalyzed factors influence the response variable.

9.2 Example
To better illustrate the concept of the 2

𝑘
𝑟 factorial experimental design, a simple case

with only two factors (𝑘 = 2) and a single repetition (𝑟 = 1) is helpful for illustration.
Based on the example of Jain, 1991, suppose we want to evaluate the efficiency of two
agents (Agent A and Agent B) in catching insects with two different tools (butterfly net and
tweezers) for one minute. For this experiment, we present the results in Table 9.1.

Tweezers Butterfly Net
Agent A 15 45
Agent B 25 75

Table 9.1: Number of insects caught after one minute.

We must then define the variables 𝑥𝐴 and 𝑥𝐵 as follows:

𝑥𝐴 =

{

−1, se Tweezers
1, se Butterfly Net

𝑥𝐵 =

{

−1, se Agent A
1, se Agent B

We can now regress the agent efficiency over 𝑥𝐴 and 𝑥𝐵 using a regression model of
the form:

15 = 𝑞0 − 𝑞𝐴 − 𝑞𝐵 + 𝑞𝐴𝐵

45 = 𝑞0 + 𝑞𝐴 − 𝑞𝐵 − 𝑞𝐴𝐵

25 = 𝑞0 − 𝑞𝐴 + 𝑞𝐵 − 𝑞𝐴𝐵

75 = 𝑞0 + 𝑞𝐴 + 𝑞𝐵 + 𝑞𝐴𝐵

The first equation, for example, represents that when agent A (value −1 in 𝑥𝐴) uses the
Tweezers (value −1 in 𝑥𝐵) it captures 15 insects. The value 𝑞0 represents the capture average,
being the base around which the values will vary, and 𝑞𝐴𝐵 represents the interaction
between the two factors, and its value is multiplied by the value of 𝑥𝐴 ∗ 𝑥𝐵

We can uniquely solve these equations for the four unknown variables. The regression
equation is:

𝑦 = 40 + 20𝑥𝐴 + 10𝑥𝐵 + 5𝑥𝐴𝑥𝐵

9.3 | VALIDATION

69

We can interpret the result as follows: the average capture is 40 insects, where the
effect due to tools is 20 insects, the effect due to agents is 10 insects, and the interaction
between agents and tools accounts for 5 insects.

𝑇𝑜𝑡𝑎𝑙 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑦 = 𝑆𝑆𝑇 =

2
2

∑

𝑖=1

(𝑦𝑖 − 𝑦̄)
2

In order to measure the importance of a factor, we need to calculate the proportion of
the total variance generated by it. The first step is to calculate the total variance of response
values, called Total Sum of Squares (SST), where 𝑦̄ is the average of all responses from
the four experiments. Considering the 22 ∗ 1 design, we can divide the variation into three
parts due to each factor and their combination:

𝑆𝑆𝑇 = 2
2
𝑞
2

𝐴
+ 2

2
𝑞
2

𝐵
+ 2

2
𝑞
2

𝐴𝐵

It is then possible to separate the equation and explain the variation of each of the
factors through a fraction. For example:

𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑖𝑜𝑛 𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑏𝑦 ∶ 𝐴 =

𝑆𝑆𝐴

𝑆𝑆𝑇

=

2
2
𝑞
2

𝐴

𝑆𝑆𝑇

Using these equations, we can calculate the total variance 𝑆𝑆𝑇 = 2100 and then calculate
each variance 𝑆𝑆𝐴, 𝑆𝑆𝑆𝐵, and 𝑆𝑆𝐴𝐵. Thus, we calculate that the variation attributed to
the tool is 1600 (76%), the variation attributed to the agent is 400 (19%), and the variation
attributed to the interaction of these factors is 100 (5%). These numbers show that the
amount of insects captured is more dependent on the tool than the agent.

One problem with the 2
𝑘 factorial experimental design (when 𝑟 = 1) is that it is

impossible to estimate experimental errors. We can only quantify these errors by repeated
measurements at the same factor levels. Thus, the 2

𝑘
𝑟 experimental design (with 𝑟 > 1)

can help classify the effects of the levels and quantify the experimental errors with a small
number of experiments. For this project, we used not just one value for each factor/level
combination but 𝑟 values for each repetition. The values used by 𝑦 are the average of
the results of the 𝑟 repetitions. Using this method, we can add a term to the model due
to experimental error and measure the variation attributed to it using the following
equation:

𝑦 = 𝑞0 + 𝑞𝐴𝑥𝐴 + 𝑞𝐵𝑥𝐵 + 𝑞𝐴𝐵𝑥𝐴𝑥𝐵 + 𝑒

9.3 Validation
Finally, we need to validate the results of this type of model by visual tests presented by

Jain, 1991. Two tests are required. The first is constructing a normal quantile-quantile plot,
as shown in Figure 9.1. The purpose of this graph is to verify that the error distribution
is normal. For this to be the case, the points of the diagram must have linearity, as in

70

9 | EXPERIMENTAL DESIGN

graph (a). If the points do not have linearity, as in graph (b), the model requires a data
transformation to make the error distribution normal.

Figure 9.1: Normal quantile-quantile plots constructed by Jain, 1991.

The second visual test aims to check if the standard deviation of the errors is constant.
To do this, we need to construct a scatter plot as shown in Figure9.2. For the standard
deviation of the errors to be constant, the diagram must not show any trends, as in graph
(a). In graph (b), there is a tendency for the errors to increase as the response increases. This
increase means that the model does not correctly account for the effects of the factors and
the error distribution is not independent. Again, the model requires a data transformation
if the points do not form a graph without a trend.

Figure 9.2: Scatterplots constructed by Jain, 1991.

One of the possible transformations in the data that can solve the problems of the error
not being normally distributed and the standard deviation of the errors not being constant
is the logarithmic transformation. To do this, we just calculate the 𝑙𝑜𝑔 of the response
values of the experiments. Another possible transformation is to use the square root of the
results obtained. These transformations are very useful when the data values are orders of
magnitude different, as is the case in some of our results.

71

Chapter 10

Insect capture scenario

As our interest is in scenarios where the utility of actions decreases over time, we
prepared a problem with these characteristics. Our experiment scenario consists of one
or more agents responsible for capturing insects in a field and transporting them to a
storage container. However, to prevent the insects from getting hurt during transport, the
agent will earn more points if it takes the insect faster to the container. We present the
environment used in Figure 10.1. In the image, the green area in the center of the grid is
the area where the insects stay. They randomly move perpendicularly and are represented
by black circles. The yellow circle represents the agent. The blue squares in the corners of
the grid are the containers where the agent stores the insects. The total grid size is 40x40,
while the green area is 30x30. Each simulation executes 750 steps. That is, each agent
can execute at most 750 actions. As the agent can only move perpendicularly, capturing
an insect in the center of the grid would require it to move at least 40 times to reach a
container. Using preliminary simulations, we estimated that an agent did not take more
than 20 milliseconds to perform each action. Thus, we defined an upper bound of 800ms
for the capture of insects. Therefore, the amount of points an agent receives per capture is
800 minus the time interval between capture and storage in milliseconds.

We performed all experiments on a MacBook Pro (16-inch, 2019) computer with a 2.6
GHz Intel Core i7 6-Core processor and 16 GB 2667 MHz DDR4 memory.

10.1 Single agent experiment

10.1.1 Bounded response time (E1)
The first experiment aims at answering the first two research questions: Q1: Does the

AnytimeJason architecture allow us to control the time used for agent reasoning while
assuring a minimum quality in the actions? Q2: In scenarios where the utility of actions
decreases over time, does running an agent using the AnytimeJason architecture increase
the utility of that agent?

For this, following the experimental design method, we must list the factors that
influence the response variable (in this case, the number of points obtained by the agent).
The first and most important factor is the architecture used. We want to compare the

72

10 | INSECT CAPTURE SCENARIO

Figure 10.1: Environment used in the experiments.

same agent code when run by default Jason and AnytimeJason. Next, something that
can make a difference is the number of insects in the environment since the amount
of perceptions significantly affects the processing time Stabile Jr and Sichman, 2015b.
Finally, the time-bound for the agent to execute an action can influence the score. Once
the factors are defined, we have to specify the factor levels. The idea of the 2

𝑘𝑟 design is
that each one of the 𝑘 factors has two possible levels and that each experiment runs 𝑟
times. We chose the value of 𝑟 = 3, as it is the smallest value that allows for measuring
error and unobserved factors. In addition, it is interesting, when possible, that the factors
are far apart, as this facilitates the perception of factor variation. So, when we choose
levels, a pair of 100 and 900 insect levels is better than a pair of 400 and 500 insects for
our scenario. Thus, we set the insect quantity levels to 90 and 810 insects. These values
correspond to 10% and 90% of the available space. For the execution time threshold, we
ran a simulation where the default Jason agent executed actions with an average time of
approximately 10ms, with the 25th percentile of 7ms and the 75th percentile of 12ms. We
define then two bounds for action execution. If the agent takes more than 7ms (or 12ms in
the second case) to execute an action, this action will fail.

We show the factors, levels and scores obtained in Table 10.1. For ease of visualization,
we display the average of points scored in the executions in Figure 10.2.

From the graph in Figure 10.2, we can see that the Anytime architecture does better
in the scenario with 810 insects, and the default architecture does better with 90 insects.
However, it is not enough to know that values have changed. Thus, we have to be able
to show what causes the difference. For this, we calculated the influence of the factors
according to the experimental design methodology. We present these influences in Figure
10.2.

Based on the calculated variation values, we can see in this experiment that the

10.1 | SINGLE AGENT EXPERIMENT

73

Insects Time-bound Architecture Points scored
r1 r2 r3

90 insects 7 ms Default 5975 8205 5171
90 insects 7 ms Anytime 4201 7905 4167
90 insects 12 ms Default 6256 6314 7820
90 insects 12 ms Anytime 6600 3592 4745
810 insects 7 ms Default 0 0 0
810 insects 7 ms Anytime 17833 17265 16506
810 insects 12 ms Default 6149 4807 6187
810 insects 12 ms Anytime 17023 17037 15458

Table 10.1: Points scored by the agents.

(a) Average points scored in each level. (b) Box plot of points scored in each level.

Figure 10.2: Points scored in the single-agent bounded response time experiment.

Factors Influence
Variation of Insect number: 12.25%
Variation of Time-bound: 1.19%
Variation of Architecture: 31.15%
Variation of interaction of Insect number & Time-bound: 1.29%
Variation of interaction of Insect number & Architecture: 46.84%
Variation of interaction of Time-bound & Architecture: 2.55%
Variation of interaction of Insect number & Time-bound & Architecture: 1.55%
Variation of error and unobserved factors: 3.17%

Table 10.2: Variation attributed to each factor.

74

10 | INSECT CAPTURE SCENARIO

influence of the time-bound on the number of points is small. However, the number of
insects and the architecture influenced the points scored. Furthermore, primarily, there
is an influence of the interaction between the number of insects and the architecture.
Furthermore, the variation attributed to measurement errors and other factors is negligible.
Thus, we can verify that there is a scenario where the AnytimeJason architecture increases
the agent’s utility value.

Next, we must evaluate if the architecture controls the agent’s execution time properly.
To do so, we can analyze the graph in Figure 10.3. It shows the average execution time
of actions for the agent at the selected levels. For this experiment, the agent needs to act
in the environment up to 7ms and up to 12ms. We then defined that the anytime agent
should respond in 6ms and 11ms, as it is necessary to consider the agent’s communication
time with the simulator. With an average time of approximately 6ms and 11ms and an
average standard deviation of 1ms, we demonstrated that we achieved one of the research
objectives: To build an architecture capable of controlling the agent’s execution time. Also,
this graph allows us to understand why the default Jason does better with 90 insects. Once
we define that the agent must act at a fixed time, it will continue to process, even if it has
encountered an external action. The standard agent Jason, on the other hand, may be able
to act faster if there is little to process.

(a) Average response time in each level. (b) Box plot of response time in each level.

Figure 10.3: Response times for the single-agent bounded response time experiment.

10.1.2 Unbounded response time (E2)
This second experiment aims at answering the last research question: Q3: Does the

AnytimeJason architecture allow running an agent with a shorter processing time than the
default Jason architecture, minimizing the loss of utility resulting from this reduction? For
this experiment, we used the same scenario as in Experiment 10.1.1. However, we want
to evaluate a scenario with no penalty due to execution time. Thus, only the number of
insects and the architecture used will be factors. Also, instead of calculating time-based
scores, we only consider the number of insects captured. We display the captures in the
executions in Figure 10.4 and Table 10.3. Also, as we are interested in the execution time,
we present the average action time in Figure 10.5 and Table 10.4.

When analyzing the result of this experiment, we noticed a 30% reduction in process-
ing time using the anytime architecture compared to the same agent using the default
architecture. At the same time, there is no impact on the number of insects agents can

10.1 | SINGLE AGENT EXPERIMENT

75

Insects Architecture Insects captured
r1 r2 r3

90 insects Default 11 8 10
90 insects Anytime 7 11 11
810 insects Default 28 28 26
810 insects Anytime 25 26 29

Table 10.3: Insects captured by the agents.

(a) Average insects captured in each level. (b) Box plot of insects captured in each level.

Figure 10.4: Insects captured in the single-agent unbounded response time experiment.

Insects Architecture Response time
r1 r2 r3

90 insects Default 5.80 6.12 5.82
90 insects Anytime 4.28 4.53 4.26
810 insects Default 10.20 10.29 10.35
810 insects Anytime 7.23 7.53 7.17

Table 10.4: Average response time by the agents.

76

10 | INSECT CAPTURE SCENARIO

(a) Average response time in each level. (b) Box plot of response time in each level.

Figure 10.5: Response time in the single-agent unbounded response time experiment.

capture. It remains for us then to use the validations available in the experimental design
to attribute these variations to the factors. Table 10.5 shows that the architecture and its
interaction with the number of insects are responsible for only 0.08% of the variation.
That is, the architecture change does not sufficiently affect the number of captures. Table
10.6 shows that the sum of variations in processing time attributed to architecture and its
interaction is 29.47%. Thus, we demonstrate that in this scenario, the architecture impacted
the agent’s processing time reduction. At the same time, there was no reduction in the
agent’s ability to fulfill its objective of capturing insects.

Factors Influence
Variation of Insect number: 97.06%
Variation of Architecture: 0.04%
Variation of interaction of Insect number & Architecture: 0.04%
Variation of error and unobserved factors: 2.87%

Table 10.5: Variation attributed to each factor regarding captures.

Factors Influence
Variation of Insect number: 70.19%
Variation of Architecture: 26.86%
Variation of interaction of Insect number & Architecture: 2.61%
Variation of error and unobserved factors: 0.34%

Table 10.6: Variation attributed to each factor regarding response time.

10.1.2.1 Reducing utility by 10%

In order to explore the limits of the architecture, we sought to identify what percentage
reduction in processing time would be possible if we accepted a reduction of up to 10% in

10.2 | MULTI-AGENT EXPERIMENT

77

the number of insects captured. Table 10.7, Figure 10.6, Table 10.8, Figure 10.7 show the
results obtained in this experiment.

Insects Architecture Insects captured
r1 r2 r3

90 insects Default 11 8 10
90 insects Anytime 10 10 6
810 insects Default 28 28 26
810 insects Anytime 25 27 25

Table 10.7: Insects captured by the agents.

(a) Average insects captured in each level. (b) Box plot of insects captured in each level.

Figure 10.6: Insects captured in the second single-agent unbounded response time experiment.

Based on the results presented and on the variation assignments contained in Tables
10.9 and 10.10, we demonstrate that in this scenario, the agent could perform actions 50%
faster when using the anytime architecture with a reduction of up to 10% in the number
of insects captured.

10.2 Multi-agent experiment

10.2.1 Bounded response time (E3)
In this experiment, our interest is to verify if the results obtained in Experiment 10.1.1

remain in a multi-agent scenario. For this, we added a new factor, the number of agents.
The selected levels were 2 and 4 agents. Also, we increased the time-bound to 8ms and
16ms to reflect the multi-agent 25 percentile and 75 percentile. Agents do not coordinate
their actions, and the score accumulates for all agents in the environment. Table 10.11,
Figure 10.8, and Figure 10.9 shows the points scored in the experiment.

For this scenario, the architecture and its interactions account for more than 50%
of the agents’ score variation. This variation is a strong indicator that the architecture

78

10 | INSECT CAPTURE SCENARIO

Insects Architecture Response time
r1 r2 r3

90 insects Default 5.80 6.12 5.82
90 insects Anytime 3.61 3.28 3.09
810 insects Default 10.20 10.29 10.35
810 insects Anytime 5.45 5.52 5.44

Table 10.8: Average response time by the agents.

(a) Average response time in each level. (b) Box plot of response time in each level.

Figure 10.7: Response time in the second single-agent unbounded response time experiment.

Factors Influence
Variation of Insect number: 97.16%
Variation of Architecture: 0.57 %
Variation of interaction of Insect number & Architecture: 0.04%
Variation of error and unobserved factors: 2.23%

Table 10.9: Variation attributed to each factor regarding captures.

Factors Influence
Variation of Insect number: 41.45%
Variation of Architecture: 53.46%
Variation of interaction of Insect number & Architecture: 4.80%
Variation of error and unobserved factors: 0.28%

Table 10.10: Variation attributed to each factor regarding response time.

10.2 | MULTI-AGENT EXPERIMENT

79

Insects Time-bound Agents Architecture Points scored
r1 r2 r3

90 insects 8 ms 2 Default 5090 1953 722
810 insects 8 ms 2 Default 0 0 0
90 insects 16 ms 2 Default 11404 4714 7073
810 insects 16 ms 2 Default 20277 16692 24821
90 insects 8 ms 4 Default 0 0 0
810 insects 8 ms 4 Default 0 0 0
90 insects 16 ms 4 Default 16438 13043 15392
810 insects 16 ms 4 Default 22089 16628 13307
90 insects 8 ms 2 Anytime 7077 8058 7681
810 insects 8 ms 2 Anytime 36640 36753 36726
90 insects 16 ms 2 Anytime 7341 3929 8581
810 insects 16 ms 2 Anytime 32552 34021 34021
90 insects 8 ms 4 Anytime 16851 10938 11021
810 insects 8 ms 4 Anytime 54499 62679 60071
90 insects 16 ms 4 Anytime 12575 10143 6564
810 insects 16 ms 4 Anytime 58697 56568 53127

Table 10.11: Points scored by the agents.

Figure 10.8: Average points scored in the multi-agent bounded response time experiment.

80

10 | INSECT CAPTURE SCENARIO

Figure 10.9: Box plot of points scored in the multi-agent bounded response time experiment.

Factors Influence
Variation of Insect number: 29.64%
Variation of Time-bound: 2.57%
Variation of Agent Number: 3.49%
Variation of Architecture: 28.89%
Variation of Insect number & Time-bound: 0.28%
Variation of Insect number & Agent Number: 0.96%
Variation of Insect number & Architecture: 21.04%
Variation of Time-bound & Agent Number: 0.03%
Variation of Time-bound & Architecture: 5.40%
Variation of Agent Number & Architecture: 3.15%
Variation of Insect number & Time-bound & Agent Number: 0.12%
Variation of Insect number & Time-bound & Architecture: 0.46%
Variation of Insect number & Agent Number & Architecture: 2.29%
Variation of Time-bound & Agent Number & Architecture: 0.08%
Variation of all factors: 0.29%
Variation of error and unobserved factors: 1.33%

Table 10.12: Variation attributed to each factor.

10.2 | MULTI-AGENT EXPERIMENT

81

can increase the agent’s utility in scenarios where the utility of actions decreases over
time, as expected. Another interesting point arises when we analyze Table 10.11. It is
possible to see that in some scenarios where the agent’s response time is limited to 8ms,
the default agent could not score any points. This absence of score shows that the limit
is very restrictive for these agents, who cannot process in time to perform actions. In
comparison, the anytime agent can act in these scenarios and score points because of its
ability to control its execution time.

10.2.2 Unbounded response time (E4)
In this experiment, our interest is to verify if the results obtained in Experiment 10.1.2

remain in a multi-agent scenario. Nevertheless, since the variation attributed to the number
of agents in experiment E3 was minimal (as shown in Table 10.12), we always used four
agents for this experiment. Table 10.13 and Figure 10.10 shows the points scored in the
experiment. Table 10.14 and Figure 10.11 shows the average response time of the agents.
Finally, Tables 10.15 and 10.16 show the variances attributed to each factor regarding the
points and the response time respectively.

Insects Architecture Insects captured
r1 r2 r3

90 insects Default 31 27 28
90 insects Anytime 30 26 27
810 insects Default 110 109 112
810 insects Anytime 107 106 107

Table 10.13: Insects captured by the agents.

(a) Average insects captured in each level. (b) Box plot of insects captured in each level.

Figure 10.10: Insects captured in the multi-agent unbounded response time experiment.

As can be seen in the Figures 10.10 and 10.11 and in Tables 10.15 and 10.16, as in
experiment E2, it was possible to reduce agent processing time without reducing the

82

10 | INSECT CAPTURE SCENARIO

Insects Architecture Response time
r1 r2 r3

90 insects Default 8.80 8.79 8.98
90 insects Anytime 7.21 7.26 7.24
810 insects Default 14.71 14.75 14.48
810 insects Anytime 11.29 11.27 11.39

Table 10.14: Average response time by the agents.

(a) Average response time in each level. (b) Box plot of response time in each level.

Figure 10.11: Response time in the multi-agent unbounded response time experiment.

Factors Influence
Variation of Insect number: 99.77%
Variation of Architecture: 0.08%
Variation of interaction of Insect number & Architecture: 0.03%
Variation of error and unobserved factors: 0.12%

Table 10.15: Variation attributed to each factor regarding captures.

Factors Influence
Variation of Insect number: 78.00%
Variation of Architecture: 19.59%
Variation of interaction of Insect number & Architecture: 2.33%
Variation of error and unobserved factors: 0.08%

Table 10.16: Variation attributed to each factor regarding response time.

10.2 | MULTI-AGENT EXPERIMENT

83

number of insects captured. However, only an approximately 20% reduction was possible
this time.

10.2.2.1 Reducing the processing time by 30%

As in the E2 experiment, we want to show that achieving an even higher reduction
is possible when we accept a slight reduction in the number of captures. Table 10.17
and Figure 10.12 shows the amount of insects captured by the agents. Table 10.18 and
Figure 10.13 shows the average response time of the agents. Finally, Tables 10.19 and 10.20
show the variances attributed to each factor regarding the points and the response time
respectively.

Unlike the result obtained in the E2 experiment, where there was no reduction in the
number of captures when we reduced the agent’s response time by 30%, in the multi-agent
scenario, the same reduction caused an average decrease of about 10% in the captures
performed by the agents.

Insects Architecture Insects captured
r1 r2 r3

90 insects Default 31 27 28
90 insects Anytime 25 24 29
810 insects Default 110 109 112
810 insects Anytime 103 106 102

Table 10.17: Insects captured by the agents.

(a) Average insects captured in each level. (b) Box plot of insects captured in each level.

Figure 10.12: Insects captured in the multi-agent unbounded response time experiment.

10.2.2.2 Reducing the processing time by 50%

For a final comparison, we analyzed agents’ performance when we reduced the average
response time by 50%. Table 10.21 and Figure 10.14 shows the amount of insects captured

84

10 | INSECT CAPTURE SCENARIO

Insects Architecture Response time
r1 r2 r3

90 insects Default 8.80 8.79 8.98
90 insects Anytime 6.20 6.28 6.21
810 insects Default 14.71 14.75 14.48
810 insects Anytime 10.26 10.29 10.29

Table 10.18: Average response time by the agents.

(a) Average response time in each level. (b) Box plot of response time in each level.

Figure 10.13: Response time in the multi-agent unbounded response time experiment.

Factors Influence
Variation of Insect number: 99.41%
Variation of Architecture: 0.34%
Variation of interaction of Insect number & Architecture: 0.06%
Variation of error and unobserved factors: 0.19%

Table 10.19: Variation attributed to each factor regarding captures.

Factors Influence
Variation of Insect number: 65.02%
Variation of Architecture: 32.88%
Variation of interaction of Insect number & Architecture: 2.04%
Variation of error and unobserved factors: 0.06%

Table 10.20: Variation attributed to each factor regarding response time.

10.2 | MULTI-AGENT EXPERIMENT

85

by the agents. Table 10.22 and Figure 10.15 shows the average response time of the agents.
Finally, Tables 10.23 and 10.24 show the variances attributed to each factor regarding the
points and the response time respectively.

Analyzing the results, we notice that this experiment had the highest drop in the
number of captures. For example, in the environment with 90 insects, there was a decrease
of approximately 40% in the average of captures. The drop was smaller in the environment
with 810 insects, about 12%. This result suggests that a bound of 4 milliseconds is not
enough for the agent to be able to process the reasoning cycle.

Insects Architecture Insects captured
r1 r2 r3

90 insects Default 31 27 28
90 insects Anytime 18 20 13
810 insects Default 110 109 112
810 insects Anytime 97 101 95

Table 10.21: Insects captured by the agents.

(a) Average insects captured in each level. (b) Box plot of insects captured in each level.

Figure 10.14: Insects captured in the multi-agent unbounded response time experiment.

86

10 | INSECT CAPTURE SCENARIO

Insects Architecture Response time
r1 r2 r3

90 insects Default 8.80 8.79 8.98
90 insects Anytime 4.27 4.23 4.21
810 insects Default 14.71 14.75 14.48
810 insects Anytime 7.29 7.31 7.31

Table 10.22: Average response time by the agents.

(a) Average response time in each level. (b) Box plot of response time in each level.

Figure 10.15: Response time in the multi-agent unbounded response time experiment.

Factors Influence
Variation of Insect number: 97.52%
Variation of Architecture: 2.19%
Variation of interaction of Insect number & Architecture: 0.00%
Variation of error and unobserved factors: 0.29%

Table 10.23: Variation attributed to each factor regarding captures.

Factors Influence
Variation of Insect number: 34.25%
Variation of Architecture: 62.48%
Variation of interaction of Insect number & Architecture: 3.23%
Variation of error and unobserved factors: 0.04%

Table 10.24: Variation attributed to each factor regarding response time.

87

Chapter 11

Multi-agent Programming Contest
scenario

The “Multi-agent Programming Contest”1 aims to stimulate research in multi-agent
system development and programming. This stimulus is achieved by identifying key
problems, collecting suitable benchmarks, and gathering test cases that require and enforce
coordinated action that can serve as milestones for testing multi-agent programming
languages, platforms, and tools. The organizers also expect that participating in the contest
helps to debug existing systems and to identify their weak and strong aspects.

The 2020/21 contest presented by Ahlbrecht et al. (2021) used the Agents Assemble
scenario, which consists of two teams of agents moving on a grid to explore the world
and acquire blocks to assemble them into complex patterns. Agents can attach things
to themselves. These attached things move or rotate when the agents move or rotate
while attached. In addition, two agents can connect things attached to them to create
more complex structures. The environment is a rectangular grid whose dimensions are
unknown to the agents. Agents only perceive positions relative to their own within a
limited distance.

The environment randomly creates tasks with a deadline, a set of blocks in a given
assembly, and an award value that decreases over time. When a team correctly submits
the task, the team receives points equal to the task’s current award. To submit a task,
an agent must move to a taskboard, act to accept the task, coordinate with other agents
to assemble the correct blocks correctly, move to a goal area of the map, and perform a
submission action. In addition, agents also have to deal with the fact that the other team
tries to submit the task beforehand, and random events disable the agent for a few steps.
At the end of 750 steps, the team with the most points wins the game. In the competition,
multiple teams face each other on different maps, and the team with the most games wins
is the champion.

As the contest aims to help debug existing systems and identify their weak and strong
aspects, we will use the contest environment for this purpose. The MAPC environment

1 MAPC: https://www.multiagentcontest.org/

https://www.multiagentcontest.org /

88

11 | MULTI-AGENT PROGRAMMING CONTEST SCENARIO

presents a much more complex and demanding scenario than the insect capture scenario.
However, it is much less customizable. As a result, it is impossible, for example, to analyze
the performance of a single agent in the MAPC scenario since coordination between agents
is a critical factor.

In the experiments presented in this chapter, we used the same code as the agents
who participated in the 2020/21 contest by the “LTI-USP” team, awarded fourth place, and
presented in Stabile Jr. and Sichman, 2021.

The map used has a significant impact on the score obtained by the agents because
depending on the size of the map and the position and number of elements, the agents will
perceive more or fewer elements, which also influences the number of messages exchanged
between the agents. Finally, these variations directly impact agent processing time. Because
of this, we proposed the two scenarios shown in Figure 11.1 for our experiments. We
call the scenario in Figure 11.1a clustered, as it has a smaller size and a larger number
of elements, such as taskboards, dispensers, and goal areas. These characteristics make
the processing of agents usually take longer. Also, we named the scenario in Figure 11.1b
sparse, as it is larger and contains fewer elements. Because of these differences, in this
chapter, these two environments will always be levels of one of the factors.

In the following experiments, we used a MacBook Pro (16-inch, 2019) computer to
run the agents with a 2.6 GHz Intel Core i7 6-Core processor and 16 GB 2667 MHz DDR4
memory. We used a MacBook Air (13-inch, Early 2014) for the server with a 1.4 GHz Intel
Core i5 Dual-Core processor and 4 GB 1600 MHz DDR3 memory; the two computers were
communicating on the same LAN via Wi-fi.

(a) Clustered environment map (b) Sparse environment map.

Figure 11.1: Maps used in the MAPC experiments.

11.1 | DEFAULT COMPETITION RESPONSE TIME (E5)

89

11.1 Default competition response time (E5)
In this first experiment, we used the settings closest to those used in the contest. That

is, the interval between sending the perceptions by the server and the bound for executing
the actions is four seconds; there is a 1% chance that each action fails randomly; each team
contains 15 agents; the simulation takes 750 steps. The two factors in the experiment are
environment (clustered and sparse) and architecture (default and Anytime).

For the contest, two characteristics of agents are essential. One is that agents need to
be able to score as many points as possible (because that is how you win). The second is
that agents must be able to perform their actions in the environment consistently. That
is because agents who take too long and miss too many actions are eliminated in the
qualifying phase and cannot participate in the contest. Therefore, we adopted two response
variables—the team score and the number of actions lost due to timeout. The two factors
in the experiment are environment (clustered and sparse) and architecture (default and
Anytime).

Map Architecture Points scored
r1 r2 r3

Sparse Default 20 3 12
Sparse Anytime 9 7 26

Clustered Default 10 6 10
Clustered Anytime 6 10 14

Table 11.1: Points scored by the agents in the default MAPC experiment.

(a) Average points scored in each level. (b) Box plot of points scored in each level.

Figure 11.2: Points scored in the default MAPC experiment.

We start by analyzing the score. The graphs in Figure 11.2 visually present the results
presented in Table 11.1. A simple analysis of the presented graphs can lead us to think
that the Anytime architecture caused an increase in the agents’ scores. However, when
we look at the variation analysis in Table 11.2, we can see that almost all the variation
is neither caused by the environment nor the architecture. That is, we cannot credit this

90

11 | MULTI-AGENT PROGRAMMING CONTEST SCENARIO

variation to the change in architecture. This result becomes apparent when we look at
Figure 11.3 and Table 11.3, which show the number of actions lost by agents. There are 15
agents, and each can perform up to 750 actions in a match. That is a total of 11250 actions.
In the execution where there was a more noteworty loss of actions, the agent in the default
architecture lost 30 actions due to timeout. That is a total of approximately 0.2% of the
total actions. Considering that 1% of the actions fail by a characteristic of the competition
scenario, we have that about 112 actions fail randomly. Thus, variance analysis shows us
that this difference in score has more to do with the randomness of the environment than
with the change in architecture.

Factors Influence
Variation of Map: 8.11%
Variation of Architecture: 2.23%
Variation of interaction of Map & Architecture: 0.17%
Variation of error and unobserved factors: 89.49%

Table 11.2: Variation attributed to each factor.

(a) Average actions lost in each level. (b) Box plot of actions lost in each level.

Figure 11.3: Actions lost in the default MAPC experiment.

Map Architecture Actions lost
r1 r2 r3

Sparse Default 5 1 0
Sparse Anytime 0 0 0

Clustered Default 7 0 30
Clustered Anytime 0 0 1

Table 11.3: Actions lost by the agents due to timeout in the default MAPC experiment.

However, this finding shows that our architecture could run the agents with the same
quality as the standard architecture. Moreover, the agents used in MAPC are much more
complex than those that capture insects. They also use message mechanisms that are not

11.2 | REDUCED RESPONSE TIME (E6)

91

in the theoretical model. This result indicates that the model is robust enough to accept
modifications resulting from the specific functioning of each BDI agent programming
language.

11.2 Reduced response time (E6)
In the analysis of the previous experiment, we demonstrated that the agent was suffi-

ciently optimized so that it did not miss many actions during the simulation. Therefore, in
this second experiment, we want to evaluate how a reduction in the simulator’s maximum
response time impacts the score of each of the evaluated architectures. So, we reduced the
maximum response time from 4 seconds to 1 second to achieve this objective.

Based on the values presented in Table 11.6, we can see an increase in the number
of actions lost by timeout. In this experiment, the default architecture lost, on average,
2.5% of the actions sent to the simulator. Evaluating Table 11.5, we see that the variation
attributed to the architecture increased from 2.23% to 5.49%, and the variation attributed to
the interaction between the two factors increased from 0.17% to 7.91%. Despite not being a
very high value, this variation increase demonstrates that the anytime architecture starts
to influence the agent’s score as the number of actions lost by the default architecture
increases.

Map Architecture Points scored
r1 r2 r3

Sparse Default 7 15 19
Sparse Anytime 10 11 9

Clustered Default 11 15 15
Clustered Anytime 14 18 10

Table 11.4: Points scored by the agents in the reduced response time MAPC experiment.

(a) Average points scored in each level. (b) Box plot of points scored in each level.

Figure 11.4: Points scored in the reduced response time MAPC experiment.

92

11 | MULTI-AGENT PROGRAMMING CONTEST SCENARIO

Factors Influence
Variation of Map: 7.91 %
Variation of Architecture: 5.49%
Variation of interaction of Map & Architecture: 7.91%
Variation of error and unobserved factors: 78.68%

Table 11.5: Variation attributed to each factor.

(a) Average actions lost in each level. (b) Box plot of actions lost in each level.

Figure 11.5: Actions lost in the reduced response time MAPC experiment.

Map Architecture Actions lost
r1 r2 r3

Sparse Default 266 169 46
Sparse Anytime 0 0 0

Clustered Default 219 721 289
Clustered Anytime 1 0 0

Table 11.6: Actions lost by the agents due to timeout in the reduced response time MAPC experiment.

11.3 | REDUCED RESPONSE TIME WITHOUT RANDOM FAILURE (E7)

93

11.3 Reduced response time without random failure
(E7)

In experiment E6 presented in Section 11.2, we observed that, on average, 2.5% of the
actions of the agents executed by the default architecture were lost by timeout. However,
agents running through the anytime architecture also miss actions because of random
failures caused by the environment. For this reason, we propose a new experiment with a
time-bound of 1 second and where there are no random failures to analyze this change’s
impact.

As we can see from the data presented in Table 11.9, there was a difference in the
number of actions lost per timeout compared to experiment E6. However, as shown in
Table 11.8, the variation attributed to the architecture increased to 12.62%. This increase
shows that in this scenario, where there is a lower response time and the anytime agent is
not affected by random failures, it tends to score more than the default agent. With this,
we demonstrate that there are cases where the anytime agent can perform better than the
default agent in complex scenarios, such as the Multi-Agent Programming Contest.

Map Architecture Points scored
r1 r2 r3

Sparse Default 8 17 2
Sparse Anytime 8 7 22

Clustered Default 0 12 12
Clustered Anytime 10 22 10

Table 11.7: Points scored by the agents in the no random failure MAPC experiment.

(a) Average points scored in each level. (b) Box plot of points scored in each level.

Figure 11.6: Points scored in the no random failure MAPC experiment.

94

11 | MULTI-AGENT PROGRAMMING CONTEST SCENARIO

Factors Influence
Variation of Map: 0.06%
Variation of Architecture: 12.62%
Variation of interaction of Map & Architecture: 1.03%
Variation of error and unobserved factors: 86.28%

Table 11.8: Variation attributed to each factor.

(a) Average actions lost in each level. (b) Box plot of actions lost in each level.

Figure 11.7: Actions lost in the no random failure MAPC experiment.

Map Architecture Actions lost
r1 r2 r3

Sparse Default 0 0 3
Sparse Anytime 0 0 0

Clustered Default 399 56 67
Clustered Anytime 0 0 0

Table 11.9: Actions lost by the agents due to timeout in the no random failure MAPC experiment.

11.4 | PERFORMANCE PROFILE EVALUATION (E8)

95

11.4 Performance profile evaluation (E8)
As we defined the agent profiling process, each agent records its runtimes and creates

performance profiles based on them. Since all agents have the same code, the performance
profiles would be very similar in theory. Because of this, we decided to investigate whether
combining the profiling data from all agents and creating a single performance profile
would benefit the agent. This experiment uses two factors and the same environment
configuration used in the experiment E5 in Section 11.1. The first is the map, and the
second is the performance profile used. At the level where each agent has its profile, we
call it “Single Performance Profile.” At the level where all agents use the same profile with
information from all profilings combined, we call it “Combined Performance Profile.” We
present the agents’ scores in Figure 11.8 and Table 11.10.

Map Architecture Points scored
r1 r2 r3

Sparse Combined PP 17 13 8
Sparse Single PP 9 7 26

Clustered Combined PP 15 10 8
Clustered Single PP 6 10 14

Table 11.10: Points scored by the agents in the performance profile evaluation experiment.

(a) Average points scored in each level. (b) Box plot of points scored in each level.

Figure 11.8: Points scored in the performance profile evaluation experiment.

Factors Influence
Variation of Map: 6.98%
Variation of Performance profile: 0.02%
Variation of interaction of Map & Performance profile: 1.18%
Variation of error and unobserved factors: 91.81%

Table 11.11: Variation attributed to each factor.

96

11 | MULTI-AGENT PROGRAMMING CONTEST SCENARIO

Based on the analysis of variations, we have that for the proposed scenario, there was
no change in the agents’ scores as a result of the change in the generation of performance
profiles.

97

Chapter 12

Conclusions and further work

This work addressed the lack of control over the reasoning cycle of BDI agents. As there
is no way to control the agent’s reasoning cycle, the agent does not present guarantees as
to the time required for it to act in the environment. This lack of guarantees significantly
impacts when one wants to integrate such agents into environments that demand responses
from agents within a predetermined time-bound or in scenarios where processing time
negatively influences the agent’s utility. In some cases, it may even be impossible to use
BDI agents in competitive scenarios, such as RoboCup and MAPC.

12.1 Conclusions
Seeking to solve this problem, we proposed a new architecture of BDI agents called

Anytime BDI. This architecture uses the idea of anytime algorithms to control the exe-
cution time of each part of the BDI model. With that, it is possible to define the agent’s
processing time and guarantee that it will execute an action in the environment before a
predetermined time-bound.

This model was implemented in the Jason interpreter, receiving the name Anytime
Jason. We then applied the implemented model to two scenarios. Then, we performed
statistical tests using techniques from the performance analysis domain, based on the
design model of experiments presented by Jain, 1991.

In the analyzed case studies, the architecture reduced the agents’ processing time and,
in many cases, increased the agents’ scores.

Based on the results obtained in Chapters 10 and 11, we are now able to answer
questions proposed in Section 1.2:

• Q1: Given a specific time response upper bound, is it possible to guarantee that a BDI

agent can often enough process perceptions, deliberate on them, and determine the

action it wants to perform within the time limit while simultaneously guaranteeing a

minimum quality of actions?

We proposed a BDI architecture capable of creating agents that can analyze
perceptions, reason about beliefs, desires, and intentions, and act according to plans

98

12 | CONCLUSIONS AND FURTHER WORK

to achieve their goals within a predefined time upper bound. By converting the
Sense, Deliberate and Act mechanisms into anytime algorithms and adding profiling
and monitoring mechanisms as presented in Chapter 6 we can control the execution
time of BDI agents.

• Q2: How to define in advance the minimum time necessary for the agent to produce a

response with the desired quality?

We provided the proposed architecture with a mechanism capable of estimating an
agent’s minimum execution time by using profiling techniques and constructing
performance profilers for the agents’ internal mechanisms. Also, calculating the
minimum time allows for evaluating if applying the agent in the desired domain is
possible.

• Q3: What is the impact of processing time on response quality?

We evaluated the quality of actions generated by the proposed architecture. In this
evaluation, we compares the loss of quality caused by the execution time reduction
with the loss of quality caused by the agent not having enough time to deliberate. As
analyzed by the experiments in Chapters 10 and 11: In scenarios where the agent’s
utility decreases over time, the AnytimeBDI architecture can increase the agent’s
utility. Furthermore, in scenarios where there is no such increase, the use of the
architecture can also be beneficial in reducing agent processing time at the cost of a
controlled loss in quality.

By answering the three research questions, this work establishes a solid architecture
whose objective is to provide the ability to control the response time of BDI agents while
guaranteeing a certain predefined level of quality in the actions. This capability makes it
possible to use BDI agents in the most diverse domains where it is necessary to guarantee
an upper bound on the agent’s response time. These domains include simulations with a
rigid time restriction and embedded agents where an agent not spending too much time
without acting on the environment is desired. We expect this architecture to be a new
incentive for using BDI agents with discrete event simulators and in the robotics area,
resulting in further development and popularization of the BDI model.

It is also important to note two things about these results. The first is that these results
are valid in the proposed scenarios. Thus, there is no guarantee that the results will be
the same in other scenarios. However, as the results were consistent for both proposed
scenarios, we are confident that these would hold in many other scenarios. Second, we did
not explore all possible settings for splitting the agents’ response time. Thus, there may be
settings for AnytimeJason that would further improve the agent’s performance.

12.2 Future work
During the development of this work, many points were not profoundly examined.

The following steps of this research may involve:

• Since there is no intention reconsideration mechanism in Jason, we have not pro-

12.2 | FUTURE WORK

99

posed an anytime algorithm for intention reconsidering. Proposing this algorithm
and adding it to the Anytime Jason implementation would bring it closer to the
Anytime BDI model;

• We decided to implement the Anytime BDI architecture in the Jason language due
to the language’s popularity and open-source nature. However, there are several
other well-accepted agent programming languages. Implementing the Anytime BDI
architecture in other BDI agent programming languages would reinforce the idea
that the theoretical model is generic enough to be implemented in several languages,
making it possible to use Anytime BDI in agents created in other languages;

• Adapting an agent programming language to work according to the Anytime BDI
architecture is laborious. The creation of a guide or a cookbook with directions on
how best to conduct this process could facilitate the implementation of the model in
new languages;

• Although we built Anytime Jason aiming not to need changes to the Jason agent’s
code, making a few changes can make the agent more efficient. These changes
include creating perception filters, prioritizing plans, and adequately structuring the
plans. Also, knowing how to choose the best time allocation is essential. Therefore,
it would be interesting to create a guide with instructions for implementing and
adapting Jason agents to Anytime Jason;

• In order to get good test coverage, we ran tests in two reasonably different contexts,
although it is probable that some scenarios went unreported. Therefore, testing the
architecture and implementation in additional scenarios with different characteristics
would certainly reveal more interesting uses of the architecture;

• During the development, we kept the Monitor module very simple. It only calculated
a possible time allocation and controlled each module to run for the specified time.
However, it can be beneficial to sophisticate the Monitor. One possibility would be
to develop a method to reuse leftover time from other modules. For example, if there
are no more perceptions to be analyzed and there is still time left, this time could be
reallocated to the other two modules. For this, it would be necessary for the Monitor
to be prepared to reallocate this time in the best possible way;

• A typical analysis of anytime algorithms is how the algorithm’s quality increases
as it has more time to execute. A test scenario that analyses the agent quality as
response time gradually increases could bring new insights to the architecture;

• Although the architecture calculates the optimal time allocation points, likely, they
will not all present the same quality of agent execution. The development of some
mechanism that could direct the agent developer to better choices of time allocations
could make the development of agents faster and improve the final performance of
the agent.

101

Appendix A

Experiments visual validations

As seen in Chapter 9, it is necessary to validate the results of the experiments through
visual validations. Therefore, in this appendix, we present the validations referring to all
the experiments carried out in Chapters 10 and 11. Thus, in the visual tests, the quantile-
quantile plot’s lack of patterns and the normality of the residuals are evident. These
characteristics show that the results of the experiments are correct.

(a) Normal quantile-quantile plot for the residuals. (b) Plot of the residuals versus predicted response.

Figure A.1: Visual diagnostic tests for experiment E1 in Section 10.1.1.

102

APPENDIX A

(a) Normal quantile-quantile plot for the residuals. (b) Plot of the residuals versus predicted response.

Figure A.2: Visual diagnostic tests for captures variation in experiment E2 on Section 10.1.2.

(a) Normal quantile-quantile plot for the residuals. (b) Plot of the residuals versus predicted response.

Figure A.3: Visual diagnostic tests for response time variation in experiment E2 on Section 10.1.2.

(a) Normal quantile-quantile plot for the residuals. (b) Plot of the residuals versus predicted response.

Figure A.4: Visual diagnostic tests for captures variation in experiment E2 on Section 10.1.2.1.

A | EXPERIMENTS VISUAL VALIDATIONS

103

(a) Normal quantile-quantile plot for the residuals. (b) Plot of the residuals versus predicted response.

Figure A.5: Visual diagnostic tests for response time variation in experiment E2 on Section 10.1.2.1.

(a) Normal quantile-quantile plot for the residuals. (b) Plot of the residuals versus predicted response.

Figure A.6: Visual diagnostic tests for experiment E3 in Section 10.2.1.

(a) Normal quantile-quantile plot for the residuals. (b) Plot of the residuals versus predicted response.

Figure A.7: Visual diagnostic tests for captures variation in experiment E4 on Section 10.2.2.

104

APPENDIX A

(a) Normal quantile-quantile plot for the residuals. (b) Plot of the residuals versus predicted response.

Figure A.8: Visual diagnostic tests for response time variation in experiment E4 on Section 10.2.2.

(a) Normal quantile-quantile plot for the residuals. (b) Plot of the residuals versus predicted response.

Figure A.9: Visual diagnostic tests for captures variation in experiment E4 on Section 10.2.2.1.

(a) Normal quantile-quantile plot for the residuals. (b) Plot of the residuals versus predicted response.

Figure A.10: Visual diagnostic tests for response time variation in experiment E4 on Section 10.2.2.1.

A | EXPERIMENTS VISUAL VALIDATIONS

105

(a) Normal quantile-quantile plot for the residuals. (b) Plot of the residuals versus predicted response.

Figure A.11: Visual diagnostic tests for captures variation in experiment E4 on Section 10.2.2.2.

(a) Normal quantile-quantile plot for the residuals. (b) Plot of the residuals versus predicted response.

Figure A.12: Visual diagnostic tests for response time variation in experiment E4 on Section 10.2.2.2.

(a) Normal quantile-quantile plot for the residuals. (b) Plot of the residuals versus predicted response.

Figure A.13: Visual diagnostic tests for experiment E5 in Section 11.1.

106

APPENDIX A

(a) Normal quantile-quantile plot for the residuals. (b) Plot of the residuals versus predicted response.

Figure A.14: Visual diagnostic tests for experiment E6 in Section 11.2.

(a) Normal quantile-quantile plot for the residuals. (b) Plot of the residuals versus predicted response.

Figure A.15: Visual diagnostic tests for experiment E7 in Section 11.3.

(a) Normal quantile-quantile plot for the residuals. (b) Plot of the residuals versus predicted response.

Figure A.16: Visual diagnostic tests for experiment E8 in Section 11.4.

107

Appendix B

Anytime Jason specific
commands

In this chapter, we will present the commands added to the Jason framework during
the implementation of Anytime Jason. These are the necessary commands to run a Jason
agent using the proposed model and implementation.

B.1 Architecture usage
To use the anytime architecture, it is only necessary to select it in the same way as

with the other available Jason variations. In the infrastructure specification, the agent
developer must write 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑠𝑒𝑑(𝑎𝑛𝑦𝑡𝑖𝑚𝑒, 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑇 𝑖𝑚𝑒). 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑇 𝑖𝑚𝑒 is specified
in milliseconds and is the only required parameter. There are two methods for controlling
the quality of time allocations: The first is specifying only the upper bounds. For this, we
use the command 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑(𝑎𝑛𝑦𝑡𝑖𝑚𝑒, 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑇 𝑖𝑚𝑒, 𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝐿𝑜𝑤𝑒𝑟𝐿𝑖𝑚𝑖𝑡,

𝑑𝑒𝑙𝑖𝑏𝑒𝑟𝑎𝑡𝑒𝐿𝑜𝑤𝑒𝑟𝐿𝑖𝑚𝑖𝑡), where 𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝐿𝑜𝑤𝑒𝑟𝐿𝑖𝑚𝑖𝑡 and 𝑑𝑒𝑙𝑖𝑏𝑒𝑟𝑎𝑡𝑒𝐿𝑜𝑤𝑒𝑟𝐿𝑖𝑚𝑖𝑡 are
numbers between 0 and 1 that represent a minimum quality limit for each module. Thus, by
specifying both values, the 𝜖-constraint method will select a time allocation that obeys this
constraint. The second way is to specify both upper and lower limits through the command
𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑠𝑒𝑑(𝑎𝑛𝑦𝑡𝑖𝑚𝑒, 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑇 𝑖𝑚𝑒, 𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝐿𝑜𝑤𝑒𝑟𝐿𝑖𝑚𝑖𝑡, 𝑑𝑒𝑙𝑖𝑏𝑒𝑟𝑎𝑡𝑒𝐿𝑜𝑤𝑒𝑟𝐿𝑖𝑚𝑖𝑡,

𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑈𝑝𝑝𝑒𝑟𝐿𝑖𝑚𝑖𝑡, 𝑑𝑒𝑙𝑖𝑏𝑒𝑟𝑎𝑡𝑒𝑈𝑝𝑝𝑒𝑟𝐿𝑖𝑚𝑖𝑡). We present an example of this command
in Algorithm 16. Also, in this case, 𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑜𝑛𝑈𝑝𝑝𝑒𝑟𝐿𝑖𝑚𝑖𝑡 and 𝑑𝑒𝑙𝑖𝑏𝑒𝑟𝑎𝑡𝑒𝑈𝑝𝑝𝑒𝑟𝐿𝑖𝑚𝑖𝑡

are values between 0 and 1. With these parameters, the 𝜖-constraint method will select a
time allocation whose quality is between the upper and lower limit.

B.2 Perception filters
We developed five internal actions to control the perception filters. We present examples

of each of these functions in Algorithm 17. The perception selection mechanism evaluates
first the perceptions that fit filters with lower priority values. That is, perceptions with a
value of 1 will be the first to be evaluated. Next are perceptions with a value of 2 and so
on. The values do not need to be sequential. If there are three filters with priority values 3,

108

APPENDIX B

Algorithm 16 Anytime Jason agent configuration file example.
1: 𝑀𝐴𝑆 𝑚𝑎𝑟𝑠{

2: 𝑖𝑛𝑓 𝑟𝑎𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 ∶ 𝐶𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑠𝑒𝑑(𝑎𝑛𝑦𝑡𝑖𝑚𝑒, 40, 0.5, 0, 0.59, 0.04)

3: 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 ∶ 𝑀𝑎𝑟𝑠𝐸𝑛𝑣

4: 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑡𝑟𝑜𝑙 ∶ 𝑗𝑎𝑠𝑜𝑛.𝑐𝑜𝑛𝑡𝑟𝑜𝑙.𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑡𝑟𝑜𝑙

5: 𝑎𝑔𝑒𝑛𝑡𝑠 ∶ 𝑎𝑔𝑒𝑛𝑡1;

6: }

5, and 12, the mechanism will evaluate them in that order without affecting performance
by the selection mechanism. Multiple filters can not have the same priority value. Doing
this will overwrite the previous filter.

Create To create a new perception filter, we use the 𝑐𝑟𝑒𝑎𝑡𝑒 function. This function
receives three parameters: The name of the filter, its priority, and a list of restrictions.
The filter name is a string, the priority is an integer value, and the constraints are a list
where each constraint is composed of a position indicator, a comparison operator, and a
comparison value. On line 1 of Algorithm 17, the filter “name1” has a priority of 3 and
accepts all perceptions whose predicate is not the word insect. That is, all perceptions
not in the form “𝑖𝑛𝑠𝑒𝑐𝑡(...)”. On line 2, the filter “name2” has a priority of 2 and accepts
all perceptions whose first component is greater than 5. As an example, it would accept
the perception “𝑖𝑛𝑠𝑒𝑐𝑡(10, ...)” but not the “𝑖𝑛𝑠𝑒𝑐𝑡(3, ...)”. Lastly, on line 3, the filter “name3”
has a priority of 4 and accepts all perceptions that both has a predicate starting with
“position” and the second component is less or equal to 10. As an example, it would accept
the perception “𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐴𝑔(12, 10, ...)” but not the perceptions “𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝐴𝑔(13, 13, ...)” or
“𝑎𝑔𝑒𝑛𝑡_𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(1, 1, ...)”. The following operators can be used:

• eq: Tests for equality;

• ne: Tests for difference;

• bg: Tests if the value in the perception begins with the value in the filter;

• gt: Tests if the value in the perception is bigger then the value in the filter;

• ge: Tests if the value in the perception is bigger or equal to the value in the filter;

• lt: Tests if the value in the perception is smaller then the value in the filter;

• eq: Tests if the value in the perception is smaller or equal to the value in the filter;

Delete The 𝑑𝑒𝑙𝑒𝑡𝑒 internal action takes the filter name as a parameter and completely
removes it. We present an example of it in line 4 of Algorithm 17.

Activate/Deactivate The internal actions 𝑑𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 and 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒 are responsible for
temporarily suspending and resuming filter operation. Both actions take the filter name as
a parameter. Deactivate suspends a filter, meaning that it is not considered in the analysis
of perceptions until it is activated again by the activate action. We present an example of
these internal actions in lines 5 and 6 of Algorithm 17

B.3 | PLAN PRIORITY

109

Change priority The 𝑐ℎ𝑎𝑛𝑔𝑒𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 internal action parameters are the filter name
and a new priority value. This action replaces the old priority value for the one in the
parameter, possibly changing the order in which the perception module will apply the
filters. We present an example of the action in line 7 of Algorithm 17.

Algorithm 17 Anytime Jason perception filters example.
1: +!𝑢𝑠𝑒𝐹 𝑖𝑙𝑡𝑒𝑟𝑠 < −.𝑓 𝑖𝑙𝑡𝑒𝑟 .𝑐𝑟𝑒𝑎𝑡𝑒(𝑛𝑎𝑚𝑒1, 3, [[0, 𝑛𝑒, 𝑖𝑛𝑠𝑒𝑐𝑡]]);

2: .𝑓 𝑖𝑙𝑡𝑒𝑟 .𝑐𝑟𝑒𝑎𝑡𝑒(𝑛𝑎𝑚𝑒2, 2, [[1, 𝑔𝑡, 5]]);

3: .𝑓 𝑖𝑙𝑡𝑒𝑟 .𝑐𝑟𝑒𝑎𝑡𝑒(𝑛𝑎𝑚𝑒3, 4, [[0, 𝑏𝑔, 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛], [2, 𝑙𝑒, 10]]);

4: .𝑓 𝑖𝑙𝑡𝑒𝑟 .𝑑𝑒𝑙𝑒𝑡𝑒(𝑛𝑎𝑚𝑒3).

5: .𝑓 𝑖𝑙𝑡𝑒𝑟 .𝑑𝑒𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒(𝑛𝑎𝑚𝑒2);

6: .𝑓 𝑖𝑙𝑡𝑒𝑟 .𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒(𝑛𝑎𝑚𝑒2);

7: .𝑓 𝑖𝑙𝑡𝑒𝑟 .𝑐ℎ𝑎𝑛𝑔𝑒𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝑛𝑎𝑚𝑒1, 1).

B.3 Plan priority
As described in Section 7.3, when the anytime architecture finds two possible external

actions to execute in the environment, the architecture automatically chooses the one
with the lowest priority value. These priorities can be defined through annotations in the
plans, as shown in Algorithm 18.

Algorithm 18 Anytime Jason perception filters example.
1: @𝑙𝑎𝑏𝑒𝑙[𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(1)]

2: +!𝑚𝑜𝑣𝑒𝑁𝑜𝑟𝑡ℎ𝑤𝑒𝑠𝑡 < −𝑚𝑜𝑣𝑒(𝑛𝑜𝑟𝑡ℎ); 𝑚𝑜𝑣𝑒(𝑤𝑒𝑠𝑡);

111

Bibliography

[Ahlbrecht et al. 2021] Tobias Ahlbrecht, Jürgen Dix, Niklas Fiekas, and Tabajara
Krausburg. “The 15th multi-agent programming contest”. In: The Multi-Agent

Programming Contest 2021. Ed. by Tobias Ahlbrecht, Jürgen Dix, Niklas Fiekas,
and Tabajara Krausburg. Cham: Springer International Publishing, 2021, pp. 3–20.
isbn: 978-3-030-88549-6 (cit. on p. 87).

[Bellifemine et al. 1999] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa.
“JADE - A FIPA-compliant agent framework”. In: Proceedings of PAAM. 1999,
pp. 97–108. isbn: 158113326X. doi: 10.1145/375735.376120 (cit. on p. 12).

[Bordini, Hübner, et al. 2007] Rafael H. Bordini, Jomi Fred Hübner, and Michael
Wooldridge. Programming Multi-Agent Systems in AgentSpeak using Jason. John-
Wiley & Sons Ltd, 2007, p. 273. isbn: 9780470057476 (cit. on pp. 14, 15).

[Bordini, Braubach, et al. 2006] Rafael H Bordini, Lars Braubach, et al. “A Survey of
Programming Languages and Platforms for Multi-Agent Systems”. In: Informatica

(Slovenia) 30.1 (2006), pp. 33–44 (cit. on pp. 12, 14).

[Bratman 1987] M. Bratman. Intentions, Plans, and Practical Reason. Harvard Univer-
sity Press, 1987. isbn: 9780674458185 (cit. on p. 1).

[Braubach et al. 2003] L Braubach, W Lamersdorf, and Alexander Pokahr. “Jadex
: Implementing a BDI-Infrastructure for JADE”. In: EXP in search of innovation

3.September (2003), pp. 76–85 (cit. on p. 12).

[Dastani et al. 2003] Mehdi Dastani, Frank De Boer, Frank Dignum, and John-Jules
Meyer. “Programming agent deliberation: an approach illustrated using the
3APL language”. In: Proceedings of the second international joint conference on

Autonomous agents and multiagent systems (2003), pp. 97–104 (cit. on pp. 12, 13).

[Dean and Boddy 1988] Thomas Dean and Mark Boddy. “An Analysis of Time-
Dependent Planning”. In: Seventh AAAI National Conference on Artificial Intelli-

gence (AAAI). Ed. by Howard E. Shrobe, Tom M. Mitchell, and Reid G. Smith. 6.
AAAI Press / The MIT Press, 1988, pp. 49–54. isbn: 0-262-51055-3 (cit. on p. 19).

[Ferguson 1992] Innes A. Ferguson. “Touring Machines: Autonomous Agents with
Attitudes”. In: Computer 25.5 (1992), pp. 51–55. issn: 00189162. doi: 10.1109/2.
144395 (cit. on p. 2).

https://doi.org/10.1145/375735.376120
https://doi.org/10.1109/2.144395
https://doi.org/10.1109/2.144395

112

BIBLIOGRAPHY

[Gat 1998] Erann Gat. “Three-layer Architectures”. In: Artificial Intelligence and Mo-

bile Robots. Ed. by David Kortenkamp, R. Peter Bonasso, and Robin Murphy.
MIT Press, 1998, pp. 195–210. isbn: 0-262-61137-6 (cit. on p. 2).

[Hindriks et al. 1999] Koen V Hindriks, Frank S De Boer, Wiebe Van Der Hoek, and
John-Jules Ch. Meyer. “Agent Programming in 3APL”. In: Autonomous Agents

and Multi-Agent Systems 2.4 (1999), pp. 357–401. issn: 1387-2532. doi: 10.1023/A:
1010084620690 (cit. on p. 12).

[Jain 1991] Raj Jain. “The art of computer system performance analysis: techniques
for experimental design, measurement, simulation and modeling”. In: New York:

John Willey (1991) (cit. on pp. 4, 67–70, 97).

[Kostiadis and Hu 2000] K Kostiadis and H S Hu. “A multi-threaded approach to
simulated soccer agents for the RoboCup competition”. In: Robocup-99: Robot

Soccer World Cup Iii 1856 (2000), pp. 366–377. issn: 0302-9743 (cit. on pp. 1, 31, 55,
56, 58, 62, 63).

[Lorini and Piunti 2010] Emiliano Lorini and Michele Piunti. “Introducing rele-
vance awareness in BDI agents”. In: Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
Vol. 5919 LNAI. 2010, pp. 219–236. isbn: 3642148425. doi: 10.1007/978-3-642-
14843-9_14 (cit. on pp. 50, 60, 61, 63).

[Miettinen 2008] Kaisa Miettinen. “Introduction to multiobjective optimization:
noninteractive approaches”. In: Multiobjective Optimization: Interactive and Evolu-

tionary Approaches. Ed. by Jürgen Branke, Kalyanmoy Deb, Kaisa Miettinen, and
Roman Słowiński. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 1–26.
isbn: 978-3-540-88908-3. doi: 10.1007/978-3-540-88908-3_1 (cit. on pp. 25, 26, 48).

[Pantoja et al. 2016] Carlos Eduardo Pantoja, Marcio Fernando Stabile Jr., Nilson
Mori Lazarin, and Jaime Simão Sichman. “ARGO: An Extended Jason Architec-
ture that Facilitates Embedded Robotic Agents Programming”. In: Engineering

Multi-Agent Systems - 4th International Workshop, EMAS 2016, Singapore, Singapore,

May 9-10, 2016, Revised, Selected, and Invited Papers. Ed. by Matteo Baldoni, Jörg P.
Müller, Ingrid Nunes, and Rym Zalila-Wenkstern. Springer, 2016, pp. 136–155
(cit. on p. 2).

[Rao 1996] Anand S Rao. “AgentSpeak(L): BDI agents speak out in a logical computable
language”. In: Proceedings of the 7th European workshop on Modelling autonomous

agents in a multi-agent world (MAAMAW’96). Ed. by Walter Van de Velde and
John W Perram. Vol. 1038. Lecture Notes in Artificial Intelligence. Secaucus, USA:
Springer-Verlag, 1996, pp. 42–55 (cit. on p. 13).

[Rao and Georgeff 1991] Anand S. Rao and Michael P. Georgeff. “Modeling Rational
Agents within a BDI-Architecture”. In: Proceedings of the Second International Con-

ference on Principles of Knowledge Representation and Reasoning. KR’91. Cambridge,
MA, USA: Morgan Kaufmann Publishers Inc., 1991, pp. 473–484. isbn: 1558601651
(cit. on pp. 1, 9, 31).

https://doi.org/10.1023/A:1010084620690
https://doi.org/10.1023/A:1010084620690
https://doi.org/10.1007/978-3-642-14843-9_14
https://doi.org/10.1007/978-3-642-14843-9_14
https://doi.org/10.1007/978-3-540-88908-3_1

BIBLIOGRAPHY

113

[Santos et al. 2015] Fernando R. Santos, Jomi F. Hubner, and Leandro B. Becker.
“Concepção e Análise de um Modelo de Agente BDI Voltado para o Planejamento
de Rota em um VANT”. In: Proceedings of WESAAC 2015 9th Software Agents,

Environments and Applications School. Ed. by Baldoino Fonseca, Viviane Torres
da Silva, and Ricardo Choren. 2015, pp. 66–77 (cit. on p. 2).

[Schut et al. 2004] Martijn Schut, Michael Wooldridge, and Simon Parsons. The

theory and practice of intention reconsideration. Vol. 16. 4. 2004, pp. 261–293. isbn:
0952813041. doi: 10.1080/09528130412331309277 (cit. on p. 37).

[Shoham 1993] Y Shoham. “Agent-oriented programming”. In: Artificial Intelligence

60.1 (Mar. 1993), pp. 51–92. issn: 00043702. doi: 10.1016/0004-3702(93)90034-9
(cit. on p. 9).

[Stabile Jr and Sichman 2015a] Márcio F. Stabile Jr and Jaime S Sichman. “Incorpo-
rando Filtros de Percepção para Aumentar o Desempenho de Agentes Jason”. In:
Workshop-Escola de Sistemas de Agentes, seus Ambientes e apliCações (WESAAC).
2015, p. 12 (cit. on pp. 50, 61).

[Stabile Jr and Sichman 2015b] Márcio Fernando Stabile Jr and Jaime S Sichman.
“Melhorando o desempenho de agentes BDI Jason através de filtros de percepção”.
MA thesis. Universidade de São Paulo, 2015, p. 84 (cit. on pp. 40, 49, 50, 72).

[Stabile Jr. 2022] Marcio Fernando Stabile Jr. “Using Multi-objective Optimization
to Generate Timely Responsive BDI Agents”. In: AAMAS 2022 Doctoral Consortium.
2022, pp. 1875–1877 (cit. on p. 35).

[Stabile Jr. and Sichman 2021] Marcio Fernando Stabile Jr. and Jaime S. Sichman.
“The lti-usp strategy to the 2020/2021 multi-agent programming contest”. In: The

Multi-Agent Programming Contest 2021. Ed. by Tobias Ahlbrecht, Jürgen Dix,
Niklas Fiekas, and Tabajara Krausburg. Cham: Springer International Publishing,
2021, pp. 108–133. isbn: 978-3-030-88549-6 (cit. on p. 88).

[Traldi et al. 2022] Andrea Traldi, Francesco Bruschetti, Marco Robol, Marco
Roveri, and Paolo Giorgini. Real-Time BDI Agents: a model and its implementation.
2022. doi: 10.48550/ARXIV.2205.00979 (cit. on pp. 62, 63).

[Tweedale et al. 2007] J. Tweedale et al. “Innovations in multi-agent systems”. In:
Journal of Network and Computer Applications 30.3 (2007), pp. 1089–1115. issn:
10848045. doi: 10.1016/j.jnca.2006.04.005 (cit. on p. 1).

[Van Oijen and Dignum 2011] Joost Van Oijen and Frank Dignum. “Scalable percep-
tion for BDI-agents embodied in virtual environments”. In: Proceedings - 2011

IEEE/WIC/ACM International Conference on Intelligent Agent Technology, IAT 2011

2 (Aug. 2011), pp. 46–53. doi: 10.1109/WI-IAT.2011.176 (cit. on pp. 60, 61, 63).

[Wooldridge 2000] M Wooldridge. Reasoning About Rational Agents. MIT Press,
2000 (cit. on pp. 10, 11, 45, 58).

https://doi.org/10.1080/09528130412331309277
https://doi.org/10.1016/0004-3702(93)90034-9
https://doi.org/10.48550/ARXIV.2205.00979
https://doi.org/10.1016/j.jnca.2006.04.005
https://doi.org/10.1109/WI-IAT.2011.176

114

BIBLIOGRAPHY

[Wooldridge 1997] Michael Wooldridge. “Agent-Based Software Engineering”. In:
IEE Proceedings of Software Engineering 144. 1997 (cit. on p. 9).

[Wooldridge 2009] Michael Wooldridge. An Introduction to Multiagent Systems. Sec-
ond. John Wiley & Sons Ltd, 2009. isbn: 0470519460 (cit. on p. 9).

[Yao and Logan 2016] Yuan Yao and Brian Logan. “Action-Level Intention Selection
for BDI Agents”. In: Aamas 2016. C. 2016, pp. 1227–1236. isbn: 978-1-4503-4239-1
(cit. on pp. 59, 60, 62, 63).

[Zatelli 2017] Maicon Rafael Zatelli. “Exploiting Parallelism in the Agent Paradigm”.
PhD thesis. 2017 (cit. on pp. 58, 59, 62, 63).

[Zatelli et al. 2016] Maicon Rafael Zatelli, Alessandro Ricci, and Jomi F. Hübner.
“A Concurrent Architecture for Agent Reasoning Cycle Execution in Jason”. In:
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics). Ed. by Michael Rovatsos, George
Vouros, and Vicente Julian. Vol. 9571. Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2016, pp. 425–440. isbn: 978-3-319-33508-7. doi:
10.1007/978-3-319-33509-4 (cit. on p. 31).

[Zhang and Huang 2005] Huiliang Zhang and Shell Ying Huang. “A parallel BDI
agent architecture”. In: Proceedings - 2005 IEEE/WIC/ACM International Conference

on Intelligent Agent Technology, IAT’05 2005.May (2005), pp. 157–160. doi: 10.1109/
IAT.2005.17 (cit. on pp. 31, 56, 58).

[Zhang and Huang 2007] Huiliang Zhang and Shell Ying Huang. “A general frame-
work for parallel BDI agents”. In: Proceedings - 2006 IEEE/WIC/ACM International

Conference on Intelligent Agent Technology (IAT 2006 Main Conference Proceedings),

IAT’06 (2007), pp. 103–109. doi: 10.1109/IAT.2006.8 (cit. on pp. 31, 56–58, 62, 63).

[Ziafati and Dastani 2013] Pouyan Ziafati and Mehdi Dastani. “Agent Program-
ming Languages Requirements for Programming Autonomous Robots”. In: (2013),
pp. 35–53 (cit. on pp. 1, 2).

[Zilberstein 1993] Shlomo Zilberstein. “Operational rationality through compila-
tion of anytime algorithms”. PhD thesis. 1993, p. 164 (cit. on pp. 19, 21, 22, 36,
48).

[Zilberstein 1995] Shlomo Zilberstein. “Operational rationality through compila-
tion of anytime algorithms”. In: AI Magazine (1995) (cit. on p. 36).

[Zilberstein 1996] Shlomo Zilberstein. “Using Anytime Algorithms in Intelligent
Systems”. In: AI Magazine 17.3 (1996), pp. 73–83 (cit. on p. 36).

https://doi.org/10.1007/978-3-319-33509-4
https://doi.org/10.1109/IAT.2005.17
https://doi.org/10.1109/IAT.2005.17
https://doi.org/10.1109/IAT.2006.8

	Introduction
	Motivation
	Objectives
	Methodology
	Contributions
	Document structure

	I Background
	Agent Oriented Programming
	BDI Model
	3APL
	Jadex
	AgentSpeak
	Jason

	Anytime Algorithhms
	Performance profiles
	Compilation
	Programming environment

	Multiobjective optimization
	Weighting Method
	-constraint method

	Systematic literature review
	Protocol
	Data sources
	Search results
	Analysis

	II Proposal
	Anytime BDI Agent
	General View
	Formal Description
	Belief Manager
	Intention Generator
	Intention Executor
	Monitor

	Anytime Jason
	Belief Manager Implementation
	Intention Generator Implementation
	Intention Executor Implementation
	Monitor Implementation

	Related work
	Parallel agent architectures
	Control of reasoning time on intentions.
	Control of reasoning time over perceptions.
	Real-Time BDI
	Synthesis

	III Evaluation
	Experimental Design
	Definitions
	Example
	Validation

	Insect capture scenario
	Single agent experiment
	Bounded response time (E1)
	Unbounded response time (E2)

	Multi-agent experiment
	Bounded response time (E3)
	Unbounded response time (E4)

	Multi-agent Programming Contest scenario
	Default competition response time (E5)
	Reduced response time (E6)
	Reduced response time without random failure (E7)
	Performance profile evaluation (E8)

	Conclusions and further work
	Conclusions
	Future work

	Experiments visual validations
	Anytime Jason specific commands
	Architecture usage
	Perception filters
	Plan priority

	Bibliography

