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Resumo

Carlos Eduardo Leão Elmadjian. Interação pelo olhar em computação vestível. Tese

(Doutorado). Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo,

2023.

A interação humano-computador vem enfrentando uma mudança significativa do paradigma tradicional

de interfaces WIMP utilizando PCs e notebooks para um ambiente mais distribuído e heterogêneo, onde

a interação ocorre com múltiplos dispositivos, incluindo telefones celulares, relógios inteligentes, óculos

inteligentes e dispositivos IoT. Como consequência, meios tradicionais de interação podem não fornecer uma

usabilidade e experiência do usuário satisfatórias nesse cenário. Nesta tese, investigamos a interação baseada

em olhar como uma alternativa para atender a esse novo paradigma e alguns dos seus desafios fundamentais.

Em particular, investigamos novas técnicas para reconhecimento de padrões de movimento ocular, estimativa

de olhar em 3D e métodos interativos baseados em olhar para cenários de microinteração. Embora nosso

objetivo final seja aprimorar a interação por meio do olhar na computação vestível, dividimos esse objetivo

em várias frentes, a saber: aprimorar a estimativa de olhar para ambientes em 3D usando dispositivos vestíveis

de rastreamento do olhar; aprimorar o reconhecimento em tempo real de padrões de movimento ocular para

suportar sistemas sensíveis ao contexto usando modelos convolucionais temporais profundos e métodos

invariantes à escala; e criar novos métodos de interação por meio do olhar caracterizados pelo mecanismo

de "olhar para selecionar", a despeito do problema do "toque de Midas". Nossos resultados demonstram que

um procedimento de estimativa de olhar em 3D para computação vestível é possível, embora ainda muito

desafiador; que nossas técnicas de reconhecimento de padrões de olhar são capazes de alcançar o melhor dos

dois mundos: acurácia do estado da arte sendo computacionalmente leves; e que nossas técnicas interativas,

como GazeBar e V-Switch, têm o potencial de melhorar as microinterações sem os mecanismos de segurança

comuns implantados nos métodos baseados em olhar. Embora ainda existam obstáculos significativos a

serem abordados em trabalhos futuros, incluindo estudos de usuário mais aprofundados e estratégias de

detecção de contexto mais complexas, esta tese joga luz em direção à interação baseada em olhar e seus

desafios relacionados neste ambiente de mudança de paradigma.

Palavras-chave: Computação vestível. Microinterações pelo olhar. Reconhecimento de padrões do olhar.

Estimação do olhar em 3D.





Abstract

Carlos Eduardo Leão Elmadjian. Towards wearable gaze interaction. Thesis (Doctor-

ate). Institute of Mathematics and Statistics, University of São Paulo, São Paulo, 2023.

Human-computer interaction has been facing a significant shift from the traditional paradigm of WIMP

interfaces using desktop PCs and notebooks to a more distributed and heterogeneous one, where interaction

occurs with multiple devices, including mobile phones, smart watches, smart glasses, and IoT-enabled devices.

As a result, traditional means of interaction may not provide a satisfactory user experience in such a scenario.

In this thesis, we look into gaze-based interaction as an alternative to comply with this new paradigm and

some of its fundamental challenges. In particular, we investigate new techniques to recognize eye movement

patterns, 3D gaze estimation, and gaze-based interactive methods for micro-interaction scenarios. Though

our ultimate goal is to enhance gaze interaction in wearable computing, we broke down this objective

into several fronts, namely improving gaze estimation for 3D environments using wearable eye-tracking

devices, enhancing real-time eye movement pattern recognition to support context-aware systems using deep

temporal convolutional models and scale-invariant methods, and creating novel gaze interaction methods

with a just-look-to-select mechanism, in spite of the Midas touch problem. Our results demonstrate that a

3D wearable gaze estimation procedure is feasible, though still very challenging; that our techniques for

eye pattern recognition are able to achieve the best of both worlds: state-of-the-art accuracy while being

computationally lightweight; and that our interactive techniques, such as GazeBar and V-Switch, have the

potential to improve micro-interactions without the common safety mechanisms deployed to gaze-based

methods. Though there are still significant obstacles to be addressed in future work, including thorough user

studies and complex context detection strategies, this thesis shines new light towards gaze-based interaction

and related challenges in this paradigm-shifting environment.

Keywords: Wearable computing. Gaze-based micro-interactions. Eye pattern recognition. 3D gaze estima-

tion.
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Chapter 1

Introduction

Back in 2002, the computer scientist Daniel P. Siewiorek argued that the merger of ubiq-
uitous and wearable computing would be the next application design frontier (Siewiorek,
2002). At the time, it was believed that emerging technologies, such as eye tracking,
would provide more appropriate means to interact and “fully exploit the advantages of
wearable computers” (Calhoun and McMillan, 1998). Despite several known challenges
involved in gaze-based interaction (Bulling and Gellersen, 2010; Jacob, 1991), there was
a general perception that the eyes should play a relevant role in wearable comput-
ing (Tanriverdi and Jacob, 2000).

Because wearables are always on and available (Mann, 1997a), understanding user con-
text might be what separates a useful from a disruptive application. As DeVaul pointed out,
wearable interfaces should never assume to have the user’s undivided attention (DeVaul,
2004). That is precisely why the eyes are such an exciting tool to address the issue
of context awareness: firstly, because they are generally correlated with human atten-
tion span (Duchowski and Çöltekin, 2007); secondly, because eye movement patterns
often provide cues about user activity or task engagement with no extra cognitive over-
head (Ishiguro et al., 2010; Kunze et al., 2013).

Besides context awareness, gaze-based interaction also presents many other dis-
cernible advantages. Compared to traditional manual input, the eyes provide a means
for hands-free, private, and unobtrusive interaction either with wearable or ubiquitous
interfaces (Akkil et al., 2016). Moreover, because the eyes can move effortlessly fast and
interact even with distant objects, they presumably make the perfect choice for target
acquisition in 3-dimensional environments (Tanriverdi and Jacob, 2000).

However, during the initial phases of this thesis project, more than a decade after
Siewiorek’s article, it was already evident that some of these promises were further from
being delivered. Originally, our intent was to use eye data to create “cognition-aware
user interfaces” (Bulling et al., 2011), but despite clear advances, there were still many
important issues pertaining to eye tracking hardware, gaze estimation techniques, pattern
recognition, and efficient gaze interaction in the context of wearable computing. In face of
such challenges, we realized that it was necessary first to bridge the gap between early
expectations and technical support for gaze-based wearable interaction.
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In this sense, this thesis aims to address these issues with contributions on at least three
fronts: a) enhancing 3-dimensional gaze estimation techniques to handle the problem of
interacting with objects at different depths; b) improving real-time eye movement patterns
recognition to support better context-aware systems; c) proposing novel techniques for
gaze-based interaction suited for wearable and micro-interactive scenarios.

In the following subsections, we provide a brief overview of state-of-the-art research
on wearable gaze interaction, and we also describe the aims and objectives of our re-
search.

1.1 Background
Research on wearable gaze interaction pervades an amalgam of various independent

fields, ranging from computer vision techniques to track and estimate gaze on flat displays,
going through machine learning and statistical methods to understand eye movement
gestures or patterns, to finally human-computer interactive approaches designed to control
applications.

What wearable technology adds to this mixture, however, is its high level of constraints
— at least compared to traditional computing interfaces (Starner, 1996, 2001). Just to mention
a few, wearable devices must be energy and heat efficient, at the same time that they are
constantly sensing the user’s environment. Not only that, the form factor also matters:
they have to be light to wear, besides being unobtrusive and private for social acceptance.
So one question that naturally arises is: do the same algorithms and techniques created
for traditional computing paradigms can work seamlessly in the wearable context?

The bulk of eye tracking research has mostly presumed that eye data could be amassed
in a controlled environment, with constant illumination, limited infrared exposure, and
specialized hardware (Fuhl et al., 2016). In wearable computing, this assumption is not
necessarily true, and only more recently have we started to witness works concerned with
eye tracking “in the wild” (Fuhl et al., 2016; Hansen and Pece, 2005; Zhang et al., 2015),
generally with a trade-off between robustness to environmental conditions and tracking
accuracy.

As for the gaze estimation algorithms, it is well known that almost every method
consists in finding a mapping function between either eye features or a model to a
point of regard (PoR) on a display, that is, a 2-dimensional surface (Hansen and Ji, 2010;
Sesma-Sanchez and Hansen, 2018). This is particularly limiting because the user might
be interacting with objects at different depths in a wearable scenario. And even if the
user is performing a long interaction with a single object, user mobility could introduce,
for example, parallax errors (Mardanbegi and Hansen, 2012) to the estimation function
without an actual 3D estimation method.

Regarding the context-awareness problem, eye data-based studies typically resort
to post hoc offline processing techniques for task comprehension or measure of engage-
ment (Elmadjian et al., 2022). Though these works provide invaluable findings that could
be applied to better wearable gaze-based interaction, there is also the practical issue of
being able to generate similar accurate results in real-time, so that we could have more
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realistic wearable applications and adaptive systems.

On the human-computer interaction end, many authors argue that wearables should
function as an extension of the mind (Clark and Chalmers, 1998; Mann, 1997b). As
Siewiorek put it, “there is no Moore’s Law for humans. (...) [They] have a finite and
non-increasing capacity that limits the number of concurrent activities they can per-
form.” (Siewiorek, 2002). Thus, since wearable computers are always available, they present
an opportunity to enhance cognitive and executive user functions where human limitations
become conspicuous, such as with environmental attention, working memory, or recall.
However, how these devices can offer aid without interrupting or imposing additional
cognitive burdens? Moreover, is it possible to have a concise and transparent interactive
method in a wearable scenario, where the user could be constantly performing micro-
interactions with intelligent devices presenting different interfaces?

There has been a significant effort to adapt known gaze-based interactive meth-
ods to mixed reality applications (Bektas, 2020; Kytö et al., 2018; Orlosky et al., 2014;
Piumsomboon et al., 2017). However, this increasing trend does not necessarily indicate
that wearable context issues are being addressed. One important question is how to
perform swift target acquisition, selection, and disengagement with multiple objects in the
scene, each one with its own affordances and interfaces. An all-purpose gaze-based inter-
active method might be perceived as a sub-optimal solution in this scenario. Furthermore,
traditional techniques that parade several safety mechanisms to avoid the Midas touch
problem (Istance et al., 2010; Kytö et al., 2018; Majaranta and Räihä, 2002) might look like
overkill for micro-interactive demands.

1.2 Aims and objectives
This thesis aims to be a step forward in supporting — and possibly fostering — wearable

gaze-based interaction. Because we believe that this is, ultimately, a multifactorial problem,
our main objective is comprised of several subgoals in more specific domains that we
consider intertwined with our main objective.

Thus, as research directions, we propose to investigate: a) whether current all-purpose
methods for gaze pattern recognition are robust and adapted to wearable technology, and if
not, whether we can enhance the state of the art with more lightweight techniques without
compromising accuracy significantly; b) in which conditions current gaze estimation
methods can work in the wearable and ubiquitous context, where they fail, and how can
we devise strategies to use gaze data in 3-dimensional environments; and c) whether
state-of-the-art gaze interaction techniques are usable in the wearable scenario, and how
can they be improved or should they be replaced by more context-sensitive designs.

1.3 Format
Because our contributions to improve the user experience in wearable gaze interaction

are multidisciplinary, we have decided to structure the thesis into 3 distinct segments:
eye pattern recognition, gaze estimation, and gaze interaction. This structure allows us to



4

1 | INTRODUCTION

focus the discussions on specific problems and challenges, and present our contributions
as a collection of the publications that resulted in this thesis.

Therefore, the remaining of this thesis is divided into the following chapters: 2.Concepts
covers the general theoretical key concepts; 3.Literature review presents an overview of the
main works, challenges, and opportunities for the three sub-areas mentioned previously;
4.Eye pattern recognition, 5.Gaze estimation, and 6.Gaze interaction are the chapters
comprising our publications; and 7.Conclusion summarizes all our contributions from a
more broad perspective.
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Chapter 2

Concepts

In this chapter, we present concepts about the human eye and its basic movements,
techniques to track eye movements, and how to estimate the 2D gaze point or the 3D
eye gaze direction. We also introduce some concepts about how eye gaze can be used for
human-computer interaction and some machine-learning concepts that might help the
reader to understand our work on eye movement classification.

2.1 The human eye
The eye is a complex organ comprised of several structures working together to enable

vision. The retina, located at the back of the eye, contains photosensitive neurons, known
as rods and cones, that transmit visual signals to the brain. For the light to reach the retina,
it must travel through the cornea, then through an opening called pupil, then the eye lens,
and finally the vitreous humor, as shown in Figure 2.1. The pupil, controlled by the iris,
regulates the amount of light that enters the eye, while the lens refracts the light, focusing
it onto the retina. Another large and visible anatomic area is the sclera, which protects
and maintains the shape of the eyeball.

Humans have more than 200-degree horizontal arc of visual field and around 150
degrees of vertical range, but for depth perception, which relies on binocular vision, our
field-of-view drops to 114 degrees (horizontally) (Howard and Rogers, 1995). Yet, we can
only perceive high visual acuity and color density in a tiny portion of our visual field —
a little more than 1 degree. This is due to the fovea, a region of the retina with 1.2 mm
in diameter and a high density of cone receptors, which are related to color and acuity
vision (Purves, 2004).

The light ray that passes through the pupil center, i.e., the pupillary axis, is approxi-
mately aligned with the optical axis of the eye. However, this must not be confused with
the visual axis, which is formed by connecting the fovea and the nodal point of the eye. It is
known that the optical and visual axis deviates from each other (Guestrin and Eizenman,
2006), and this difference is commonly known as the kappa angle, but some authors also
decompose it into alpha and beta components (see Figure 2.2). Since only the optical axis
is observable through video-based tracking and since this angular offset varies between
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Figure 2.1: Most relevant structures of the eye. (source: commons.wikimedia.org, authors: Rhcastilhos and
Jmarchn, license: CC BY 3.0)

subjects, the visual axis must be inferred through a series of observations comprising
different optical axes and fixation targets.

Regarding eye movements, unlike other complex parts of the human body, they can
be performed using only three pairs of extraocular muscles. The following is a list of the
main eye movements:

• saccades: these are rapid and ballistic movements that suddenly change points
of fixation. They are said to be ballistic because a saccade cannot be altered once
in its course. Saccades can be voluntary, but most of the time are elicited uncon-
sciously (Purves, 2004). It is believed that during a saccade no visual information
processing is performed, a phenomenon known as saccadic suppression (Matin, 1974).

• fixations: they occur when the eyes remain fixed in a single point of the scene,
hence the name. In actuality, the eyes never rest, and even during fixations drifts
and micro-saccades are expected, which is an involuntary mechanism to keep the
photoreceptor cells in the retina stimulated (Purves, 2004). The length of fixations is
a research topic in itself, as it can be related to the acquisition of visual information
and the observer’s cognitive state (Rayner, 1998).

• vergence: these movements have the objective of aligning the fovea of each eye with
targets at different distances. As a result, the eyes may converge or diverge to see
something near or far away. Vergence is usually accompanied by the accommodation
of lens and pupillary constriction or dilation to change the depth of field (Purves,
2004).
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Figure 2.2: Offset between the optical and visual axes with alpha and beta components of the kappa
offset between the axes.

• smooth pursuits: these are slow tracking movements designed to keep a moving
target on the fovea. Though people are conscious of a pursuit movement, it is
uncommon to perform it in the absence of a moving target as a stimulus (Purves,
2004).

• vestibulo-ocular reflex: they are a set of various different movements designed
to stabilize the eyes relative to a target, i.e., a compensating mechanism to keep a
point of regard in the fovea.

By far, saccades and fixations have been the most employed basic eye movements in
the design of gaze-based interaction techniques and human-computer interfaces, though
more recently smooth pursuits started to be explored as well. Figure 2.3 illustrates the
typical “scan path” patterns seen for these three classes of eye movements.

Figure 2.3: Sample scan paths of a fixation (left), a saccade (middle), and a smooth pursuit (right).
Lighter and smaller circles indicate older sampling points of each pattern.
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2.2 Eye tracking
Eye tracking is a broad terminology that has been used either to refer to the ability to

track an individual’s eye movements or to the technology of detecting what a person is
looking at (Duchowski, 2017). More strictly, we will refer to the latter as the gaze estimation
problem, limiting the concept of eye tracking simply as the combined set of algorithms and
devices that allows a machine to capture eye displacements with time, without necessarily
any assumption about gaze direction.

There are several known techniques, such as scleral search coil, infrared oculography
(IOG), electrooculography (EOG), and video oculography (VOG), which is the most popular
and accessible technique. We address all of them in more detail below:

• scleral search coil: this technique provides excellent spatial and temporal resolution.
It consists of applying a coil of wire to the eye, usually on a locally anesthetized eye
for only a limited amount of time. Since it is considered very invasive compared
to other methods, it has been used more often with animal subjects rather than
humans (Murphy et al., 2001).

• electrooculography: in EOG, electrodes are attached to the skin around the eyes
to measure the electric field produced when the eyes start to rotate. EOG is not as
accurate as other methods, usually giving noisy estimates of vertical and horizontal
eye movements only. However, the major advantage of EOG is to provide eye
movement readings even when the eyelids are closed, which is difficult – if not
impossible – to achieve with the other known methods (Barea et al., 2002).

• infrared oculography: also known as infrared reflectance oculography, IOG relies
on measuring the intensity of reflected infrared (IR) light sources directed to the eye.
As the eye surface moves, it is possible to capture the differential reflexes of IR sources
to estimate position changes. Since IR is not in the human visible spectrum, it does
not require a bright environment to work, though it can be negatively impacted by
sunlight, since it is a conflicting IR source. IOG techniques, such as corneal reflection,
have been widely incorporated into most commercial video-based tracking devices
as a means to increase accuracy (Chennamma and Yuan, 2013).

• video-based oculography: VOG makes use of one or more cameras to track eye
movements, and it is the most popular method seen in commercial eye trackers.
With advancements in video processing and computer power, VOG also became
relatively more affordable. Video-based tracking can be done either with visible, IR
light or a mixture of both. Most accurate commercial eye trackers rely primarily on
IR light, as it facilitates the capturing of features such as pupil contours, that are
typically used in gaze estimation algorithms.

In our research, we resort strictly to video-based tracking. The typical eye-tracking
pipeline, in this case, is portrayed in Figure 2.4. As can be seen, it generally starts with
capturing raw frames of the eyes, either through specialized hardware with infrared sensors
or simply using commodity cameras. Then, computer vision algorithms are applied to each
frame to extract features (e.g., edges, low-brightness areas, ellipses, etc.) that can be fed
into a model capable of estimating the pupil center in the image based on this input.
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Figure 2.4: One of the most common eye-tracking pipelines: each frame of the eye is preprocessed
to allow for feature extraction, which in turn will feed either an eye model or an algorithm for pupil
centroid estimation.

Though this is common ground to most techniques, some methods might take additional
steps to not only estimate the pupil position but also create a 3D virtual model of the eye.
Other implicit modeling approaches, such as convolutional neural networks, might even
take only the raw eye image and create latent features in hidden layers, mapping them
directly to pupil location or even gaze direction estimates (Krafka et al., 2016), which is
commonly regarded as a “black-box” tracking approach.

2.3 Gaze estimation
Video-based gaze estimation consists in finding a model that maps eye images to either

gaze direction (i.e., a 3D estimation) or a point in a surface (2D). This mapping usually
assumes an eye-tracking preprocessing step, to extract useful features that can be fed into
this model. To date, it is still considered a difficult problem due to the very nature of human
vision physiology, as well as the limited sensing capabilities of camera systems.

One first challenge is the so-called kappa angle. The visual axis is hardly aligned
with the pupil center and cannot be directly measured with video-based tracking alone.
Therefore, estimation methods generally need several calibration points to infer the kappa
angle, either explicitly or implicitly, to improve accuracy.

Another difficulty lies with how the human brain works. The eye muscles and crys-
talline lens work in conjunction to make a target object in space look as crisp as possible
on the fovea. But even if we could let an individual fixate on this object with the head
completely static, a certain degree of eye movement would be observed nevertheless.
One of the theories for this phenomenon purposes that cone receptors in the retina get
desensitized to constant stimuli (Purves, 2004). Regardless of the explanation, this human
response makes it harder to find a precise relationship between a target and the eye
position.
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There are several classes of estimation methods, and the literature (Hansen and Ji,
2010) usually separates them into the following ones:

• geometric-based models: also known as model-based estimation, with this kind
of approach, usually eye features are extracted to build a model with geometric
attributes. This method has the advantage of being perceptually more stable since
the estimation function is constrained by the geometric properties of the eye model,
so a set of input features has to be necessarily mapped to a viable configuration,
which in practice is more robust to outliers in the tracking signal. As a downside, a
poorly-constructed eye model could be persistently inaccurate in comparison.

• appearance-based models: this class of methods typically involves finding a sta-
tistical relationship between eye features and a target. These methods are also called
probabilistic because they are not really concerned with eye movement mechanics,
modeling refraction, or corneal reflection. They tend to be very sensitive to noise in
the eye-tracking signal, though there are several techniques to mitigate this issue.
With the emergence of end-to-end models, this family of gaze estimation techniques
is usually divided into two subcategories (Cazzato et al., 2020):

– feature-based regression: feature-based techniques generally try to regress
eye features, such as the coordinates of projected pupil centroids in the camera
space to a different coordinate system. The feature extraction process is mostly
rule-based and assumes some domain knowledge to select characteristics that
are more determinant to estimating gaze direction or PoR on a surface.

– end-to-end regression: in this category, there is no explicit feature extraction
in the estimation pipeline. These methods simply take as an input the raw
image of the eyes — or sometimes the whole human face — and try to find the
related gaze estimation function. The growing use of artificial neural networks
helped end-to-end models become more popular. Yet, though the gap has been
closing in the last few years, they tend to be a comparatively less accurate
class of gaze estimation techniques (generally because they strive to be also
“user-agnostic”).

2.4 Gaze interaction
Gaze interaction is a prolific area of research and it is beyond the scope of this section

to cover all known techniques. Rather, our intent here is to provide a more general and
taxonomic view of the field, highlighting, whenever appropriate, the important concepts
that have been pervading it for decades.

We say that any gaze-based form of interaction involves necessarily some clear eye
pattern that can be recognized by a machine, either by algorithmic methods or statistical
ones. We define the set of methods comprised of deliberated eye movement patterns made
by the user to trigger a particular machine response as active gaze techniques, whereas
applications that change their state based on spontaneous or unconscious eye movements
are said to be exploiting passive gaze use (Duchowski, 2018), as usually seen in adaptive
systems.
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Gaze-based methods are commonly categorized according to how the selection task is
performed. In a more broad sense, if selections are made with the use of gaze in conjunction
with other means, such as hand input or voice, we say that these are multimodal gaze
interactive methods. If a target is selected purely through certain eye movement patterns,
then we say these are gaze-only interactive methods.

Gaze-only techniques are generally plagued by the so-called Midas touch prob-
lem (Jacob, 1991), which is the conflict arising from using the eyes to either gather
information from an interface as well as to trigger a change on it (i.e., performing a
selection by just looking at a target). Because video-based eye tracking alone cannot sense
user intent, gaze-only techniques frequently have to resort to “safety” mechanisms to avoid
provoking unwanted selections. There are several known strategies, such as dwell-time
selection (Majaranta and Räihä, 2002), or saccadic gestures (Isokoski, 2000), and they are
covered in Chapter 3.

2.5 Machine learning techniques
Machine learning (ML) techniques typically rely on data to make predictions. One

striking difference to other statistical learning methods though is that ML algorithms are
able to learn rules without explicit programming. In this section, we describe the major
ML techniques that are associated with this thesis.

2.5.1 Support Vector Machines
Support Vector Machines, or simply SVMs, are supervised learning models that can be

used either for classification or regression problems. SVMs achieved high praise and popu-
larity during the mid-1990s and early 2000s, due to their ability to find the hyperplane or
set of hyperplanes with the largest linear separation between classes in a high-dimensional
space (Hearst et al., 1998). Despite the original algorithm being developed for linearly sep-
arable problems, SVMs can be used with non-perfectly separable classes with the addition
of soft margins (which tolerate one or more points crossing the boundary hyperplane) and
can also be applied to nonlinear problems as well, using the so-called kernel trick (which
transforms the input space into a higher-dimensional one).

The most elementary form of a linear SVM classifier is formally defined as follows: given
a dataset of 𝑥𝑥𝑥 vectors and associated 𝑦 targets, we want to determine maximum-margin
hyperplane that separates 𝑥𝑖𝑥𝑖𝑥𝑖, for which 𝑦𝑖 = 1, from 𝑥𝑗𝑥𝑗𝑥𝑗 , for which 𝑦𝑗 = −1. Assuming such
a hyperplane exists, then there is a vector 𝑤𝑤𝑤 orthogonal to it, such that:

𝑤𝑤𝑤𝑇𝑥𝑥𝑥 − 𝑏 = 0

Since 𝑤𝑤𝑤 is normal to the hyperplane and assuming the problem is linearly separable,
then there must be two other parallel hyperplanes with a distance of 2

||𝑤𝑤𝑤|| between them,
such that:

𝑤𝑤𝑤𝑇𝑥𝑥𝑥 − 𝑏 = 1



12

2 | CONCEPTS

𝑤𝑤𝑤𝑇𝑥𝑥𝑥 − 𝑏 = −1

Thus for each 𝑖, we can say:

𝑤𝑤𝑤𝑇𝑥𝑥𝑥 − 𝑏 ≥ 1, if 𝑦𝑖 = 1

𝑤𝑤𝑤𝑇𝑥𝑥𝑥 − 𝑏 ≤ −1, if 𝑦𝑖 = −1

Therefore, this can be solved as an optimization problem defined as follows:

minimize ||𝑤𝑤𝑤|| subject to 𝑦𝑖(𝑤𝑤𝑤𝑇𝑥𝑖𝑥𝑖𝑥𝑖 − 𝑏) ≥ 1, ∀𝑖 ∈ {1, ..., 𝑛}

2.5.2 Gaussian Processes
A Gaussian Process (GP) is a stochastic process in which every linear combination

of its random variables is assumed to be normally distributed. Though this might be
just an approximation in most cases, in practice classifiers and regressors built on top of
Gaussian Processes are known to perform really well with real-world problems. Just like
SVMs, GPs are a type of kernel method, but they can typically provide highly calibrated
probabilities.

GPs are primarily governed by their covariance function (i.e., the kernel), as it encodes
the similarity between data input and targets. More formally, if 𝑦 = 𝑓 (𝑥𝑥𝑥) + 𝜖, where
𝑓 = 𝑤𝑤𝑤𝑇𝑥𝑥𝑥 − 𝑏, then:

𝑓 ∼ 𝐺𝑃(𝜇, 𝑘)

where 𝜇(𝑥𝑥𝑥) is the mean, and 𝑘(𝑥𝑥𝑥,𝑥′𝑥′𝑥′) is the covariance function. Thus, to model the
predictive distribution 𝑃(𝑓∗|𝑥𝑥𝑥𝑥𝑥𝑥 , 𝐷), where 𝑓∗ denotes 𝑓 on testing input and 𝐷 the training
dataset, we can use Bayes’ rule to define our prior as:

𝑃(𝑓 |𝑥𝑥𝑥) ∼  (𝜇,Σ)

where Σ is the covariance matrix, which can be decomposed into several kernel matrices.
In fact, because GPs perform several matrix operations, compared to SVMs, they tend
to be more resource-intensive and lack scalability as the dataset grows in size. However,
contrary to SVMs, GPs have the advantage of being Bayesian, since they construct a prior
distribution, and thus the model can be updated in an online fashion as more data become
available, while SVMs have to be re-trained entirely.

2.5.3 Artificial Neural Networks
Artificial Neural Networks (or ANNs) are computing systems that rely on a connec-

tionist approach and a set of activation functions to learn by example. This is achievable
mainly due to the so-called backpropagation algorithm, which allows the network to update
the weight of its units to minimize the global error with respect to a set of examples. This
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allows them to learn without specific programming rules, which is often referred to as
implicit modeling or just as a “black-box” model. Because ANNs is a very broad topic, we
will discuss in detail only the main architectures investigated in this thesis.

LSTMs

Long Short-Term Memory networks are a type of recurrent neural network (RNN),
meaning that, unlike conventional feed-forward architectures, they present feedback
connections. This feature is generally regarded as the key component that makes recurrent
nets well-suited to sequence learning. In practice though, vanilla RNNs cannot keep
track of long-term dependencies in an input sequence due to the “vanishing gradient”
problem (Hochreiter and Schmidhuber, 1997) with the backpropagation algorithm. LSTMs
were developed to tackle this particular issue since each LSTM unit allows the gradient to
back-propagate unaffected.

A typical LSTM unit is comprised of cells with an input gate, an output gate, and a forget
gate, as depicted in Figure 2.5. The relationship between the gates regulates the information
flow between the sequence of cells in the network, though the key component of an LSTM
module is the cell state, which functions like a conveyor belt that lets information pass
through the chain virtually unchanged if desired.

Figure 2.5: LSTM cell and its major components: the input (𝑥𝑡), the forget, input, and output gates (𝑓𝑡 ,
𝑖𝑡 , and 𝑜𝑡), the cell state and its update (𝑐𝑡 and �̃�𝑡), and the output (ℎ𝑡)

Despite their popularity and success in several sequence-based problems, LSTMs are
generally regarded as hard to train, and because of a chain-like structure, they cannot be
easily parallelized as some other networks, making them comparatively slow to train.

GRUs

Often considered as a variation of LSTMs, Gated Recurrent Units (GRUs) is a type
of network introduced by Cho et al. (Cho et al., 2014) also as a solution to the vanishing
gradient problem. One advantage of GRUs, though, is that they are comparatively simpler
than LSTMs, in terms of architectural structure, typically requiring fewer parameters to
train than LSTMs due to the lack of an output gate (see Figure 2.6). Because of that, GRUs
generally outperform LSTMs in terms of convergence time and parameter updates.
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Figure 2.6: GRU cell and its major components: the input (𝑥𝑡), the relevance and update gates (𝑟𝑡 and
𝑧𝑡), and the updated cell state value (ℎ̃𝑡).

Just as with LSTMs, a GRU network is typically comprised of cells (or units) with
several gates and a cell state, though it is common to witness some variants of fully
gated units in the literature. Also, despite being newer and presenting some practical
advantages, GRU’s performance as a model has been generally found to be comparable to
LSTM (Ravanelli et al., 2018).

CNNs

A Convolutional Neural Network (CNN or ConvNet) is a type of ANN with a shared-
weight architecture of convolutional kernels (also known as “filters”) that slide through
the input to provide a feature-map response. Because of this, CNNs are, in theory, space-
invariant with respect to the input. In practice, however, most CNNs are not really space-
invariant due to the pooling steps that comprise most of these architectures.

CNNs are generally built with a series of convolutional layers interpolated by pooling
layers, with a fully-connected layer at the end. The goal of a convolution operation is to
extract features implicitly from the input, while a pooling layer is responsible for dimen-
sionality reduction, passing forward dominant features while decreasing the computational
power required in the process. Finally, the fully-connected layer is a straightforward way
of learning a non-linear combination of high-level features present at the end of the
chain.

Along with LSTMs, CNNs are arguably one of the most successful architectures in
the deep learning domain, with state-of-the-art applications in several fields, though they
have been more extensively used with image-related problems.

TCNs

A Temporal Convolutional Network (TCN) can be understood as a 1D fully-
convolutional network with causal convolutions. This means that given a time instant 𝑡
in a time series and a constraint 𝑦𝑡 , then 𝑦𝑡 can only be satisfied by 𝑥0, ..., 𝑥𝑡 , and not by
𝑥𝑡+1, ..., 𝑥𝑡+𝑛. Another key feature of TCNs is their ability to map a sequence of any length
to an output with the same length, similar to recurrent networks.
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Despite having many aspects in common with CNNs, TCNs were developed particu-
larly for sequence modeling. Compared to LSTMs or GRUs, though, TCNs present some
important advantages. TCNs are known to have a longer memory than recurrent nets with
the same capacity since they do not have gating mechanisms. They also have a flexible
receptive field size, lower memory requirements for training, and can be trained with
variable input length. Also, because TCNs have a convolutional structure, they can be
more easily parallelized, meaning less training time than recurrent nets, which present a
more sequential pipeline structure (Bai et al., 2018).
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Chapter 3

Literature review

As part of a multifaceted effort to address the challenges of gaze interaction in the
wearable context, this chapter presents a literature review of three specific fronts: eye
pattern recognition, gaze estimation, and wearable gaze interaction techniques. By ex-
ploring the challenges and opportunities associated with each of these fronts, we aim to
provide a solid foundation for the research that follows. Our goal is to contribute to the
advancement of gaze interaction technology and enable new and more intuitive ways for
users to interact with their wearable devices.

3.1 Eye pattern recognition

3.1.1 Overview of basic eye movement recognition
Recognition of eye movement patterns is demanded in several domains, as they

may provide meaningful information about human behavior. On a higher level, these
patterns may give us insights about the user’s cognitive state (Burch et al., 2019;
Sanches et al., 2017) or degree of attention (Maruyama et al., 2016; Wang and Hung,
2019), and on a more practical level, they can support applications, such as biomet-
rics (Abdrabou et al., 2021; Bayat and Pomplun, 2017; George and Routray, 2016), text
input (Feng et al., 2021; MacKenzie and Zhang, 2008; Tula and Morimoto, 2016a), accessi-
bility (Koochaki and Najafizadeh, 2018), adaptive systems (de Greef et al., 2009; Edwards,
1998), among many others.

Basic eye movement classification in the literature is generally concerned with fixa-
tions, saccades, and smooth pursuits (see Figure 2.3). In fact, the simultaneous task of
identifying these three patterns is often called the ternary eye movement classification
problem (3EMCP) (Berndt et al., 2019).

Early classifiers were mostly based on threshold algorithms. One such example is the
velocity threshold criterion (Salvucci and Goldberg, 2000) that separates saccades from
other eye movements based on their characteristic high velocity that can be computed
from the eye data stream. Adaptive velocity thresholds, however, tend to be more robust
to noisy gaze data than static methods (Nyström and Holmqvist, 2010), being their natu-
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ral replacement. Because such algorithms are simple and lightweight on computational
resources, they are still widely employed, despite not being as accurate as more modern
techniques.

Statistical approaches, that leverage pattern distribution knowledge to make inferences,
are also reasonably common. Berg et al. (Berg et al., 2009), for example, demonstrated that it
is possible to use Principal Component Analysis (PCA) to establish more generic dispersion
thresholds that are able to discriminate fixations, saccades, and smooth pursuits, though this
approach is very parameter-sensitive. Komogortsev and Khan (Komogortsev and Khan,
2007), by their turn, created the Attention Focus Kalman Filter (AFKF), an extension of a
previous method (Sauter et al., 1991), in which a Kalman filter with a 𝜒 2-test is used to de-
tect saccades. Still in the realm of basic eye movement patterns, Santini et al. (Santini et al.,
2016) presented a more reliable solution called the Bayesian Decision Theory Identification
(I-BDT) algorithm. This method consisted in calculating the posterior for each event, given
eye velocity and movement ratio over windows according to Bayes’ rule.

With the growth and popularity of novel machine learning techniques, strictly data-
driven methods also started to be explored. Vidal et al. (Vidal et al., 2012), for instance,
considered a set of shape features to recognize smooth pursuits. Another example is the
work of Zemblys et al. (Zemblys et al., 2018), in which they introduced a random forests-
based model to classify fixations, saccades, and post-saccadic oscillations (which can only
be observed with high-frequency eye trackers).

Among all machine learning-based approaches, artificial neural models are the most
accurate models known to date. Hoppe and Bulling (Hoppe and Bulling, 2016) proposed
one of the earliest ones, a CNN-based end-to-end architecture to classify fixations, sac-
cades, and smooth pursuits in a continuous gaze stream, from which frequency fea-
tures are extracted to train their model. Later, Starsev et al. (Startsev et al., 2019b) intro-
duced a 1D-CNN-BiLSTM seq2seq network for a similar task. They showed that their
1D-CNN-BiLSTM classifier outperforms 12 previous baseline models with the GazeCom
dataset ((Agtzidis et al., 2016; Berg et al., 2009; Dorr et al., 2010; Komogortsev and Karpov,
2013; Komogortsev and Khan, 2009; Larsson et al., 2015)) in offline classification.

Yet, despite the upper hand of sequence-based neural models, they do present some
drawbacks, such as requiring a large amount of labeled data for training and a high compu-
tational footprint. This last aspect, in particular, can turn such networks less fit for real-time
classification, since they would demand more processing time for online predictions, and
in the case of bi-directional architectures that would be simply unfeasible.

As for other more complex gaze patterns, there have been important developments
in several different areas, ranging from security (Carneiro et al., 2019) to disease diagno-
sis (Molitor et al., 2015). Holland and Komogortsev, for example, investigated how eye
movement patterns could be utilized for biometrics (Holland and Komogortsev, 2013).
Sattar et al. tried to predict potential targets during a visual search by processing a set of
fixations using an SVM model (Sattar et al., 2015). Kunze et al. proposed an ingenious way
of detecting what kind of document a user is reading by processing fixations and saccades
within a certain window span of minutes (Kunze et al., 2013), while reading detection itself
has been a common topic in the literature, with various algorithms available (Biedert et al.,
2012; Campbell and Maglio, 2001b).
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Though there are many other applications involving complex gaze patterns, it is
important to stress that virtually all these techniques are built on top of more basic
patterns, such as saccades, fixations, and smooth pursuits. Thus, this thesis focuses on
improving the recognition of elementary events to better support such techniques.

3.1.2 Online eye movement recognition in wearable
computing

Because wearable devices are always available, eye movement recognition algorithms
must be not only low on computer resources (and avoid battery drain), but also fast
enough to make online predictions. When examining the literature on eye movement
pattern recognition for ubiquitous or wearable computing, authors frequently neglect
their model suitability for real-time scenarios, i.e., many proofs of concept assume some
sort of post-hoc processing time.

For example, in the works from Kunze et al. and Sattar et al. mentioned earlier, it is as-
sumed an offline processing step to identify accurately these patterns. Reading detection al-
gorithms also often assume a high refreshing rate (i.e., at least 60 Hz) (Campbell and Maglio,
2001b), which may be prohibitive for wearable devices.

Simple and more lightweight classifiers with reasonable accuracy, such as the I-
BDT (Santini et al., 2016), seem fitter for the wearable context, though not without setbacks,
such as user calibration and frequent parameter adjustment. Much more accurate, robust,
and general models, namely the 1D-CNN-BiLSTM from Startsev et al., besides being
heavier on the processing side, do require taking future information into account to
perform classification (i.e., using data from time step 𝑡 + 𝑖 to predict pattern at 𝑡).

Another approach to eye pattern recognition in the wearable context involves limiting
or simplifying the desired pattern search space to enhance accuracy at the cost of less
general applicability. For instance, Esteves et al. proposed the use of motion correlation
between the eyes and a moving target on a smartwatch to perform selections (Esteves et al.,
2015; Velloso et al., 2017), something that was later explored in other different wearable
and ubiquitous scenarios (Carneiro et al., 2019).

In this thesis, we strive to achieve the best of both worlds: the convenience and lightness
of online models with the accuracy and generalization of offline data-driven methods. In the
case of general basic movement understanding, we show that this is possible by leveraging
sequential networks with a highly parallel structure, such as Temporal Convolutional
Networks (TCNs) (Bai et al., 2018), while pre-processing gaze data stream in a very efficient
way. In the case of complex patterns, such as reading, we show that this is possible using
differential analysis.

3.2 Gaze estimation

3.2.1 General gaze estimation methods
Although there are known gaze estimation procedures from over 100 years ago, mature

and reliable computer vision-based methods are only a few decades old (Cazzato et al.,
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2020). When we talk about the ability to obtain the user’s point of regard or gaze di-
rection in a continuous fashion, then it is generally acknowledged that there are only
two main classes of gaze estimation techniques: geometric-based and appearance-based
methods (Hansen and Ji, 2010), with the last class typically subdivided into either feature-
based methods or end-to-end systems (Cazzato et al., 2020).

In general, geometric models are known to be robust to eye tracker slippage and are also
able to compensate for the parallax error (Mardanbegi and Hansen, 2012), making them
a suitable choice for head-mounted eye trackers. Also, since geometric models provide
gaze vectors through a rigid transformation of the eyeballs, they require in theory just one
screen target to perform a user calibration, though in practice more points are necessary
to improve accuracy. In fact, many of the accuracy issues found in these models can be
attributed to simplifying assumptions, such as that the eyeball is a perfect sphere, ignoring
the lens refraction, or assuming default human-related parameters.

One of the earliest geometric models was proposed by Shih et al. (Shih et al.,
2000), though Guestrin and Eizenman are generally regarded as the first to formal-
ize and generalize this kind of model to a variable number of light sources and cam-
eras (Guestrin and Eizenman, 2006). Many other works followed a similar approach af-
terwards (Hennessey et al., 2006; Villanueva et al., 2006), but requiring a fully calibrated
setup (i.e., knowing all necessary camera parameters).

More general geometric models that do not need a fully calibrated setup appeared
with the work of Yoo and Chung (Yoo and Chung, 2005), by exploiting the cross-ratio
of four light sources in projective space. This work was later extended by Coutinho
and Morimoto, simplifying the number of parameters needed for on-screen estima-
tion (Coutinho and Morimoto, 2006).

If there are multiple cameras in the tracking setup, then 3D eye modeling and head
movement compensation (including rotation) becomes an easier task due to stereo vi-
sion (Beymer and Flickner, 2003; Brolly and Mulligan, 2004). Still, estimating the 3D point
of gaze, until recently, has only a few results available in very constrained scenar-
ios (McMurrough et al., 2012; Munn and Pelz, 2008; Takemura et al., 2010).

As for appearance-based models, they basically rely on statistical methods to generate
estimates. Feature-based techniques, in particular, depend on tracking specific elements of
the eye image, such as the projected pupil center, whereas end-to-end systems typically
provide estimates based only on raw frames of a user’s face or the eyes.

In the case of feature-based estimation, since the eyeball rotation occurs in 3D space and
the features are captured through their projection on the camera plane, displacement of eye
attributes will not be perceived linearly. Thus, even the most simple regression functions
mapping eye features to targets must be nonlinear to be relatively accurate. Among these
techniques, we can cite: polynomial fitting (Morimoto and Mimica, 2005; Stampe, 1993),
support vector regression (Zhu et al., 2006), Gaussian processes (Sesma-Sanchez et al.,
2016), and artificial neural networks (Ji and Zhu, 2002).

Regardless of the regression method, feature-based estimation techniques are generally
acknowledged for being very accurate in contrast to other methods, probably because
the regressor learns more intrinsic information about the input data that cannot be easily
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modeled in an explicit way, including device noise and sensing biases. But in practice, this
also means that a large and representative set of points should be chosen from the target
surface to achieve a calibration with low error.

More recently, with the growing success of end-to-end architectures in several appli-
cations, such as face recognition, voice recognition, or text translation, end-to-end gaze
estimation also started to be vented as a possibility with many advantages. Among them,
we could mention the lack of an intermediary and explicit feature selection process and the
absence of calibration. For instance, Krafka et al. proposed a convolutional neural network
that estimates the user’s PoR on mobile phone displays without any calibration, though
the reported accuracy still falls short of the SOtA techniques (Krafka et al., 2016).

3.2.2 Gaze estimation and wearable computing
With the growth of virtual (VR) and augmented reality (AR) applications, gaze-based

techniques have been considered as a means to refine and improve 3D interaction in such
domains. AR applications, in particular, are generally assumed to be deployed in a wearable
context. One important challenge, though, is that the AR domain occurs in the 3D space,
and traditional estimation approaches might be limiting in the sense that they cannot
accurately predict the user’s point-of-regard (PoR) in 3D without taking vergence into
account.

This issue is particularly evident when there is a partial occlusion or collinearity of 3D
objects in the user’s line of sight. Most known approaches in this case rely on determining
the fixation target by computing the intersection of gaze direction with scene objects. This
inevitably leads to a biased outcome, as the nearest objects in the line of sight will tend to
be hit more often. One way of overcoming this issue is through “parallax tricks”, such as
requiring the user to fixate on the desired object from different perspectives.

Although gaze estimation in scene volumes has barely been explored in the literature,
there have been some attempts to solve this problem imposing several constraints. In the
case of remote gaze tracking, this is a more straight-forward task, since both eyeballs can be
determined on camera space, as well as the 𝜅𝜃 and 𝜅𝜙 associated with the angular difference
between optical and visual axes (Guestrin and Eizenman, 2006; Hennessey and Lawrence,
2009). In the case of head-mounted eye trackers, the works that explored this problem
presented either a completely calibrated setup (Lidegaard et al., 2014) or a very constrained
calibration procedure (Abbott and Faisal, 2012). Ultimately, none of these techniques were
applied to the camera scene volume.

There are only a few known techniques targeting specifically 3D environments.
Yet, many of these are limited to gaze direction, with no accurate report of depth in-
formation. Datasets for this purpose are also lacking, since there has been only one
work that considered scene depth knowledge, but from the perspective of a remote eye
tracker (Mora and Odobez, 2014).

Mardanbegi and Hansen developed a method that enables the user to in-
teract with planar displays in a 3D environment using a head-mounted eye
tracker (Mardanbegi and Hansen, 2011). This method partially resorts to known cal-
ibration methods, but it also assumes there is a homographic mapping between the screen
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on the scene camera image to the actual screen coordinates due to planarity constraints.
A further development, using image features and fewer restrictions, was presented by
Lander et al. (Lander et al., 2015).

The earliest systems known capable of estimating 3D PoR required a fixed head-
to-camera displacement. Kwon et al. introduced a novel binocular technique for this
purpose, computing first gaze direction using corneal reflections and then gaze depth by
interpupillary distance (Kwon et al., 2006).

Works using wearable head-mounted systems usually resorted to triangulation of
known features in an egocentric camera image. Mitsugami et al., for example, utilized
view lines at multiple head positions to estimate 3D gaze (Mitsugami et al., 2003), whereas
others designed a non-real-time procedure to determine 2D PoR in some video frames,
later integrating them to reconstruct the 3D PoR for posterior analysis (Munn and Pelz,
2008; Pfeiffer and Renner, 2014; Takemura et al., 2010).

Abbott et al.(Abbott and Faisal, 2012) proposed a low-cost wearable eye tracker capable
of gaze estimation in 3D space also using a model-based approach, but their calibration
setup did not account for the parallax error and required previous knowledge about the
position of both eyeballs in the scene during the procedure.

Essig et al. presented a feature-based approach that relied only on estimates gen-
erated by a neural network (Essig et al., 2006). Measuring binocular gaze angles, their
reported results showed significant improvement in comparison to a geometrical solu-
tion, especially regarding depth, but in a very controlled environment. More recently,
(Itoh and Klinker, 2014) developed a technique to estimate gaze for HMDs using the Świrski
and Dodgson algorithm (Świrski and Dodgson, 2013), which computes the optical axis
by assuming the eyeballs as perfect spheres. If stereo vision is allowed, then Meyer et
al. have proposed a more robust and lightweight technique to estimate normal pupil
vectors (Meyer et al., 2022). Other methods focused on the nature of gaze depth and its
estimation (Duchowski et al., 2011, 2014; Lee et al., 2017). A general theory for 3D PoR
estimation was provided by (Pirri et al., 2011).

Still, despite computing the 3D PoR, all these approaches generally perform calibration
to 2D planes, which, in the case of head-mounted eye trackers, gives room to the parallax
error, created when the eye and the scene cameras are not coaxial (Mardanbegi and Hansen,
2012). A notable exception, perhaps, is the work of (Hennessey and Lawrence, 2009), as
they proposed a way to compute the 3D PoR directly to a real-world 3D volume in real-
time — albeit using a remote tracking system. This was accomplished by estimating the
shortest distance between the two visual axis vectors, a strategy that was later used by
(Abbott and Faisal, 2012).

Though the use of RGB-D cameras as a replacement for egocentric scene cameras may
represent a solution to the current poor estimation of gaze depth and the parallax error,
there are only a few approaches that have exploited this solution. Some works proposed
to use RGB-D cameras for gaze estimation, but only to track the eyes (Li and Li, 2014;
Mora and Odobez, 2014; Xiong et al., 2014).

(McMurrough et al., 2012) and (Paletta et al., 2013) have both used a head-mounted
setup with an RGB-D egocentric camera, but they limited themselves to perform only a 2D
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calibration step for posterior analysis of gaze data overlaid in depth images, thus incurring
on ambiguities associated with the lack of calibration to the scene volume.

In this thesis we argue that 3D PoR estimation in the wearable scenario is more
advantageous in the scene volume, i.e., it should take advantage of the increasing ability to
sense devices to reconstruct the physical scene in the digital domain, through techniques
such as SLAM (Taketomi et al., 2017), so that gaze interaction in 3D might be not only rid
of volumetric ambiguities but also improved by patterns such as eye vergence.

3.3 Gaze interaction
The use of eye-gaze in human-computer interaction can be traced back to the

1980s, when eye trackers started to become reasonably accessible to conduct stud-
ies (Jacob and Karn, 2003). Back then, the primary use of gaze data was to understand
human behavior when interacting with computers. Typical research questions revolved
around where the user’s attention is, or how much time is spent on specific parts of a
graphical user interface.

Although in a limited fashion, it was also in the 1980s that some work pioneered the use
of gaze as a means of interaction. Bolt, for instance, proposed to use the point-of-regard
as a controlling element to trigger different functions on large displays with multiple
windows (Bolt, 1981), whereas Ware and Mikaelian conducted experiments to investigate
the use of the eye tracker as an input device (Ware and Mikaelian, 1987).

With the growth of computational power, better image processing, and gaze estimation
algorithms, the prospect of using the eyes to directly or indirectly manipulate applications
started to gain momentum in the HCI domain. Many researchers were attracted to the
idea of a non-command interface (Jacob, 1995), i.e., interfaces that do not require explicit
orders to provide expected actions.

But it also did not take long for researchers to realize that there were some daunting
challenges to overcome when using the eyes for interaction. The most notorious one
became known as the “Midas touch” problem (Jacob, 1991). Notwithstanding, other rel-
evant eye tracking-related issues were also noticed, as the number of experiments and
practitioners increased with time(Jacob and Karn, 2003):

• around 10 to 20% of the users cannot be tracked or tracked reliably;

• some movement constraints are required between the user and the tracking system
for accurate measurements;

• positioning of the eyes is not always a conscious act;

• eye tracking is not as accurate and stable as other manual inputs;

• jitter and calibration shifts make data interpretation a non-trivial task;

• continuous use of deliberate eye gestures often leads to eyestrain.

In spite of these issues, gaze interaction still managed to make important strides. In
particular, for people with severe disabilities, with conditions such as congenital mal-



24

3 | LITERATURE REVIEW

formation, locked-in syndrome, or amyotrophic lateral sclerosis, the eyes may represent
the only means to interact with the world, and gaze interaction research offered ways to
successfully improve the quality of life of people with disabilities (Hutchinson et al., 1989;
Jacob, 1991).

Many authors also proposed solutions to mitigate or even overcome some of the
aforementioned eye-tracking limitations. Studies revealed that the use of larger buttons
in the interface is essential to attenuate the jitter of the eyes (Miniotas et al., 2004). It has
also been shown that dwell-time-based selection is an acceptable and simple approach
to deal with the Midas touch problem and lack of visual feedback (Majaranta and Räihä,
2002; Penkar et al., 2012), while others suggested the use of eye gestures (Mardanbegi et al.,
2012). More recently, smooth pursuit-based techniques have proven to be promising for
small and ubiquitous interfaces, as they do not require calibration or tracking the user’s
head (Esteves et al., 2015; Vidal et al., 2013).

Investigations to improve the general performance of able-bodied users in daily tasks
have also emerged. Multi-modal approaches became a common strategy in this sense,
using the eyes for target acquisition and manual input for selection or other complex tasks
(Kumar and Winograd, 2007; Pfeuffer et al., 2014; Zhai et al., 1999). To leave the user’s
hands completely free, there have been some proposals in the direction of coupling gaze
and speech controls (Hedeshy et al., 2021; Miniotas et al., 2006) or using gaze with head
gestures (Spakov and Majaranta, 2012).

But gaze interaction research was eventually dominated by studies with novel
techniques targeting specific tasks. Eye typing became one such example, a still active
topic, with a vast literature (Hansen et al., 2002; Kurauchi et al., 2016; Lystbæk et al.,
2022a; MacKenzie and Zhang, 2008; Majaranta and Räihä, 2002; Tula and Morimoto,
2016b). Gaze interaction in games has also attracted attention, especially with the
affordable eye trackers available for the consumer market, and works exploring gaze-based
controls in 2D and 3D games are also easily found (Agustin et al., 2009; Dorr et al., 2009;
Isokoski and Martin, 2006; Istance et al., 2010; Smith and Graham, 2006). Among many
other applications, security authentication (Carneiro et al., 2019; Luca et al., 2007) and
mobile-based controls (Drewes et al., 2007; Park et al., 2011) are also good examples of
this area that continues to evolve, albeit with some enduring technical challenges.

3.3.1 Use of latent gaze in applications
Latent or passive use of gaze (Duchowski, 2018) has also been employed in several

scenarios, though in a less extensive way. In this category, users are not aware that their eye
behavior is a component of the system, but, almost as a rule, the eyes are not used for active
interaction. In most cases, the eyes are a means to provide insightful information from
the user and update the system state, such as with foveated rendering (Luebke and Hallen,
2001). Overall, the latent use of gaze might be a helpful tool in the wearable and ubiquitous
context.

In DARPA’s Augmented Cognition project, pupillometry was used as an indirect
measure of mental workload for military systems (St. John et al., 2004). Ishiguro et al.
investigated a way to artificially augment user memory by resorting to a gaze-based lifelog,
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i.e., recording daily image scenes based on fixations, saccades, and blinks (Ishiguro et al.,
2010). Kurauchi et al. also studied a means to enhance memory by providing information
from someone being gazed at by the user (Kurauchi and Morimoto, 2013).

3.3.2 Gaze interaction in mixed reality environments
Although gaze interaction has been considered somewhat of a niche in the last decades,

this perception is shifting with the emergence of commercial mixed-reality headsets. A
survey from Zhou et al. clearly indicated that until the mid-2000s research in mixed reality
mainly focused on developing enabling technologies. With time, as these technologies
matured, it became evident that there were many interaction and visualization problems
to be addressed (Zhou et al., 2008).

One of the early works exploring gaze interaction in mixed reality environments was
proposed by Tanriverdi and Jacob (Tanriverdi and Jacob, 2000). In it, they investigated
how gaze could be utilized to point and interact with VR elements. They concluded that
gaze pointing was significantly faster than hand-based controls, though it elicited less
environment recollection. In a similar experiment, Cournia et al. compared gaze with hand
pointing, and observed that the former was slightly slower (Cournia et al., 2003).

Other works have also explored the use of gaze in VR for navigation purposes. Castellina
and Corno, for instance, compared different combinations of gaze input controls with and
without the use of a keyboard (Castellina and Corno, 2008), while Nacke et al. proposed to
control the first-person view camera for gameplay through eye tracking only (Nacke et al.,
2010). Still in the VR domain, Garau et al. investigated the impact of avatar realism
on the perceived quality of communication between users and they realized that the
more realistic an avatar, the greater the expectation for equally realistic eye movements
(Garau et al., 2003). Later on, Steptoe et al. conducted an experiment demonstrating that
users perform socially-dependent tasks better when the companion’s gaze is being tracked
and available (Steptoe et al., 2009).

Nilsson et al. presented one of the first works exploring gaze interaction in augmented
reality (Nilsson et al., 2009). The idea was to observe how task performance could be
improved using gaze controls when the user’s hands were occupied. Ajanki et al. went a
step further, proposing an attention-based AR interface: virtual data was only displayed
when the user was looking at specific regions of the image captured by a scene camera
(Ajanki et al., 2011).

Park et al. designed one of the first wearable augmented reality systems equipped with
a monocular eye tracker (Park et al., 2008). In their setup, a simple calibration between
the eye and scene camera (2D) images was performed and a dwell-time-based selection
was implemented to trigger virtual information about an AR gallery. Toyama et al. used a
similar approach to develop a gaze-guided OCR system (Toyama et al., 2014).

More recently, some works explored the use of gaze depth as a means of interaction, but
without estimating the user’s point-of-regard in 3D (Kitajima et al., 2015; Pai et al., 2016).
Another trend observed was regarding smooth pursuits-based interaction (Vidal et al.,
2013). Esteves et al. introduced SmoothMoves as a means to perform selections in AR
using head-gaze (Esteves et al., 2017). Using a purely gaze-based interface, Khamis et
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al. investigated the use of pursuits in VR and observed that large trajectories result in
higher accuracy and faster selections (Khamis et al., 2018), which somewhat agrees with
the idea that gaze-only interaction tends to improve with a larger FoV (Blattgerste et al.,
2018).

3.4 Challenges and opportunities

3.4.1 Gaze and mixed reality: a wearable match
In general, a gaze-enabled system is considered a more private way to interact, it can

be hands-free, and it is often perceived as more effortless and socially acceptable than
other popular alternatives such as voice utterances or hand gestures (Akkil et al., 2016).
Besides, in MR environments visual attention is a key component to determine interactive
context, which can vary significantly, so some form of eye tracking is invaluable and thus
expected (Höllerer and Feiner, 2004).

On the other hand, there are some legitimate concerns about how gaze should be
used interactively in this context. For instance, eye contact is critical in face-to-face
communication, so soliciting unnatural gaze responses in social environments is not
desirable (Akkil et al., 2016). Additionally, the Midas touch problem can be much more
worrying in AR spaces, as it can hamper visibility and user safety, whereas eye fatigue
is commonly linked to eye gesture-based techniques and inexperienced users (Chitty,
2013).

Low accuracy of gaze estimation is also a source of concern because it can severely
affect the experience. For example, Pathmanathan et al. investigated the use of gaze-based
multimodal techniques for the manipulation of 3D objects, such as translation, rotation, and
scaling (Pathmanathan et al., 2020). In general, participants preferred head-gaze as they
felt they had more control than solely with the eyes. Although it is true that the number
of errors and variability on task performance can be large with gaze-only interaction,
Blattgerste et al. showed, however, that as the field of view increases, gaze-only interaction
is preferred over head-gaze by users, since it becomes distinctively faster, less strenuous
and less error-prone (Blattgerste et al., 2018).

To tackle the problem of low accuracy with eye tracking in AR, Kytö et al. developed a
technique called Pinpointing, which aims to provide precision for selections by a multimodal
refinement mechanism (Kytö et al., 2018). With a combination of eye-for-pointing and
hand gestures, they were able to achieve an average error of 0.4 degrees in contrast to the
2.4 degrees of gaze-only selection, though this ultimately implies twice as long selections.
A similar conclusion was also found by Qian and Teather, that is, eyes alone have a higher
throughput but at the expense of a greater number of mistakes (Qian and Teather, 2017).
More recently, a similar multimodal idea was explored in the specific context of menu
selection in AR (Lystbæk et al., 2022b).

With StARe, Rivu et al. proposed a user interface in AR that displays information about
people during conversations (Rivu et al., 2020). This kind of solution, although perceived
as useful for most users, raises serious concerns in terms of AR cluttering and information
overload. Besides, just looking at an object to trigger related AR content will always be
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a source of the Midas touch problem. Another issue related to a collaborative setting is
target ambiguity shared by multiple users in large spaces, which was addressed by Li et al.
through a technique called Parallel Bars (Li et al., 2019).

Discussing more broad aspects of gaze interaction in MR, Hirzle et al. suggested that
the design space for MR headsets should take into account the properties of the HMDs (i.e.,
stereoscopic, monoscopic) and human depth perception (i.e., binocular, monocular) as its
two main dimensions of concern (Hirzle et al., 2019). With ARtention, on the other hand,
Pfeuffer et al. indicate that the design space of AR gaze-based experiences should consider
the reality-virtuality continuum, information level, and task transitions (Pfeuffer et al.,
2021).

Also, not all gaze-based AR experiences have to be visual, i.e., use the headset display.
Bâce et al. investigated a means to relay messages to other users through physically
augmentable objects in the environment. These messages can be posted and accessed
using notifications on the smartwatch (Bâce et al., 2016).

Most gaze-based techniques found in the MR space tend to be 3D ports from already
known 2D implementations. This means that very few of them are actually incorporating
hardware and contextual features such as inertial sensors of augmented glasses or the
depth dimension of 3D spaces, with very few exceptions (Piumsomboon et al., 2017).

3.4.2 Gaze-contingent displays and vergence-based
interaction

Because gaze is highly correlated to human attention, the idea of gaze-contingent
displays started to get traction with the increasing interest of the industry for AR/VR
headsets or more lightweight AR glasses in more recent years. Gaze-contingent displays
can be generally understood as any kind of display that leverages the user’s gaze point to
update its status or provide visual information to the user.

For example, to provide a more realistic experience in VR, the user’s eyes can be
tracked to render perceptually relevant effects, such as ocular parallax or stereo rendering,
which have been demonstrated to have a significant impact on user depth perception
(Kellnhofer et al., 2016; Konrad et al., 2020; Krajancich et al., 2020). Other forms of foster-
ing realism are through super-resolutions or improved space sampling while rendering real-
time graphics depending on where the user is looking at (Guenter et al., 2012; Stengel et al.,
2016), or simulating depth-of-field effect (Mauderer et al., 2014; Vinnikov and Allison,
2014).

Of course, to provide better sampling or super-resolution regions it is also important
to understand raw eye movement patterns, such as fixations and saccades, and predict
where the gaze is going to land before a saccadic burst. Arabadzhiyska et al. created a
polynomial model for gaze-landing prediction (Arabadzhiyska et al., 2017), while Morales
et al. proposed a neural network-based model that achieved the current state-of-the-art
performance on this problem (Morales et al., 2018).

Another important application of gaze-contingent displays is related to a scenario
of the pervasive use of eye tracking: through attention inference mechanisms, such as
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gaze direction, fixation duration, and pupil size, an AR system might be able to provide
relevant information associated with the scene (Ajanki et al., 2011; Rivu et al., 2020; Toet,
2006). However, to understand what is relevant or not, it is also important to ascertain
context, which is a somewhat vague concept, but generally accepted as any information
that characterizes the situation of an entity (Grubert et al., 2017), although it can be further
narrowed down to specific parameters, such as location, identity, and activity (Abowd et al.,
1999).

More recently, eye vergence has been considered a key feature to understanding
attention shifts, particularly with respect to task-unrelated states, such as mind wandering
(Huang et al., 2019). However, vergence can only be a useful resource for this kind of display
if gaze depth measurement is taken into account. Vidal et al. suggested, for example, that
vergence could be an important mechanism for see-through displays to define the moment
when augmented information should be rendered or not (Vidal et al., 2014).

As a means of interaction, vergence has been barely explored in the literature.
Early works only discussed its feasibility (Kirst and Bulling, 2016; Kudo et al., 2013;
Ruan et al., 2018; Vidal et al., 2014). With the lack of effective techniques to estimate
3D PoR Pfeiffer et al. (2008), it has been suggested that 3D fixations in HMDs can be
derived solely from pupil disparity (Hirzle et al., 2018), or using Purkinje images from both
eyes (Kuroda et al., 2010). One of the first vergence-based applications was proposed by
Kuroda et al., a system that performs AR annotations for medical use (Kuroda et al., 2010).
Kitajima et al. suggested an AR x-ray vision experience through the user’s gaze depth
(Kitajima et al., 2015), while Hirzle et al. also considered a similar application (Hirzle et al.,
2019), but using a head-mounted eye tracker. They found out that reference points in
3D space are important to improve user comfort while performing convergence or diver-
gence.

Pai et al. were the first to demonstrate “gaze focus depth” as an interactive modal-
ity (Pai et al., 2016). They conducted a case study to evaluate the usability of continuous
focus depth as a substitute for the scroll wheel. Their system consisted of a VR headset
coupled with a binocular Pupil Labs eye tracker (Kassner et al., 2014). Ahn et al., also in
VR, proposed a system in which a visual target oscillates in depth, and selection occurs
once the system detects the user’s gaze modulated by the target (Ahn et al., 2020).

3.4.3 Wearable context and calm interaction
Looking back on all the literature on gaze-based interaction, it should strike any

attentive reader how rare is to find just one technique that does not impose some sort of
constraint to spontaneous eye movement response to avoid the Midas touch problem (Jacob,
1991). Since most techniques require deliberate and conscious eye movements to change the
system’s state, they also force the user to relinquish the eyes’ main functions of exploring,
searching, or reading as a consequence, i.e., they restrain the natural gaze behavior with
respect to the environment.

In a way, we could say that these techniques break the user flow state. In neuroscience,
this is often described as an effortless, yet focused state of consciousness Dietrich (2004).
Thus, interactive safeguards for gaze interaction may hamper this state by requiring the
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user to consciously divert his or her attention from the task at hand to avoid the MTP.

In the wearable context, these mechanisms to avoid interactive mistakes might even
inadvertently put user integrity at risk. For instance, techniques that rely on either dwell-
time selection (Majaranta and Räihä, 2002; Penkar et al., 2012) or that require saccadic
gestures (Mardanbegi et al., 2012; Spakov and Majaranta, 2012) might add latency to en-
vironmental response or divert the user attention in situations such as running down
the street, going up the stairs, or driving a vehicle. Other methods, such as gaze motion
correlation (Esteves et al., 2015; Velloso et al., 2017), that are constantly displaying a mov-
ing target on the screen, are particularly perilous in the case of heads-up displays since
digital overlays can occlude user perception of the environment. Multimodal methods,
such as gaze and clicking (Drewes and Schmidt, 2009), could be a safer alternative, but they
typically impose additional cognitive overhead and are much less private than gaze-only
techniques in public spaces.

Weiser conjectured that the ultimate interface should be “transparent” to the user, that
is, it should be perceived as invisible, an idea conceptually close to what he later defined
as calm computing (Ishii and Ullmer, 1997; Weiser, 1998). Although passive use of gaze in
gaze-contingent displays resembles something of the sort, it generally does not convey
user explicit intent, and thus has only been successfully exploited in gaze-contingent
displays or adaptive systems (Ajanki et al., 2011; Rivu et al., 2020; Toet, 2006).

In a wearable scenario, we argue that gaze techniques that embed “calmness” in their
design are more likely to thrive. Not because this has been suggested as an ideal and general
goal by past authors, but because the wearable context imposes important limitations and
peculiarities, namely the excess of micro-interaction situations (e.g., turning on/off smart
devices), user exposure to environmental danger, or privacy in public spaces. Thus, it could
be considered desirable for any gaze-based interactive method in wearable computing to
possess characteristics such as transparency, unobtrusiveness, speed, and discretion.
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Chapter 4

Eye pattern recognition

Eye movement pattern recognition is a key aspect of human-computer interaction,
particularly in the context of wearable computing where devices are often worn contin-
uously throughout the day. Wearable devices have the potential to enable new forms of
interaction, but to achieve this, it is essential to accurately and reliably recognize the eye
movements associated with different tasks and user engagement levels. By analyzing eye
movement patterns, it is possible to infer a user’s intentions and level of attention, as
well as provide feedback to improve task performance, thus creating more seamless and
intuitive user experiences.

In this chapter, we focus on eye movement classification algorithms for various sce-
narios based on the research opportunities unveiled by our previous literature review. In
particular, we present three investigations on the following topics: offline classifiers for
pre-recorded eye movement data, online classifiers for real-time eye movement data, and
reading detection pattern recognition for identifying reading activities.

These investigations are reported as self-contained research projects, with their own
goals and conclusions, in each section of this chapter. However, they do represent a more
general effort to fulfill our goal of supporting better context-aware systems for wearable
computing through improved eye pattern recognition techniques.

Among our contributions, we propose novel models for basic eye movement recognition
and online classification, both of which surpass state-of-the-art performance. Our online
model, in particular, achieves this while being extremely lightweight, making it suitable for
deployment on resource-constrained devices. We also introduce a reading detection algo-
rithm that can operate at very low frame rates while maintaining state-of-the-art accuracy.
Additionally, we created a new dataset for eye movement classification, which is stimulus-
driven and it is publicly available at https://github.com/elmadjian/OEMC.

4.1 Offline eye movement classification

The simultaneous classification of fixations, saccades, and smooth pursuits, or simply
the 3EMCP, is one of the most fundamental problems when it comes to eye movement
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pattern recognition (Berndt et al., 2019), as most of the more complex eye patterns in
several gaze-based applications depend on it.

Inspired by the 1D-CNN-BiLSTM model from Startsev et al. (Startsev et al., 2019b), we
investigated whether more lightweight and modern architectures that do not rely entirely
on sequence-based processing could further improve basic eye movement recognition. In
particular, we conjectured whether a simple but effective architecture such as a Temporal
Convolutional Network (TCN) could achieve this goal. The complete description of the
techniques, results, and analysis provided below was first published in Elmadjian et al.
(2020).

4.1.1 Materials and methods
The dataset employed in our study was the GazeCom dataset (Dorr et al., 2009). It

contains 18 clips from roughly 47 viewers (the number slightly varies according to the
video), with labels for fixations, saccades, smooth pursuits, and noise. The labels are given
based on the judgment and agreement of two experts, after observing the patterns that
each user performed when watching short videos. Clips are limited to a duration of 21 s
for training.

The GazeCom data was collected using a 250 Hz remote eye tracker, and is constituted
by 4.3 million samples, being 72.5% fixations, 10.5% saccades, 11% smooth pursuits, and
5.9% noise or blinks. The average confidence level given by the eye tracker is 99.4%. The
average duration of each pattern is shown in Table 4.1.

Duration (ms) Deviation (ms)

Fixations 324.37 306.07
Saccades 46.38 22.17
Smooth Pursuits 410.98 323.42
Noise 291.91 294.34

Table 4.1: Average event duration in the GazeCom dataset (Dorr et al., 2009) with clips limited to 21 s.

In this first step of our investigation, we resorted to a non-causal TCN, which gives
it the ability to look into future information at the expense of being offline. We also
made use of several dilated convolutions (1, 2, 4, 8, 16, 32, 64, 128), and a relatively sizeable
kernel (𝑘 = 8), which effectively provided a large receptive field (see Figure 4.2). Despite
having almost 2 million parameters, this network trained comparatively faster due to
its parallelized structure, roughly taking half of the time required to train the 1D-CNN-
BLSTM (Dorr et al., 2010) on the same machine.

The schematic of this architecture is depicted in Figure 4.1. All hyperparameters were
defined according to a reduced grid search with a subset of the GazeCom dataset. The TCN
has a total of 128 filters, an internal dropout rate of 0.3, and uses the hyperbolic tangent
activation function (𝑡𝑎𝑛ℎ) instead of the more commonly seen rectified linear units (𝑅𝑒𝐿𝑈 ).
Weights were initialized following a random uniform distribution, and we do not employ
batch normalization between layers. At the end of the convolutional chain, we added a fully
connected layer with a softmax activation function wrapped by a timed-distributed layer,
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so that we can have a certain probability distribution for each eye movement pattern at all
time steps. Because of our one-hot encoded targets, we used a categorical cross-entropy
loss function. We also opted for the Adam optimizer (Kingma and Ba, 2015) with an initial
learning rate of 0.0001, as this configuration demonstrated a faster convergence in our
grid search.

Figure 4.1: Architecture of our TCN network. At each hidden state, we increase dilations by a factor
of 2. FC-5 represents a time-distributed fully-connected layer with 5 outputs.

Figure 4.2: Non-causal dilated convolutions using size 8 kernels, providing a large receptive field and
the ability to look into future information (i.e., 𝑡𝑖+𝑛 samples given a timestamp 𝑡𝑖).

The temporal sequences fed to the model are formed by pre-computed multi-scale
features extracted from the 𝑥 and 𝑦 gaze coordinates. In their original implementation,
Startsev et al. considered five different temporal scales: 4, 8, 16, 32, and 64 ms. In ours, we
included support for a larger set of scales (128, 256, and 512 ms) to investigate their role in
model classification performance.

The feature extraction process is depicted in Figure 4.3. All these features are created
by pre-processing the entire set of raw gaze coordinates before training. Each sample
consists of a fixed-size context window of roughly 1 s (257 steps), and each timestep of
this window presents the associated multi-scale set of features, which could be either
acceleration, speed, direction, or a combination of them. Additionally, we investigated the
impact of adding two other common features in the time series domain: standard deviation
and displacement (not to be confused with distance).

We evaluated the general performance of our model using the same configuration and
metrics from Startsev et al. To compare our model with the baseline, we used a Leave-One-
Video-Out (LOVO) cross-validation procedure, in which each step of training is done with
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Figure 4.3: Feature extraction procedure from the GazeCom dataset (Startsev et al., 2019b). For each
257-sample window, we extract speed and direction features related to each step of the sequence, using
different scale sizes.

17 clips, and the model is evaluated on the remaining one. We also employed the input
setup with a context window of 257 samples (∼1 s), an overlap of 192 samples, with speed
and direction features combined, and limiting the number of training sequences to 50,000,
using a random permutation of sequences with the same seed.

Assuming the standard feature space (SF) as the combination of speed and direction,
we evaluated the TCN model performance in this aspect according to the following
configurations: SF + standard deviation; SF + displacement; and SF + standard deviation
+ displacement. Regarding the feature scale size investigation, we evaluated the model
with additional scales of 128, 256, and 512 ms. We used the same LOVO procedure while
training using the same context window size, training sequences, batch size, and epochs,
as reported before.

Since smooth pursuits have a typically longer duration than fixations and saccades, it
has been hypothesized that larger context windows can benefit seq2seq models to improve
their detection. To demonstrate this, we trained our model using two additional windows
of 1.5 s and 2 s, using the same LOVO training procedure, but with the overlap having to
be adjusted to keep the 50,000 sequences fixed. In other words, we used 385 samples with
an overlap of 312 for the 1.5 s window, and 514 samples with an overlap of 470 for the 2 s
window.

It is worth mentioning that larger contexts can be prohibitive for recurrent networks
regarding memory and computational complexity, but there were no such issues training
with the TCN model. Based on these findings, we ran a final LOVO evaluation combining
the best configurations provided by the study on feature space, feature scale size, and
temporal window width.

Finally, we also evaluated all models with and without a domain-based knowledge filter-
ing procedure applied to the outputs. This heuristic assumes that any event that is shorter
than 12 ms is a spurious output. The filter then replaces the class of the samples belonging
to this event with the previous non-spurious neighbor. All our code base, data, and models
trained for this work are publicly available at https://github.com/elmadjian/3EMCP-
with-TCNs.
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4.1.2 Evaluation and results
Compared to the reported results of the 1D-CNN-BLSTM model, and using the same

input constraints and training regimen, our model achieved improved performance in
all three major patterns, with an F-score of 94.2% for fixations, 89.9% for saccades, and
73.4% for smooth pursuits. This represents a gain over the state of the art in the GazeCom
dataset of 0.3%, 0.3%, and 3%, respectively.

By extending window width, feature space, and feature scale size, we were able to
achieve gains of 0.6%, 0.3%, and 5.7%, respectively. A complete assessment compiling the
reported results in terms of sample F1 and event detection (episode F1 with IoU > 0.5) is
shown in Table 4.2. The TCN model marked by a + sign is the one trained with the best
features, while the ones marked with a * had their output filtered.

Fixation Saccade Smooth Pursuit

Model F1 Prec. Recall EF1 F1 Prec. Recall EF1 F1 Prec. Recall EF1

TCN Model+ 0.945 0.929 0.961 0.735 0.894 0.899 0.889 0.888 0.762 0.787 0.739 0.253
TCN Model+* 0.945 0.928 0.962 0.900 0.892 0.897 0.887 0.941 0.764 0.791 0.739 0.608
TCN Model 0.942 0.925 0.959 0.717 0.899 0.903 0.894 0.885 0.737 0.765 0.711 0.234
TCN Model* 0.942 0.924 0.960 0.896 0.896 0.901 0.890 0.943 0.739 0.769 0.711 0.602
Startsev et al. (Startsev et al., 2019b) 0.939 0.914 0.967 0.868 0.893 0.897 0.889 0.924 0.703 0.788 0.634 0.484
Startsev et al.* 0.939 0.914 0.967 0.883 0.893 0.897 0.889 0.935 0.703 0.789 0.634 0.537
Startsev et al. (Startsev et al., 2019c) 0.937 0.921 0.954 0.882 0.896 0.899 0.893 0.929 0.707 0.724 0.691 0.544
Startsev et al.* 0.937 0.921 0.954 0.892 0.896 0.899 0.892 0.939 0.708 0.725 0.692 0.576

Table 4.2: TCN Model Evaluation. Results for sample-level detection, except column EF1=Event F1
(IoU>= 0.5). Rows marked with * represent the filtered output. Prec.= Precision. + = Our best model.

The use of domain knowledge-based filtering for the outputs also increased event
detection scores according to the metrics proposed by Hooge et al. (Hooge et al., 2018).
With smooth pursuits, in particular, the TCN models roughly tripled their event F-scores,
while the models from Startsev et al. had only modest improvements. Besides, the filter
effect over general sample-level scores was barely noticeable.

The evaluation of feature space and feature scale size has shown mixed results. It is
clear that increasing the scale size led to an overall marginal improvement in classification
performance when compared to the default 5-scale features input. However these gains
did not occur consistently across scale sizes, and smooth pursuits showed the largest
fluctuations. Figure 4.4 exhibits how the F1 and IoU values for smooth pursuits oscillated
with respect to the scale size. Tables 4.3 and 4.4 show the results related to the feature
space study and feature scale size, respectively.

The investigation of the size of the temporal window partially confirmed the hypothesis
that smooth pursuits detection can benefit from larger contexts. With a window size of 1.5
s (385 samples), there was an improvement of 1.3% over the 1 s window (257 samples), but
with a context of 2 s (514 samples), the gain dropped to 0.7%. These results can be seen in
Table 4.5.

A final evaluation with the best configuration in terms of features and context windows
gave us the highest F1 scores achieved for smooth pursuits in the GazeCom dataset. The
results were 94.5% for fixations, 89.2% for saccades, and 76.4% for smooth pursuits.
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Fixation Saccade SP

F1 EF1 F1 EF1 F1 EF1

win 257 0.942 0.717 0.899 0.885 0.737 0.234
win 257* 0.942 0.896 0.896 0.943 0.739 0.602
win 257+std 0.942 0.721 0.898 0.890 0.738 0.239
win 257+std* 0.942 0.896 0.895 0.945 0.739 0.601
win 257+disp 0.942 0.728 0.896 0.880 0.738 0.252
win 257+disp* 0.942 0.895 0.893 0.943 0.740 0.596
win 257+std+disp 0.942 0.730 0.896 0.883 0.740 0.253
win 257+std+disp* 0.942 0.896 0.894 0.944 0.741 0.600

Table 4.3: Feature space study. EF1= Event F1 (IoU >= 0.5), *=Filtered

Fixation Saccade SP

F1 EF1 F1 EF1 F1 EF1

5 Features 0.942 0.717 0.899 0.885 0.737 0.234
5 Features 0.942 0.896 0.896 0.943 0.739 0.602
6 Features 0.943 0.723 0.899 0.887 0.743 0.240
6 Features* 0.943 0.897 0.896 0.943 0.745 0.613
7 Features 0.942 0.725 0.898 0.884 0.745 0.244
7 Features* 0.942 0.896 0.895 0.943 0.746 0.597
8 Features 0.942 0.715 0.897 0.885 0.742 0.235
8 Features* 0.942 0.894 0.894 0.941 0.745 0.599

Table 4.4: Feature scale study. EF1= Event F1 (IoU >= 0.5), *=Filtered

Fixation Saccade SP

F1 EF1 F1 EF1 F1 EF1

Win 257 0.942 0.717 0.899 0.885 0.737 0.234
Win 257* 0.942 0.896 0.896 0.943 0.739 0.602
Win 385 0.943 0.708 0.899 0.884 0.749 0.227
Win 385* 0.943 0.898 0.897 0.943 0.751 0.602
Win 514 0.941 0.694 0.900 0.886 0.744 0.213
Win 514* 0.942 0.898 0.897 0.943 0.747 0.604

Table 4.5: Temporal window width. Results for varying temporal window sizes (257, 358, and 514
samples) of the TCN model. Results marked by * indicate an identical trained model with filtered
output.
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Figure 4.4: Smooth pursuit F-score variation across different scale sizes.

Figure 4.5: Results of our TCN model for fixations, saccades, and smooth pursuits (SP), along with the
reported results from the 1D-CNN-BLSTM model.

4.1.3 Discussion and conclusion
Our results show that the TCN architecture outperforms the state-of-the-art model

with the GazeCom dataset. The most significant improvement was in the classification
of smooth pursuits, with a 3% performance increase, or 5.7% increase over previously
published results when considering the increments in context window width, feature
space, and scale size.

The investigation on feature space and scale size revealed that increasing both dimen-
sions were somewhat beneficial to the TCN classification performance. The impact of
adding novel features, although favorable, was comparatively less significant than the
increase in feature scale size, as the latter provided comparatively higher scores on the
GazeCom dataset, particularly with respect to smooth pursuits.
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The improvement, though, was not consistent with size increments. It could be argued
that saccade detection had no improvement at all, while smooth pursuits had the highest
scores with a 7-scale size instead of the largest 8-scale one. Based on our experiments,
it is still not clear whether the network capacity was not appropriate for a larger set of
input scales using the same hyperparameters, or whether these inputs naturally have a
detrimental effect on training when reaching a certain length.

A similar phenomenon was observed when examining the effect of larger context
windows. Although training with both 1.5-second and 2-second temporal windows resulted
in improved classification performance, the evaluation on the 1.5-second context presented
the general highest scores. It is clear that smooth pursuits had an increased detection rate
with larger contexts, but these results do not support the hypothesis that smooth pursuit
classification scores increase proportionally with window size.

The filter heuristics were also demonstrated to be fundamental when it comes to event
detection with TCNs. This improvement could be explained by the fact that convolutional
architectures are not favored by the sequential learning constraints of recurrent nets, thus
often tainting an event block with one or other wrong predictions. This, of course, can
be harmful depending on the metric chosen for event assessment, but it barely affects
sample-level classification accuracy.

Overall, we demonstrated that our model was capable of surpassing the previous
state-of-the-art architectures on the same dataset using the same metrics. Moreover, TCNs
present some intrinsic advantages such as a lower memory footprint, faster training, and
the ability to learn sequences of arbitrary length.
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4.2 Online eye movement classification
Little is known about the feasibility and performance of deep neural architectures for

online eye movement classification (see Figure 4.6). Moreover, previous research with such
models has been done with offline preprocessing techniques that limit the applicability of
deep neural architectures in an online setting.

Figure 4.6: In the online problem, a classifier does not have access beforehand to future samples
and cannot take too long to make a prediction. Therefore, transitioning patterns and high-frequency
data will usually be more challenging to handle. Here, we see an example of an online classifier that
predicts one sample at a time from sequences of a fixed size. The symbols F, S, and P stand for fixations,
saccades, and smooth pursuits, respectively. Colored samples indicate already classified samples that
are not considered for predictions anymore.

In this study, we devised a few novel techniques aiming to improve not only the general
accuracy in the online 3EMCP but also to turn highly performant models feasible within
constrained wearable settings. The full version of this investigation was first published
in Elmadjian et al. (2022) by Springer Nature.

4.2.1 Materials and methods
Our main architecture is an online TCN (Bai et al., 2018). The proposed model is

composed of four hidden temporal blocks, with 30 units each. Each block comprises two
one-dimensional convolutional layers and a residual connection. Activation between layers
is done via ReLU function, and four different dilation sizes (1, 2, 4, 8) are used. Unlike our
previous model, all convolutions are causal, i.e., any output at time 𝑡 is only convolved
with elements up to time 𝑡, which ensures no leakage of future information. Zero-padding
is employed to make the outputs of the temporal blocks have the same length as the inputs
(see Figure 4.7).

The datasets in which we evaluate the TCN and other baseline models are the Gaze-
Com (Dorr et al., 2009) and the HMR, which we created to overcome the problem of the
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Figure 4.7: Overall schematics of the causal TCN, comprised of temporal blocks. Unlike our previous
investigation, this architecture is of the form seq2one. The letters T and F refer to time step and feature
dimensions, respectively. The symbol @ is used to indicate the kernel size applied to convolutions.

absence of stimuli-driven datasets on this topic, as it can help mitigate the bias of expert
annotators. The HMR dataset is composed of data from 13 participants (6 female) using
a head-mounted 200 Hz Pupil Core eye tracker (Kassner et al., 2014), with a reported
accuracy of 0.6𝑜, and resolution of 192 × 192 pixels. Their ages varied from 21 to 46 years
old, and all of them had a normal or corrected-to-normal vision. Two had a previous
experience with eye trackers. For each participant, we collected the normalized pupil
center data independently from left and right eyes in the eye camera space, totaling 26
video files. Each file has roughly 5 minutes, giving us almost 2 hours of recording.

In terms of statistics, the HMR dataset comprises 1.49 million samples, of which
56.3% are fixations, 6.4% saccades, 25.4% smooth pursuits, and 11.7% blinks. The average
confidence level is 88.9%, automatically provided by the Pupil Capture software, and almost
all confidence level drops are correlated to blink events. Table 4.6 shows a comparison
between each dataset.

To make training and evaluation suitable for online classification, we proposed a multi-
scale one-way feature extraction procedure that gives more importance to more recent
samples. This method avoids leakage from future events to the past by calculating speed
and direction in different time frames, taking the most recent sample of a context window
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Eye Movement
GazeCom HMR

Samples Events Samples Events

Fixations 72.55% 44.93% 56.30% 45.25%
Saccades 10.53% 45.61% 6.46% 28.57%

Smooth Pursuits 11.02% 5.39% 25.47% 9.53%
Noise / Blinks 5.90% 4.07% 11.77% 16.65%

Table 4.6: Ratio of samples and events in each dataset.

as our anchor point, and then performing a series of strides from there to extract the
features. Figure 4.8 illustrates this procedure.

Figure 4.8: With previous deep neural models (Startsev et al., 2019b), the multi-scale feature extraction
step resorted to capturing information that is beyond the context window, with leakage of future
information, and considering all possible time steps (marked in green). Our process, on the other hand,
gives considerably more importance to the most recent samples, processing features only within the
delimited context window and using only a fraction of time steps to minimize the response delay.

A grid search determined the best number of strides used within a context window of
1 s for each dataset. For the HMR, we calculated 8 sets of different scales (strides) for speed
and direction, whereas for the GazeCom we used 10 strides. The scale size is continuously
computed from the latest sample in the context window (i.e., our anchor point) with
respect to the less recent samples, with the scale increasing exponentially according to the
following equation:

stride(𝑥) = ⌈2𝑥−𝑠 × 𝑛⌉ , {𝑥 ∈ ℕ|𝑥 ≤ 𝑠} (4.1)
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where 𝑠 is the maximum number of strides in a given window (i.e., 8 on HMR and 10 on
GazeCom), and 𝑛 is the number of individual samples contained in the same window (200
for HMR and 250 for GazeCom).

We have opted for a 5-fold cross-validation training regimen for the architectures.
Each one of them was trained using 70% of the data. We have reserved 10% of the data
for validation and 20% for testing. No randomization or stratification was used for cross-
validation, i.e., the models were trained with contiguous temporal chunks of data extracted
from the 𝑘 − 1 folds of each dataset in lexicographic order, and then evaluated on the
remaining fold not seen during training, moving the context window one sample at a
time.

A multi-scale sliding window of about 1 s was used to feed the architectures, which
corresponds to 250 samples on GazeCom and 200 samples on HMR. Overall, 2,957,080
context windows were considered on GazeCom and 1,069,027 on HMR. The direction
and speed were calculated along different scales within a window. The hyperparameters
were determined empirically through a grid search with a subset of the datasets. All deep
neural architectures used a dropout rate of 25% and a kernel size of 5 for the convolutional
layers.

All models were trained and evaluated on a desktop computer with an Intel i7-7700
CPU with 16GB of RAM and with an NVidia GeForce GTX 1070 GPU (8Gb VRAM),
running Ubuntu 18.04. The neural net models were implemented in Python 3, using the
Pytorch library (1.8.1). All data, models, and tools developed for this work are available at:
https://github.com/elmadjian/OEMC.

4.2.2 Evaluation and results
To evaluate the proposed TCN model, we compare it against two other online archi-

tectures based on previous offline models in the literature, namely a CNN-BiLSTM and a
CNN-LSTM network (Startsev et al., 2019a). As for a state-of-the-art algorithmic baseline,
we selected the IBD-T (Santini et al., 2016), which is a Bayesian classifier for online eye
movement classification.

We propose the following set of evaluation aspects in this comparison:

• to determine what is the optimal number of time steps of neural online models when
considering information from the past to predict the next pattern. Therefore, we
investigate the impact in the model classification of different extents of time steps
per context window, namely, 1%, 10%, 25%, 50%, and 100% of the context window,
always considering the last sample in the window as the anchor point.

• to explore whether delaying prediction could increase model performance. Consid-
ering that online classifiers are most beneficial for real-time interactive applications
and that human response time to what is considered instantaneous has a significant
latency (Miller, 1968), we propose to study a set of different delays in prediction
within 20, 40, 60, and 80 ms. By delaying our prediction, in theory, the classifier
could have access to more samples from a given pattern to make more qualified
forecasting, which could lead to improved general performance.
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• to investigate whether the online neural architectures can operate swiftly in commod-
ity hardware. Deep neural models are generally known to have a high computational
cost, thus if the evaluated models cannot make predictions within a certain time
threshold, they might not handle the throughput of real-time interactive applications.

• to determine the overall performance of all models in terms of F1-score for both
individual samples and eye movement events on both datasets (GazeCom and HMR).

Precision and recall values on the sample level were calculated based on the aggregated
confusion matrix built after running each partial model against its corresponding test fold
with contiguous eye movement data. To compute the event scores, we considered contigu-
ous labels in both datasets as single events, and we defined a predicted event as the highest
frequency class from a model output within the ground truth span (see Figure 4.9). This scor-
ing criterion tends to be more forgiving than the intersection over union (IoU) (Hooge et al.,
2018), as it does not excessively penalize failures in contiguity for predicted events, and it
is similar to the criterion established by Hoppe et al. (Hoppe and Bulling, 2016).

Figure 4.9: Criteria for the sample and event-level evaluation. On the sample level, we compute the
confusion matrix by comparing each individual sample predicted by the model on a continuous data
stream against the ground truth. We define an event as the set of contiguous labels on ground truth and
we say that the assigned event is defined by the highest frequency class among the predicted samples
within a ground truth event.

The aggregated F1-scores for all models with respect to both datasets are shown in Ta-
ble 4.7. The F1-scores associated with each individual pattern can be seen in Table 4.8.

Based on the probability outputs for each class, we also built the ROC curves for all
deep neural models for both datasets on the sample level, with the respective area under
the curve (AUC) for each model, shown in Figure 4.10.
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Model
F1 Sample F1 Event

Prec Rec F1 Prec Rec F1

I-BDT* 77.96 78.23 75.69 75.06 58.87 55.51
CNN-BiLSTM* 81.03 81.05 80.50 90.44 90.32 90.11
CNN-LSTM* 80.64 80.65 80.15 89.99 89.82 89.65
TCN* 85.79 86.40 85.31 93.25 93.18 92.74

I-BDT+ 74.28 73.97 71.22 77.43 70.22 68.49
CNN-BiLSTM+ 84.46 84.45 83.73 87.82 86.79 86.47
CNN-LSTM+ 84.85 84.94 84.26 87.99 87.00 86.70
TCN+ 85.89 86.14 85.51 88.45 87.66 87.39

Table 4.7: Models tagged with * indicate results for the GazeCom dataset whereas models tagged with
+ are associated to the HMR dataset. The highest values are highlighted in bold.

Model
F1 Sample F1 Event

Fixation Saccade Pursuit Blink Fixation Saccade Pursuit Blink

I-BDT* 86.80 51.02 42.16 - 68.25 47.24 37.71 -
CNN-BiLSTM* 88.38 82.09 40.65 57.17 90.82 95.77 48.48 75.98
CNN-LSTM* 88.09 82.16 38.94 57.86 90.30 95.57 45.92 64.14
TCN* 91.97 83.90 57.30 59.64 93.60 97.16 61.15 77.38

I-BDT+ 82.55 56.26 49.96 - 76.51 64.25 45.70 -
CNN-BiLSTM+ 88.86 69.53 85.64 62.85 89.12 91.50 81.11 74.31
CNN-LSTM+ 89.19 70.41 86.49 63.48 89.36 91.28 81.85 74.96
TCN+ 90.07 72.07 88.89 63.73 90.00 91.87 84.17 75.02

Table 4.8: Models tagged * are associated with the GazeCom dataset and the ones tagged with + to the
HMR dataset. The Blink columns also include noise data. The highest values are highlighted in bold.

The TCN model presents the highest scores in both aggregated and individual eye
movement patterns, though the difference was more salient against other deep neural
models on the Gazecom dataset, particularly when considering event-level scores. The
gap between models was also more accentuated on underrepresented individual patterns
in both datasets, that is, saccades on HMR and smooth pursuits on Gazecom.

For latency measurements, we simulated trained models from all three neural architec-
tures against a continuous stream of out-of-sample data, considering only the required
time for a model to make a prediction, that is, discarding the elicited time for preprocessing
the features. Figure 4.11 shows the average prediction latency and the standard deviation
for each model on GPU and CPU.

For real-time applications with more relaxed latency constraints, we assessed whether
increasing the sizes of look-ahead windows could improve classification accuracy. For this
reason, we also evaluated the models considering look-ahead windows of 0 (no delay), 20,
40, 60, and 80 ms. Figure 4.12 shows the results for both HMR and Gazecom datasets.

Finally, we investigated how advantageous would be to train models with few or larger
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Figure 4.10: ROC curves and AUC aggregated values using macro-averaging of all classes on sample
level.

Figure 4.11: Mean prediction latency using 100 ms of time steps for a single instance of the designed
sliding window.

numbers of time steps, as both TCNs and LSTM-based networks can learn long time-
dependent relationships in the feature space. Our results indicate that all architectures
peak their performance when training with approximately 100 ms of sequential past
information (20 and 25 time steps, respectively, on HMR and GazeCom datasets). These
results can be observed in Figure 4.13.

4.2.3 Discussion and conclusion
Our results indicate that the proposed TCN model consistently achieves the highest

scores, not only in terms of general classification performance but for individual patterns
as well. This outcome is in accordance with the previous offline investigation, in which we
showed that a non-causal TCN architecture was able to surpass other deep neural models
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Figure 4.12: Performance of deep neural models along different look-ahead steps, ranging from a lag
of 0 to 80 ms.

Figure 4.13: Performance considering different time steps when looking into the past. Time steps are
equivalent between HMR and GazeCom in terms of temporal span.

in similar settings.

In general, all deep neural architectures scored higher than the I-BDT algorithm, our
baseline model for 3EMCP online applications. This comparison with the baseline, though,
has several caveats. To be fair to the limitations of the I-BDT, we trained and tested it only
with individual users, and we excluded user videos where fixations, saccades, and smooth
pursuits could not be found simultaneously, aside from blinks or noise, which were not
fed to I-BDT.

Despite training the I-BDT using the window placement and size that maximized its
performance, the deep networks were able to achieve not only higher accuracy but a
greater generalization as well. The cross-validated test folds were intentionally filled with
data from users that were not seen during training and validation in the case of the HMR,
and aside from feature preprocessing, no other treatment, such as noise reduction, data
alignment, or exclusion, was employed to improve model performance.

This level of generalization and accuracy comes with the cost of a more complex
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training procedure compared to the I-BDT. This makes these models potentially unfit
for scenarios where settings such as the eye tracker model or data stream frequency
are constantly changing. On the other hand, if no significant changes are expected, this
training happens only once, while the I-BDT always requires a per-user calibration.

The results using the HMR dataset show that the TCN F1-score is about 14.3% higher
on sample level and 18.9% higher on event level than the scores from I-BDT, while on
GazeCom these differences were 9.6% and 37.2%, respectively, resulting on an overall
improvement of ~12% on sample level and 28% on event level. Considering the differences
by class, the most noticeable one was with respect to smooth pursuits (sample: 27%; event:
31%).

When examining only the neural networks, the differences between the TCN and the
other two CNN models were more evident with the GazeCom dataset, perhaps because
it has a larger data variance compared to the HMR dataset. The margins in favor of the
TCN might be an indication of its larger capacity, which is corroborated by the larger gap
observed between the TCN and the second-best scores with respect to smooth pursuits,
with a margin of 16.7% on sample level and 15.2% on event level on GazeCom. Overall, the
average improvement of the TCN over the other neural models was about 3.0% and 1.7%
on sample and event levels, respectively.

The results are generally consistent among all deep neural nets when comparing F1-
sample and F1-event scores, but the same cannot be said about the I-BDT. While there
was an increase from F1-sample to F1-event scores for the deep architectures (TCN: 4.7%,
CNN-LSTM: 6.0%, CNN-BiLSTM: 6.2%), the I-BDT showed a performance drop when
compared to its own F1-sample scores of 2.7% on HMR and of 20.2% on GazeCom.

One surprising finding was that the TCN was the slowest model in terms of prediction
latency. Though all three neural architectures performed in the same order of magnitude,
we expected the TCN to be more responsive due to its complete parallel structure when
compared to the CNN-BiLSTM and CNN-LSTM, both of them with recurrent structures
that have to be evaluated serially. There are a couple of explanations for that. First, our
TCN implementation was not built completely on top of native optimized libraries from
PyTorch, but the most likely reason is the fact that this TCN model is more complex, i.e., it
has roughly 36,000 training parameters, while the others have about 20,000.

Overall, all deep architectures showed a prediction latency of at most 2 ms, within
the expected throughput of typical commodity eye trackers, in particular the ones used
to create both datasets (200 and 250 Hz), indicating that the trained models are indeed
light enough to be deployed in real-time interactive applications. Another evidence that
the adapted neural models are very lightweight is that there was no reduction in latency
when using GPUs instead of CPUs for prediction, suggesting that the data transfer time
dominated the process in the case of GPUs.

As for considering “look-ahead” buffers, that is, delaying the model prediction to
improve classification accuracy, we noticed a perceptible gain. The results indicate that all
architectures behave consistently, though distinctively, within each dataset. On GazeCom,
larger thresholds seem more beneficial. Nonetheless, there is a clear trade-off in which
the contribution of increasing the look-ahead window starts to fade away. Based on our
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results, a reasonable look-ahead window, for all models, seems to be at 40 ms and at 60 ms
for the HMR and GazeCom datasets, respectively.

Finally, in terms of time steps needed to build our feature tensor, our results indicate
that roughly 100 ms is the ideal amount of sequential time steps from the past that need to
be encoded for all models to achieve the highest scores in both HMR and GazeCom datasets.
This goes contrary to the belief that more time steps lead to performance improvement,
as is the case with offline classification. One explanation could be the increasing entropy
between older time steps and the most recent sample in a context window, whereas in the
offline problem, we can leak information from the future and traverse data in both ways
to increase accuracy.

In summary, we proposed a novel preprocessing technique and adapted state-of-the-art
deep neural models for the online classification of eye movement patterns. We showed, in
particular, that the TCN architecture presents a larger capacity, achieving higher F1-scores
than the I-BDT and the 1D-CNN-LSTM networks in the online 3EMCP. By modifying
the deep neural models from seq2seq to seq2one architectures, training them with just a
few time steps, and increasing the importance of more recent samples, we managed to
achieve high throughput on sample prediction (approximately 500 Hz) using off-the-shelf
hardware while maintaining high accuracy.

Our investigation also shows that, though it is possible to achieve reasonable accuracy
levels with zero-length look-ahead buffers, the performance of all methods improves as we
increase the amount of look-ahead information, which is particularly relevant during eye
pattern transition. All methods have presented a 2 to 3% improvement in F1-score using a
look-ahead window of 40 to 60 ms. For typical human-computer interaction applications
that require response times under 100 ms, this increase might not represent a perceptual
delay to the user.
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4.3 Online reading detection
Since reading is an essential part of human activity and considered one of the most

critical skills for which we have not been biologically programmed (Reichle et al., 1998), it
is reasonable to expect that many individuals will engage in reading tasks every day all
the time, something for which a wearable system could display its potential benefits. For
instance, if a wearable device could recognize these patterns and behaviors, it would be
aware of the most appropriate moments to interrupt or shield the user against unwanted
messages or provide better assistance in performing a search task that is context-relevant
to the reading activity.

However, since wearables must stay on all the time and a typical head-mounted eye
tracker works with at least one camera, it is imperative to devise a new way to reliably
recognize eye behavior in a low-power scenario (Pouwelse et al., 2001). Thus, in this
investigation, we proposed a novel algorithm for reading recognition, which is arguably a
more complex pattern comprised of saccades and fixations, that can operate at very low
frame rates while still maintaining a comparable accuracy performance to the state-of-the-
art. This investigation was first published in Elmadjian et al. (2016, 2017).

4.3.1 Materials and methods
In terms of eye movements, reading activity can be characterized as an interchange

between saccades and small fixations with a 200-300 ms duration. The saccades are typically
short in length and are predominantly observed from left to right along a text line. When
the eyes change to the next line, they perform a larger saccade known as regression, which
is a term also employed to designate rereading (Rayner et al., 2001).

Other eye movements do not contribute significantly to reading (Lee, 1999). Thus,
relying just on saccades and fixations, and assuming some ideal conditions like the reader’s
inertia and a fixed distance from the text, it is possible to devise a simple model for reading
behavior. In fact, if the horizontal eye movements are plotted against time, one can observe
a pattern known in the literature as the staircase pattern (Lee, 1999) (Figure 4.14). This
behavior is also complemented by the eye movements in the y-axis, characterized by a
gentle slope against time.

Previous reading detection algorithms have already taken advantage of this pat-
tern (Buscher et al., 2008; Campbell and Maglio, 2001a; Kollmorgen and Holmqvist, 2007).
However, since all of these algorithms work with at least 50 to 60 images of the
pupil per second and considering that a typical fixation lasts between 200 and 300
ms (Goldberg and Kotval, 1999), a very low sample rate scenario (e.g., 5 images per second)
would make it impossible to differentiate saccades from fixations and it would be very
difficult identifying outliers due to a miscalibration.

Thus, to correctly recognize reading in a low sampling setting and minimize unwanted
effects, we propose a different approach. First, we model the reading pattern using a non-
deterministic finite automaton (NFA) where the transitions between states are regulated by
different thresholds (see Figure 4.15). These values, on the other hand, are calculated based
on the eye movement information between two samples in the euclidean two-dimensional
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Figure 4.14: The horizontal and vertical movement of the eye plotted against time. Horizontal samples
portray a staircase pattern used in reading models. The vertical samples, on the other hand, show
almost a gentle slope, with major displacements in regressions.

normalized space. Using the slope determined by each pair of samples, the algorithm
establishes the transitions to one of the three following states: long left saccades (LS), short
right saccades (RS), or fixations (see lines 2-11 in Algorithm 1).

Figure 4.15: The low-level NFA that is used by the proposed algorithm to identify fixations and the
direction of saccades. The variable d indicates the slope calculated between two consecutive samples,
whereas the value 𝛿 is an abstraction for the fitting criteria, which is shown in Algorithm 1.
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The final step is to build another layer of an NFA upon the previous one. Each state
of this new automaton is composed of three consecutive saccades in the low-level NFA
(see Figure 4.16). Other kinds of transitions are simply ignored. The remaining procedure
is similar to others in the literature: every time there is a valid state transition in our
NFA, points are assigned and if the accumulated score exceeds a certain threshold, reading
detection is triggered.

Figure 4.16: The highl-level NFA that assigns a positive score the the 𝑟𝑒𝑎𝑑𝑖𝑛𝑔_𝑠𝑡𝑎𝑡𝑒 variable in
Algorithm 1 at each transition. All other possible transitions not mapped here are considered invalid.
Every time a right saccade (RS) or a left one (LS) is detected, a queue of three slots named 𝑤𝑖𝑛𝑑𝑜𝑤 is
updated with this information, which triggers a call over this NFA to update 𝑟𝑒𝑎𝑑𝑖𝑛𝑔_𝑠𝑡𝑎𝑡𝑒.

We call this method IRDA (Invariant Reading Detection Algorithm). The resulting
pseudocode is shown in Algorithm 1. We use a queue named 𝑤𝑖𝑛𝑑𝑜𝑤 to store the last
three saccades, while the 𝑑𝑥 and 𝑑𝑦 variables keep the slope components in the current
iteration for the x-axis and y-axis, respectively. There are also three constants: 𝜎, which
is used to differentiate small from big saccades, 𝑘, which is a parameter to determine
the rate of change in the reading state, and 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, the parameter to trigger reading
recognition.

To assess the performance of IRDA, we designed an experiment in which 9 individuals
— 5 male and 4 female — took part. Each participant was introduced to a random sequence
of texts and images, for which three different tasks were required: if the content was
just a text, the volunteers had to read it at their own pace; if it was a text but with a red
countdown timer above it, the participants were encouraged to read it as fast as possible;
finally, if an image was shown, the participant had to count a large number of objects on
it.

All 15 texts used in the experiment had 120-170 words. They were all biographical
excerpts from famous personalities. After each text, a multiple-choice questionnaire was
applied just to assess if the content was actually being read. All 10 images showed a set of
at least 30 repeated objects and were used to induce a non-reading eye movement behavior
in the participant so that could account for false positives during analysis. Since we were
also interested in determining whether the reading pattern was preserved with skimming
behavior, some of the texts showed a countdown timer, and in this case, the participant
was required to read them as fast as possible before the time ran out.

Eye data was collected at 30 Hz using the Pupil Eye Tracker and posteriorly subsampled
to 10 Hz and 5 Hz. For each rate, there was a total of 135 samples — 45 of reading activity, 45
of skimming, and 45 of interaction with images. With this information in hand, we sought
to evaluate the specificity and sensitivity of IRDA along with others with a similar score
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Algorithm 1 Reading detection with a low-sampling rate
1: while there is a next eye sample do
2: 𝑑𝑥 ← 𝑝𝑜𝑖𝑛𝑡.𝑥 − 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑝𝑜𝑖𝑛𝑡.𝑥
3: 𝑑𝑦 ← 𝑝𝑜𝑖𝑛𝑡.𝑦 − 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠_𝑝𝑜𝑖𝑛𝑡.𝑦
4: if (𝑑𝑥 > 0 and |𝑑𝑥 | < 𝜎) and 𝑑𝑦 ≈ 0 then
5: push 𝑅𝑆 onto 𝑤𝑖𝑛𝑑𝑜𝑤
6: else if (𝑑𝑥 < 0 and |𝑑𝑥 | > 𝜎) and 𝑑𝑦 < 0 then
7: push 𝐿𝑆 onto 𝑤𝑖𝑛𝑑𝑜𝑤
8: else if 𝑑𝑥 → 0 and 𝑑𝑦 ≈ 0 then
9: //fixation: do nothing

10: else
11: 𝑟𝑒𝑎𝑑𝑖𝑛𝑔_𝑠𝑡𝑎𝑡𝑒 ← 𝑟𝑒𝑎𝑑𝑖𝑛𝑔_𝑠𝑡𝑎𝑡𝑒 − 𝑘/3
12: end if
13: if 𝑖𝑠_𝑣𝑎𝑙𝑖𝑑(𝑤𝑖𝑛𝑑𝑜𝑤) then
14: 𝑟𝑒𝑎𝑑𝑖𝑛𝑔_𝑠𝑡𝑎𝑡𝑒 ← 𝑟𝑒𝑎𝑑𝑖𝑛𝑔_𝑠𝑡𝑎𝑡𝑒 + 𝑘
15: end if
16: if 𝑟𝑒𝑎𝑑𝑖𝑛𝑔_𝑠𝑡𝑎𝑡𝑒 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
17: //reading detected
18: else
19: //reading not detected
20: end if
21: end while

system found in the literature, i.e., Campbell and Maglio (2001a) and Buscher et al. (2008).
The best parameters for each one at 30 Hz were determined empirically and employed
later for the lower rates (10 Hz and 5 Hz). To standardize the evaluation, we also used
a normalized screen space, with values varying from 0 to 1 on the x-axis (left to right)
and y-axis (bottom to top). Specifically for our algorithm, the constants were assigned as
follows: 𝜎 = 0.15, 𝑘 = 15, and 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 30.

Power consumption analysis

In order to assess the power-saving gains of reducing image resolution and frame
rate for a wearable setting, we also conducted another user study with ten volunteers
(undergraduate and graduate students, one female), in which they wore a binocular head-
mounted Pupil Labs eye tracker (Kassner et al., 2014), seated in a fixed chair.

The task consisted of looking at 17 visual targets (concentric rings presented in random
order) displayed on a 22” monitor, from which 9 targets were used for calibration and the
remaining for error estimation (see Figure 4.17). Four 2D markers were placed at each
corner of the monitor so the monitor surface could be reliably detected on the scene image.
For each target we recorded 2 seconds of video, that roughly corresponds to 60 frames
for the eye and scene cameras. The two eye cameras had a resolution of 480 lines and the
scene camera of 720 lines.

Data were collected under two different conditions: the baseline and the central
conditions. In the baseline, participants used a chin-rest to keep their heads steady at
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Figure 4.17: Target disposition that was shown to participants during the data collection procedure.

about 55 cm in front of the monitor. For the central condition, participants did not use the
chin-rest and could perform natural head movements to look at the targets.

Recorded eye videos were down-sampled to 15, 10, and 5 frames per second (FPS), and
the resolutions were reduced to 240, 120, and 60 lines. Then an offline adapted version of
the Pupil Labs software was used to process each video combination of FPS × resolution.
The scene video remained at 720 lines (its original value) for all conditions.

Power consumption was estimated indirectly by measuring the CPU time to perform
the same task at different resolutions and frame rates, using the psutil Python library.
During this estimation, only one of the processor cores (Intel Core-i7 3517U, 1.90 GHz)
was activated. The processor was configured to operate statically at its maximum fre-
quency.

4.3.2 Evaluation and results
The results for the specificity of IRDA and its performance comparison in different

sampling rates are summarized in Figure 4.18, whereas the results for sensitivity can
be seen in Figure 4.19. The Kolmogorov-Smirnov test showed that the data follow a
normal distribution with a 𝑝-value < 0.05. Since the population variance was unknown,
we calculated the average of the two measures with a 95% confidence interval using a
Student’s t-distribution.

Our algorithm showed a hit rate superior to 90% in all sampling rates, indicating
its capacity of maintaining the same level of performance without changing the input
parameters as the rates decrease. A similar scenario was observed for the false negative
data, with a stable performance of around 80% in all the rates, while the other baseline
techniques displayed a significant decrease in the true positive rate at lower FPS. The
balanced accuracy for all algorithms is shown in Table 4.9.
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Figure 4.18: Results for sensitivity (true positive rate) with sampling rates of 30 Hz, 10 Hz, and 5 Hz.

Figure 4.19: Results for specificity (true negative rate) with sampling rates of 30 Hz, 10 Hz, and 5 Hz.

Frame Rate

Method 30 Hz 10 Hz 5 Hz

Campbell and Maglio 72.45% 66.13% 53.38%

Buscher et al. 70.52% 64.53% 48.83%

IRDA 87.97% 85.41% 85.95%

Table 4.9: Balanced accuracy of all evaluated algorithms for reading detection at different frame rates.

Though no volunteer showed a reading pattern when exposed to image samples, the
same cannot be said for the skimming samples. Thus, we decided to discard the skimming
data of the analysis, as many of the participants dismissed the protocol when prompted
for a skimming response, with the majority of them performing a reading activity at a
normal speed. Also, it was not possible to accurately predict reading behavior below 5
Hz with any of the investigated techniques, so we set 5 Hz as the bottom value in the
analysis.

As for the low-power investigation, results show that accuracy and precision in gaze
estimation are not affected by using an eye image with 240 lines instead of 480 lines. In
fact, with 240 lines, the gaze estimation error remains below 1𝑜 of visual angle, as it can be
observed in Table 4.10. Another interesting result is that accuracy and precision are not
affected when the FPS is reduced from its original value of 30 Hz to 15, 10, and 5 Hz. For
video resolution of 120 and 60 lines, the mean error in gaze estimation was between 8𝑜

and 25𝑜 for all FPS. This error is likely due to the fact that at such low resolution, pupil
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contours are hard to detect. Hence, we did not include those results given the larger error
and standard deviation.

Center Baseline

FPS/Lines 480 240 480 240

30 0.75±0.45 0.78±0.49 0.83±0.7 0.81±0.55

15 0.76±0.46 0.77±0.47 0.84±0.75 0.81±0.55

10 0.75±0.44 0.77±0.47 0.82±0.64 0.80±0.54

5 0.75±0.44 0.77±0.50 0.86±0.83 0.79±0.55

Table 4.10: Gaze estimation error for the center and baseline conditions.

As for the CPU time, the Pupil algorithm was evaluated on a set of videos with the same
content (eye moving to 17 different positions) but with different image resolutions (480
and 240) and FPS (30, 15, 10, and 5). For the 240 lines resolution, we found that, compared
to the time spent in the native configuration of 480 lines at 30 FPS, the CPU time was
reduced by 62% at 5 FPS and 480 lines, and about 91% at 5 FPS and 240 lines. Figure 4.20
exhibits the overall results considering all resolution and frame rate combinations.

4.3.3 Discussion and conclusion
In comparison to IRDA, the other two state-of-the-art methods for reading detec-

tion were clearly affected by lower rates. In particular, the algorithm from Buscher et
al. (Buscher et al., 2008) was the most affected in sensitivity, as it needs to cluster samples
for fixations before trying to detect saccades. As for specificity, the other algorithms seemed
to improve their performance with lower frequencies, but since this was accompanied by
a severe decrease in sensitivity, this has to be interpreted as an overall loss of classifying
performance, as it can be observed in Table 4.9.

Despite achieving superior levels of balanced accuracy in contrast with the other
methods, it is not possible to state that our algorithm is better suited for reading detection in
general, as the other techniques were tailored to work at higher frequencies, such as 50 and
60 Hz, and our dataset was recorded at 30 Hz, so we could not test the baseline methods in
their original configuration. Nevertheless, our algorithm showed a substantial consistency
of performance even in the lowest resolution, which was our primary goal.

Another important remark is that our reading detection model uses differential behavior
observed in samples instead of raw gaze points. This is a fundamental difference between
our method and the ones from Buscher et al. and from Campbell and Maglio because it
makes our algorithm much more robust to issues like aliasing and the increasing weight
of outliers in lower frequencies.

As for the data collection process, it should be said that a non-negligible amount
of users during the task of counting objects on images actually displayed a temporary
reading behavior with their eyes, which means that a specificity of 100% is, in practice, not
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Figure 4.20: Measured average CPU time to process a single frame of eye footage using the Pupil
algorithm for different resolutions and frame rates. This evaluation was performed on a single core of
an Intel i7 3517U processor.

achievable with this dataset, although the precise figures for maximum specificity possible
were not determined for this study.

Other than that, our brief exploration of gaze estimation accuracy and power consump-
tion in constrained conditions showed that it is possible to save a considerable amount of
power (more than 90%) operating at lower resolutions (i.e. 240p) and frame rates (5 Hz)
without harming the performance of algorithms such as our reading detection model. This
level of savings is very relevant in the context of wearable computing.

Overall, we sought to demonstrate that it is possible to devise solutions to critical
limitations in wearables, such as energy consumption. We dealt, in this case, with the
reading problem, developing the only algorithm — to the best of our knowledge — that is
capable of reliably recognizing reading in low-sampling scenarios, such as 5 Hz.
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Chapter 5

Gaze Estimation

Gaze estimation is a challenging problem, particularly in the context of wearable
computing. Unlike traditional setups, wearable devices are designed to be mobile, leading
to constant user motion and a lack of a fixed point of reference. Additionally, the use of
wearable devices outdoors introduces further challenges such as variations in ambient
light and interference from infrared radiation, which can render many eye-tracking tech-
niques ineffective. Moreover, interactions with objects at varying depths in the user’s
field of view introduce parallax effects that can further compromise the accuracy of gaze
estimation.

In this chapter, we will address some of these issues by investigating volumetric gaze
estimation as an alternative solution in the context of wearable computing. This effort goes
in line with one of our goals stated previously of enhancing 3-dimensional gaze estimation
techniques to handle the problem of interacting with objects at different depths.

Among our contributions, we propose novel estimation techniques that leverage the
depth sensing capabilities of 3D RGB-D cameras to estimate a 3D point of regard in the
camera frustum space using only a single camera setup for each eye. While the results for
the depth estimation component are still not as accurate as the directional one, we have
achieved promising improvements in 3D gaze estimation. Additionally, we introduce a
new dataset containing volumetric data collected from multiple users, which is publicly
available for further research at https://github.com/elmadjian2/3D_gaze_dataset.
A complete description of the work was first published in Elmadjian et al. (2018).

5.1 Investigation on volumetric gaze estimation
Most applications involving gaze-based interaction are supported by estimation tech-

niques that find a mapping between gaze data and corresponding targets on a 2D surface.
However, in Virtual (VR) and Augmented Reality (AR) environments, interaction occurs
mostly in a volumetric space, which poses a challenge to such techniques. With the depth
dimension, problems such as collinearity become apparent.

Accurate point-of-regard (PoR) estimation, in particular, is of great importance to AR
applications, since virtual objects have to be perfectly aligned with the real world, and
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most known setups are prone to parallax error and target ambiguity. In this work, we
expose the limitations of widely used techniques for PoR estimation in 3D and propose a
new calibration procedure using a non-calibrated head-mounted binocular eye tracker
coupled with an RGB-D camera to track 3D gaze within the scene volume (i.e., the scene
camera frustum).

The few attempts available in the literature to solve this problem impose several
constraints. In the case of remote gaze tracking, this is a more straight-forward task, since
both eyeballs can be determined on camera space, as well as the 𝜅𝜃 and 𝜅𝜙 associated
with the angular difference between optical and visual axes (Guestrin and Eizenman, 2006;
Hennessey and Lawrence, 2009). In the case of head-mounted eye trackers, the works that
explored this problem presented either an already calibrated hardware (Lidegaard et al.,
2014) or a very constrained calibration procedure (Abbott and Faisal, 2012). Ultimately,
none of these techniques were applied to the camera scene volume.

5.1.1 Materials and methods
In this investigation, we are concerned with gaze estimation for non-calibrated binocu-

lar head-mounted eye trackers in the scene volume with very few constraints. Therefore, in
our calibration procedure, we do not require the user to be completely still, neither we have
information about the coordinate system of eye cameras and the position of both eyeballs.
Using an RGB-D camera attached to the user’s head that generates a point cloud of the scene
environment, we conducted a pilot study with 11 participants to investigate the feasibility
of a calibration procedure for the camera frustum in such conditions. We will refer to scene
volume or camera frustum instead of 3D estimation to stress the difference between our
approach and 2D surface calibration procedures applied to 3D environments.

With geometric models, one can assume that fixation in space occurs when there is an
intersection between both vectors aligned with the visual axis. However, since vectors
in 3D rarely intersect, a reasonable substitute for this requirement could be the midpoint
of the shortest segment separating these two lines (Hennessey and Lawrence, 2009), as
shown in Figure 5.1. Still, the absence of high-resolution cameras and simplifications in
the 3D model of the eyeball may account for errors that compromise in a significant way
gaze depth estimation, as shown in Figure 5.2. In this study, we investigate how well a
simplified geometric model can be calibrated to the scene camera frustum in contrast
with an appearance-based approach, given a set of targets in space covering the user’s
field-of-view (FoV).

Architecture description

A binocular head-mounted eye tracker from Pupil Labs was used to collect gaze data
at 30 Hz with a resolution of 480p. The Intel Realsense R200 RGB-D camera was adapted
to the tracker frame as the scene camera. The R200 device was configured to run at 60
Hz and capture one RGB image and one depth image from the scene at each frame. All
these devices were connected to a laptop PC to process and record the streams. The
head-mounted setup is shown in Figure 5.3.

The software used to compute eye features, such as the projected pupil centers and
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Figure 5.1: Since two estimated vectors in 3D space coming from the right (𝑛𝑅) and left (𝑛𝐿) eyes will
most likely not intersect, the midpoint of the shortest segment between gaze rays is a common measure
of gaze estimation for geometric-based models.

Figure 5.2: Top-down representation of the effect of angular error (green ellipse) in gaze direction
estimation: while it barely affects positioning in the plane facing the user, it has a significant impact
regarding depth error, as it can be seen by the largest axis of the diamond-shaped area.

Figure 5.3: The Pupil binocular eye tracker coupled with an Intel Realsense R200 camera is used as a
head-mounted setup.
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3D gaze vectors, was a modified version of the one provided by Pupil Labs (v0913) that
also allowed us to record eye streams. We developed our own software, using OpenCV
and librealsense libraries, to detect markers in the frustum, identify them, and report
information about their position in 3D space. The technique used for marker detection
resorted to a similar approach proposed by (Fiala, 2005). Once detected, the coordinates at
the center of the marker were back-projected to 3D through a mapping procedure between
the RGB and depth frames. A mean filter was applied over a window of 5 frames to smooth
depth noise.

A portable smart projector was attached to a tall tripod to show the markers on a wall
during the calibration procedure. A core routine was written to administer data acquisition
from the eye tracker and scene camera and dispatch commands to a program running on
the projector that controlled information being displayed on the wall, such as the marker
to be fixated.

Calibration procedure

We designed our calibration procedure to be conservative about the number of targets
that should be employed in the process, as there was no previous information about how
the camera frustum should be spatially sampled. Therefore, we decided to use five planes
at different depths from the user. Each plane had a grid of 5 × 4 binary AR markers for
training purposes and a 4×3 internal grid used for testing. The relative position of the grids
is shown in Figure 5.4. The size of the planes and their markers also changed with respect
to depth to fill up the scene camera FoV, maintaining the same angular ratio between
them.

Figure 5.4: Disposition of training (green) and testing (pink) targets per plane during the calibration
procedure.

The planes were defined by positioning the participant at 5 different depths from a
projection wall: 0.75 m, 1.25 m, 1.75 m, 2.25 m, and 2.75 m. These distances were considered
taking into account some limitations associated with the R200 camera, as it senses depth
reliably only from 0.7 m to 3 m.
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The procedure started by placing the participant 2.75 m from the wall and adjusting the
projection center so it could be aligned with the camera scene FoV center. After that, we
showed all the training markers on the wall and the volunteer was asked to follow a green
target that remained static in the center of each marker at a time, while the system gathered
30 synchronized samples from each different camera feed. Samples were only recorded if
eye features and markers were properly recognized. During this stage, participants got a
chance to practice and were instructed to move their eyes to the correct target prior to
triggering the recording.

Once the acquisition of training targets for a plane was complete, the participant was
asked to remain still and repeat the same procedure now for the testing targets, which
were shown in a similar fashion. Following that, we moved to the next depth plane by
placing the user closer to the projection wall and we repeated the previous routine of
centering the screen and showing the markers for data acquisition. An opportunity to redo
part of the procedure was offered whenever the individual noticed a mistake. Figure 5.5
shows a diagram that summarizes the whole method, while Figure 5.6 depicts it.

Figure 5.5: Architecture of the calibration procedure. A Data Manager routine controls the experiment,
requesting the projector to show training or testing targets and recording synchronized data from scene
and eye cameras. Recorded data is used later for gaze estimation algorithms.

Estimation procedures

Our geometric model is constituted by two normal vectors to the pupil centers provided
by the Pupil tracking software. These vectors are a result of a 3D eyeball model that is
built from multiple observations of projected pupil contours, which are approximated
to ellipses. Assuming a camera pinhole model and a weak perspective projection, the
centers of these ellipses are considered to be part of a sphere surface, which is regarded as
a rough approximation of the eyeball. A detailed explanation of this method can be found
in Świrski and Dodgson (2013).

To estimate the viewer’s gaze depth, it is assumed that is necessary to find the con-
vergence point of both gaze rays. However, this can only be achieved by determining the
origin of the rays, i.e., the position of both eyeballs. This is not a particular challenge for
remote eye trackers or even for some calibrated head-mounted devices, but it is still a
challenge with a non-calibrated setup.
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Figure 5.6: Projection of the targets used in calibration with respect to depth, from 2.75 m to 0.75 m
(Figs. a-e). Figure f illustrates the 5 different user positionings in this setup.
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With no constraints and prior knowledge about the user anatomy, finding the eyeball
position in the scene camera space can be treated as an optimization problem. To reduce
the complexity of the search space, we propose an approach that breaks the optimization
procedure into two steps: first we compute the eyeball position and then we determine the
rotation that places its gaze vectors into the scene camera space. This computation assumes
that angular disparity patterns are roughly preserved among gaze vectors between camera
spaces. Therefore, given a set of angles between gaze vectors in the eye camera space and
a set of targets sampled in the scene camera frustum, the eyeball position is determined by
minimizing the squared disparities between associated angles in both coordinate systems,
as shown in Equation 5.1.

𝐹(𝑒) =
𝑁−1

∑
𝑖=1

|||(𝑛𝑖 ⋅ 𝑛𝑖+1) − (
𝑡𝑖 − 𝑒
||𝑡𝑖 − 𝑒||

⋅
𝑡𝑖+1 − 𝑒
||𝑡𝑖+1 − 𝑒||)

||| (5.1)

The idea here is to minimize a function 𝐹 , where 𝑒 represents the eyeball position, 𝑡𝑖
stands for gaze targets, and 𝑛𝑖 for the corresponding gaze vectors. A reasonable initial value
for 𝑒 is (0, 0, 0). Although this procedure is also non-convex, the search space is compara-
tively reduced. Also, as the number of disparities involved in the search increases, the local
minimum also decreases, making convergence faster and closer to ground truth.

Once a reasonable estimate is determined for both eyeballs, we proceed to compute the
rotation that transforms the gaze vector in eye camera space to the appropriate orientation
and position in the scene camera coordinate system. This is summarized by the parametric
equation (5.2), where 𝜆 is a free parameter. Again, this is an optimization problem where
we want to compute the rotation matrix (𝑅) and the translation (𝑇 ) that minimize the
cosine distance between transformed gaze vectors and corresponding normalized vectors
with origin at the 3D eye center and pointing towards the target. This can be expressed
by (5.3). During minimization iterations, the parameter 𝛽 can be used to penalize larger
dissimilarities, speeding up convergence, if achievable.

𝑒𝑐𝑎𝑚 + 𝑇 + 𝜆𝑅n (5.2)

𝑓 (𝑅) =
𝑁

∑
𝑖=1

(1 − 𝑅𝑛𝑖 ⋅
𝑡𝑖 − 𝑒
||𝑡𝑖 − 𝑒||)

𝛽
(5.3)

Finally, the PoR in 3D is computed as the midpoint of the shortest segment between
both rotated gaze rays 𝑛𝑙 and 𝑛𝑟 , with respective origins in 𝑒𝑙 and 𝑒𝑟 . Assuming that this
segment (𝑟) is perpendicular to both rays and given the parametric equations of each ray,
we solve for 𝜆𝑙 and 𝜆𝑟 to determine the midpoint 𝑚 of this shortest segment, as shown in
Equations 5.4, 5.5, 5.6, and 5.7. A diagram illustrating the geometric estimation pipeline is
shown in Figure 5.7.

𝑟 = 𝑒𝑙 − 𝑒𝑟 (5.4)
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𝜆𝑙 =
(𝑛𝑙 ⋅ 𝑛𝑟)(𝑛𝑟 ⋅ 𝑟) − (𝑛𝑙 ⋅ 𝑟)(𝑛𝑟 ⋅ 𝑛𝑟)
(𝑛𝑙 ⋅ 𝑛𝑙)(𝑛𝑟 ⋅ 𝑛𝑟) − (𝑛𝑙 ⋅ 𝑛𝑟)(𝑛𝑙 ⋅ 𝑛𝑟)

(5.5)

𝜆𝑟 =
(𝑛𝑙 ⋅ 𝑛𝑙)(𝑛𝑟 ⋅ 𝑟) − (𝑛𝑙 ⋅ 𝑟)(𝑛𝑙 ⋅ 𝑛𝑟)
(𝑛𝑙 ⋅ 𝑛𝑙)(𝑛𝑟 ⋅ 𝑛𝑟) − (𝑛𝑙 ⋅ 𝑛𝑟)(𝑛𝑙 ⋅ 𝑛𝑟)

(5.6)

𝑚 =
(𝑒𝑙 + 𝜆𝑙𝑛𝑙 + 𝜆𝑟𝑛𝑟 + 𝑒𝑟)

2
(5.7)

Figure 5.7: Pipeline of the geometric method.

As for the appearance-based model, we opted for a Gaussian processes regression due
to its flexibility and reportedly good results from similar problems (Sesma-Sanchez et al.,
2016; Sugano et al., 2013).

For the purpose of finding a regression between gaze data and scene targets, we selected
a Squared Exponential Kernel, which is shown in Equation 5.8, with initial parameters
𝜎 = 1.5 and scale factor 𝑙 = 1.0, as this configuration has demonstrated better generalization
properties during our preliminary trials.

𝐾(𝑥, 𝑥′) = 𝜎2 exp( −
(𝑥 − 𝑥′)2

2𝑙2 ) (5.8)

As with the geometric approach, the most difficult feature to learn is arguably eye
vergence. Some authors have proposed to model this movement as a logarithmic function
of the interpupillary distance (IPD) (Kwon et al., 2006). Although there is some truth to
that, in practice IPD is only markedly noticeable on camera when the targeted object is
very close to the user. After 1.0 m, this measurement starts to be seriously affected by lack
of resolution and noise in the sensor, as changes in IPD become small. Furthermore, IPD
might not be constant in regard to depth, especially for fixation points situated obliquely
to the viewer’s center of view. IPD cannot be used with a non-calibrated hardware setup
in which both eye cameras do not share the same coordinate system.

Considering these limitations, we approached the problem of depth regression sep-
arately, i.e., building a Gaussian processes regressor for gaze depth and another one for
gaze direction in the projected scene camera plane. The results of both regressors were
combined later to perform gaze estimation. A diagram illustrating the process is shown in
Figure 5.8.
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Figure 5.8: Pipeline of the Gaussian processes regressor method.

5.1.2 Data collection

Figure 5.9: Gaze estimation from a participant using the geometric approach (on the left) and the
regression-based one (on the right). Green points indicate the ground truth, while red ones are the
corresponding estimates.

We collected gaze data from 11 subjects (5 women) with ages ranging between 22 to 35
years old. All of them had a normal or corrected-to-normal vision during the procedure,
which followed the protocol that is fully described in 5.1.1.

The dataset comprises information about both left and right normalized pupil centers
in each image (𝐿𝐸2𝐷, 𝑅𝐸2𝐷), as well as both normalized gaze vectors acquired through 3D
eyeball modeling (𝐿𝐸3𝐷, 𝑅𝐸3𝐷), and the ground truth targets in 3D coordinates provided
by the RGB-D camera (𝑅𝑆3𝐷). During this process, we also acquired grayscale frames from
both eyes and scene cameras for debugging purposes, although this information was not
integrated into the dataset due to size limitations. Therefore, a valid sample was defined
as:

𝑆 = {𝑅𝑆3𝐷, 𝐿𝐸2𝐷, 𝑅𝐸2𝐷, 𝐿𝐸3𝐷, 𝑅𝐸3𝐷}

A total of 30 samples were used per target, which accounts for roughly 1 second of
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observation with our current architecture. This value was chosen considering the subject’s
likely extenuation due to the large number of targets in the experiment. Additionally, to
minimize individual errors and increase comfort during data acquisition, each participant
received a device to activate the moment of recording each target being gazed at. Table 5.1
summarizes information about the number of samples for training and testing targets. Our
dataset is publicly available at ℎ𝑡𝑡𝑝𝑠 ∶ //𝑔𝑖𝑡ℎ𝑢𝑏.𝑐𝑜𝑚/𝑒𝑙𝑚𝑎𝑑𝑗𝑖𝑎𝑛2/3𝐷_𝑔𝑎𝑧𝑒_𝑑𝑎𝑡𝑎𝑠𝑒𝑡.

Samples Training Testing
Per Target 30 30
Per Plane 600 360
Total 3000 1800

Table 5.1: Summary of the number of training and testing targets collected per user.

5.1.3 Evaluation and results
The precomputed gaze vectors from each eye were used separately as data input for

the geometric model, while a four-dimensional vector containing the data from left and
right projected pupils were assembled as input for the Gaussian processes regressor, a
step necessary as depth can only be inferred through simultaneous information from both
eyes.

In total, five planes were used for training of both methods, while two intermediate
planes for testing were discarded, keeping only the closest (0.75 m), the farthest (2.75 m),
and the middle one (1.75 m). The reason for that was to assess whether intermediate planes
would increase or harm depth estimates, considering the results that have already been
reported in another study by Lee et al. (2017).

We evaluated accuracy in terms of depth error, angular error, and Euclidean distance
to ground truth. Figure 5.10 summarizes the basic statistical results with respect to each
metric by plane using all 5 planes for prediction. These results are compiled in Table 5.2.
Figure 5.11 portrays the impact of the number of training planes for gaze estimation. Since
there was no significant difference in using 3 to 5 planes for training, we report only the
analysis of variance (ANOVA) results for the latter.

Figure 5.10: Average angular error, Euclidean distance, and depth error for each testing plane sepa-
rately.



5.1 | INVESTIGATION ON VOLUMETRIC GAZE ESTIMATION

67

Figure 5.11: Average angular error, Euclidean distance, and depth error with respect to the number of
planes used for calibration.

Metric Geometric GPR
Depth error (m) 0.538 ± 0.171 0.194 ± 0.118
Angular error (deg) 5.105 ± 2.594 4.911 ± 2.878
Euclidean distance (m) 0.585 ± 0.173 0.266 ± 0.103

Table 5.2: Summary of the results for the three metrics considering all the testing planes.

Regarding the depth estimate metric, a two-way repeated measures ANOVA showed
that there was a main effect on the method (𝐹(1, 10) = 50.74, 𝑝 < 0.001), indicating that
the regression approach was more accurate than the geometric one. However, there was
no noticeable effect on the plane or interaction between the method and the plane.

Regarding the angular error, despite the regression-based technique being apparently
more accurate, no significant effect was observed either on the method, given high standard
deviation values. An effect on the plane (𝐹(2, 20) = 4.04, 𝑝 < 0.05) was observed, suggesting
that angular accuracy is not homogeneous among distinct planes.

For the Euclidean distance metric, a significant effect was observed again on the method
(𝐹(1, 10) = 65.31, 𝑝 < 0.001), suggesting once more the Gaussian processes regressor as a
more accurate estimator. No significant effect was perceived on the plane, or between the
method and the plane though.

5.1.4 Discussion and conclusion
To the best of our knowledge, this was the first work that attempted to perform this

kind of gaze estimation for the purpose of establishing PoR in scene volume using a
head-mounted eye tracker. During this process, we investigated and further developed
two different estimation techniques for this problem: one geometric and one appearance-
based.

Besides providing an entirely new dataset for volumetric gaze estimation, we also
explored other minor problems, such as estimating the eyeball position through angular
disparities between the different camera coordinate systems.

It is clear from our results that gaze estimation in a scene frustum is still an open
challenge, especially in terms of gaze depth. A first observation from our results was
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that the number of calibration planes has a noticeable impact on estimation accuracy.
Therefore, even throughout a geometric approach, a single-plane calibration does not
suffice to provide useful gaze estimation in the scene volume.

We also noticed higher angular errors at the closer plane (0.75 m), particularly with
respect to the appearance-based method. This might contradict the expectation that the
farthest plane (2.75 m) should yield the worst results. Yet, one possible explanation for
this outcome could be the effect of angular disparity of vergence on closer planes.

Overall, it was possible to observe that by adding the depth dimension to the calibration
problem, XY-plane estimates also tend to degenerate in both approaches, which was
expected at some level, as depth sensing provided by the R200 camera had a considerable
amount of noise.

A point that needs to be cleared is how contributive the adaptive response of the ocular-
motor system is to input data quality. In other words, further investigation is necessary to
find out whether the speed or stability of human focusing response is affecting estimation
so that more samples should be acquired per target to assess appropriate gaze depth.

That said, both methods considered for this study presented different strengths and
weaknesses. The geometric model showed a tendency of preserving the spatial relationship
between testing targets, although inaccurate estimations of the rotation matrix and the
eyeball position clearly compromised the whole system, as gaze estimates tended to appear
shifted by a relatively constant degree from the user perspective. The appearance-based
method does not suffer from this problem, but estimates seemed to be more random
comparatively. Figure 5.8 illustrates both of these phenomena.

Although the Gaussian processes regression might have shown improved results in two
metrics, it should be noted that it requires a large number of targets for training to provide
a suitable regression, whereas the geometric model, at least in theory, requires fewer
targets. This over-reliance on the number of samples by the appearance-based approach
can easily be observed in Figure 5.11.

Finally, despite somewhat large errors, it is possible to devise some uses for the proposed
techniques in AR scenarios, such as allowing the user to have different contextual interfaces
based on gaze depth, or triggering access to detailed information about scene objects by
looking at an HMD or through it. With improvement in estimation accuracy, vergence-
based controls for 3D interaction could also be feasible.
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Chapter 6

Gaze interaction

In this chapter, we present a diverse set of interactive techniques that we have in-
vestigated for the wearable scenario, as part of this thesis. Although some still need to
be validated empirically with more thorough user studies, they represent a tentative
and exploratory effort in the direction of a viable gaze-based interaction in the wearable
domain.

While gaze-based input may not be as efficient as manual input (Majaranta and Räihä,
2002), it allows for privacy and hands-free interaction, besides being a natural indicator of
attention (St. John et al., 2004). Our position, nevertheless, is that, though possible, gaze-
based interaction is not appropriate for every task, since the eyes are our primary source of
information about the environment, and using the eyes as a primary means of interaction
would heavily constrain the user’s perception.

For some scenarios, however, the use of gaze would be not only feasible but might in-
deed improve the overall user experience. In the envisioned future of everything connected
and “smart”, micro-interactions abound (Ashbrook, 2010). Micro-interactions are about
self-contained moments that revolve around one piece of functionality. Although small
and quickly forgettable, they occur everywhere. From adjusting the room temperature
or dimming the lights to turning appliances on and off or connecting devices, they are
the glue that ties together different features in a myriad of devices and platforms (Saffer,
2013). We unconsciously perform micro-interactions all the time, but we rarely realize
their presence, except when they fail.

As an effort to fulfill the last of our three goals stated in the introductory part of this
thesis, this chapter reports some core ideas, design principles, proof of concepts, and early
results of different techniques that leverage gaze in these brief interaction scenarios that
are so pervasive in the wearable computing world.

Similarly to the chapter on eye pattern recognition, each section here describes a
self-contained investigation, with locally independent goals and conclusions. In particular,
we cover three different research projects: GIMIC, GazeBar, and V-Switch. Part of the
contributions presented was first published in Elmadjian and Morimoto (2021).
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6.1 Gaze-based micro-interactions with AR-enabled
devices

With the combined emergence of Internet-of-Things (IoT) and Augmented Reality
(AR) technologies, our everyday lives will be increasingly surrounded by smart devices,
potentially collaborating with each other to create personal AR-enhanced ecosystems.
Once these smart environments become available, how do we interact with them in an
intuitive and efficient way? Currently, the most common approach is using a mobile device.
This solution is commercially convenient in many ways: smartphones are widely available
and they offer off-the-shelf hardware to support AR apps. But from the user’s standpoint,
this may not be the best choice. Many tasks associated with smart devices are very simple
and brief, which means that the cognitive and temporal cost to start engaging with a smart
appliance might be higher than the actual task.

In this work, we discuss some of the foreseeable interactive scenarios ahead, introducing
what we call Gaze In Micro-interactions (GIMIC). The idea behind it is that we can leverage
natural eye contact and brief gaze gestures for efficient short-term interactions.

6.1.1 GIMIC use cases and design principles
The kitchen is an interesting home scenario due to the high number of smart appliances

that could become available. For example, once the user gets to the kitchen, all smart
appliances such as the microwave, sink, tap, coffee maker, and toaster, just to name a few,
might fight for the user’s attention, creating confusion on the heads-up display (HUD)
(see Figure 6.1. Observe that in this scenario, even when devices are placed side by side,
their physical dimensions will probably create enough separation for a head-mounted
gaze tracker to robustly determine which object is being gazed at.

Figure 6.1: The kitchen can be a stage for several smart appliances and use cases for GIMIC. There are
many opportunities for brief tasks, such as dimming a specific lamp, checking for missing ingredients in
the fridge, warming the milk in the oven, preheating the convectional oven, or changing the temperature
of the tap water.

Following natural conversational behavior when we talk to multiple people, we use
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eye contact to start an interaction with a smart device. Before that, to remind the user
of which objects in the scene are interactive, the HUD can visually enhance (or tag) the
smart objects within the field of view of the wearable AR camera.

For example, by equipping food containers with RFID tags, the smart refrigerator
’knows’ its contents. When the user makes eye contact with the refrigerator, its status
and the list of its contents can be displayed on the HUD. Using an AR display one could
create much more elaborate experiences, such as x-ray vision to see the contents of the
refrigerator. We will keep the solutions simple so we can focus on the benefits of using
GIMIC.

After the user finds all the ingredients, he can fill up a cup of milk and put the cup
in the microwave. Setting up the microwave manually is simple enough, but using the
wearable platform might be even simpler if the platform is aware of the context, i.e., that
the user wants to warm a cup of milk, and knows the user’s habits and preferences. Still,
the user might want to adjust the temperature from warm to hot. By keeping eye contact
with the microwave, the user can see its interface on the HUD, and select the desired
temperature by gaze or speech.

Similar to social situations when people establish eye contact and wink or blink to send
a quick message, once eye contact is established with a smart device, a quick eye gesture
could be used for simple and short interactions. GIMIC’s purpose is to speed up these
brief communications without causing eyestrain, which is a common phenomenon when
resorting to active gaze selection for long periods of time. Besides, since micro-interactions
are performed over a limited set of options, interfaces become naturally less cluttered and
can make better use of screen space, which makes the user less susceptible to eye-tracking
issues related to accuracy and precision.

GIMIC can also be used as a first step in long interactions. For example, if the user
wants to check the power consumption history of the microwave, the wearable interface
could offer an option to open the appropriate app on the user’s smartphone.

Design principles

Figure 6.2: An application of the GIMIC principle. (A) The user performs gaze contact with a smart
fan through her AR-enhanced glasses. (B) Once engaged with the fan, the user starts an eye gesture to
the right (red arrow) to change the fan speed. (C) After looking back at the UI to complete the gesture
(red arrow), the user gets feedback indicating that the fan speed has changed.
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The following four items embody the guidelines to create interactive applications using
GIMIC. Figure 6.2 illustrates these principles with a use case.

• Simplicity. GIMIC assumes uncluttered interfaces and easy commands. Gaze point
estimation is not as accurate and precise as other traditional pointing mechanisms,
so selectable targets on an interface should not be placed very close — which also
limits the number of targets that can be shown. Besides, bloated feedback naturally
degrades performance due to visual search. As far as commands go, GIMIC should
use simple eye gestures because they are easy to learn and perform, as well as being
more secure against the Midas touch problem (Jacob, 1991).

• Brevity. Because the eyes are primarily used as a source of visual information to
us, we should not rely on gaze as a predominant means of interaction. Additionally,
continuous active use of gaze can lead to discomfort and eyestrain. Therefore, GIMIC
should only be applied to tasks that are naturally brief or perhaps too short and
self-contained parts of a complex task. Requiring active use of gaze for long periods
of time can be perceived as awkward and unnatural to users (Sibert and Jacob, 2000).

• Effortlessness. Engaging and disengaging with smart devices should be perceived as
effortless. That is why we support the idea of using natural conversational behavior
to toggle engagement. Because our attention is correlated to eye fixation, accessing
a smart device menu this way would go along with the transparent computing
paradigm (Zhang and Zhou, 2006). Also, gaze interaction often lacks precision, and
therefore mistakes will happen, perhaps more frequently than with other modalities.
Thus, the cost of correcting a mistake should be low. A simple directional gaze
gesture takes only a fraction of a second, aside from being more robust to precision
drifts.

• Swiftness. GIMIC should be fast. We argue that GIMIC can be particularly advan-
tageous if it can help the user accomplish tasks that become more worthwhile if
completed quickly. Therefore, the process of engaging with a smart device, making
a selection, and then disengaging should not take more than a few seconds. That
is why we claim that dwell-time techniques, though easy and comfortable, are
unsatisfactory for brief tasks.

6.1.2 GIMIC prototype
Based on the aforementioned design guidelines, we assembled a wearable prototype,

as shown in Figure 6.3. It is composed of a binocular Pupil Labs eye tracker and the Vuzix
M100 Smart Glasses. The M100 has a monocular HUD and other inertial sensors, such as
an accelerometer and a gyroscope, and can be mounted in front of the right or left eye to
be used as a smartphone extension. In our prototype, we only set as active the eye camera
located on the same side of the HUD.

The M100 is attached to the head-mounted eye tracker using a custom mount we
designed, and manufactured with a 3D printer. This mount allows users to adjust the
height of the HUD in front of their eyes. The head frame can be fastened to the user’s
head using an elastic band to avoid slippage during its use.
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Figure 6.3: Prototype showing the Vuzix M100 Smart Glasses attached to a Pupil Labs head-mounted
eye tracker using our custom mount.

Ideally, the smart glasses should be independent of other devices and run all the
computations required by wearable applications, including heavy image processing tasks,
such as AR scene understanding, pupil tracking, and gaze estimation. Due to hardware
processing limitations, we have used a notebook as the host of our personal network
where the M100 is connected through a TCP/IP wireless link, and the eye tracker through
a USB port.

The software architecture is shown in Figure 6.4. There are 5 modules that run in the
notebook: the eye tracking software, the gaze data server, the WebSockets server,
the gaze HUD, and the application. There are two modules running on the M100: video
renderer and head gestures detection.

Figure 6.4: Software architecture of the personal network. The left block contains the software
components running on the notebook host and the right block shows the components running on the
M100.
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The eye tracking software detects the pupil in the images of the Pupil eye camera and
estimates the observed point in the images of the Pupil scene camera, using a transfor-
mation computed from a 9-point calibration procedure. A second calibration is required
to estimate gaze positions on the HUD. Figure 6.5 shows the HUD calibration interface.
Additionally, this module detects 4 simple eye gestures. Each gesture starts by looking
at the center of the HUD and then looking up, down, left, or right, and returning the
gaze to the center. Each gesture can be associated with a gaze-activated command (i.e., a
micro-interaction).

After calibration, the system sends the gaze data streams over 0MQ sockets, an asyn-
chronous messaging library. This data is read by the gaze data server and stored in a
circular queue. Any wearable application registered in the personal network can read the
streams from the sockets.

Figure 6.5: The HUD gaze calibration interface. After a 9-point calibration on the HUD, the panel
shows the calibration points (blue circles) and estimated gaze (red crosses), along with accuracy and
precision in pixels. Trapezoidal areas around the HUD are the areas used to execute 2-step gaze gestures.

The WebSockets server is a proxy between the application and the HUD. Applications
can send a video stream to the HUD via a 0MQ socket. The WebSockets server receives this
stream and sends it to the HUD via WebSockets. An HTML5 application running in the
M100 reads the video stream from the WebSockets server and renders it on the HUD. The
communication via the WebSockets server is bidirectional since the wearable applications
running in the M100 can also detect head gestures using the embedded gyroscope and
send them to the WebSockets server. The server then sends this information over 0MQ
sockets to be read by any registered application in the personal network. Although we
implemented a fully functional head gestures detection module to allow for multimodal
interaction, we conducted our pilot study focusing only on gaze.

The HUD gaze shows an interface for training gesture execution. Because these
gestures have no eccentric target to guide the saccade (differently from Ohno (1998)
and Diaz-Tula and Morimoto (2015)), the user must look outside the HUD area.

The application module is the software that implements the interface between the
user and a smart device. It receives input from the gaze data server, the gaze HUD, and
the WebSockets server (for head gestures detection). The interface is shown on the HUD
during the interaction.
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The modules running on the smart glasses are implemented in HTML5 and have two
main functionalities. The video renderer module receives a video stream from the host
(via WebSockets server) and renders it on the HUD. The head gestures detection module
detects four different head gestures (tilt to the left or right, and turn the head up and
down) using the gyroscope embedded into the Vuzix. Detected gestures are sent to the
WebSockets server, which in turn sends them via 0MQ sockets to the application.

6.1.3 Evaluation and results
We have conducted a pilot study to compare the performance of two interactive

scenarios with smart devices: one with our wearable prototype using GIMIC versus a
mobile device. We have chosen a mobile device as our comparative baseline since this is
the most widely adopted platform to manage smart appliances.

Six volunteers participated in the pilot study (1 female), all able-bodied, with normal
or corrected-to-normal vision. All participants reported being very comfortable with
interactive techniques for mobile devices. Three of them said they had previous experience
with eye-tracking devices.

The gaze-enhanced wearable platform prototype was used to control three different
digitally rendered devices: a lamp, a fan, and a thermostat. Instead of using actual IoT
appliances, we decided to use AR markers in their place to reduce complexity and increase
environmental control (see Figure 6.8). This decision also provided us with means for
video-based localization and engagement.

For each device, the interface of its wearable application was developed to allow
simple commands such as turning it on/off, and adjusting the speed of the fan, or the
temperature set on the thermostat. These applications were specifically designed to be
controlled using micro-interactions — either with gaze or mobile touch input. Figure 6.6
shows the interfaces of the lamp, fan, and thermostat apps on the smart glasses. Note
that the commands were placed on the sides (left, right, up, and down) so that they could
be activated using a corresponding directional gaze gesture. For the mobile phone we
implemented an application in Qt/QML having 3 tabs, one for each device, as shown
in Figure 6.7. We also considered using the AR tags for mobile, but we noticed that the
phone’s tracking capabilities and processing power would not be on par with the host
computer.

Figure 6.6: GIMIC applications to control a smart lamp (left), a smart fan (center), and a smart
thermostat (right).

The study follows a within-subject design with interaction mode (GIMIC vs mobile
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Figure 6.7: The mobile application with a tab for each smart device. The lamp (left) has an on/off
switch button and a dimmer slider. The thermostat (right) also has on/off switch and a wheel for
temperature.

phone) as the independent variable and task completion time as the dependent variable.
Participants started with either GIMIC or mobile (randomly and balanced) and completed
a set of 12 trials using one of the conditions. After a short break of roughly 3 minutes,
they started the set of 12 trials using the other interaction mode. Before the set of trials,
volunteers participated in a brief training session to learn the tasks using each mode.

To use the wearable platform, participants first completed the standard Pupil Labs
calibration procedure with 9 points. The calibration points were displayed on a 24" monitor
placed about 60 cm from the participant’s head. After calibrating the eye tracker with
its scene camera, participants were subjected to the HUD 9-point calibration procedure.
Following this step, they were asked to practice gaze gestures in each of the four direc-
tions.

Each set of 12 trials started with a welcome message indicating which interaction
mode was going to be tested. Participants had to press the space bar to step through the
experiment. For each trial, a brief instruction was presented, such as “Turn the lamp on”
or “Set the fan to high”. The volunteers had to press the space bar to start the trial after
reading the instruction, and press the space bar again when the task was completed. The
time for completion was considered as the interval between the two presses. Instructions
for the next trial immediately followed the end of a trial, until all 12 were completed.

Figure 6.8 shows the initial screen for the tasks using the wearable platform. The
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Figure 6.8: Initial screen shown during the experiment consisting of the smart objects and their
corresponding AR markers.

application that controls each device was shown on the HUD after the user established
eye contact with the corresponding AR marker. After engaging with the desired device,
the user had to identify the correct command and perform the corresponding eye gesture.
The participant was allowed to end the trial after the wearable interface was updated with
the new device state.

To evaluate the performance in the mobile scenario, the phone was initially always
placed on the table in front of the user, facing down. To complete a trial, the user had to pick
up the phone, unlock it using a 3-stroke gesture, open the application that controlled the
devices, select the appropriate device, and configure it according to the instructions. Figure
6.7 shows the mobile phone application to adjust the lamp and thermostat parameters. At
the end of each trial, the phone was reset to start at the home screen for the next trial
and placed facing down on the table again. The application was located on the top left
corner of the second page, so it was easy to activate using one gesture and one tap after
the phone was unlocked. The same location was used during practice sessions.

Results for all participants are shown as box plots in Figure 6.9. The lower and upper
horizontal lines of each box correspond to the 1st and 3rd quartiles. The median is shown
in red, and the limits of the dashed lines indicate the minimum and maximum values not
considered outliers.

Because of the small sample size and the lack of evidence for a parametric distribution in
both cases, we opted for a non-parametric test to assess the statistical significance of these
results. Since we used a within-subjects design with correlated samples and two conditions,
we ran a one-tailed Wilcoxon signed-rank test. Despite its lesser statistical power, we still
managed to observe that GIMIC’s completion time on the task was significantly smaller
than the time required in the mobile scenario (W=1, p = 0.016).

Observe that the GIMIC median total task time to complete 12 trials was below 10
seconds for all participants. Only participants 5 and 6 had a few outliers, of more than 20



78

6 | GAZE INTERACTION

Figure 6.9: In the left, results for all participants in the mobile scenario. In the middle, are the results
for all participants with GIMIC. In the right, the aggregated results for both scenarios.

seconds (not shown in the chart). Figure 6.9 shows the results using the mobile phone.
Observe that the median time for most participants was above 10 seconds, with a few
outliers above 20 seconds (not shown in the chart).

Figure 6.9 also shows the results considering all participants for each interaction
mode. As can be observed, the grand median for GIMIC was 4.7 seconds, while the grand
median for the mobile phone was 11.2 seconds. We can also notice in Figure 6.9 that the
time distribution for the mobile phone was almost symmetric, while for GIMIC it was
right-skewed, basically due to participant 5 having a larger median than the others.

6.1.4 Discussion and conclusion
In this investigation, we discussed some scenarios that could benefit from GIMIC. We

stress that GIMIC is only appropriate when engaging with smart devices to perform brief
tasks with simple commands. There are several other situations in which interacting with
smart devices requires more complex techniques, such as long text entry or manipulation
of 3D objects rendered in AR. Despite GIMIC having demonstrated significant gains in
performance over the baseline method, there are several other relevant dimensions that
were not addressed in this pilot study, such as user experience.

In spite of some technical difficulties, all users were able to complete the tasks using
GIMIC, on average, in less than half the time they took to complete an analog scenario
using the mobile phone, with a statistically-measured significance. This result can be
even more remarkable if we consider that both the prototype’s hardware and software
architecture were very experimental and prone to unexpected behavior when compared
to the mobile platform.

For instance, we believe that the fact of two participants having shown outliers greater
than 20 s was a result of momentary pupil tracking issues — but it could also be related to the
volunteer’s struggle in performing the correct eye gestures. This difficulty could indicate,
for example, that the training session should have been longer prior to the trials. In the
mobile condition though, the variance was smaller, indicating a more consistent behavior
from volunteers, but it could also have been due to familiarity with the platform.

It could be argued that requiring the user to pick up the phone, unlock it, and finally
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start the app was not a fair experimental choice in comparison to GIMIC. We refute
this argument by stating that our goal was to compare interactive scenarios, not simply
interactive modes. Besides, the browsing latency with mobile trials was not observed in
practice, since the app was placed in the same screen location, which allowed participants
to remember it. But even if we managed to turn the mobile platform into a wearable one —
i.e., a device that is always on and available to the user — we argue that GIMIC still presents
potential advantages that go beyond task performance, such as user privacy, consistency
with user visual attention, or hands-free interaction with distant devices.

In the pilot study, we limited the GIMIC selection mechanism to gaze gestures, despite
also implementing head gestures. Our goal was to demonstrate its feasibility in scenarios
with brief interactions, but there is no reason why GIMIC could not be combined with
other hands-free interaction modes, such as speech and head gestures. In fact, we see and
advocate GIMIC as an enhancing principle for the whole interactive scenario.
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6.2 Exploiting the Midas Touch for seamless
interaction in 2D

In this investigation, we explored the idea of taking advantage of the Midas touch
problem (MTP) (Jacob, 1991) to design seamless interactive techniques, instead of creating
safety measures to avoid it. We argue that mechanisms such as dwell-time or touch selec-
tions are like breaks that can be removed under certain circumstances so that the user can
achieve higher states of flow.

The concept of flow (Nakamura and Csikszentmihalyi, 2014) regards a highly focused
mental state where users are fully immersed in the primary task they are performing. It is
highly desirable to create interaction designs that allow users to "flow". In typical computer
applications, such as text editors, users can fully focus on writing (the primary task) after
they become comfortable using the interface. Typical graphical user interfaces (GUIs) use
hierarchical menus for controlling and configuring an application and frequently used
resources are placed in menu bars for quick access. Easy transition between resources
or interaction modes provided by the interface facilitates the user to achieve a state of
flow.

The transition between modes can disturb productivity though, as users have to
temporarily relinquish their primary task and navigate through the interface to select
the desired mode. Gaze might be helpful in this sense, to accelerate pointing and menu
navigation. Dwelling at a target until it gets selected is the most common method used to
circumvent the MTP. It is not ideal though: short dwell times might still cause involuntary
selections and long dwell times slow the interaction. Using gaze for pointing and some
other mechanism for selection, such as touching or clicking a button (Drewes and Schmidt,
2009), has been suggested as a natural multimodal method robust to the MTP.

In the first part of this “seamless gaze interaction” exploration, we propose a proof
of concept where the interface options are triggered by “just looking” at them. In the
following sections, we describe how this can be achieved without suffering from the ill
effects of the Midas touch problem.

6.2.1 GazeBar: designing a seamless mode-switching
interaction

GazeBar is both a novel interface and gaze interaction technique that exploits the
original concept of "just-look" for target selection, i.e., no dwell, gesture, touch, or click
is required when combined with manual input for the primary task. GazeBar interaction
design was inspired by MAGIC Pointing (Zhai et al., 1999) and takes advantage of the
spontaneous and characteristic gaze paths made by the user when switching modes in
GUIs. Figure 6.10 illustrates the four steps required to switch modes using GazeBar.

First, we assume there is an active mode (blue button in the GazeBar shown in the
leftmost picture) and the user is focusing on his or her primary task, which is located
within the interface central area. When a change of mode is desired, the user directs his
or her eyes toward a bar on the bottom edge of the screen, looking for the appropriate
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Figure 6.10: Steps required to switch modes using GazeBar. When the user decides to switch modes,
she looks at the GazeBar and hovers over different options on the menu (in yellow). The last gazed
option is selected when her gaze leaves the GazeBar.

mode option. While the gaze is within the bar area, the bar visually indicates which mode
is being targeted (yellow button). Upon locating the desired mode, the user looks back
at the central area, resuming the primary task. The currently active mode is defined by
the last gazed option, and a short visual feedback is shown to the user. Different than
gaze-and-touch techniques, no manual confirmation is required.

To give the impression to the user that safe selections are done by simply looking at a
button, we use a trigger mechanism similar to reverse-crossing (Feng et al., 2014): once
the gaze is captured in the GazeBar area, a selection is only confirmed after leaving it,
allowing the user to freely navigate in the bar area. To determine which mode option is to
be set, we resort to the minimum distance between the estimated gaze point and a button,
so no dwell time is required.

Modes in GazeBar are sorted hierarchically so that the state of secondary modes only
becomes available if the parent’s mode is selected first, as shown in Figure 6.11. With
respect to the interactive logic, this is somehow similar to the idea of hierarchical pie
menus, or pEYEs (Urbina and Huckauf, 2010), though our design presents stark differences
in visualization and functionality.

Figure 6.11: GazeBar options are sorted hierarchically. Root mode options are always at the bottom.
One option can trigger a secondary bar, which, by its turn, can trigger another secondary bar. Gazebar
interface design supports at most four levels of submenus.

The content and appearance of GazeBar are also context-sensitive, meaning that if the
user is gazing at an application for which there are mode options available, a corresponding
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GazeBar will pop up on the screen. But no GazeBar is shown if the gaze context contains
no known applications.

Lastly, we do not enforce any coordination between gaze and manual input. Unlike
other multimodal gaze-based approaches, we decouple the primary task from the mode-
switching task, making manual input solely responsible for the former, and gaze for the
latter, promoting a higher state of flow.

Interface design

The use of gaze on GUIs imposes several constraints. In particular, gaze-based interfaces
have to at least account for eye-tracking accuracy and eye jittery. Mode buttons in GazeBar
were created to span roughly 2𝑜 on screen, which is above the higher bound gaze estimation
error found in most commercial eye trackers. Due to eye jittery, we also place buttons
relatively apart from each other.

Gaze focus over a mode button is determined by spatial hysteresis (Hansen et al., 2018).
We say that the user is gazing at a button if the Euclidean distance between the estimated
gaze point 𝐺 and the button center 𝑀 is less than an empirically determined threshold 𝑑.
But we say the user stopped gazing if this distance is greater than 2 × 𝑑, as indicated by
Figure 6.12. This is used to avoid involuntary switches due to eye-tracking instability.

Figure 6.12: GazeBar uses an implementation of spatial hysteresis (Hansen et al., 2018) based on two
criteria to tell when gaze focus over a target starts and ends. Once a gaze estimate is trapped inside a
target, GazeBar only considers it out with a larger threshold. This avoids involuntary selections due to
eye tracker fidelity or eye jittery.

Also, while gazing at a mode button, GazeBar highlights its color and the target is
expanded. Expanding a target is a way to secure gaze focus detection, since the target
spans over a larger screen area and its neighbors are pushed away, lessening selection
ambiguity.

Involuntary selections, although still possible, are mitigated by interface design. The
bar’s one-dimensional format and its placement on screen edges make it more unlikely for
accidental gaze incursions, as the user’s primary task is located at the central part of the
screen. Also, GazeBar and its secondary bars can always be deactivated at the user’s will
(Figure 6.11). As for involuntary changes, they can always be avoided by fixating on the
currently active mode before leaving the bar area.

To minimize the use of screen space, secondary menus are always presented as another
bar, and these bars are also placed near the edges of the screen. The hierarchical structure
of menus and submenus is demarcated by lines connecting the parent mode option with
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the child bar. By default, the current path chosen by the user in the options tree is always
visible, which means that multiple bars might be shown on the screen at the same time.
This is done to speed up the activation of secondary options without impairing the visibility
of the primary task.

6.2.2 GazeBar: prototype
We have built a prototype designed to be used on top of the open-source application for

digital painting Krita (Foundation, 2020). In this section, we address some implementation
details, the devices used in our setup, and how GazeBar can be adapted as an overlay to
any other application intensive on mode switching. The code for this proof of concept
(PoC) is available at https://github.com/elmadjian/GazeBar.

The PoC was designed to run on laptops and desktop PCs. We used the Tobii 4C eye
tracker, which operates at 90 Hz, providing a constant stream of eye-gaze points for a
single 24" monitor at 75 Hz (see Figure 6.13). Data is collected through a mixed C#/Python
application in the backend, which is also responsible for managing the communication
between GazeBar and Krita.

Figure 6.13: On the left, is a screenshot of our prototype, while on the right we demonstrate its use
case with a digital pen and a graphics tablet.

The GazeBar interface was completely written in QML. The interface controls the
actual user interaction with mode buttons, secondary bars, and eventual switches. Changes
in the bar state that affects Krita are signaled to the Python backend module using the
PySide library for Qt 5. Mode switches are mapped to Krita through hotkeys, which
means that some fine-grained input changes, such as color picking, are simply not possible
with GazeBar’s PoC. However, Krita allows us to create custom hotkeys for any discrete
mode available in the GUI, thus enabling GazeBar to capture most of the mode-switching
workflow.

Expert users working with digital painting or image editing often make simultaneous
use of keyboard and graphics tablets. Non-experts, however, have very limited knowledge
of keyboard hotkeys or key + pen combos for mode switching. These users rely on mode
options available on the GUI and, therefore, can benefit the most from our PoC.

By using our PoC, the user does not need to lift up the pen and move it to change
modes, thus saving manual work. Let us say that the user wants to select a different



84

6 | GAZE INTERACTION

brush. The brush options can be found by navigating through the hierarchical options
tree. Remember that there is no timeout or specific gestures for a selection. Upon fixating
on a bar, the user can explore the brush options freely. The last one gazed before moving
the eyes back to the painting canvas will indicate to the system that an input change was
made. If a wrong brush is selected, recovering from the error is as simple as gazing at the
correct brush and focusing back on the painting.

Since GazeBar does not expect a hand-gaze coordination event, our PoC can be easily
adapted to any other application where mode switching is frequent. The only requirement
is that the application provides the possibility of changing modes via shortcut keys. The
expected adaptation effort would be in terms of changing mode icons, defining a new
mode hierarchy, and mapping new shortcuts.

6.2.3 Gazebar: comparative design analysis
The literature has mixed results regarding the efficiency of gaze input in contrast with

traditional manual input. Some studies revealed that gaze can be significantly faster than
mouse input for target acquisition (Sibert and Jacob, 2000; Vertegaal, 2008), though there
are also some diverging results (Miniotas, 2000). As Schuetz et al. pointed out, most of
these comparative works are backed up by Fitts’ Law, which may show some conflicting
results depending on how gaze interaction is assessed (Schuetz et al., 2019).

Saccades are ballistic movements (up to 900𝑜/s) (Bahill et al., 1975), and therefore cannot
benefit from online and controlled adjustments during its course. Thus, efficient use of
gaze primarily depends on the size of a saccade with respect to a stimulus and the target
size (Schuetz et al., 2019). Additionally, eye tracker fidelity has been found to significantly
affect this task (Barz et al., 2018), which brings high variability to the index of difficulty
according to the Fitts’ Law.

To claim a theoretical efficiency of our design over manual mode-switching in GUIs,
we assume the following conditions: the user is seated at 50 cm from a 24" display, our eye
tracker accuracy lies between 0.5-1𝑜, and targets have an approximate size of 2𝑜. Assuming
also that the user’s primary task is located at the center of the screen, this results in an
average of 27𝑜 of horizontal and 16𝑜 of vertical saccadic span to reach one of the bars.

Based on a quadratic approximation of an empirical model (Abrams et al., 1989), this
saccade length demands at most 140 ms. Since overshoots are very likely in this span,
two extra short corrective saccades of 30 ms are usually necessary for target acquisi-
tion (Schuetz et al., 2019). With a variable fixation time on the target of at most 200
ms, a non-optimistic time estimate for mode-switching with GazeBar would be 500 ms.
Note that a fixation dwell is assumed only as a consequence of human cognitive process-
ing (Just and Carpenter, 1976), but it is not required by our technique.

Manual input has been demonstrated to take roughly double the time to close the
distance to targets, albeit being much more precise than saccades (Vertegaal, 2008). This
suggests that using the GUI for switching modes using a mouse, for example, would require
600 ms just for the complete manual movement, not counting the time for selection and
visualization feedback.
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A more fundamental argument in favor of our technique is to realize that GazeBar
leverages the natural scan paths made when switching modes manually. Thus, the manual
response is bounded by the user’s visual perceptive task and should improve flow. Unless
the flow is broken by unintended selections.

To avoid unintended selections, GazeBar’s graphical design has considered the low
accuracy of gaze trackers, eye jittery, and other factors as described in Section 6.2.1. Yet, if
unintended selections occur often, maybe due to the lack of experience of a novice user,
the user experience will be damaged. Therefore, GazeBar is probably not appropriate for
tasks such as typing but can benefit tasks that require not-so-frequent selections, and
where involuntary selections have a low interaction cost since GazeBar allows very fast
recovery.

The GazeBar selection mechanism is designed to be experienced as a “Mi-
das touch”, but activation is triggered in practice in a similar fashion to context-
switching (Morimoto and Amir, 2010) or reverse-crossing (Feng et al., 2014). These gaze-
only techniques, as well as other methods such as dwell-time selection (Majaranta and Räihä,
2002), eye gestures (Møllenbach et al., 2010), or motion correlation (Velloso et al., 2017),
create additional preventive steps to avoid the MTP, while GazeBar takes advantage of the
expected gaze path to eliminate this need.

Though GazeBar might resemble other multimodal gaze-based interaction techniques,
such as gaze-touch (Pfeuffer et al., 2014) and gaze-shifting (Pfeuffer et al., 2015), it is im-
portant to notice that gaze and manual inputs are choreographed in their case, while gaze
is independent of manual control with GazeBar. We compare our own experience of using
GazeBar to driving a car with automatic transmission: while other methods require a
"clutch" to change gears, GazeBar improves flow by allowing the user to just look at the
desired option.

For traversing hierarchical menus, the design of pEYEs (Urbina and Huckauf, 2010)
shares similarities to GazeBar as well. With pEYEs, however, selections are performed
by navigating through expanding sub-menus, until only one option is available. For 𝑚
options per menu and 𝑁 items total, this leads to a minimum time complexity of log𝑚 𝑁
for each selection. Searching options in GazeBar is also bounded by log𝑚 𝑁 , but on average
faster because, besides the last branch of the tree being always visible, the user does not
necessarily have to reach a leaf to make a selection.

6.2.4 Gazebar: discussion and conclusion
In terms of mode-switching efficiency, we showed that GazeBar’s selection technique

can be interpreted as an approximate theoretical upper bound for manual input per-
formance since manual input depends on the visual perceptive channel to coordinate
selections. By modeling GazeBar’s selection on mode-switching scan paths, we discard
the preventive measures found in gaze-based techniques, effectively embracing a Midas
touch-like selection mechanism that does necessarily imposes involuntary mistakes.

Our prototype mitigates involuntary mode switches by design, such as the one-
dimensional bar format, the positioning on the screen, and the two-criteria threshold
for activation. We are aware though that an empirical study still remains necessary to
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verify the effect of these choices and establish an average expected number of wrong
selections. Another sensitive aspect that we shall address in a future experiment is the
impact of GazeBar on user experience. Some objective aspects, such as saving users’
manual effort compared to other methods, are easy to acknowledge, but others, such as a
measurable state of flow, can only be assessed in a user study.

Compared to other gaze-only techniques, our prototype shows that GazeBar has a
low error recovery cost. That is because a GazeBar selection is fast and requires minimal
eye movement. Dwell-time selection, for instance, not only requires the same amount of
movement (in the application workflow), but also additional fixation times. Some users
might prefer more low-cost mistakes than costly errors that impose a greater penalty on
user performance.

The GazeBar design, though, is not as multipurpose as other methods. However, it is
fairly safe to say that complex and multimodal scenarios are more likely to be benefited
from this technique, since the idea of GazeBar could be easily adapted to other intensive
manual applications, such as word processing, video editing, or 3D modeling. And the
principle of modeling gaze-based selections on expected eye movements to maximize
the state of flow during interaction could be further applied to tasks other than mode-
switching.

While many previous techniques have exploited mechanisms such as dwell-time or
eye gestures, and combined gaze with other mechanisms such as speech or finger touch
to trigger selections, we proposed a just-look-to-select experience that can improve gaze
interaction efficiency.

We expect that interaction flow can be improved by eliminating safety interaction steps
(such as dwell-time or mouse click) suggested in the literature to avoid the Midas’ touch
problem. Of course, this improvement can only be achieved while keeping the number of
errors small or compatible with other techniques.
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6.3 Exploiting the Midas Touch for seamless
interaction in 3D

When it comes to 3D gaze interaction, most of the works in the literature have tried
to adapt known 2D techniques to VR or AR scenarios (Bâce et al., 2016; Lee et al., 2014;
Nilsson et al., 2009; Park et al., 2008). Genuine methods tailored to the 3D world do ex-
ist, but, likewise, they impose several safeguard mechanisms that, in practice, can pro-
voke a feeling of “breaking” the interactive flow (Ahn et al., 2020; Kitajima et al., 2015;
Mardanbegi et al., 2019; Pai et al., 2016).

Moreover, using gaze interaction to control our surroundings is not so simple. It is
important to tell whether the user is actually trying to access an AR interface or just
exploring the scene (Vidal et al., 2014). The MTP is particularly relevant in AR because
triggering unwarranted digital information can also impair user visibility and safety.

Another relevant issue in this setting is the so-called AR pollution, i.e., the cluttering
of unwanted augmented content within the user’s field of view, sometimes with layers
of digital information superimposed (see Figure 6.14. Though there are several ways to
address this, neither automatically triggering AR content nor completely hiding it would
be satisfactory, since in the first case we could fall into an MTP, whereas in the second
one, we would not allow the user to know what is AR-enabled.

Figure 6.14: Augmented reality clutter (left), even when subjected to sorting and overlay occlusion
mitigation, still may be perceived as AR pollution. Using gaze fixation (right), we correlate the relevancy
of AR content to user attention, though triggering unwarranted AR content automatically just based
on attention can be considered a form of the Midas touch problem.

Therefore, in this second step of creating a seamless gaze interaction study, we propose
a proof of concept in which we take advantage of the extra depth dimension in 3D to create
a “just-looking-to-select” mechanism that does not impair the user’s ability to explore the
AR world while preventing the triggering of unwarranted digital overlays on display.

6.3.1 V-switch: designing seamless interaction with AR-enabled
devices

Moving to a wearable setting with AR-enabled devices, we can take advantage of
the fact that interaction is happening in 3D to design seamless gaze-based selection
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mechanisms. Because in 3D we have the depth dimension, eye vergence becomes naturally
present. Thus, we can leverage vergence as a discriminative response to separate what is
gaze perception from what is gaze selection intent.

We call this vergence-based triggering mechanism V-Switch. It operates in a similar
way to GazeBar, in the sense that the interaction cannot be fully segregated from the
interface. In fact, to exploit the MTP, it needs to be designed this way, so that the user
might just-look-to-select without having to suffer from the ill effects of the Midas touch
problem.

Figure 6.15: V-Switch Workflow. (A) Eye contact is established with a smart object, at a far distance.
(B) A virtual point (the red dot) is rendered near the user, indicating that it is possible to interact with
the object. To toggle the object’s AR content, the user looks at the sphere. (C) V-Switch detects the
vergence movement at the sphere and the interactive AR content is rendered.

The technique makes two basic assumptions. Firstly, it assumes that all real-world
objects that can be enhanced through AR are tagged, i.e., each object has a unique identifier
and provides some way to identify it, such as IR lights, AR markers, or RFID tags. Secondly,
it assumes that augmentable objects are not within arm’s reach from the user, i.e., they are
placed, for instance, at 2 m from an individual. Figure 6.15 illustrates the whole interactive
workflow, which goes as follows:

1. target acquisition — it is performed in the perceptual channel of the user. In other
words, the system becomes aware that the user wants to interact with a certain
target on gaze contact. Disengaging is accomplished by looking at a different target
or at a non-interactive part of the scene for a certain time threshold. There is no
MTP here since no change in the state of the target is possible at this point.

2. associated cue pop-up — upon gaze contact, one or more visual cues called V-Dots
are shown at the bottom of the display. The V-Dots are placed closer to the user
depthwise and also respect a minimum discriminant distance (MDD) from the target.
Because the accuracy of gaze depth estimates deteriorates as we get farther from
the user, MDD also varies to accommodate this change.

3. eye convergence towards the cue — when the eyes converge towards one of the V-
Dots, it can either trigger specific changes of state in the target or toggle an interface
to control it. The choice of behavior depends on the task. For micro-interactions
(i.e., simple actions such as turning something on or off), there is no need for a
management interface.

4. (optional) target fine control — if there are multiple options associated with a
task or if it is intrinsically complex, the system can show an AR interface near the
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selected V-Dot to allow the user to perform a finer control of the target. We can
resort to the same principles in GazeBar to maximize the flow, for example, creating
a one-dimensional selection bar to perform a “just-by-looking” selection, instead of
using a grid interface.

5. eye divergence — while gazing at the depth of a V-Dot, changes are yet to be
confirmed to the system. The change is committed by performing an eye vergence
movement back to the scene or the target. This movement has to cover the MDD to
take effect.

6.3.2 V-switch: prototype
Our prototype consists of a Microsoft Hololens (first edition) with a 200 Hz binocular

eye tracker from Pupil Labs (Kassner et al., 2014) and an AMD Ryzen 5 2600X PC for
processing eye data. The Hololens is capable of tracking and mapping the environment
geometry, building its mesh representation in real time. This representation is important
because it allows us to know the boundaries and localization of AR-enhanced objects in the
scene. With a mesh representation of objects, we are able to determine gaze contact with
them. The eye cameras were attached to the Hololens with the frame adapter provided by
Pupil Labs and were tethered to the PC (see Figure 6.16).

Figure 6.16: The first two figures on the left show the Hololens 1.0 with the Pupil Labs eye-tracking
cameras attached. The eye cameras are tethered to a PC through a USB 2.0 cable. Eye image processing
and gaze estimation are done entirely on the PC. The third figure is the fiducial marker used for
extended tracking functionality.

The eye-tracking portion of our software was entirely written in Python 3 and QML.
It is cross-platform and runs on a PC. This software is responsible for managing multiple
camera streams, tracking pupil center on camera images, performing gaze and depth
focus estimation on the head-mounted display (HMD), and establishing a back-and-forth
communication with it. QML is used for rendering the graphical user interface (GUI),
which provides feedback concerning pupil tracking and gaze estimation quality, as well as
letting the user configure camera and network settings.

The AR application running on the Hololens is a Unity 3D project, with its code written
in C#, compatible with the Windows Universal Platform. We also use the Vuforia Engine
for visual targets. This allows us to define an image on the wall as the ground-zero marker
for the Hololens world mesh representation. Thus, even when this marker is no longer



90

6 | GAZE INTERACTION

visible, we can have accurate object localization thanks to the HMD positional device
tracking.

Communication between the eye-tracking application and the HMD is established via
UDP protocol within a local Wi-Fi network. The eye-tracking software updates the HMD
app with gaze estimates. Before running the actual app though, a calibration procedure
must be performed on the HMD.

For this prototype, we assumed a scenario with three smart appliances that are AR-
enabled: a lamp, a thermostat, and a fan (see Figure 6.17. The simplest interaction lies with
the lamp: it is just an on/off switch. In the case of the fan, we have a discrete interval with
four options: off and speeds 1, 2, and 3. The thermostat also has an on/off switch button
and, additionally, a linear temperature gauge. All smart objects can be interacted with
using not only V-Switch, but also dwell-time selection, and the head gaze + pinch selection
(which is the default method for Hololens applications).

Figure 6.17: Screen capture of the proof-of-concept from the user standpoint. Each row shows the
expected interaction flow with each smart device (1: light bulb, 2: fan, 3: thermostat). Column A depicts
the initial scene; column B shows the V-dot popping up in the virtual space, as the user’s gaze meets
the IoT device; column C displays the device settings UI after the user performed a vergence towards
the V-dot; column D shows the moment when the user performs a vergence gesture back to the device,
checking its updated state.

When triggering the interface menu of each appliance using V-Switch, the user is able
to set any configuration just by looking at it. In a sense, this follows the GazeBar principles
very closely, except that a change of state is only committed when the user performs a
divergence, back to the far plane.

Binocular Gaze and Vergence Estimation

To perform binocular gaze estimation, we use reconstructed unit normal vectors from
each pupil projected in the left and right eye cameras (Świrski and Dodgson, 2013). Let
these vectors be 𝑛𝐿 and 𝑛𝑅, respectively. Since the Hololens have an internal 3D coordinate
representation for objects rendered in its display, we then proceed to find the left and
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right rotation matrices 𝑅𝐿 and 𝑅𝑅 that will map, respectively, 𝑛𝐿 and 𝑛𝑅 to this 3D space,
as shown in Figure 6.18.

Figure 6.18: Gaze estimation schematic procedure, including gaze depth estimation as well.

But first, we place left and right virtual eyeballs 𝑒𝐿 and 𝑒𝑅 at the origin of the display
space. We then separate them symmetrically in the x-axis using the anthropometric
interpupillary distance of 63 mm (Gordon et al., 2014). To get coordinate references of this
space, the user is asked to look at 3D calibration targets 𝑡𝑖 on the display (our prototype
uses nine). We then compute the normalized vectors 𝑑𝐿 and 𝑑𝑅, which are given by 𝑡−𝑒𝐿

||𝑡−𝑒𝐿 ||
and 𝑡−𝑒𝑅

||𝑡−𝑒𝑅 ||
, respectively.

For each target 𝑡𝑖 we compute 𝑑𝐿𝑖 and 𝑑𝑅𝑖 , and collect a few samples of 𝑛𝐿𝑖 and 𝑛𝑅𝑖 ,
keeping only the median values for each step 𝑖. After collecting all the data, we define the
following matrices:

𝑁𝐿 = [𝑛𝐿1 , 𝑛𝐿2 , ..., 𝑛𝐿𝑛]
𝑇 and 𝑁𝑅 = [𝑛𝑅1 , 𝑛𝑅2 , ..., 𝑛𝑅𝑛]

𝑇

𝐷𝐿 = [𝑑𝐿1 , 𝑑𝐿2 , ..., 𝑑𝐿𝑛]
𝑇 and 𝐷𝑅 = [𝑑𝑅1 , 𝑑𝑅2 , ..., 𝑑𝑅𝑛]

𝑇

From there, all that remains is to solve for 𝑅𝐿 and 𝑅𝑅 matrices in the following overde-
termined linear systems:

𝑅𝐿𝑁𝐿 = 𝐷𝐿

𝑅𝑅𝑁𝑅 = 𝐷𝑅

Our implementation uses the linear least squares method to find an approximate
solution. Once we are able to transform normal gaze vectors from the cameras to the
display space, gaze depth estimation is determined in an online fashion by finding the
midpoint of the shortest segment between the two rays defined by 𝜆𝑑𝐿 and 𝜆𝑑𝑅, as described
in Section 5.1.1. Note that to decide whether the user is interacting with a certain object in
the scene, V-Switch also takes into account the intersection of both gaze rays with this
object as well. Additionally, a smoothing procedure is used to compensate for outliers.

To compute vergence, we first assume that physical and virtual object locations can be
defined by 2D planes at different depths in AR. As a simplifying assumption, our V-Switch
prototype requires what we call a minimum discriminant depth between the object in the
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perceptive space and the user interactive space. Upon eye contact on the object (virtual or
not) that can be digitally controlled, a small corresponding V-dot is shown at the bottom
of the display, close to the user. To open the interface, the user must look at the V-dot,
similar to reaching a remote control. Otherwise, the user can keep exploring the scene
as long as desired, with minimal digital clutter other than the small V-dot. Once enabled,
the interface remains open while the user is looking at the near interface plane. Error
correction when the V-dot is triggered by accident is as simple as looking back at the
scene, which causes a divergent eye movement.

6.3.3 V-switch: comparative design analysis
Contrary to a 2D interactive scenario, where manual input is typically considered the

preferred way to perform most tasks, in 3D, hand-based interaction becomes much more
cumbersome. First, the lack of precision and control is significantly greater; it is often
problematic to manipulate distant objects, not within one’s reach; and it is tiresome for
most people to keep their arms raised for more than a few minutes (Chaconas and Höllerer,
2018; LaViola Jr et al., 2017).

In contrast, one of the earliest comparative studies between manual input and gaze-
based interaction in 3D has attested to the advantage of the latter modality in target
acquisition (Tanriverdi and Jacob, 2000). Moreover, continuous use of gaze is a natural
human state and, thus not prone to provoke fatigue as the “pinch gesture” typically
employed in Hololens’ manual interactions (Chaconas and Höllerer, 2018). Finally, because
the field of view is generally wider in VR/AR, gaze estimation errors can be mitigated with
better spacing and sizing of selectable objects (Hansen et al., 2008).

Despite some clear advantages of gaze-based techniques in the 3D domain over manual
input, the Midas touch problem remains a constant challenge, regardless of the number of
dimensions. Not only that, the introduction of depth, albeit being an opportunity to design
new ways of interaction, also adds technical obstacles to the table, such as collinearity of
gazed objects, and overall less reliable gaze estimation (Mansouryar et al., 2016).

Still, assuming a sound-calibrated setup, we can, at least theoretically, gauge V-Switch
performance against a baseline technique such as dwell-time selection. In the aforemen-
tioned scenario of our PoC, let us consider the following interactive journey to establish a
benchmark between both of them: the user fixates on a distant object, interacts with it,
accesses its configuration menu to alter its state, and finally commits the change, checking
the object’s visual feedback. The menu is always displayed in an offset position and
closer to the user to avoid occlusion of the scene, in case of accidental activations (see
Figure 6.17).

Previous studies have demonstrated that eye vergence is a potentially sluggish move-
ment, probably due to the accommodation and pupil interplay. Vergence might have
different latency and response times, depending on the depth, if it is symmetrical or not,
or whether it is a convergence or a divergence (Ward et al., 2020; Yang et al., 2002), but it
is generally acknowledged that it takes, on average 1 s.

In the case of the dwell-time selection, the user would typically have to perform a
long fixation at the object to trigger the menu (5̃00 ms), perform a convergence toward



6.3 | EXPLOITING THE MIDAS TOUCH FOR SEAMLESS INTERACTION IN 3D

93

the menu (1̃000 ms), explore the interface (1̃000 ms), commit a change with another long
fixation (5̃00 ms), close the UI, again with the dwell-time selection (5̃00 ms), and finally
perform a divergence back to the smart device to check its state (1̃000 ms). So, on average,
this interactive path would take roughly 4.5 s (discarding saccades altogether).

Compared to the same scenario as before, V-Switch only requires the user to make
contact with the device and perform a convergence to access the menu (1̃000 ms), explore
the interface (1̃000 ms), and commit the changes by performing a divergence back to the
scene (1̃000 ms), taking approximately 3 s to complete the same path. Because “seeing
is selecting” only in this sandboxed condition (similarly to GazeBar), we remove the
extra latency typically added to gaze-based techniques to circumvent the Midas touch
problem. Thus, the interaction time is dominated by the vergence response almost in its
entirety.

Another key design difference is that V-Switch does not impose any additional eye
movement that would not be already performed if the interaction scenario used man-
ual input. Dwell-time, on the other hand, requires the user to constantly relinquish the
natural interplay of saccades and fixations when exploring the environment. This could
have a potentially positive effect on user experience. Besides, contrary to previous ap-
proaches (Ahn et al., 2020; Kitajima et al., 2015; Vidal et al., 2014), vergence in V-Switch is
always performed with virtual visual cues on the display (i.e., the V-dot), which should
provide more comfort.

6.3.4 V-switch: discussion and conclusion
It is reasonable to state that both GazeBar and V-Switch share similar advantages and

deficiencies. As in the case of the former, V-Switch leverages the expected gaze paths
in a certain interaction flow as a means to allow selection by “just looking”. Because
there is always a disguised two-step mechanism for an actual selection, both techniques
are able to provide some degree of safety while apparently preserving user freedom to
move the eyes. The major downside, again, lies with an ad-hoc design, i.e., it cannot be as
easily generalized and ported to different interactive scenarios as, for example, dwell-time
selection.

In the particular case of V-Switch, another negative remark is that error recovery
might be costly due to the vergence-accommodation interplay, which is not as fast as
a saccade. On the other hand, taking advantage of different depth planes of interaction
allows for cleaner management of digital overlays in AR/VR. Additionally, in the case of
gaze-only interactive techniques, it creates a logical criterion to separate what is a simple
eye surveying of the environment from actual eye-based commands to the interface.

Evidently, not all AR scenarios will be covered by dividing the interaction flow between
a near and a far plane. Tasks that strictly require the interaction to be constrained to an
approximately fixed plane will not benefit from this design.

Because the interpupillary distance becomes less pronounced beyond 1.0 m, it might
not be technically possible to devise an interaction scenario with multiple depth planes,
as it would be hard to discriminate between them using only vergence as the main input
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feature for gaze depth. Though feasible, this would result in controls with different levels
of precision and accuracy depending on the gaze depth.

Despite being theoretically fast in the proposed configuration, V-Switch could also
be deployed as a meta-technique, i.e., the vergence-based switching mechanism could be
combined with other methods tailored for more specific scenarios, such as text entry.

Finally, V-Switch still needs to be empirically validated through a user study, not only
to confirm or not the expected performance improvement in this kind of scenario but
especially to assess its impact on user experience compared to other baselines, such as
dwell-time interaction.
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Conclusion

Wearable computing is often depicted as one of the prime contexts where gaze in-
teraction could have a great impact on user experience, since the use of gaze seems like
an intuitive, fast, effortless, and private way of performing several tasks, particularly for
micro-interactions, such as target acquisition.

Despite this assumption, there are several technical and interactive challenges associ-
ated with the wearable computing scenario that should not be overlooked. In this thesis, we
investigated and discussed a few relevant cases motivated by the following issues:

• 3D gaze interaction - In the wearable context, gaze interaction is primarily expected
to be performed in 3D, rather than in 2D, which demands more refined and complex
estimation techniques, since depth-related issues become prominent.

• context matters - Gaze interaction mode or technique can change significantly
depending on the wearable context, and thus cannot be assumed to remain static.
In fact, context switching is likely to happen in short amounts of time, so gaining
insight into the user’s cognitive state or task engagement is a must, either to provide
notifications or to enhance task performance.

• Midas touch - This conflict becomes even more apparent in the wearable scenario,
as the eyes are frequently elicited to acquire information about constantly changing
surroundings, or to help the user navigate in the environment. Therefore, wearable
gaze interaction should be as transparent as possible.

Given the aforementioned challenges, we opened different fronts of investigation to
either provide solutions to some of such problems or to improve the current state of the art.
With time, we have realized that there were many technical gaps that should be addressed
to foster gaze interaction in the wearable setting. In other words, not only new interactive
techniques but also faster and more lightweight eye pattern recognition algorithms or
estimation methods that take gaze depth into consideration.

From a more practical standpoint, we proposed novel and generalized gaze estima-
tion techniques for 3D environments that make minimal assumptions and require very
low-entry hardware. We also explored how these 3D techniques can provide means to
use vergence as a useful eye pattern in wearable gaze interaction since the extra depth
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dimension can be an important ally to determine user attention and at the same time avoid
the Midas Touch problem.

We advanced the current state of the art on eye pattern recognition, as it is commonly
considered a fundamental gateway to getting insights about the user’s cognitive state and
the task at hand. In particular, we showed how to achieve very high accurate classification
performance in real-time of basic eye patterns, such as fixations, saccades, and smooth
pursuits. We showed how we can detect reading patterns in an online fashion, using just
commodity hardware and low-power requirements, which is an important consideration
in the wearable context.

For the issue of the Midas Touch conflict and wearable gaze interaction per se, we
designed and proposed the GazeBar and V-Switch techniques, which are part of a broader
idea of modeling gaze input by leveraging the natural eye movement patterns associated
with a task. This way, it is expected that gaze interaction becomes more transparent and
lightweight cognitively. In this sense, we also investigated how the gaze can be particularly
useful in AR scenarios for micro-interactions.

Besides proposing these techniques, to facilitate future research and enhance repro-
ducibility, we also provided several publicly available datasets, which help tackle the
problem of data scarcity for this kind of research. We believe that these datasets will not
only support future work but also encourage novel research in the field.

With the current advancements, we have now a more clear understanding of what is
viable and sensible in the context of gaze-based wearable interaction, as well as what are
the more pressing challenges that still need to be handled.

7.1 Significance and limitations
Despite the breadth of this research, it evidently has several limitations. Regarding

eye movement understanding, our methods still target only basic eye movement patterns,
leaving the problem of classifying a complex and long sequence of eye movements aside.
Besides, context awareness involves not only identifying these patterns but also inter-
preting their relationship with other kinds of inputs, such as environmental sound, scene
images, etc. Thus, there might be still a long way towards scene context comprehension
using eye movement data alone.

As for 3D gaze estimation, our results show that is still hard to achieve very accurate 3D
PoR estimates in the same range of 2D techniques, in which it is fairly common to witness
sub-degree accuracy. In part, this can be attributed either to the increased complexity of
the problem (since we are adding an extra dimension), as well as to the intrinsic lack of
resolution of binocular cues for depth estimation. Nevertheless, there are ways to mitigate
these issues, such as: using heuristics related to scene comprehension; calibrating to the
3D virtual space of an augmented reality headset instead of the actual real scene; or using
hybrid methods, e.g., 2D calibration with segregated depth estimation.

Finally, it is clear that the interactive methods that we have developed and proposed for
the wearable context (i.e., GazeBar and V-Switch) still need a thorough validation and ample
assessment of user experience and usability performance. The empirical evaluation was
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very limited, partly due to the COVID-19 pandemic (which subsequently led to increased
restrictions and ethical considerations in conducting user studies in the aftermath), but
also due to technical limitations of our hardware resources. Additionally, GazeBar and
V-Switch do have an ad-hoc design and, despite their potential usefulness and originality,
cannot be considered as general as other all-purpose methods.

With all that said, we still provide clear contributions on the aforementioned fronts:
novel algorithms and techniques for eye movement pattern recognition, tailored for
lightweight and wearable devices; novel techniques for 3D gaze estimation, casting addi-
tional light on the issue of understanding PoR in the 3-dimensional space; new approaches
to design and perform gaze-based interactions that should be most beneficial in the
wearable domain; and open and high-quality data available to support current and future
research in these areas.

7.2 Future work
In terms of future work, one of the most critical aspects will be conducting thorough

user studies to evaluate the effectiveness and usability of our proposed GazeBar and V-
Switch techniques. We aim not only to pursue a short-term evaluation but also longitudinal
studies, to give a more detailed understanding of user experience and assess any learning
effect. We will also compare our techniques with other traditional gaze-only methods
such as dwell-time selection (Majaranta and Räihä, 2002), as well as multimodal, such as
gaze-touch (Pfeuffer et al., 2014), and 3D techniques for AR/VR, to determine the most
effective and efficient methods for various use cases.

Another important aspect should be investigating user task context detection. This
will enable seamless switching between interactive techniques, selecting appropriate ones
given a specific scenario. This context detection should take into account not only simple
gaze patterns, such as fixations, saccades, and smooth pursuits, but also more complex
patterns. Additionally, it should consider what the user is looking at and what task they
are performing. By considering these factors, we can develop context detection algorithms
that enable more efficient and effective interaction with wearable devices. For instance,
if the task at hand involves text entry, we should seamlessly transition to an eye-typing
technique instead of persisting in a single all-purpose technique.

Overall, future work will focus on developing new techniques and improving existing
ones for gaze-based wearable interaction, leveraging the concept of flow that permeates
GazeBar and V-Switch, in which the Midas touch problem is addressed by modeling
interaction implicitly in the task instead of constraining the user with safety mechanisms.
With this paradigm shift in interaction design, along with better scene context and intent
detection, we expect to make gaze interaction more effective, efficient, and usable in
real-world scenarios.
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