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Resumo

Paiva, T. A. B. Atacando e defendendo esquemas criptográficos pós-quânticos.
Tese - Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, 2022.
Em criptografia pós-quântica, estamos interessados em esquemas criptográficos baseados
em problemas cuja solução, acredita-se, não pode ser encontrada eficientemente nem com
o uso de computadores quânticos. Esta dissertação, escrita no formato de coletânea de
artigos, apresenta contribuições originais sobre a segurança e implementação de três can-
didatos a esquemas pós-quânticos: HQC, PKP e BIKE. Ambos HQC e BIKE são esquemas
de encapsulamento de chaves (KEM) baseados em códigos corretores de erros que foram
selecionados pelo NIST como candidatos alternativos em seu processo de padronização de
esquemas pós-quânticos. O problema do núcleo permutado (PKP) é um problema NP-
difícil que pode ser usado para instanciar esquemas pós-quânticos de assinaturas digitais.
A primeira contribuição é um ataque ao HQC usando informações sobre o tempo de exe-
cução do algoritmo de encriptação. Este ataque permite a um atacante recuperar a chave
privada de uma vítima após medir o tempo de execução de 400 milhões de operações de
decriptação, considerando parâmetros para 128 bits de segurança. A segunda contribuição
consiste no primeiro ataque a uma generalização do PKP para corpos pequenos. Para
parâmetros que prometem 80 bits de segurança, o ataque recupera uma fração de 2−40 das
chaves com apenas 248 operações, e aproximadamente 7.2% das chaves com 262 operações.
A terceira e última contribuição consiste num novo algoritmo de decriptação para o BIKE.
O algoritmo foi implementado em tempo constante e observou-se speedups de 1,18, 1,29
e 1,47 em relação ao estado da arte, considerando os níveis de segurança 128, 192, e 256,
respectivamente.
Palavras-chave: Criptografia pós-quântica, BIKE, HQC, PKP, ataque por tempo de ex-
ecução, implementação em tempo constante, criptanálise
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Abstract

Paiva, T. A. B. Attacking and defending post-quantum cryptography candidates.
Dissertation – Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo,
2022.

In Post-Quantum Cryptography, we are interested in schemes based on problems which
are believed to be hard even for quantum computers. This dissertation, which is written as
a collection of papers, presents original contributions to the security and implementation of
three post-quantum cryptography candidates: HQC, PKP and BIKE. Both HQC and BIKE
are code-based key encapsulation mechanisms that were selected as alternate candidates
in NIST’s post-quantum standardization process. The Permuted Kernel Problem (PKP) is
an NP-hard combinatorial problem that can be used to instantiate post-quantum digital
signature schemes. The first contribution is a timing attack against HQC that allows an
attacker to recover the secret key after recording the decryption time of around 400 million
ciphertexts, for 128 bits of security. The second contribution consists of the first attack
targeting a generalization of PKP for small fields. For 80-bit security parameters, the attack
is able to recover a fraction 2−40 of the keys using only 248 operations, and about 7.2% of
the keys using 262 operations. The third and last contribution consists of a new decryption
algorithm for BIKE. Our constant-time implementation of this algorithm achieves speedups
of 1.18, 1.29 and 1.47, with respect to state-of-the-art decryption algorithms, for security
levels 128, 192 and 256, respectively.
Keywords: Post-quantum cryptography, BIKE, HQC, PKP, timing attack, constant-time
implementation, cryptanalysis
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Chapter 1

Introduction

In 1994, Shor [Sho94] published two algorithms for quantum computers that efficiently
solve two critical problems in modern cryptography: the discrete logarithm and the inte-
ger factorization problems. These problems are the building blocks of the most common
public key schemes used today such as Elliptic Curves [Mil86] and RSA [RSA78], both
for encryption and digital signatures. With the development of larger and more powerful
quantum computers, important protocols for secure communication such as TLS [Res18],
SSH [Ylo96], and Signal1 are at risk of being broken.

In the last few years, we saw significant efforts by companies like Google, IBM, and D–
Wave in building and programming quantum computers. Fortunately, there are still some
major engineering problems that must be solved before we can see the complete crypt-
analysis of public-key schemes. It is difficult to estimate if and when quantum computers
will be able to attack real-world parameters. An estimate that is often used is the one by
Mosca2[Mos18], who estimates as 1/7 the probability of quantum computers breaking RSA
with 2048 bits by 2026, and 1/2 by the end of 2031.

Although one can argue against Mosca’s hypothesis and estimates, it is getting increas-
ingly difficult to reasonably argue against the idea of basing real-world cryptography in
problems that are not known to be broken by quantum computers. Given the scale of the
mass surveillance carried out by agencies such as NSA and GCHQ revealed by Snowden,
one major threat against today’s privacy are attacks where an agency stores encrypted
communications now to decrypt in the future, when a sufficiently large quantum computer
is available [JMM+22].

Post-quantum cryptography (PQC) [BBD09] defines models, schemes, and protocols
that are based on problems that are not known to be broken by quantum computers.
It is important to note that the security of public-key and symmetric-key cryptography
against quantum computers are not equally affected. For symmetric-key cryptography, the
main threat is Grover’s [Gro96] algorithm. When applied to symmetric-key cryptography,
this algorithm provides a quadratic speedup in a brute-force search for the secret key.

1https://github.com/signalapp/libsignal
2Michele Mosca is the deputy director of the Institute for Quantum Computing at the University of

Waterloo.
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2 Introduction 1.0

Therefore, the approach taken for post-quantum symmetric-key cryptography is rather
straightforward: double the secret key size.

For public-key cryptography, we need to construct schemes based on problems that,
unlike factoring and computing discrete logarithms, are believed to be hard even for post-
quantum computers. This includes some problems from Coding Theory, Lattices, Mul-
tivariate Quadratic Equations, and even Hash Functions. While there are post-quantum
(public-key) encryption schemes as old as RSA, such as the McEliece scheme [McE78],
the key sizes and efficiency of post-quantum schemes are typically worse than the ones for
Elliptic Curves, when comparing parameters achieving the same level of security against
classical3 adversaries.

Since 2016, the National Institute of Standards and Technology (NIST) is running a
standardization process for post-quantum cryptography [CCJ+16]. This process aims to
standardize post-quantum Key Encapsulation Mechanism (KEM) and Digital Signature
Schemes (DSS). These are important building blocks for secure communication. DSS are
used to ensure authenticity and integrity, and KEMs4 are used to exchange a shared key
that will be used for communication using symmetric-key schemes such as AES. A similar
standardization initiative was conducted by the Chinese Association for Cryptographic Re-
search (CACR), but there is little information about this process outside China.5 Therefore,
the overview presented here is highly biased towards NIST’s PQC process.

NIST’s process was a turning point for post-quantum cryptography – it doubled as
a powerful validation of the practical importance of post-quantum cryptography schemes
and as an incentive to design and implement new efficient schemes. As a consequence, the
concentrated effort helped a number of both theoretical and practical results to flourish.
Not only new cryptographic schemes were constructed, but also new cryptographic models
considering quantum adversaries [BHH+19, HHK17a] and the cryptanalysis of important
schemes [APRS20, Beu22, CD22] that were believed to be secure.

The first round of NIST’s PQC initiative had a large number of submissions. After each
round, NIST selects a number of candidates that will move to the next round based on
a number of factors, for example: new attacks discovered between rounds, public key and
signatures sizes, efficiency, and difficulty of constant-time efficient implementation. NIST
also makes it clear that they aim for diversity of standardized schemes with respect to the
underlying problems.

Recently, NIST released the report on the third round of its PQC process [AAC+22].
The decision for KEMs and signatures are shown in Table 1.1 and Table 1.2, respectively.
We can see that one KEM and 3 signature schemes were already selected for standard-
ization. There are, however, 4 KEMs that are still being considered for standardization
but for which NIST will require at least one more round of evaluation. That is, in the
future, NIST may decide to also standardize some of the schemes that advanced to the

3That is, adversaries running classical, non-quantum, algorithms.
4Intuitively, we can think of KEMs as a form of public-key encryption scheme that encrypts a fresh

randomly generated key every time.
5Most of the information on CACR’s initiative is in Chinese.
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next round. It is important to note that, shortly after NIST’s report was published, a
devastating attack against isogeny-based KEMs was published [CD22], which will likely
impact its consideration during the next round.

Key encapsulation mechanism Underlying problem NIST’s third round decision

CRYSTALS–Kyber [ABD+19] Lattices Selected for standardization

Classic McEliece [BCL+19] Codes

Selected for next roundBIKE [ABB+21] Codes
HQC [MAB+18] Codes
SIKE [ACC+17] Isogenies

Table 1.1: Proposals for Key Encapsulation Mechanisms selected by NIST in the third round of
its post-quantum standardization process.

Digital Signature Scheme Underlying problem NIST’s third round decision

CRYSTALS–Dilithium [DKL+18] Lattices
Selected for standardizationFalcon [FHK+18] Lattices

SPHINCS+ [ABB+19] Hashes

Table 1.2: Proposals for Digital Signatures selected by NIST in the third round of its post-
quantum standardization process.

1.1 The focus of this dissertation

The main focus of this dissertation is on evaluating the security of candidates for post-
quantum cryptography. More specifically, we are interested in side-channel attacks, classical
cryptanalysis and secure implementation of the candidate schemes. The three schemes for
which we identified research opportunities and managed to improve the state of the art are
HQC [MAB+18], BIKE [ABB+21], and signatures based on the Permuted Kernel Problem
when defined over binary fields [LP11].

BIKE [ABB+21] is a code-based KEM that was recently selected to move to the fourth
round of NIST’s PQC standardization process. This KEM is based on the Niederreiter
scheme instantiated with QC-MDPC codes, and it uses the BGF decoder for key decapsu-
lation.

HQC [MAB+18], which stands for Hamming Quasi-Cyclic, is a KEM based on the
hardness of the quasi-cyclic syndrome decoding problem, a conjectured hard problem from
Coding Theory. HQC is a candidate for the NIST standardization process that offers rea-
sonably good parameters, with smaller key sizes than the classic McEliece scheme [McE78,
BCL+19, ACP+18], but without relying on codes with a secret sparse structure, such as the
QC-MDPC [MTSB13] codes used by [ABB+21], or QC-LDPC [Bal14] used by [APRS20].

The Permuted Kernel Problem (PKP) is an NP-hard combinatorial problem [GJ79]
that can be used to instantiate post-quantum signature schemes. One instantiation, known
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as PKP-DSS [BFK+19] was a finalist of the CACR post-quantum standardization process.
The signature schemes are obtained by applying the Fiat-Shamir transform over Shamir‘s
PKP-based identification scheme [Sha89].

1.2 Contributions

This dissertation is based on three papers containing independent contributions re-
lated to the schemes listed in the previous section. Each paper and their corresponding
contributions are listed below, in chronological order.

1.2.1 A timing attack on HQC

In 2019, we noticed one problem of the HQC’s [MAB+18] reference implementation
submitted to NIST in the first round: one important component of the decryption op-
eration, namely, the BCH decoding, was not implemented in constant-time. We showed
how this could be exploited to mount the first key-recovery timing attack against HQC’s
implementation. The attack is practical, requiring the attacker to record the decryption
time of around 400 million ciphertexts for a set of HQC parameters corresponding to 128
bits of security.

This work was published as the following conference paper:

• Thales Bandiera Paiva and Routo Terada. A timing attack on the HQC encryp-
tion scheme. In Kenneth G. Paterson and Douglas Stebila, editors, Selected Areas
in Cryptography – SAC 2019, pages 551–573, Cham, 2020. Springer International
Publishing.

1.2.2 An attack against the binary variant of PKP

In this paper, we propose the first attack that targets the binary PKP [LP11, LP12].
The attack is analyzed in detail, and its practical performance is compared with our theo-
retical models. For the proposed parameters originally targeting 79 and 98 bits of security,
our attack can recover about 100% of all keys using less than 263 and 277 operations,
respectively.

This work was published as the following conference paper:

• Thales Bandiera Paiva and Routo Terada. Cryptanalysis of the binary permuted
kernel problem. In International Conference on Applied Cryptography and Network
Security – ACNS 2021, pages 396–423. Springer, 2021.

1.2.3 A novel decryption algorithm for BIKE

We discovered important limitations of BIKE’s [ABB+21] decryption algorithm, known
as BGF [DGK20c]. This algorithm is analyzed in detail, and then we propose a new decod-
ing algorithm for QC-MDPC codes called PickyFix to address the limitations that were
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observed. Our decoder uses two auxiliary iterations that are significantly different from
previous approaches and we show how they can be implemented efficiently. We analyze our
decoder with respect to both its error correction capacity and its performance in practice.
When compared to BGF, our constant-time implementation of PickyFix achieves speedups
of 1.18, 1.29, and 1.47 for the security levels 128, 192 and 256, respectively.

This work was published as the following journal paper:

• Thales Bandiera Paiva and Routo Terada. Faster constant-time decoder for MDPC
codes and applications to BIKE KEM. IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, 2022.

1.2.4 Contributions outside the scope of this dissertation

During my PhD, I was also involved in the following works on computer and network
security, but they are outside the scope of this dissertation.

• Thales Bandiera Paiva, Javier Navaridas, and Routo Terada. Robust covert channels
based on DRAM power consumption. In International Conference on Information
Security, pages 319–338. Springer, 2019.

• Thales Bandiera Paiva, Yaissa Siqueira, Daniel Macêdo Batista, Roberto Hirata, and
Routo Terada. BGP anomalies classification using features based on AS relationship
graphs. In 2021 IEEE Latin-American Conference on Communications (LATIN-
COM), pages 1–6. IEEE, 2021.

Until 2020, we expected that the first of these papers would also be part of this dis-
sertation, as it was a first step towards using the Intel RAPL registers for power-based
side-channel attacks against cryptographic schemes. However, in 2021, an attack exploit-
ing these registers for this purpose was published at IEEE S&P [LKO+21]. Then, since
our paper is not directly related to cryptography, we decided not to include it in the final
version of this dissertation.

1.3 Organization

This dissertation is written as a collection of the three papers mentioned in the pre-
vious section. We begin by providing some general background on essential cryptography
concepts in Chapter 2. The timing attack on HQC is presented in Chapter 3. Next, in
Chapter 4, the cryptanalysis on the binary PKP is detailed. Chapter 5 presents the last
paper on an efficient decryption algorithm for BIKE. The dissertation ends with a brief
discussion in Chapter 6.
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Chapter 2

Background in cryptography and
coding theory

Since the next chapters are based on research papers published in cryptography venues,
it is often assumed that the reader is familiar with most of the jargon used in cryptography.
This chapter provides definitions and explanations of the cryptography concepts that are
used, but which are not defined, in the next chapters.

The idea is to introduce the concepts in an intuitive way with the hope that a newcomer
to the field can get the most out of this dissertation without getting lost into a large number
of formal definitions. For a more formal and in-depth treatment of cryptography, the reader
may consider Katz and Lindell’s book [KL21]. For coding theory, books such as the ones
by van Tilborg[vT93] and Ryan and Lin [RL09] are fine references.

2.1 General definitions

This section presents some essential concepts in modern cryptography such as how
to measure the security of cryptographic schemes and the objectives that these schemes
help us achieve. Additionally, primitives such as symmetric-key cryptography and hash
functions, are briefly reviewed. Although, at first sight, these primitives do not appear to
be directly related to public-key cryptography, which is the focus of this dissertation, they
are essential for the two following reasons.

1. Hash functions play a crucial role when building secure and efficient public-key
schemes.

2. Symmetric-key cryptography is often combined with public-key schemes, which is
the main motivation for the post-quantum key encapsulation mechanisms studied in
this work.

7
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2.1.1 Basic cryptography objectives

There are many security objectives required by real-world applications [GT11]. Some
common requirements may be confidentiality or authenticity, but more complex applica-
tions may require some degree of anonymity or more complex privacy requirements. Below
we review the most common security objectives that are achievable with simple crypto-
graphic primitives, such as symmetric-key encryption and message authentication codes
(MAC) or public-key encryption and signature schemes.

1. Confidentiality means that only the intended receiver of a message can read it.

2. Authenticity of a message implies that it was genuinely generated by a given sender
or group of senders.

3. Integrity is the property that guarantees that the message was not manipulated
while being transmitted from the sender to the intended receiver.

4. Nonrepudiation guarantees that the original sender of a message cannot deny that
they were responsible for its creation.

Confidentiality is typically associated with encryption, while authenticity and integrity
can be achieved with message authentication codes and digital signatures. Nonrepudiation
requires public-key primitives to be achieved, and therefore digital signatures are the typical
way in which this objective is reached.

It is important to note that the security requirements for securing real-world systems
highly depends on the characteristics of these systems. For example, non-repudiation is
not desirable in anonymous messaging systems designed to protect journalists and whistle-
blowers. Confidentiality is not required for public documents, but authenticity, integrity
and even nonrepudiation typically are. Additionally, when accessing a website in which
content is public, there is no need for the internet user to be authenticated.

2.1.2 Concrete security level and negligible functions

One of the main ideas of modern cryptography is to exploit difficult mathematical
problems as a foundation to build cryptographic schemes that are hard to break. In general,
for a problem to be used in cryptography, one has to be confident that it is hard to solve
for the vast majority of its instances. Unfortunately however, proving lower bounds for the
time complexity needed to solve certain computational problems remains one of the most
important open problems in theoretical computer science.

The concrete security approach to define the hardness of breaking6 a cryptographic
scheme is described next. Suppose that the fastest known attacking algorithm takes 2λ

computing steps to solve the underlying problem of a given cryptographic scheme. Then
we say that this cryptographic scheme provides λ bits of security.

6For now, we can consider an intuitive meaning for breaking, such as recovering the secret key or secret
message of an user of a cryptographic scheme.
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The main limitation of this approach is that the security level provided by some problem
may need to be updated when better algorithms are discovered. This can be seen in practice
in Chapter 4, which presents an attack against the binary variant or the permuted kernel
problem that calls for a revision in the scheme’s security level.

Another limitation is that, by the way it is defined, the security level depends on the
computer architecture running the attack. This is circumvented by noticing that the gain
by using more efficient architectures should be at most a small constant, and letting λ

assume large values when instantiating schemes, such as 128, 192, or 256 bits.
In the proofs used in cryptography, we often use random processes and randomized

algorithms, and it may be easier to talk about probability of success instead of amount of
work to find a key or, usually, some more refined attacker objective. This motivates the
use of λ as follows: an attacker who runs in polynomial time in λ should be able to succeed
in their objective only with an extremely low probability, which should decrease fast as λ

increases. This is formalized by means of negligible functions, that are defined next.
A function µ(λ) : N→ R is called negligible if, for every positive integer c, there exists

an integer nc such that

|µ(λ)| < 1

λc

for integers λ greater than nc.
It is important to notice that, although the formal definition above is used when proving

theoretical results, in practice, cryptographers often target the negligible function 2−λ when
considering the probability of attackers succeeding, or even when computing the probability
of an operation, such as decryption, failing to complete correctly.

2.1.3 Symmetric-key cryptography

Although this dissertation does not deal directly with symmetric-key schemes, it is
important for the reader to have at least an intuition on why these schemes are used so
that they can better understand the function of a key encapsulation mechanism.

Symmetric-key cryptographic algorithms are those for which the same key is used for
encryption and decryption. It is the oldest form of encryption and is very valuable for a
number of applications such as encrypting drives and securing communication between two
parties that hold the secret key. Examples of these types of schemes are the AES [DR99],
which is still considered secure, and DES [Pub99], which is now obsolete.

The most important feature of symmetric-key algorithms is that they are much faster
than public-key encryption. On the other hand, they present the following important
limitation: in a setup where n users want to communicate among themselves, there are(
n
2

)
= n(n − 1)/2 keys that must be exchanged beforehand in a secure channel, such as

face-to-face meeting. This is easier to handle with public-key schemes, where only n public
keys are needed for the n users.

Other limitations of symmetric-key cryptography may be even more important depend-
ing on the application. For example, if key k is shared by Alice and Bob, there is no way to
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prove who encrypted a message with key k. Furthermore, if k is compromised, every previ-
ous communication between Alice and Bob can be decrypted.7 In Section 2.2.2, we can see
how public-key and symmetric-key schemes can be combined to obtain the best of the two
worlds: use public-key encryption to share a secret key to be used by fast symmetric-key
schemes.

2.1.4 Hash functions and the random oracle model

In computer science, a general hash function is any function that takes an input of
any size and outputs a fixed size string of bits. In cryptography, however, the definition
is much more strict. A cryptographic hash function must satisfy two security properties:
preimage resistance and collision resistance. Preimage resistance means that, given y, it
is unfeasible to find x such that H(x) = y, for some hash function H. A hash function
is collision resistant if, for any probabilistic polynomial-time attacker, it is unfeasible to
output two different strings that share the same hash value. Notice that to break collision
resistance is inherently easier than to break preimage resistance, since there is no target
hash value, and any pair with the same hash will suffice.

Usually, it is required that a cryptographic hash function H whose output is ℓ bits
long, formally H : {0, 1}∗ → {0, 1}ℓ, must provide ℓ bits of security against preimage com-
putation to be used in the real world. That is, the best known algorithms for producing
preimages for H must take around 2ℓ operations. For finding collisions, the expected num-
ber of operations is lower in general as the collision-finding problem can be modeled by the
birthday problem [KL21, Section A.4]. Therefore, the number of hashes we need to compute
until we see a collision for H is about

√
2ℓ, corresponding to around 2ℓ/2 operations, or ℓ/2

bits of security against collision-finding attacks.
Modern hash functions are believed to be safe for against quantum computers. Similar

to symmetric-key primitives, the best known quantum attacks against hash functions are
based on Grover’s [Gro96] search algorithm. Therefore, they can be made secure by using
larger outputs, by doubling the output size, for example.

Constructions

There are two ways to instantiate hash functions. The most commonly used is by using
constructions similar to symmetric-key schemes, which makes for very efficient hash func-
tions. Some well known examples of hash functions following symmetric-key constructions
are the SHA-2 [HE11] and Keccak [BDPA13], also known as SHA-3, and also older hashes
that are not considered safe anymore, such as MD5 [Riv92] and SHA-1 [EJ01].

The other, which is called provably secure hash functions, consists in carefully defining
the hash function in a way such that, if an attacker can find a collision, then a hard
problem is solved. These are much less efficient, and therefore are not widely deployed. Some

7The security of previous communication against compromised keys is called forward secrecy and can
be achieved by some public-key schemes.
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examples are VSH [CLS06], which is based on the hardness of factoring, and FSB [AFS05],
which is based on the hardness of the syndrome decoding problem.

Applications

When talking about hash functions, one is usually interested in the integrity and au-
thenticity guarantees it can give, such as checksums and message authentication codes [BCK96].
This is a consequence of preimage resistance: given a hash value of a file, it is difficult for
an attacker to produce a different file with the same hash.

Interestingly however, in the public-key setup, hash functions play a slightly different
but very important role: they can guarantee that one operation is done before the other. In
particular, if H is a cryptographic hash function and we let b← H(a), then it is secure to as-
sume that a was generated before b. This simple observation is heavily exploited both when
constructing signature schemes under what is called the Fiat-Shamir paradigm [FS86], and
also to achieve the highest security notions for public-key encryption [FO99, HHK17a].

The Random Oracle model

In 1993, Bellare and Rogaway [BR93] questioned the gap between theory and practice
of hash functions, and they take a more practical point of view to define what is expected
by a hash function for secure cryptographic use. Instead of asking for what is the least
possible security notion required for a hash function to be considered for cryptographic
use, they ask: what are the properties that the hash functions used in the real-world really
seem to have?

Take, for example, the Proof-of-Work required to validate a block B in some blockchain-
based ledgers [GKL15]. The validity of such proofs come from the apparent hardness of
finding a random number r such that H(r,B) < t, where t is some target number. However,
this problem is not related to preimage or collision resistance in any way.

Bellare and Rogaway [BR93], then define a new model for hash functions called the
Random Oracle model (ROM). Under this model, hash functions are assumed to behave
as a Random Oracle, which is an idealize object that would require an exponential amount
of memory to be instantiated. The behavior of a Random Oracle, which takes inputs k

from {0, 1}∗ and outputs v from {0, 1}ℓ, is illustrated by Algorithm 2.1.

Algorithm 2.1 An idealized implementation of a Random Oracle.
1: procedure RandomOracle(k)
2: if (k,v) ∈ T for some v then
3: return v
4: v← Random sequence of ℓ bits
5: Add (k,v) to T
6: return v

Essentially, under the ROM, we can assume that the output of a hash function, is
uniformly random, but anytime the same input is queried, even by different people, the



12 Background in cryptography and coding theory 2.2

Random Oracle returns the same value. At this point, it is difficult to give a meaningful
example of the importance of this kind of behavior when using hash functions together
with other cryptographic primitives. But, as a high-level example, consider the case when
a user wants to digitally sign a document D. The first step of every signing algorithm is
to first compute the hash of the document (otherwise, if the document is too large, the
computation would be impractical). If the outputs of the hash function are not uniformly
random, it could be the case that H(D) and H(D′) differ only by a small number of bits,
considering D′ as a minor corruption of D. Thus, depending on the signing algorithm, this
could generate the same signatures for D and D′.

The ROM paradigm for proving the security of cryptographic constructions is then:
first build a scheme, then prove its security under the ROM, and finally instantiate the
random oracles with concrete hash functions that are believed to be safe. This approach
has been very successful in building the most efficient cryptographic schemes and protocols.
There are however, interesting caveats. Canetti, Goldreich, and Halevi [CGH98, CGH04]
showed that there are cryptographic schemes that are secure under the ROM, but that are
insecure when the random oracles are instantiated by any hash function. Although this
result highlights important limitations of the ROM, their construction is rather artificial8.

2.2 Public-key encryption

In this section, we begin by reviewing the definition of public-key encryption schemes
and key encapsulation mechanisms. Then the security notions for these types of schemes
are discussed. Notice that these concepts are essential for this dissertation: in Chapter 3,
the HQC encryption scheme is attacked, while in Chapter 5, an improvement on BIKE key
encapsulation mechanism is proposed.

2.2.1 Encryption schemes

A public-key encryption scheme is defined by a set of 4 algorithms: Setup, KeyGen,
Encrypt and Decrypt. To instantiate an encryption scheme, one chooses a security level
λ and runs the Setup algorithm. This algorithm, which typically involves a simple lookup
in a parameters table, returns the public parameters of the scheme, that must be known
and used for parties who want to communicate.

Now, each party runs the KeyGen algorithm to obtain a pair of keys: one is the secret
key ksec and the other is the public key kpub. The secret key must be stored as securely
as possible, while the public key must be securely distributed. When defining encryption
schemes and proving their security, we often assume that Alice and Bob have access to
each other’s public key. However, the secure distribution of public keys over the Internet
is an important problem in the real world and its difficulty must not be overlooked.

8For example, the signing algorithm of the artificial signature scheme they constructed may output the
secret key in some backdoor cases.
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Suppose Alice wants to send a message to Bob. She then uses the Encrypt algorithm
with her message and Bob’s public key to obtain a ciphertext, which she sends to Bob.
Then, Bob uses the Decrypt algorithm together with his secret key to obtain Alice’s
original message.

It is often required that the probability of decryption failure is negligible on the security
level. Formally, this means that

Pr(Decrypt(ksec,Encrypt(kpub,m)) ̸= m) ≤ µ(λ), (2.1)

where µ is a negligible function, which is typically set as µ(λ) = 2−λ.
One of the main problems when designing a public-key encryption scheme is that, at

the same time the public and secret keys, kpub and ksec, are clearly related by a strong
mathematical relationship, such as Equation 2.1, it must be unfeasible to recover ksec from
kpub.

Sometimes, the Encryption algorithm is presented as a randomized algorithm, and it
is useful to make it deterministic by separating the randomness r used during encryption.
We then use the notation Encrypt(kpub, m; r) to denote the deterministic encryption
using the coins from r.

2.2.2 Key encapsulation mechanisms

One of the drawbacks of public key cryptography is that all known schemes are much
more computationally expensive than their symmetric-key counterparts. Therefore, public-
key schemes are not suited to encrypt large messages. One solution then is to use public-key
encryption schemes to encrypt a secret session key that will be used with a symmetric-
key encryption scheme such as AES [DR99]. This is what a key encapsulation mechanism
(KEM) is designed to achieve [CS03, Den03].

Similarly to encryption schemes, a KEM consists of four algorithms: Setup, KeyGen,
Encaps, Decaps. A secure public-key encryption scheme can be used to instantiate a
KEM as follows. The Setup and KeyGen function are the same as the ones from the
public-key encryption. The encapsulation function Encaps encapsulates a session key by
first generating it as a random bit string, and then encrypting it using the Encrypt al-
gorithm. The key decapsulation algorithm Decaps is then equivalent to the Decrypt

algorithm. The session key is then used for symmetric-key encryption during the commu-
nication session.

2.2.3 Cryptographic security notions

When one gives a formal description of an encryption scheme, it is important to be
very clear both with respect to what attacks it can resist and the power of an attacker. The
three most common attack objectives for public-key cryptography are enumerated next.

1. Key recovery: given the public key, the adversary must recover the secret key.
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2. Break one-wayness (OW): given a ciphertext and the public key, the attacker must
recover the plaintext used to produce the ciphertext.

3. Break ciphertext indistinguishability (IND): given two fixed plaintexts m0 and m1,
a public key kpub and c, the attacker must distinguish if c is the encryption of m0

or m1 under kpub.

Notice that key recovery is necessarily the hardest one: if one has the secret key, they can
easily recover any plaintext message and distinguish ciphertexts by performing decryption
operations. Furthermore, notice that, even though it may seem easy to build a cipher
resistant to distinguishing attacks, no scheme with a deterministic encryption algorithm9

provides ciphertext indistinguishability: the attacker can just encrypt m0 and m1 with the
public key kpub and compare the results with c.

The two most important types of attacks, with respect to the interaction it can make
with the holder of the secret key are the following:

1. Chosen-plaintext attack (CPA): the attacker can choose a number of plaintext and
see their associated ciphertexts.

2. Chosen-ciphertext attack (CCA): the attacker can choose ciphertexts and ask to see
the decryption of these ciphertexts.

Security notions are then formed by combining one attacker goal with the type of attack.
For example: OW-CPA is a scheme that is one-way under chosen-plaintext attacks, while
IND-CCA is a scheme whose ciphertexts are indistinguishable under chosen-ciphertext
attacks.

In general, public-key encryption algorithms are presented in the OW-CPA format,
because it is the easiest and cleanest way to understand the underlying mathematics. In
practice however, most applications require high security guarantees such as IND-CPA
or even IND-CCA. Luckily, there are generic conversion algorithms that take OW-CPA
schemes and transform them into IND-CPA and IND-CCA schemes, which are described
next.

2.2.4 Security conversions

In this section, we discuss the techniques one can use to increase the security of a public-
key encryption scheme. In other words, given any scheme achieving some security notion,
how can we transform it to achieve a higher security notion? We are mainly interested in
transformations that take an OW-CPA public-key encryption scheme to build an IND-CCA
secure scheme.

These transformations are often involved and therefore only an intuitive explanation
of them is provided here. The main takeaway is that we can study KEMs or PKEs using

9This includes most textbook variants of RSA and Elliptic Curves, for example.
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their pure, that is OW-CPA, description, if we keep in mind that they must be converted
to a higher security when used in practice.

First let us recall what the IND-CCA security notion tries to capture. Intuitively, the
most important requirement is that an attacker should not gain any useful information
on a ciphertext from observing the decryption of other ciphertexts. The way most of the
IND-CCA security conversions work is by making it nearly impossible to generate a new
ciphertext without knowing the associated plaintext. Furthermore, notice that even the
construction of new ciphertexts from other ciphertexts should be difficult. In cryptography
research, these conditions are encompassed by the definitions of plaintext-awareness and
non-malleability.

In 1999, Fujisaki and Okamoto [FO99] showed a generic transformation, denoted FO,
that takes and OW-CPA public-key encryption scheme and build an IND-CCA secure
scheme. Their construction is proven secure under the Random Oracle model and it uses a
symmetric-key scheme and 2 hash functions. More recently, there have been some alterna-
tive proposals such as the one by Hofheinz, Hövelmanns and Kiltz [HHK17a]. These achieve
the same objective as the original FO transformation, but do not require a symmetric-key
scheme and are more suited for post-quantum encryption schemes, for which there is usu-
ally some negligible decryption failure probability.

Fujisaki-Okamoto transformation with implicit rejection

Of the transformations proposed by Hofheinz, Hövelmanns and Kiltz [HHK17a], one
of the most commonly used is called the Fujisaki-Okamoto with implicit rejection. This is
one of the strongest conversions presented by the authors as, to be transformed into an
IND-CCA secure scheme, a given scheme needs only to be OW-CPA and have negligible
decryption failure rate.

Let PKE = (Setup,KeyGen,Encrypt,Decrypt) be some OW-CPA public key
encryption scheme with negligible decryption failure rate. The Fujisaki-Okamoto with im-
plicit rejection that takes PKE and produces an IND-CCA secure KEM is shown as Al-
gorithm 2.2 using two auxiliary hash functions H and G that are assumed to behave like
Random Oracles. Notice that the Setup is exactly the same for both. Each step of this
transformation is analyzed in more detail in the next paragraphs.

The KemKeyGen is almost exactly as the PKE’s KeyGen algorithm, except that it
generates a random secret seed σ, which will be part of the new secret key. This secret
seed is used only when deriving a fake key when implicit rejection is required by the
decapsulation algorithm. One important thing to notice is that we denote a sequence of
λ ones as 1λ, which is passed to the KeyGen algorithm. This is a technical condition10 to
allow for KeyGen to run in time polynomial in the length of 1λ, which is λ.

Now consider the Encapsulation procedure. Notice that the input is only the public
key kpub of the intended receiver, because there is no message: the encapsulation generates

10This is required from the complexity theory notion of what makes an algorithm be probabilistic
polynomial-time, but in practice we just pass λ directly to the functions.



16 Background in cryptography and coding theory 2.2

Algorithm 2.2 The Fujisaki-Okamoto transformation with implicit rejection.
1: procedure KemKeyGen(1λ)
2: kPKE

pub ,kPKE
sec ← KeyGen(1λ)

3: σ ← Random sequence of λ bits
4: kpub ← kPKE

pub
5: ksec ←

(
kPKE

sec , σ
)

6: return ksec,kpub

7: procedure Encapsulate(kpub)
8: m← Random element in the message space of PKE
9: r← G (m,kpub) ▷ The randomness to be used by Encrypt

10: c← Encrypt(kpub,m; r)
11: k← H (m, c) ▷ The encapsulated key to be shared
12: return c,k

13: procedure Decapsulate(ksec, c)
14: Parse kPKE

sec , σ ← ksec
15: kreject = H (σ, c) ▷ The fake key used for implicit rejection
16: m̂← Decrypt(kPKE

sec , c)
17: if m̂ = ⊥ then
18: return kreject

19: r̂← G (m̂,kpub)
20: ĉ← Encrypt(kpub, m̂; r̂) ▷ Reencryption
21: if ĉ ̸= c then
22: return kreject

23: k← H (m̂, c) ▷ The shared decapsulated key
24: return k

a fresh random key to be used with a symmetric-key algorithm. The first thing is to generate
a random seed m, that is what will be encrypted using PKE. Notice, however, that m will
be encrypted using randomness r that comes from the hash of G (m,kpub), resulting in
ciphertext c. This is one critical step of the transformation: since the randomness depend
on m, if an adversary alters the ciphertext, the intended receiver can detect this corruption
by reencrypting the message and comparing the result with the ciphertext. Furthermore,
since r also depends on kpub, this makes it difficult for multi-target search for colliding
values of r. The symmetric key to be shared is k = H (m, c).

The decapsulation is the most complex step. It starts by computing the implicit re-
jection key, which is a fake key that is used when it detects some problem, that can be a
decryption failure or a detection of malformed ciphertext. It is called implicit because the
receiver does not immediately tells the sender that there was a problem. This makes it more
difficult for an attacker mounting a CCA attack to distinguish whether his manipulation
of the ciphertext resulted in a valid ciphertext or not, and it is important for the proof
technique used by Hofheinz, Hövelmanns and Kiltz [HHK17a].

Then, the decapsulation procedure calls the decryption procedure of PKE to recover the
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base seed m. If there is a decryption failure, return the implicit rejection key, as discussed
below. Otherwise, engage in a reencryption. The necessity of reencryption is that, although
the decryption was successful, there is not yet any guarantees that the ciphertext was not
manipulated. However, if we encrypt m again and obtain a different value of c, then the
ciphertext was altered and we use the implicit rejection key. Otherwise, we consider that
everything went fine and we can use the shared symmetric key k = H (m̂, c), which will
hopefully be the same key as H (m, c).

2.3 Digital signatures

Chapter 4 presents an attack against the Permuted Kernel Problem (PKP), which is
the fundamental problem associated with a signature scheme. The attack is presented in a
way that does not require the reader to understand digital signatures, since it consists of
a series of binary linear algebra algorithms. However, it is useful for the reader to have at
least some background on digital signatures, so that they can better understand how PKP
is connected to cryptography.

2.3.1 Definition of signature schemes and their security

A signature scheme consists of 4 algorithms: Setup, KeyGen, Sign and Verify. The
behavior of the Setup and KeyGen are analogous to encryption schemes. The Setup

amounts for searching in a table for the public parameters achieving a given security level,
while KeyGen generates a pair of public and secret keys. The Sign algorithm is given a
message m and a secret key ksec, and produces a signature σ. The Verify algorithm is
given m, a public key kpub and the candidate signature σ, and decides whether σ is a valid
signature of m under kpub or not.

Desired security notion for signature schemes

Similarly to encryption schemes, there are a number of security notions for signature
schemes and also security conversions that can transform schemes to achieve higher security
notions, usually with some performance penalties. The most widely required security notion
for digital signature schemes is called existentially unforgeability under chosen message
attacks (EU-CMA), which is explained next. Suppose an attacker, who is attacking Alice,
can ask Alice for valid signatures for any message of their choosing. The signature scheme
is considered EU-CMA if, even with this powerful attacking setup, the attacker cannot
build a valid signature for a message that was not previously signed by Alice herself.

Constructing signature schemes

There are three paradigms to construct a digital signature: the hash-and-sign paradigm,
using the Fiat-Shamir transformation, and signatures based on hash functions only. Ar-
guably, the most well known among them is the hash-and-sign approach [BR96], which
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works as follows. Suppose the signer knows a secret information, called the trapdoor, that
allows them, and only them, to compute a preimage x of a public function f given any11

y = f(x). Under the hash-and-sign approach, the signer would first hash a message m

to the image of f , obtaining y = Hash(m), and then use the trapdoor information to
compute some x such that y = f(x). Since f is public, anyone can verify that x is a valid
signature of m by first hashing m and comparing the result with f(x).

Hash-based signatures are an interesting type of signature whose security is completely
based on the security of the hash functions used to instantiate it. The basic idea comes
from a report Lamport [Lam79] published in 1979 and is described next. Let H and G be
hash functions, the secret key is a seed s and the public key is a sequence of n hashes of
the form

kpub =
((
y0
1,y

1
1

)
, . . . ,

(
y0
n,y

1
n

))
,

where each yb
i = G(H(s, b, i)). The signature σ of an n-bit message m = (m1, . . . ,mn) is

the sequence of preimages, with respect to G, of the bits in each position, which corresponds
to σ = (H(s,m1, 1), . . . ,H(s,mn, n)). One very important limitation of this signature is
that public key kpub can only be used one time – each time kpub is reused, an attacker
can combine the preimages learned to craft and sign new messages. However, this idea can
be improved to allow for the same signing key to be reused safely but with an increased
signing time, as is the case for SPHINCS+ [ABB+19].

The Fiat-Shamir [FS86] paradigm is introduced in the next section for two reasons. The
first is that it is difficult to explain it in one paragraph since it requires some discussion
on zero-knowledge proofs. The second is that PKP-based signatures are based on this
paradigm, which makes it important to explain the Fiat-Shamir paradigm in a little more
detail.

2.3.2 The Fiat-Shamir paradigm

The Fiat-Shamir [FS86] paradigm uses interactive proofs of knowledge to build signa-
tures that are secure under the Random Oracle model and assuming the underlying math-
ematical problem is intractable. A proof of knowledge, which is a type of zero-knowledge
proof [GMR19], is a powerful proving technique in which two parties, a prover and a veri-
fier, interact with the following goal: the honest prover, who knows a solution to a problem,
wants to prove to the verifier that they know a solution to a problem, but without revealing
any additional information on the solution. For this to be possible, the verifier needs to
tolerate some negligible probability of being falsely convinced that the prover really knows
the solution.

One interesting example of zero-knowledge proof is what is called the Schnorr’s iden-
tification scheme [Sch89]. In this scheme, the prover wants to convince the verifier that

11The any qualifier is very important here. If that is not the case, the hash function could generate
values y for which the preimage could not be computed and a signature scheme wouldn’t be possible to
construct.
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Prover Verifier(kpub = y)

r ←$ {0, . . . , q − 1}

t← gr t

c c←$ {0, . . . , q − 1}

s← r + cx mod q s Accept if gs = tyc

Reject otherwise

Figure 2.1: Schnorr’s identification scheme: an efficient zero-knowledge proof that Prover knows
the discrete logarithm x such that y = gx. The symbol ←$ denotes an uniform selection from a
given set.

he knows a solution for an instance of the discrete logarithm problem. In this setup, both
prover and verifier agree on a cyclic group G of order q and one of its generator g, This
means that G =

{
gi : i ∈ {0, . . . , q − 1}

}
. Suppose that they both know a value y ∈ G

but the prover claims that he knows an x such that y = gx, that is, he wants to prove
knowledge of a discrete logarithm, a problem which, when defined in certain groups, is
believed to be very hard for classical computers to solve. The Schnorr [Sch89] protocol for
proof of knowledge is shown in Figure 2.1.

Let us see why this is a valid zero-knowledge proof. If the prover is honest, then the
verifier always accepts since gs = gr+cx = grgcx = t(gx)c = tyc. Now let us see what can
be learned by x from this interaction. Clearly c does not contain any information on x

since it was randomly chosen by the verifier. Now, notice that s, even considered together
with c, also do not carry any information on x, since s, without knowing r, is simply a
random variable in {0, . . . , q − 1}. Finally, the value of t is completely determined from s

and c using the equation t = gsy−c. Therefore, anyone seeing the interaction (t, c, s) learns
nothing about x. The question is then: why can we be so sure that the prover knows x?

Since anyone can forge a valid interaction transcript (t, c, s) by fixing first s and c before
t, the answer is on the prover’s availability in first committing to t and then answering the
challenge c. If the prover is honest, then, after committing to t, the he must be able to
give valid answer s1 and s2 to at least two different challenges c1 and c2. If this is the case,
then the prover must know x, since s1−s2

c1−c2
= (c1−c2)x

c1−c2
= x. And, if this is not the case, he

only knows how to answer one challenge and will be caught cheating with overwhelming
probability 1− 1/q.

Now, since to prove knowledge of x, the challenge must be generated after the commit-
ment t, this proof can be made non-interactive if we let the challenge c = H(t) for some
cryptographic hash function H. Furthermore, we can even transform this non-interactive
proof of knowledge into a signature scheme if we let the challenge depend also on the mes-
sage to be signed, by setting c = H(t,m). This is precisely how the Fiat-Shamir paradigm
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Signer Verifier

r ←$ {0, . . . , q − 1}
t← gr

c← H(m, t)

s← r + cx

(s, t) c← H(m, t)

Accept if gs = tyc

Reject otherwise

Figure 2.2: Schnorr’s signature scheme obtained by applying the Fiat-Shamir transform over
Schnorr’s identification scheme. The signer’s secret key is ksec = x and the public key is kpub =
y = gx. The symbol ←$ denotes an uniform selection from a given set.

is used to construct signatures. This is formalized in Figure 2.2.
One interesting thing about these Fiat-Shamir constructions is that we can build signa-

ture schemes over really hard problems, since, under weaker assumptions than the ROM,
zero-knowledge proofs exist for all problems in NP [GMW91]. However, they are not always
as efficient as Schnorr’s scheme, and may require a lot of interactions for the verifier to
get a negligible probability of being fooled. PKP-DSS [BFK+19] and Binary PKP [LP12],
which are the focus of Chapter 4, are representatives of this case: they are both constructed
over an NP-hard problem called the permuted kernel problem.

2.4 Secure cryptography implementation

The mathematical security models described in the previous sections are very useful
when designing cryptographic schemes. The success of these models comes from forcing
designers of schemes to be very specific, which helps researchers identify what are the weak
points that can be attacked. However, for a scheme to be useful in practice, the theoretical
hardness is not enough: it must also have an efficient and secure implementation.

The implementation of cryptographic algorithms can be very challenging because there
are a great number of possible sources of leakages. In this section, we start by briefly
reviewing the main sources of extra information attackers can use to break a cryptographic
implementation. Then we describe the main techniques used to avoid timing-based sources
of leakages, which is arguably the most critical leakage an implementation must avoid for
it to be used in the real world.

2.4.1 Side-channel attacks

Side-channel attacks exploit both implementation aspects of a cryptographic scheme
and the architecture under which the scheme is deployed. The most common types of
side-channel attacks exploit the following:
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• timing information [Koc96],

• patterns of memory access [YGH17, ASK07]

• power consumption and electromagnetic (EM) emissions [KJJ99].

Of these, the most dangerous leakages are the first two, since they can be used to mount
remote attacks [BB05], without access to the physical device in which a cryptographic
operation is deployed. Luckily, these two are the easiest to mitigate using a paradigm
known as constant-time programming.12 These are implementations whose execution time,
memory access and branching do not depend on secret inputs. The techniques to mitigate
power-based and EM-based side-channels are usually more involved, and we consider them
to be outside the scope of this dissertation.

In their post-quantum standardization process call for submissions [oST16], NIST ex-
plicitly states their preference for schemes that can be made resistant to side-channel
attacks with the lowest overhead. As such, most implementations submitted to NIST, at
least in the third round, come with an optimized constant-time implementation.

2.4.2 Constant-time programming

There are 3 main principles that must be followed under the constant-time programming
paradigm [JFB+22]:

• use only constant-time arithmetic operations on secret inputs,

• no branches should depend on secret inputs, and

• memory access patterns should not depend on secrets.

These may not appear to be hard to enforce, and in fact, there are even some tools for
automatic verification that a given program meets these conditions [Lan10]. However, there
are a number of aspects that make constant-time implementations challenging. Of those,
two that are particularly important are discussed next.

The first problem is that sometimes we need to use very different algorithms than those
that are used in the mathematical specification. Some algorithms are not only easier to
make constant-time than others, but yield more efficient procedures. Consider the problem
of sorting. It is easy to see that the pattern in which quicksort accesses elements of the
array is very dependent on the entries of the array. Therefore, when sorting is required,
there is usually no easy solution and the developer needs to understand the parameters
of the problem to choose among different options. For example, if the number of elements
is small, maybe a constant-time bubble sort can be used while if there are not many
different elements, a constant-time counting sort may be better. In more complex cases,

12Note that constant-time does not mean that the execution time is constant, because there are a number
of other variables that affect the CPU execution time. Some authors suggest the term secret-independent
time instead of constant-time but this is less common.
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there are more complex sorting-network approach which makes for a generic constant-time
algorithm [Ber19].

The second problem is that, even if all the 3 principles are followed by the programmer
in a high-level language, the compiler may transform their code into a non-constant-time
executable. To solve this problem, it is important to look into the assembly code generated
by the compiler to ensure that it did not inserted timing vulnerabilities. Recently, a new
language [ABB+17a] was proposed, which is designed specifically for cryptography, and for
which the compiler does not insert timing vulnerabilities. However, most of cryptography
code is still written in C.

Maybe because of the high dependency on the architecture and also on the compiler,
there are few resources on constant-time programming that are friendly to newcomers. One
exception, however, is the short course by Hernández et al. [HCAL15]. Another very useful
resource is Pornin’s discussion on the constant-time implementation of BearSSL [Por18].
In the next 3 sections, we provide a more detailed explanations of how to apply the 3
principles of constant-time programming.

The arithmetic operations on secrets should be constant-time

In this work, we assume that the execution time of the following operations are inde-
pendent of their operands.

• The bitwise operations over unsigned integers: and, or, xor, and not, denoted by &,
|, ^ and ~, respectively.

• Sum and subtraction of unsigned integers.

• Left and right shifts of unsigned integers, denoted by << and >>, respectively.

These assumptions are consistent with most cryptography implementations in modern
processors. However, notice that left and right shifts may not be constant-time in proces-
sors that does not come with a barrel shifter, which may not be the case for some old
processors.13 Notice that the multiplication of unsigned integers is sometimes assumed to
be constant-time in modern processors, but we do not need this assumption in this work for
the constant-time implementation we describe in Chapter 5. Notably, division and mod-
ulo operations are well known to be problematic under a number of architectures, and, as
such, we avoid these instructions in our implementation. When these operations are strictly
needed, we implement them in constant-time using other arithmetical operations14.

Avoiding branches dependent on secret data

One common source of information leakage in cryptography implementation comes
from branching. In cases when the branch selection depends on bits of the secret key, this

13Such as Intel’s Pentium IV under the NetBurst microarchitecture [Por18].
14This is done for the modulo operation needed for the sampling required by the constant-time imple-

mentation of FixFlip, which is discussed in Section 5.7.
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can lead to key-recovery attacks when the attacker can measure the time taken by the
operation. Similarly, if the branch is selected depending on bits of the secret message, this
can lead to message recovery attacks.

The main technique to avoid branching is to perform the computation in both branches,
and then select the desired result by using condition masks. This is exemplified in the
snippet below. There are two implementations of the same procedure that conditionally
selects value a or value b depending on the parity of the integer parity_condition. The
safe implementation is constant-time and we can see the usage of the condition variable
mask being used to select the right result.

1 #include <stdint.h>
2

3 uint32_t unsafe_conditional_select(uint32_t a, uint32_t b, uint32_t
parity_condition) {

4 uint32_t bit = parity_condition % 2;
5 if (bit == 0)
6 return a;
7 else
8 return b;
9 }

10

11 uint32_t safe_conditional_select(uint32_t a, uint32_t b, uint32_t
parity_condition) {

12 uint32_t bit = parity_condition & 1;
13 uint32_t mask = -bit;
14 // Notice that we have two cases
15 // mask = 0x00000000 if bit = 0;
16 // mask = 0xFFFFFFFF if bit = 1;
17 return (b & mask) | (a & ~mask);
18 }

The pattern of memory access should not depend on secrets

The last rule is that one should not use secret indexes to access data in memory directly.
This is very important since they can result in cache-timing attacks, where the attacker
gets information on the secret indexes by counting cache misses or hits [ASK07]. This type
of attack was shown to be devastating when combined with the Flush+Reload [YGH17,
ASK07] method, where the attacker can flush selected cache lines from L3 and then, by
timing load operations, determine whether these cache lines were used by the victim’s
process.

When we need to access a secret index of an array, the countermeasure is then to touch
every element of the array, but only make the desired modification based on condition
masks. The example below shows how to use this idea to safely select an entry from a table
whose index is secret.

1 #include <stdint.h>
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2

3 #define TABLE_SIZE 4
4

5 uint32_t Table[TABLE_SIZE] = {0xF0 , 0xF1 , 0xF2 , 0xF3};
6

7 uint32_t unsafe_table_select(uint32_t secret_index) {
8 return Table[secret_index ];
9 }

10

11 uint32_t safe_table_select(uint32_t secret_index) {
12 uint32_t value = 0;
13 for (int i = 0; i < TABLE_SIZE; i++) {
14 uint32_t mask = -(i == secret_index);
15 value |= Table[i] & mask;
16 }
17 return value;
18 }

This makes it nontrivial for cryptographic algorithms to sort or shuffle an array in
constant-time. These routines usually need to be optimized separately for each case, by
taking into account the specific parameters used by the scheme.

2.5 Coding theory and applications to cryptography

Coding theory [Sha48, vT93, Rom92] is an important subject with several real-world
applications. Two of its most common applications are compressing large files and en-
coding messages for reliable transmission. While these appear to have no connection
with cryptography, one of the oldest public-key encryption schemes, namely the McEliece
scheme [McE78], is based on the hardness of some coding theory problems.

In coding theory, messages are defined as a sequence of symbols, and the sender may
use what is called a code to add redundancy to this message, so that it can be reliably
transmitted through a potentially noisy channel [Sha48]. The main problem is then to
devise good codes, that are both efficient and can deal with the noise patterns that are
caused by target channel15.

Figure 2.3 illustrates the coding theory model for message transmission through noisy
channels. First the source (or sender) chooses a message m from a public and fixed setM of
possible messages. It then passes the message m through an encoder, that adds redundancy
to the message, obtaining c. When c is transmitted, the channel may add some noise e to
it, resulting in c′. The recipient then applies the decoding algorithm to extract the errors
from c′, obtaining m̂. If the recipient is lucky enough so that c′ is sufficiently similar to c,
then, with high probability m̂ should be equal to m.

15Notice that different transmission channels have different noise characteristics, for example the noise
caused by a scratch in compact disc (CD) is different from that in a wireless transmission.
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Source

Encoder Noisy channel Decoder

Recipient

m ∈M

c← Encode(m) c′ ← c+ e

m̂← Decode(c′)

Figure 2.3: Transmission of a message m through a noisy channel.

2.5.1 Binary linear codes

Consider the simplest case when messages consist of sequences of k bits, that is, each
symbols is an element of the binary field F2. Formally, the message space is then M =

Fk
2. While the encoding function may, in theory, be any injective function, for it to be

efficient, it must have a compact description. Arguably, the easiest solution for this compact
representation is to use a linear function for encoding, which is easily achieved using matrix-
vector multiplications. This motivates the definition of a binary linear code, which are one
of the most well-studied types of codes.

Definition 2.5.1 (Binary linear codes and codewords). A binary [n, k]-linear code is a k-
dimensional linear subspace of Fn

2 , where F2 denotes the binary field. Elements of a given
linear code are called its codewords.

Since they are vector spaces, binary linear codes have compact representations: they
can be fully described as the image or the kernel of binary matrices. These two types of
representation motivates the concepts of generator and parity-check matrices below.

Definition 2.5.2 (Generator and parity-check matrices). Let C be a binary [n, k]-linear
code. If C is the linear subspace spanned by the rows of a matrix G of Fk×n

2 , we say that
G is a generator matrix of C. Similarly, if C is the kernel of a matrix H of F(n−k)×n

2 , we
say that H is a parity-check matrix of C.

Then, if G e H are any pair of generator and parity-check matrices of a given binary
[n, k]-linear code C, then

C = {mG : m ∈ Fk
2} = {c ∈ Fn

2 : cHT = 0}.

The denomination parity-check matrix comes from the fact that, given one such matrix
H = (h)ij , for a vector c = [c1 . . . cn] to be in the code represented by H, the following set
of equations must be satisfied

c1h11 + c2h12 + . . . + cnh1n = 0,

c1h21 + c2h22 + . . . + cnh2n = 0,
...

...
...

...
. . .

...
...

...
...

c1hr1 + c2hr2 + . . . + cnhrn = 0.
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Since the operations are carried over F2, these are said to be parity check equations.
When decoding a corrupted codeword, it is usually important to know which parity

check equations are not satisfied. This information, which is commonly used by decoders
to correct possible errors, is called syndrome and is formally defined bellow.

Definition 2.5.3 (Syndrome). The syndrome of a vector v of Fn
2 , with respect to a parity-

check matrix H is the vector vHT . Notice that vHT = 0 if, and only if, vector v is in the
code represented by H.

Additionally, two important concepts for analyzing codes are (Hamming) weight and
(Hamming) distance, which are defined next.

Definition 2.5.4 (Weight). The Hamming weight of a vector v, denoted by w (v), is the
number of its non-null entries.

Definition 2.5.5 (Distance). The Hamming distance between two vectors of the same
length u and v of Fn

2 is denoted by d (u,v), and consists of the number of coordinates in
which they differ. Notice that, in the binary case, it holds that d (u,v) = w (u+ v).

2.5.2 Hard problems and applications to cryptography

Coding theory provides two hard problems that can be used in cryptography: the
syndrome decoding problem and the problem of finding codewords of small weight. Both
problems are known to be NP-hard [BMVT78], and they are defined as follows.

Definition 2.5.6 (Syndrome decoding problem). Consider the following input: a binary
matrix H ∈ Fk×n

2 , a vector s ∈ Fk
2, and an integer w > 0. The syndrome decoding problem

asks for a v of weight w such that vHT = s.

Definition 2.5.7 (Finding codewords of small weight). Consider the following input: a
binary matrix H ∈ Fk×n

2 and an integer w > 0. The problem is to find a codeword c such
that cHT = 0 and w (c) ≤ w.

In 1978, McEliece [McE78] showed how to use the intractability of these problems to
build a public-key encryption scheme. His rather elegant idea works as follows. For the
key generation process, one picks at random a binary linear Goppa code [Gop70, Ber73].
The private key is a representation of this code that allows for efficient decoding, while the
public key is a scrambled generator matrix of the Goppa code. When Alice wants to encrypt
a message to Bob, she first uses Bob’s public generator matrix to encode the message and
then she intentionally adds random errors to the encoded message. Since only Bob knows
the efficient decoder, only he can correct the errors and obtain the original message. This
proposal was later improved by Niederreiter [Nie86].

Notice that it is critical for the security of the scheme that the secret code repre-
sentation, which gives the efficient decoder, is not recoverable from the public represen-
tation. Even though Goppa codes are still believed to safely instantiate the McEliece
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scheme [BCL+19], the public keys are too large for some applications. Other more efficient
proposals for different code families rely on a quasi-cyclic or quasi-dyadic structure for com-
pact representation [Gab05, BCGO09, BCGM07, MB09]. Although they obtain compact
keys, most of them were shown insecure [OTD10, FOPT10, FOP+16]. A noticeable excep-
tion is the use of quasi-cyclic moderate-density parity-check codes [MTSB13, ABB+21],
which appears to be resistant against cryptanalysis and also yields small keys.

In 2003, Alekhnovich [Ale03] proposed a new code-based scheme whose security relies
purely on the decoding problem of random linear codes. That is, different from the McEliece
scheme [McE78], Alekhnovich’s scheme does not require a secret representation of the
code. The problem however, is that the keys are much larger, making the scheme far from
practical. To make it more efficient, Aguilar-Melchor et al. [AMBD+18] proposed the use
of quasi-cyclic codes as a variant of Alekhnovich’s, and also discussed additional techniques
to achieve negligible decryption failure probability. Their construction was refined and gave
origin to HQC [MAB+18], a code-based candidate in NIST’s PQC process that moved to
the 4th round.
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Chapter 3

A timing attack on the HQC
encryption scheme

Abstract. The HQC public-key encryption scheme is a promising code-based submission
to NIST’s post-quantum cryptography standardization process. The scheme is based on the
decisional decoding problem for random quasi-cyclic codes. One problem of the HQC’s ref-
erence implementation submitted to NIST in the first round of the standardization process
is that the decryption operation is not constant-time. In particular, the decryption time
depends on the number of errors decoded by a BCH decoder. We use this to present the
first timing attack against HQC. The attack is practical, requiring the attacker to record
the decryption time of around 400 million ciphertexts for a set of HQC parameters corre-
sponding to 128 bits of security. This makes the use of constant-time decoders mandatory
for the scheme to be considered secure.
Keywords: HQC, post-quantum cryptography, timing attack, BCH decoding

3.1 Introduction

Hamming Quasi-Cyclic (HQC) [MAB+18] is a code-based public-key encryption scheme.
It is based on the hardness of the quasi-cyclic syndrome decoding problem, a conjectured
hard problem from Coding Theory. It offers reasonably good parameters, with better key
sizes than the classical McEliece scheme [McE78, BCL+19, ACP+18], but without re-
lying on codes with a secret sparse structure, such as QC-MDPC [MTSB13] and QC-
LDPC [Bal14].

One of the most interesting features HQC provides is a detailed analysis of the de-
cryption failure probability, which makes it possible to choose parameters that provably
avoid reaction attacks [GJS16, FHS+17] that compromise the security of QC-LDPC and
QC-MDPC encryption schemes. This makes it one of the most promising code-based candi-
dates in NIST’s Post-Quantum standardization process. However, the negligible probability
of decoding failure comes at the expense of low encryption rates.

The scheme uses an error correction code C as a public parameter. The secret key is

29
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a sparse vector, while the public key is its syndrome with respect to a systematic quasi-
cyclic matrix chosen at random, together with the description of this matrix. To encrypt
a message, the sender first encodes it with respect to the public code C, then adds to
it a binary error vector which appears to be random for anyone who is not the intended
receiver. The receiver, using the sparseness of her secret key, is able transform the ciphertext
in such a way to significantly reduce the weight of the error vector. Then, the receiver can
use the efficient decoding procedure for C to correct the remaining errors of the transformed
ciphertext to recover the message.

The code C proposed by Aguilar-Melchor et al. [MAB+18] is a tensor code between a
BCH code and a repetition code. One drawback of the HQC implementation submitted
to NIST is that the decoder [JK95] for the BCH code is not constant-time, and depends
on the weight of the error it corrects. This makes the decryption operation vulnerable to
timing attacks.

The use of non-constant-time decoders has been exploited to attack code-based schemes
such as QC-MDPC [ELPS18], and recently, RQC [AMBD+18], which is a variant of HQC
in the rank metric that uses Gabidulin codes [Gab85], was shown vulnerable to timing
attacks [BBGM19]. However, timing attacks exploiting non-constant-time decoders are
not exclusive to code-base schemes, and the use of BCH codes in LAC [LLZ+18] has been
shown to leak secret information from timing [DTVV19].

Contributions. We present the first timing attack on HQC. The attack follows Guo et
al. [GJS16] idea: first we show how to obtain information, which is called the spectrum,
on the secret key by timing a large number of decryptions, and then use the information
gathered to reconstruct the key. We analyze in detail the reason behind the information
leakage. As a minor contribution, we show that a randomized variant of Guo’s et al.
algorithm for key reconstruction is better than their recursive algorithm when the attacker
has partial information on the secret key’s spectrum. This is useful to reduce the number
of decryption timings the attacker needs to perform.

Shortly after this paper was accepted for publication, Wafo-Tapa et al. [WTBBG19]
published a preprint in the Cryptology ePrint Archive in which they also present a timing
attack against HQC. Our attack is stronger in the sense that it only uses valid cipher-
texts, while the attack by Wafo-Tapa et al. [WTBBG19] uses malformed ciphertexts to
better control the extraction of secret information. However, their paper comes with a
countermeasure, which consists of a constant-time BCH decoder with a low overhead.

Paper organization. In Section 3.2, we review some background concepts for under-
standing HQC and our attack. The HQC is described in Section 3.3. The attack is presented
in Section 3.4. Some mathematical and algorithmic aspects of the attack are analyzed in
detail in Section 3.5. In Section 3.6, we analyze the practical performance of the attack
against concrete HQC parameters. We conclude in Section 3.8.
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3.2 Background

Please notice that, although some of the concepts defined below already appeared in
Section 2.5, the definitions are kept here to allow for readers to independently read this
technical chapter.

Definition 3.2.1 (Linear codes). A binary [n, k]-linear code is a k-dimensional linear
subspace of Fn

2 , where F2 denotes the binary field.

Definition 3.2.2 (Generator and parity-check matrices). Let C be a binary [n, k]-linear
code. If C is the linear subspace spanned by the rows of a matrix G of Fk×n

2 , we say that
G is a generator matrix of C. Similarly, if C is the kernel of a matrix H of F(n−k)×n

2 , we
say that H is a parity-check matrix of C.

Definition 3.2.3 (Weight). The Hamming weight of a vector v, denoted by w (v), is the
number of its non-null entries.

Definition 3.2.4 (Support). The support of a vector v, denoted by supp (v), is the set of
indexes of its non-null entries.

We use zero-based numbering for the vectors indexes as we believe it allows more concise
descriptions in some of the algorithms and analysis.

Definition 3.2.5 (Cyclic matrix). The cyclic matrix defined by a vector v = [v0, . . . , vn−1],
is the matrix

rot(v) =




v0 vn−1 . . . v1

v1 v0 . . . v2
...

...
. . .

...
vn−1 vn−2 . . . v0



.

Definition 3.2.6 (Vector product). The product of two vectors u,v ∈ Fn
2 is given as

u · v = u rot(v)T =
(
rot(v)uT

)T
= v rot(u)T = v · u.

Definition 3.2.7 (Syndrome decoding problem). Consider the following input: a random
binary matrix H ∈ Fk×n

2 , a random vector s ∈ Fk
2, and an integer w > 0. The syndrome

decoding problem asks for a v of weight w such that vHT = s.
The quasi-cyclic syndrome decoding problem is a restriction of the syndrome decoding

problem, in which H is a block matrix consisting of cyclic blocks.

The syndrome decoding problem is proven to be NP-hard [BMVT78]. Despite no com-
plexity result on the quasi-cyclic variant, it is considered hard since all known decoding
algorithms that exploit the cyclic structure have only a small advantage over general de-
coding algorithms for the non-cyclic case.



32 A timing attack on the HQC encryption scheme 3.2

Definition 3.2.8 (Circular distance). The circular distance between the indexes i and j

in a vector of length n is

distn(i, j) =




|i− j| if |i− j| ≤ ⌊n/2⌋,
n− |i− j| otherwise.

We next define the spectrum of a vector, which is a crucial concept for the rest of
the paper. The importance of the spectrum for the attack comes from the fact that it is
precisely the spectrum of the key that can be recovered by the timing attack. Intuitively,
the spectrum of a binary vector v is the set of circular distances that occur between two
non-null entries of v.

Definition 3.2.9 (Spectrum of a vector). Let v = [v0, v1, . . . , vn−1] be an element of Fn
2 .

Then the spectrum of v is the set

σ(v) = {distn(i, j) : i ̸= j, vi = 1, and vj = 1}.

In some cases, it is important to consider the multiplicity of each distance d, that is the
number of pairs of non-null entries that are at distance d apart. In such cases, we abuse
notation and write (d : m) ∈ σ(v) to denote that d appears with multiplicity m in vector
v.

Definition 3.2.10 (Mirror of a vector). Let v = [v0, v1, . . . , vn−1] be an element of Fn
2 .

Then the mirror of v is the vector

mirror(v) = [vn−1, vn−2, . . . , v0].

We sometimes abuse notation and write mirror(V ), where V is the support of a vector
v, to represent the support of the mirror of v. Notice that the spectrum of a vector is
invariant with respect to its circular shifts and its mirror.

Guo et al. [GJS16] showed that it is possible to reconstruct a sparse vector from its
spectrum. To solve this problem, they propose an algorithm that consists of a simple pruned
depth-first search. Its description is given as Algorithm 3.1.16 The main argument by Guo
et al. for the efficiency of their algorithm is that unfruitful branches are pruned relatively
early in the search.

Let α be the fraction of the ⌊n/2⌋ possible distances that are not in D, that is α =

1− |D|/⌊n/2⌋. For each new level in the search tree, it is expected that a fraction α of the
possible positions in the previous level survive the sieve imposed by line 15. Let MaxPaths

16Here we present a slightly more general version of Guo’s et al. reconstruction algorithm that does not
require the key’s spectrum to be completely determined, but the idea is the same.
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Algorithm 3.1 GJS key reconstruction algorithm [GJS16].
1: ▷ n,w the length and weight of the secret vector y
2: ▷ D a set of distances outside σ(y)
3: ▷ s a distance inside σ(y)
4: ▷ V the partially recovered support of a shift of y (initially set to {0, s}, where s ∈ σ(y))

is known
5: procedure GJSKeyReconstruction(n,w,D, s, V )
6: ▷ Outputs the support V of some shift of y, or ⊥ if σ(y) is an invalid spectrum
7: if |V | = w then
8: if V is the support of a shift of y then
9: return V

10: else if mirror(V ) is the support of a shift of y then
11: return mirror(V )
12: else
13: return ⊥
14: for each position j = 1, . . . , n− 1 which are not in V do
15: if distn(v, j) ̸∈ D for all v in V then
16: Add j to V
17: ret← GJSKeyRecovery(n,w,D, s, V ) ▷ Recursive call with the

updated set V
18: if ret ̸=⊥ then
19: return V
20: Remove j from V

21: return ⊥

be the total number of paths that Guo’s et al. [GJS16] algorithm can explore. Then

MaxPaths =
w−1∏

ℓ=2

max
(
1, ⌊n/2⌋αℓ

)
= ⌊n/2⌋ϕαϕ(ϕ+3)/2,

where ℓ represents the level in the search tree, and ϕ is the level at which each node has
an expected number of child nodes lower than or equal to 1. Notice that, on average, the
mirror test in line 10 cuts in half the number of paths the algorithm needs to explore until
it finds the key. From the remaining paths, we expect that half of them have to be taken
until the key is found. Therefore, considering WFGJS to be the average number of paths
the algorithm explores until a key is found, we have

WFGJS =
1

4
MaxPaths =

1

4
⌊n/2⌋ϕαϕ(ϕ+3)/2.

3.3 The HQC encryption scheme

3.3.1 Setup

On input 1λ, where λ is the security parameter, the setup algorithm returns the public
parameters n, k, δ, w,wr, we, from parameters table such as Table 3.1. For these parameters,
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an [n, k] linear code C, with an efficient decoding algorithm Ψ capable of correcting random
errors of weight up to δ with overwhelming probability, is fixed. Parameters w,wr and we

correspond to the weights of the sparse vectors defined and used in the next sections.

Instance Security n1 n2 n ≈ n1n2
a k = k1 w wr = we pfail

Basic-I 128 766 29 22,229 256 67 77 2−64

Basic-II 128 766 31 23,747 256 67 77 2−96

Basic-III 128 796 31 24,677 256 67 77 2−128

Advanced-I 192 796 51 40,597 256 101 117 2−64

Advanced-II 192 766 57 43,669 256 101 117 2−128

Advanced-III 192 766 61 46,747 256 101 117 2−192

Paranoiac-I 256 766 77 59,011 256 133 153 2−64

Paranoiac-II 256 766 83 63,587 256 133 153 2−128

Paranoiac-III 256 796 85 67,699 256 133 153 2−192

Paranoiac-IV 256 796 89 70,853 256 133 153 2−256

Table 3.1: Suggested parameters for some security levels [AMBD+18].

aThe value of n is the smallest prime number greater than n1n2.

3.3.2 Key generation

Let H ∈ Fn×2n
2 be a quasi-cyclic matrix selected at random, in systematic form, that is

H = [ I | rot(h) ], for some vector h. Let x,y ∈ Fn
2 be sparse vectors with weight w (x) =

w (y) = w. Compute

s = [x|y]HT = x+ y · rot(h)T = x+ y · h.

The public and secret key are kpub = [s|h] and ksec = [x|y], correspondingly.
From this construction, it is easy to see the relation between recovering the secret key

from the public key and the quasi-cyclic syndrome decoding problem.

3.3.3 Encryption

Let m ∈ Fk
2 be the message to be encrypted. First, choose two random sparse vectors

r1, r2 ∈ Fn
2 such that w (r1) = w (r2) = wr. Then choose a random sparse vector e ∈ Fn

2

such that w (e) = we. Let

u = [r1|r2]HT = r1 + r2 · h, and v = mG+ s · r2 + e.

Return the ciphertext c = [u|v].
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3.3.4 Decryption

Compute c′ = v + u · y. Notice that

c′ = mG+ s · r2 + e+ (r1 + r2 · h) · y
= mG+ (x+ y · h) · r2 + e+ (r1 + r2 · h) · y
= mG+ x · r2 + r1 · y + e.

Intuitively, since x,y, r1, r2, and e all have low weight, we expect e′ = x · r2+ r1 ·y+e

to have a relatively low weight. This is made precise by Aguilar-Melchor et al. [AMBD+18],
where they propose the public parameters to ensure that w (e′) is sufficiently low for it to
be corrected out of c′ with overwhelming probability.

Therefore we can use the decoder Ψ to correct the errors in c′ and obtain c′′ = Ψ(c′) =

mG. We finally get m by solving the overdetermined linear system mG = c′′.

3.3.5 Security and instantiation

In general, schemes based on syndrome decoding have to take care to avoid generic
attacks based on Information Set Decoding [Pra62, Ste88, TS16]. Furthermore, the quasi-
cyclic structure of the code used to secure the secret key can make the scheme vulnerable
to DOOM [Sen11], or other structural attacks [GJL15, LJS+16].

To instantiate the scheme, the authors propose parameters for which they prove very
low decryption error probability and resistance to the attacks mentioned. This error anal-
ysis allows the HQC to achieve IND-CCA2 security using the transformation of Hofheinz
et al. [HHK17b].

Of particular interest for our timing attack, is the way that code C is chosen. Their
proposal is to build the tensor code C = C1 ⊗ C2, where the auxiliary codes are chosen as
follows. C1 is a BCH(n1, k1, δ1) code of length n1, dimension k1. C2 is a repetition code of
length n2 and dimension 1, that can decode up to δ2 =

⌊
n2−1
2

⌋
. Therefore, to encode a

message m with respect to C is equivalent to first encode it using the BCH code C1, and
then encode each bit of the resulting codeword with the repetition code C2.

The suggested parameters for this instantiation are shown in Table 3.1. In this table,
column pfail contains an upper bound for the probability of a decryption failure for each
instance of the scheme. The size of the public keys and ciphertexts correspond to 2n bits.

3.4 Timing attack against HQC

In the decryption algorithm, the decoder Ψ is used to correct the errors in the word

c′ = mG+ x · r2 + r1 · y + e,
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where the attacker knows every element, except for the secret key consisting of x and y.
For the original instantiation, where C is the tensor product of a BCH code and a repetition
code, the decoder Ψ consists of a sequence of two operations: first apply a repetition code
decoder Ψ2, and then apply the BCH code decoder Ψ1. That is Ψ(c′) = Ψ1(Ψ2(c

′)).
The timing attack is based on the fact the BCH decoder implemented by Aguilar-

Melchor et al. [MAB+18] is not constant-time, and is slower when there are more errors
to be corrected. In other words, the decryption time leaks the number of errors that the
repetition code (RC) decoder Ψ2 was not able to correct.

Figure 3.1 shows the essentially linear relation between the decryption time and the
number of errors corrected by the BCH decoder. We emphasize that the time considered
is for complete decryption, not only the BCH decoding step. The weight distribution is
centered between 9 and 10, thus error weights larger than 22 are rare (around 1%).
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Figure 3.1: The average decryption time for different weights of the errors corrected by the BCH
decoder, considering 10 million decryption operations.

Let e′ be the error vector that Ψ2 will try to correct, that is e′ = x · r2 + r1 ·y+ e. We
note that it is useful to consider Guo’s et al. [GJS16] observation, used in their attack on
QC-MDPC, that the weight of the product of two binary sparse vectors a ·b is lower when
the spectrums of a and b share more entries. However, this observation is not sufficient to
enable us to accurately distinguish between distances in and out of the spectrum, because
we are not just interested in the weight of e′, but mainly in the probability that it has
enough non-null entries in the same repetition blocks to cause Ψ2 to leave decoding errors.

When the number of RC decoding errors for Ψ2(mG + e′) is high, it means that e′

has a lot of non-null entries that are at a distance lower than the repetition block size n2.
Therefore, if we understand how r1 and y influence the number of entries lower than n2

in σ (r1 · y), we can use our knowledge on r1 together with the decryption time to obtain
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information on y.17

We make three observations that relate the spectrum of e′ to the spectrums of r1 and
y, (alternatively r2 and x). These are presented in the next section based on empirical
data, and their mathematical nature is explained in Section 3.5.1.

The timing attack then consists of two parts. In the first part, called the spectrum
recovery, the attacker sends Alice a great number of ciphertexts and records the decryption
times for each one. This step runs until it is gathered sufficient information on the spectrums
of y (or x) for him to build a large set D of distances outside the spectrum, and to obtain
a distance s ∈ σ(y) (respectively, σ(x)). In the second part, the set D and distance s are
passed to the key reconstruction algorithm.

It is important to notice that the the attacker needs only to recover one of x or y,
because he can use the linear relation s = x+ y · h to easily recover one from the other.

In the next sections, the two parts are presented in detail.

3.4.1 Spectrum Recovery

This is the part where timing information is used. Let Alice be the target secret key
holder. The attacker sends Alice valid ciphertexts, and records the time she takes to decrypt
each challenge. Since the attacker generated all ciphertexts, then, for each one of them, he
knows r1 and r2. The idea is that the attacker iteratively builds two arrays, Tx and Ty,
such that Tx[d] (Ty[d]) is the average of the decryption time when d is in the spectrum of
r2 (resp. r1).

The algorithm for spectrum recovery is given as Algorithm 3.2. Notice that we are not
choosing the vectors r1, r2, which are assumed to be random. Therefore CCA2 conver-
sions [HHK17b] do not protect the scheme against this attack.

To maximize the information obtained from each decryption timing, the proposed spec-
trum recovery procedure targets σ(x) and σ(y) simultaneously. This is interesting for the
attacker since it may be the case that, after a number of challenges, the output Tx does not
have sufficient information on x for it to be reconstructed, but Ty is sufficient to recover
y.

Figure 3.2 shows the output of the spectrum recovery algorithm Ty for M = 1 billion
decryption challenges. On the left of the figure, we see that distances lower than n2 have
a significantly higher average decryption time. The figure shows that, in general, distances
inside the spectrum of y appears to have lower average decryption time. However, there is
no clear line to classify a distance d as inside or outside σ(y), based only on Ty[d], since
this value appears to also depend on the neighbors of d.

Figure 3.3 shows another interval of the same data, but with one vertical line for each
distance in the spectrum. This enables us to see that regions where there are more distances
inside the spectrum appear to have higher average decryption time.

17This sentence remains valid if we substitute y and r1 by x and r2, respectively.
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Algorithm 3.2 Estimating the decryption time for each possible distance in σ(x) and
σ(y).
1: ▷ n, k the HQC public parameters
2: ▷ T oracle that returns the target’s decryption time for the challenge passed as argu-

ment
3: ▷ M number of decoding challenges
4: procedure EstimateDecryptionTimeForDistances(n, k, T ,M)
5: ay,by,ax,bx ← zero-initialized arrays with ⌊n/2⌋ entries each
6: for each decoding trial i = 1, 2, . . . ,M do
7: m← a random message in Fk

2

8: c← encryption of m using vectors
9: r1 and r2 randomly chose

10: t = T (c)
11: for each distance d in σ(r1) do
12: ay[d]← ay[d] + t
13: by[d]← by[d] + 1

14: for each distance d in σ(r2) do
15: ax[d]← ax[d] + t
16: bx[d]← bx[d] + 1

17: Tx,Ty ← zero-initialized array with ⌊n/2⌋ positions
18: for each distance d in {1, 2, . . . , ⌊n/2⌋} do
19: Tx[d]← ax[d]/bx[d]
20: Ty[d]← ay[d]/by[d]

21: ▷ Tx,Ty are the average decryption time for distances in σ(x) and σ(y)
22: return Tx and Ty
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Figure 3.2: The average decryption time Ty[d] for each distance d that can occur in r1, for M = 1
billion.

Summarizing the analysis of the figures, we make the following three informal observa-
tions that allow us to distinguish between distances inside and outside the spectrums.
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Figure 3.3: A closer look at the behavior of Ty[d] for each distance d. The gray vertical lines
represent distances inside σ(y).

1. When d decreases from d = n2 − 1 to d = 1, the value of Ty[d] increases, getting
significantly higher than the rest of the values in Ty.

2. When d ∈ σ(y), the value of Ty[d] is lower than the average in the neighborhood of
d.

3. When d has a large number of neighbors in σ(y), the value of Ty[d] tends to be
higher.

The reasons why we observe such behavior are analyzed in detail in section 3.5.1.
Similarly to the GJS algorithm (Algorithm 3.1), our key reconstruction algorithm for

the next part of the attack works with two inputs: a set D of distances outside the spectrum,
and a distance s inside the spectrum. Figure 3.2 suggests that, when a sufficiently large
number of decryption challenges are timed, it is easy to get a distance inside the spectrum
with high probability by just taking the distance s such that Ty[s] is the minimum value
in the array. However, it is not trivial to find a sufficiently large set D from Ty. For this,
we propose a routine called BuildD, which is describe next.

BuildD: Building the set of distances not in σ(y) from Ty.

We propose to use the following simple algorithm, that takes as input a value µ and
the decryption times estimation Ty, and outputs µ distances which it classifies as out of
σ(y). The idea is to select the µ values of d such that Ty[d] are among the highest of their
corresponding neighborhood.

Let η be some small positive integer for which the probability that {d, d+1, . . . , d+η−
1} ⊂ σ(y) is negligible for all values of d. The value η will be the size of the neighborhood,
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which must contain at least one distance outside the spectrum. This value can be esti-
mated by generating N random vectors, then computing the minimum value η for which η

consecutive distances always contain at least one distance not in the vectors corresponding
spectrums. For the Basic-I parameters, we obtained η = 11 for N = 10000.

For each d, we compute the difference between Ty [d] and the highest value of Ty in
the window {d − ⌊η/2⌋, . . . , d + ⌈η/2⌉ − 1}. If the window contains invalid distances, we
just truncate it to exclude them. In other words

ρ(d) =

(
max
i∈Wd

Ty[i]

)
−Ty[d],

where Wd is the intersection between {d− ⌊η/2⌋, . . . , d+ ⌈η/2⌉ − 1} and the set of possible
distances. The algorithm sorts the possible distances with respect to ρ(d), and returns the
µ values of d such that ρ(d) are the lowest ones.

Let BuildD(Ty, µ) be the output of the algorithm just described for the given inputs.
Since the key reconstruction only works if D is a large set of distances not in the spectrum,
it is natural to define the quality of the input Ty as

Quality(Ty) = max {µ : BuildD(Ty, µ) ∩ σ(y) = ∅} .

Figure 3.4 helps us visualize why this algorithm works. For M = 1 billion decryptions,
it is easy to see that the distances between Ty[d] and maxi∈Wd

Ty[i] should be smaller
when d is not in the spectrum of y. However, it is not clear yet how many decryptions
are necessary for the algorithm to be able to build sufficiently large sets D, that is, to
obtain high values for Quality(Ty). This is considered in the experimental analysis in
Section 3.6.2.
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Ty[i] for each distance d, considering windows of

size η = 11, after M = 1 billion decryptions.
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3.4.2 Reconstructing y from partial information on its spectrum

We propose18 the key reconstruction algorithm given as Algorithm 3.3, which is the
simple randomized extension of Guo’s et al. [GJS16] algorithm. Instead of performing a
depth-first search for the key, at each level of the search tree, the algorithm chooses the
next node at random.

Algorithm 3.3 Randomized key reconstruction algorithm.
1: ▷ n,w the HQC public parameters
2: ▷ s a distance inside σ(y)
3: ▷ D a set of distances which are not in σ(y)
4: procedure RandKeyReconstruction(n,w, s,D)
5: V ← ∅
6: while Both V and mirror(V ) are not the support of a rotation of y do
7: V ← {0, s}
8: Γ2 ← {i ∈ {1, . . . , ⌊n/2⌋} − V : distn(i, v) /∈ D for all v ∈ V }
9: ℓ← 2

10: while |V | < w and |Γℓ| > 0 do
11: p← a random element from Γℓ

12: V ← V ∪ {p}
13: Γℓ+1 ← {i ∈ Γℓ : distn(i, v) /∈ D for all v ∈ V }
14: ℓ← ℓ+ 1

15: if V is the support of a shift of y then
16: return V
17: else if mirror(V ) is the support of a shift of y then
18: return mirror(V )

We give a brief description of the algorithm. Parameters s, which must be a distance
inside the spectrum of y, and D, which is a set of distances outside the spectrum of y, are
obtained in the first part of the attack. At each iteration, the algorithm starts with the
set V = {0, s} and tries to complete it with w − 2 indexes. To complete the support V ,
the algorithm chooses at random an index inside the auxiliary set Γℓ, which contains, for
each level l, the possible positions to complete the support. That is, Γℓ consists of all the
elements from {0, . . . , n− 1} which are not in V , and whose circular distance to any index
in V is not in D.

Notice that it is easy to perform the tests in lines 15 and 17 without knowing the secret
key. Let y be the vector with support V found in the algorithm’s main loop. Consider all
possible cyclic shifts of y, denoted by y0, . . . ,yn−1. To test if y is a shift of y, we look for
a shift yi such that the weight of the vector x = s + yi · h is w (x) = w. If we find one,
then y is a shift of y (high probability), or we have found an equivalent secret key for the
given public key (h, s). If we do not find one, then we start a new iteration.

The complexity of the algorithm is analyzed in Section 3.5.2, while its practical perfor-
mance is shown in Section 3.6.1.

18Notice that this algorithm first appeared in the author’s master’s thesis [Pai17, Section 6.1].



42 A timing attack on the HQC encryption scheme 3.5

3.5 Analysis

In this section we analyze two aspects of the attack. First we explain why it is possible
to distinguish between distances inside and outside the spectrum based on decryption time.
Then we analyze the complexity of the randomized key reconstruction algorithm, and how
it compares to the one presented by Guo et al. [GJS16].

3.5.1 Distinguishing distances inside and outside the spectrum

We know that the decryption time is related to the number of errors left by the repe-
tition code (RC) decoder. Our main observation is that the number of RC decoding errors
depends on how the spectrums of r1 and r2 relate to those of y and x, respectively.

Consider the error to be corrected by the RC decoder, given by

e′ = r1 · y + r2 · x+ e.

An RC decoding error occurs when e′ contains more than (n2− 1)/2 nonzero errors in the
same repetition block. Therefore, an RC decoding error has higher probability of occurring
when the spectrum of e′ contains small distances with high multiplicity, and in particular,
when σ(e′) contains a lot of distances lower than the repetition block length n2. We also
expect that σ(e′) contains small distances when σ(r2 · x) and σ(r1 · y) also contain small
distances. In the following discussion, we focus on r1 · y, but we could have used r2 · x
without any difference.

The above paragraph motivates us to better understand what causes the spectrum of
r1 ·y to contain small distances. Unfortunately, the strong dependency between the rows of
rot(y)T can make it very hard to perform a satisfactory statistical analysis on the product
r1 · y.

Therefore, we study a simpler problem, namely to describe σ(r1 · y) as a function of
σ(r1) and σ(y), but restricted to the case where w (r1) = w (y) = 2. Even though it is not
the general case, it can give us a good intuition on why the attack works. The analysis is
given in the following lemma. First we discuss the implications of the lemma and how it
can be used to distinguish between distances inside and outside the spectrums of the secret
key, and then we prove it.

Lemma 3.5.1. Let y, r ∈ Fn
2 be two binary vectors of weight 2, where n is an odd prime.

Let α and β be the only distances in σ(y) and σ(r), respectively. Then, we have the following
possibilities.19

If α = β, then

σ(r · y) = {distn(0, 2α) : 1} = {distn(0, 2β) : 1}. (3.1)

19Recall that we use (γ : m) ∈ σ(y) to denote that cyclic distance γ occurs m times between non-null
entries of y.
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If α ̸= β, then

σ(r · y) = {α : 2, (3.2)

β : 2, (3.3)

|β − α| : 1, (3.4)

distn(0, β + α) : 1}. (3.5)

Interpreting Lemma 3.5.1. Intuitively, α represents distances inside the spectrum of
the secret vector y, while β represents distances inside the spectrum of r1. We now restate
the observations from Section 3.4.1 with brief discussions on why they happen, using the
lemma to help us.

1. When β decreases from β = n2 − 1 to β = 1, the value of Ty[β] increases, getting
significantly higher than the rest of the values in Ty.

From (3.3), distance β in σ(r1) can cause σ(r1 ·x) to contain β with multiplicity
2. Therefore when β < n2, it can be responsible for more RC errors than values
of β ≥ n2. The reason why Ty[β] gets increasingly higher when β approaches 1 is
that, we get an increasing incidence of β + α < n2, where α ∈ σ(y). Therefore,
from (3.5), these values of β tend to cause more distances lower than n2 in
σ(r1 · y).

2. When β ∈ σ(y), the value of Ty[β] is lower than the average in the neighborhood of
β.

Comparing both cases considered by the lemma, we see that values of β = α

for some α ∈ σ(y) (Case 1) are expected to produce a lower number of small
distances in σ(r1 · x) than values of β ̸= α for all α ∈ σ(y) (Case 2).

3. When β has a large number of neighbors in σ(y), the value of Ty[β] tends to be
higher.

Using (3.4), we have that Ty[β] tends to be higher when more values of α ∈ σ(y)

satisfy |β−α| < n2. In fact, the lemma even helps us formalize the neighborhood
of β as the distances d between β − n2 < d < β + n2.

We now proceed with the proof of Lemma 3.5.1.

Lemma 3.5.1. Let α1, α2 and β1, β2 be the positions of the two ones in y and r, respectively.
We can suppose without loss of generality that

α2 = α1 + α mod n, and β2 = β1 + β mod n,

since if this is not the case, we can just swap the corresponding values.
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The product r · y consists of the sum of two circular shifts of y: one by β1, and the
other of β2 positions, denoted by shiftβ1(y) and shiftβ2(y), respectively. More formally

r · y = r rot(y)T = shiftβ1(y) + shiftβ2(y),

where

supp (shiftβ1(y)) = {α1 + β1 mod n, α2 + β1 mod n}
= {α1 + β1 mod n, α1 + α+ β1 mod n},

and

supp (shiftβ2(y)) = {α1 + β2 mod n, α2 + β2 mod n}
= {α1 + β1 + β mod n, α1 + α+ β1 + β mod n}.

Therefore the weight of r · y is at most 4, but can be lower if the supports above share
some of their entries. We consider separately the cases when α = β and α ̸= β. These cases
are illustrated in Figure 3.5.
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Figure 3.5: The cases when α = β (left), and α ̸= β (right).

Case α = β. In this case, we have:

supp (shiftβ1(y)) = {α1 + β1 mod n, α1 + α+ β1 mod n},

and

supp (shiftβ2(y)) = {α1 + β1 + α mod n, α1 + 2α+ β1 mod n}.
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The supports of the shifts share the entry α1 + β1 + α mod n. But notice that this is
the only shared entry, since the fact that n is odd implies α1 + β1 ̸≡ α1 + β1 +2α mod n.
Then, summing the shifts of y we get

supp (r · y) = {α1 + β1 mod n, α1 + 2α+ β1 mod n}.

Therefore, using the facts that α ≤ ⌊n/2⌋ and n is odd, we get

σ(r · y) = {distn(α1 + β1 mod n, α1 + 2α+ β1 mod n) : 1}
= {distn(0, 2α mod n) : 1}
= {distn(0, 2α) : 1}.

Case α ̸= β. We begin by showing that the supports of the shifts do not share any entry.
It is clear that α1 + β1 is not equivalent to α1 + β1 + β nor α1 + α+ β1 + β (modn) since
1 < α, β ≤ (n− 1)/2. The same can easily be seen for α1 + α+ β1.

Therefore, spectrum of r · y consists of the following distances.

1. distn(α1 + β1, α1 + β1 + β) = distn(0, β) = β.

2. distn(α1 + β1, α1 + α+ β1) = distn(0, α) = α.

3. distn(α1 + β1, α1 + α+ β1 + β) = distn(0, α+ β).

4. distn(α1 + β1 + β, α1 + α+ β1) = distn(β, α) = distn(0, α− β) = |α− β|.

5. distn(α1 + β1 + β, α1 + α+ β1 + β) = distn(0, α) = α.

6. distn(α1 + α+ β1, α1 + α+ β1 + β) = distn(0, β) = β.

Counting the multiplicities of these distances, we get the desired result.

3.5.2 Probabilistic analysis of the key reconstruction algorithm

In this section20, we first analyze our randomized variant of the key reconstruction
algorithm, given as Algorithm 3.3 in Section 3.4.1. We then compare it to Guo’s et al.
recursive algorithm, described as Algorithm 3.1 in the end of Section 3.2.

In each iteration, the algorithm performs a random walk down the search tree, starting
from the root {0, s}, corresponding to ℓ = 2, and ending in one of its leaves. Therefore,
for the algorithm to succeed in finding y, it has to choose, in each level of the search, an
element in supp (y).

Let s be a distance in σ(y). Suppose the search is at level ℓ, and the algorithm has
chosen, until now, the elements Vℓ = {v1 = 0, v2 = s, . . . vℓ}, all in the support of y. Let
Γℓ be the set of possible choices at level ℓ, then

Γℓ = {p ∈ ({0, . . . , n− 1} − Vℓ) : distn(p, v) /∈ D for all v ∈ V } .
20This analysis is adapted from the author’s master’s thesis [Pai17, Section 6.2].
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We now have exactly w − |Vℓ| good choices for the next level, which gives us

Pr (vℓ+1 ∈ supp (y) | Vℓ ⊂ supp (y)) =
w − |Vℓ|
|Γℓ|

=
w − ℓ

|Γℓ|
.

Remember that the spectrum recovery algorithm can find either y or mirror(y), and both
are of interest to the attacker. Therefore, we can write the probability that the algorithm
successfully finds the key as

Pr(Success) = 2

w−1∏

ℓ=2

w − ℓ

|Γℓ|
,

where the product starts at level ℓ = 2 since the search begins with V2 = {0, s}, and it
ends at level ℓ = w − 1 because this is the last level in which a choice is made. The factor
2 comes from the mirror test.

Unfortunately, it is not easy to compute the distribution of |Γℓ|, because of the de-
pendency between distances in D and elements in Vℓ. However, we can approximate its
expected value using an argument similar to the one used by Guo et al. [GJS16]. Let α be
the probability that a distance is not in D, that is α = 1 − |D|/⌊n/2⌋. At level ℓ, there
are w − ℓ choices that are in supp (y), and ℓ positions already in Vℓ. For the other n − w

positions that are not in the support of y, we expect a fraction of αℓ of them to have
survived the sieves of each level. Therefore, we have

E (|Γℓ|) ≈ (n− w)αℓ + w − ℓ.

We define the work factor WFRand of this algorithm as the expected number of paths
it needs to explore until it finds the secret key. Then, using the approximation above, its
value is

WFRand =
1

Pr(Success)

≈ 1

2

w−1∏

ℓ=2

(n− w)αℓ + w − ℓ

w − ℓ
=

1

2

w−1∏

ℓ=2

(
(n− w)αℓ

w − ℓ
+ 1

)
.

Looking at the term in each level ℓ, they appear to be lower than the corresponding
ones for Guo’s et al. algorithm. However, just looking at the expressions, it is not clear
how they compare.

To better understand how they compare, consider Figure 3.6, which shows a concrete
comparison of the work factors for both algorithms when the input D has an increasing
number of distances outside the spectrum. We considered parameters for three HQC vari-
ants. Since the range of |D| varies according to the parameters n and w, we normalized its
value with respect to the average of the total number of distances outside the spectrum,
denoted by ∆. To estimate ∆ for each pair (n,w), we generated 1000 different random
vectors and computed the average number of distances outside the spectrums. We can
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see that the work factor of the randomized algorithm is typically more than 3 orders of
magnitude lower than Guo’s et al. [GJS16] recursive one.
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Figure 3.6: Comparison between Guo’s et al. [GJS16] key reconstruction algorithm and our
randomized variant with respect to the expected number of paths until the secret key is found. For
each set of parameters (n,w) the value of |D| is normalized using the average number of distances
outside the spectrum, denoted by ∆.

3.6 Experimental results

In this section, we present our results for the timing attack against the Basic-I pa-
rameters of the HQC. We consider the two parts of the attack separately. First we run
experiments on the key reconstruction algorithm to find out how much information on
the spectrum it needs to run efficiently. We then run simulations to estimate how many
decryptions timings an attacker needs to perform to be able to reconstruct the key. The
source code and data are available at www.ime.usp.br/~tpaiva.

3.6.1 Performance of the Key Reconstruction Algorithm

We want to determine how many entries outside the spectrum of the secret vector y

the attacker needs to know for the key reconstruction algorithm to efficiently reconstruct
the vector. In other words, we are interested in how large the set D needs to be. Figure 3.6
gives us a hint on this matter, but it does not give us a concrete estimation of the key
reconstruction algorithm’s performance.

Table 3.2 shows the performance of both key reconstruction algorithms, the GJS and our
randomized variant, when given sets D of different sizes for the Basic-I HQC parameters.
For each considered size for the set D, we generated 10 random secret keys and considered
D as a random set of |D| distances outside the spectrum. The distance s was selected at

www.ime.usp.br/~tpaiva
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random from the secret key spectrum. For a more clear interpretation of the results, we
considered, in the second column, the approximate average number ∆ = 9104 of distances
not in the spectrum, to normalize the values |D|. We then ran C implementations of the
algorithms with parameters D and s. This experiment was performed on an Intel i7-8700
CPU at 3.20GHz, using its 12 hyperthreads.

Randomized variant of
the GJS reconstruction algorithm

GJS reconstruction
algorithm

|D| |D|/∆ WFRand
Median of the
number of paths

Median of the
CPU time (s)

Median of the
CPU time (s)

9104 100% 28 63 0.51 0.98
8648 95% 99 80 0.51 10.78
8192 90% 407 232 0.50 772.64
7736 85% 1957 1714 0.75 6801.10
7280 80% 11394 9995 1.96 -
6824 75% 83670 54721 10.02 -
6368 70% 816671 365604 75.63 -
5912 65% 11355108 8472060 2767.90 -
5456 60% 246873607 - - -

Table 3.2: Performance of the key reconstruction algorithms when input D has different sizes, for
the Basic-I HQC parameters.

We can see that our randomized algorithm performs much better than Guo’s et al. [GJS16]
one. This not only implies that the randomized algorithm allows faster key reconstruction,
but also that it allows the attacker to recover the key with less interaction with the secret
key holder. The estimates for the number of paths WFRand appear to be sufficiently ac-
curate for our purposes, with only a minor discrepancy when D/∆ = 100% that happens
because of the concurrent hyperthreads. From D/∆ = 60% down, the randomized algo-
rithm starts taking too long to finish. Therefore, we consider that we are able to efficiently
reconstruct the key when D/∆ ≥ 65%.

3.6.2 Communication Cost

We now analyze how many decryption challenges an attacker needs to send to the
secret key holder for a successful attack. In this paper, we only considered the Basic-I
HQC parameters, but this experiment can easily be extended for the other parameters.

For the analysis, 10 secret keys were generated at random, and for each of them we
ran the spectrum recovery algorithm for M = 700 million challenges. For each number
challenges i, consider the quality of the decryption time estimates Ti

x and Ti
y, given by

Quality(Ti
x) = max

{
µ : BuildD(Ti

x, µ) ∩ σ(x) = ∅
}
, and

Quality(Ti
y) = max

{
µ : BuildD(Ti

y, µ) ∩ σ(y) = ∅
}
,

where BuildD is the algorithm described in the end of Section 3.4.1. For the BuildD
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procedure, we considered the window size η = 11, which was obtained by the independent
simulation described in the end of Section 3.4.1.

Based on the results from the previous section, we consider that the key reconstruction
algorithm can efficiently recover x or y, when either Quality(Ti

x) or Quality(Ti
y) is

greater than 5912, correspondingly.
Figure 3.7 shows the result of the experiment. We can see that with about 400 million

of challenges, efficient key reconstruction is possible. After 600 million challenges, almost
all distances outside the spectrum can be correctly identified.
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Figure 3.7: Number of decryption timings an attacker needs to perform before the key can be
successfully reconstructed. A confidence level of 95% was considered for the error bars.

3.7 Discussion on countermeasures

The most obvious countermeasure against this timing attack is to use constant-time
BCH decoders [WR19, WTBBG19]. However, these decoders were proposed recently and
they are not well studied yet. As such, their security against other types of side-channel
attacks needs further investigation.

Walters and Sinha Roy [WR19] studied constant-time BCH decoders in the context of
LAC [LLZ+18]. Their decoder yields overheads between 10% and 40% when used in LAC.
The optimized decoder proposed by Wafo-Tapa et al. [WTBBG19] can yield reasonable
overheads, between 3% and 11%, for the different security levels provided by the HQC
instances. Hopefully, with further study on constant-time BCH decoders, lower overheads
can be achieved.
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If the slowdown factor is a problem, one could try to add a number of errors to the
partially decoded vector right before the BCH decoding procedure. Next, we explain the
rationale behind this idea. Consider the vector c′ = mG + x · r2 + r1 · y + e. When
applying the repetition code decoder to each block of n2 elements of c′, we can estimate
the probability of a repetition decoding error from the number of ones (or zeros) in the
block. For example, if the number of 1’s and 0’s in a block are similar (both close to n2/2),
then the probability of a decoding error to occur is high. This might make it possible to
estimate, within some statistical margin, the number of errors that the repetition code
decoder has left for the BCH decoder. Then, one can add intentional errors to the partially
decoded vector c′′ = Ψ2(c

′), for it to have a weight W , where W is a constant error weight
which the BCH decoder can correct. Further study and a careful probabilistic analysis is
needed to understand if a decoder using this idea is secure.

3.8 Conclusion

In this paper, we present the first timing attack on the HQC encryption scheme. The
attack depends on the choice of the parameter code C and its decoder implementation.
We show that the attack is practical, requiring about 400 million decryption timings to be
performed. This makes the use of constant-time decoders for C mandatory.

We discuss possible countermeasures against this timing attack, with the preferred one
being to use constant-time BCH decoders [WR19]. However, further study is needed for
the secure and efficient adoption of these decoders. Other solution would be to use codes
for which efficient constant-time decoders are known. One interesting future work would
be to find alternatives for the code C that admit compact keys and efficient constant-time
decoders, and for which we can prove negligible decryption failure probability.
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Chapter 4

Cryptanalysis of the binary
permuted kernel problem

Abstract. In 1989, Shamir presented an efficient identification scheme (IDS) based on
the permuted kernel problem (PKP). After 21 years, PKP was generalized by Lampe and
Patarin, who were able to build an IDS similar to Shamir’s one, but using the binary field.
This binary variant presented some interesting advantages over Shamir’s original IDS, such
as reduced number of operations and inherently resistance against side-channel attacks. In
the security analysis, considering the best attacks against the original PKP, the authors
concluded that none of these existing attacks appeared to have a significant advantage
when attacking the binary variant. In this paper, we propose the first attack that targets
the binary PKP. The attack is analyzed in detail, and its practical performance is compared
with our theoretical models. For the proposed parameters originally targeting 79 and 98
bits of security, our attack can recover about 100% of all keys using less than 263 and 277

operations, respectively.
Keywords: permuted kernel problem, cryptanalysis, post-quantum cryptography

4.1 Introduction

With the engineering progress on building larger quantum computers, the main cryp-
tographic schemes used today become more and more vulnerable. Since 2016, the National
Institute of Standards and Technology (NIST), is running a standardization process for
post-quantum cryptography [CCJ+16]. A similar initiative is conducted by the Chinese
Association for Cryptographic Research (CACR).

One of the candidate for CACR’s competition is PKP-DSS [BFK+19], a digital signa-
ture scheme based on the hardness of the permuted kernel problem (PKP). This signature
scheme is obtained by applying the Fiat-Shamir [FS86] transform on Shamir’s PKP-based
identification scheme[Sha89], which dates back from 1989. Given a matrix A and a vector
v with elements in a finite field, PKP asks to find a permutation of the entries of v that
is in the kernel of A. PKP is NP-hard and there is no known quantum algorithm which
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have a significant advantage over classical algorithms when solving the problem.
In 2010, Lampe and Patarin proposed a generalized version of PKP, in which vector

v is substituted by a matrix V. This enabled them to instantiate PKP in the binary
field, without an apparent security loss. At the time, this binary variant presented some
interesting advantages such as a reduction in the number of operations and an inherently
resistance to side-channel attacks. To estimate the security of binary PKP, the authors
considered the best attacks against the original PKP, with minor adjustments to make
they work against the binary variant. They noted that none of the available attacks was
significantly faster against binary PKP.

However, the use of binary coefficients for matrix A comes with a security risk. We
observed that that low weight binary words occur with non-negligible probability in two
public spaces: one is generated by the matrix A while the other is generated by the kernel of
V. It is then possible to devise an attack against binary PKP by matching these low weight
codewords using subgraph isomorphism algorithms, and recovering the secret permutation
from these matchings.

Contribution. In this paper, we present the first attack that specifically targets the
binary PKP. Unlike previous attacks, which need a very large amount of memory to run
efficiently, our attack uses only a negligible amount of memory. This allows us to provide
a concrete implementation of the attack. We provide a detailed analysis of the attack, and
then compare these results with the attack’s performance in practice. As an example of
the power of the attack: for binary PKP parameters originally targeting 80 bits of security,
it uses about 263 CPU cycles to fully recover the key, while the best previously known
attack [KMRP19] needs about 276 matrix-vector multiplications and 250 bytes of memory.

Paper organization. In Section 4.2, we introduce our notation and review basic con-
cepts of Coding Theory. Then, PKP and its binary variant are presented in Section 4.3,
where we also review previous attacks against PKP. The attack is described in Section 4.4
and its performance is analyzed in Section 4.5. The asymptotic analysis of the attack is
given in Section 4.6. In Section 4.7 we briefly describe how to choose secure parameters for
binary PKP. In Section 4.8 we conclude and provide directions for future work.

4.2 Background

This section introduces the notation and reviews important concepts in Coding The-
ory. Please notice that, although some of the concepts defined below already appeared in
Section 2.5, the definitions are kept here to allow for readers to independently read this
technical chapter.

Notation. Vectors and matrices are denoted by lower and upper case bold letters, re-
spectively. In general, vectors are rows, except when explicitly mentioning specific columns
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of matrices. If ϕ is a permutation of n elements and M is an n× n matrix, then Mϕ and
ϕ (M) correspond to the action of permutation ϕ over rows and columns of M, respec-
tively. For any matrix X, we denote its i–th column as (X)i. We denote the finite field of
q elements as Fq.

We abuse the factorial notation to avoid overloading expressions in the analysis of the
attack. For any x ∈ [0,+∞), we let

x! =




Γ(x+ 1), if x ≥ 1, and

1, otherwise.

Clearly it does not affect the definition of factorials of integers. Furthermore, it allows us
to evaluate upper bounds of products of factorials of real numbers without having to worry
about the interval x ∈ (0, 1), where Γ(x + 1) < 1, which could make the product vanish
rapidly. Using this notation, we can then write

(
x
y

)
= x!/((x−y)!y!), for x, y ∈ [0,+∞) with

x > y. These will make for a more clear description of our approximations in Section 4.5.

Coding Theory. A binary [n, k]-linear code is a k-dimensional linear subspace of Fn
2 ,

where F2 denotes the binary field. Let C be a binary [n, k]-linear code. If C is the linear
subspace spanned by the rows of a matrix G in Fk×n

2 , we say that G is a generator matrix
of C. The Hamming weight of a vector v, denoted by w (v), is the number of its non-null
entries. The support of a vector v, denoted by supp (v), is the set of indexes of its non-null
entries.

4.3 The permuted kernel problem

Let us begin by formally defining the permuted kernel problem. Let A be an m × n

matrix and v be a vector of n entries whose coordinates are taken from a finite field Fp.
Then, the permuted kernel problem asks to find some permutation π of the coordinates of
v such that Av⊤

π = 0.
PKP is well-known to be NP-hard [GJ79], and it is conjectured to be hard on the

average case. The naive approach to solve this problem would be to test all permutations
of the entries of v. Intuitively, there are two components which make the problem hard.
The first is the large number of possible permutations, which is close to n!, when v does
not have a large number of equal entries. The second is the small number of permutations
of v which are in the kernel of A.

In 2011, Lampe and Patarin [LP12] considered a PKP variant with p = 2. The authors
pointed a few problems when transitioning to the binary setting that need to be taken into
account. One is that the number of different permutations is significantly reduced, since
every two binary vectors of the same weight are equal, up to some permutation. Further-
more, for a fixed matrix A, there are effectively only n possibilities for v, corresponding
to one for each possible value of w (v). To avoid these problems, they proposed the use of
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an n× ℓ matrix V instead of the vector v, obtaining the following PKP variant.

Definition 4.3.1 (Binary PKP [LP12]). Let A be an m× n binary matrix and V be an
n× ℓ binary matrix. Then, the permuted kernel problem asks to find some permutation π

of the rows of V such that AVπ = 0.

Notice that the original PKP can be seen as an instance of this generalized variant, by
taking p instead of 2, and ℓ = 1.

Even though the main interest on PKP is for the construction of signature schemes, we
will not review details of Shamir’s protocol [Sha89] or PKP-DSS [BFK+19] this construc-
tion because they are not relevant for our attack.

4.3.1 Previous attacks on PKP

After Shamir introduced the PKP-based IDS [Sha89], there has been some effort to
find efficient algorithms to solve the problem. In 1990, Georgiades [Geo92] discussed how
one can use symmetric equations, such as the sum of the entries of v or the sum of their
squares, can help in lowering the number of permutations one needs to test. This, combined
with the linear relations among the coordinates of kernel elements, can reduce the number
of permutations to test in a brute force attack from n! to n!/(m+ 2)! permutations.

Soon after, in 1992, Baritaud et al. [BCCG92] proposed a time-memory tradeoff, where
one first precompute a large table of partial solutions, which is then used to speed up a
bruteforce search. In particular, for attack parameters (k, k′), their algorithm searches for
solutions of a set of k ≤ m equations, after precomputing partial values of the equations
when some set of k′ variables are fixed by some arrangement of the entries in v.

In 1993, Patarin and Chauvaud [PC93] showed a significant improvement on the crypt-
analysis of PKP, which is also based on a time-memory tradeoff. Their idea was to partition
the variables of the linear equation Av⊤

π = 0 into two sets. For one set, all the possible
values for their linear combination is computed and stored in a file. Then, a brute-force
search, which is sped-up by the precomputed values, is used to find the values of the other
set of variables. Furthermore, in 1997, Poupard [Pou97] provided a careful and realistic
extension on the analysis of Patarin and Chauvaud’s algorithm by considering the impact
of reasonable memory limitations on the time-memory trade-off.

In 2001, Jaulmes and Joux [JJ01] proposed a new attack against PKP, which is also
based on a time-memory tradeoff, but used a very different strategy. Their attack consists
in adapting an algorithm for counting points in an elliptic curve [JL01] to solve a new
problem, called 4SET, to which PKP can be reduced. Interestingly, this approach resulted
in an algorithm somewhat similar to the one by Patarin and Chavaud [PC93], but, for
years after the attack was published, it appeared to be more efficient.

More recently, in 2019, Koussa, Macario-Rat and Patarin [KMRP19] presented two
important contributions on the hardness of PKP. Their first contribution is to provide a
detailed analysis of the attack proposed by Jaulmes and Joux [JJ01], which was considered
to be the most efficient attack against PKP. They concluded that Jaulmes and Joux’s attack
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Parameter
set

Security
level

Targeted security
level when proposed p n m ℓ

BPKP–76 [LP12] 76 79 2 38 15 10
BPKP–89 [LP12] 89 98 2 42 15 11

PKP–128 [BFK+19] 128 128 251 69 41 1
PKP–192 [BFK+19] 192 192 509 94 54 1
PKP-256 [BFK+19] 256 256 4093 106 47 1

Table 4.1: Parameter sets for different security levels. The security level is estimated based on
the attack by Koussa et al. [KMRP19].

may not be as efficient as previously thought for the current PKP security parameters.
Koussa, Macario-Rat and Patarin’s second contribution is a combination of the ideas of
Patarin and Chauvaud [PC93] with the ones by Poupard [Pou97] to obtain a new algorithm
to solve PKP, together with a detailed analysis on their time and space complexity.

The main drawback of Koussa’s et al. attack is that they use a significant amount of
memory, and their implementation may not be efficient in practice. Moreover, all of the
published attacks against PKP target the original version of the problem. And even though
they all can be adapted to attack the binary PKP, as done by Lampe and Patarin [LP12]
for their analysis, it appears that none of the attacks are significantly more efficient in the
binary case.

4.3.2 Instantiation

We now present the parameter sets for PKP, in which the security level is estimated
based on the best attacks available by Koussa et al. [KMRP19]. Table 4.1 shows these
parameter sets for different security levels. The focus of this work is in the parameter sets
given in the first two rows, corresponding to the binary PKP. It is important to notice
that what we now consider to be the parameter sets BPKP–76 and BPKP–89, originally
targeted security levels 79 and 98, respectively. However, these had to be revised after
Koussa et al’s [KMRP19] attack.

4.4 A novel attack against binary PKP

We are given the public matrices A and V and we want to find the secret permutation
π such that AVπ = 0. Let CA and CK be the binary codes generated by A and K,
respectively, where K is the left kernel matrix of V. Fix an integer w small enough so that
we can build the sets LwA and LwK consisting of all the codewords of weight w in CA and
CK, correspondingly. Notice that, since AVπ = 0, then LwA ⊂ Lwπ(K) = {uπ : u ∈ LwK}.

This idea gives the following simple algorithm to find the secret permutation π. First
find a subset S of LwK, such that, for some permutation τ , LwA = {uτ : u ∈ S}. Then, test if
the corresponding column permutation τ is valid, that is, if AVτ = 0. If τ is valid, return it
as π. Otherwise, restart the search. Figure 4.1 can be useful for visualizing the relationship
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between the two sets of codewords, which is the core of the attack.

Secret permutation π

LwK LwA

Figure 4.1: Illustration of the relationship between Lw
A and Lw

K with respect to the secret column
permutation π for codewords of weight w = 2. White and black squares represent null and non-null
entries, respectively.

Even though it has a rather simple description, we need to carefully deal with the
following two problems. The first one is that matching vectors in LwA and a subset of LwK
is closely related to the subgraph isomorphism problem, which is NP-hard [GJ79]. The
second problem is that, since we are dealing with sparse codewords, there may be a large
number of repeated columns in LwA. This could potentially make it infeasible to find the
secret permutation π because of the combinatorial explosion on the number of possible
permutations between columns.

In the following sections, we formally describe the algorithms for the attack against
the binary PKP. Then, after this initial exposition, each component of the algorithm is
analyzed in Section 4.5.

4.4.1 Searching for codewords of small weight

The problem of finding codewords of small weight is hard in general, with the security
of some well known cryptographic schemes, such as McEliece’s one [McE78], depend on
this problem’s hardness. However, in the binary PKP setting, the length n of the codes in
question, namely CA and CK, is typically very small, which makes it even possible to use
brute force. Using brute force, one has to test exactly if

(
n
w

)
words are elements of each of

the codes.
A better approach would be to use specialized algorithms from Coding Theory such

as Stern’s algorithm [Ste88], which we used in our attack implementation, or its improved
variants [FS09, BLP11]. All of these are are well-known probabilistic algorithms that can
be used to find low weight codewords in binary codes.

4.4.2 Searching for matchings

Aiming to simplify the description of the attack, we identify sets LwA and LwK as ma-
trices where each row is one vector in the corresponding set. This is arguably a natural
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identification when we consider a real implementation of the algorithm in a programming
language such as C.

We now focus on the problem of finding a submatrix of LwK which is equal to matrix
LwA when its coordinates are permuted by some permutation τ . Notice that, if we let G (X)

be the bipartite graph built using matrix X as a biadjacency matrix, then this problem is
exactly the subgraph isomorphism problem for the bipartite graphs G (LwA) and G (LwK).

Even though subgraph isomorphism is NP-hard [GJ79], for small enough inputs, the
problem has been widely studied because of its importance in Pattern Recognition. It
is well-known that, for sufficiently small instances, the problem can be solved efficiently
using algorithms such as the one by Ullman [Ull76] or the ones from the VF family [SV01,
CFSV04]. The main problem with these widely used algorithms is that they use heuristics
that make it hard to perform a sound average case complexity analysis for our case. Since
such analysis is critical for estimating the concrete security of the scheme, we propose a
different algorithm with two remarkable advantages. The first one is that it runs faster than
other generic subgraph isomorphism algorithms for our specific case of bipartite graphs.
The second is that it is simpler to analyze and give realistic estimates on its performance.

The algorithm we propose is based on a simple depth-first search strategy. In each level
α of the search, a node represents a matrix built using a set of α rows of LwK which is
equal to the first α rows of LwA, when its columns are permuted by some permutation.
Whenever a matching is found, the searching algorithm calls a procedure that tries to
extract the secret permutation from the matching. In the following sections, we describe
each component of the algorithm in more detail.

Signature of a matrix

It is crucial for the subgraph isomorphism algorithms to efficiently determine whether
a matrix S is equal to a submatrix of LwA up to some column permutation. For this task,
we can use a function σ such that, if σ(S1) = σ(S2), then with high probability S1 = τ(S2)

for some permutation τ , for any two matrices S1 and S2 with equal dimensions.
One easy way to build such a function is to sort the columns of S using a lexicographical

ordering obtaining SSorted. Then, the signature of S is simply σ(S) = h
(
SSorted), for some

cryptographic hash function h. It is clear, by this construction, that σ is invariant with
respect to column permutations.

The problem with sorting is that, since this function will be executed a very large num-
ber of times, it can become expensive. One alternative is to use the following approximation
σ(S) =

∑
c column of S h (c) , for some hash function h.

Precomputation of signatures

This step consists in building the |LwA|×|LwA| matrix H containing signatures of subma-
trices of LwA that are used for pruning the possible child nodes in each level of the search.
Let a1, . . . ,a|Lw

A| be the vectors in LwA, and let Lj denote the matrix formed by the first j
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rows of LwA. Then, we let

Hi,j =





σ




 Lj

ai




 if i > j, and

0 otherwise.

(4.1)

Key recovery algorithm

In this step, the algorithm effectively tries to build a submatrix S of LwK such that
τ (S) = LwA, for some column permutation τ . The algorithm is formally described as
Algorithm 4.1 but we give a brief description next.

Algorithm 4.1 KeySearch: Key search algorithm using depth-first search.
1: ▷ A and V: the PKP public parameters
2: ▷ LwA: a set of codewords in CA of weight w
3: ▷ LwK: the set of all codewords in CK of weight w
4: ▷ H: the precomputed matrix of signatures
5: ▷ α: the level in the search tree (initially, α = 0)
6: ▷ S: an α× n matrix (initially, S is the empty 0× n matrix)
7: ▷ P =

(
P1, . . . , P|Lw

A|
)
: the sets of children (initially, each Pi = LwK)

8: procedure KeySearch(A, V, LwA, LwK, H, α, S, P )
9: if α = |LwA| then

10: ▷ Return π: a permutation such that AVπ = 0 or ⊥ if none exists
11: return ExtractPermutationFromMatching(A,V,S)

12: for i = α+ 1 to |LwA| do

13: P̂i ←
{
p ∈ Pi : σ

([
S

p

])
= Hi,α

}
▷ The possible children for each level not

yet defined
14: P ←

(
P1, . . . , Pα, P̂α+1, . . . , P̂|Lw

A|
)

15: for each p in P̂α+1 do
16: Update S by inserting p as its last row
17: π ← KeySearch(A,V,LwA,LwK,H, α+ 1,S,P) ▷ Recursive call
18: if π ̸= ⊥ then
19: return π
20: Update S by removing its last row p

21: return ⊥

The search starts at level α = 0, with S being a 0×n empty matrix. At each level α in
the search tree, the algorithm runs a pruning procedure, that updates the lists of possible
vectors for each level greater than α using the precomputed matrix of signatures H. This
ensures that the main invariant of the recursive algorithm is that, at level α, the algorithm
holds an α× n submatrix S of LwK which is equal to the matrix formed by the first α rows
of LwA, up to some column permutation. The search proceeds by selecting a vector from set
Pα+1 ⊂ LwK of vectors which can be safely added to the next level without breaking the
invariant. Each time the algorithm successfully gets to a leaf, that is, it adds a vector to
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level α = |LwA|, then a full matching S is found and the procedure that tries to extract the
permutation π from matching S is executed. If the permutation π is successfully extracted,
then π is returned. Otherwise, the depth-first search proceeds.

The procedure for extracting the secret permutation from the matching, if possible, is
described in the next section.

4.4.3 Extracting permutations from matchings

After each each matching found in the previous step, we are given a matrix S such that
τ(S) = LwA for at least one permutation of columns τ . In this section we describe how to
efficiently extract the secret permutation π from this matching, if possible.

We first consider the brute force solution. Let T be the set of permutations that match
equal columns in S and LwA. Then, we can just test, for each permutation τ in T , if
AVτ = 0. If one such τ is found, then the algorithm returns π ← τ . Suppose that there are
β unique columns c1, . . . , cβ of matrix LwA, and let ci denote the number of times column
ci appears in LwA. This implies that the number of candidate permutations is given by
|T | =∏β

i=1 (ci!). The brute force approach may be efficient when S has a large number of
unique columns. However, due to the combinatorial nature of this problem, even a small
increase in the number of equal columns can make the algorithm very inefficient.

To reduce the number of permutations to test we can use the fact that dim (kerA) =

n−m. Therefore, there are n−m rows of Vπ which, together with the m equations defined
by A, completely determine the other m rows of Vπ. Intuitively, this means we can focus
on partial permutations in T corresponding to these n−m indexes.

More formally, let I1 and I2 be a partition of the set of possible n indexes such that
|I1| = m and the m×m matrix A1 built using the columns from A whose indexes are in I1

is invertible. Similarly, let A2 be the m× (n−m) matrix whose columns are taken from A,
but with indexes in I2. Let ϕ be the permutation of n elements such that ϕ (A) = [A1|A2],
and define as U1 and U2 the matrices such that ϕ

(
(Vπ)

⊤
)

= (Vπϕ)
⊤ =

[
U⊤

1 |U⊤
2

]
.

Then, we have

AVπ = ϕ(A)Vπϕ = [A1|A2]

[
U1

U2

]
= A1U1 +A2U2 = 0,

which implies that U1 =
(
A−1

1 A2

)
U2.

Therefore, one can reduce the number of permutations in T to test by using the following
procedure. Let I be a sequence of n column indexes sorted, in decreasing order, by the
number of times in which the corresponding column of matrix LwA occurs in this same
matrix.21 Now let I1 to be composed by the first m indexes in I whose corresponding
columns of A are linearly independent, and let I2 = I − I1 = {i1, . . . , in−m}. Consider the

21The reason why it is interesting to sort the indexes in this way is explained in the last paragraph of
this section.
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set
J =

{
(j1, . . . , jn−m) : (S)jk = (LwA)ik for all k = 1, . . . , n−m

}
,

where (X)y denotes the y–th column of matrix X. Intuitively, set J captures the parts of
the permutations in T corresponding only to the n −m indexes in I2, and therefore |J |
may be much smaller than |T |. For each sequence J of J , we let U2 be the (n − r) × ℓ

matrix built from rows of V whose indexes are in J . For each of these possible values

of U2, we compute the matrix U1 =
(
A−1

1 A2

)
U2, and test if

[
U1

U2

]
corresponds to a

permutation of the rows of V. If this is indeed the case, then the secret matrix Vπ is simply

Vπ =

[
U1

U2

]

ϕ−1

.

It is important to notice that, since we want to make |J | as low as possible, we sorted
the set of indexes I so that, when defining I1 and I2, the columns of LwA whose indexes are
in I2 tend to appear a lower number of times. In Section 4.5.3, we show how to estimate
the size of J .

4.5 Concrete analysis of the attack

In this section we estimate the attack complexity. We begin by analyzing, in the first
three subsections, the work factor of the three components of the attack algorithm: build-
ing sets LwA and LwK, matching the low weight vectors in these sets, and extracting the
secret permutation from matchings. Then, we put these components together to give the
complexity of the attack in Section 4.5.4. Finally, in Section 4.5.5, we show the performance
of the attack in practice.

The work factor of attacks against PKP is typically stated in number of matrix-vector
products, as it is the basic operation to test if a vector is in the kernel of a matrix. Even
though binary PKP uses two matrices, we can see the rows of V as elements of F2ℓ and,
since ℓ is typically small, then the product AV can be seen as a matrix-vector multiplication
where sum is replaced by a XOR.

4.5.1 Searching for codewords of small weight

Let us analyze the first step of the attack: the construction of sets LwA and LwK. Each
of these sets can be computed by searching exhaustively the whole set of

(
n
w

)
possible

vectors of n bits of weight w, and testing if they belong to CA and CK. However, as
we pointed in Section 4.4.1, we can do a lot better by using Stern’s [Ste88] algorithm.
Consider a random [n, k]–linear code generated by matrix G. Given parameters (p, q),
Stern’s algorithm first permutes the columns of G hoping to obtain a matrix Ĝ = ϕ(G),
called a good permutation, for which there is a linear combination of its rows that has the
form c = [c1|c2|c3|c4], such that w (c1) = w (c2) = p, component c3 is the zero vector of
length q, and c4 has weight w (c4) = w − 2p.
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When such conditions are met, Stern’s algorithm finds a vector c with such properties,
which can then be permuted to give a vector cϕ−1 of weight w in the code generated by
G. To compute the work factor of Stern’s algorithm then, we have to take into account
the average number of iterations until it chooses a good permutation Ĝ and the average
number of operations performed by the algorithm each time. Considering Finiasz and
Sendrier’s [FS09] approximation, which takes parameter q ≈ log

(
k/2
p

)
, the work factor of

Stern’s algorithm, considering the number of binary operations, until it gives us a random
codeword of weight w in a random [n, k]–linear code is

BinOpsWF
(n,k,w)
Stern ≈ min

p

2q
(
n
w

)
(
n−k−q
w−2p

)(
k/2
p

) .

Each time Stern’s algorithm runs successfully, it finds a random codeword of weight w.
Therefore we can model the expected number of iterations until all codewords are found
as an instance of the coupon collector problem. Let us consider the time to build LwA. Each
low weight vectors is modeled as a coupon, and we need to collect all ℓA of them. Let
C be the random variable that counts the number of low weight vectors we need to find
before obtaining ℓA different vectors. Then, it is well known that E (C) = Θ (ℓA log ℓA).
Furthermore, the upper tail estimate for the coupon collector problem ensures that

Pr (C ≥ γAℓA log ℓA) ≤ ℓ−γA+1
A .

Let WFLw
A

be the work factor of building the set LwA, counted in number of binary
matrix-vector multiplications. Since dimA = m, we can get an upper bound on WFLw

A
as

WF
(n,m,w,ℓA)
Lw
A

≤ BinOpsWF
(n,m,w,ℓA)
Lw
A

= γA (ℓA log ℓA)BinOpsWF
(n,m,w)
Stern ,

where γA > 1 is chosen so that ℓ−γA+1
A gives a small error probability.

Now we want do the same thing for the construction of LwK. Let ℓK = |LwK|, and let us
estimate ℓK. As usual in coding theory, to count elements of a given weight, we approximate
the number of elements of weight w in a random code as a binomial distribution. Thus,
out of the

(
n
w

)
possible vectors of weight w, we expect that a fraction of 2dimK/2n belong

to CK. Since K is the left kernel matrix of V, then dimK = (n − dimV) = (n − ℓ), and
we can approximate the expected value of ℓK as

ℓ̂K = E (ℓK) ≈ 2n−l

2n

(
n

w

)
= 2−l

(
n

w

)
. (4.2)

Therefore, for some factor γK > 1 we can define an upper bound on the work factor of
building LwK as

WF
(n,ℓ,w,ℓA)
Lw
K

≤ γK

(
ℓ̂K log ℓ̂K

)
BinOpsWF

(n,n−ℓ,w)
Stern .
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Notice that if LwK does not contain the permutations of all vectors of LwA, then the search
will fail. Thus, factor γK must be chosen conservatively, but since ℓ̂K is typically very
large, the probability ℓ̂

(1−γK)
K of not collecting all vectors can be made negligible even for

relatively small γK.

4.5.2 Searching for matchings

In this section, we evaluate the number of paths that will be tested by the subgraph
isomorphism algorithm. For this evaluation, we need to estimate the number of possible
child nodes in each level.

Consider the case when the search is holding matrix S at level α. We want to estimate
the size of set P̂α+1 of possible rows to add to S in the next level of the search. In other
words, we want to compute the number of vectors that survive the filter imposed by the
line 13 of Algorithm 4.1. The first thing to notice is that the result of the filtering is exactly
the same if we filter from p ∈ LwK instead of p ∈ Pi, that is

P̂i =

{
p ∈ Pi : σ

([
S

p

])
= Hi,α

}
=

{
p ∈ LwK : σ

([
S

p

])
= Hi,α

}
.

The reason why the algorithm keeps updating the list P =
(
P1, . . . , P|Lw

A|
)

of possible
vectors in all levels is solely for efficiency. Without it, the filtering would be very inefficient
for nodes in lower levels down the search because it would have to run, every time, through
set LwK, which may be very large.

Let Lα be the matrix formed by the first α rows of LwA, and let r be the (α + 1)–th
row of LwA. Now, using the definition of Hi,α, we want to estimate how many vectors p in

LwK satisfy σ

([
S

p

])
= σ

([
Lα

r

])
.

One problem that makes estimating the number of child nodes difficult is that, since
vectors in LwK are low-weight codewords of a fixed linear code, the vectors in LwK are not
independently distributed. This is a common problem when analyzing bounds on weight
distribution in coding theory, and as usual in the field, we overcome this problem by
assuming that the set LwK consists of vectors chosen uniformly at random over the vectors
of length n and weight w.

Now, under our model, let us fix Lα and estimate the probability qα+1(Lα) that vector
p̂ of LwK is a possible child node in P̂α+1. Because of the way that the algorithm builds S,
its columns are the same as the ones of Lα, up to some permutation, and therefore

qα+1(Lα) = Pr

(
σ

([
S

p̂

])
= σ

([
Lα

r

]))

= Pr

(
σ

([
Lα

p

])
= σ

([
Lα

r

]))
,
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where p is a random n–bit vector of weight w.
The signatures of the two matrices will be the same if the columns above the non-

null entries of p and r are equal, up to some permutation. Therefore, qα+1(Lα) is simply
the probability that two subsets of w columns drawn from Lα are the same, up to some
permutation. In the simple case when all columns of Lα are unique, then qα+1(Lα) = 1/

(
n
w

)
.

However, in general, Lα may have non-unique columns, which occur with high probability
for small values of α, since Lα is sparse.

Let R be the α×w matrix built by taking columns of Lα whose indexes are in supp (r).
Define two counting functions N and NR that, given a column c, output the number of
times column c appears in matrices Lα and R, respectively. For each column c, which
should appear NR(c) times in the columns above the non-null entries of p, there are( N(c)
NR(c)

)
ways in which different column indexes of R can be chosen. Therefore

qα+1(Lα) =
1(
n
w

)
∏

c∈Fα
2

(
N(c)

NR(c)

)
.

To estimate the average attack performance, we want to compute the expected value
qα+1 = E (qα+1(Lα)) when Lα is obtained from a randomly generated key. This value can
be easily estimated using simulations by sampling Lα from the set of α × n matrices in
which each row has weight w. However, to give an analytic approximation, we face the
problem of computing the expected value of the binomial coefficients over the random
variables N(c) and NR(c) for each possible column c. To deal with this problem, we use
of the following rough approximation

qα+1 ≈
1(
n
w

)
∏

c∈Fα
2

(
E (N(c))

E (NR(c))

)
.

To compute the expected values E (N(c)) and E (NR(c)), we consider Lα as a random
sparse matrix of density w/n as an approximation of the real case where each of its rows
have a fixed weight w. Under this model, the probability that a random column of Lα is
equal to c depends only on its the weight k = w (c) and and the number α of rows in Lα.
This probability is given by

p (k, α) =
(w
n

)k (
1− w

n

)α−k
. (4.3)

Thus both N(c) and NR(c) follow binomial distributions with parameters (n, p(w (c) , α))
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and (w, p(w (c) , α)), respectively. Therefore22

qα+1 ≈
1(
n
w

)
∏

c∈Fα
2

(
np(w (c) , α)

wp(w (c) , α)

)

≈ 1(
n
w

)
α∏

k=0

(
np (k, α)

wp (k, α)

)(αk)
.

One can then use this analytic approximation or simulations for qα to obtain the
number of possible nodes in each level as

∣∣∣P̂α

∣∣∣ = qαℓ̂K, where ℓ̂K = E (|LwK|) is given
approximately by Equation 4.2. Figure 4.2 shows how the analytic approximation and the
value obtained by simulations compare with what is observed during a real attack. We can
see that simulations can accurately be used to estimate qα and that the analytic estimate
tends to overestimate the number of possible nodes in each level.
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Figure 4.2: Comparison of estimates on the average number of possible vectors to add in each
level of the search. The attack parameters (w = 8, ℓA = 10) were used against the BPKP–76
parameter set.

The work factor of the search procedure, denoted by WFSearch, consists of the expected
number of possible paths, which is given by

WF
(n,w,ℓA)
Search =

ℓA∏

α=1

∣∣∣P̂α

∣∣∣ ≈
(
ℓ̂K

)ℓA ℓA∏

α=1

qα.

4.5.3 Extracting permutations from matchings

We now analyze the complexity of the procedure that tries to extract the secret per-
mutation after a matching is found. The main quantity we need to estimate is the number
of permutations that the procedure needs to test each time it is called. Formally, we need
to estimate the average size of set J for each parameter set (n,m, ℓ) when the scheme is

22Recall, from Section 4.2, that binomials are defined over non-negative real numbers to allow our
approximations.
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attacked with attack parameters (w, ℓA).
Let I1 and I2 = {i1, . . . , in−m} be the sets constructed from LwA and A as described in

Section 4.4.3. The first thing to notice is that |J | can be computed directly from matrix
LwA, that is, it does not depend on a each S. This is a consequence of the fact that, by
construction, S = τ (LwA), for some column permutation τ . Formally, what we mean is
that, since23

J =
{
(j1, . . . , jn−m) : (τ (LwA))jk = (LwA)ik for all k = 1, . . . , n−m

}

=
{
(j1, . . . , jn−m)τ : (LwA)jk = (LwA)ik for all k = 1, . . . , n−m

}
,

then |J | =
∣∣∣
{
(j1, . . . , jn−m) : (LwA)jk = (LwA)ik for all k = 1, . . . , n−m

}∣∣∣, which does not
depend on τ .

Thus we can model |J | as the number of arrangements of n−m different balls, which
may come from different boxes, under the restriction that each box will be sampled a fixed
number of times. In this analogy, each box represents a set of indexes that correspond to
equal columns in LwA. More formally, let L2 be the ℓA × (n−m) matrix formed by taking
columns of LwA whose indexes are in I2. Define two counting functions N and N2 that,
given a column c, output the number of times column c appears in matrices LwA and L2,
respectively. Then, we have

|J | =
∏

c∈C2

N(c)!

(N(c)−N2(c))!
.

Now, let us consider the expected value of J when A is a random matrix such that
LwA contains ℓA vectors of weight w. This number can easily be estimated by simulations,
which perfectly correspond to what is observed in a real attack since, up to this point no
simplification has been made. Furthermore, we can also give an analytic estimate using the
very same ideas from the previous section. First we approximate this case by modeling LwA
as a random ℓA×n sparse matrix with density w/n, and let p (k, ℓA) denote the probability
that a given column of LwA is equal to a fixed column of weight k and height ℓA, as defined
by Equation 4.3. Then, the rough approximation on E (|J |) is given by

E (|J |) ≈
∏

c∈FℓA
2

E (N(c))!

(E (N(c))− E (N2(c)))!

=

ℓA∏

k=0

(
(np (k, ℓA))!

(np (k, ℓA)− (n−m)p (k, ℓA))!

)(ℓAk )

=

ℓA∏

k=0

(
(np (k, ℓA))!

(mp (k, ℓA))!

)(ℓAk )
.

Figure 4.3 shows how |J | rapidly decreases as larger values of ℓA are used. It also pro-
23Recall that (X)i denotes the i–th column of matrix X.
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vides a comparison between our analytic estimate on E (|J |) and the observed values in our
simulations. Notice that, for small values of ℓA, the analytic estimate tends to overestimate
the real values of |J |, but for sufficiently large ℓA, the estimate converges to the observed
values. Now, since each sequence E (|J |) needs one matrix multiplication to be tested, we
define the work factor of the permutation extraction procedure, as WF

(n,m,w,ℓA)
Perms = E (|J |) .

1 2 3 4 5 6 7 8 9 10

Number `A of vectors of weight w in CA

217

237

257

277

N
u

m
b

er
|J
|o

f
p

er
m

u
ta

ti
o
n

s

Analytic estimate

90% quantile

50% quantile

20% quantile

Figure 4.3: The number of permutations to test after each matching considering the BPKP–76
parameter set. The attack parameter w = 8 was fixed, and the simulations were run for increasing
values of parameter ℓA.

4.5.4 Attack Complexity

This section builds upon the three previous sections to explicitly state the attack com-
plexity and the fraction of keys that can be attacked for different attack parameters (w, ℓA).

The full complexity of the attack is given by the following lemma.

Lemma 4.5.1. Let (n,m, ℓ) be a binary PKP parameter set. Then, the work factor of the
attack with parameters (w, ℓA) is given as

WF
(n,m,ℓ,w,ℓA)
Attack = WF

(n,m,ℓ,w,ℓA)
LowWeightSets +

(
WF

(n,w,ℓA)
Search

)(
WF

(n,m,w,ℓA)
Perms

)
.

Proof. The complexity of the attack is given by summing the costs of building the sets
of vectors of small weight LwA and LwK, and the complexity of the key recovery algorithm.
The cost of the key recovery algorithm is computed as follows. Remember that, for each
path, from the root to one leaf, the number of permutations we have to test is given as
WF

(n,m,w,ℓA)
Perms . Since the average number of paths is WF

(n,w,ℓA)
Search , the complexity of the key

recovery algorithm is simply the product
(
WF

(n,w,ℓA)
Search

)(
WF

(n,m,w,ℓA)
Perms

)
.

Figure 4.4 shows how WF
(n,m,ℓ,w,ℓA)
Attack varies with respect to the attack parameters used,

when attacking BPKP–76 parameter set. To estimate the work factor of the attack, we used
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simulations24 for WF
(n,w,ℓA)
Search and analytic estimation for WF

(n,m,w,ℓA)
Perms . Notice how, as ℓA

gets larger, the work factor stabilizes. This happens because the number of permutations
to test gets closer to 1. Furthermore, it is clear that when w is smaller, the attack is more
efficient, which happens because, in this case, |LwK| is smaller, which makes the search much
faster. The problem however, is that the attack parameters for which the attack is most
efficient occur with lower probability, as we elaborate next.

Lemma 4.5.1 does not say anything about the fraction of keys that one can attack using
parameters (w, ℓA). To compute this fraction, we have to take into account the probability
that a public matrix A, selected at random, generates a code with at least ℓA codewords
of weight w. This is considered in the following lemma.

Lemma 4.5.2. Let (n,m, ℓ) be a binary PKP parameter set. Then, the fraction of keys
against which the attack is effective when using parameters (w, ℓA) is given as

KFn,m,ℓ,w,ℓA
Attack ≈ 1− e−λ

ℓA−1∑

k=0

λk

k!
, (4.4)

where λ =
(
n
w

)
2m−n.

Proof. Take a random matrix A, generated with parameters (n,m, ℓ). Let Lw be the ran-
dom variable that represents the number of vectors of weight w in the code generated by
matrix A. Since the code generated by A is a random code, we can approximate Lw by a
binomial distribution which samples

(
n
w

)
vectors and each one of them is in the code with

probability 2m−n.
The probability that Lw ≥ ℓA would be then simply

(
1−∑ℓA−1

k=0 Pr(Lw = k)
)
. How-

ever, the probability mass function of the binomial can be costly to compute for some values
of k, since N may be very large, and N − k appears as an exponent. But, for large N and
small probability 2m−n, the binomial may be approximated as a Poisson distribution with
parameter λ =

(
n
w

)
2m−n. Then, the approximation given as Equation 4.4 is easily achieved

by considering the cumulative distribution function of the Poisson distribution, instead of
the binomial.

Figure 4.5 shows the effect of parameters (w, ℓA) in the fraction of keys that we can
attack. The first thing to notice is that large ℓA and small w tend to occur with smaller
probability. Now we can combine both Figures 4.4 and 4.5 to understand the power of the
attack. For example, considering parameters (w = 7, ℓA = 10), we can attack about 1 in
each 150.000 keys of BPKP–76 with less than 255 operations, and about 100% of all keys
can be recovered using 262 operations.

24Even though the analytic approach is useful to estimate the number of nodes in each level, the errors
would accumulate exponentially in the product necessary to compute the work factor of the search.
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Figure 4.4: Work factor of the attack against BPKP–76 parameter set using different attack
parameters (w, ℓA).
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Figure 4.5: Fraction of the keys generated with BPKP–76 parameter set against which the attack
is successful using different attack parameters (w, ℓA).
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w ℓA α̂ Fraction of keys Predicted work factor
(matrix-vector products)

Empirical estimate
(clock cycles)

5 14 1 0 239.46 234.39

6 11 2 2−43.32 249.75 247.58

7 10 2 2−17.86 255.84 248.62

8 9 3 2−2.88 262.28 260.54

9 9 3 2−0.00 264.16 262.31

Table 4.2: Estimates on the number of clock cycles necessary for a successful attack.

4.5.5 Experimental Results

To validate our proposed attack, we implemented it in SageMath and in C language,
using M4RI [M. 12] library for efficient binary linear algebra computations. The source
code is publicly available at www.ime.usp.br/~tpaiva.

Table 4.2 shows the performance of the attack against BPKP-76. To obtain empirical
estimates on its performance, we considered the average number of clock cycles for the
smallest level α̂ in the search for which we can get a significant number of samples. Then, the
empirical estimate is given by the product between this average number of clock cycles and
the average number of total nodes in level α̂. Thus smallest values of α give more accurate
results. The values of ℓA are chosen as to guarantee that the number of permutations to
test is within reasonable computational limits and so that α̂ ≤ 3.

Notice how, in general, the estimates on the work factor of the attack tend to overes-
timate the real complexity of the attack. The main explanation for this fact seems to be
that, for sufficiently large ℓA, the algorithm rarely enters in a leaf node, which is where
most of the matrix product operations occur. This is exemplified by the decay, shown in
Figure 4.2, of the curve representing the observed number of nodes in each level during a
real attack, where, after level α = 7, a node rarely has more than one child.

4.6 Asymptotic analysis

In the previous section, a detailed analysis of the attack is presented. However, the con-
crete analysis fails to provide a general idea of how the complexity grows, as the complexity
of the components are not easy to simplify and must be computed using iterative proce-
dures for products of binomial coefficients. Therefore we aim, in this section, to give simpler
and closed expressions for the asymptotic attack complexity, but without compromising
the reliability of the analysis.

4.6.1 Asymptotic growth of the attack parameters

First let us recall the growth of parameters m and ℓ with respect to n. To ensure that
the binary PKP instances are difficult to solve on average, we need that, out of the n!

possible permutations of the rows of V, about only one of them is in the kernel of A.
The dimension of A is m, which means the probability that a random vector belongs to

www.ime.usp.br/~tpaiva
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the kernel is 2(n−m)/2n = 2−m. Therefore, since the binary PKP is solved only when all
ℓ column vectors of Vπ are in the kernel of A, then n!2−mℓ ≈ 1. As suggested by Lampe
and Patarin [LP12], we consider that m and ℓ should be roughly the same size

m ≈ ℓ ≈
√
log n! ≤

√
n log n. (4.5)

From Equation 4.5, we see that the dimension m of the code generated by A grows
much slower than its size n. Intuitively then, as n gets larger, it gets harder to obtain
codewords of weight much smaller than n/2, because of the small dimension. Since we
need to deal with values of w close to n/2, we are interested in using the following lemma
that gives approximations on binomial coefficients

(
n
w

)
under this regime.

Lemma 4.6.1 (Eq. 5.41 [Spe14]). Let n and w be positive integers such that |n/2− w| =
o(n2/3). Then (

n

w

)
∼ 2n

√
2

nπ
e
−(n−2w)2

2n .

We are now ready to show, in the following lemma, how to carefully choose values of
w such that Lemma 4.6.1 ensures us that LwA has a reasonable number of vectors.

Lemma 4.6.2. Take the attack parameter w as

w =

n
2
−
√

mn4/5

2 log e



. (4.6)

Then, on average, the attack can effectively use parameters (w, ℓA) when ℓA is smaller
than

ℓA ≤
(√

2

π

)
2(m(1−n(−1/5))−(logn)/2).

Proof. Let A be an m × n random binary PKP public matrix. The attack parameters
(w, ℓA) are effective when ℓA is smaller than or equal to the number of vectors of weight
w in the code generated by A. Therefore, on average, the attack works when

ℓA ≤ 2m−n

(
n

w

)
.

Now take w as defined by Equation 4.6, and notice that, since m ≤ √n log n, from
Equation 4.5, then

|n/2− w| =
√

mn4/5

2 log e

≤
√
n4/5

√
n log n

= n13/20 (log n)1/4 = o
(
n13/20+ϵ

)

= o
(
n2/3

)
.
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Therefore we can use Lemma 4.6.1 to obtain the approximation

2m−n

(
n

w

)
≈ 2m−n

(
2n
√

2

nπ
e
−(n−2w)2

2n

)
= 2m

(√
2

nπ
e
−(n−2w)2

2n

)
.

But notice that

e
−(n−2w)2

2n = e
−(n/2−w)2

n/2 = exp


− 1

n/2

√
mn4/5

2 log e

2
 = exp

(
−mn−1/5

log e

)
.

That is

e
−(n−2w)2

2n = 2−mn−1/5
. (4.7)

Therefore the attack is effective for

ℓA ≤ 2m

(√
2

nπ
2−mn−1/5

)
=

(√
2

π

)
2(m(1−n(−1/5))−(logn)/2).

Notice that when w is chosen according to the lemma above, then w/n approaches 1/2
asymptotically when n gets larger, because

lim
n→∞

w

n
= lim

n→∞

(
1

n

)
n

2
−
√

mn4/5

2 log e




=
n

2
− lim

n→∞

(
1

n

)√
mn4/5

2 log e

=
n

2
− lim

n→∞

√
mn4/5

2n2 log e

=
n

2
− lim

n→∞

√
m

2n1.2 log e

≥ n

2
− lim

n→∞

√ √
n log n

2n1.2 log e

=
n

2
− lim

n→∞

√ √
log n

2n0.7 log e

=
n

2
, since n0.7 grows much faster than

√
log n.

This motivates the following corollary, which has an important role in simplifying the
analysis.
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Corollary 4.6.2.1. As n gets larger and w is taken as in Lemma 4.6.2, the values of
p (k, α) stop depending on k, and we have

p (k, α) =

(
1

2

)k (
1− 1

2

)α−k

= 2−α.

As a first application of Corollary 4.6.2.1, we show that, for sufficiently large n, we
do not need ℓA to be very large. With roughly ℓA ≈ log n, the number WFPerms of
permutations to test after each matching is very close to 1.

Lemma 4.6.3. Consider binary PKP parameters (n,m, ℓ). Take attack parameters w as
in Lemma 4.6.2 and ℓA ≥ ⌈log n⌉. Then, for sufficiently large values of n, the average
number of permutations to test after each matching is

WFPerms = 1.

Proof. From our concrete analysis, we know that

WFPerms =

ℓA∏

k=0

(
(np (k, ℓA))!

(mp (k, ℓA))!

)(ℓAk )
.

But Corollary 4.6.2.1 tells us that p (k, ℓA) ≈ 2−ℓA when n is large. Therefore,

WFPerms =

ℓA∏

k=0

((
n2−ℓA

)
!

(m2−ℓA)!

)(ℓAk )
=

ℓA∏

k=0

( (
n2−⌈logn⌉)!(
m2−⌈logn⌉

)
!

)(⌈logn⌉
k )

= 1.

It is important to understand that the lemma above needs a relatively large n, because
it uses Corollary 4.6.2.1. Therefore, to lower the number of permutations to test after each
matching when attacking small values of n, we typically want to use ℓA near the maximum
provided by Lemma 4.6.2. Notice that even for relatively small values of n, there are usually
more than log n vectors of weight w in the code generated by A. For example, when n = 38

we have
log(n) ≈ 5.25 < 5.99 ≈

√
2
π2

m(1−n−1/5)−(logn)/2).

We are now ready to derive the asymptotic complexity of WFSearch, which is the most
critical step of the attack.

4.6.2 Searching for matchings

Let us begin by deriving an asymptotic bound on the number of child nodes in each
level of the search tree.
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Lemma 4.6.4. Take the attack parameter w as in Lemma 4.6.2. Then, for sufficiently
large values of n, the number of child nodes in each level α of the search is given as

∣∣∣P̂α+1

∣∣∣ =




2n−ℓ−mn−1/5 (

2α2
α/2
)√

2
nπ

2α

if α ≤ (⌈log n⌉ − 2);

1 otherwise.

Proof. By our concrete analysis, we know that
∣∣∣P̂α+1

∣∣∣ is given as

∣∣∣P̂α+1

∣∣∣ = ℓ̂Kqα+1 =

(
2−ℓ

(
n

k

))
1(
n
w

)
α∏

k=0

(
np (k, α)

wp (k, α)

)(αk)

= 2−ℓ
α∏

k=0

(
np (k, α)

wp (k, α)

)(αk)
.

Using Corollary 4.6.2.1, we can simplify the above expression as

∣∣∣P̂α+1

∣∣∣ = 2−ℓ
α∏

k=0

(
n2−α

w2−α

)(αk)
= 2−ℓ

(
n2−α

w2−α

)(∑α
k=0 (

α
k))

= 2−ℓ

(
n2−α

w2−α

)2α

.

Now, if α ≥ (⌈log n⌉ − 1), then w2−α < 1, and

(
n2−α

w2−α

)2α

≤
(
n2−α

n
2 2

−α

)2α

≈ 1.

Therefore, we can focus on approximating the case when α ≤ (⌈log n⌉ − 2). Remember
that w is close to n/2, thus we can use Lemma 4.6.1 to get the approximation

(
n2−α

w2−α

)
≈ 2n2

−α

√
2

n2−απ
e
−(n2−α−2w2−α)2

2n2−α

= 2n2
−α

2α/2
√

2

nπ
e
−(n−w)2

2n 2−α

.

Recall Equation 4.7, which lets us further simplify the expression above as

(
n2−α

w2−α

)
= 2n2

−α
2α/2

√
2

nπ

(
2−mn−1/5

)2−α

.
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Now, getting back to
∣∣∣P̂α+1

∣∣∣, we have

∣∣∣P̂α+1

∣∣∣ = 2−ℓ

(
n2−α

w2−α

)2α

= 2−ℓ

(
2n2

−α
2α/2

√
2

nπ

(
2−mn−1/5

)2−α
)2α

= 2n−ℓ−mn−1/5
(
2α2

α/2
)√ 2

nπ

2α

.

Now that we have bounded the number of nodes in each level, we are ready to give the
asymptotic bound on the search procedure.

Lemma 4.6.5. Take attack parameters w and ℓA ≥ ⌈log n⌉ as in Lemma 4.6.2. Then, the
asymptotic work factor of the search is given as

WFSearch ≈ 2(n−ℓ−mn−1/5)(⌈logn⌉−1)−0.91n+
1
2 logn+1.33.

Proof. From our concrete analysis, we know that the complexity of the search is the product
of the number of nodes in each level of the search. Furthermore, Lemma 4.6.4 says that we
only need to compute these values for α ≤ ⌈log n⌉ − 2, because after this point, typically
there is at most one possible child node. Therefore, the complexity of the search is given
as

WFSearch =

ℓA−1∏

α=0

∣∣∣P̂α+1

∣∣∣ =
⌈logn⌉−2∏

α=0

∣∣∣P̂α+1

∣∣∣

=

⌈logn⌉−2∏

α=0

(
2n−ℓ−mn−1/5

(
2α2

α/2
)√ 2

nπ

2α)

= 2(n−ℓ−mn−1/5)(⌈logn⌉−1)2

(∑⌈logn⌉−2
α=0 α2α/2

)(
2

nπ

)(∑⌈logn⌉−2
α=0 2α/2

)

= 2(n−ℓ−mn−1/5)(⌈logn⌉−1)2(1+
n
4 (⌈logn⌉−3))2(log

2
nπ )(n/4−1/2)

≈ 2(n−ℓ−mn−1/5)(⌈logn⌉−1)−0.91n+
1
2 logn+1.33.

4.6.3 Asymptotic complexity of the attack

We are almost ready to complete the asymptotic analysis of the attack. The only missing
component to consider is WFLowWeightSets. Using the bruteforce algorithm, one needs to
test, for all

(
n
w

)
= O(2n) possible vectors of weight w, if they are in the space generated
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by A or in the left kernel of V. Therefore, the complexity of building sets LwA and LwK is

WFLowWeightSets = O(2n).

We can then combine the result above with Lemmas 4.6.3 and 4.6.5 to obtain the
complexity of the attack, as given next.

Lemma 4.6.6. Take attack parameters w and ℓA ≥ ⌈log n⌉ as in Lemma 4.6.2. Then, the
asymptotic work factor of the attack is given as

WFAttack = WFLowWeightSets + (WFSearch) (WFPerms)

= O

(
2(n−ℓ−mn−1/5)(⌈logn⌉−1)−0.91n+

1
2 logn

)
.

Figure 4.6 shows how the asymptotic complexity presented above compares with the
simulations based on the concrete analysis. We can see that the asymptotic estimate ap-
pears to be realistic, even though the ceiling operation used for ⌈log n⌉ makes the function
rapidly increase when n− 1 is a power of 2, and then decrease until the next power of 2 is
found.
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Figure 4.6: Asymptotic complexity of the attack.

Figure 4.7 shows an asymptotic comparison between our algorithm and the one by
Koussa et al. [KMRP19]. Even though their algorithm is currently the best generic algo-
rithm for solving PKP in every field, we can see that our algorithm has a considerable
advantage in the binary case. To help us visualize the asymptotic growth of our attack, we
consider a smooth version of the estimate that consists in using log n instead of ⌈log n⌉ in
the expression provided in Lemma 4.6.6.
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Figure 4.7: Comparison between our attack and the one by Koussa et al. [KMRP19].

4.7 On secure parameters for binary PKP

A conservative approach to select parameters for binary PKP, considering security level
λ, would be to choose them in such a way that no class of keys that occurs with probability
greater than 2−λ should be attacked with less 2λ operations. Furthermore, the choice of
parameters should consider the use of binary PKP when building a signature scheme, and,
as such, should aim to minimize not only the key sizes, but also signature sizes and the
computational cost to sign and verify each signature.

The safest possible choice of parameters would be the ones that make it difficult to
even build sets LwA and LwK. If we take schemes that rely on the difficulty of finding small
weight codewords such as MDPC [MTSB13], this would result in a very large matrix A.
This, however, would have a very negative impact on performance, key sizes and signature
length.

A less conservative approach is to scale parameters (n,m, ℓ) and compute WF
(n,m,ℓ,w,ℓA)
Attack

and KF
(n,m,ℓ,w,ℓA)
Attack for different attack parameters (w, ℓA). The search is efficient and can

be done with the code that we provide. However, it is important to notice that it seems
to be early to state sets of parameters for BPKP, as there may be some opportunities
to improve this attack, which could thwart the security of parameters suggested without
careful consideration. Our recommendation therefore is to avoid the Binary PKP, and more
generally, the PKP using small fields for matrix A, for which the search for low weight
codewords can be done efficiently.

4.8 Conclusion and future work

In this paper, we present the first attack that targets binary PKP and provide a detailed
analysis on the attack’s components. The attack is practical and we provide an implemen-
tation of the attack in SageMath and C. Furthermore, the attack shows an inherently
weakness of PKP using small fields, and we recommend that binary PKP be avoided while



4.8 Conclusion and future work 77

its security is not well understood against this new type of attack.
For future work, we plan to extend this attack to the original PKP, hoping to better

understand what is the minimum finite field size p that can used securely. Furthermore,
we believe that there are some opportunities to improve this attack. For example, it may
be possible to increase the fraction of keys that one can attack by considering different
parameters w simultaneously, or one can try to reduce the complexity of matching by
introducing heuristics.
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Chapter 5

Faster constant-time decoder for
MDPC codes and applications to
BIKE KEM

Abstract. BIKE is a code-based key encapsulation mechanism (KEM) that was recently
selected as an alternate candidate by the NIST’s standardization process on post-quantum
cryptography. This KEM is based on the Niederreiter scheme instantiated with QC-MDPC
codes, and it uses the BGF decoder for key decapsulation. We discovered important limi-
tations of BGF that we describe in detail, and then we propose a new decoding algorithm
for QC-MDPC codes called PickyFix. Our decoder uses two auxiliary iterations that are
significantly different from previous approaches and we show how they can be implemented
efficiently. We analyze our decoder with respect to both its error correction capacity and
its performance in practice. When compared to BGF, our constant-time implementation
of PickyFix achieves speedups of 1.18, 1.29, and 1.47 for the security levels 128, 192 and
256, respectively.
Keywords: Post-quantum cryptography, BIKE, MDPC, LDPC, constant-time decoding

5.1 Introduction

BIKE [ABB+21] is a code-based key encapsulation mechanism (KEM) selected as an
alternate candidate for the NIST post quantum standardization process. The scheme con-
sists of a variant of the Niederreiter [Nie86] scheme using quasi-cyclic moderate-density
parity-check (QC-MDPC) codes instead of Goppa codes. As such, BIKE can be seen as a
refinement of Misoczki’s et al. QC-MDPC McEliece [MTSB13].

The use of QC-MDCP [MTSB13] codes yields two advantages. The first one is that
the public key is much smaller, since one needs only one row to represent a quasi-cyclic
matrix in systematic form. The second is that matrix multiplication, and thus encoding, is
much faster for quasi-cyclic matrices. However, QC-MDPC codes comes with an important
disadvantage: their decoding algorithms have a non-zero probability of failure. This fact

79
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was exploited in the famous GJS [GJS16] key-recovery reaction attack, that provided the
ground for side-channel attacks against QC-MDPC [RHHM17] and further attacks against
other code-based encryption schemes [SSPB19, FHS+17].

To deal with this problem, BIKE’s original proposal [ABB+17b] used ephemeral keys.
However, recent approaches on obtaining negligible decryption failure rate (DFR) [Til18,
SV20a, Vas21], together with Hofheinz et al. [HHK17b] CCA security conversions that
accounts for decryption errors, motivated BIKE proponents to consider key-reuse. In par-
ticular, Sendrier and Vasseur [SV20a, Vas21] propose a framework that, under reason-
able assumptions, allows them to find parameters where the DFR should be negligible
using experiments and statistical analysis. This framework was used in BIKE’s last re-
vision [ABB+21], which uses the state-of-the-art BGF decoder [DGK20c, DGK19] with
parameters that supposedly achieve negligible DFR.

While trying to improve BGF’s performance, we noticed two limitations. The first one is
that its performance cannot be improved by considering a lower number of iterations, oth-
erwise it breaks the main hypothesis for using Vasseur’s extrapolation framework [Vas21].
The second is that some of its iterations can be made more efficient by merging them into
one iteration. After analyzing BGF’s strengths and weaknesses, we were able to derive a
new and more efficient decoder.

Contribution. We propose a new decoding algorithm for QC-MDPC codes, called Picky-
Fix. This decoder uses two auxiliary iterations that are significantly different from previous
approaches: the FixFlip iteration, which flips a fixed number of bits, and the PickyFlip
iteration, which uses different thresholds to flip ones and zeros. These iterations allow
PickyFix to work with a lower number of iterations than BGF, which, together with our
constant-time implementation, makes PickyFix achieve speedups of 1.18, 1.29, and 1.47 for
the security levels 128, 192 and 256, respectively. The code and data are publicly available
at https://github.com/thalespaiva/pickyfix.

Organization. We begin by quickly reminding some basic concepts from coding theory
and QC-MDPC decoding in Section 5.2. BIKE and its security parameters are presented
in Section 5.3. Then, in Section 5.4, we analyze BGF in detail to show its strengths and
weaknesses. Our proposed decoder PickyFix is introduced in Section 5.5, and then we ana-
lyze its parameters and decoding performance in Section 5.6. In Section 5.7, we discuss how
to implement PickyFix efficiently and in constant-time and then compare its performance
with BGF. Finally, we conclude and discuss interesting future work in Section 5.8.

5.2 Background

Please notice that, although some of the concepts defined below already appeared in
Section 2.5, the definitions are kept here to allow for readers to independently read this
technical chapter.

https://github.com/thalespaiva/pickyfix
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A binary [n, k]-linear code is a k-dimensional linear subspace of Fn
2 , where F2 denotes

the binary field. If C is a binary [n, k]-linear code spanned by the rows of a matrix G of
Fk×n
2 , we say that G is a generator matrix of C. Similarly, if C is the kernel of a matrix H

of Fr×n
2 , we say that H is a parity-check matrix of C. The Hamming weight of a vector v,

denoted by w (v), is the number of its non-zero entries. The syndrome z of a vector e with
respect to a parity check matrix H is the vector z = eH⊤. If the vector e is sufficiently
sparse and the linear code defined by H is sufficiently good, it may be possible to recover
e from the syndrome z by using efficient decoding algorithms. The support of a binary
vector v, denoted as supp (v), is the set supp (v) = {i : vi = 1}.

A moderate-density parity-check (MDPC) code [MTSB13] is a linear code that admits
a moderately sparse parity-check matrix H ∈ Fr×n

2 . The weight of each column of H is
set to be all equal to a fixed value d, and require that d = O(

√
n). For applications in

cryptography, it is particularly useful to consider quasi-cyclic MDPC (QC-MDPC) codes,
because they allow for smaller keys and more efficient operations. BIKE [ABB+21] is
defined over QC-MDPC codes with two circulant blocks, which are MDPC codes that
admit a sparse parity check matrix of the form H = [H0|H1], where each r × r binary
matrix H0 and H1 is circulant.

MDPC codes admit very efficient decoders, which are called bit-flipping decoders [Gal62].
All variants of bit-flipping decoders work based on the following observations. Let e be a
sparse vector whose syndrome with respect to the sparse matrix H is z = eH⊤. Suppose
we do not know e but want to recover it from z using our knowledge from H. We know
that z =

∑
i∈supp(e)H

⊤
i , where H⊤

i denotes the transpose of the i-th column of H.
Now, since e and each column H⊤

i are sparse, we can estimate the likelihood that
ei = 1 by checking how closely z matches with column i of H: the more they are similar,
the higher is the probability that ei = 1. The similarity measure for each column i is what
is known as the unsatisfied parity-check (UPC) counter, denoted as upci, and it is equal
to the size of the intersection of supp (z) and supp

(
H⊤

i

)
. The name UPC comes from the

fact that the set supp (z) is sometimes called the set of unsatisfied equations, and therefore
upci counts the number of unsatisfied equations that are caught by H⊤

i .
Algorithm 5.1 shows the steps that a general bit-flipping algorithm performs when

trying to obtain e from z and H. The algorithm stops when it finds a vector ê with
the same syndrome as e, or if the number of iterations exceeds some limit. Notice that
the partial syndrome defines the objective syndrome in each iteration, and in the ideal
case, vector ê gets closer and closer to e after each iteration. Although most bit-flipping
algorithms used in cryptography [Gal62, MTSB13, DGK19, SV19] can be framed in the
general description above, they can vary significantly with respect to how the threshold
for flipping bits is selected in each iteration.
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Algorithm 5.1 General bit-flipping decoding algorithm.
1: procedure GeneralBitFlipping(z,H)
2: Start with the partial error vector ê← 0 ∈ Fn

2

3: Initialize the number of iterations it← 0
4: Let the partial syndrome s← z+ êH = z
5: while s ̸= 0 and it < maximum number of iterations do
6: Compute the UPC counters upci with respect to s and H, for i = 1 to n
7: For each i = 1 to n, flip bit êi if upci is above a certain threshold
8: Update the partial syndrome s← z+ êH
9: it← it+ 1

10: if s = 0 then
11: return ê
12: else
13: return ⊥, indicating that the maximum number of iterations was reached

5.3 BIKE

The purpose of a key encapsulation mechanism is to use public-key encryption al-
gorithms to securely exchange a key between two parties. These parties can then use
secret-key algorithms, which are much more efficient, to exchange large messages.

For a clearer presentation, we describe BIKE algorithms without the implicit-rejection
Fujisaki-Okamoto transformation [HHK17b], usually denoted by FO ̸⊥. However, notice
that when discussing the experimental performance of our algorithm in Section 5.7.3, we
consider the full decapsulation with the FO ̸⊥ transformation applied.

5.3.1 Parameters and algorithms

Setup. On input 1λ, where λ is the security level, the setup algorithm returns parameters
r, w and t taken from the parameter Table 5.1. Parameters r and w will define the family of
QC-MDPC codes to be used while t controls the weight of the error used for encryption, as
will be detailed in the following sections. The table also provides the estimated decryption
failure rates (DFR) for each parameters set according to Vasseur’s framework [Vas21].

Parameter set Security
level λ r w d = w/2 t Decoder DFR estimate

BIKE Level 1 128 12323 142 71 134 BGF 2−128

BIKE Level 3 192 24659 206 103 199 BGF 2−192

BIKE Level 5 256 40973 274 137 264 BGF 2−256

Table 5.1: BIKE parameters for each security level.

Key Generation. Let h0 and h1 be two vectors of r bits of odd weight d = w/2. Build
the circulant matrices H0 and H1 by taking h0 and h1 as their first rows, correspondingly.
If H1 is not invertible, restart the process by selecting another h1. Then the secret key is
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the sparse matrix H = [H0 |H1 ] ∈ Fr×2r
2 and the public key is the dense circulant matrix

HPub = H1H
−1
0 .

Notice that matrices H and [ I |HPub ] are both parity checks of the same quasi-cyclic
linear code. However, the sparsity of the first one allows for efficient syndrome decoding
using bit-flipping algorithms.

Encapsulation. Select two random binary vectors e0 and e1 such that w (e0)+w (e1) =

t. Then the key to be shared is kShared = H ([e0|e1]), for some cryptographic hash function
H. To encapsulate the key kShared, compute the ciphertext c = e0 + e1H

⊤
Pub ∈ Fr

2. Notice
that ciphertext c then corresponds to the syndrome of the low weight vector [e0|e1] with
respect to the public parity-check matrix [ I |HPub ].

Decapsulation. Given the ciphertext c, the receiver, who knows the sparse parity-check
matrix H, first compute the secret syndrome z = cH⊤

0 . Notice that

z = cH⊤
0 =

(
e0 + e1H

⊤
Pub

)
H⊤

0 = e0H
⊤
0 + e1H

⊤
PubH

⊤
0 = e0H

⊤
0 + e1H

⊤
1 .

Therefore, as mentioned by the end of Section 5.2, the receiver can use some QC-MDPC
bit-flipping decoding algorithm, together with their knowledge of the secret matrix H to
recover the sparse vector [e0|e1] and compute the shared key kShared = H ([e0|e1]).

In the last revision of BIKE [ABB+21], the authors recommend the BGF decoding
algorithm [DGK20c], which is the state-of-the art QC-MDPC decoder. Before introducing
BGF, let us first discuss the security of BIKE and, in particular, why good decoders are
very important to ensure BIKE’s security.

5.3.2 Security and negligible decryption failure rate

The security of the scheme is based on three hypotheses. The first two are standard
conjectures for quasi-cyclic codes, namely the hardness of the syndrome decoding problem
and the hardness of finding codewords of a fixed low weight. This ensures that one can
neither recover the secret sparse matrices H0 and H1 from H, nor the secret message
[e0|e1] from ciphertext c. The third hypothesis is that the decryption failure rate (DFR)
is negligible with respect to the security parameter. Although we cannot prove the third
hypothesis, Vasseur [Vas21] proposed a framework that, under weaker hypothesis, allows
one to get confident that some decoders achieve negligible DFR for selected parameter sets.

It is shown [TS16, Sen11] that parameters t and w are the most important when deter-
mining the security level, since they control the weight of the sparse vectors. Intuitively, if
w or t are too small, it is easy to find h0 or the partial encryption error e0 by enumerating
low weight vectors. But they may not be so large, with respect to r, otherwise the proba-
bility of failing to decrypt a ciphertext would be too high. Therefore, to define parameters
(t, w, r), one typically fixes (t, w) sufficiently large to achieve high security levels, and then
define r such that the decryption failure rate is low enough for the desired application.
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In 2016, Guo et al. [GJS16] showed that decryption failures could lead to a full key
recovery attack against schemes based on QC-MDPC codes. To deal with the poten-
tial vulnerability faced by schemes within which decryption failures occur, Hofheinz et
al. [HHK17b] refined the Fujisaki-Okamoto [FO99] transformation showing that a scheme
whose decryption failure rate is below 2−λ can be transformed into a CCA secure one.

Unlike for algebraic codes, such as Goppa or Reed-Solomon codes, whose decoders
are guaranteed to decode all errors in vectors up to a given weight, we cannot yet give
strong mathematical guarantees on the error correction capability of decoders for QC-
MDPC codes. Recently, Sendrier and Vasseur [SV20a, Vas21] proposed a method that,
under reasonable hypotheses, allows one to use simulations and simple statistical analysis
to find parameters (r, t, w) such that a QC-MDPC decoder fails with negligible probability
with respect to some security parameters λ.

Let t and w be fixed positive integers and let us consider a hypothetical QC-MDPC de-
coder D. Let DFRD(r) denote the decryption failure rate of D when decrypting a ciphertext
generated at random with respect to a random QC-MDPC key with parameters (r, t, w).
The main observation by Sendrier and Vasseur [SV20a] is that the curve log2(DFRD(r))

is typically concave for practical QC-MDPC decoders and for all values of r such that
DFRD(r) is high enough so that failures can be observed in simulations. Vasseur’s [Vas21]
model then makes the following assumption: for a given decoder D and security level λ, the
curve log2(DFRD(r)) is concave in the region where DFRD(r) ≥ 2−λ. This assumption is
somewhat consistent with Tillich’s [Til18] asymptotic theoretical model for MDPC codes,
which shows that the dominating term in log2(DFRD(r)) decreases linearly with r.

Figure 5.1 illustrates how Vasseur’s [Vas21] model can be used to estimate the block
parameter r that allows for negligible failure rate with respect to the security parameter
λ = 128. First, one performs DFR simulations for increasing values of r until it cannot
see any decoding failure. Then, they take the last two points (rA, pA) and (rB, pB) in the
log2 DFR plot such that a number of failures were observed and compute the line passing
through them. According to the extrapolation hypothesis, the decoder fails with negligible
probability for r = rext, the point where the line intercepts DFR = 2−λ. Finally, choose
parameter r to be the least prime r ≥ rext such that 2 is primitive modulo r. This avoids
both squaring attacks [LJS+16] and other potential attacks based on the factorization of
the cyclic polynomial ring25 F2[X]/(Xr − 1).

Since there is always some error in the DFR estimates, Vasseur [Vas21] uses confidence
intervals for the observed DFR and compute a conservative extrapolation for r as follows.
Let pA and pB be the DFRs for rA and rB, respectively, where rA < rB. Consider p−A and
p+B to be the lower and upper limit for pA and pB according to Binomial confidence intervals
for pA and pB. Then a conservative extrapolation for rext is obtained by considering the line
passing through (rA, p

−
A) and (rB, p

+
B). Vasseur [Vas21] uses the Clopper-Pearson confidence

interval together with posterior probabilities to obtain a narrower interval, with confidence
25The cyclic polynomial ring F2[X]/(Xr − 1) is isomorphic to the ring of circulant matrices used in

BIKE.
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Figure 5.1: Illustration of Vasseur’s [Vas21] DFR extrapolation framework considering 128 bits
of security and a hypothetical decoder.

level α = 0.01. In this work we use the same α with the Clopper-Pearson interval, but
we do not use the posterior probabilities. Even though this tends to give slightly more
conservative estimates, it is easier to compute.

5.3.3 BGF: State-of-the-art QC-MDPC decoder

BGF [DGK20c], which stands for Black-Gray-Flip, is one of the most efficient known
decoders for QC-MDPC codes. This decoder is an improvement of the Black-Gray decoder
first proposed by Sendrier and Misoczki in a previous version26 of CAKE [BGG+17], a
predecessor of BIKE.

As a decoding algorithm, BGF’s goal is to, given a syndrome ciphertext c = e0 +

e1H
⊤
Pub, recover the sparse error vector e = [e0|e1] using the secret sparse matrix H.

The algorithm first computes the secret syndrome z = cH⊤
0 , then starts with e ← 0 and

performs a sequence of NIter iterations, each of which updates its knowledge on e until
either z = eH⊤ or the number of iterations exceeds a certain limit NIter and a decoding
failure occurs. Before introducing BGF, let us first define its auxiliary procedures.

BGF Auxiliary Algorithms. BGF uses two bit-flipping auxiliary procedures: BitFlipIter

and BitFlipMaskedIter, which are formally described in Algorithm 5.2. These proce-
dures are very similar to other iterative decoders, such as the original Gallager’s bit-flipping
algorithm [Gal62].

Both algorithms flip bits of the partial error vector e when their corresponding UPC
counters are above some threshold, τ0 for BitFlipIter and τ1 for BitFlipMaskedIter.
However they differ in some important points. First, BitFlipIter not only flips the bits,
but it also marks the bits in either black or gray, using bit-masks BlackMask and GrayMask.

26Unfortunately, there appears to be no reference to the version in which the Black-Gray decoder ap-
peared.
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Black bits are the ones that are flipped with a somewhat high confidence (upcj ≥ τ0), while
gray bits are the ones that were almost selected for flipping (τ0 > upcj ≥ τ0 − δ), but did
not make it because of a minor difference δ. On the other hand, BitFlipMaskedIter is
a simple bit flip iteration based on the UPC value, but it only flips bits that are marked 1
in a given mask Mask.

Algorithm 5.2 Auxiliary iterations used by BGF.
1: procedure BitFlipIter(H, z, e, s, τ0)
2: BlackMask← 0 ∈ F2r

2

3: GrayMask← 0 ∈ F2r
2

4: for j = 1 to 2r do
5: upcj ←

∣∣∣supp (s) ∩ supp
(
H⊤

j

)∣∣∣
6: if upcj ≥ τ0 then
7: ej ← ej ▷ Flips coordinate j of e
8: BlackMaskj ← 1
9: else if upcj ≥ τ0 − δ then

10: GrayMaskj ← 1

11: s← z+ eH⊤ ▷ Recomputes the partial syndrome
12: return e, s, BlackMask, GrayMask

13: procedure BitFlipMaskedIter(H, z, e, s, Mask, τ1)
14: for j = 1 to 2r do
15: upcj ←

∣∣∣supp (s) ∩ supp
(
H⊤

j

)∣∣∣
16: if Maskj = 1 and upcj ≥ τ1 then
17: ej ← ej ▷ Flips coordinate j of e
18: s← z+ eH⊤ ▷ Recomputes the partial syndrome
19: return e, s

The BGF algorithm. BGF is defined as Algorithm 5.3. Intuitively, the first call to
BitFlipIter flips the bits for which it has a high confidence that they are wrong, by
using a selective threshold function Thresh. Then it comes the two regret steps: first the
black and then the gray. In the black regret, all the 1 bits added in the previous step that
have an UPC strictly greater27 than (d+1)/2 will be flipped back to 0. The gray regret step
is analogous, but now over the bits marked in GrayMask, which are called gray bits. These
consist of 0 bits that were not flipped in the first step because their UPC were smaller
than, but somewhat close to, the selected threshold.

After the first and most costly iteration ensured a good start, hopefully with only a
small number of errors left to be corrected, BGF continues with NIter − 1 iterations of
BitFlipIter that will try to correct the remaining errors. Notice that the masks are not
needed after this point, and thus, are ignored.

27Notice that this is done by choosing τ1 = (d+ 1)/2 + 1, since the flipping condition is upcj ≥ τ1.
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Algorithm 5.3 The BGF decoding algorithm.
1: procedure BGF(H = [H0|H1], z = cH⊤

0 )
2: e← 0 ∈ F2r

2 ▷ Initializes the partial error vector
3: s← z ▷ Initializes the partial syndrome
4: for i = 1 to NIter do
5: ▷ Every time e and s are updated, it holds that s = z+ eH⊤

6: if i = 1 then
7: e, s, BlackMask, GrayMask← BitFlipIter(H, z, e, s, τ0 = Thresh(s))
8: e, s← BitFlipMaskedIter(H, z, e, s, BlackMask, τ1 = (d+ 1)/2 + 1)
9: e, s← BitFlipMaskedIter(H, z, e, s, GrayMask, τ1 = (d+ 1)/2 + 1)

10: else
11: e, s← BitFlipIter(H, z, e, s, τ0 = Thresh(s)) ▷ Ignores the black-gray

masks
12: if eH⊤ = z then ▷ This condition is equivalent to s = 0
13: return e
14: else
15: return ⊥ ▷ Decoding failure

BGF Parameters. Table 5.2 shows the parameters δ, NIter and threshold function
Thresh proposed for the different security levels together with their performance under
our platform28. We considered the constant-time implementation provided in BIKE Addi-
tional Implementation [DGK20a] with minor changes to account for the updated threshold
function in BIKE’s last revision [ABB+21].

Notice how δ and NIter are the same in all security levels. The threshold function is
an increasing linear function on the syndrome weight truncated above the minimum value
(d+ 1)/2. Since the threshold function is used to determine when to flip a bit, this means
that when the weight of the syndrome s is large, fewer bits will be flipped.

Security
level λ δ NIter Thresh(s)

Cycles
Portable

Cycles
AVX512

128 3 5 max (36, ⌊0.00697220w (s) + 13.5300⌋) 10955732 1323322
192 3 5 max (52, ⌊0.00526500w (s) + 15.2588⌋) 32982825 4130087
256 3 5 max (69, ⌊0.00402312w (s) + 17.8785⌋) 94902236 11497288

Table 5.2: BGF parameters and their corresponding performance when considering the portable
and AVX512 implementations.

5.4 Critical analysis of BGF

In this section, we dive a little deeper into the BGF decoding algorithm. This allows
us to better understand why BGF is effective, but, more importantly, it will show some

28Intel® XeonTM Gold 5118 CPU at 2.30GHz.
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of BGF’s weaknesses and lay the ground over which a better decoder can be designed.
It is well-known to be difficult to provide a theoretical analysis for QC-MDPC iterative
decoders, because of the inherent dependency caused by the circulant matrices involved.
Therefore, our analysis is based on observations of BGF’s behavior in practice.

5.4.1 BGF’s first iteration: The Black-Gray step

Let us first discuss BGF’s first iteration and its importance for the extrapolation frame-
work. As described in the previous section, in the first iteration, BGF performs a sequence
of 3 bit-flipping calls: one BitFlipIter followed by two BitFlipMaskedIter.

We know that BitFlipIter flips all bits whose UPC counters are above a certain
threshold. This makes it very sensible to the threshold selected, as illustrated in Figure 5.2.
Consider the difference if, by chance, the threshold τ0 = 76 was selected, then the number
of errors made after calling BitFlipIter, that is, correct bits that would be incorrectly
flipped, would be twice the number if τ0 = 77 were selected.

This problem is particularly important under the extrapolation framework, where the
algorithm needs not only to perform well, but also to improve its performance at a very
fast rate for small, but increasing, values of r. Therefore, BGF uses a very conservative
threshold in the first iteration BitFlipIter. Additionally, the black and gray regretting
phases, corresponding to the two calls of BitFlipMaskedIter, also work by flipping a
controlled number of bits: only those bits in the black or gray masks whose UPC is above
(d+ 1)/2. This makes the whole first iteration very conservative.
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Figure 5.2: Histogram of the UPC counters for each of the 2r bits in the partial error vector e = 0,
in the beginning of the first iteration, separated by the cases when the bit is right or wrong. The
values correspond to a real observation corresponding to the BIKE Level 5 security parameters.

Even though a conservative first iteration is important to ensure a fast DFR decay when
r increases, it may result in useless iterations when r is close to the value when negligible
DFR is reached. In particular, for the case presented in Figure 5.2, where r = 40973,
Threshreturned τ0 = 86. This would result in no error being made after BitFlipIter,
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Figure 5.3: The impact of the number of BGF iterations on the DFR, considering parameter set
BIKE Level 1 (t = 134, w = 142).

but at the cost of flipping only a small number of bits, compared to the case where τ0 = 80,
for example.

This suggests that removing the black regret step may be a good starting point for
optimization. For example, we could merge both black and gray regret steps into one
iteration in such a way that the black regret is critical for small r, but when r gets larger,
the gray regret steps gets more important than the black one. This is the key idea behind
our PickyFlip iteration that we introduce in Section 5.5.

5.4.2 The number of iterations and the threshold function

One straightforward method to improve the decapsulation performance would be to
decrease the number of BGF iterations, at the cost of increasing the key sizes. Intuitively,
one may think that there is a direct trade-off between the number of iterations and the
block length parameter r: the DFR may not decay as fast when using a lower number of
iterations, but one might be lucky to obtain a reasonable value of r after the extrapolation.
However, as discussed in the previous section, since the thresholds are so conservative, if
the number of iterations is too small, the decoder may not be able to fully correct the
errors even for large values of r.

Figure 5.3 shows how the number of iterations affects the decay of the DFR as a
function of r. Notice how 2 iterations are not enough to allow for a complete decoding of
errors of weight t = 134. Furthermore, the curve for 3 iterations does not appear to be
concave, therefore it is not safe to use the extrapolation framework for this value. This odd
behavior of the DFR curves for 2 and 3 iterations is caused by the following problem. On
the one hand, increasing r should make it easier to correct more errors, since there is more
redundancy, but, for large values of r, the threshold τ0 used in the first iteration is so high
that only very few errors are corrected in the first iteration.
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Figure 5.4: Average values of threshold τ0 in each of the 5 iterations of BGF, considering parameter
set BIKE Level 1 (t = 134, w = 142).

Let us analyze the thresholds τ0 in more detail. The average values of the thresholds τ0
used in each of BGF’s iteration are shown in Figure 5.4, considering 10000 decapsulations
under BIKE Level 1 parameter set. We make three observations. First notice how the first
threshold increases as r increases. This is a consequence of the linear dependency of τ0 on
the syndrome weight w (s), which turns out to increase with r. The second observation is
that the thresholds used in iterations 2 to 5 appear to converge to the floor (d+1)/2 = 36.
This happens because the first iteration, in general, is able to flip a sufficiently large number
of errors, and leave only fine adjustments for the next iterations to deal with. The third is
that τ0, for the second iteration, starts increasing after r = 11500. This is caused by the
threshold in the first iteration being too high, which leaves a lot of errors to be corrected
by the second iteration.

5.4.3 Impact of the threshold on the concavity assumption

Back to the DFR curves, the non-concave behavior of the curves for 2 and 3 iterations
raises a potentially deep problem with the BGF threshold: why should we expect the
curves for 4 and 5 iterations to be concave as well? It is possible that we just cannot see
an inflection point because it is located at a DFR smaller than what we can simulate.

To evaluate the concavity of the DFR curves for 5 iterations, we propose the following
experiment. Consider BIKE Level 1 parameter set. Since we cannot see the inflection points
for t = 134, we can exaggerate the error weight t so that we can see the DFR curve in the
interval of interest. Ideally, it should be concave at least within all values of r < 12323,
since this is the extrapolated value of r for BIKE Level 1.

As we can see in Figure 5.5, this is not what happens for t = 151, 153 and 155, for BGF
with 5 iterations. Therefore, considering our results regarding the non-concavity of BGF
with 2 and 3 iterations, together with the non-concavity of BGF with 2 to 5 iterations
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when t = 151, we believe that it is not conservative to assume that the DFR curve for
BGF is concave. We also tested BGF for levels 3 and 5, observing an analogous behavior
for t = 220 and t = 300, respectively.
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Figure 5.5: The DFR plot for different values of t considering BIKE Level 1 parameter set.

The main cause for this behavior appears to be the threshold function that depends on
w (s). We conclude that it is not safe to use it for the first, and most important, iteration,
but Figure 5.4 suggests that it might be used in further iterations, since it converges to
(d + 1)/2. Initially, we though that the threshold problem would be fixed by defining a
maximum value for τ0. In our exploratory tests, this indeed make concave DFR curves
for exaggerated values of t, but the error correction was negatively affected. Therefore, we
leave the problem of finding better thresholds for future work.

Our approach to deal with the first iteration is simple: we do not use a simple threshold
to flip bits. Instead of starting with a BitFlip iteration, we propose to start with FixFlip,
a new type of iteration that works by flipping a predetermined number of bits that have
the largest corresponding UPC.

5.5 PickyFix

In this section, we describe a new BIKE decoder called PickyFix. Similar to other
iterative decoders for LDPC codes, PickyFix works by performing a sequence of iterations
that progressively increases the knowledge of the secret sparse error used for encrypting.
However, it differs significantly in how it chooses which bits to flip in its iterations. We begin
by defining two new types of auxiliary procedures: the FixFlip and PickyFlip iterations,
that are the building blocks of our decoder.
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5.5.1 The FixFlip auxiliary iteration

While the majority of previous bit-flip approaches are based on flipping all bits whose
UPC counters are above a certain threshold, FixFlip flips a predetermined number of bits,
denoted by nFlips, that have the highest UPC counters. The formal description of a full
iteration of FixFlip is described as Algorithm 5.4.

Algorithm 5.4 The FixFlip iteration.
1: procedure FixFlipIter(H, z, e, s, nFlips)
2: upc←

[∣∣∣supp (s) ∩ supp
(
H⊤

j

)∣∣∣ for j = 1 to 2r
]

▷ We need the full UPC array
3: worst_indexes← list of the indexes j of the nFlips largest values of upc
4: for j in worst_indexes do
5: ej ← ej ▷ Flips coordinate j of e
6: s← z+ eH⊤ ▷ Recomputes the partial syndrome
7: return e, s

Almost every step of the algorithm is standard for other bit-flipping algorithms. How-
ever, despite its simplicity, one has to be careful with line 3 when implementing the FixFlip
iteration, In Section 5.7 we discuss this issue and show how this can be done efficiently in
linear time on r by using important observations on QC-MDPC parameters.

This iteration is very useful at the start of the decoding process, when there is a lot of
uncertainty about the correctness of the bits. We can point two immediate advantages of
using FixFlip. First, since the number of flips is fixed, the number of wrong flips done by
this iteration is limited. This makes FixFlip useful for small values of r, which is an impor-
tant property for decoders to be used in Vasseur’s [Vas21] DFR extrapolation framework.
Second, and most important, FixFlip is immune to the problem of BGF’s first threshold
that gets larger as r grows, since it does not rely on a generic threshold function that
depends only on |s|. In fact, the threshold function for FixFlip depends directly on the
UPC values and the target number nFlips of bits to flip.

5.5.2 The PickyFlip auxiliary iteration

PickyFlip is very similar to the BitFlip iteration, except that it uses 2 different thresh-
old: τIn is used to flip zeros to ones and τOut to flip ones to zeros. In particular, PickyFlip
requires that the threshold to flip a zero to a one is greater than or equal to the threshold
to flip a one to zero. This makes it picky with respect to the support of e and explains
why we use in and out to differentiate the thresholds. The iteration is formally described
as Algorithm 5.5.

The power of this iteration is that the weight of e does not grow too much in one
iteration because it is easier to give up on a 1 in the partial error vector e than to accept
one more. Additionally, the effect of one PickyFlip iteration is similar to the sequence of
black regret and gray regret steps, for a sufficiently high r. Luckily, because of its similarity



5.5 PickyFix 93

Algorithm 5.5 The PickyFlip iteration.
1: procedure PickyFlipIter(H, z, e, s, τIn, τOut)
2: for j = 1 to 2r do
3: upcj =

∣∣∣supp (s) ∩ supp
(
H⊤

j

)∣∣∣
4: if ej = 0 and upcj ≥ τIn then
5: ej ← ej
6: else if ej = 1 and upcj ≥ τOut then
7: ej ← ej

8: s← z+ eH⊤ ▷ Recomputes the partial syndrome
9: return e, s

with the BitFlip iteration, it can be easily implemented by small adjustments of the code
by Drucker et al. [DGK20a] in BIKE Additional Implementation.

5.5.3 The PickyFix decoder

We are now ready to define a full decoder, which is described as Algorithm 5.6. To allow
for a direct comparison between PickyFix and BGF, we decided to define it in a similar
fashion: the first iteration makes 3 calls of the auxiliary steps, which are then followed by
single calls in the next NIter − 1 iterations.

Algorithm 5.6 The PickyFix decoding algorithm.
1: procedure PickyFix(H = [H0|H1], z = cH⊤

0 )
2: e← 0 ∈ F2r

2 ▷ Initializes the partial error vector
3: s← z ▷ Initializes the partial syndrome
4: for i = 1 to NIter do
5: ▷ Every time e and s are updated, it holds that s = z+ eH⊤

6: if i = 1 then
7: e, s← FixFlipIter(H, z, e, s, nFlips)
8: e, s← PickyFlipIter(H, z, e, s, τIn = Thresh(s), τOut = (d+ 1)/2)
9: e, s← PickyFlipIter(H, z, e, s, τIn = Thresh(s), τOut = (d+ 1)/2)

10: else
11: e, s← PickyFlipIter(H, z, e, s, τIn = Thresh(s), τOut = (d+ 1)/2)

12: if eH⊤ = z then ▷ This condition is equivalent to s = 0
13: return e
14: else
15: return ⊥ ▷ Decoding failure

The threshold τOut for PickyFix is fixed as (d + 1)/2 in every iteration, which is the
value typically used as the minimum threshold for flipping bits. For the value of τIn, we
decided to use the BGF’s auxiliary function Thresh which was carefully built by the BIKE
team and is sufficiently restrictive for our use case.

FixFlip depends on the following parameters: the number nFlips of flips to be done by
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FixFlipIter and the number NIter of iterations. These parameters depend on the security
level and significantly impact the decoder’s performance. We analyze these parameters in
the next section.

5.6 Analysis

The main problem when searching for good parameters (nFlips, NIter) is that they are
not independent. For example, if nFlips is too small, we may need a large number NIter of
iterations to compensate. To simplify our search, we will take a greedy approach and break
the search into two parts.

In this section, first we find good values for nFlips by focusing only on the first iteration
and then show that these values indeed yield decoders with a concave DFR curve. Finally,
we proceed to evaluate the decoder performance for different number NIter of iterations.

5.6.1 Choosing the FixFlip parameter

Intuitively, the best value of nFlips is the one that minimizes the number of errors left
to be corrected by further PickyFlip iterations. Ideally, one could see how each possible
value of nFlips affects the DFR curves following the extrapolation framework, and choose
the one that has the fastest decay. The problem of this approach is that these experiments
are very expensive and could easily take months of computing power.

To deal with this problem, instead of counting decoding failures, we count the average
number of uncorrected errors left, which can be estimated with a much smaller sample
than what is needed for the DFR estimation. Consider the curves PickyFixnFlips

1 (r) that
represent the average number of errors left after the first iteration of PickyFix when the
FixFlip iteration performs nFlips bit flips. Similarly, define the curve BGF1(r) as the average
number of errors left after the first iteration of BGF.

Figure 5.6 shows selected curves, where the average number of errors left was obtained
by simulations of 10000 runs. Notice how each PickyFlip curve eventually leaves about 0
errors after the first iteration. Furthermore, we can see that BGF appears to stall its error
correction in its first iteration as r increases. In Level 1, BGF even starts to leave more
errors for sufficiently large values of r, which is a consequence of the very conservative
threshold used in the first iteration that we discuss in Section 5.4.1.

To obtain the best value of nFlips we used the following criteria: for each security level,

Parameter set Security level Value r0 nFlips PickyFixnFlips
1 (r0) BGF1(r0)

BIKE Level 1 128 11001 55 0.0 63.97
BIKE Level 3 192 21201 65 0.0 109.06
BIKE Level 5 256 35001 100 0.0 105.79

Table 5.3: The best values of nFlips for each security level. Value r0 denotes the first value of r
when Equation 5.1 is satisfied.
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Figure 5.6: Comparison of the number of uncorrected errors after the first iteration for BGF and
FixFlip using different values of nFlips, for the three BIKE parameter sets. The different values of
nFlips are indicated by the label format FixFlipnFlips

1 .

select the value nFlips such that

PickyFixnFlips
1 (r) = 0, (5.1)

for the lowest value of r. Furthermore, we restricted the search for nFlips to multiples of 5
to speed up the search. The best values of nFlips obtained for each security level are shown
in Table 5.3, where 10000 tests were performed to estimate PickyFixnFlips

1 (r) for each r.
Let us now see how PickyFix behaves with respect to the concavity with an experiment

similar to the one done in Section 5.4.3 for BGF. First notice that we could not use t = 155

because PickyFix was much better than BGF’s and its DFR quickly got to the point where
no failure could be observed in our simulation. Therefore, we had to consider t = 160.
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Figure 5.7 shows our results for this experiment. We invite the reader to compare this
figure with Figure 5.4.3 and see that, not only PickyFix’s DFR appears to be concave
in the same interval, but it also outperforms BGF with 5 iterations for a higher value of
t. Furthermore, we also tested PickyFix for levels 3 and 5, using t = 240 and t = 330,
respectively, and the DFR curves appear to be concave, unlike the ones for BGF.
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Figure 5.7: The DFR curves for PickyFix when using 2 to 5 iterations considering the BIKE
Level 1 parameter set with t = 160.

5.6.2 Achieving negligible DFR

Now comes the most important evaluation of PickyFix, which consists of its decoding
performance under the extrapolation framework. Our results are shown in Figure 5.8. The
number of tests to determine each DFR estimate was selected to be enough to obtain
approximately 1000 failures (at least) for each point and can be found in data/setup/

dfr_experiment.csv.
Table 5.4 shows the results for the DFR extrapolation of the curves considered in

Figure 5.8, together with the performance of our constant-time implementations. The ex-
trapolation was done for the last two points (rA, pA) and (rB, pB) where more than 1000

failures were observed and considered α = 0.01 for the Clopper-Pearson method to build
the confidence interval for pA and pB.

We can see, from Table 5.4, that even with less than 5 iterations, the extrapolated
parameter r for each security level does not differ by much from the parameters proposed
by the BIKE team using BGF (Table 5.1). However, since PickyFix also works with a
reduced number of iterations, its performance can be significantly better, as we can see in
Table 5.6.

From the results presented in this section, PickyFix looks like a promising decoder
for BIKE. When dealing with QC-MDPC codes, it is also important to consider how
decoders perform when using weak keys, which are those that tend to have higher DFRs,
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Figure 5.8: The DFR for PickyFix when using 2 to 5 iterations, considering all security levels.

or when decoding near-codeword error patterns, which are error patterns that are more
difficult to correct [DGK19, SV20b, Vas21]. While these patterns are known to exist for
QC-MDPC codes, they are not yet known to cause issues in the DFR estimation, as
mentioned in BIKE’s latest revision [ABB+22]. It is both important to better understand
their theoretical impact and also to compare PickyFix with other decoders with respect to
these corner cases, and this is left for our future work.

The main drawback of the PickyFix is that the FixFlip auxiliary iteration used by
PickyFix is inherently more complex than those used by BGF. In the next section, we
describe how to efficiently implement PickyFix in constant-time and show that our decoder
provides a major speedup over BGF for all security levels.
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Security Iterations (rA, pA) (rB , pB) r
Relative

increase in r

128 2 (10451, 1.268× 10−5) (10501, 3.54× 10−6) 13829 12.22%
3 (10251, 7.78× 10−6) (10301, 1.788× 10−6) 13109 6.38%
4 (10101, 3.816× 10−5) (10151, 7.37× 10−6) 12739 3.38%
5 (10051, 3.221× 10−5) (10101, 5.44× 10−6) 12413 0.73%

192 2 (20351, 2.036× 10−5) (20401, 7.74× 10−6) 27397 11.1%
3 (20051, 2.546× 10−5) (20101, 7.56× 10−6) 25867 4.9%
4 (19901, 4.23× 10−5) (19951, 1.04× 10−5) 25189 2.15%
5 (19851, 2.228× 10−5) (19901, 4.96× 10−6) 24677 0.07%

256 2 (34351, 3.128× 10−5) (34401, 7.68× 10−6) 41411 1.07%
3 (34051, 1.532× 10−4) (34101, 3.294× 10−5) 39901 -2.62%
4 (33951, 7.91× 10−5) (34001, 1.398× 10−5) 39163 -4.42%
5 (33901, 4.704× 10−5) (33951, 8.42× 10−6) 39019 -4.77%

Table 5.4: Results of the DFR extrapolation for BIKE, considering FixFlip with 2 to 5 iterations
and multiple security levels. For the relative increase in r, we compared the extrapolated values
for the FixFlip decoder with the values of r used by the BGF decoder shown in Table 5.1.

5.7 Efficient implementation in constant time

The efficient constant-time implementation proposed by the BIKE team is based on
Chou’s[Cho16] QcBits with further improvements by Guimarães et al. [GAB19] and Drucker
et al. [DGK20b, DG19]. Using these ideas, Drucker et al. [DGK19, DGK20c] proposed the
BGF implementation that is the best performing decoder up to this day, which is imple-
mented in BIKE’s Additional Implementation[DGK20a].

We based our PickyFix implementation on Drucker’s et al.[DGK20a] code, which im-
plements, in constant-time, most of the procedures required for both PickyFlip and FixFlip
iterations. This includes, for example, the syndrome and UPC counters computations, and
algorithms to flip bits given a threshold.

This section begins with a high-level description on how to adapt Drucker’s et al.[DGK20a]
implementation to perform the PickyFlip iteration in constant-time. Then we give a more
detailed explanation on how to implement the procedures needed by FixFlip that are sig-
nificantly different from what is used by previous decoders. We end this section with a
performance evaluation of our constant-time implementation, which is available at https:
//github.com/thalespaiva/pickyfix.

5.7.1 Implementing the PickyFlip iteration

Remember that PickyFlip is similar to the BitFlip iteration, except that it uses a
different threshold to flip zeros and ones. More specifically, consider the BitFlipIter

described in Algorithm 5.2. Notice how if upcj ≥ τ0 it inverts ej , but if τ0− δ ≤ upcj < τ0,
it updates GrayMaskj = 1. BitFlip behavior is then very similar to PickyFix if we let
τ0 = τIn and δ = τIn − τOut.

BIKE’s efficient implementation of BitFlip is based on QcBits [Cho16], and we imple-

https://github.com/thalespaiva/pickyfix
https://github.com/thalespaiva/pickyfix
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mented PickyFix by reusing their implementation. Since the details of this implementation
are already described by Chou [Cho16], we give here only a brief description of how it
works.

Suppose we want to flip all bits in e whose UPC counters are above a threshold τIn.
First, all UPC counters are computed in bitsliced form. Since the UPC counters are lower
than or equal to d = w/2, then ⌈log2(d)⌉ slices are enough. Second, the implementation
performs a bitsliced subtraction of τIn over all UPC counters. Therefore, the 0 bits in the
last slice, which contains the most significant bits, indicate that the UPC was greater than
or equal to τIn, and thus the corresponding bit in e should be flipped.

Notice that PickyFix performs the procedure above two times: one for τIn and other
to τOut. However, the computation of UPC counters, which is the most costly step, is only
done once for the two thresholds. The cost of the call is then very similar to the complexity
of BitFlipIter.

5.7.2 Implementing the FixFlip iteration

Most of the steps needed by the FixFlip algorithm are common to all variants of
the original bit-flipping decoder proposed by Gallager [Gal62]. Therefore, we can base
our implementation in the most efficient constant-time implementations of QC-MDPC
decoders, if we can efficiently implement the sorting step of FixFlip, corresponding to
line 3 of Algorithm 5.4.

Simply put, the main problem we need to solve is: given a list of UPC counters, flip
the nFlips bits that have the largest counters. This motivates us to call the set of indexes
of entries to be flipped as a FixFlip set, which is formally defined bellow.

Definition 5.7.1 (FixFlip set). Consider a list of UPC counters U = (u1, . . . , u2r). A
FixFlip set S with respect to U and nFlips is a set of nFlips indexes such that ui ≥ us for
all i /∈ S and for all s ∈ S.

Notice that, in general, there are more than 1 FixFlip set for the same list of UPC
counters. For example, for a list of UPC counters U = (3, 5, 2, 3, 7, 1, 3, 1) and nFlips = 4,
then S1 = {1, 2, 4, 5} and S2 = {1, 2, 5, 7} are two valid FixFlip sets. Furthermore, notice
that any FixFlip set S for U can be constructed by the threshold τ = 3 and the integer
nτ = 1 by taking every index i whose UPC is strictly greater than τ and also taking nτ

indexes whose UPC is equal to τ . The pair (τ, nτ ) is then called a FixFlip threshold, and
is formally defined next.

Definition 5.7.2 (FixFlip threshold). Let U = (u1, . . . , u2r) be a list of UPC counters. A
pair (τ, nτ ) is a FixFlip threshold with respect to U and nFlips if, for any FixFlip set S can be
partitioned into S = S>τ ∪ S=τ such that S>τ = {s ∈ S : us > τ}, S=τ = {s ∈ S : us = τ}
and |S=τ | = nτ .

This notion helps us to reduce the problem of flipping the bits with the largest UPC
values to finding a FixFlip threshold, as shown in Algorithm 5.7. The idea of the algorithm
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Algorithm 5.7 Algorithm to flip the nFlips entries of e with largest UPC counters.
1: procedure FlipWorstFitEntries(nFlips, upc)
2: τ, nτ ← FixFlipThreshold(nFlips, upc)
3: Nτ ← |{i : upci = τ}|
4: FlipFlagsForThreshold← Random binary vector of Nτ bits with weight nτ

5: η ← 0 ▷ Counts the number of bits seen whose upc is τ
6: for i = 1 to 2r do
7: if upci > τ then
8: ei = ei
9: else if upci = τ then

10: η ← η + 1
11: if FlipFlagsForThresholdη = 1 then
12: ei = ei
13: return e

is to flip all bits whose UPC is above τ , and use the array FlipFlagsForThreshold to
control which set of nτ bits should be flipped among all of the Nτ bits whose UPC is τ .

The conditionals in Algorithm 5.7 can be implemented in constant-time using condition
masks. However, there are two aspects that are important to notice when converting the
algorithm to a constant-time implementation. The first is that it is not trivial to implement
FixFlipThreshold in constant-time. The second is that, to generate the random vector
FlipFlagsForThreshold of fixed weight in line 4, and to hide the accesses to index η in
line 11, we need a tight upper bound on Nτ . In the next two sections, we describe how our
constant-time implementation deals with these concerns.

Computing the FixFlip threshold

The straightforward solution is to use general sorting algorithms, such as quicksort, to
sort the indexes based on the corresponding UPC counters’ values, and then return the
first nFlips indexes. There are two problems with this approach. The first is that the average
complexity would be O(r log r) which would result in an iteration much costlier than that
of BGF or BG. The second, and most problematic one, is that the algorithm would not be
constant-time and timing attacks would be practical.

Notice that the values of the UPC counters are always in {0, . . . , d}, which is a relatively
small range, and therefore counting sort is an interesting option that allows for linear sort.
The problem with using counting sort in this cryptographic setting is that the constant-
time implementation would not be efficient: for every counter, we need to touch all the
d+ 1 buckets to avoid cache timing attacks, resulting in O(wr) complexity.

We can do better by analyzing the context in which FixFlip iteration is used. Since
the weight t of the error vector is at most t = 264, considering security level 5, then it is
not necessary to allow for more than 264 flips in each FixFlip iteration. Furthermore, we
already saw in Section 5.6.1 that, in practice, nFlips is typically much lower than t for all
security levels, and we can safely assume nFlips < 256. This means that, when performing
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255+ 255+ 0 0 0 0 0 0
0 – 63 64 – 127 128 – 191 192 – 255 256 – 319 320 – 383 384 – 447 448 – 511

255+ 255+ 127 30 1 0 0 0
64 – 71 72 – 79 80 – 87 88 – 95 96 – 103 104 – 111 112 – 119 120 – 127

20 21 20 19 18 15 8 6
80 81 82 83 84 85 86 87

8-bit counters:
UPC Buckets:

8-bit counters:
UPC Buckets:

8-bit counters:
UPC Buckets:

64 bits

Figure 5.9: Using 3 levels of partial counting sorts to find the FixFlip threshold for nFlips = 40,
considering a real execution of the procedure under BIKE Level 5 parameter set. In this example,
the FixFlip threshold corresponds to τ = 86 and nτ = 3.

the counting sort, we only need to count up to 255, since we need only to return the indexes
corresponding to the nFlips largest counters. Therefore, 8 bits are needed for each bucket.

Still, even if we can pack 8 buckets into one 64-bit register, we would need to touch
all ⌈(d+ 1)/8⌉ registers for each counting update. The number of registers would result in
9 × 2r and 18 × 2r operations, considering parameters for levels 1 and 5. But remember
that we do not need to count all entries, and we can take what we call the reduced UPC
counters approach, which is described next.

Figure 5.9 shows how the algorithm works in a real decoding instance considering BIKE
Level 5. Suppose we are given a list U = (u1, . . . , u2r) of UPC counters and we want to find
the FixFlip threshold for U and nFlips < 256. To show our concrete efficient implementation,
we assume the following conditions, that hold in the real world parameters.

1. Each UPC counter ui ≤ d < 512.

2. The number of bits to flip is nFlips < 256.

The FixFlip threshold is found in 3 counting steps, and each step uses only 8 buck-
ets. For the first step, each bucket i, where i goes from 0 to 7, corresponds to the UPC
counters in the interval [64i, 64i + 63]. The algorithm then runs from u1 to u2r counting
the occurrences into the buckets, but with the following rule: the counting is done only
in 8 bits, and it should not overflow. That is, the maximum count is 255 for each bucket.
Now suppose the resulting counts for each bucket is [255, 255, 0, 0, 0, 0, 0, 0], and consider
the case nFlips = 40, just like in Figure 5.9. Then the bucket where the FixFlip threshold
lives must be Bucket 1, since Buckets 3 to 7 do not have any entry, and there are more
than nFlips entries in Bucket 1. Using Bucket b1 = 1 selected in this step, the algorithm
proceeds to the next step.
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In the second step, the algorithm expands Bucket b1, and the 8 counting buckets are
zeroed. Now, each bucket i will count the UPC counters in the interval [B2+8i, B2+8i+7],
where B2 = 64b1. Again, the algorithm runs through the counters in reversed order until
it finds where the FixFlip threshold lives. In the case considered in Figure 5.9, Bucket 3 is
not enough to contain the threshold since it separates at most 31 UPC counters from the
rest. Therefore, the search continues using Bucket b2 = 2.

In the third and last step, Bucket b2 is expanded, and now each counting bucket will
correspond to one UPC value. Formally, each Bucket i will count occurrences of the UPC
counter B3 + i, where B3 = B2 + 8b2. If we consider the search in Figure 5.9, we can see
that it stops at τ = 86, since it has found 6+ 30+ 1 = 37 UPC values above τ and nτ = 3

UPC values equal to τ complete the nFlips = 40 bits to be flipped.
Now let us analyze why this algorithm is useful. Since each bucket uses only 8 bits,

we can pack all the 8 buckets into a single 64-bits register. Therefore, each update on the
counters updates a single register, which avoids the cache-timing attacks. Since 3 rounds
are necessary, the threshold is found in about 3× 2r touches on the counting registers.

Furthermore, let us check that computing the corresponding bucket for an UPC counter
is made using constant-time operations. Suppose we want to find the bucket b corresponding
to the UPC counter ui on step ℓ. Then

b =




⊥ if ui < Bℓ or ui ≥ Bℓ + 84−ℓ,
⌊
(ui −Bℓ)/8

3−ℓ
⌋

otherwise.

Both conditions can be evaluated in constant time, since they involve simple unsigned
integer comparisons, additions, and the computation of 84−ℓ does not involve any secrets.
Now for the actual values, if we use 8 bits to represent the buckets, we can let 0xFF denote
the symbol ⊥. Furthermore, since denominator of the division involving secrets is a power
of 8, we can compute (ui − Bℓ)/8

3−ℓ in constant time by using a right shift by 3(3 − ℓ)

bits, assuming the processor uses a barrel shifter. This observation is particularly useful
when considering the vectorized implementation using AVX512 instructions: the bucket
computation can be done in parallel for multiple UPC counters, as they involve simple
additions, comparisons and right shifts by a fixed amount.

Generating FlipFlagsForThreshold and accessing it in constant time

The generation of a random binary vector of a given weight appears frequently in code-
based cryptography. For example, both HQC [MAB+18] and BIKE [ABB+21] itself require
such a procedure when generating error vectors or secret keys. There is, however, a key
difference between our setup and the constant-weight sampling algorithms used by BIKE:
FixFlip must hide both the weight nτ and the size of the vector Nτ .

Let us first see, in Algorithm 5.8, how the naive Fisher-Yates shuffle works in our case,
and then discuss how to make it run in constant-time. We start with a vector of Nτ bits,
in which the first nτ are set to 1 and the rest are set to 0. Then, the algorithm performs nτ
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random swaps to shuffle the first nτ bits of the array. By the end, if each random integer
j generated for the swap is unbiased, then each vector of length Nτ and weight nτ should
be generated with uniform probability 1/

(
Nτ

nτ

)
.

To implement Algorithm 5.8 in constant-time, we need upper bounds on nτ , to limit the
loops, and on Nτ , to hide the accesses to vector FlipFlagsForThreshold when swapping
bits in line 9. Notice that, when swapping bits, we only need to hide access to position
j, since i is already known in each iteration. Furthermore, notice that we do not use
rejection-sampling when selecting the index j because its rejection rate would depend on
Nτ . Instead, we use a constant-time modulo reduction of the λ-bit random number, where
λ is equal to the security level, to achieve negligible bias.

A trivial upper bound on nτ is nτ ≤ nFlips. This allows us to run the loops in lines 3
and 6 in constant time by performing nFlips iterations and using condition masks. Now,
to bound Nτ we can focus on the distribution of UPC counters of the wrong bits, that is,
those that should be flipped. Let Uτ be the random variable that counts the number of
UPC counters, among the wrong bits, that are equal to τ . Notice that, when Nτ > 2Uτ ,
then flipping bits whose UPC are equal to τ is more likely to result in a wrong flip. Suppose
that we find the smallest value κ, in the interval 0 ≤ κ ≤ t, such that Pr (Uτ > κ) ≤ 2−λ,
where λ is the security level. Then we only care about flipping bits whose UPC are equal
to τ in the case when Nτ ≤ 2κ, as pointed by the comment in line 4 of Algorithm 5.8.

To find this value κ for each parameter set, we can use Sendrier and Vasseur’s [SV19]
model for the distributions of UPC counters. Under their model, the UPC counters’ dis-
tribution for the wrong and right bits are accurately modeled by Binomial distributions
with different parameters that are easy to compute. Since we want to consider all possible
values of τ , we can search for the smallest κ satisfying the rightmost inequality

Pr[Uτ > κ] ≤
∑

0≤θ≤w/2

Pr[Uθ > κ] ≤ 2−λ,

where the distribution of each Uθ is computed using Sendrier and Vasseur’s [SV19] model.
Table 5.5 shows the upper bounds on Nτ that we found for each security level. Our

Algorithm 5.8 Generate a random vector of fixed weight using the Fisher-Yates algorithm.
1: procedure GenVectorOfFixedWeight(nτ , Nτ )
2: FlipFlagsForThreshold← 0 ∈ FNτ

2

3: for i = 1 to nτ do
4: ▷ In the constant-time implementation, bit i is set to 1 only if Nτ ≤ 2κ
5: FlipFlagsForThresholdi ← 1

6: for i = 1 to nτ do
7: u← Random number of λ bits
8: j ← i+ (u mod (Nτ − i+ 1)) ▷ j is a random integer in range i ≤ j ≤ Nτ

9: Swap bits i and j of FlipFlagsForThreshold
10: return FlipFlagsForThreshold
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implementation uses an array of 64-bit integers to represent FlipFlagsForThreshold, and
the total number of 64-bit blocks required for 2κ bits is shown in the last column. Notice
that, for security levels 128 and 192, it is possible to simultaneously compute Nτ and the
FixFlip threshold, since 2κ < 255. To compute κ, we consider the smallest values of r

achieving each security level λ, which are taken from Table 5.6. This is a conservative
approach, since κ gets smaller for higher r within a fixed security level.

Security
level λ r w t κ Pr (Uτ > κ)

Upper bound
2κ on Nτ

Number of
64-bit blocks

128 12413 142 134 73 < 2−128.69 146 3
192 24677 206 199 103 < 2−195.54 206 4
256 39019 274 264 130 < 2−259.13 260 5

Table 5.5: Upper bounds on Nτ .

5.7.3 Performance evaluation

We now evaluate the decoder with respect to the full decapsulation time29, when using
PickyFix as a subroutine. For this test, we considered the constant-time implementations
of BIKE decapsulation using BGF from BIKE Additional Implementation [DGK20a] and
our constant-time PickyFix implementation over their code.

The algorithms are implemented in two modes: the portable implementation and the
accelerated one using AVX512 instructions. The testing platform consists of an Intel®

XeonTM Gold 5118 CPU at 2.30GHz. Notice that the decoding step is the most important
part of the decapsulation. In our setup, the decoding step consists of 90% of the decap-
sulation, for the portable implementation, and between 80% and 90%, for the AVX512
implementation30.

Table 5.6 shows the performance of our constant-time implementation of PickyFix. The
basis for the speedup comparison over BGF comes from Table 5.2, for the corresponding
security levels. Notice how PickyFix provides major speedups with respect to BGF for
all security levels for one very important reason: it can work with a smaller number of
iterations. Even if parameter r suffers a slight increase when using only 2 iterations, between
1% (λ = 256) and 14% (λ = 128), this is compensated by speedups from 1.47 to 1.18,
correspondingly.

29This includes the hashes computations required by the FO̸⊥ transformation.
30These number are considering the PickyFix or BGF decoder with 2 iterations.
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Security level Iterations r
Portable AVX512

Cycles Speedup Cycles Speedup

128 2 13829 9088162 1.21 1117958 1.18
3 13109 10244537 1.07 1221821 1.08
4 12739 11465955 0.96 1327721 1.00
5 12413 12859593 0.85 1442976 0.92

192 2 27397 25221598 1.31 3196844 1.29
3 25867 28879874 1.14 3577988 1.15
4 25189 32580637 1.01 3935606 1.05
5 24677 36715044 0.90 4350719 0.95

256 2 41411 65388610 1.45 7843855 1.47
3 39901 76892364 1.23 8928026 1.29
4 39163 87393964 1.09 10136052 1.13
5 39019 99706189 0.95 11494770 1.00

Table 5.6: The performance of PickyFix considering the parameters achieving negligible failure
rate for each security level. Both the portable and AVX512 implementations were considered, and
the speedup is computed with respect to BGF for each level.

5.8 Conclusion and future work

The evidence provided in this paper suggests that PickyFix outperforms BGF both with
respect to security and performance. Moreover, we show how PickyFix can be efficiently
implemented in constant-time. The only drawback appears to be that the implementation
of FixFlip, one of PickyFix’s auxiliary iterations, is more involved than that of simple
bit-flipping algorithms.

There are several directions one may take to extend this work. It would be interesting to
perform a broader exploration of the thresholds used by PickyFlip. For example, to consider
looser thresholds for rejecting or accepting ones. On the FixFlip side, notice that we tried
to be as general as possible in our implementation. However it may be possible to make it
simpler and faster by using the fact that FixFlip is used only in the first iteration. Therefore,
one could use statistical analysis to limit the range in which the FixFlip threshold should
be searched.

It would be fascinating to see if our implementation of FixFlip can be used to compute
better and more complex thresholds. For example, one could use the partial counting of
UPC counters to compute thresholds based on the separation of the distributions of UPC
for right and wrong bits. On the security side, it is important to understand how PickyFix
compares with other decoders in corner cases, such as when using weak keys or decoding
near-codeword error patterns [DGK19, SV20b, Vas21]. Finally, it may be interesting to
evaluate PickyFix as a decoder for low-density parity-check (LDPC) codes [Gal62].
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Chapter 6

Discussion

This brief concluding chapter consists of a discussion on the potential impact of the
results presented in this dissertation. It is also a good opportunity to review some new
related results in the last few years, after some our results were published.

Our timing attack on HQC was published in 2019 [PT20] by the same time Wafo-Tapa
et al. [WTBBG19] also presented a similar attack. In 2020, Schamberger et al. [SRSWZ20]
showed a power-based side-channel attack against HQC and, later that year, Guo et
al. [GJ20] showed a more dangerous decryption failure attack on HQC. Since its Octo-
ber 2020 revision, HQC [MAB+18] changed the error correction code from the combi-
nation of BCH and repetition codes to a combination of Reed-Muller (RM) and Reed-
Solomon codes (RS), since the latter pair of codes yields more efficient parameters. After
this change, two power-based side-channel attacks targeting the RM-RS variant of HQC
were published [SHR+22, GLG22]. The main limitation of all these power-based attacks
is that they, following Wafo-Tapa et al. [WTBBG19] approach, are only applicable by
choosing ciphertexts, and therefore detection mechanisms such as the ones proposed by
Ravi et al. [RCB22] may thwart the attack. It would then be interesting to see how our
approach on the HQC attack behaves in a power side-channel attack, since we only use
valid ciphertexts.

In 2022, NIST opened a new request for post-quantum signature proposals. It is believed
that a number of new candidates that appeared after 2016 will be submitted, such as PKP-
DSS [BFK+19]. Although our attack [PT21] on the permuted kernel problem (PKP) does
not directly targets PKP-DSS, it may have an important impact on alternative signature
candidates based on PKP: we showed that, when instantiated over the binary field, PKP
less secure. Furthermore, the attack may be extended for small fields, which is an important
line of future work. It is also important to understand possible tradeoffs between efficiency
and security of PKP-based signatures when the underlying field has varying sizes, as small
fields are often more friendly for devices with limited resources, such as embedded systems.

With respect to our contribution to BIKE decoding, the PickyFix decoder [BPT22],
there are several interesting lines of work that are discussed in the concluding section of
Chapter 5. Since the paper was published recently, there were not many developments on
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this matter up to this day. It would be very important to see more effort in the theoretical
analysis of the decoding process, and, in particular, to strengthen the concavity assumption.
There is also room for improvements of PickyFix and also when considering variants of the
decoder. Furthermore, if may be of particular interest for designers of decoding algorithms
to have a framework for automatic comparison between decoders.
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