• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Doctoral Thesis
DOI
10.11606/T.45.2016.tde-29102015-142559
Document
Author
Full name
Marcio Takashi Iura Oshiro
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2015
Supervisor
Committee
Fernandes, Cristina Gomes (President)
Cerioli, Marcia Rosana
Ferreira, Carlos Eduardo
Freire, Alexandre da Silva
Miyazawa, Flávio Keidi
Title in Portuguese
Clustering de trajetórias
Keywords in Portuguese
Algoritmo de aproximação
Geometria computacional
K-clustering
Abstract in Portuguese
Esta tese teve como objetivo estudar problemas cinéticos de clustering, ou seja, problemas de clustering nos quais os objetos se movimentam. O trabalho se concentrou no caso unidimensional, em que os objetos são pontos se movendo na reta real. Diversas variantes desse caso foram abordadas. Em termos do movimento, consideramos o caso em que cada ponto se move com uma velocidade constante num dado intervalo de tempo, o caso em que os pontos se movem arbitrariamente e temos apenas as suas posições em instantes discretos de tempo, o caso em que os pontos se movem com uma velocidade aleatória em que se conhece apenas o valor esperado da velocidade, e o caso em que, dada uma partição do intervalo de tempo, os pontos se movem com velocidades constantes em cada subintervalo. Em termos do tipo de clustering buscado, nos concentramos no caso em que o número de clusters é um dado do problema e consideramos diferentes medidas de qualidade para o clustering. Duas delas são tradicionais para problemas de clustering: a soma dos diâmetros dos clusters e o diâmetro máximo de um cluster. A terceira medida considerada leva em conta a característica cinética do problema, e permite, de uma maneira controlada, que o clustering mude com o tempo. Para cada uma das variantes do problema, são apresentados algoritmos, exatos ou de aproximação, alguns resultados de complexidade obtidos, e questões que ficaram em aberto.
Title in English
Trajectory clustering
Keywords in English
Approximation algorithm
Computational geometry
K-clustering
Abstract in English
This work aimed to study kinetic problems of clustering, i.e., clustering problems in which the objects are moving. The study focused on the unidimensional case, where the objects are points moving on the real line. Several variants of this case have been discussed. Regarding the movement, we consider the case where each point moves at a constant velocity in a given time interval, the case where the points move arbitrarily and we only know their positions in discrete time instants, the case where the points move at a random velocity in which only the expected value of the velocity is known, and the case where, given a partition of the time interval, the points move at constant velocities in each sub-interval. Regarding the kind of clustering sought, we focused in the case where the number of clusters is part of the input of the problem and we consider different measures of quality for the clustering. Two of them are traditional measures for clustering problems: the sum of the cluster diameters and the maximum diameter of a cluster. The third measure considered takes into account the kinetic characteristic of the problem, and allows, in a controlled manner, that a cluster change along time. For each of the variants of the problem, we present algorithms, exact or approximation, some obtained complexity results, and open questions.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
tese_marcio_oshiro.pdf (814.84 Kbytes)
Publishing Date
2016-01-05
 
WARNING: The material described below relates to works resulting from this thesis or dissertation. The contents of these works are the author's responsibility.
  • BIRGIN, ERNESTO G., et al. A MILP model for an extended version of the Flexible Job Shop Problem [doi:10.1007/s11590-013-0669-7]. Optimization Letters [online], 2014, vol. 8, p. 1417-1431.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2022. All rights reserved.