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Resumo

Marcelo Schmitt. Teste de Drivers de Dispositivo do kernel Linux: Como drivers
de dispositivo estão sendo testados?. Dissertação (Mestrado). Instituto de Matemática

e Estatística, Universidade de São Paulo, São Paulo, 2022.

Drivers de dispositivo são uma parte essencial do kernel do Linux. Bugs nesses componentes podem

comprometer a estabilidade de qualquer sistema operacional GNU/Linux. Para mitigar isso, os drivers de

dispositivo devem ser testados em vários cenários de caso de uso. No entanto, isso nem sempre é facilmente

alcançável porque os drivers de dispositivo dependem de componentes de hardware que podem operar

de forma não determinística, falhar inesperadamente ou estar indisponíveis para os desenvolvedores. Esta

pesquisa caracteriza como os drivers de dispositivo do kernel Linux são testados. Para isso, realizamos

um mapeamento sistemático de literatura formal, uma revisão da literatura cinzenta e uma pesquisa com

mantenedores de drivers de dispositivos do Linux. Por meio desses métodos de pesquisa, podemos oferecer

uma visão abrangente do estado da prática dos testes de drivers de dispositivo do kernel Linux. Resumimos

as informações reunidas em um catálogo de ferramentas de teste usadas para testar o kernel do Linux e seus

drivers de dispositivo. Além disso, avaliamos as ferramentas que se mostraram mais promissoras para uso

diário por desenvolvedores Linux. Por fim, oferecemos um ampla caracterização das ferramentas de teste do

kernel Linux.

Palavras-chave: Linux. Teste de Software. Driver de dispositivo.





Abstract

Marcelo Schmitt. Linux kernel device driver testing: How are device drivers being
tested?. Thesis (Master’s). Institute of Mathematics and Statistics, University of São

Paulo, São Paulo, 2022.

Device drivers are an essential part of the Linux kernel. Bugs in these components may compromise the

stability of any GNU/Linux operating system. To mitigate that, device drivers should be tested against many

use case scenarios. However, that is not always easily achievable because device drivers rely on hardware

components that might operate nondeterministically, fail unexpectedly, or be unavailable to developers.

This research characterizes how Linux kernel device drivers are tested. To accomplish that, we carried out a

mapping study, a grey literature review, and a survey with Linux device driver maintainers. Through these

research methods, we are able to offer a comprehensive overview of the state of the practice about tests on

Linux kernel device drivers. We have summarized the information gathered in a catalog of test tools used to

test the Linux kernel and its device drivers. Further, we have evaluated those tools that showed the most

promising for daily use by Linux developers. Finally, we offer an extensive characterization of Linux kernel

testing tools.

Keywords: Linux. Software Test. Device driver.
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Chapter 1

Introduction

Device drivers are an important part of the Linux kernel and represent about 66%1 of
the project code lines. Although the code portion that drivers represent in a conventional
operating system (OS) can vary, some of these components are indispensable to the
system’s operation. In addition, the Linux kernel is widely used in a series of applications
as cloud service providers, embedded systems, smartphones, and supercomputers (Corbet
and Kroah-Hartman, 2017). Thus, testing is fundamental to increase the Linux kernel’s
confidence level and the operation of GNU/Linux systems submitted to different workloads.
In particular, device drivers require differentiated approaches because they are relatively
difficult to test. A fact that instigates to question: how are device drivers being tested?
This work tries to find out how developers are testing Linux kernel device drivers.

1.1 Problem outline

From the experience of our research group in Linux kernel development and a sys-
tematic mapping study conducted during this work, we have found evidence that (1) the
testing tools proposed by academic works are not being used by the Linux development
community and that (2) the testing tools that kernel developers are using are not well
covered in the academic literature.

There is a disconnection between academia and industry regarding practices for testing
Linux kernel device drivers. On the one hand, Kernel developers do not adopt the testing
tools proposed by academia. On the other hand, test tools extensively promoted by the
Linux community are not the object of academic study. This scenario leads us to consider
that academia does not fully understand the testing needs of Linux kernel developers,
whereas the project may not leverage innovative ideas published by academia.

Thus, we identified the following research problems:

• There are no references in the academic literature reporting the testing practices
and tools used by the Linux kernel development community.

1 Estimate calculated with data from cloc tool: https://github.com/AlDanial/cloc

https://github.com/AlDanial/cloc
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• Researchers spend time developing several software testing tools, but the Linux
kernel development community does not adopt them.

• No publication approaches Linux kernel device driver developer’s difficulties regard-
ing driver testing.

1.2 Research Objectives

By including the Linux kernel as our research target, we cannot ignore the role of
the community in maintaining such a massive codebase. In recent years, more than 4000
people have contributed to the advancement of the Linux kernel each year (Stewart et al.,
2020). Thus, we outline our goals to contribute to both academia and the development
community.

We pursued the following research objectives:

RO1. Provide a list of tools used by the Linux kernel community to test the Linux
kernel.

RO2. Identify testing strategies and tools used by Linux kernel device driver maintain-
ers.

RO3. Improve coverage of formal literature regarding the state-of-the-practice of Linux
kernel device driver testing.

By achieving RQ1, we produced a list of test tools that provide a reference for further
academic works related to software testing and the Linux kernel. In accomplishing RO2, we
boost researchers and practitioners by pointing out promising paths for those considering
studying or contributing to existing tools. Upon reaching RO3, we hope researchers can
make better-guided decisions when proposing new testing tools for the Linux kernel or
even consider contributing to existing ones. We have evidence that some of the test tools
introduced by academics have been discontinued and fallen into disuse. Falling into disuse,
however, is not a phenomenon restricted to Linux kernel testing tools. About 40% of the
static analysis tools published in ASE (International Conference on Automated Software
Engineering) and SCAM (International Working Conference on Source Code Analysis &
Manipulation) between 1991 and 2015 are in a closedown stage (Costa et al., 2018).

1.3 Research Questions and Plan

The problems described in Section 1.1 suggest an update of the academic literature.
Furthermore, our objectives require the observation of subjective aspects linked to the
community. After all, the perception of a contribution as an improvement depends on
the community’s opinion. Linux kernel maintainers accept patches only when submitters
convince them the proposed changes are beneficial. Patches are pulled to the kernel, not
pushed. While it is possible to ask many questions about the testing practices adopted
by the Linux community, we limited the scope of this work to the procedures focused
on testing device drivers. Assessing test methods from all the Linux subsystems would
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require investigating a much larger material. In this work, we seek to provide reasonable
answers to the following questions:

RQ1. How are Linux device drivers being tested?

RQ2. What testing tools are being used by the Linux community to test the kernel?
What are the main features of these tools?

RQ3. What features does the community desire for a testing tool? About the tools that
are already in use, what could be improved?

This research took place in 3 primary phases. In the first phase, we conducted a
mapping study; in the second phase, we conducted a grey literature review (GLR); and in
the third phase, we conducted a survey with Linux kernel device driver maintainers. We
then triangulate our findings from academic papers, informal literature, and community
developers by synthesizing different points of view on device driver testing.

1.4 Thesis Structure

The remaining of this work is structured in four more chapters. Chapter 2 provides
some background on subjects related to the Linux kernel device driver and software
testing. We describe the applied research methods in Chapter 3. Chapter 4 presents and
examines the results of our research. In Chapter 5, we conclude this work by discussing
the limitations of our work and possible future investigations.
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Chapter 2

Background

To discuss the state-of-the-practice of Linux kernel testing, it is worth briefly reviewing
some related concepts.

2.1 Linux kernel device drivers

The Linux kernel is accounted for many essential operating system tasks such as
memory management, process scheduling, data storage, network communication, and
many others (About Linux Kernel 2021). The kernel must operate several devices with
highly distinct characteristics and complexity to provide fundamental system functionality.
Moreover, it is reasonable to avoid mixing the control logic of different devices with one
another and with core system logic. Thus, it is usual to encapsulate code for managing a
device (or a family of related devices) into a device driver. “A driver is a piece of software
whose aim is to control and manage a particular hardware device, hence the name device
driver” (Madieu, 2017). To be more specific, we consider that a device driver is characterized
by a well-delimited piece of code (usually a file or a few files) whose purpose is to control
the operation of a hardware design (or a set of related hardware designs). Usually, hardware
designs are described in documents called datasheets or blueprints, which in turn describe
the components and operation of a hardware device.

Entire subsystems and kernel portions not restricted to the operation of a single device
(or set of devices), e.g., file systems, network stack, process scheduler, memory manager,
etc., are not device drivers. Although these components may contain device drivers, they
are not device drivers. Next, we must attend to the concepts of software testing.

2.2 Linux Kernel Development Process

At each release, Linux incorporates changes from hundreds of developers worldwide.
These developers may contribute to the project in many ways, such as by improving the
documentation, fixing bugs, introducing new features, and providing support for new
device drivers. The contributions to Linux (often called patches) are sent through email
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to appropriate mailing lists. There are several mailing lists at which Linux developers and
maintainers review and discuss changes to the kernel.

When a maintainer accepts a patch, they include it in their development repository.
Many (if not all) Linux maintainers have their development repositories (or trees) hosted
at Kernel.org1. Since development trees are publicly accessible, test rings may perform
tests on early phases of Linux kernel development. Moreover, Linux kernel developers
and maintainers may request test ring administrators to add their repositories to the test
infrastructure. After a repository is added to a test ring, it gets periodically pulled for
testing (Khan, 2021b; Kroah-Hartman, 2022). Thus, after a patch gets into a development
tree, it may be subjected to many tests from Linux kernel test systems.

The Linux kernel source code is logically divided into several subsystems. “A subsystem
is a representation for a high-level portion of the kernel as a whole (A. R. JonathanCorbet
and Kroah-Hartman, 2005).” A subsystem may also be understood as an abstraction
to refer to some part of the kernel responsible for some system functionality, such as
process scheduling, memory management, networking, etc. Most subsystems have one
or more developers who take the overall responsibility for the code on that subsystem.
These developers are known as subsystem maintainers (How the development process works
2021).

At the beginning of each development cycle, Linus Torvalds declares he will accept
new features for the Linux kernel throughout a period known as the merge window.
Then, during a typically two-week span, subsystem maintainers ask Linus to add (pull)
changes from their trees into his repository (known as the mainline kernel). After pulling
patches during those couple of weeks, Linus declares the merge window closed and stops
merging new features for the next Linux release. The kernel produced by Linus at the end
of a merge window is an artifact that urges testing since it is the bedrock for the upcoming
Linux release.

The weeks that follow the merge window are known as a stabilization period during
which Linus and many other kernel developers try to fix as many bugs and regressions as
possible. That is as also a time of intense testing by robots, automated test systems, and
test rings. The testing and bug-hunting season usually lasts six to eight weeks until Linus
declares the release candidate to be the new Linux kernel release (How the development
process works 2021). After that, Linus opens a new merge window and the process repeats
for a newer Linux release.

2.2.1 Next trees

Reviewers, testers, maintainers, and developers alike may want to view the changes
queued for the next kernel release in an integrated form so they can avoid merging conflicts.
However, pulling and merging patches from several subsystem trees is a cumbersome and
error-prone task.

To overcome this problem, the community provides -next trees, which bring together
patches from several subsystems. The main tree for merging patches queued for the next

1 https://git.kernel.org/

https://git.kernel.org/
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Linux release is linux-next. By design, linux-next is a snapshot of how the mainline should
be after the next merge window closes (How the development process works 2021). Since
linux-next comprises changes intended for the forthcoming Linux kernel, the tree may
enable contributions to be tested weeks ahead they reach the mainline. Refer to How the
development process works (2021) for a detailed reference on the Linux kernel development
process.

2.3 Software Testing

Software testing is “an activity in which a system or component is executed under
specified conditions, the results are observed or recorded, and an evaluation is made of some
aspect of the system or component” (“IEEE Standard Glossary of Software Engineering
Terminology” 1990). We, however, consider a slightly broadened concept of software testing
by also comprising compilation time code inspection such as checks made by static analysis
tools. We believe this notion better aligns with complementary definitions of software
testing. For instance, Claudi and Dragoni (2011) stated that “in software engineering,
testing is the process of validation, verification and reliability measurement that ensures
the software to work as expected and to meet requirements”. Likewise, Mathur (2013)
suggests that software testing “is the process of determining if a program behaves as
expected.” We understand that analyzing the structures and properties of the source code
may provide insight into whether a program will function as desired, thus possibly making
part of a software testing activity.

Nevertheless, regardless of the program under test, it is intrinsic to the software testing
activity to compare measured behavior with the desired behavior described by formal or
informal requirements (Mathur, 2013). Moreover, many hardware manufacturers provide
datasheets describing the components and the functioning of the devices they supply.
Therefore, we may say that device driver testing is the act of evaluating, validating, or
verifying whether a device driver (or parts of it) operates the hardware it supports as
described by its design. However, the reality is more complicated than the theory, meaning
not all hardware devices work precisely as their datasheets describe or even come with
accessible blueprints. In such cases, device drivers must also deal with nonconforming
behavior or resort to reverse engineering.

Mathur (2013) proposed a comprehensive categorization of software testing tech-
niques based on four classifiers. The classifiers ponder the resources for generating the
tests, the development phase in which the tests are carried out, the objective of the test
activity, and the characteristics of the artifact under test. However, those classifiers are not
well suited for distinguishing between Linux kernel test practices for a few reasons.

First, Linux is a free software project, so the source code is accessible to everyone.
Therefore, the kernel source could be used as an inspiration for any testing practice. Thus,
testing techniques usually classified as black-box could be considered black-box and white-
box. For instance, Andrey Konovalov advises reading the code to understand what types
of input the system expects and to identify which parts of it can be targeted in the context
of fuzzing the Linux kernel (Konovalov, 2021b).

In addition, a kernel developer has access to all phases of the project lifecycle. They
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can run unit tests on the initial versions of the developed code. There is even a framework
called KUnit for writing unit tests built into the kernel. After making the desired changes,
developers may compile and install the kernel for integration testing. At this testing
phase, subsystem code can be exercised manually or with the help of additional testing
tools such as Kselftest. Also, kernel developers often work on improvements to existing
functionality. In such cases, the tests performed can be considered regression tests. Since
GNU/Linux distributions use or adapt the mainline or stable kernels to make the operating
system, testing against any of these trees is also a form of beta-testing (Fedora Linux Kernel
Overview 2021; Kernel - Fedora Project Wiki 2021; About Debian 2021).

Also, developers are interested in testing the Linux kernel to identify regressions. When
responding to a bugfix rollback, Torvalds (2007) says why regressions are particularly
unwanted in the kernel:

Because it is much more important to make slow, but steady progress and
have people know things improve (or at least not “deprove”). We do not want
any kind of “brownian motion development”.

Other reasons to test the kernel may include checking the behavior under invalid
inputs or high workloads, verifying compatibility with external components, investigating
security aspects, and more. Thus, robustness testing, stress testing, interface testing, and
security testing are examples of tests to which the Linux kernel can be submitted. There
are no GUI tests as Linux does not contain any GUI components.

Finally, considering the artifact under test classifier, testing techniques applied over
Linux can be classified as operating system testing or merely code testing. That said, much
of the testing over the Linux kernel would be classified as black-and-white-box regression
OS testing according to Mathur’s classifiers. However, to provide a more informative
categorization of kernel testing tools, we renounce Mathur’s classifiers to appraise the
means used to perform kernel tests. Thus, we decided to consider as a test technique
the answers to the question: what was done to test X? Where X is some device driver or
parts of one. For instance, someone could decide to test a device driver by feeding random
values to its interface (fuzzing), creating a model of it and using properties of that model to
perform tests (model-based testing), instrumenting the code to measure runtime activity
(performance testing, stress testing), etc.

Furthermore, different test techniques imply different stages of the generation and
execution of test cases and subsequent analysis of results. For example, tools based on
models (model-based testing) start from a program model for test generation. Fault injection
tools need to instrument code or intercept system calls to test target software. In both cases,
an essential preparation step is done either before specifying which properties to test or
before defining fault injection sites. We decided to look upon such preliminary activities
as part of the test case generation. We have regarded the tasks related to the execution
of software components and the control of the conditions under which code execution
takes place solely as “test execution”. In addition, we took the term “test assessment” to
refer to the activities related to assessing aspects of the software under test. With this, it
was possible to display the characteristics of the tools concisely in Table 3.2 (presented in
Chapter 4).
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Chapter 3

Research Methods

To answer the proposed research questions, we resorted to a systematic mapping
study, a grey literature review, and a survey with Linux kernel device driver maintainers.
First, we conducted a literature mapping study to acquire information about device driver
test tools from consolidated peer-reviewed articles published in media that follow the
scientific methodology. After that, we extended our body of knowledge about Linux
kernel test tools with data from a grey literature review. Lastly, we surveyed device driver
maintainers to validate preliminary conclusions and further investigate topics related to
driver testing.

3.1 Literature Systematic Mapping Study

To get an overview of the testing techniques and tools used on Linux, we conducted a
mapping study of the formal literature. For this task, we consulted the following digital
libraries:

• ACM Digital Library (https://dl.acm.org)

• IEEE Xplore (https://ieeexplore.ieee.org)

• Scopus (https://www.scopus.com)

We chose these publication search engines because they provide valuable publications
on the computer science field of study. ACM Digital Library contains more than 600,000
full-text articles from leading computing researchers (Computing Machinery, 2021). IEEE
Xplore provides access to more than five million documents from highly-cited publications
in electrical engineering, computer science, and electronics (IEEE, 2021). Lastly, Scopus
indexes comprehensive content from over 25,000 active titles and 7,000 publishers. It covers
240 disciplines and claims to greatly reduce the odds of missing key publications (Elsevier,
2021b; Elsevier, 2021a).

After defining the search libraries for the mapping study, we created a comprehensive
search string that would allow us to get several articles related to Linux kernel testing.
We then derived the search string from the objects of interest for this search. This study
is limited by the broader topic of GNU/Linux operating systems. Within that topic, we

https://dl.acm.org
https://ieeexplore.ieee.org
https://www.scopus.com
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are interested in the Linux kernel. Finally, from the many subjects related to Linux, we
want to analyze device driver tests. So the broader context for us is Linux, from which
we observe its kernel1. In addition, we look for test practices related to device drivers. Our
search string could be something like “linux AND kernel AND test AND driver”, but we
decided not to use the last level of specificity to minimize the risk of missing relevant
publications. A test tool may not be designed to test device drivers, but Linux developers
might find a way to use it for that. Finally, we added synonyms and terms related to the
objects of interest. Table 3.1 shows the words used in the search string. The columns are
connected with AND, and items within columns are connected with OR.

Research area Subarea 1 Subarea 2

linux kernel test
kernel space testing
operating system validation
subsystem verification

Table 3.1: Search string terms for the mapping study.

The complete search string is as follows:

linux AND (kernel OR "kernel space" OR "operating system" OR subsystem) AND (test OR
testing OR validation OR verification)

We queried each library on 2021-01-21 and saved the metadata from the articles
retrieved in the files scopus.csv, ieee.csv, and acm.bib available at https://gitlab.com/
Marcelosc/ime-usp-masters-dissertation/-/tree/dissertation-final/literature-review/
academic.

3.1.1 Publication selection

The library search returned 5,018 articles, which underwent a selection process. In the
first stage, a title analysis was carried out, especially keeping those containing the word
test or some variant of it. When in doubt about some title, we included it on the list. We
also removed duplicated results and non-computer science work. From this first selection
stage, we selected 399 articles, but, as it was still a large number of publications, we had
to be more judicious in the second selection stage. So, we kept only articles whose titles
contained the terms linux, kernel, test, some variant of the word test, or that somehow
referred to software tests.

In the third stage, we read the abstract from the 62 articles selected in the previous step,
classifying them into four categories according to the characteristics of each work.

• Articles that presented the Linux kernel as a means of testing conventional Linux
applications (developed in user space) were rated as of little relevance.

1 Linux is the name of the kernel of Linux-based operating systems. So, technically, the pair Linux kernel
is a redundancy. However, misuses of the term Linux abound in the literature such that not adding the
term kernel to the search string would bring lots of unrelated work. Also, we use the pair Linux kernel
throughout this work to make clear that we are talking about an operating system kernel.

https://gitlab.com/Marcelosc/ime-usp-masters-dissertation/-/tree/dissertation-final/literature-review/academic
https://gitlab.com/Marcelosc/ime-usp-masters-dissertation/-/tree/dissertation-final/literature-review/academic
https://gitlab.com/Marcelosc/ime-usp-masters-dissertation/-/tree/dissertation-final/literature-review/academic
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• Articles that presented changes to the Linux kernel intending to implement software
testing for conventional Linux applications were rated as relevant.

• Articles that presented some means of testing the Linux kernel as a whole or parts
of it were rated as very relevant.

• Articles that could have been disregarded based on previous criteria but retained for
the benefit of the doubt were classified as irrelevant.

Next, in the fourth selection step, we did a speed reading to select articles that specifi-
cally focused on testing the Linux kernel or its components. Works studying GNU/Linux
systems as a single component were disregarded, even when indirectly testing parts of
the kernel. We also dismissed articles that did not present test results or tools, even when
presenting test practices or discussing components to be tested. With these criteria, 19
articles were selected for full reading, thus completing the fourth selection stage.

3.1.2 Publication assessment

We then fully read each of the 19 articles selected from the speed reading step to
understand which techniques and testing tools are used to test Linux kernel drivers. We
found articles describing fault injection testing, fuzzing, static and dynamic code analysis,
symbolic execution, hardware virtualization, and simulation. Table 3.2 lists the papers
appraised in the systematic mapping study, whether they reported any testing tool, which
test techniques were explored, and if tests were automated.

From 19 academic papers, we identified 17 test tools and one debug tool designed for
the Linux kernel. From those, we selected 6 test tools for usage assessment because they
presented means of automated testing device drivers that kernel developers could use in
the early development stages. Finally, Table 3.3 summarizes the mapping study phases
and the number of publications handled.

3.2 Grey Literature Review

Not satisfied with the evidence gathered from the academic literature, we decided to
further investigate device driver tests by conducting a systematic review of non-academic
publications. For analyzing non-science-oriented documents, we followed the grey lit-
erature review (GLR) guidelines proposed by Wen et al. (2020). Our main objective in
this investigative phase was to seek answers to research questions RQ2 and RQ3. Also,
careful exploration of non-academic publications may strengthen our research’s validity
by exploiting an additional source of evidence.

3.2.1 Grey Literature Review Planning

According to Wen et al. (2020), a GLR plan covers four essential steps to ensure the
quality of the documents selected for analysis:

1. Outline the problem and define the research question.

2. Define the inclusion and exclusion criteria.
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Identifier and Reference Tool Name Testing Techniques Automated
L1 B. Chen et al. (2020) COD Concrete and symbolic

code execution
Test case generation & re-
play

L2 Cong et al. (2015) ADFI Fault injection Test scenario generation
& execution

L3 Zaidenberg and Khen (2015) LgDb Does not apply Does not apply
L4 Garn and Simos (2014) Eris Model based & combina-

torial testing
Test suite generation, ex-
ecution & assessment

L5 Mohan et al. (2018) CRASHMONKEY and
ACE

Fuzzing Test case generation, ex-
ecution & assessment

L6 Buchacker and Sieh (2001) FAU Machine Fault injection Not
L7 Zhai et al. (2008) Not named Unclear Unclear
L8 Shahpasand et al. (2016) TIMEOUT Fault injection Test case generation
L9 Y. Chen et al. (2013) KIS Static & dynamic analy-

sis
Yes, remote service

L10 Drebes and Nanya (2008) DMA Fault Injector Fault injection Not
L11 Kim et al. (2009) MOKERT Model based testing &

model checking
Model generation & fail
replay

L12 Renzelmann et al. (2012b) SymDrive Symbolic execution Stub generation
L13 Cai et al. (2007) UKTI Component emulation Unclear
L14 Bai et al. (2016) EH-Test Fault injection Test case generation &

execution
L15 D. Chen et al. (2020) Dogfood Model based testing Test case generation &

execution
L16 Claudi and Dragoni (2011) Lachesis Model based & fuzz test-

ing
Unclear

L17 Yuqing et al. (2012) ScheduleBench Performance (instrumen-
tation) testing

Not

L18 Rothberg et al. (2016) Troll Configuration testing Does not apply
L19 K.P et al. (2015) - Component emulation No

Table 3.2: Articles selected by systematic mapping study study.

Selection phase
Number of articles

(in -> out)

1) Title analysis 5018 -> 399
2) Title selection 399 -> 62
3) Abstract analysis 62 -> 27
4) Speed reading 27 -> 19
5) Full reading 19 -> 6

Table 3.3: Mapping study phases
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3. Develop a relaxed search string.

4. Define the resource-types to consider.

We now provide specifications for these components, each tuned to conduct a GLR to
gather information about the tools used for Linux kernel testing.

Problem outline & research questions

At the end of our mapping study, we evaluated the use of 6 Linux test tools proposed by
selected academic publications. The conclusions of this investigative activity are presented
in Subsection 4.1.2. We could not run five out of six tools that underwent usage assessment.
That result indicates that some tools proposed by academic publications might not be
maintained anymore. Because of that, we suspected that the Linux kernel development
community was not using some tools promoted by scientific articles. Also, the academic
publications selected by our mapping study do not examine the development community’s
engagement in using the reported test tools nor any discussion of their expectations
concerning Linux test tools. In addition, from our previous experience with Linux kernel
development, we have evidence that academic publications do not cover some of the test
tools used in daily Linux development. To reduce the apparent gap between the formal
literature and the state-of-the-practice of Linux kernel device driver tests, we defined the
organization of a list of Linux kernel test tools as one of our research objectives (RO1).
Reaching RO1 should be a natural accomplishment for answering RQ2 and RQ3. Therefore,
the research questions RQ2 and RQ3 guided our investigation through the grey literature
content.

Inclusion and exclusion criteria

Collecting information from non-traditional sources may harm the validity of the work
since non-academic publications do not necessarily follow the scientific methodology or
undergo peer review. To mitigate the risks posed by including grey literature as a source
of information, we limited our searches to a select group of sites that we have come to
refer to as data sources.

In addition, we defined selection criteria to take documents from the data sources. We
adjusted Wen et al. (2020) inclusion and exclusion criteria to the specificities of our study.
Instead of exclusion criteria, we applied pre-inclusion criteria throughout each speed
reading step to include only documents relevant to our research objectives. Additionally,
the inclusion criteria were used during each complete read step to select publications with
pertinent information to our study. Applying these criteria, we should reduce the risks of
including information from non-academic sources in our research.

Pre-inclusion criteria

• The document is publicly accessible.

• Available in English.

• Published between 2011 and 2021.

• Most current version of the document.
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• The content is not centered on social issues or flame wars.

• Published online by institutions, industry-oriented magazines, and practitioners of
the FLOSS area.

• The document is published by: (1) a reputable organization or magazine; (2) an indi-
vidual author associated with such organizations and magazines; or (3) a practitioner
with more than five years of FLOSS experience.

• The search terms are used in a context somewhat related to kernel testing.

Inclusion Criteria

It refers to software testing (automated or not) in the Linux kernel by:

1. (1) reporting practices;

2. (2) presenting statistics;

3. (3) expressing an opinion;

4. (4) or studying the project development or its community.

Develop a relaxed search string

The search string used in the mapping study has been modified to return results related
only to the Linux kernel and augmented to include more words related to testing.

linux AND kernel AND (test OR testing OR validate OR validation OR verify

OR verification)

Table 3.4 shows the terms used in the search. Columns are connected by AND and
words within the same column have been connected by OR.

Research area Subarea 1 Subarea 2

linux kernel test
testing
validate
validation
verify
verification

Table 3.4: Search String Terms for GLR.

Wen et al. (2020) reported that different data sources offer diverse capabilities. Ac-
cording to them, some data sources may provide filters for a specific type of category or
tag or even allow regex in search terms. However, not all data sources have tools with
advanced search options or a clear description of how searches are done. To surpass these
differences and standardize our search method, we assumed that each data source search
mechanism is capable of searching for terms linked by and. Such capability granted, we
decomposed the search string into smaller strings, s1 to s6, such that the merged results
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of searching from s1 through s6 would be equivalent to the results obtained using the
original search string.

Search string variations:

1. s1 = linux AND kernel AND test

2. s2 = linux AND kernel AND testing

3. s3 = linux AND kernel AND validate

4. s4 = linux AND kernel AND validation

5. s5 = linux AND kernel AND verify

6. s6 = linux AND kernel AND verification

Define the resource-types to consider

We were able to shorten the data source selection phase by taking advantage of the
selection of Linux kernel data sources provided byWen et al. (2020). With their data sources
and a couple of additional ones, we defined a set of websites with embedded search engines
to conduct our document search. Each data source in Table 3.5 is maintained by prominent
organizations and developers that have long been committed to Linux development.

Data Source URL
The Linux Foundation linuxfoundation.org
Linux.com linux.com
Kernelnewbies kernelnewbies.org
Linux Weekly News (LWN) lwn.net
Linux Journal linuxjournal.com
The Linux Kernel documentation kernel.org/doc/html/latest/index.html

Table 3.5: Data sources with search engine.

The first data source in our list is linuxfoundation.org, maintained by The Linux
Foundation. The foundation hosts Linux and supports its creator Linus Torvalds and
lead maintainer Greg Kroah-Hartman (A Beginner’s Guide to Linux Kernel Development
(LFD103) 2022). The Linux Foundation also manages The Linux Kernel Organization by
providing technical, financial, and staffing support for running and maintaining Linux
related infrastructure (The Linux Kernel Archives - About 2022).

The second reference in our list is linux.com, a news, information, and tutorials website
which aims to inform and prepare open source professionals who are building the next
generation of open technologies. Since 2009, Linux.com is also hosted by The Linux
Foundation (About Linux.com 2022; Linux Foundation to Build New Linux.com Community
2022).

Next on our list is kernelnewbies.org, a wiki maintained by a community of aspiring
Linux kernel developers who work to improve their Kernels and more experienced de-
velopers willing to share their knowledge (Linux_Kernel_Newbies 2022). Kernelnewbies’

linuxfoundation.org
linux.com
kernelnewbies.org
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wiki has a known group of editors, including distinguished Linux kernel developers
such as Greg Kroah-Hartman, Julia Lawall, Jonathan Corbet, Daniel Vetter, and many
others (EditorsGroup 2022).

Linux Weekly News (LWN) and Linux Journal are well-known magazines that publish
news and articles related to Linux and associated open source projects. LWN began at the
end of 1997 as a consulting company’s side project through which its editors shared the
results of their efforts to keep up with developments from all over the Linux community.
Over the years, LWN has grown with Linux and become one of the definitive Linux news
sites, intending to be the premier news and information source for the free software
community (The LWN.net FAQ 2022). Linux Journal had its kick-off in 1994 and thus
comprised more than 25 years of publications as of April 2021. Dedicated to delivering
publications that cultivate the Open Source philosophy principles, the magazine explores
trending, timeless and practical topics about Linux and related technologies (Searls, 2019;
About Linux Journal 2022).

Lastly, the Linux Kernel documentation is the official project’s documentation main-
tained within the project repository itself (index.rst « Documentation 2022).

Even though we have not classified the collected documents into shades of GL as
suggested by Adams et al. (2017), many of the selected publications would fit what they
have called a second degree of grey literature. The documents hosted by our data sources
mainly consist of news articles, documentation pages, wiki pages, and industry publications.
We believe that the characteristics of the selected data sources and our pre-inclusion and
inclusion criteria should guarantee a moderate degree of expertise and authority of the
sources.

We decided not to evaluate audiovisual content due to the effort required to transcribe
and incorporate this type of material into the research. However, we do support slides
linked to lectures in video format. To deal with the heterogeneous and weak search
mechanisms in the selected data sources, we used our multipart search string to uniform
the document search and collection procedure. Our systematic grey literature review
process is described by the algorithms below.

Organization of the Grey Literature Review Process

We conducted the planned Grey Literature Review in three main phases: data collection,
preliminary analysis, and complete analysis. The data collection phase aims to gather
URLs for grey literature documents according to a well-defined procedure for applying
each search string variant to each data source in Table 3.5. We began by taking a data
source and its search engine to search for the first search string variant. We then collected
the URLs for the first five search hits, annotated from what reference we stopped, and
searched for the next search string variant. We repeated the previous step until we had dug
all search string variants. When done, we took another data source and repeated it all over
again. The data collection phase is over when all data sources have been searched.

We designed the preliminary analysis phase to verify which documents comply with
each pre-inclusion criterion. Algorithm 3.1 describes this phase with a few organizational
tasks needed to conduct the review. During the complete analysis phase, we assessed the
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content of documents and their relevance to the Linux kernel testing subject. Document
appraisal at this phase ensured that each publication meets at least one inclusion criteria,
cutting exerts reporting the state of the Linux kernel testing practice and collecting
reference links for snowballing when appropriate. Algorithm 3.2 describes the complete
analysis phase.

Program 3.1 Steps for preliminary assessment of GL documents.

1 ⊳ Main objective of evaluating whether the document meets the pre−inclusion factors
2 function speed_read()
3 {
4 Check if the publication is from 2011 or later.
5 Read document title and abstract if it has. Write down the title. Give a title if it does

not have one.
6 Discard based on title if it is the same as another document already analyzed.
7 Check the authorship of the publication.
8 Check the publication source’s reliability/reputation.
9 Search (Ctrl + f) for each of the words: test; validat; verif.

10 Identify the context in which the searched word appears.
11 ⊳ Identifying the context may consist of reading an entire paragraph.
12 If it meets all the pre−incluson criteria, mark the document for the full read phase.
13 if (document was marked) {
14 ⊳ This should avoid losing content with links that may come to break.
15 Save the page in pdf format (File menu −> print)
16 Save the page with the title name.
17 } else {
18 Write down the reasons for exclusion.
19 }
20 }

The plan delineated for our GLR process also foresees a snowballing step that parallels
the Backward Snowballing procedure described by Wohlin (2014). The guidelines for the
snowballing procedure advise that it is important to decide on either inclusion or exclusion
of publications before using them for snowballing. Our GLR process complies with that
recommendation by assuring that every document listed for snowballing had been cited
by an article we had selected for inclusion during the evaluation of publications from data
source searches. The complete analysis phase (Algorithm 3.2) ensures that each document
included by snowballing has been cited by at least one publication selected by an earlier
document assessment process.

Although our data sources are different in formality level, we chose to treat each
one equally, i.e., we made no distinction between them when searching for documents.
Indeed, our data collection phase resembles a breadth-first search. Algorithm 3.3 provides
a structured view of our GLR process.
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Program 3.2 Steps for complete evaluation of GL documents.

1 ⊳ Main objective of evaluating whether the document meets the inclusion criteria
2 function full_read()
3 {
4 Full read the document and examine all information available.
5 if (document meets at least one inclusion criterion) {
6 Mark the document as selected.
7 Give the document an ID and write down the reasons for its inclusion.
8 Save the snippets that contain information pertinent to Linux kernel testing.
9 Collect names, links, repositories, and any other data related to Linux test tools.

10 if (document was obtained from a data source) ⊳ Single level snowballing.
11 Based on context, add snowballing candidates to the non−evaluated list.
12

13 } else {
14 Write down the reasons for exclusion.
15 if (document is a landing page just pointing to another document)
16 Add the document being pointed to the non−evaluated list.
17 }
18 Mark the document as evaluated (remove it from the non−evaluated list).
19 }

Program 3.3 GLR process overview.

1 ⊳ Systematic GLR process
2 for (2 times) {
3 for (each of the data sources with search engine) { ⊳ Document collection
4 Take note of the days GL documents were collected.
5 for (each search string variant) {
6 Apply the search string over the data source.
7 Append the next five results to the list of unassessed URLs.
8 Take note of which result to continue from in the next iteration.
9 }

10 }
11 document_assessment:
12 Remove documents with duplicate URLs from the spreadsheet.
13 for (each document not evaluated) { ⊳ Preliminary document evaluation
14 speed_read()
15 }
16 for (each marked document) { ⊳ Full document review
17 full_read()
18 }
19 if (list of non−evaluated documents is not empty) {
20 goto document_assessment; ⊳ Snowballing
21 }
22 }
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3.3 Community Survey

The third research method we employed was a survey. But, before we talk about the
survey itself, let us first explain why a survey is valuable to help answer our research
questions.

Linux kernel features are declared within files named Kconfig. The entries kept by
Kconfig files may specify attributes such as symbol name, list of dependencies, and a
help message. Kconfig entries are important because they allow Linux features to be
conditionally compiled, which enables sensible decreases in the resulting kernel image
size and building time.

Each device driver must declare a Kconfig entry. Moreover, it is common practice to
provide the help attribute with information such as “Say yes here to build support for ... ”,
“This option provides functionality to ... ”, or “This driver adds support for ... ”. Thus, we
can estimate the number of device drivers by counting how many of these pieces of advice
appear in Kconfig files. By the 5.17 Linux release, a naive shell command can tally at least
2243 device drivers in the Linux kernel.

find -name Kconfig | xargs cat | grep -i -c "to compile this driver"

We consider this an appropriate lower bound estimate of the number of Linux kernel
device drivers. The searched string would be misleading if it appeared in features other
than those provided by device drivers. At the same time, it seems unlikely that such a piece
of advice would appear more than once within the help message of a driver configuration.
We also note that not all device drivers have such a string in their Kconfig entry help
message, which means that there are actually more than 2243 device drivers in the mainline
kernel.

We do not presume these drivers were made by just a few developers. Instead, one
would guess Linux kernel device drivers have been written by hundreds of developers
worldwide. Indeed, as of April 2022, our get_driver_maintainers.awk program tallies 1211
distinct device driver maintainers listed within the kernel MAINTAINERS file2.

If we consider that some drivers support more than one hardware design, then one
would doubtlessly need thousands of devices to test all Linux kernel device drivers on
actual hardware. It seems far-fetched to assume Continuos Integration (CI) systems have all
those devices. Not to say that the semiconductor industry releases new hardware designs
frequently. Without hardware, a virtual device model, an emulation system, or alike, we
cannot make even basic soundness testing such as probing and binding a driver to the
devices it tries to support.

On the other hand, it seems fair to assume device driver authors have access to the
parts for which they’re developing drivers. After all, why would anyone (or any company)
create a driver for a device they do not own or have access to? So, it turns out that if device
drivers are ever runtime tested by anyone, these people are most likely their authors. Since
we are interested in assessing how device drivers are being tested (RQ1), a word from
those who presumably runtime tested them should be of great significance.

2 Maintainer count by the Linux 5.17.8 release
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Talking to device driver developers would also help us identify what testing tools
are used by the Linux community to test the kernel (RQ2) and understand what features
the community desires for a testing tool (RQ3). Hence, we decided to run a survey with
Linux kernel device driver maintainers. The Linux kernel device driver maintainers are
listed under the project’s base directory in the MAINTAINERS file3. Often, developers
create device drivers and submit them to the Linux mailing lists. If the driver gets accepted
by the community, it is added to the Linux kernel, and a new entry is added to the
MAINTAINERS file, setting at least one person as the maintainer for that piece of code.
Usually, these individuals are the authors of the submitted drivers. So, by contacting driver
maintainers, we believe in having a fair chance of talking to the early testers of Linux
kernel device drivers. Also, even though the current maintainers of a device driver might
not be their original authors, we may expect them to look after that peace of code by
possibly performing some tests when needed.

3.3.1 Survey Design

We designed a survey drawing inspiration from Shuah Khan and Kate Stewart’s Linux
community research disclosed in August 2021 (see Appendix B). Our Device Driver Testing
Survey contained a welcome screen plus four parts, one page each. The welcoming page
introduced participants to the survey by clarifying it was part of scientific research, telling
them that the participation was voluntary and that responses would be anonymous. A
single yes or no mandatory question asked attendees for consent to participate in the
survey.

The next survey sections were:

1. PART I - Community Role

2. PART II - Testing habits

3. PART III - Driver testing

4. FINAL PART - Feedback

Part I contains questions about respondents’ role in the Linux kernel development.
Part II includes questions related to general Linux testing practices. Part III asks about
specific driver test tools. Lastly, the final part allows participants to leave a contact email
address if they would like to receive a notification with results from our research. The
survey questions and results are detailed in Chapter 4. A copy of the survey is included in
Appendix C.

We started designing the survey by sketching up what would be a perfect response and
verifying that it would help us answer our research questions. After that, we conceived
the survey questions to invite those desired replies from the participants. To capture
the information we were seeking, we made use of Yes or No questions, multiple-choice
checklists, list radios, arrays, and short and long free text fields. When appropriate, we
enabled option order randomization to avoid introducing answer bias, as participants
would focus their attention on the very first options and not those in the middle.

3 https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/plain/MAINTAINERS

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/plain/MAINTAINERS
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We submitted our survey design through two review phases. Three Linux kernel
developers analyzed the Device Driver Testing Survey in the first review phase. We asked
all the reviewers to read the survey invitation message and complete the questionnaire.
The reviewers suggested a few improvements which were accepted and incorporated into
the survey design. In the second review phase, two free software developers checked the
Device Driver Testing Survey. Both of them had previous experience in contributing to the
Linux kernel. Nevertheless, only one suggestion to the survey design was raised during the
second review phase. After that, we considered our survey to be reasonably refined.

Concerning ethical issues, we observe that our survey complies with all three basic
ethical principles provided by The Belmont Report (1979), a reference for bio-medical and
behavioral research involving human subjects. The report contains a distinction between
research and practice, a discussion about three basic ethical principles, and remarks about
the application of those principles. The ethical principles provided by The Belmont Report
are:

1. Respect for persons, meaning that researchers should give weight to individuals’
opinions and choices. In most cases, this translates into providing subjects with
adequate information about the possible benefits and harms of participating in
research so they can judge whether to participate.

2. Beneficence, which boils down to two general rules: (1) do not harm and (2) maxi-
mize possible benefits and minimize possible harms. However, these principles may
conflict with each other, leading to reflection on when its justifiable to seek certain
benefits despite the risks involved.

3. Justice, in the sense that research burdens and benefits should be distributed in an
acceptable way. For instance, researchers should not select subjects simply because
of their easy availability or disadvantaged position, but because of reasons related to
the research context. Conversely, research benefits should be shared with subjects
whenever possible.

The first page of our survey clearly states the potential harms of participating in the
Device Driver Testing Survey. It indicates the estimated amount of time it may draw from
respondents and advise that survey records would not contain personal information from
participants unless they intentionally provide so. On the other hand, the disclosure letter
mentions the main benefits expected from this research. Moreover, we observed Belmont’s
application remarks for conducting research involving human subjects. For instance, in the
survey invitation email, we informed our research purposes (characterize testing practices)
and procedures (questionnaire). Moreover, the welcome page declared it was a voluntary
survey and displayed our contact email so developers could ask us any questions about
it. So, we consider that developers had adequate information to comprehend how they
would participate in our research and assess whether they would like to. Hence, we claim
that our research complies with the respect for persons ethical principle.

With respect to the beneficence ethical principle, we argue that the Device Driver
Testing Survey does not harm the Linux kernel community because:

1. It is presented in a concise way so subjects can quickly understand what it is all
about.
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2. It is a voluntary survey, so encumbered developers may choose not to participate or
opt out anytime.

3. It does not require much time to complete.

4. It was delivered to individual driver developers and did not go to any kernel devel-
opment mailing list, so we did not spam other kernel developers and readers.

Also, by making the survey anonymous, we trimmed the risks of violating the developers’
privacy while minimizing any worries they might have about exposing erratic practices or
habits.

Finally, our approach is equitable, not burdening experienced developers or project
leaders more than new driver maintainers. The results of this research are going to be
accessible to the whole Linux community, allowing everyone to benefit from our findings,
especially device driver developers and testers. Hence, our survey also complies with the
principle of justice.

Not only did we observe The Belmont Report’s ethical principles, but we also consulted
the Linux Research Guidelines page4 for advice on how the Linux community expects
researchers to interact with kernel developers. The community guidelines state that
research with developers must be opt-in and done with the explicit agreement of individual
developers. In addition, the documentation page says that research should be done with full
disclosure to participants and that everyone reaching the community should be working in
good faith to make Linux better. We claim that our research fulfills all these requirements.
First, the Device Driver Testing Survey is voluntary. Second, participants must explicitly
declare consent to participate in the survey by choosing the yes option in the first question.
Third, the invitation email and questionnaire welcome screen expressly stated that the
survey was part of scientific research. Lastly, we do not want to cause any harm to the
community and hope the results of our study may help guide the development of testing
tools for device drivers.

We acknowledge Feitelson (2021) survey about the ethics of experiments on open-
source projects and his argument that ethics guidelines based on bio-medical research
need adjustments for application in software engineering research. For what applies to
this research, we claim that our approach followed Feitelson (2021) ethical guidelines.
Subsection 3.3.2 details how we looked after the practical ethical issues, such as only
targeting potentially interested developers.

As a final validation step, we contacted the Linux Foundation Technical Advisory Board
to ask their opinion about our approach to the community. We were happy to receive
positive feedback from the board and a few suggestions which helped us improve the
questionnaire.

The survey was implemented on a LimeSurvey5 instance hosted by CEPID (Centro de
Pesquisa, Inovação e Difusão em Neuromatemática). None of the questions were mandatory
except the first one, which asked for participant consent.

4 https://www.kernel.org/doc/html/latest/process/researcher-guidelines.html
5 https://github.com/LimeSurvey/LimeSurvey

https://www.kernel.org/doc/html/latest/process/researcher-guidelines.html
https://github.com/LimeSurvey/LimeSurvey
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3.3.2 Survey Recruitment

We sought to hear the experiences of Linux kernel developers in testing device drivers.
However, sending the survey to mailing lists could have stolen attention (and time) from
developers not involved in driver testing. Instead, we developed an AWK program to gather
the email addresses of developers who maintain artifacts under the drivers directory. The
get_driver_maintainers.awk program collected 1253 distinct addresses from everyone listed
in Linux’s MAINTAINERS file as a maintainer for any object under the drivers directory.
Then, we sent the survey through email only to those developers. Our approach was
similar to that of Shuah Khan and Kate Stewart on their community survey in August
2021, with the difference that we only targeted invitations to a subset of developers listed
in Linux’s MAINTAINERS file.

Individually contacting device driver maintainers helps restrain invitations to poten-
tially interested developers and reduces the number of unsolicited invitations, as suggested
by Feitelson (2021). His research also evidences that most open source developers think
there is no ethical concern in approaching developers to ask them about their code or
the considerations guiding its writing, provided that they are advised about partaking in
research.

To avoid disclosing maintainers’ email addresses (even though they’re publicly available
in the MAINTAINERS file), we set them on the BCC (Blind Carbon Copy) field and set
ourselves as recipients for each email. Also, to prevent email service providers from
classifying our messages as spam, we prepared several email files, each one with a maximum
of twenty addresses on its BCC field. Then, we were careful to send only one email per
hour during (Brazilian) daytime on weekdays until we had sent them all. As a result, it
took from 2022-05-16 to 2022-05-24 to send all survey invitations. Before sending each
message, we also reviewed each address on the BCC field and removed those that belonged
to early survey reviewers and those we deemed to be mailing lists. We ditched a total of
eight addresses in this manner. At last, we closed the survey on 2022-06-27, roughly a
month after we sent the last invitations.

To measure our audience’s interest, we monitored our survey’s response rate through-
out the days we were sending invitations. After each day, we calculated the survey’s
response rate as the number of complete responses divided by the number of invitations
sent minus the number of emails that bounced (did not make it to their recipients). The
response rate after each day was 4.2%, 4.6%, 5.1%, 5.3%, 6.1%, 6.2%, and 6.4%. These results
were not far below the typical 5% response rate observed by Forrest Shull (2008). Indeed,
we consider that the increase in the response rate throughout the days indicates that Linux
maintainers were interested in the software test subject.

In total, we sent 1245 messages inviting Linux kernel device driver maintainers to
participate in our survey. Seventy-two of those messages bounced (they did not reach
their recipients). We had 295 (23.69%) replies, from which 210 were partial responses and
85 were complete submissions. Hence, the survey’s final response rate was 7.25%.
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Chapter 4

Linux Kernel Test Tools

In this chapter, we speak about some of the test tools for Linux kernel device drivers.
We divided the sections according to the search method used to find each tool. Thus, we
distinguish test tools developed as part of academic works from tools developed in other
contexts.

4.1 Academia Tools

As a result of our mapping study (Table 3.3), we selected six tools to assess their use in
practice. We consider these tools because they showed promising means of automated
testing Linux device drivers that kernel developers could apply in their routine. Now we
characterize these tools and their main features.

4.1.1 Tool Characterization

Studies on Linux kernel driver testing proposed different approaches to finding and
resolving system bugs. Table 3.2 summarizes the test tools and techniques reported by the
papers assessed. From this list, we took six tools to undergo a usage evaluation. We now
depict the operation of these tools according to what was described in their respective
articles.

Renzelmann et al. (2012b) focused on testing Linux kernel device drivers using sym-
bolic execution. This technique consists of replacing a program’s input with symbolic
values. Rather than using the actual data for a given function, symbolic execution comes up
with input values throughout the range of possible values to each parameter. SymDrive

intercepts all calls into and out of a driver with stubs that call a test framework and checkers.
Stubs may invoke checkers passing the set of parameters for the function under analysis,
the function’s return, and a flag indicating whether the checker is running before or after
the function under test. Users can access the driver state by calling a supporting library.
Thus, checkers can evaluate the behavior of a function under test from the execution
conditions and the obtained results.

To automate driver testing with SymDrive, developers may script the creation of
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symbolic devices by passing additional parameters to the insmod command when loading
the test framework.

Buchacker and Sieh (2001) developed a framework for testing fault tolerance of
GNU/Linux systems by injecting faults in an entirely simulated running system. FAU

machine runs a User Mode Linux (UML) port of the Linux kernel, which maps every UML
process onto a single process in the host system. Thus, a complete virtualized machine
runs on top of a real-world Linux machine as a single process. For injecting faults into the
virtualized system, the framework launches a second process in the host system. Every
time a UML process makes a system call, return from a system call, or receives a signal, it
is stopped by the auxiliary host process. The host process then decides whether the halted
process will continue with or without the signal received, if errors should be returned
from system calls instead of the actual values, and so on. This technique of virtualization
combined with the interception of processes has the benefits of maintaining binary com-
patibility of programs, allowing fault injection in core kernel functionalities, peripheral
faults, external faults, real-time clock faults, and interrupt/exception faults.

To run tests with an FAU machine, one must:

1. Prepare the configuration files for virtual machine setup.

2. Run the test system, which will inject faults in the VM at runtime.

3. Evaluate the results collected from the VM kernel log, log files, and user-mode
application logs.

Step (1) may be automated by scripting VM setup and generating fault descriptions from a
model configuration file for a series of experiments.

Cong et al. (2015) introduced a tool that generates fault scenarios for testing device
drivers based on previously collected runtime traces. ADFI (Automatic Driver Fault Injec-
tion) hooks internal kernel API so that function calls and return values are intercepted and
recorded in trace files. A fault scenario generator takes trace files as input and iteratively
produces fault scenarios where an intercepted return to a driver is replaced by a fault.
Each fault scenario is then run, and the resulting stack traces are collected to feed further
iterations of the fault scenario generator. ADFI employs this test method to assess driver
error handling code paths that, otherwise, would rarely be followed.

According to Cong et al. (2015), the efforts to run ADFI include:

1. Preparing a configuration file for driver testing.

2. Crash analysis.

3. (Optionally) compilation flag modification to support test coverage.

ADFI automatically runs each generated fault scenario, one after another, so test execution
is automated.

Bai et al. (2016) focused on device driver testing through a similar approach. They
developed a kernel module to monitor and record driver runtime information. Further,
a pattern-based fault extractor takes runtime data plus driver source code and kernel
interface functions as input and extracts target functions from them. EH-Test considers
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target functions taking into account driver-specific knowledge such as function return
types and whether values returned by functions are checked inside some “if” statement.
Since the C programming language has no built-in error handling mechanism (such as
“try-catch”), developers often use an “if” statement to decide whether error handling code
should be triggered in a device driver. Then, a fault injector module generates test cases
in which target function returns are replaced by faulty values. Finally, a probe inserter
generates a separate loadable driver for each test case. These loadable driver modules have
target function calls replaced by an error function in their code.

Most EH-Test workflow is automated, from target function extraction to fault injection
and test-case execution. The manual work consists of writing pair checkers for resource-
acquiring and resource-release functions and rebooting the system when crash bugs are
detected.

B. Chen et al. (2020) presented a test approach based on hybrid symbolic-concrete
(concolic) execution. Their work focus on testing LKM (Linux Kernel Modules) using two
main techniques: (1) automated test case generation from LKM interfaces with concolic
execution; (2) automated test case replay that repeatedly reproduces detected bugs.

During test case generation, the COD Agent component sequentially executes com-
mands from an initial test case to trigger functionalities of target LKMs through the base
kernel. Two custom kernel modules intercept interactions between base Linux kernel
and LKMs under test and add new tainted values to a taint analysis engine. When all
commands in the test harness are finished, COD captures the runtime execution trace
into a file and sends it to a symbolic engine. A trace replayer performs symbolic analysis
over the captured trace file, then sends a set of generated test cases back to the execution
environment. These steps then repeat to produce more test cases until some criteria (such
as elapsed time) are met.

In test case replay mode, COD Test Case Replayer picks a test case and executes the
commands in the test harness to trigger functionalities of target LKMs. Three custom kernel
modules intercept the interactions between kernel and LKMs under test, modify these
interactions when needed, and capture kernel API usage information. After all commands
in the test harness are finished, COD retrieves the kernel API usage information from the
custom kernel modules and checks for potential bugs. This process repeats for each test
case given as input.

Although COD provides a highly automated workflow that automatically generates
and reproduces test cases, manual user effort is still needed. Kernel API changes in new
Linux versions may require adjusting the Kprobes defined in COD. Also, users need to
double-check reported bugs because COD can issue false positives.

Rothberg et al. (2016) developed a tool to generate representative kernel compilation
configurations for testing. Troll parses files locally for configuration options (#ifdef) and
creates a partial kernel compilation configuration. This initial step is called sampling. Each
partial configuration is then abstracted by a node in a configuration compatibility graph
(CCG). In this graph, mutually compatible configurations are linked by an edge. In the
next step (merging), Troll looks up the CCG for the largest click (set of nodes that are
all linked together) and merges all those partial configurations that belong to the click.
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The compilation configuration obtained with the largest click covers most of the #ifdef
and generates several warnings when Sparse analyzes the code generated by such an
arrangement. Given a valid kernel configuration file providing good coverage of different
configurations (#ifdef), then automated tests are more likely to find bugs.

These were the six test tools selected for usage assessment: SymDrive, FAU machine,
ADFI, EH-Test, COD, and Troll. Let’s now report how we evaluated them.

4.1.2 Tool Usage Assessment

At the beginning of 2021, we carried out an evaluation process to assess the usage of
each selected test tool. This review process consisted of looking for each project’s repos-
itories, reading their documentation, installing each project’s dependencies, compiling
their source code, and contacting their respective authors by email when facing setbacks.
We used a QEMU virtual machine with Ubuntu 18.04LTS as the evaluation environment.
Our goal was to reproduce the tests described in the articles and expand our knowledge
about each tool. With practical testing experience with these testing tools, we would better
ponder recommending them to fellow kernel developers or not.

SymDrive stood out among related works as a testing tool for drivers in the kernel
through symbolic code execution. To set up SymDrive, we followed the installation steps
listed on their developer’s page (Renzelmann et al., 2012a). One of the first steps of the
setup consists of compiling and installing S2E, a software platform that provides function-
alities for symbolic execution on virtual machines. The S2E documentation mentions the
use of Ubuntu as a prerequisite for setting up the platform (Cyberhaven, 2020b; Herrera,
2020; Cyberhaven, 2020a), even though we have found indications of compatibility with
other operating systems after inspecting the compilation and installation scripts. Moreover,
installation script error messages notifying us that S2E is compatible only with a restricted
set of processors. However, even though we had configured the VM with a compatible
processor, the installation scripts kept failing due to insufficient system memory (despite
our 10GB system RAM).

We discovered that the S2E mailing list was semi-open, meaning that only subscribed
addresses may send emails to it. To subscribe to the S2E list, one must send a subscription
request to be assessed by a moderator. However, it took a month for an S2E moderator to
accept our subscription request to their mailing list. By the time they granted access to us,
we were assessing other testing tools and did not want to come back to this one. Finally,
our email to the authors of the SymDriver paper was unanswered. So, after a series of
setbacks related to installation and lack of access to support, we gave up on installing S2E
and evaluating the use of SymDrive.

FAU machine offers a broad test platform, allowing injection of many types of faults
at diverse points of a GNU/Linux system as a whole. To test with an FAU machine, we
wrote to the respective paper authors, who then pointed out where to find its source code.
Next, we downloaded the associated repositories and installed the packages needed for
build and installation. The project documentation is outdated and is not maintained by
the developers. For instance, two packages indicated in the documentation as necessary
for the build are deprecated and no longer needed. In reply to one of our messages, the
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project maintainer said that questions could be answered by email: “Just forget *any*
documentation you find regarding FAUmachine. None is correct any more. Sorry for that. We
just don’t have time to update these documents. I think you must ask your questions using
e-mail”.

After compiling and installing an FAU machine, we tried to run some tests by setting up
an example from FAU source files. The experiment consisted of starting a virtual machine
and installing a Debian image on its disk. However, the experiment run script failed
during image installation. Our following email to the maintainer asking for help with the
experiment went unanswered. Still, within the menus and options in the virtual machine
management window, it was possible to see items referring to system fault injections. The
evaluation of these tests, however, could not be completed.

ADFI and EH-Test proposed fault injection tests focused on device drivers. However,
Cong et al. (2015) article has no link or web page address for the ADFI project repository.
Moreover, ADFI authors did not respond to our email asking how to get ADFI. Thus, it
was not possible to evaluate ADFI as we could not even get the tool. As for EH-Test, we
downloaded the tool’s source code and, with some adjustments, we managed to build some
of the test modules. However, some EH-Test components do not build with current GCC
and LLVM versions. We mailed Bai et al. (2016) asking for some installation and usage
guidance, but we had no feedback.

For reasons analogous to ADFI, COD could not be tested either. There is no repository
link or instruction on getting COD in B. Chen et al., 2020. We sent an email to the paper
authors, but that was unanswered.

Lastly, since Troll was designed to generate Linux kernel build configurations, it does
not fit into the kernel tests category. Despite that, we decided to give Troll a try. Never-
theless, on our first shot, we found that some new Kconfig features were not supported
by Undertaker, a software whose output was needed to feed Troll. Also, the Undertaker
mailing list was semi-open. Since our adjustments to the kernel symbols were insufficient
to make Undertaker generate partial kernel configurations, our last resort was to reach
Troll’s developers. Surprisingly, the authors were very responsive and helped us to set up
the latest Undertaker version. After that, we ran an example from Troll documentation that
generates Linux kernel compilation settings. The uses of Troll presented in the reference
article are analogous to the documentation example we ran, except that they require more
than 10GB of system memory to complete. Even though we have not been able to recreate
the configuration files for the scenarios explored in Rothberg et al. (2016) article, we
believe Troll would have generated them if we had provided it with enough computational
resources.

From what we have observed, academic publications introduce test tools as promising
solutions to leverage the practice of automated tests in the Linux kernel. However, our
experience evaluating them suggests that most of those tools are outdated, incompatible
with newer software versions, or have limited support from their original developers. This
outcome (summarized in Table 4.1) led us to seek Linux kernel test tools in additional
sources.
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Identifier and Reference Tool Name Able to reproduce tests? Comments
L1 B. Chen et al. (2020) COD No No repository link. No re-

sponse from maintainers.
L2 Cong et al. (2015) ADFI No No repository link. No re-

sponse from maintainers.
L6 Buchacker and Sieh (2001) FAU Machine No Unable to run test cases.
L12 Renzelmann et al. (2012b) SymDrive No Unable to install. No re-

sponse from maintainers.
L14 Bai et al. (2016) EH-Test No Incompatible with newer

compiler versions. No re-
sponse from maintainers.

L18 Rothberg et al. (2016) Troll Partially Required considerable
computational resources.

Table 4.1: Summary of tool usage assessment conclusions.

4.2 Community Tools

To complement the findings from the formal literature, we have conducted a grey
literature review that has revealed an additional set of Linux kernel test tools. As described
by Algorithm 3.3, we carried on the GLR in two iterations. Each iteration brought new
evidence of testing tools and practices for assessing the Linux kernel functionality. We
now present statistics from our GLR, followed by a characterization of the most cited tools
and our considerations about them.

4.2.1 Summary of Grey Literature Review Outcomes

The first grey literature document collection stage took place on April 27, 2021, and
brought 107 unique publications. We then screened those publications in a preliminary
analysis phase, which resulted in the selection of 47 documents for the next stage. In a
complete document analysis step, we found 23 publications with information about Linux
kernel tests. These publications reported practices, statistics, opinions, or studies about
Linux kernel testing and its community. Throughout the selection process, we collected 21
different citation links for snowballing, which went through the same selection phases and
criteria, resulting in 8 additional documents identified with relevant information about
Linux testing. Thus, the first iteration of the grey literature review provided a total of 31
(23 + 8) documents containing practices, statistics, opinions, or studies about the tools
used to test the Linux kernel.

The second grey literature document collection phase took place on October 11, 2021,
bringing 94 new publications to the preliminary analysis step. The preliminary document
analysis phase then filtered those publications out to only 27 documents. Next, the com-
plete analysis step selected 15 out of those 27 productions and brought 12 documents
for snowballing. We then selected nine additional publications from the snowballing
references through our review process. At that point, we relaxed our structured review
process to enable another snowballing phase. Throughout the review process of the twelve
publications selected for snowballing, we collected 16 additional publications for a second
level of snowballing. Then, after that second level of snowballing phase, we accepted
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another ten publications to embody our publication list. Finally, the second iteration of the
grey literature review brought a total of 34 (15 + 9 + 10) documents containing practices,
statistics, opinions, or studies reporting tools used to test the Linux kernel.

To justify holding a second level of snowballing, we convey that, while selecting
publications from the first snowballing list, we noticed that some documents provided
citations to pages that, by the context, would contain relevant content about Linux testing.
We estimated to miss important information if we followed the planned review protocol
to the letter. Thus, we agreed to adapt the review process to evaluate some (16) addi-
tional documents. We believe our decision was proper since we selected 10 of those 16
publications.

There was a slight decrease in the number of unique publications found in each GLR
iteration. While the first collection phase accumulated 107 documents, the second collection
phase brought in only 94 additional publications. We point out that the difference between
the number of publications collected in the first and second iteration of GLR is due to the
depletion of some data sources. For example, Kernelnewbies returned only nine results
for the “linux kernel test” search (we collected five in the first data collection phase and
another four in the second). Linux Journal returned only three results for the “linux kernel
verify” search (we collected three in the first phase of data collection and none in the
second). Also, as in the first data collection phase, some data sources returned identical
pages from searches with different strings. Some of these pages were collected but then
removed during a duplicate URL removal step. The outcomes from the first and second
GLR iterations are summarized in Table 4.2 and Table 4.3, respectively.

Selection phase # input documents # output documents
1) Collection - 107
2) Preliminary analysis 107 47
3) Complete analysis 47 23

4) Snowballing Preliminary analysis 21 11
5) Snowballing Complete analysis 11 8

Selected documents 31

Table 4.2: Summary of the first GLR iteration.

Selection phase # input documents # output documents
1) Collection - 94
2) Preliminary analysis 94 27
3) Complete analysis 27 15

4) Snowballing Preliminary analysis 12 10
5) Snowballing Complete analysis 10 9

6) 2nd Level Snowballing Preliminary analysis 16 10
7) 2nd Level Snowballing Complete analysis 10 10

Selected documents 34

Table 4.3: Summary of the second GLR iteration.

The complete list of documents assessed throughout our GLR is available at
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https://gitlab.com/Marcelosc/ime-usp-masters-dissertation/-/blob/dissertation-final/
literature-review/LSMS_and_GLR.ods. In that list, we brought together the data source,
identifier (ID), URL, title, year of publication, the reason for exclusion (when appropriate),
the reason for inclusion (when appropriate), information pertinent to Linux tests, and
additional notes for each publication appraised by our research. The list of selected
publications is shown in Table 4.4. The Data Source column indicates the search engine
from which we retrieved the documents or the publication that cited them when we were
snowballing.

ID Data Source Title Year
G1 Kernelnewbies Linux_Kernel_Tester’s_Guide_Appendix_A 2021
G2 Kernelnewbies Linux_Kernel_Tester’s_Guide_Chapter1 2021
G3 Kernelnewbies Linux_Kernel_Tester’s_Guide_Chapter2 2021
G4 Kernelnewbies Linux_Kernel_Tester’s_Guide_Chapter3 2021
G5 Linux Documentation ABI testing symbols 2021
G6 Linux Documentation Linux Kernel Selftests 2021
G7 Linux Documentation How the development process works 2021
G8 Linux Documentation A Tour Through RCU’s Requirements 2021
G9 Linux Documentation xpad - Linux USB driver for Xbox compatible

controllers
2021

G10 Linux Documentation Linux Input Subsystem userspace API » 1. In-
troduction

2021

G11 Linux Journal Linux Kernel Testing and Debugging 2014
G12 Linux Journal Unit Testing in the Linux Kernel 2019
G13 Linux.com Kernel Developers Summarize Linux Storage

Filesystem and Memory Management Summit
2015

G14 Linux.com Status of Embedded Linux: Tim Bird Warns of
Slow Progress on Linux Shrinkage

2016

G15 LWN Free user space for non-graphics drivers 2020
G16 LWN Maintaining stable stability 2020
G17 LWN A realtime developer’s checklist 2020
G18 LWN Linux 5.12’s very bad, double ungood day 2021
G19 LWN Patching until the COWs come home (part 2) 2021
G20 LWN Some 5.12 development statistics 2021
G21 LWN An update on the UMN affair 2021
G22 Linux Foundation Fuzzing Linux Kernel 2021
G23 Linux Foundation Kernel Validation With Kselftest 2021
G24 G14 Fuego 2018
G25 G11 LTP HowTo 2012
G26 G11 Smatch The Source Matcher 2021
G27 Linux.com So, you are a Linux kernel programmer and you

want to do some automated testing...
2021

G28 G11 Ktest 2017
G29 G16 syzbot 2021

continue ⟶

Table 4.4: Documents selected from the grey literature review.

https://gitlab.com/Marcelosc/ime-usp-masters-dissertation/-/blob/dissertation-final/literature-review/LSMS_and_GLR.ods
https://gitlab.com/Marcelosc/ime-usp-masters-dissertation/-/blob/dissertation-final/literature-review/LSMS_and_GLR.ods
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ID Data Source Title Year
G30 G6 Kernel self-test 2019
G31 LWN Distributed Linux Testing Platform KernelCI

Secures Funding and Long-Term Sustainability
as New Linux Foundation Project

2019

G32 Kernelnewbies Linux_Kernel_Tester’s_Guide_Introduction 2017
G33 Linux Foundation Linux Kernel Developer: Arnd Bergmann 2017
G34 Linux Foundation Linux Kernel Developer: Laura Abbott 2017
G35 Linux Foundation Linux Kernel Developer: Shuah Khan 2017
G36 Linux Foundation Oracle Q&A: A Refresher on Unbreakable En-

terprise Kernel
2018

G37 Linux Foundation Real-Time Linux Continues Its Way to Mainline
Development and Beyond

2018

G38 LWN The RCU API, 2019 edition 2019
G39 LWN Scheduler behavioral testing 2019
G40 LWN Calibrating your fear of big bad optimizing com-

pilers
2019

G41 LWN Portable and reproducible kernel builds with
TuxMake

2021

G42 Linux Documentation OMAP4 ISS Driver 2012
G43 Linux Documentation Linux Joystick support - Introduction 2021
G44 Linux.com How Continuous Integration Can Help You

Keep Pace With the Linux Kernel
2016

G45 Linux.com Fixing the Linux Graphics Kernel for True Dis-
playPort Compliance, Or: How to Upstream a
Patch

2017

G46 Linux.com How Facebook Uses Linux and Btrfs: An Inter-
view with Chris Mason

2016

G47 Linux Foundation 2020 Linux Kernel History Report 2020
G48 G35 2017 Linux Kernel Development Report 2017
G49 G39 ARM-Software/lisa - README.rst 2021
G50 G39 A survey of scheduler benchmarks 2017
G51 G40 A formal kernel memory-ordering model (part

2)
2017

G52 G41 Linaro/tuxmake - README.md 2021
G53 G44 Welcome to KernelCI 2021
G54 G44 Rapid Operating System Build and Test 2021
G55 Linux.com Testing Btrfs On The Linux 3.16 Kernel 2014
G56 G47 coccicheck [Wiki] 2018
G57 G47 linux-kernel-bot-tests - start [Wiki] 2016
G58 G47 Linux Kernel Performance 2021
G59 G47 kernelslacker/trinity: Linux system call fuzzer -

README
2017

continue ⟶

Table 4.4: Documents selected from the grey literature review.
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ID Data Source Title Year
G60 G47 LCA: The Trinity fuzz tester 2013
G61 G47 Statistics from the 5.4 development cycle 2019
G62 G47 Linaro’s Linux Kernel Functional Test frame-

work | LKFT
2021

G63 G47 Tests in LKFT 2021
G64 G53 Continuous Kernel Integration (CKI) Project 2021
G65 G44 drm / igt-gpu-tools - README.md 2021

Table 4.4: Documents selected from the grey literature review.

After each GLR iteration, we read the pertinent snippets from selected documents
once more to digest the information about the test tools used to test the Linux kernel. The
main objectives of this content analysis and synthesis stage were to answer the research
questions RQ1 and RQ3 and develop a list of Linux kernel test tools (RO1).

Table A.1 contains the preliminary list of Linux kernel test tools, comprising seventy-
two test suites either cited by formal articles or community publications. The most men-
tioned of those tools was cited by eight documents, whereas many other test tools were
mentioned by just one publication each. We also provide a spreadsheet1 with the name,
estimated activity status, testing techniques, repository, and supporting publications for
each Linux test tool we identified throughout our literature reviews.

Even though we have estimated the activity status of over those seventy tools, providing
a detailed characterization of them all would be a laborious task. Instead, we argue that a
promising tool would gather more users over time and, consequently, be more cited by
literature. Thus, we decided to investigate the most mentioned tools only. Excluding some
tools from a further analysis may limit our conclusions because it may be that some of
them are indeed useful for testing Linux in some contexts. We note, however, that our
approach was careful to avoid disregarding tools employed in kernel testing. Therefore,
some test tools may target kernel areas other than device drivers. Moreover, using some
tools for driver testing may be farfetched. Hence, even though we did not analyze every
Linux kernel test tool found, the results from this study should still provide a good picture
of the tools used to test Linux device drivers.

4.2.2 Tool Characterization

After finishing the GLR, we defined the criteria to select some testing tools for evalua-
tion. First, we established that at least three GL publications should have cited each test
tool. The test suites selected by this criterion are kselftest (with seven citations); 0-day test
robot (with six citations); KernelCI (five citations); LKFT, Trinity, Syzkaller, LTP (each one
with four citations); ktest, Smatch, coccicheck, jstest, TuxMake (each with three citations).
Also, we want to be able to test device drivers with the aid of these test tools. So, we defined
another criterion to dismiss tools that would not allow us to test drivers. Nevertheless, all

1 https://gitlab.com/Marcelosc/ime-usp-masters-dissertation/-/blob/dissertation-final/literature-review/
LSMS_and_GLR.ods

https://gitlab.com/Marcelosc/ime-usp-masters-dissertation/-/blob/dissertation-final/literature-review/LSMS_and_GLR.ods
https://gitlab.com/Marcelosc/ime-usp-masters-dissertation/-/blob/dissertation-final/literature-review/LSMS_and_GLR.ods
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tools mentioned above might be helpful for testing device drivers, so we kept nine test
tools for usage evaluation. Before we present our experience with these tools, let us briefly
describe them.

Kselftest

Kernel selftests (kselftest) is a unit and regression test suite distributed with the Linux
kernel tree under the tools/testing/selftests/ directory (Linux Kernel Selftests 2021; Khan,
2021a; Kernel self-test 2019). Kselftest contains tests for various kernel features and sub-
systems such as breakpoints, cpu-hotplug, efivarfs, ipc, kcmp, memory-hotplug, mqueue,
net, powerpc, ptrace, rcutorture, timers, and vm sub-systems (Khan, 2014). These tests are
intended to exercise individual code paths and terminate in less than 20 minutes (Linux
Kernel Selftests 2021; Kernel self-test 2019). Kselftest consists of shell scripts and user-space
programs that test kernel API and features. Test cases may span kernel and use-space
programs working in conjunction with a kernel module to test (Khan, 2021a). Even though
kselftest’s main purpose is to provide kernel developers and end-users a quick method of
running tests against the Linux kernel, the test suite is run every day on several Linux
kernel integration test rings such as the 0-Day robot and Linaro Test Farm (Kernel self-test
2019). It is stated that someday Kselftest will be a comprehensive test suite for the Linux
kernel (Linux Kernel Developer: Shuah Khan 2017; G. K.-H. Jonathan Corbet, 2017).

0-day test robot

The 0-day test robot is a test framework and infrastructure that runs several tests over
the Linux kernel, covering core components such as virtual memory management, I/O
subsystem, process scheduler, file system, network, device drivers, and more (Linux Kernel
Performance 2021). Static analysis tools such as Sparse, Smatch, and Coccicheck are run by
0-day as well (2020 Linux Kernel History Report 2020). These tests are provided by Intel as
a service that picks up patches from the mailing lists and tests them, often before they are
accepted for inclusion (G. K.-H. Jonathan Corbet, 2017). 0-day also tests key developers’
trees before patches move forward in the development process. The robot is accounted for
finding 223 bugs during a development period of about 14 months from Linux release 4.8
to Linux 4.13 (which came out September 3, 2017). With that, the 0-day robot achieved
the rank of top bug reporter for that period (G. K.-H. Jonathan Corbet, 2017). Despite
that, analyzing Linux 5.4 development cycle, Corbet, 2019 reported that there had been
worries that Intel’s 0-day test service was not proving as useful as it once was.

KernelCI

KernelCI is an effort to test upstream Linux kernels in a continuous integration (CI)
fashion. The project’s main goal is to improve the quality, stability, and long-term main-
tenance of the Linux kernel. It is a community-led test system that follows an open
philosophy to enable the same collaboration to happen with testing as open source does to
the code itself (Distributed Linux Testing Platform KernelCI Secures Funding and Long-Term
Sustainability as New Linux Foundation Project 2019; Welcome to KernelCI 2021). KernelCI
generates various configurations for different kernel trees, submits boot jobs to several
labs worldwide, collects, and stores test results into a database. The test database kept by
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KernelCI includes tests run natively by KernelCI, but also Red Hat’s CKI, Google’s syzbot,
and many others (Vizoso, 2016; Welcome to KernelCI 2021).

LKFT

Linaro’s LKFT (Linux Kernel Functional Testing) is an automated test infrastructure
that builds and tests Linux release candidates on the arm and arm64 hardware architec-
tures (2020 Linux Kernel History Report 2020). The mission of LKFT is to improve the quality
of Linux by performing functional testing on real and emulated hardware targets. Weekly,
LKFT runs tests over 350 release-architecture-target combinations on every git-branch
push made to the latest 6 Linux long-term-stable releases, linux-next, and the mainline tree.
In addition, Linaro claims that their test system can consistently report results from nearly
40 of these test setup combinations in under 48 hours (Rapid Operating System Build and
Test 2021; Linaro’s Linux Kernel Functional Test framework 2021). LKFT incorporates and
runs tests from several test suites such as LTP, kselftest, libhugetlbfs, perf, v4l2-compliance
tests, KVM-unit-tests, SI/O Benchmark Suite, and KUnit (Tests in LKFT 2021).

Trinity

Trinity is a random tester (fuzzer) specialized in testing the system call interfaces that
the Linux kernel presents to user space (Kerrisk, 2013). Trinity employs some techniques
to pass semi-intelligent arguments to the syscalls being called. For instance, it accepts a
directory argument from which it will open files and pass the corresponding file descriptors
to system calls under test. This feature can be helpful for discovering failures in filesystems.
Thus, Trinity can find bugs in parts of the kernel other than the system call interface.
Some areas where people used Trinity to find bugs include the networking stack, virtual
memory code, and drivers (Jones, 2017; Kerrisk, 2013).

Syzkaller

Syzkaller is said to be a state-of-the-art Linux kernel fuzzer (Konovalov, 2021a). The
syzbot system is a robot developed as part of the syzkaller project that continuously fuzzes
main Linux kernel branches and automatically reports found bugs to kernel mailing lists.
Syzbot can test patches against bug reproducers. A feature that may be useful for testing
bug fix patches, debugging, or checking if the bug still happens. While syzbot can test
patches that fix bugs, it does not support applying custom patches during fuzzing. It always
tests vanilla unmodified git trees. Nonetheless, one can always run syzkaller locally on
any kernel to better test a particular subsystem or patch (Vyukov et al., 2021). Syzbot is
receiving increasing attention from kernel developers. For instance, Sasha Levin said he
hoped that failure reproducers from syzbot fuzz testing could be added as part of testing
for the stable tree at some point (Edge, 2020).

LTP

The Linux Test Project (LTP) is a test suite that contains a collection of automated
and semi-automated tests to validate the reliability, robustness, and stability of Linux and
related features (Khan, 2014; Iyer, 2012). By default, the LTP run script includes tests
for filesystems, disk I/O, memory management, inter process communication (IPC), the
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process scheduler, and the system call interface. Moreover, the test suite can be customized
by adding new tests, and the LTP project welcomes contributions (Khan, 2014).

Some Linux testing projects are built on top of LTP or incorporate it somewhat. For
example, LTP was chosen as a starting point for Lachesis, whereas the LAVA framework
provides commands to run LTP tests from within it (Khan, 2014). Another test suite that
runs LTP is LKFT (2020 Linux Kernel History Report 2020; Tests in LKFT 2021).

ktest

ktest provides an automated test suite that can build, install, and boot test Linux on a
target machine. It can also run post-boot scripts on the target system to perform further
testing (Khan, 2014; Jordan, 2021). ktest has been included in the Linux kernel repository
under the directory tools/testing/ktest. The tool consists of a perl script (ktest.pl) and a set
of configuration files containing test setup properties. In addition to the build and boot
tests, ktest also supports git bisect, config bisect, randconfig, and patch check as additional
types of tests. If a cross-compiler is installed, ktest can also run cross-compile tests (Ktest
2017; Khan, 2014).

Smatch

Smatch (the source matcher) is a static analyzer developed to detect programming
logic errors. For instance, Smatch can detect errors such as attempts to unlock an already
unlocked spinlock. It is written in C and uses Sparse as its C parser. Also, Smatch is run
on Linux kernel trees by autotest bots such as 0-day and Hulk robot (Khan, 2014; Smatch
The Source Matcher 2021; 2020 Linux Kernel History Report 2020).

Coccinelle / coccicheck

Coccinelle is a static analyzer engine that provides a language for specifying matches
and transformations in C code. Coccinelle is used to aid the collateral evolution of source
code and to help catch specific bugs that have been expressed semantically. Collateral
evolution is needed when client code has to be updated due to development in API code.
Renaming a function, adding function parameters, and reorganizing data structures are
examples of changes that may lead to collateral evolution. For instance, coccicheck, a
collection of semantic patches that uses the Coccinelle engine, aids developers in chasing
and fixing bugs. coccicheck is available in the Linux kernel under a make target with the
same name (Coccinelle: A Program Matching and Transformation Tool for Systems Code 2022;
N. P. Luis R. Rodriguez, 2016; V. R. Luis R. Rodriguez T. B., 2016). Moreover, coccicheck
is run on Linux kernel trees by automated test robots such as 0-day and Hulk robots (2020
Linux Kernel History Report 2020; N. P. Luis R. Rodriguez, 2016).

jstest

jstest is a user space utility program that displays joystick information such as device
status and incoming events. One can use it to test the Linux joystick API’s features and
a joystick driver’s functionality (xpad - Linux USB driver for Xbox compatible controllers
2021; Linux Joystick support - Introduction 2021; Kitt, 2009).
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TuxMake

TuxMake, by Linaro, is a command line tool and Python library designed to make
building the Linux kernel easier. It seeks to simplify Linux kernel building by providing
a consistent command line interface to build the kernel across various architectures,
toolchains, kernel configurations, and make targets. By removing the friction of dealing
with different build requirements, TuxMake assists developers, especially newcomers, to
build the kernel for uncommon toolchain/architecture combinations. Moreover, TuxMake
comes with a set of curated portable build environments distributed as container images.
These versioned and hermetic filesystem images make it easier to describe and reproduce
builds and build problems. Although it does not support every Linux make target, the
TuxMake team plans to add support for additional targets such as kselftest, cpupower, perf,
and documentation. TuxMake is part of TuxSuite, which in turn makes part of Linaro’s
main Linux testing effort (Rue, 2021; Dan Rue, 2021; Rapid Operating System Build and
Test 2021).

Thus, we have presented the main characteristics of the most cited Linux kernel test
tools by community publications. To avoid mixing evidence from each data collection
method, we used only references from community publications to support the initial
description of the test tools brought by our GLR. Now that we are familiar with the tooling
discussed in the grey literature, let us examine how it would be to test device drivers with
them.

4.2.3 Tool Usage Assessment

Just as we assessed the use of test tools found during our mapping study, we evaluated
the use of tools found during our gray literature review. Our evaluation process was
similar to the one followed previously. We searched the project repositories, looked for
instructions for installation and use in the available documentation, installed the tools,
and, finally, made basic use of each.

We visited the commit history of each project and their corresponding mailing lists
between 2022-01-12 and 2022-01-24. Moreover, we estimated each project’s activity status
as active for tools that received contributions between the beginning of 2021 to March
17, 2022 (roughly a year); inactive for the tools that did not have updates after 2020; and
unknown for those we could not find a source code repository. For tools incorporated
into larger projects (such as tools maintained within the Linux kernel tree), we consider
only the changes made to the subdirectories implementing the test apparatus. Lastly, we
labeled tools that provided tests as a service as active, even though we could not inspect
their source code repository.

Moreover, as we intend to explore software that developers could integrate into their
development workflows, we did not evaluate tools that we could not run locally. Since
we did not find the source code for tests run in the 0-day test robot, KernelCI, and LKFT,
we did not assess them. Unlike our previous evaluation environment, we ran most tools
(kselftest, ktest, smatch, coccinelle, jstest, TuxMake) on a Lenovo ThinkPad T480 with
Debian 12/testing. We assessed Trinity, Syzkaller, and LTP usage in QEMU virtual machines
with Debian 11/stable each. We now report our experience with each evaluated tool.
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Kselftest

We had a smooth experience while using kselftest. kselfttest is available within the
Linux kernel repository under the tools/testing/selftests/ directory. There are recent patches
and ongoing discussions on the project mailing list2 and recent commits in the subsystem’s
tree. The documentation presents all the instructions necessary to compile and run the tests.
There are also sections exemplifying how to run only subsets of the tests. Some kselftest
tests require additional libraries, listed with the kselftest_deps.sh script. Unfortunately, by
the date we evaluated kselftest, its documentation did not mention the build dependencies
script. Nevertheless, the documentation had enough information for us to run some tests
without any problem.

Trinity

Trinity is accessible through a repository on GitHub3. The latest commit to that repos-
itory was from about one month and a half behind the date we inspected it. From the
recent commit history, we estimate that the project change rate is roughly one commit per
month and that three core developers have maintained the tool. Trinity documentation is
scarce and has not been updated for four years. Although some usage examples exist, the
documentation does not contain a tool installation guide.

In our experience with Trinity, we let the fuzzer run for a few minutes. It looks like
Trinity is still working the same way Konovalov (2021a) described: “Trinity is a kernel
fuzzer that keeps making system calls in an infinite loop.” There is no precise number of
tests to run and no time limit for their completion. After being interrupted, the program
shows the number of executed system calls, how many ended successfully, and how many
terminated with failures.

Syzkaller

Syzkaller source code is hosted on a GitHub repository4, which has received several con-
tributions in the weeks that preceded our evaluation window. The project mailing list5 was
busy with several messages during those days. Also, from what we observed in the commit
history, five core developers have committed most of the changes to Syzkaller.

The Syzkaller documentation is relatively complete. It contains detailed instructions
on installing and using Syzkaller and several troubleshooting sections with tips against
possible setup problems. The documentation also includes pages describing how the
fuzzer works, how to report bugs found in the Linux kernel, and how to contribute to the
tool.

When run, Syzkaller prints execution environment information to the terminal and
activates an HTTP server. The server pages display detailed test information such as code

2 https://lore.kernel.org/linux-kselftest/
3 https://github.com/kernelslacker/trinity
4 https://github.com/google/syzkaller
5 https://groups.google.com/forum/#!forum/syzkaller

https://lore.kernel.org/linux-kselftest/
https://github.com/kernelslacker/trinity
https://github.com/google/syzkaller
https://groups.google.com/forum/#!forum/syzkaller
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coverage, execution logs, the number of syscall sequences executed, the number of crashes,
etc.

LTP

The Linux Test Project (LTP) is available at a GitHub repository6 which many develop-
ers have committed to in the weeks preceding our evaluation window for the tool. There
were also a few discussions in progress on the project’s mailing list7. In addition, the LTP
documentation contains a tool installation and usage guide, as well as other information
we found helpful.

We ran a few LTP syscall tests separately and had a pleasing first impression of the test
suite. The completion time of each test was short, and their results (pass or fail) were very
clear. It took about 30 minutes to run the entire collection of system call tests. LTP also
has a set of device driver tests, but many are outdated and do not work anymore.

ktest

ktest is available from within the Linux kernel repository under the tools/testing/ktest/
directory. Even though ktest is included in a fast-paced changing project such as Linux, its
latest contribution dates from five months before our inspection date. ktest documentation
is sparse and has only a description of the configuration options and a brief description
of the existing example configuration files. There is no installation guide nor any list of
test dependencies. To set up ktest, we followed the guidelines provided by Jordan (2021)
and adapted several runtime configurations. We only ran an elementary build and boot
test over a couple of patches. Despite our hard time setting up ktest, we think it may
help automate many test activities mentioned in the literature, such as patch checking,
bisecting, and config bisecting.

Smatch

We got Smatch by cloning its repository at https://repo.or.cz/w/smatch.git. The
project’s commit history had contributions dated to days close to the time we evaluated
the tool, although a single developer had authored most of those changes. The mailing list
archives8 we found have registered no messages for years. Smatch also has a mailing list at
vger.kernel.org9, but we did not find mail archives for those. The Smatch documentation
is brief, yet it contains instructions on installing and using the source matcher. Within a
few minutes, we set up Smatch and ran some static tests against Linux drivers.

Coccinelle / coccicheck

Coccinelle can be obtained through the package manager of many GNU/Linux dis-
tributions, as a compressed tar.gz file from the project’s web page, or through a GitHub

6 https://github.com/linux-test-project/ltp
7 https://lore.kernel.org/ltp/
8 https://sourceforge.net/p/smatch/mailman/
9 http://vger.kernel.org/vger-lists.html#smatch

https://repo.or.cz/w/smatch.git
https://github.com/linux-test-project/ltp
https://lore.kernel.org/ltp/
https://sourceforge.net/p/smatch/mailman/
http://vger.kernel.org/vger-lists.html#smatch
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repository. Coccinelle’s repository had commits recently to the day we evaluated the static
analyzer, most of which were by a single developer. Also, the project’s mailing list10 had
ongoing conversations and patches under review.

The Linux kernel documentation has a page with installation and usage instructions for
Coccinelle and coccicheck. Moreover, the kernel has a Makefile target named "coccicheck"
for running coccicheck semantic patches. In a few minutes, we installed Coccinelle and
ran some checks on Linux drivers.

jstest

jstest is part of the Linux Console Project and can be obtained from Source Forge11 or
through the package manager of some GNU/Linux distributions. However, by the date
we evaluated jstest, the project’s repository was about a year without updates, and the
associated mailing lists12 were without discussions or patches for even longer. Despite that,
the jstest documentation was helpful as it listed dependency packages and the installation
steps for the tool. Also, the manual page is brief yet informative and tells what is needed
to use the tool. To use jstest, one must start the application with the path to a joystick or
gamepad device. jstest then displays the inputs obtained from joysticks and gamepads and
thus might be helpful to test the functioning of drivers for these devices in a black-box
fashion.

TuxMake

TuxMake is available from its GitLab repository13 and can also be downloaded as a
package for many GNU/Linux distros. The contributions to the project’s repository are
recent to the date we evaluated the tool. In addition, the TuxMake documentation contains
installation instructions and examples of how to use the tool. We found no difficulty in
getting and using TuxMake. However, we note that TuxMake focuses on building the kernel
and thus only builds the artifacts bound to make targets, not triggering the execution of
test cases even when those targets would do so by default.

4.3 Summarization

To some extent, several tools can facilitate device driver testing. It is nearly impossible
to analyze them all. Yet, this research covered the twenty Linux kernel testing tools selected
by our study for being either focused on driver testing or most cited by online publications.
These tools make up a heterogeneous group of test solutions comprising various features
and test techniques. From unit testing to end-to-end testing, dynamic or static analysis,
many ways of putting Linux to the test have been conceived.

Table 4.5 matches test types and tools according to what we found expressly reported

10 https://lore.kernel.org/cocci/
11 https://sourceforge.net/projects/linuxconsole/
12 https://sourceforge.net/p/linuxconsole/mailman/
13 https://gitlab.com/Linaro/tuxmake

https://lore.kernel.org/cocci/
https://sourceforge.net/projects/linuxconsole/
https://sourceforge.net/p/linuxconsole/mailman/
https://gitlab.com/Linaro/tuxmake
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in the literature. Note that some test types intersect with each other. For instance, unit
testing may be considered a sort of regression testing, fuzzing is also an end-to-end test,
and fault injection tools often instrument the source code to trigger error paths. Thus, it is
more than possible that some test tools are not matched with all types of tests they can
provide.

Types of Tests Tools
Unit testing Kselftest, KUnit
Regression testing Kselftest, LKFT, 0-Day
Stress testing Kselftest, LTP
Functional testing LTP, Kselftest, LKFT, 0-day
Fuzz testing Trinity, Syzkaller/Syzbot
Reliability testing LTP
Robustness testing LTP
Stability testing LTP
Build testing ktest, 0-day, TuxMake, KernelCI, LKFT
Static analysis Smatch, Coccinelle/coccicheck, Sparse
Performance testing 0-day, kselftest
Symbolic execution SymDrive
Fault injection FAUMachine, ADFI, EH-Test
Code Instrumentation ADFI, COD
Concolic Execution COD
Local analysis and grouping Troll

Table 4.5: Test types and test tools.

To compare the effort required to use each of the evaluated test tools, we established a
set of tasks that comprise most of the work needed to set up and run a test tool. Then, we
gave tools an effort point for each activity we had to carry on to test with them. The tasks
we considered for set up effort are:

• A) install system packages, if it was needed to install packages other than the ones
required to build the Linux kernel.

• B) download and build a source code repository, if it was needed to download the
source code and build it locally.

• C) create a VM, if the tests were potentially destructive and could cause problems to
the running system.

• D) configure a VM, if it was needed to do additional VM configuration such as
installing packages, enabling ssh, messing up with grub, etc.

• E) write/edit configuration files, if it was needed to create or modify configuration
files for the tests to run.

Moreover, we gave five effort points to test tools we could not set up after trying all
applicable tasks above. The setup effort ratings were set to None for tools with no effort
points, Low for tools with one or two points, Moderate for tools with three to four points,
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and High for tools with five points. Now, for comparing with respect to usage effort, we
assigned effort points for each of the following requirements:

• R) the tests can run as an usual application program.

• S) the tests have to run inside a VM due to risk of compromising the running system.

• T) the tests require a high amount of CPU or memory to run.

We gave three effort points to test tools from which we couldn’t get test results either
because we could not run them ourselves or we didn’t find how to get their test results.
Next, we set the usage effort ratings to None, Low, Moderate, and High for tools with
zero, one, two, and three effort points, respectively. Finally, we made a setup versus usage
effort chart (Figure 4.1) to provide an overview of how easy (or not) it is to use each test
tool.

Figure 4.1: Set up and usage effort of Linux kernel test tools.

Table 4.6 lists the traits attributed to each test tool. The cases where we were unable to
set up or run a tool are indicated with a U. Also, there are two slight adjustments we’d like
to note. First, we gave an additional D to ktest because it took us almost three days to set
up everything needed to run it. Second, we added two extra points to FAU machine since
its documentation was completely outdated and unusable.
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Tool Setup Effort Points Usage Effort Points
Kselftest A R
Trinity B, C R, S
Syzkaller A, B, E R, S
LTP B, C, D R, S
ktest A, C, D, E, extra D R, S
Smatch A, B R
Coccinelle A R
jstest A R
TuxMake A R
Sparse A R
KUnit - R
SymDrive U U
FAU machine A, B, E, +2 R, S
ADFI U U
EH-Test U U
COD U U
Troll A, B, E R, T

Table 4.6: Setup and usage effort points of Linux kernel test tools.
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Survey Result Analysis

Our Device Driver Testing Survey was active from 2022-05-16 to 2022-06-26 and had
295 replies, from which 210 were partial responses and 85 were complete submissions. On
average, these 85 developers took 506 seconds each (nearly eight minutes and a half) to
answer the survey questions. Whereas the fastest respondent took 102 seconds, the most
attentive participant took 1876 seconds (roughly half an hour) to complete the survey. The
median survey completion time was 408 seconds (6.8 minutes). Figures 5.1 and 5.2 show
the distribution of survey response times. We consider these response times plausible and
thus did not exclude any particular reply from our analysis. Finally, all 85 participants
who completed the survey answered yes to question 1 (“Please, confirm that you agree to
take part of this survey.”), and thus have consented to participate in the survey. We now
analyze the results from these 85 device driver maintainers.

5.1 PART I - Community Role

Part I of our driver testing survey was about social aspects related to participation
within the Linux community. The results from question 2 (“In which of these roles do
you identify yourself within the Linux kernel development community?”) are shown in
Figure 5.3.

As expected, most (82%) respondents consider themselves maintainers of Linux. This
high identification with the maintainer role might be biased because our invitation message
pointed out that the recipients were listed in Linux’s MAINTAINERS file. Nevertheless, it
is interesting to note that some of them (18%) did not identify themselves as maintainers.
This result suggests that, to some developers, the Linux kernel maintainership role would
be associated with something more than being listed in the MAINTAINERS file. One
possible interpretation is that those who did not check the maintainer role might think
that maintainers are characterized by additional responsibilities or status, such as keeping
development trees or pertaining to Linus Torvalds’ trust network.

Also, most respondents consider themselves active contributors (66%) or users (62%) of
Linux. Almost half of the respondents said to be reviewers (48%) for the Linux kernel, and
a reasonable share of them declared themselves expert contributors (31%). Only a small
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Figure 5.1: Histogram of survey completion time.

Figure 5.2: Survey response time box-and-whiskers plot.
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Figure 5.3: Roles survey attendants play within the Linux kernel community.

portion of kernel developers have considered themselves software testers (20%). Yet, we
argue that this outcome does not compromise the survey results concerning device driver
testing. As noted by Mathur (2013), “it is hard to imagine an individual who assumes the
role of a developer but never that of a tester, and vice versa”. In the same way, we consider
that it would be hard to develop a device driver without being able to test it during its
development process. Moreover, the development community might refuse to include
undertested or unsound driver implementations. Thus, we recognize that Linux kernel
developers are responsible for some portion of device driver tests. The results shown in
Figure 5.3 indicate that the responses to our survey comprise an appropriate source of
information to help answer RQ1 (“How are Linux device drivers being tested?”).

With respect to the experience of the survey respondents (question 3: “How many
years of Linux kernel development experience do you have?”), most participants had 6 to
10 years (28%) of kernel development experience, and many others had 1 to 5 years (26%)
of involvement (see Figure 5.4).

Very few developers have said to have less than one year (2%) experience. This outcome
strengthens the validity of the results to be presented since a reasonable share (44%) of
the answers came from highly experienced Linux kernel developers with eleven or more
years of experience working on the project.

The last question related to social aspects aimed to characterize whether driver devel-
opers had financial support to contribute. The results from question 4 (“Do you contribute
to the Linux kernel as part of your job (paid work)?”) are shown in Figure 5.5.

The majority (63%) of respondents said to contribute to the Linux kernel as part of
their jobs. Despite high, this result diverges significantly from the 2017 Linux Kernel
Development Report (Corbet and Kroah-Hartman, 2017) that evidenced that over 85%
of all kernel development was done by developers who were being paid for their work.
However, in contrast to our survey, the 2017 report estimate was based on the use of
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Figure 5.4: Survey attendants’ years of Linux development experience.

Figure 5.5: Paid Linux kernel device driver maintainers.

company email addresses, sponsorship information included in the code submitted to
Linux, or information provided by developers themselves. Hence, their results are not
directly comparable to ours. Nevertheless, we consider a couple of possible reasons for
observing a lower rate of paid developers in our survey. First, some device drivers were
developed before 2017, when, according to that year’s development report, larger shares
of Linux development would come from unpaid developers. Thus, unless those developers
have got hired to do kernel development, we would observe higher rates of volunteer
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contributors among those early Linux developers. Second, developers may get hired to
develop and maintain device drivers at an initial moment but then change jobs and continue
maintaining drivers as volunteers.

5.2 PART II - Testing habits

The second part of the survey asked participants about general kernel testing habits.
We began by checking how often developers test their code before submitting it to mailing
lists and what kinds of test tools they use for that testing. Figure 5.6 concisely aggregates
the results for question 5 (“How much do you consider yourself involved with kernel
testing?”).

Figure 5.6: Gerenal kernel testing habits of survey participants.

If we aggregate the results from the first subquestion, we see that 90% of device driver
maintainers say to test their contributions very often (always or, at least, most times). This
result indicates that driver maintainers are committed to testing the changes proposed for
the Linux kernel.

The kinds of tests performed by these maintainers may vary, though. 30% of driver
maintainers who said to always runtime test their patches don’t use any static or dynamic
analysis tool. Among maintainers who runtime test patches most of the time, 17% don’t
use any static or dynamic analysis tool. These results indicate that a reasonable number of
maintainers test their drivers with other types of tools, with custom scripts, or manually.
Nevertheless, 19% of driver maintainers who always runtime test their patches said to use
static analysis tools very often (always or, at least, most times), and 15% of them said to
use dynamic analysis tools very often (always or, at least, most times).

We see that device driver maintainers run static analysis tools slightly more often than
dynamic analysis testing tools. While 27% of driver maintainers said to use static analysis
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tools frequently (always or most of the time), only 11% of maintainers said to run dynamic
analysis tools as often. We believe the contrasting results for usage regularity are due to
the different usage requirements of those tools. Usually, static analysis tools are easier to
set up and require less time to run than dynamic analysis tools.

As an indication that our results are not biased by possibly having too many responses
from sorftware testers, we note that only 18% of maintainers have reported being frequently
(always, most times, or sometimes) involved in developing Linux kernel testing tools.

The results from question 6 (“Have you registered any development tree you maintain
or use with any kernel testing service?”) provide an insight into the number of Linux
kernel development trees served by automated testing (see Figure 5.7).

Figure 5.7: Maintainers with development trees registered for automated testing services.

We see that 28% of device driver maintainers reported having registered their develop-
ment trees with Linux kernel testing services. Because not every device driver maintainer
maintains a development tree, we consider this result as a lower bound estimative of the
portion of trees covered by testing services. If we filter the responses by developers with
six or more years of Linux development experience, we see that 34% of maintainers have
registered their development trees with testing services. These results indicate that Linux
kernel maintainers desire assistance from automated testing services since many had
already registered their development trees for testing. Moreover, the desire for automated
tests tends to grow among experienced maintainers.

Question 7 (“Does your organization provide any infrastructure to test the patches you
submit to the kernel?”) results are summarized in Figure 5.8.

On the one hand, 43% of paid device driver maintainers said their employers keep a CI
system to test the Linux kernel. This evidence that a reasonable share of employed kernel
developers is supported by their organizations for testing contributions to Linux. On the
other hand, another 43% of paid maintainers don’t receive the same assistance from their



5.2 | PART II - TESTING HABITS

51

Figure 5.8: Testing infrastructure provided by employers.

employers. It turns out that this outcome might indicate a good opportunity for automated
testing service sellers to expand their businesses. However, if we aggregate maintainers
whose organizations do not provide support for testing the Linux kernel with those who
are not paid to contribute, then we see that CI test systems may not serve roughly 60% of
driver maintainers.

The last question related to general kernel testing asked participants if they used any
particular tool to test the kernel (question 8: “Do you use any tool to test the Linux kernel
yourself? If so, which?”). We included this as an open-ended question in Part II because
we intended to avoid bias from a suggestive question listing several testing tools in Part
III.

From the 39 answers to question 8, we identified a total of 38 different tools (Figure 5.9).
The most spontaneously cited tool was sparse (18%), followed by kselftest (13%), smatch
(6%), and KASAN (6%). Many of the most cited tools in these answers were also listed in
question 11 (G3Q3). This result shows that through our GLR review, we successfully identi-
fied many of the test tools used by the Linux kernel development community (RQ2).

Despite a large number of tools pointed out by survey participants, some individuals
said not to run any test tool or to use custom test scripts: “No. To determine whether a
driver works only runtime testing is used.”, “custom scripts to upload system images to devices
I use”, “shell scripts and simple user api tests”, “printk()”. Also, some developers reported
the activity of automated testing tools: “No, but I’ve seen syzbot & others have tested my
patches”, “I rely on the Linux test bot and community review for the rest”.



52

5 | SURVEY RESULT ANALYSIS

Figure 5.9: Tools that driver maintainers use to test the Linux kernel.

5.3 PART III - Driver testing

The third part of the Device Driver Testing Survey contained questions specific to
Linux kernel device driver testing. The first question of Part III asked what types of drivers
participants have tested (question 9: “What types of device drivers have you ever tested?”).
From the 83 responses to this question, we identified 96 distinct types of device drivers.
Table 3 shows the top ten driver types reported and the number of maintainers who
cited them. Only two (2%) individuals that completed the survey did not answer question
9.

Remarkably, many Linux driver maintainers have tested platform drivers (34%). While
this result could have been biased by the question hint, which listed platform as an
example of driver type, we have little concern about this issue. The Linux kernel declares
a specific abstraction (struct platform_driver) for describing platform drivers. Thus,
maintainers who have worked with platform drivers would know so because they would
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What types of device drivers have you ever tested?
Driver Type Count (Percentage)
platform 29 (34%)
PCI/PCIe 28 (33%)
network 25 (29%)
USB 24 (28%)
I2C 16 (19%)
input 14 (16%)
clock 11 (13%)
GPU 11 (13%)
SPI 11 (13%)
wifi 9 (11%)

Table 5.1: Top ten driver types reported in response to question 9.

have used Linux’s abstraction for describing such drivers. A similar argument applies to
other driver categories in Table 5.1.

In short, a platform device is an autonomous hardware entity on a system. Examples
of platform devices are sensors and controllers integrated into system-on-chip platforms.
Typically, these devices are not connected through any standardized bus (such as PCI, USB,
or SPI) but are directly addressable by the CPU (Platform Devices and Drivers 2022). Thus,
about a third of driver maintainers have been involved in testing drivers designed for
custom hardware platforms, indicating that hardware manufacturers’ choices substantially
impact Linux developers’ work.

The tenth survey question encouraged participants to report activities they carry on
during device driver testing (question 10: “Do you carry out any of these activities when
testing the drivers you maintain?”). However, listing all tasks one might take to test a
device driver is not conceivable because such procedures could be very hardware-specific.
In response to us, the Linux Foundation Technical Advisory Board staff pointed out that
the issues involved in writing a driver for a PCI device are much different than those
of writing a USB driver, and even those are different from writing a driver for a PHY
device, and so on. We suppose that the procedures to test such drivers may also differ
significantly. Therefore, we designed question 10 to assess how developers even test a
driver. Nonetheless, to provide some guidance to the answers, we listed a few generic
activities we knew could make part of a testing procedure. Figure 5.10 shows the results
for these listed options.

We can see the great majority of device driver maintainers probe and bind the drivers
they maintain to a device when performing tests. We consider that good news since it
indicates that most drivers pass at least basic soundness tests. Notwithstanding, 16% of
maintainers could probably benefit from some assistance. Many hurdles may prevent
a maintainer from testing a driver, for instance, not having the required hardware, an
unsuitable test infrastructure, or not having the time to do tests.

These issues are, of course, not easy to deal with. A possible solution to the first of these
problems could be to develop virtual devices to mimic the behavior of an actual hardware
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Figure 5.10: How Linux maintainers test the drivers they maintain.

counterpart. Despite its limitations, virtual devices have been used in some cases1 2 and
explored by our research group3. The available test tools provide several features to test
device drivers, and as they improve over time, testing device drivers should get easier.
Lastly, balancing the workload among driver maintainers is an open challenge because
there is no standard way to estimate the amount of work it can take to maintain a driver
over some time. Moreover, the rapid growth of the Linux kernel source code has evidenced
a maintainership scalability problem that does not have any clear solution.

Since developing diverse types of driver poses different issues to developers, we seek
to assess whether distinct types of drivers also require particular testing procedures. To
examine that, we plotted the answers to question 10 grouped by the driver types reported
in answers to question 9 (Figure 5.11). Due to the many driver types reported, we only
analyzed grouped responses for the three most cited driver types.

Compared to PCI and network driver maintainers, platform driver maintainers appear
to rely more on kernel-userspace ABI/APIs to test their drivers. Also, network driver
maintainers are proportionally more into testing tools than developers from the other
two groups. These distinctions hold if we examine subquestion comments grouped by
driver type. More maintainers who have tested platform drivers have acknowledged the
use of kernel-userspace ABIs (“sysfs attributes must work as intended”, “I used to do this, but
now mostly use in-kernel tests.”). Likewise, more maintainers that tested network drivers
reported running test tools to catch potential bugs (“Smatch Sparse”, “make coccicheck or
equivalent”).

After analyzing all comments to question 10, we highlight a few additional insights.

1 https://lore.kernel.org/linux-iio/20210207154623.433442-1-jic23@kernel.org/
2 https://lore.kernel.org/linux-iio/20210614113507.897732-1-jic23@kernel.org/
3 https://bcc.ime.usp.br/tccs/2021/lpstankus/monografia.pdf

https://lore.kernel.org/linux-iio/20210207154623.433442-1-jic23@kernel.org/
https://lore.kernel.org/linux-iio/20210614113507.897732-1-jic23@kernel.org/
https://bcc.ime.usp.br/tccs/2021/lpstankus/monografia.pdf
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Figure 5.11: How Linux maintainers have tested platform, PCI, and network drivers.

First, some maintainers have conditioned the conduct of tests to the possession of hardware.
Among the comments to the I probe and bind the driver to a device it supports subquestion
are: “runtime testing on real hardware”, “Only if I have that device”, and “...or an emulation
of the supported device”. Among the comments to the Other option is “Reproduce bugs and
verify patches fix them. Always if I have the hw to reproduce”. Thus, even though the Linux
kernel is free software, it might be hard to test some parts of it without specific non-free
hardware devices. This constraint is especially true for device drivers. Not having access
to the hardware supported by a driver may greatly hinder any effort toward testing the
driver because one might not even be able to run its initialization procedures. We have
observed a few efforts toward minimizing the limitations that missing hardware poses to
software testing. Some of these initiatives are SymDrive, the KUnit mocking framework,
and the use of QEMU virtual devices. In particular, we believe that using QEMU emulated
devices for driver testing might become a tendency among developers since QEMU was
the fifth most spontaneously cited tool in question 8.

Second, similar to the reports to question 8, we had many testing tools being cited in
comments to the I start a test tool to catch potential bugs subquestion: “kernel debug options
like lockdep and kasan check for locking and memory errors”, “KUnit”, “v4l2-compliance/cec-
compliance”, “Smatch Sparse”, “those found in tools/ in the kernel tree”, “make coccicheck or
equivalent”. Despite that, there is surely a portion of developers running their own scripts
since one of the respondents said to run “fio, custom scripts”.

With question 11 (“How familiar are you with these tools/testing infrastructure?”), we
can estimate what test tools the Linux community uses to test the kernel (RQ2) and how
frequently they run tests. Because several test tools are available, we limited our investiga-
tion of usage frequency to the ones most cited by the literature. Question 11 presented a
list of twenty testing tools or testing infrastructures to the respondents, eighteen of them
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selected for being most cited in academic studies or community publications and reviewed
by us in Sections 4.1 and 4.2. Two additional testing tools, KUnit and Sparse, were included
on the list by the authors of this research. We added KUnit to the tool list because we had
assessed it during the early phases of this research and because it is developed as part of
the Linux kernel. We also included Sparse because it was cited by tools appraised in our
formal and grey literature review. Moreover, Sparse is the default check tool enabled by
passing C=1 or C=2 flags to Linux’s top Makefile when compiling the kernel. Figure 5.12
shows the results to question 11.

Figure 5.12: How familiar are Linux driver maintainers with driver testing tools.

Among the Linux driver maintainers who completed the Device Driver Testing Survey,
the 0-day test robot and Sparse are the most frequently used test toolings. Also, Coccinelle
is the most known test tool since it got the lowest number of marks for the I’ve never heard
about it option. Similar to what was observed from the answers to question 5, question
11 results also reveal a preference for static analysis tools over dynamic analysis. An
expressive number of respondents reported using Sparse, Smatch, or Coccinelle frequently
(sometimes or always). In contrast, fewer individuals said to run Trinity, Syzkaller, LTP,
Ktest, jstest, KUnit, SymDrive, FAU machine, ADFI, EH-test, or COD as often. The ex-
ception was Kselftest, which maintainers said to run roughly as frequently as Smatch or
Coccinelle.

We believe the reason for preferring static over dynamic analysis test tools is because,
in contrast to dynamic testing tools, static analysis tools allow one to inspect the whole
source tree or just specific files within it. With that, static testing tools ease the detection
and fixing of problems during Linux development. However, developers should be aware
that those tools suffer from false positives (Kernel Testing Guide 2022).
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Another remarkable result is the recognition given to the 0-day test robot. As an
automated test service, developers don’t use the bot by initiating a test tool as they would
with any locally installed software. Instead, they benefit from the service through reports
sent by 0-day when it finds potential bugs in code sent to the mailing lists or within
monitored development trees. Thus, despite having no direct control over the start of tests
performed by 0-day, many developers perceive they are using the tool very often.

Lastly, no driver maintainer declared to use any of the six testing tools introduced by
academic works assessed in this research. In fact, very few maintainers do even know
about those tools. This result indicates that, so far, driver testing tools introduced by
academic works have failed to impact the Linux development community.

At the end of Part III, we presented respondents with three open-ended questions to
allow them to report any other piece of information they would judge relevant to driver
testing. The first of them (question 12) asked if we should consider any other tool for device
driver testing. Other than the tools reported in question 8, maintainers also mentioned
kcsan, and klocwork in response to question 12. Some respondents also went further by
commenting on details of test tools or giving their opinions about them: “I don’t know any
of the test tools; but in ‘make menuconfig‘ I noticed that the I2C stack (and probably others,
too) support fault injection.”, “The intel-gfx / i915 devs have extensive CI for the drm/kms
subsystem. The sparse/build tests are universal (for drm/kms code) the actual functionality
tests are all run on Intel graphics only”, “gitlab-ci or equivalent should be used by maintainers
to ensure tests are run and pass before merging.”, “roadtest for i2c drivers. Not upstream yet but
very useful.” Last, we highlight a couple of comments mentioning QEMU as a supporting
tool for device driver testing: “QEMU Emulation, Mocked Emulation”, “It’s not strictly a
testing tool, but qemu can be helpful for testing drivers on emulated hardware”.

With the next open-ended question (question 13: “What do you think are the main
challenges for device driver testing?”), we intended to hear directly from driver maintainers
about the troubles and challenges related to testing device drivers. To our surprise, 57 out
of 85 maintainers who have completed the survey have answered question 13.

The most mentioned issue was having access to the hardware required to do tests, as
reported by 25 maintainers. This outcome should be of moderate concern since it indicates
that 29% of device driver maintainers may find it hard to test changes against real hardware
devices. Developers may have difficulty testing device drivers either because they do not
have access to a specific device or because they do not have access to all different device
variants supported by a driver. Some respondents reported as challenges: “HW access - I
do not have working HW for the stuff I maintain these days”, “from subsystem maintainer
PoV: missing hardware availability”, “Hardware availability for drivers that support many
devices with small (or not so small) differences in the programming model.”

The limitation imposed by the lack of hardware to test a device driver might impact the
extension of tested code that goes upstream, as reported by a driver maintainer: “Hardware
availability. I cannot test on hardware that I do not own. To perform tests for hardware that I
do not own, I have to modify the driver itself, which means I am not submitting the exact
driver that I have tested.”

A possible solution to the hardware availability problem would be to develop virtual
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devices to enable drivers to probe and bind to a device, allowing at least a few code paths to
be tested. Further, a custom virtual device would also respond to driver requests, mocking
operations from a hardware counterpart. Some survey participants were categorial about
that in their responses, classifying device emulation as a challenge for driver testing:
“Lack of hardware meaning emulation development is often necessary. Sometimes stubbing
functionality is sufficient”, “Emulating the device side”, “Emulating hardware”.

However, virtual devices are not a silver bullet. First, an emulated device would only be
able to provide fake data since it would hardly interface with other devices on the system or
ever capture real-world data. Second, designing a proper device model for some hardware
pieces might be tricky because they may have a large state space or non-deterministic
behavior. In the words of survey participants, testing a device driver may be challenging
due to the “lack of good documentation and behavior models that could be used to test drivers
without the hardware.” or because of “hardware behavior unpredictability and range of
potential states”. Another maintainer argued that “You need real hardware. Because anything
else (eg stubs, emulations, or models) have to be bug-for-bug compatible for the testing to be
relevant. Real hardware also exhibits timing variations/interactions that are nearly impossible
to replicate any other way, and most of the time you’ll find "undocumented features"”. Last,
even though virtual devices may help test device drivers under certain limitations, most
hardware devices don’t have a software counterpart. Due to that, this test strategy may
imply an additional burden to device driver developers, who would first have to develop a
virtual device with which they would test their patches.

Aside from difficulties having access to hardware, device driver maintainers reported a
few more obstacles related to driver testing. One of those issues with driver testing stems
from the fact that the Linux kernel is highly configurable. The kernel has thousands of
configuration options. Each of them may include a different source file for compilation
or even specific parts of source files. If, for instance, one may enable a driver by setting
a single configuration option, then the driver is expected to work in every kernel built
from any other combination of values assigned to the remaining configuration options.
However, even though some bugs may occur only with specific kernel configurations,
it’s impractical to test a driver with every possible valid kernel configuration because
there are billions of them. Some developers have expressed this difficulty: “One problem is
the number of possible combined configuration options. You may need to test more than one
kernel.”, “issues may only show up in unusual combinations of kernel configurations; also:
combinatorial explosion of options”. While the combinatorial explosion of configuration
options is not a problem exclusive to device drivers, it indeed constitutes a challenge when
it comes to testing the Linux kernel.

Testing Linux kernel device drivers is especially challenging because it “involves de-
termining if a piece (or many different pieces) of hardware behaves as expected, as well as
whether a program behaves as expected.” In this context, “the hardware is critical, and most
hardware designs don’t foresee testing as you might wish”. For example, it may not be easy
to test device drivers under particular operating conditions. For instance, a hardware piece
may require specific handling procedures when working over a predefined temperature.
Setting up exact environmental conditions or “being able to reproduce various external
conditions to trigger device behavior” may be hard to accomplish sometimes.
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On top of that, hardware may behave unpredictably or in unexpected ways that
complicate device driver development and testing. “[...] Hardware can behave in unexpected
ways, and it can be difficult to prepare a driver for all situations that can occur. [...]”, “hardware
behavior unpredictability and range of potential states”, “The fickleness of hardware. In some
cases, the lack of decent documentation of the hardware”.

Regarding test tools, even though there is no consensus about whether to test device
drivers against emulated or against actual hardware, a few maintainers expressed concerns
about how tests are carried on. “The testing community is very much oriented around
software testing other software. Testing hardware states is different. If you want to control
the test rig as much as you do with software testing software, you have to first implement an
emulation of the hardware to be able to e.g. provoke different fault states (fault injection).”
Another maintainers testified that: “as for writing tests, for example unit tests, it can be
really hard to accurately model the hardware component. This means that for proper testing,
a system with the target hardware platform must be available for anyone wanting to run
such tests. [...] Bots, like the aforementioned syzbot, have no real way to test the driver’s
functionality (in fact, the only reports I got back from them were compile errors for some more
obscure platforms).” Yet another survey participant told that “at least for media drivers,
there are too many possible permutations to test. Unit tests typically are not really suitable
for these types of drivers, the tests have to happen at the system level, hence the development
[...] of the compliance utilities maintained in https://git.linuxtv.org/v4l-utils.git/”. A fourth
device driver maintainer mentioned that “the learning curve for testing tools/infrastructures
can be very high. With there being so many of them it is impossible to study them all and
pick the best ones for your area.”

We’ve also obtained replies conveying challenges related to automated device driver
testing. “Hardware that may fail being part of testing loop and it is hard to distinguish in an
automated system whether the failure is due to driver bug or a hw problem.”, “Board farm
management for testing a wide diversity of hardware.”, “Automating testing - especially au-
tomating the hardware feedback loop: By capturing video, emulating input devices, designing
homebrew storage devices with fault injection, etc.”, Nevertheless, despite the adversities
of automated testing, no one objected to it. In fact, some participants have expressed
that automated testing is the way to go. “Centralizing CI services involves booting boards,
which is hard, but is necessary for linux to start achieving usable quality at release time”,
“Automating the testing can also be sometimes very difficult. Manually testing will usually
just take too long.”

Lastly, some developers complained about hardware manufacturers’ support for device
driver testing. “The funding of hardware companies accorded to software testing is mostly
still very limited, if not unwanted.”, “Hardware availability of niche devices - even when you
work for the device manufacturer, you may only have very limited access to flaky hardware,
which makes it very hard to automate testing”, “At least from Nouveau’s perspective, the
bigger issue with testing is finding someone to handle the bringup of infrastructure, along
with reliable hosting infrastructure that we could hook up to real hw. We’re spending enough
time just trying to keep up!”

To summarize, the challenges most reported by device driver maintainers were having
access to the hardware (mentioned by 29% of respondents), followed by automating tests
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(referred by 7% of respondents), then enhancing test tools (6% of respondents).

The last question of Part III was question 14: “What would you recommend the Linux
kernel community do to improve device driver testing?”. Thirty-one device driver main-
tainers answered this question. The top three most reported suggestions were to advance
in automated test and CI systems (mentioned by 9% of developers), to invest more in
hardware emulation, virtual models, or mock frameworks (8% of respondents), and to
ask for more support from hardware manufacturers (5% of participants). Maintainers also
suggested we (the Linux kernel community) should enhance the documentation with a
summary of available test tools and best practice guidelines and help educate ourselves
about better testing methods.

Once more, the answers reveal that there is no consensus about whether or not the
community should go for testing drivers against virtual devices. While the majority of
maintainers see benefits in using virtual devices for driver testing, a few others argue
against it and consider “there is no substitute for actual hardware when it comes to device
drivers”.

An intereseting suggestion in the direction of having more tests on hardware devices
considered the possibility of putting efforts in “making it easy for testing, and for reporting
test results, for those with access to the real device”.

Moreover, we identified several improvement suggestions to current test tools and
infrastructure. These ideas and opinions reflect the desires of device driver maintainers
with respect to the features offered by available test tools (RQ3).

From those who wanted more automated tests, we note a positive opinion about
current testing services and an appeal for hooking more test systems to development
trees. “Hire more people to work on testing: writing test scenarios, writing tools for automated
testing on target HW, writing tools for automated testing via mocks without target HW,
proving public servers for running automated tests (e.g. for every sent patch), increase test
coverage, [...]”, “Offline testing, such as KernelCI and 0-day, seem extremely useful to me as
follow-up for pre-posting (in-house) testing. I’d recommend exploring how such approaches
can be extended both in terms of coverage and when testing occurs - before/after patches are
posted/merged.”, “Improve the discoverability of current processes for hooking into things like
KernelCI. Another place I think we could improve on is companies that have their own testing
farms, but that don’t have them publicly accessible.” “Implement SW-controlled test benches
for every bus/protocol using HW that supports endpoint and controller roles. Hook that to the
specific kernel maintainer branches so they are run on every patch inclusion.”

Some other maintainers expressed a desire for device mocking or emulation systems,
one of them reporting a positive experience with those. “Invest more in compose-able
emulation and mocked models.”, “Maybe a driver/hardware mocking framework. If that
exists I am unaware of it.”, “Write device emulations to test device drivers in, e.g. QEMU. If
available the tests can even be automated.”, “For the media subsystem it was very helpful to
create virtual drivers (i.e. drivers emulating media hardware), as that is very useful to catch
regressions in core media frameworks, and it allows testing media APIs for hardware types
that are otherwise very difficult to obtain (if at all).”

We observed a relatively high number of responses asking for device mocking, virtual-
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ization, or emulation. We believe the reason for that is because these strategies are seen
as solutions to two major issues reported by maintainers. First, virtualization provides
a way of testing device drivers without hardware. Second, software artifacts may be
easier to manage than the hardware devices they emulate, simplifying the creation and
maintenance of automated test environments. Thus, device virtualization was mentioned
by many developers.
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Chapter 6

Triangulation and Discussion

Now that we have collected information from three different research methods (formal
literature, grey literature, and community survey), let’s compare our findings and merge
them through synthesis by integration. According to Rousseau et al. (2008), synthesis
by integration is characterized by comparing evidence involving two or more data col-
lection methods. Likewise, we triangulated the data from our research to corroborate a
comprehensive view of how Linux kernel device drivers are being tested (RQ1).

6.1 Triangulation

Overall, we did not identify any conflicting information between formal and grey
literature publications. However, we note that grey literature publications did not mention
any test tool introduced by the academic papers we assessed in this study. Therefore, we
focus on comparing information about tools reported in community publications.

Starting with LTP, Khan (2014) and Iyer (2012) say that LTP contains a collection
of tools to test the reliability, robustness, and stability of the Linux kernel and related
features. Further, Zaidenberg and Khen (2015) adds that the test suite methodology is
also based on regression testing.

Still talking about the Linux Test Project, Claudi and Dragoni (2011) states that
LTP can test essential Linux kernel features such as filesystems, device drivers, memory
management, scheduler, disk I/O, networking, syscalls, and IPC. Similarly, Khan (2014)
says that, by default, LTP run script includes tests for filesystems, disk I/O, memory
management, inter process communication (IPC), the process scheduler, and the system
call interface. Also, both Claudi and Dragoni (2011) and Khan (2014) assert that some
Linux testing projects are built on top of LTP or incorporate it somewhat. Regarding device
driver testing, Renzelmann et al. (2012b) reported that LTP can invoke drivers and verify
their behavior, but it requires the device to be present. They also mention that LTP cannot
verify properties of individual driver entry points because it runs tests at the system-call
level.

Rothberg et al. (2016) were consistent with Coccinelle’s home page (Coccinelle: A Pro-
gram Matching and Transformation Tool for Systems Code 2022) when they cited Coccinelle
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as a Linux kernel static analysis tool that also helps code collateral evolution. They’ve
also acknowledged the activity of continuous integration (CI) testing services, rating the
0-day test robot as the most prominent tool among automated testing services. One year
later, G. K.-H. Jonathan Corbet (2017) ranked 0-day as the top bug reporter during the
development period between 4.8 and 4.13 Linux kernel releases.

Y. Chen et al. (2013) introduced a test tool called KIS (Kernel Instant bug testing
Service) which runs static analysis tests with GCC, Sparse, Smatch, and Coccinelle. They
also mentioned that KIS runs dynamic analysis tests with Trinity, xfstests, and mmtests.
In turn, B. Chen et al. (2020) commented that dynamic analysis tools have been receiving
more attention in recent years and mentioned Syzkaller among fuzz testing tools.

With respect to Kselftest, both Linux Kernel Selftests (2021), Kernel self-test (2019), and
Rothberg et al. (2016) say the test suite has unit tests that should execute quickly and
exercise individual code paths.

Thus, formal and grey literature complement each other in describing Linux kernel
test tools.

6.2 Discussion

We highlight that neither the community publications reviewed by us nor the responses
to survey questions 8 and 12 have mentioned any testing tool introduced by academic
papers assessed during our mapping study. In addition, the results from survey question
11 indicate that no device driver maintainer uses any of the testing tools proposed by
academic papers we’ve assessed. Therefore, we consider that the Linux community is not
using those test tools presented by academic studies to test the kernel.

Instead, we back on three pieces of evidence to provide a list of the test tools used by
the Linux community to test the kernel (RQ2). The first piece of evidence we consider is
the collection of responses to survey question 8 (“Do you use any tool to test the Linux
kernel yourself? If so, which?”) and to question 12 (“Should we consider any other tool for
device driver testing? If so, which?”). These were open-ended (non-suggestive) questions
in which device driver maintainers could report any tool they felt they used for testing
the kernel. We will denote evidence from answers to those questions by the spontaneous
keyword.

The second piece of evidence we consider comes from the collection of test tools we
organized from information gathered during our mapping study and grey literature review
(Table A.1). Every tool there was referenced by at least one publication, even though many
were mentioned by three articles or more. Moreover, we have inspected the repositories
of each tool in that table and estimated their activity status based on whether they have
received contributions from January 2021 to March 2022. Thus, we consider (and denote)
that any tool in Table A.1 regarded as being actively developed has activity evidence in
favor of it.

The third and last piece of evidence we considered is the set of responses to survey
question 11 (“How familiar are you with these tools/testing infrastructure?”). This question
presented a list of twenty tools we assessed throughout our research and offered five options
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to let respondents report if they knew about those tools and how often they used each of
them. If a particular tool got at least one reply asserting a driver maintainer uses it, then
we understand such response as usage frequency evidence indicating that the specific tool
is being used.

With that, we estimate with high confidence that Coccinelle, KernelCI, Kselftest, ktest,
KUnit, Smatch, Sparse, and Syzkaller/Syzbot are being used by the community to test
Linux. These tools have spontaneous, activity, and usage frequency pieces of evidence
indicating their use.

In addition to those, we also have high confidence that kernel developers use 0-day,
LKFT, LTP, Trinity, and TuxMake because these are supported by activity and usage
frequency pieces of evidence.

Another few tools we highly believe are being used by Linux developers are perf,
igt-gpu-tools, and kvm unit tests. Spontaneous and activity pieces of evidence support
these.

Some other tools reported in responses to question 8 or question 12 were not present in
Table A.1 either because we did not identify them during our literature review or because
we disregarded them as test tools. Consequently, we did not assess their development
activity status or usage nor presented them in question 11. Anyway, we list those tools
here since they have spontaneous evidence of use and thus are probably being used by
device driver maintainers, even though we are not sure all of them fit the software test
category. These tools are kernel_patch_verify, rdma tools, tcpdump, lockdep, piglit, slub,
pps-tools, roadtest, tools/testing/cxl, virtme, coverity, cec-compliance, checkpatch, can-
utils, mdio-tools, ethtool, ping, kmemleak, qemu, kasan, kcsan, klocwork.

Lastly, Table A.1 has tools that were not mentioned in responses to questions 8, 11, or
12. Nevertheless, we believe that Linux developers may use those tools which only have
activity pieces of evidence in their favor. However, we cannot estimate a usage probability
for those tools because they differ in the number of publications mentioning each one.
Also, we perceive different data sources with slightly different regards. Thus, the test tools
with only activity evidence supporting them may have a low to high chance of being
used by the Linux community. To simplify the visualization, we added the number of
referencing publications after each activity evidence marker in Table 6.1. Table 6.1 shows
the complete list of testing tools being used by the Linux community to test the kernel
(RQ2, RO1) and the types of evidence supporting them.

Tool Supporting evidence
Coccinelle spontaneous, activity, usage frequency
KernelCI spontaneous, activity, usage frequency
Kselftest spontaneous, activity, usage frequency
ktest spontaneous, activity, usage frequency
KUnit spontaneous, activity, usage frequency
Smatch spontaneous, activity, usage frequency
Sparse spontaneous, activity, usage frequency

continue ⟶

Table 6.1: Test tools used by the Linux community to test the Linux kernel.
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Tool Supporting evidence
Syzkaller/Syzbot spontaneous, activity, usage frequency
0-day activity, usage frequency
LKFT activity, usage frequency
LTP activity, usage frequency
Trinity activity, usage frequency
TuxMake activity, usage frequency
perf spontaneous, activity
IGT GPU Tools spontaneous, activity
KVM Unit Tests spontaneous, activity
kernel_patch_verify spontaneous
RDMA Tools spontaneous
tcpdump spontaneous
lockdep spontaneous
Piglit spontaneous
SLUB spontaneous
pps-tools spontaneous
roadtest spontaneous
CXL Tests spontaneous
virtme spontaneous
Coverity spontaneous
cec-compliance spontaneous
checkpatch spontaneous
can-utils spontaneous
mdio-tools spontaneous
ethtool spontaneous
ping spontaneous
kmemleak spontaneous
QEMU spontaneous
KASAN spontaneous
KCSAN spontaneous
klocwork spontaneous
Dr. Checker activity (1)
DIFUZE activity (1)
mmtest activity (1)
KCOV activity (1)
cyclictest activity (1)
hackbench activity (3)
rcutorture activity (2)
Hulk Robot activity (2)
Buildbot activity (1)
Continuous Kernel Integration (CKI) activity (2)
AutoTest activity (2)

continue ⟶

Table 6.1: Test tools used by the Linux community to test the Linux kernel.
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Tool Supporting evidence
xfstests activity (3)
LAVA - Linaro Automated Validation Architecture activity (2)
Fuego activity (2)
KMSAN activity (1)
LISA activity (2)
KTSAN activity (1)
LKMM / litmus-test activity (1)
herd activity (2)
TuxSuite activity (1)
Schbench activity (1)
Rt-app activity (1)
Phoronix Test Suite activity (1)
Marvin activity (1)
Undertaker activity (1)
S Suite activity (1)

Table 6.1: Test tools used by the Linux community to test the Linux kernel.

As for the features of these tools, some provide unit tests, and others do integration
tests, stress tests, fuzz testing, and many other types of tests listed in the Testing Techniques
column of Table A.1. Most of the tools in Table 6.1 may be run by individual developers, and
some of them are run by automated test services that fetch and test patches from mailing
lists or from Linux kernel trees. Detailed information about the tools that we assessed
during this research and their capabilities were presented in Subsection 4.2.2.

Coming back to the broader research question RQ1, we now use the evidence collected
throughout this study to outline how Linux device drivers are tested. We will divide the
answer to this question into two parts: tests performed by individual community members
who develop, maintain, or test Linux device drivers; and tests performed by automated
test systems and CI rings.

First, according to our survey results, 90% of Linux kernel device driver maintainers
do test patches frequently (always or, at least, most times) before sending them to any
mailing list. When testing drivers they maintain, 84% of Linux developers do at least basic
soundness tests such as probing and binding drivers to devices they supports. Moreover,
68% of driver maintainers also assess driver functionality through kernel space to user
space ABI, and 38% of them run test tools to catch potential bugs. Respectively, 19% and
15% of driver maintainers who always runtime test their patches said to run either static or
dynamic analysis tools very often (always or, at least, most times). With some regularity,
42% of device driver maintainers run Sparse, 20% run Smatch, 16% run Kselftest, 16% run
Coccinelle, 15% run Syzkaller, 7% run KUnit, 7% run LTP, 4% run Trinity, 2% run TuxMake,
and 2% of them run ktest.

Throughout our GLR, we have found a few examples of developers and companies
said to have been testing the Linux kernel. The Linux Foundation carried on a series of
interviews with Linux kernel developers. To them, Arnd Bergmann said to have started
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doing a lot of build-testing to improve the quality of merged contributions (Linux Kernel
Developer: Arnd Bergmann 2017). Laura Abbott said to have spent a lot of time testing and
reviewing patches for kernel hardening (Linux Kernel Developer: Laura Abbott 2017). Shuah
Khan said to have boot tested stable kernel release candidates (Linux Kernel Developer:
Shuah Khan 2017). A kernel development report revealed that Linus Torvalds routinely
boot tests the kernel that results after accepting a pull request (G. K.-H. Jonathan Corbet,
2017). Another report from the Linux Foundation pointed out that the Real-Time Linux
development team will have to test and adjust new incoming features to maintain the
kernel’s real-time capability (Real-Time Linux Continues Its Way to Mainline Development
and Beyond 2017). Companies seem to have more specific interests. Collabora intends
to have the DRM subsystem under continuous integration, validating new drivers with
the IGT test suite (Vizoso, 2016). ARM and Linaro use a real-time workload simulator
called rt-app to trigger specific scheduler code paths to test small scheduling and load-
balancing changes (Fleming, 2017). Oracle tests Linux kernels with workloads related
to their products, such as Oracle Engineered Systems, Oracle Cloud Infrastructure, and
enterprise deployments for Oracle customers (Oracle Q&A: A Refresher on Unbreakable
Enterprise Kernel 2018).

Besides the tools mentioned above, evidence indicates that another myriad of software
is used to test Linux device drivers. Table 6.1 lists the tools for which we have acquired
evidence of usage in the context of Linux kernel testing. Even though not all of those
are strictly test tools, most of them are available to anyone. Thus, many other individual
developers, who are not necessarily driver maintainers, may be running them to test Linux
somehow.

Speaking about things that are not precisely test tools, many survey participants have
reported test practices not related to any test tool in particular. The most mentioned of
those practices was using hardware emulation, device models, or mocks, to carry on the
tests over device drivers. Particularly, QEMU was mentioned by some maintainers as a
tool that allowed such tests. In addition, a few other maintainers said running custom
scripts or using in-kernel functionality (such as fault injection capabilities) to test device
drivers. We estimate that the number of developers performing tests through custom
scripts, QEMU models, or manual inspection is not negligible. 30% of driver maintainers
who said to always runtime test their patches don’t use any static or dynamic analysis
tool. They represent 16% of all driver maintainers and constitute a lower bound estimative
of the portion of developers who might benefit from integrating test tools into their
workflows.

Most of the tests performed by individual developers probably occur during the patch
development and review cycle since the Linux kernel community adopts an RTC (Review
Then Commit) policy for incorporating changes.

As the second part of the answer to RQ1, we now talk about tests performed by machines.
There is a number of test robots and CI systems testing the Linux kernel. Throughout this
study, we identified a few of them: 0-day, LKFT, KernelCI, Syzbot, Hulk, CKI, and Buildbot.
These rings often provide tests as a service and incorporate several test tools such as
Smatch, Coccinelle, LTP, Kselftest, libhugetlbfs, v4l2-compliance tests, and many others.
Nevertheless, the set of monitored trees and the frequency each one undergoes testing
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may vary from robot to robot. For instance, the 0-day test robot fetches patches from
mailing lists and key developers’ trees and has a response time of one hour around the
clock (hence the 0-day name). KernelCI focuses on testing upstream kernels by generating
several kernel build configuration sets and submitting them to boot tests in various labs
worldwide. Syzbot fuzzes main Linux kernel trees and reports bugs to kernel mailing lists.
LKFT focus on testing Linux release candidates, linux-next, and long-term-stable releases
on the arm and arm64 hardware architectures. LKFT is said to report test results in up to
48 hours.

We recall that 28% of device driver maintainers reported having registered their devel-
opment trees with Linux kernel testing services. This rate rises to 34% among maintainers
with six or more years of Linux development experience. However, we consider these to
be lower-bound estimates of the portion of trees covered by testing services since most
(if not all) development trees are publicly available and, therefore, can be obtained and
tested without consent from any developer or maintainer. Moreover, because Linux kernel
development trees are accessible, they might be monitored by many other test robots
beyond those identified by our study. 43% of maintainers who contribute as part of their
jobs said their organizations had a CI system to test the Linux kernel. Whether the reports
from those systems are publicly accessible or not, sharing test results may contribute to
a higher collaboration toward Linux kernel testing. Indeed, one of the suggestions for
improving device driver testing was for companies to make their test systems publicly
accessible.

As a gross estimate of how many developers benefit from test services, we point out
that, respectively, 32%, 19%, and 4% of maintainers said to use the 0-day, KernelCI, and
LKFT services with some regularity (often or, at least, sometimes).

Aside from outlining current Linux kernel testing tools, we indicate opportunities
to improve existing test tools based on suggestions from community developers (RQ3).
Starting with Trinity, an ongoing task is to add support for new system calls and system call
flags introduced by more recent kernel releases. Enhancing support for network protocols
and adding tests for common syscall patterns such as open, read, close was also on the
wishlist of the fuzzer maintainer Dave Jones (Kerrisk, 2013). Although Dave suggested
these improvements in 2013, some of those proposals, and many others, remain in the
project’s TODO file.

In August 2014, kernel developers desired Kselftest features such as the ability to
execute tests in a few minutes or seconds, run groups of tests at once, and that test source
code was kept in the kernel source tree. A few additional features were suggested then,
but those requests seem to have been fulfilled throughout the years.

Back in 2016, Vizoso (2016) reported that an area where KernelCI could improve
was in its test coverage. He commented that even though build and boot regressions
were annoying for developers because they impacted everybody working on the affected
configurations and hardware, regressions on peripheral support or other subsystems not
triggered during the boot process could still make rebases costly.

As more general suggestions regarding Linux kernel testing, we note that in an inter-
view published in the 2017 Linux Kernel Development Report (G. K.-H. Jonathan Corbet,
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2017), Dan Williams reported that the community should work on accelerating the growth
of a unit test culture for the Linux kernel. Also, Khan (2014) mentioned that there is no
requirement that testers should be developers.

From our Device Driver Testing Survey results, we point out that 28% of device driver
maintainers reported having registered their development trees with automated test
services, thus indicating an appreciation of test bots and CI rings. Nevertheless, from the
responses to question 14, we observed various suggestions for improving and expanding
current test services. The directions are for writing automated tests with mocks, increasing
test coverage, increasing the number of test iterations, and making closed test farms open
and publicly accessible.

Moreover, the lack of hardware to test patches was the top challenge reported by
driver maintainers in responses to question 13. Conversely, solutions that would allow
testing without hardware were also mentioned by many developers in several questions.
For instance, four developers have said using QEMU to test the kernel in their responses
to question 8. Later, QEMU was also cited twice more in answers to both questions 12 and
14 as a tool that may help driver testing due to its ability to emulate hardware.

Thus, the evidence we have gathered suggests that the Linux kernel community has
two top desires concerning driver testing. One, to expand existing CI and automated
test systems, and two, to have more emulation and mocking implementations for testing
drivers when the required hardware is unavailable.

6.3 Considerations on Linux Kernel Device Driver

Tests

Linux kernel device drivers may be hard to test due to many issues. For example,
one often needs specific hardware to exercise most, if not all, code paths of a driver.
Also, laying devices under particular operating conditions or providing them with certain
stimuli may be difficult. In addition, kernel crashes complicate the process of getting test
output compared to application crashes. Further, hardware may eventually fail and behave
unpredictably.

Alternatively, one could exercise device driver code using emulation, virtualization,
mocking, or software alike. However, it’s not clear whether software can replace hardware
for all test purposes. Correctly mimicking hardware behavior and creating test cases that
properly simulate real-world usage are some challenges to these test approaches.

While CI rings and test robots may compile and boot test the Linux kernel, they
might lack test cases to assess device driver functionality. According to Linux maintainers
who participated in our survey, extending CI systems may be challenging apart from the
hardware access issue because there is “no culture of supplying unit tests and functional
tests with drivers.” We recall that Vizoso (2016) has commented about improving the test
coverage of KernelCI and his concerns about regressions in code for driving peripherals.
Moreover, a survey participant reported they only got compile time error reports from
test robots. From such evidence, one might wonder if the current automated test services
provide adequate test coverage for device driver code.
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Whatever the answer to this question, we should not disregard automated test services,
for providing high device driver test coverage is a tough affair. One reason for that is that,
even though not all hardware devices need or have an in-kernel driver for them, the overall
number of devices that do need (and have) in-kernel drivers tends to grow as hardware
manufacturers keep releasing new designs. Moreover, hardware designs may differ a lot
from each other, possibly having particular interfaces, register maps, operating modes,
capabilities, execution contexts, and other distinguishing characteristics that can turn the
process of creating test cases into a device-specific task. Thus, providing extensive test
coverage for Linux kernel device drivers might require a continuous effort to expand test
infrastructure as more drivers are developed.

Thinking in a scenario where hardware devices keep diversifying, we wonder whether
hardware manufacturers shouldn’t behave more proactively in leveraging device driver
tests. For example, if manufacturers could provide virtual devices able to mock their
hardware designs, then automated test systems would be able to use them to exercise
additional driver code paths. Thinking further, we wonder if one could automate the
process of creating device mocks from the hardware design. For instance, if one could
generate a state diagram from a hardware description (such as a VHDL1 program), then
that model could probably be used to create a QEMU virtual device to mock the real
one. Having accessible device mocks would then leverage Linux kernel device driver
tests.

1 VHDL stands for VHSIC Hardware Description Language. VHSIC is an acronym for Very High Speed
Integrated Circuits.
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Conclusion

The Linux kernel is tested by many community developers and automated test services
in several different ways. However, to the extent we could explore, the academic literature
does not properly cover test practices of the Linux kernel development community. In
particular, no publication has addressed the state-of-practice of Linux device driver tests.
This research investigated how Linux kernel device drivers are being tested. With data
from a grey literature review, we characterized the twelve most mentioned test tools in
community publications. With additional data from a community survey, we achieved
our second research goal of identifying test tools and strategies adopted by Linux device
driver maintainers. By synthesizing data from our mapping study, grey literature review,
and community survey, we achieved our first research objective of providing a list of
tools used by Linux kernel developers to test the kernel. Finally, we achieved our third
research objective by providing a dissertation addressing the state-of-practice of Linux
kernel device driver testing.

7.1 Contributions

This research has provided a broad view of how the Linux kernel is being tested. We
have provided a list of tools used to test the Linux kernel based on evidence from three
scientific research methods. In addition, we have characterized eighteen test tools for
assisting Linux kernel tests. Moreover, we have conducted a survey with device driver
maintainers to enlighten the state-of-practice of Linux kernel device driver testing, includ-
ing its challenges and possible advances. We provided reasonable answers to three original
research questions, which contribute to enlarging the scientific body of knowledge related
to the Linux kernel. The largest open-source software project up today.

7.2 Threats to Validity

Concerned about missing important data related to device driver testing, we relaxed our
tool selection criteria when planning our grey literature review. When reading documents
from the formal literature, we selected tools for assessment only if they were advocated
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as automated driver test tools. In contrast, when reviewing community publications, we
selected a diverse pool of driver test tools for evaluation, whether they were designed for
automated tests or not. Because we did not select non-automated Linux kernel test tools
from academic works for assessment, the considerations we made don’t truly generalize
for Linux device driver testing tools. Moreover, it’s hard to argue that our work properly
covers Linux kernel automated driver test tools because we have little information about
some of them.

Throughout this study, we have assessed 399 articles in the field of computer science
and 250 publications from the grey literature. From them, we have focused our attention
on 19 papers and 65 community documents only. However, we cannot guarantee to have
acquired enough information to describe the actual state of practice of Linux kernel device
driver testing. There may be many more publications with relevant information about
device driver tests that were not covered by our study. Thus, we believe that further
investigation, especially of grey literature documents, would lead to a more accurate
understanding of driver test practices. Also, the document selection for the mapping study
and the grey literature review was made by a single person; therefore, the list of selected
publications and tools is not free of reviewer bias issues.

After conducting our Device Driver Testing Survey, we realized that device drivers are
scattered throughout the Linux kernel source in directories other than the drivers directory.
For instance, we have identified drivers under the block, net, and sound directories. Thus,
we did not reach all device driver maintainers with our survey. Nonetheless, we believe
that we have indeed contacted a representative portion of Linux kernel device driver
maintainers. With a few modifications to our get_driver_maintainers.awk program, we
counted the number of driver entries in Linux’s MAINTAINERS file and the number of
those entries that did not declare files under the drivers directory. For the 5.17 stable Linux
release, there are 1496 driver entries declared in the MAINTAINERS file, and only 49 of
those artifacts do not contain file patterns that match the drivers directory. Thus, as far
as we can estimate, we missed a maximum of 49 (4%) of driver maintainers in our survey
invitations.

Finally, even though we have addressed some of the test tools that run automated test
services and CI rings, the information we obtained is shallow. We didn’t find, for example,
precise information about how regularly automated test tools run their jobs or what events
if any, trigger test execution. Thus, our considerations about automated test tools cannot
refute any information given directly by automated test service maintainers.

7.3 Future Work

Evidence indicates that test robots lack testing coverage, especially for device driver
functionality. Nevertheless, most device driver maintainers agree that expanding automated
testing is the way to go. So, despite their current limitations, automated tests hold a positive
opinion from Linux kernel developers. Exploring the role of Linux CI rings and test robots
may help better understand their impact on the project and comprehend why developers
keep a positive opinion about them.
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Linux Kernel Test Tools from the

Literature

After finishing our systematic mapping study and our grey literature review, we
comprised the Linux kernel test tools we identified into a table with information such
as tool name, estimated activity status, testing techniques, repository, and supporting
publications. The information in Table A.1 later served as usage evidence for the tools
identified throughout the literature review processes.

Tool Name Activity Status Testing Techniques Citations
COD Inactive Concolic Execution, in-

strumentation
L1

ADFI (Automatic
Driver Fault
Injection)

Inactive Instrumentation, fault in-
jection

L2

LgDb Inactive Debug L3
FAUMachine Active Fault injection L6
TIMEOUT Unknown Instrumentation, fault /

delay injection
L8

SymDrive Inactive Symbolic execution L1, L12
EH-Test Inactive Fault injection L14
Troll Inactive Local analysis and group-

ing
L18

Kprobe Unknown L1
LDV Unknown L1
WHOOP Inactive L1
Dr. Checker Active L1
DSAC Unknown L1
DEADLINE Unknown L1
DCNS Unknown L1

continue ⟶

Table A.1: Linux kernel test tools identified in the literature.
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Tool Name Activity Status Testing Techniques Citations
DIFUZE Active L1
TriforceAFL Inactive L1
kAFL Inactive L1
Razzer Inactive L1
DDT Unknown L1
CAB-Fuzz Unknown L1
Linux Fault Injec-
tion Capabilities In-
frastructure (LFII)

Inactive Fault injection L2, G11

mmtest Active L9
PF-Miner Unknown L14
ktest Active Build testing G11, G27, G28
Trinity Active Fuzz testing L9, G22, G47,

G59, G60
KCOV Active G22
Syzkaller / Syzbot Active Fuzz testing G16, G22, G29,

L1, G47
cyclictest Active Load testing/ stress test-

ing
G17

hackbench Active Load testing/ stress test-
ing

L16, G17, G50

Linux Test Project
(LTP)

Active Functional testing, relia-
bility testing, robustness
testing, stability testing,
stress testing

L3, L12, L16,
G11, G25, G47,
G63

Sparse Active Static analysis G11, G47
Smatch Active Static analysis G11, G26, G47
RCU-torture Active Stress test G8, G38
KUnit Active Unit testing G12
Kselftest Active Unit testing, regression

test, stress testing,
functional testing,
performance testing

L18, G6, G11,
G23, G30, G35,
G48, G57

Coccinelle / cocci-
check

Active Static analysis, semantic
patches

L18, G47, G56,
G57

0-day test robot Active Regression testing, func-
tional testing, build test-
ing, performance testing

L18, G35, G47,
G48, G57, G58,
G61

Hulk Robot Acitve G47, G61
Buildbot Active Build testing G47

continue ⟶

Table A.1: Linux kernel test tools identified in the literature.
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Tool Name Activity Status Testing Techniques Citations
LKFT (Linux Kernel
Functional Testing)

Active Regression testing, func-
tional testing, build test-
ing

G47, G54, G62,
G63

Continuous Kernel
Integration (CKI)

Active G53, G64

KLive Unknown G1
AutoTest Active G3, G11
xfstests Active L9, G5, G13
FAFT (Fully Auto-
mated Firmware
Testing)

Inactive G5

jstest Inactive G9, G10, G43
LAVA - Linaro Au-
tomated Validation
Architecture

Active G11, G54

Fuego Active G14, G24
perf Active G17, G63
KMSAN Active G29
KernelCI Active Build testing G31, G44, G47,

G53, G57
LISA Active G39, G49
KTSAN Active G40
LKMM / litmus-test Active Matemathical / formal

methods
G40

herd Active Matemathical / formal
methods

G40, G51

TuxMake Active Build testing G41, G52, G54
TuxSuite Active G54
IGT GPU Tools Active S1, G44, G65
libnvdimm Active G12, G48
Schbench Active G50
Adrestia Inactive G50
Rt-app Active End-to-end testing G50
Phoronix Test Suite Active G55
Marvin Active G57
Xen tests Unknown G57
Undertaker Active G57
Libhugetlbfs Inactive G63
Video4Linux (v4l2) Active G63
KVM Unit Tests Active G63
S Suite Active G63

Table A.1: Linux kernel test tools identified in the literature.
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get_driver_maintainers.awk

In August 2021, Shuah Khan and Kate Stewart launched a survey to Linux kernel devel-
opers. They wanted to assess the effectiveness of Linux Foundation efforts to encourage
the participation of underrepresented groups of developers in the Linux kernel community.
Another goal of their research was to understand the reasons why developers stop or take
a break from active participation in the community. Thus, they targeted their survey to
all developers listed in the Linux kernel MAINTAINERS file as stated in a snippet of the
e-mail they sent to them.

‘‘Your input is important to us, hence we are reaching out to you by
sending email to all your contact addresses listed in the MAINTAINERS
file. We apologize if there is duplication.’’

Unlike Shuah and Stewart’s research, our topic does not relate to all Linux kernel devel-
opers. Instead, we seek especially the opinion and experience of device driver developers.
Thus, we made an AWK program to retrieve only the set of developers that maintain arti-
facts under the drivers directory. Designed to receive a MAINTAINERS file as an argument
and print out the names and email addresses of Linux kernel device driver maintainers,
we named it get_driver_maintainers.awk. We then contacted device driver developers by
sending our survey to all email addresses obtained from get_driver_maintainers.awk. The
program source code can be seen below.

We extracted maintainers’ email addresses from the Linux kernel 5.17 MAINTAINERS
file because it was the latest stable Linux version by the time we started inviting developers
to answer our survey. Program B.2 lists the set of commands we ran.
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Program B.1 get_driver_maintainers.awk.

1 #!/usr/bin/awk -f
2
3 BEGIN {
4 FPAT = "([^\t<>]+)"
5 get_devs = 0 # flag to start recording driver developer’s emails
6 new = 0 # flag to tell apart each entry
7 lost = 0 # sanity check we don’t miss any driver maintainer
8 print_names = 1
9 print_emails = 1

10 print_statistics = 1
11 named_artifacts = 0 # number of named entries/artifacts under drivers dir
12 }
13 {
14 if (/Maintainers List/)
15 get_devs = 1
16
17 if (get_devs == 1) {
18 if (/^$/) {
19 new = 1
20 delete emails_buf # clear email buffer
21 } else {
22 if (/M:\t/)
23 emails_buf[$3] = $2 # use email address as key and name as value
24
25 # We expect no M:\t line after a F:\t line within a single entry.
26 if (/M:\t/ && new == 0)
27 lost++ # Must not happen
28
29 if (/F:\tdrivers\// && new == 1) {
30 if (length(emails_buf) > 0) {
31 for (email in emails_buf) {
32 dev_addresses[email] = emails_buf[email] # hash table
33 dev_names[emails_buf[email]] = 0 # to count distinct names
34 }
35 }
36 named_artifacts++;
37 new = 0
38 }
39 }
40 }
41 }
42 END {
43 for (email in dev_addresses) {
44 if (print_names && print_emails)
45 printf "%s <%s>\n", dev_addresses[email], email
46 else if (print_names)
47 printf "%s\n", dev_addresses[email]
48 else if (print_emails)
49 printf "%s\n", email
50 }
51 if (print_statistics) {
52 printf "%d named artifacts under drivers dir\n", named_artifacts
53 if (lost > 0)
54 printf "[Warn] %d uncounted device driver developer(s)!\n", lost
55 printf "%d device driver maintainers\n", length(dev_names)
56 printf "%d addresses of driver maintainers\n", length(dev_addresses)
57 }
58 }
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Program B.2 Set of commands to extract maintainer’s email addresses.

1 wget https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/plain/
MAINTAINERS?h=v5.17.8 -O MAINTAINERS_5.17 && \

2 ./get_driver_maintainers.awk MAINTAINERS_5.17 | \
3 sort | tee email_list
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Device Driver Testing Survey

This appendix contains a printable version of the device driver testing survey we
invited Linux kernel developers to answer.



Device Driver Testing Survey
There are 15 questions in this survey.

Consent
This Linux kernel driver testing survey is part of a research project led by researchers at the University of São Paulo, Brazil.

This survey has obtained positive feedback from the Linux Foundation Technical Advisory Board.

This voluntary survey will take about 5 minutes of your time. Your help is appreciated.

The record of your survey responses will not contain any identifying information about you unless you explicitly provide it in a survey question.

Send any questions about this survey to mschmitt@ime.usp.br (mailto:mschmitt@ime.usp.br)

Please, confirm that you agree to take part in this survey. *
Please choose only one of the following:

 Yes

 No

PART I - Community Role

LimeSurvey - Device Driver Testing Survey https://new-limesurvey.numec.prp.usp.br/index.php/admin/printablesurvey/sa/i...

1 of 12 17/05/2022 14:37
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In which of these roles do you identify yourself within the Linux kernel development
community?
 Check all that apply

Please choose all that apply:

 silent observer

 user

 new contributor

 tester

 active contributor

 expert contributor

 maintainer

 reviewer

 reporter

 researcher

LimeSurvey - Device Driver Testing Survey https://new-limesurvey.numec.prp.usp.br/index.php/admin/printablesurvey/sa/i...

2 of 12 17/05/2022 14:37
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How many years of Linux kernel development experience do you have?
Please choose only one of the following:

 less than one year

 1 to 5 years

 6 to 10 years

 11 to 15 years

 16 to 20 years

 21 years or more

Do you contribute to the Linux kernel as part of your job (paid work)?
Please choose only one of the following:

 Yes

 No

PART II - Testing habits

LimeSurvey - Device Driver Testing Survey https://new-limesurvey.numec.prp.usp.br/index.php/admin/printablesurvey/sa/i...

3 of 12 17/05/2022 14:37
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How much do you consider yourself involved with kernel testing?
Please choose the appropriate response for each item:

Never Occasionally Sometimes Most times Always

I perform runtime tests on patches

before sending them to the mailing

list.

I test the kernel with static analysis

tools.

I test the kernel with dynamic

analysis tools.

I help develop Linux kernel testing

tools.

Dynamic analysis tools attempt to detect classes of issues when they occur in a running kernel.

Conversely, static analysis tools examine kernel source code at compile time to warn against potentially buggy behavior.

LimeSurvey - Device Driver Testing Survey https://new-limesurvey.numec.prp.usp.br/index.php/admin/printablesurvey/sa/i...

4 of 12 17/05/2022 14:37
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Have you registered any development tree you maintain or use with any kernel testing
service?
Please choose only one of the following:

 Yes

 No

We consider a kernel testing service a tool/robot that looks up at kernel trees or patches on those trees and performs tests over that

code. Often, the developers have to ask the teams responsible for these services to have their development trees registered for testing.

Does your organization provide any infrastructure to test the patches you submit to the
kernel?
Only answer this question if the following conditions are met:

Answer was 'Yes' at question '4 [G2Q00003]' (Do you contribute to the Linux kernel as part of your job (paid work)?)

Please choose only one of the following:

 Yes, we have a CI system that tests the kernel.

 Yes, we use a third-party service.

 No, we have no shared infrastructure for testing the Linux kernel.

 Other 

LimeSurvey - Device Driver Testing Survey https://new-limesurvey.numec.prp.usp.br/index.php/admin/printablesurvey/sa/i...

5 of 12 17/05/2022 14:37
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Do you use any tool to test the Linux kernel yourself? If so, which?
Please write your answer here:

Consider software testing as the process of determining if a program behaves as expected.So you may think of static analysis tools as

test tools if you wish.

PART III - Driver testing

What types of device drivers have you ever tested?
Please write your answer here:

e.g., PCI, USB, network, GPU, input, platform, etc.

LimeSurvey - Device Driver Testing Survey https://new-limesurvey.numec.prp.usp.br/index.php/admin/printablesurvey/sa/i...

6 of 12 17/05/2022 14:37
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Do you carry out any of these activities when testing the drivers you maintain?
 Comment only when you choose an answer.

Please choose all that apply and provide a comment:

Other:

I probe and bind the driver to a device it supports.

I assess driver functionality through a kernel-userspace API/ABI.

I start a test tool to catch potential bugs.

LimeSurvey - Device Driver Testing Survey https://new-limesurvey.numec.prp.usp.br/index.php/admin/printablesurvey/sa/i...

7 of 12 17/05/2022 14:37
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How familiar are you with these tools/testing infrastructure?
Please choose the appropriate response for each item:

I've never

heard about it I heard about it

I use it

occasionally

I use it

sometimes I use it often

Kselftest

0-day

KernelCI

LKFT (Linux Kernel Functional

Testing)

Trinity

Syzkaller

LTP (Linux Test Project)

ktest

Smatch

Coccinelle

jstest

LimeSurvey - Device Driver Testing Survey https://new-limesurvey.numec.prp.usp.br/index.php/admin/printablesurvey/sa/i...

8 of 12 17/05/2022 14:37
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TuxMake

Sparse

KUnit

SymDrive

FAU machine

ADFI (Automatic Driver Fault

Injection)

EH-Test

COD

Trol

I've never

heard about it I heard about it

I use it

occasionally

I use it

sometimes I use it often

LimeSurvey - Device Driver Testing Survey https://new-limesurvey.numec.prp.usp.br/index.php/admin/printablesurvey/sa/i...

9 of 12 17/05/2022 14:37
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Should we consider any other tool for device driver testing? If so, which?
Please write your answer here:

Consider software testing as the process of determining if a program behaves as expected.So you may think of static analysis tools as

test tools if you wish.

What do you think are the main challenges for device driver testing?
Please write your answer here:

LimeSurvey - Device Driver Testing Survey https://new-limesurvey.numec.prp.usp.br/index.php/admin/printablesurvey/sa/i...

10 of 12 17/05/2022 14:37
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What would you recommend the Linux kernel community do to improve device driver
testing?
Please write your answer here:

FINAL PART - Feedback

Leave us an email address if you wish to receive a notification with the results of this
research.
Please write your answer here:

Your response has been recorded.

Thank you for participating in this survey.

If you're interested in more discussion about device driver testing, have a look at my blog post about a few testing tools.

LimeSurvey - Device Driver Testing Survey https://new-limesurvey.numec.prp.usp.br/index.php/admin/printablesurvey/sa/i...

11 of 12 17/05/2022 14:37

94

APPENDIX C



Submit your survey.

Thank you for completing this survey.

LimeSurvey - Device Driver Testing Survey https://new-limesurvey.numec.prp.usp.br/index.php/admin/printablesurvey/sa/i...

12 of 12 17/05/2022 14:37

C | DEVICE DRIVER TESTING SURVEY

95





97

Appendix D

Device Driver Testing Survey

Invitation Letter

Dear Linux kernel Maintainer,

I am Marcelo Schmitt, a graduate student at the University of São Paulo (Brazil).
In addition to maintaining the AD7292 device driver, I work on a research
project about Linux device drivers under the supervision of professors Paulo
Meirelles and Fabio Kon.

Our goal is to characterize the current practices concerning device driver
testing and grasp what one could do to improve the effectiveness of those tests.

Our work has already provided a contribution to the Kernel Testing Guide
documentation page.
Link: https://lore.kernel.org/linux-doc/cover.1648674305.git.marcelo.schmitt1@gmail.com/

I would highly appreciate it if you could take about 5 minutes of your time to
answer the survey below, which will help us identify device driver test habits
and practices. We are contacting you because you are listed in the MAINTAINERS
file as the maintainer of some artifact under the drivers directory.

Your response is very important to us. Not only will reporting your unique
experience greatly assist our research efforts, but your participation might
help guide the development of driver testing tools. We apologize if you are not
a device driver developer.

The survey can be found at:
https://new-limesurvey.numec.prp.usp.br/index.php/313985?lang=en

Thanks,
Marcelo
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Device Driver Testing Survey

Results

This appendix contains statistical data from complete responses to objective ques-
tions of the Device Driver Testing Survey we carried on with Linux kernel device driver
maintainers.

The questionnaire had a total of fifteen questions structured in five groups:

1. Group 1 - Welcoming page

2. Group 2 - PART I - Community Role

3. Group 3 - PART II - Testing habits

4. Group 4 - PART III - Driver testing

5. Group 5 - FINAL PART - Feedback

To avoid misunderstandings, we identify each question by its group, question number,
and, when applicable, subquestion number. For instance, we denote the tenth survey
question as group 3, question 2.

In which of these roles do you identify yourself within the Linux kernel development community?
Answer Count Gross percentage
Researcher 2 2.35%
New Contributor 5 5.88%
Silent Observer 17 20.00%
Tester 17 20.00%
Reporter 19 22.35%
Expert Contributor 26 30.58%
Reviewer 41 48.23%
User 53 62.35%
Active Contributor 56 65.88%
Maintainer 70 82.35%
Total (gross) 306 360.00%

Table E.1: Complete responses to group 2, question 1.
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How many years of Linux kernel development experience do you have?
Answer Count Gross percentage
less than one year 2 2.35%
1 to 5 years 22 25.88%
6 to 10 years 24 28.23%
11 to 15 years 15 17.64%
16 to 20 years 11 12.94%
21 years or more 11 12.94%
No answer 0 0.00%
Total (gross) 85 100.00%

Table E.2: Complete responses to group 2, question 2.

Do you contribute to the Linux kernel as part of your job (paid work)?
Answer Count Gross percentage
Yes 54 63.52%
No 28 32.94%
No answer 3 3.52%
Total (gross) 85 100.00%

Table E.3: Complete responses to group 2, question 3.

How much do you consider yourself involved with kernel testing?
I perform runtime tests on patches before sending them to the mailing list.
Answer Count Gross percentage
Never 2 2.35%
Occasionally 1 1.17%
Sometimes 5 5.88%
Most times 30 35.29%
Always 47 55.29%
No answer 0 0.00%
Total (gross) 85 100.00%

Table E.4: Complete responses to group 3, question 1, subquestion 1.

How much do you consider yourself involved with kernel testing?
I test the kernel with static analysis tools.

Answer Count Gross percentage
Never 33 38.82%
Occasionally 15 17.64%
Sometimes 11 12.94%
Most times 16 18.82%
Always 7 8.23%
No answer 3 3.52%
Total (gross) 85 100.00%

Table E.5: Complete responses to group 3, question 1, subquestion 2.
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How much do you consider yourself involved with kernel testing?
I test the kernel with dynamic analysis tools.

Answer Count Gross percentage
Never 32 37.64%
Occasionally 20 23.52%
Sometimes 20 23.52%
Most times 6 7.05%
Always 3 3.52%
No answer 4 4.70%
Total (gross) 85 100.00%

Table E.6: Complete responses to group 3, question 1, subquestion 3.

How much do you consider yourself involved with kernel testing?
I help develop Linux kernel testing tools.

Answer Count Gross percentage
Never 50 58.82%
Occasionally 15 17.64%
Sometimes 9 10.58%
Most times 4 4.70%
Always 2 2.35%
No answer 5 5.88%
Total (gross) 85 100.00%

Table E.7: Complete responses to group 3, question 1, subquestion 4.

Have you registered any development tree you maintain or use with any kernel testing service?
Answer Count Gross percentage
Yes 24 28.23%
No 57 67.05%
No answer 4 4.70%
Total (gross) 85 100.00%

Table E.8: Complete responses to group 3, question 2.

Does your organization provide any infrastructure to test the patches you submit to the kernel?
Answer Count Gross percentage
Yes, we have a CI system that tests the kernel. 23 42.59%
Yes, we use a third-party service. 1 1.85%
No, we have no shared infrastructure for testing the Linux kernel. 23 42.59%
Other 3 5.55%
No answer 4 7.40%
Total (gross) 54 100.00%

Table E.9: Complete responses to group 3, question 3.
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Do you carry out any of these activities when testing the drivers you maintain?
Answer Count Gross percentage
I probe and bind the driver to a device it supports. 71 83.52%
I assess driver functionality through a kernel-userspace API/ABI. 58 68.23%
I start a test tool to catch potential bugs. 32 37.64%
Other 3 3.52%
Total (gross) 164 192.94%

Table E.10: Complete responses to group 4, question 2.

How familiar are you with these tools/testing infrastructure?
kselftest

Answer Count Gross percentage
I’ve never heard about it 25 29.41%
I heard about it 27 31.76%
I use it occasionally 11 12.94%
I use it sometimes 7 8.23%
I use it often 7 8.23%
No answer 8 9.41%
Total (gross) 85 100.00%

Table E.11: Complete responses to group 4, question 3, subquestion 1.

How familiar are you with these tools/testing infrastructure?
0-day

Answer Count Gross percentage
I’ve never heard about it 22 25.88%
I heard about it 14 16.47%
I use it occasionally 14 16.47%
I use it sometimes 9 10.58%
I use it often 18 21.17%
No answer 8 9.41%
Total (gross) 85 100.00%

Table E.12: Complete responses to group 4, question 3, subquestion 2.

How familiar are you with these tools/testing infrastructure?
KernelCI

Answer Count Gross percentage
I’ve never heard about it 18 21.17%
I heard about it 32 37.64%
I use it occasionally 13 15.29%
I use it sometimes 13 15.29%
I use it often 3 3.52%
No answer 6 7.05%
Total (gross) 85 100.00%

Table E.13: Complete responses to group 4, question 3, subquestion 3.
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How familiar are you with these tools/testing infrastructure?
LKFT

Answer Count Gross percentage
I’ve never heard about it 54 63.52%
I heard about it 19 22.35%
I use it occasionally 3 3.52%
I use it sometimes 0 0.00%
I use it often 0 0.00%
No answer 9 10.58%
Total (gross) 85 100.00%

Table E.14: Complete responses to group 4, question 3, subquestion 4.

How familiar are you with these tools/testing infrastructure?
Trinity

Answer Count Gross percentage
I’ve never heard about it 48 56.47%
I heard about it 25 29.41%
I use it occasionally 3 3.52%
I use it sometimes 0 0.00%
I use it often 0 0.00%
No answer 9 10.58%
Total (gross) 85 100.00%

Table E.15: Complete responses to group 4, question 3, subquestion 5.

How familiar are you with these tools/testing infrastructure?
Syzkaller

Answer Count Gross percentage
I’ve never heard about it 21 24.70%
I heard about it 37 43.52%
I use it occasionally 9 10.58%
I use it sometimes 9 10.58%
I use it often 4 4.70%
No answer 5 5.88%
Total (gross) 85 100.00%

Table E.16: Complete responses to group 4, question 3, subquestion 6.
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How familiar are you with these tools/testing infrastructure?
LTP

Answer Count Gross percentage
I’ve never heard about it 22 25.88%
I heard about it 37 43.52%
I use it occasionally 11 12.94%
I use it sometimes 2 2.35%
I use it often 4 4.70%
No answer 9 10.58%
Total (gross) 85 100.00%

Table E.17: Complete responses to group 4, question 3, subquestion 7.

How familiar are you with these tools/testing infrastructure?
ktest

Answer Count Gross percentage
I’ve never heard about it 37 43.52%
I heard about it 32 37.64%
I use it occasionally 5 5.88%
I use it sometimes 1 1.17%
I use it often 1 1.17%
No answer 9 10.58%
Total (gross) 85 100.00%

Table E.18: Complete responses to group 4, question 3, subquestion 8.

How familiar are you with these tools/testing infrastructure?
Smatch

Answer Count Gross percentage
I’ve never heard about it 24 28.23%
I heard about it 27 31.76%
I use it occasionally 11 12.94%
I use it sometimes 11 12.94%
I use it often 6 7.05%
No answer 6 7.05%
Total (gross) 85 100.00%

Table E.19: Complete responses to group 4, question 3, subquestion 9.
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How familiar are you with these tools/testing infrastructure?
Coccinelle

Answer Count Gross percentage
I’ve never heard about it 6 7.05%
I heard about it 35 41.17%
I use it occasionally 24 28.23%
I use it sometimes 8 9.41%
I use it often 6 7.05%
No answer 6 7.05%
Total (gross) 85 100.00%

Table E.20: Complete responses to group 4, question 3, subquestion 10.

How familiar are you with these tools/testing infrastructure?
jstest

Answer Count Gross percentage
I’ve never heard about it 70 82.35%
I heard about it 6 7.05%
I use it occasionally 0 0.00%
I use it sometimes 0 0.00%
I use it often 0 0.00%
No answer 9 10.58%
Total (gross) 85 100.00%

Table E.21: Complete responses to group 4, question 3, subquestion 11.

How familiar are you with these tools/testing infrastructure?
TuxMake

Answer Count Gross percentage
I’ve never heard about it 68 80.00%
I heard about it 5 5.88%
I use it occasionally 2 2.35%
I use it sometimes 1 1.17%
I use it often 1 1.17%
No answer 8 9.41%
Total (gross) 85 100.00%

Table E.22: Complete responses to group 4, question 3, subquestion 12.
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How familiar are you with these tools/testing infrastructure?
Sparse

Answer Count Gross percentage
I’ve never heard about it 15 17.64%
I heard about it 11 12.94%
I use it occasionally 16 18.82%
I use it sometimes 20 23.52%
I use it often 16 18.82%
No answer 7 8.23%
Total (gross) 85 100.00%

Table E.23: Complete responses to group 4, question 3, subquestion 13.

How familiar are you with these tools/testing infrastructure?
KUnit

Answer Count Gross percentage
I’ve never heard about it 26 30.58%
I heard about it 42 49.41%
I use it occasionally 2 2.35%
I use it sometimes 3 3.52%
I use it often 3 3.52%
No answer 9 10.58%
Total (gross) 85 100.00%

Table E.24: Complete responses to group 4, question 3, subquestion 14.

How familiar are you with these tools/testing infrastructure?
SymDrive

Answer Count Gross percentage
I’ve never heard about it 74 87.05%
I heard about it 1 1.17%
I use it occasionally 0 0.00%
I use it sometimes 0 0.00%
I use it often 0 0.00%
No answer 10 11.76%
Total (gross) 85 100.00%

Table E.25: Complete responses to group 4, question 3, subquestion 15.
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How familiar are you with these tools/testing infrastructure?
FAU Machine

Answer Count Gross percentage
I’ve never heard about it 75 88.23%
I heard about it 1 1.17%
I use it occasionally 0 0.00%
I use it sometimes 0 0.00%
I use it often 0 0.00%
No answer 9 10.58%
Total (gross) 85 100.00%

Table E.26: Complete responses to group 4, question 3, subquestion 16.

How familiar are you with these tools/testing infrastructure?
ADFI

Answer Count Gross percentage
I’ve never heard about it 67 78.82%
I heard about it 9 10.58%
I use it occasionally 0 0.00%
I use it sometimes 0 0.00%
I use it often 0 0.00%
No answer 9 10.58%
Total (gross) 85 100.00%

Table E.27: Complete responses to group 4, question 3, subquestion 17.

How familiar are you with these tools/testing infrastructure?
EH-Test

Answer Count Gross percentage
I’ve never heard about it 74 87.05%
I heard about it 1 1.17%
I use it occasionally 0 0.00%
I use it sometimes 0 0.00%
I use it often 0 0.00%
No answer 10 11.76%
Total (gross) 85 100.00%

Table E.28: Complete responses to group 4, question 3, subquestion 18.
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How familiar are you with these tools/testing infrastructure?
COD

Answer Count Gross percentage
I’ve never heard about it 74 87.05%
I heard about it 2 2.35%
I use it occasionally 0 0.00%
I use it sometimes 0 0.00%
I use it often 0 0.00%
No answer 9 10.58%
Total (gross) 85 100.00%

Table E.29: Complete responses to group 4, question 3, subquestion 19.

How familiar are you with these tools/testing infrastructure?
Troll

Answer Count Gross percentage
I’ve never heard about it 76 89.41%
I heard about it 0 0.00%
I use it occasionally 0 0.00%
I use it sometimes 0 0.00%
I use it often 0 0.00%
No answer 9 10.58%
Total (gross) 85 100.00%

Table E.30: Complete responses to group 4, question 3, subquestion 20.
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