• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
https://doi.org/10.11606/D.45.2019.tde-28092019-175959
Document
Author
Full name
Bruno Tenório da Silveira Lopes
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2019
Supervisor
Committee
Durham, Alan Mitchell (President)
Kashiwabara, André Yoshiaki
Ortega, Jose Miguel
Title in Portuguese
Predição de genes ab initio combinada com informações de alinhamento
Keywords in Portuguese
Aprendizado de máquina
Bioinformática
Cadeia de Markov oculta generalizada
Modelos probabilísticos
Predição de genes
Abstract in Portuguese
Na Bioinformática, o campo de pesquisa de predição computacional de genes codificadores de proteínas é um dos mais desafiadores e não sofreu muitos avanços na última década. Há basicamente dois grupos de métodos para predição de genes: métodos ab initio e métodos extrínsecos. O grupo ab initio ou intrínseco reúne os programas que realizam a predição apenas utilizando como entrada a sequência alvo. Esse grupo foca na busca por estruturas gênicas baseadas em sinais biológicos e trechos conservados. O outro grupo, chamado de extrínseco, reúne os programas que necessitam de outras sequências (de referência), além da sequência alvo para realizar a predição por meio do alinhamento da sequência alvo contra sequências de referência. Há também abordagens de predição, chamadas de híbridas, que tentam unir os dois métodos de predição incorporando alinhamentos para aumentar a precisão dos preditores ab initio. Nesse trabalho desenvolvemos uma extensão do arcabouço probabilístico ToPS para implementar duas técnicas de abordagens híbridas de predição e avaliar seus benefícios e méritos relativos. Os resultados obtidos mostram um claro benefício da inclusão de alinhamentos de genomas na predição, e prós e contras da inclusão de mapeamentos de transcritos. Além disso, construímos um modelo genérico para incluir num preditor de genes informações probabilísticas externas. Esse modelo é implementado no ToPS e pode ser usado para desenvolver mais estratégias de predição de genes.
Title in English
Ab initio gene prediction combined with alignment information
Keywords in English
Bioinformatics
Gene prediction
Generalized hidden Markov model
Machine learning
Probabilistic models
Abstract in English
In Bioinformatics, the field of computational prediction of protein-coding genes is one of the most challenging and did not have many advances in the last decade. There are two main groups of methods for predicting genes: ab initio methods and extrinsic methods. The ab initio or intrinsic group includes the programs that perform the prediction using only the target sequence as input. This group focuses on the search for gene structures based on biological signals and preserved portions of the sequence. The other group, called extrinsic, consists of the programs that require other (reference) sequences in addition to the target sequence to perform the prediction by aligning the target sequence against reference sequences. There are also prediction approaches that attempt to join the two prediction methods, called the hybrid, incorporating alignments to increase the precision of the ab initio predictors. In this dissertation we developed an extension of the ToPS computational framework to implement two hybrid prediction techniques and assess their benefits and relative merits. The results obtained show a clear benefit from including genome alignments in the prediction and the pros and cons of using transcript mapping. Additionally, we have devised a generic model to include probabilistic extraneous information into a gene predictor. This model is implemented in ToPS and can be used to further develop gene prediction strategies.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2019-12-02
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
CeTI-SC/STI
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2019. All rights reserved.