A grounded theory of organizational
structures for development and
infrastructure professionals in

software-producing organizations

Leonardo Alexandre Ferreira Leite

THESIS PRESENTED TO THE
INSTITUTE OF MATHEMATICS AND STATISTICS
OF THE UNIVERSITY OF SA0 PAuLO
IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS
FOR THE DEGREE OF
DoOCTOR OF SCIENCE

Program: Computer Science
Advisor: Prof. Paulo Meirelles

Coadvisor: Prof. Fabio Kon

S30 Paulo
May, 2022

A grounded theory of organizational
structures for development and
infrastructure professionals in

software-producing organizations

Leonardo Alexandre Ferreira Leite

This version of the thesis includes the
corrections and modifications suggested
by the Examining Committee during the

defense of the original version of the
work, which took place on May 31, 2022.

A copy of the original version is available
at the Institute of Mathematics and

Statistics of the University of Sdo Paulo.

Examining Committee:

Prof. Fabio Kon (advisor) — IME-USP
Prof. Guilherme Travassos — UFR]
Prof. Breno de Franca — Unicamp
Prof. Jessica Diaz — UPM (Spain)
Prof. Carolyn Seaman — UMBC (USA)

Acknowledgements

First, I would like to express how extremely grateful I'm to my advisors, Prof. Paulo
Meirelles and Prof. Fabio Kon, for all the support and trust in this research effort. It has
been a great pleasure working with them. Also, their intense and direct involvement
in this project’s activities was vital for its success. In this sense, I would like to extend
my sincere thanks to a few other scholars who have collaborated with us over these
years: Dr. Dejan Milojicic, Prof. Carla Rocha, Prof. Gustavo Pinto, Dr. Claudia Melo, and
(super) Nelson Lago. Their involvement was inspiring and motivating. I would also like to
recognize the Professors who dedicated themselves to examining and providing valuable
feedback on our work during the qualifying examination and the final defense (Prof.
Rodrigo Bonifacio, Prof. Guilherme Travassos, Prof. Breno Franca, Prof. Jessica Diaz, and

Prof. Carolyn Seaman).

Second, I would like to say that earning this Ph.D. title resulted from a long journey.
Thus, I remember with affection the Professors who were part of my academic journey,
especially Prof. Lucia Filgueiras, Prof. Jodo José Neto, and Prof. Marco Aurélio Gerosa.
Likewise, I would also like to acknowledge some of my IME classmates (Melissa, Tallys,
Dylon, Siqueira, Tatiane, Marcelo, Giuliano, Paula, Haydée, Erika, Jean, Vanessa, Fatemeh,
Luana, Isaque, and Tassio) for their companionship and the moments of small talk in the
lab, studying for tests, and eating dinner at the University restaurant. Those were special

moments, and 'm sorry that the pandemic limited our time together.

With regards to my job at Serpro (Brazilian Federal Service for Data Processing), I
would like to thank my leaders and colleagues Roberta Monteiro and Daniel Cesar, who
supported my academic activities by providing me the necessary work flexibility. I would
also like to recognize them and my other colleagues for their interest in my research,
especially Marcio Frayze and Julianno Martins (I promoted my research on “p de Podcast,”

their podcast on software architecture).

Third, I would also like to express my deepest gratitude to my family for their support

and incentive throughout my doctoral years, especially Lari (my wife), Bertilia (my mother),

ii

Marco (my father), and Julia (my sister). Particularly, I would like to express my most
profound appreciation and love to my wife, Lari, to whom I am forever thankful, especially
considering the enormous amount of time I dedicated to this research. I would also like
to mention the logistical support provided by Iranice (my mother-in-law). I also take the
opportunity to tenderly remember Jaira (my grandmother), who left us just before the
beginning of this research, and to lovely welcome Dante, my son, who will be born very

soon.

I'would be remiss in not mentioning all the family members, friends, and colleagues who
(in person or virtually) attended my thesis defense. In particular, I'd like to acknowledge
the family people and close friends who helped me practice for my defense presentation:
Bertilia (my mother), Leo (my step-father), Koga, Gui, and Tassio. And also, the other
people who supported me in this preparation (e.g., Rafael Fernandes, Lara Vacaro, Prof.
Alfredo Goldman, and Prof. Afonso Ferreira), thanks to them too. Special thank to Julia

(my sister) for the support during the presentation.

Last, I would like to mention the 75 amazing professionals who honored me with
the chance to discuss their work environments and the colleagues who referred those
interviewees to me. Their spirit of collaboration was the raw material for this thesis. To
each interviewee, I say: “a piece of your soul lives on in these pages! Thank you so much
again and again!!!” I hope this same spirit of collaboration continues to foster the evolution

of the communities involved in the great endeavor of software production.

Resumo

Leonardo Alexandre Ferreira Leite. Uma teoria fundamentada sobre estruturas
organizacionais para profissionais de desenvolvimento e de infraestrutura em
organizacdes produtoras de software. Tese (Doutorado). Instituto de Matemaética e

Estatistica, Universidade de Sao Paulo, Sao Paulo, 2022.

DevOps e entrega continua tém impactado as estruturas organizacionais dos grupos de desenvolvimento
e infraestrutura em organizacdes produtoras de software. Nossa pesquisa visa revelar as diferentes op¢des
adotadas pela industria de software para organizar tais grupos, entender por que diferentes organizagdes
adotam estruturas distintas e descobrir como as organizacdes lidam com as desvantagens de cada estrutura.
Ao entrevistar 68 qualificados profissionais de TI, cuidadosamente selecionados, e analisar essas conversas
por meio de um processo de Teoria Fundamentada (Grounded Theory), identificamos condi¢des, causas,
razdes para evitar, consequéncias e contingéncias relacionadas a cada estrutura descoberta (departamentos
segregados, departamentos colaborativos, departamentos mediados por API e departamento unico). Esta tese,
entdo, propde uma teoria para explicar estruturas organizacionais para profissionais de desenvolvimento
e infraestrutura. Essa teoria pode apoiar profissionais e pesquisadores na compreensio e discussiao do
fendmeno DevOps e seus problemas relacionados, e também fornece informagoes valiosas para a tomada de

decisoes dos profissionais.

Palavras-chave: DevOps. estruturas organizacionais. entrega continua. times de software. engenharia de

software. Teoria Fundamentada.

Abstract

Leonardo Alexandre Ferreira Leite. A grounded theory of organizational structures
for development and infrastructure professionals in software-producing orga-
nizations. Thesis (Doctorate). Institute of Mathematics and Statistics, University of Sdo

Paulo, Sao Paulo, 2022.

DevOps and continuous delivery have greatly impacted the organizational structures of development
and infrastructure groups in software-producing organizations. Our research aims at revealing the dif-
ferent options adopted by the software industry to organize such groups, understanding why different
organizations adopt distinct structures, and discovering how organizations handle the drawbacks of each
structure. By interviewing 68 carefully-selected, skilled IT professionals and analyzing these conversations
through a Grounded Theory process, we identified conditions, causes, reasons to avoid, consequences, and
contingencies related to each discovered structure (segregated departments, collaborating departments, API-
mediated departments, and single department). We, then, offer a theory to explain organizational structures
for development and infrastructure professionals. This theory can support practitioners and researchers in
comprehending and discussing the DevOps phenomenon and its related issues; it also provides valuable

input to practitioners’ decision-making.

Keywords: DevOps. organizational structures. continuous delivery. software teams. software engineering.

Grounded Theory.

List of Figures

1.1

2.1

2.2
2.3
2.4
2.5
2.6
2.7

3.1
3.2
3.3

4.1

4.2

4.3

4.4
4.5
4.6

Research phases of this doctoral research

Publications about DevOps found in our survey by source types and publi-
cationyear
DevOps overall conceptual map
DevOps conceptual map: processo
DevOps conceptual map: people L.
DevOps conceptual map: delivery
DevOps conceptual map: runtime
According to Conway’s Law, the represented graph may refer, for exam-
ple, to (i) services A and B using the underlying infrastructure C, or (ii)

development teams A and B demanding the infrastructure group C. . . .

Steps and products of ourresearch Lo
Conceptual framework nomenclature

A fragment of our conceptual framework00 L.

Evidence of theoretical saturation
High-level view of the first version of our taxonomy: the discovered orga-
nizational structures and their supplementary properties
High-level view of the fourth version of our taxonomy, published in the
ISTjournal
Word cloud built from the chain of evidence of Phase 2
Observed transitionflows L.
With siloed departments, operators and developers are each one in their
own bubbles. They do not interact directly too much and communication

flows slowly by bureaucratic means (ticket systems).

12
12
13
14
15
16

22

34
37
38

45

48

49

49
59

60

vii

viii

4.7

4.8

4.9

5.1
5.2
53
54
5.5

With classical DevOps, operators and developers in different departments

seek to work together, even if not easy, by direct contact and close collabo-

ration. e

The platform team provides automated services to

be used, with little

effort, by developers. The platform team and developers are open to hear

and support each other.

A cross-functional team contains both operators and

developers.

Interleaving of data collection and analysis in Phase 3

Metrics of theoretical saturation for the 6C analysis

Metrics of theoretical saturation for the resonance analysis

Word cloud built from the key points of Phase 3 . .

High-level view of the 12" version of our taxonomy, the last one produced

by our refinement process

List of Tables

2.1
2.2

4.1
4.2

4.3

4.4
4.5

5.1
5.2
53
54

Major DevOps tools related to actors and DevOps concepts

DevOps adoption approaches

Number and description of participants and organizations

Interview’s classification. In the second column, “to” indicates transitioning

from one structure to another.

Organizational structures and delivery performance observed in our inter-

Organizational structures and organization size observed in our interviews

Summary of organizational structures — operations responsibilities and

interactions in each structure

Description of participants and organizations

Summary of the actions took during our resonance analysis

Taxonomy versioning history

Strong codes for segregated dev & infra departments

60

61
61

70
71
72
72

75

17
19

44

47

51
54

59

69
74
75
76

55
5.6
5.7
5.8
5.9

6.1

Strong codes for collaborating dev & infra departments

Strong codes for single dev & infra departments

Strong codes for API-mediated dev & infra departments

Amount of codes found per code class

Strong covariance groups

Our treatments for the adopted quality criteria

76
77
78
79
79

85

ix

Contents

1 Introduction

1.1 Problemoutline
1.2 Research questions,
1.3 Researchphases
1.4 Producedarticles
1.5 Contributions
1.6 Thesisstructure

2 Background

2.1 DevOps oo
21,1 History
2.1.2 Definitions L
213 Challenges.
2.2 Delivery performance
2.3 The structures of organizations
24 Relatedwork L

3 Research design

3.1 Theories and taxonomies Lo
3.2 Grounded Theory
3.3 Overview of the steps in our research process
3.4 Brainstorming sessions Lo
3.5 Conducting the interviews of Phase2
3.6 Analyzing the interviews of Phase 2
3.7 Review processof Phase2
3.8 Conducting the interviews of Phase3
3.9 Resonance analysis
310 6Canalysis L

3.11 Review processof Phase3

O OO0 U1 W DN =

11
11
12
14
18
20
22
26

29
29
30
32
35
35
36
38
38
39
40
41

xi

xii

3.12 Our approach to the related literature

4 A taxonomy for describing organizational structures

4.1
4.2
4.3

4.4
4.5

Sample L
Saturation
The taxonomy of organizational structures
43.1 Siloed departments Lo
43.2 Classical DevOps
433 Cross-functionalteams
434 Platformteams
43.5 Shared supplementary properties
43.6 Transitioning Lo
43.7 Summary e
Membercheck
Comparison to other taxonomies

5 A theory for explaining organizational structures

5.1
5.2
53
54

5.5
5.6

Sample
Saturation

Results on refining the structures

Results on explaining the structures

5.4.1 Covariance analysis . . .
Member check

Discussion

6 Quality criteria and limitations

6.1
6.2
6.3
6.4

Quality criteria
Supplementary material
Generalizability

Limitations and threats to validity

7 Conclusion

7.1
7.2
7.3

Implications
Futurework

Finalwords

Appendixes

41

43
43
45
46
48
50
53
55
58
58
59
59
61

67
67
69
70
76
77
77
30

83
84
84
86
87

89
90
91
92

A Interview protocol for Phase 2
A.1 Purposeof theinterviews
A.2 Inputs for thisprotocol L
A3 Method
A4 Targetpopulation oo
A5 Guidelinesandtips

A6 Interviewscript oo

B Interview questions for Phase 3
B.1 Researchgoals
B.2 Semi-structured script (for previously visited organizations)

B.3 Semi-structured script (for new organizations)

C Examples of strong codes concrete implications

C.1 SC04 - Enough infra people to align with devteams
C.2 SC28 - Compatible with existing rigid structures (low impact on

organogram) / Only a few people needed to form a platform team
C.3 SC19 - Not suitable for applying corporate governance and standards . .
C.4 SC11 - Discomfort/frustration/friction/inefficiency with blurred responsi-

bilities (people don’t know what to do or what to expect from others) . .
C.5 SC46 Decide how much devs must be exposed to the infra internals (some

places more, some placesless) L.

D Answers for the open questions of our feedback forms
D.1 Phase2feedback.
D.2 Phase3feedback. oL L

References

93
93
93
94
94
94
97

105
105
105
107

109
109

110
111

112

112

115
115
116

121

xiii

Chapter 1

Introduction

In this thesis, we offer a theory to explain organizational structures for development
and infrastructure professionals. We describe, in the taxonomy format, the structures
currently adopted by software-producing organizations. Moreover, we explain why differ-
ent organizations have different structures and how companies handle each structure’s
drawbacks. In other words, we present conditions, causes, reasons to avoid, consequences,
and contingencies related to each structure.

In this chapter, we initially explain the underlying problem motivating this research.
We then present our research questions and how we organized our research in three phases
around such questions. While introducing these research phases, we concisely indicate the
employed research methods. We, then, highlight the articles and contributions produced
by our research. Finally, we delineate how we arranged the chapters of this thesis.

1.1 Problem outline

To remain competitive, many software-producing corporations seek to speed up their
release processes [Sch+16b; HM11]. Organizations may adopt continuous delivery practices
in their quest to accelerate time-to-market and improve customer satisfaction [Che15].
However, continuous delivery also comes with challenges, including profound impacts
on various aspects of software engineering [Sch+16a]. With an automated deployment
pipeline, one can, for example, question the role of an engineer responsible solely for new
deployments. Since release activities involve many divisions of a company (e.g., develop-
ment, operations, and business), adopting continuous delivery impacts an organization’s
structure [Chel5]. The lack of clear roles and obligations may induce lengthy negotiations
and eventual stress between IT departments [NSP16]. Therefore, organizations moving
toward continuous delivery have not only to upgrade their software tooling arsenal but
also to find ways to better shape and integrate their IT teams.

Given such recent transformations, there is a need for better understanding the or-
ganizational structures the software industry adopts for development and infrastructure
employees. By organizational structure, we mean the differentiation (division of labor) and

1 | INTRODUCTION

integration (interaction) [Oli12] of operations activities (application deployment, infras-
tructure setup, and service operation in run-time) between development and infrastructure
groups. An acclaimed structure toward continuous delivery, advocated by Amazon, is
organizing cross-functional teams to break the existing silos among development and
infrastructure professionals [Gra06]. However, Davis and Daniels alert that part of the
community erroneously thinks of silos and cross-functional teams as the only two options
of existing structures [DD16].

Empirical software engineering studies have focused on identifying the different orga-
nizational structures adopted in the industry to arrange development and infrastructure
professionals [NSP16; Sha+17; Lop+21; MB20]. However, the current literature does not
reveal why different companies adopt different structures or how companies deal with the
drawbacks of each structure.

This lack of research is inconvenient due to at least two crucial reasons: (1) organiza-
tions wishing to adopt continuous delivery can be disoriented regarding how to design
their human resources structure toward this goal; (2) once a structure is chosen, the
organization might be unaware of the consequences of this choice. For example, adopting
cross-functional teams can solve many problems but also brings new challenges, such
as the difficulty in guaranteeing that each team in the organization masters the required
technical skills. The lack of a consolidated view of how the industry handles the outlined
problem is also unfortunate. Decision-makers in software companies are highly interested
in knowing “what other companies are doing” and “why are they doing it” to support their
decisions.

1.2 Research questions

To mitigate the gap presented in the problem outline, in this thesis we address the
following research questions:

RQ1: What are the organizational structures adopted by software-producing
organizations to structure operations activities (application deployment, infrastructure
setup, and service operation in run-time) among development and infrastructure groups?

RQ1.1: What are the properties of each of these organizational structures?

RQ1.2: Are some organizational structures more conducive to continuous delivery than
others?

RQ2: Why do different software organizations adopt different organizational structures
regarding development and infrastructure groups?

RQ2.1: How do organizations handle the drawbacks of each organizational structure?

We investigate these questions in the context of software-producing organizations

1.3 | RESEARCH PHASES

responsible for deploying the software they produce. For brevity, henceforward, we refer
to them simply as “organizations” or “companies.”

DevOps and continuous delivery are contextual factors that have impacted the software
industry and are, therefore, part of the motivation for our research. Nevertheless, we clarify
that the definitions and procedures of our research are not dependent on the notion of
DevOps. We seek to understand the software production landscape regardless of whether
companies claim to have adopted DevOps or not.

1.3 Research phases

Our research questions, addressing the problem outlined above, were not a fruit of
inspiration solely. Our initial interest in this research endeavor was the DevOps topic. Thus,
initially, we conducted a comprehensive literature review on DevOps [Lei+19], which was
the first phase of this doctoral research. We wanted mainly to understand the DevOps
field, with its concepts and challenges, and find research opportunities before working on
an original contribution. Such a literature review employed some techniques of Systematic
Literature Reviews (SLR) that we selected based on the literature recommendations [KC07;
BB06] and in our own previous experience in conducting an SLR [Lei+13]. We present some
of the results of our review in Chapter 2 to introduce some basic concepts to this thesis
and to delineate better the problem guiding this doctoral research. Figure 1.1 summarizes
the phases of this doctoral research, which we explain in this section.

Understanding DevOps
concepts and challenges
2018 - 2019

Discovering DevOps
organizational structures
2019 - 2021

Explaining DevOps
organizational structures
2020 - 2022

produced

Research
d ues

motivated

Research study

>| Paper
produced

Figure 1.1: Research phases of this doctoral research

In particular, one of the “DevOps challenges” found in our literature review concerned

1 | INTRODUCTION

the challenge of splitting roles across teams in the DevOps paradigm. The most basic
options would be (i) having developers and operations as different but cooperating groups
or (ii) having in each team both developers and infrastructure specialists. However, how
the industry is indeed tackling this issue, which options of organizing teams are available
and being adopted, and which results come from different options were all questions not
adequately addressed by the academic literature at that time.

In particular, in our DevOps review, we found no work using an empirical process to
reveal the existing structures across the IT industry. Based on this need, we defined RQ1
and its sub-questions. The main idea was to elaborate a taxonomy to describe the existing
structures (RQ1.1) based on empirical data, thus initiating a theory to describe [Gre06]. To
answer these questions, we conducted semi-structured interviews with 37 IT professionals,
each one belonging to a different organization. We analyzed these interviews by following
Grounded Theory [GS99], a methodology well-suited for generating theories. We explain
this process in detail in Chapter 3.

To describe the structures, we linked to each of them core and supplementary prop-
erties. Core properties are expected to be found in corporations with a given structure.
Supplementary properties refine the explanation of a structure, but their association
with organizations is not compulsory. The structures (the elements of the highest level in
our taxonomy) we found, as a product of our research Phase 2, were:

+ Siloed departments, with highly bureaucratized interaction between development
and infrastructure groups.

« Classical DevOps, focusing on facilitated communication and collaboration be-
tween development and infrastructure groups.

« Platform teams, in which the infrastructure team provides highly-automated in-
frastructure services to assist developers.

« Cross-functional team, in which a team takes responsibility for both software
development and infrastructure management.

At the same time, at this point, we were eager to assess if a given structure could
be somehow “better” than another. The dimension chosen for comparison was delivery
performance (explained in Section 2.2), thus leading us to the RQ1.2 formulation. About
this research question, a notable result was the evidence that platform teams seemed to
lead to better outcomes in terms of delivery performance. We present the results of Phase
2 in Chapter 4.

After having these preliminary results, it was clear to us that there are distinct organiza-
tional structures in the industry to organize development and infrastructure professionals.
This situation led us to formulate RQ2: would there be legitimate reasons for different
organizations to adopt different structures? Why do not all organizations adopt the “best”
structure? Our intuition was that there was no “best” structure but different structures
that were more suitable for different contexts. In this case, probably each structure would
have its drawbacks. And if so, how would organizations handle such drawbacks (RQ2.1)?
Pursuing such answers would lead us to extend our theory to be not only a theory to
describe but also a theory to explain [Gre06] the examined phenomenon (the existence of

1.4 | PRODUCED ARTICLES

distinct structures to organize development and infrastructure professionals).

The search for such explanations was the core of our research Phase 3, which also
followed a Grounded Theory process. In this phase, we conducted semi-structured in-
terviews with 31 IT professionals working in 25 different companies, summing up 68
semi-structured interviews throughout our research. The research procedures in this
phase are also presented in our chapter devoted to the research approach. Chapter 3
provides a complete view of our investigation methods.

The explanations we offer about the structures, as the product of Phase 3, are provided
in the format of conditions, causes, reasons to avoid, consequences, and contingencies
related to each discovered structure (this format corresponds to one of the theoretical
coding families provided by the Grounded Theory methodology).

Phase 3 had also an additional goal: to interact with practitioners to somehow assess our
taxonomy and improve it when necessary. During this process, we altered the taxonomy
by adding, removing, and renaming its high-level elements (structures and supplementary
properties). In particular, the structures were renamed as follows:

« Siloed departments to segregated departments.
« Classical DevOps to collaborating departments.
« Platform teams to API-mediated departments.
+ Cross-functional team to single department.

Therefore, as a final product of our research endeavor, we offer a theory to explain the
organizational structures of development and infrastructure professionals in the context
of contemporary software production. We present such final results in Chapter 5.

1.4 Produced articles

Our literature review, conducted in the first research phase, is published in the ACM
Computing Surveys journal as the article “A Survey of DevOps Concepts and Chal-
lenges”

Paper 1 - published

Leonardo Leite, Carla Rocha, Fabio Kon, Dejan Milojicic, Paulo Meirelles
A Survey of DevOps Concepts and Challenges [Lei+19]

ACM Computing Surveys, 52(6):127:1-127:35, 2019

Official publication on https://dl.acm.org/doi/abs/10.1145/3359981.
Version freely accessible on
http://ime.usp.br/~leofl/devops/2019-12-04/devops-survey-published.html.

https://dl.acm.org/doi/abs/10.1145/3359981
http://ime.usp.br/~leofl/devops/2019-12-04/devops-survey-published.html

1 | INTRODUCTION

In addition to the doctoral candidate and his advisors, other two researchers contributed
to the survey, namely Prof. Carla Rocha (University of Brasilia - UnB) and Dr. Dejan
Milojicic (senior researcher at HP Labs in Palo Alto). The survey has being highly cited
by the academic community, reaching, in April 2022, 156 citations according to Google
Scholar and 4,346 downloads from the ACM Digital Library.

While building the initial version of our taxonomy, after interviewing 27 IT practi-
tioners, we published a brief overview of our preliminary results. The main goal, at that
stage, was to gather internationally qualified feedback on our ongoing research. Such
overview is presented in the paper “Building a Theory of Software Teams Organization
in a Continuous Delivery Context,” published as an extended abstract for the ICSE 2020
Poster Track session.

Paper 2 - published

Leonardo Leite, Gustavo Pinto, Fabio Kon, Paulo Meirelles

Building a Theory of Software Teams Organization in a Continuous Delivery
Context [Lei+20b]

IEEE/ACM 42nd International Conference on Software Engineering (ICSE 2020) — Poster
Track

Official publication on https://ieeexplore.ieee.org/abstract/document/9270342.
Extended abstract, poster, and video available on
http://ime.usp.br/~leofl/devops/2020-07-06/icse-poster-track.html.

Considering the literature already studied in our DevOps Survey, the existence of
the three first organizational structures (siloed departments, classical DevOps, and cross-
functional teams) was somehow expected. On the other hand, the emergence of “platform
teams” as a distinctive structure was remarkable, mainly because we found evidence that
such a structure presents better delivery performance results. To promote this emergent
and relevant concept, we produced a paper for an ICSE workshop, entitled “Platform
Teams: An Organizational Structure for Continuous Delivery.”

Paper 3 - published

Leonardo Leite, Gustavo Pinto, Fabio Kon, Paulo Meirelles

Platform Teams: An Organizational Structure for Continuous Deliv-
ery [Lei+20a]

6th International Workshop on Rapid Continuous Software Engineering (RCoSE 2020),
held in conjunction with the IEEE/ACM 42nd International Conference on Software
Engineering (ICSE 2020)

Official publication on https://dl.acm.org/doi/abs/10.1145/3387940.3391455.

Version freely accessible on
http://ime.usp.br/~leofl/devops/2020-03-17/platform-teams.html.

https://ieeexplore.ieee.org/abstract/document/9270342
http://ime.usp.br/~leofl/devops/2020-07-06/icse-poster-track.html
https://dl.acm.org/doi/abs/10.1145/3387940.3391455
http://ime.usp.br/~leofl/devops/2020-03-17/platform-teams.html

1.4 | PRODUCED ARTICLES

Afterward, having conducted and analyzed 37 interviews, we further evolved our
taxonomy. We published the full description of this version, including core and supple-
mentary properties, in the Information and Software Technology journal. The paper
is entitled “The Organization of Software Teams in Quest for Continuous Delivery: a
Grounded Theory Approach,” and we present its results in Chapter 4.

Paper 4 - published

Leonardo Leite, Gustavo Pinto, Fabio Kon, Paulo Meirelles

The Organization of Software Teams in Quest for Continuous Delivery: a
Grounded Theory Approach [Lei+21]

Information and Software Technology, 139, 2021

Official publication on
https://www.sciencedirect.com/science/article/abs/pii/S0950584921001324.

Version freely accessible on https://arxiv.org/abs/2008.08652.

Besides the doctoral candidate and his advisors, Prof. Gustavo Pinto (Federal University
of Para - UFPA) also contributed to the initial formulation of our taxonomy, having
coauthored Papers 2, 3, and 4.

We described our initial plans to address RQ2, applying the Case Study methodol-
ogy [Yin09], in an article accepted in a thesis workshop (WTDSoft). The article is entitled
“Understanding context and forces for choosing organizational structures for continuous
delivery.” The content of this paper provided input for fruitful discussions with the quali-
fying examination board (Profs. Guilherme Travassos and Rodrigo Bonifacio). After such
discussions, we concluded that the conduction of case studies was not a proper path to
take.

Paper 5 - published

Leonardo Leite, Fabio Kon, Paulo Meirelles

Understanding context and forces for choosing organizational structures for
continuous delivery [LKM20]

10" CBSoft’s Workshop on Theses and Dissertations (WTDSoft 2020)

Available on https://sol.sbc.org.br/index.php/cbsoft_estendido/article/view/14609.

The final results of our research focusing on answering RQ2, grounded on data from
seven brainstorming sessions and 37 semi-structured interviews, are in the paper entitled
“A theory of organizational structures for development and infrastructure professionals,”
submitted to the IEEE Transactions on Software Engineering journal. Chapter 5 reports

https://www.sciencedirect.com/science/article/abs/pii/S0950584921001324
https://arxiv.org/abs/2008.08652
https://sol.sbc.org.br/index.php/cbsoft_estendido/article/view/14609

1 | INTRODUCTION

its results.

Paper 6 - submitted (under review)

Leonardo Leite, Nelson Lago, Claudia Melo, Fabio Kon, Paulo Meirelles

A theory of organizational structures for development and infrastructure
professionals

Submitted to the IEEE Transactions on Software Engineering (TSE) journal.

Preprint available on
https://www.techrxiv.org/articles/preprint/A_theory_of_organizational_structures_
for_development_and_infrastructure_professionals/19210347.

In addition to the doctoral candidate and his advisors, Nelson Lago and Dr. Claudia
Melo also contributed to the final development of our theory. Mr. Lago is currently the
Technical Manager of the USP FLOSS Competence Center, working both as a researcher
and IT operations manager. Dr. Melo, former professor at the University of Brasilia (UnB)
and head of technology for Latin America at ThoughtWorks, is now a Director of Software
Engineering/Tech Org Design at Loft.

1.5 Contributions

Our first contribution is to provide an empirically derived taxonomy to describe
the structures currently adopted by the software industry to organize development and
infrastructure professionals (answering RQ1). We provide a detailed presentation of each
structure with core and supplementary properties (answering RQ1.1). Although there
are other taxonomies in the literature, our taxonomy is valuable too because it is empirically
derived (many of the others are not). It is also worthy because empirical studies in the
sociological field (and, thus, in software engineering, too) are rarely definitive [Sir+11;
Pin86; And83]: multiple studies must be carried out independently so that the community
can reach a consensus.

Our taxonomy brings the following key benefits: (i) it helps practitioners to differen-
tiate collaborating departments from a single department, which were traditionally
blended under the term DevOps [HM11; FJT16], and (ii) it highlights the API-mediated
departments as a promising and emergent alternative for organizations — our taxonomy
was the first empirically derived taxonomy to present such a structure (other researchers
working concurrently with us also found equivalent structures [Lop+21]). In this context,
a valuable contribution we offer is providing empirical evidence that API-mediated de-
partments seem to lead to better outcomes in terms of delivery performance (answering
RQ1.2).

Our second significant contribution is to provide an explanatory dimension for each
of the structures presented in our taxonomy. We explicitly associated conditions, causes,

https://www.techrxiv.org/articles/preprint/A_theory_of_organizational_structures_for_development_and_infrastructure_professionals/19210347
https://www.techrxiv.org/articles/preprint/A_theory_of_organizational_structures_for_development_and_infrastructure_professionals/19210347

1.6 | THESIS STRUCTURE

reasons to avoid, consequences, and contingencies related to each structure. In this way,
practitioners can understand why different organizations adopt different structures (an-
swering RQ2). They can also learn how organizations handle the drawbacks of each
structure (answering RQ2.1) — or, at least, be aware of such drawbacks. Other researchers
presenting similar taxonomies did not attribute such level of explanation to their struc-
tures.

In summary, this doctoral thesis contributes to the area by presenting a systematically-
derived theory of organizational structures, based on recent field observations and em-
ploying a well-accepted methodology.

These contributions have implications for multiple stakeholders. By increasing the
awareness of organizational structures in the community, practitioners can make more
informed decisions on structure selection and drawback handling. Moreover, we hope
our theory can lead scholars to a deeper comprehension of the software production
phenomenon so they can update software engineering classes considering the reality
of the industry abstracted under our theory. We support the validity of our findings in
Chapter 6. We also provide more details on the relevance of the referred contributions in
our conclusions (Chapter 7) by stating their implications for practice and research.

1.6 Thesis structure

After this introduction, Chapter 2 presents some basic concepts for this thesis, including
DevOps and delivery performance, which we learned in our research Phase 1. Chapter 2
also discusses works related to organizational structures in the general literature and in
the software engineering and DevOps contexts. Chapter 3 details our research approach,
evidencing its base methodology, Grounded Theory. We present our results and related
discussions in Chapters 4 and 5, respectively, related to Phase 2 and 3. After that, we discuss
our quality criteria and the limitations of this research in Chapter 6. Finally, Chapter 7
draws our conclusions.

Chapter 2

Background

This chapter presents some of the fundamental concepts underlying our research
effort, especially DevOps and delivery performance. In particular, we expand the research
problem outlined in the introduction considering the literature on DevOps.

We also present the literature on organizational structures. We highlight how these
studies deal with the balance of specialization vs. integration of teams, which highly relates
to our proposed taxonomy for organizing development and infrastructure professionals.
To provide a broad perspective for the reader, we also introduce other views on orga-
nizational structures, especially the view of complex systems. We then debate on how
part of this literature dismisses the concern with structures in favor of tackling cultural
issues, concluding that such a view is controversial. Finally, we also explore the “specific
literature” on organizational structures in the context of software production, that is our
related work.

2.1 DevOps

Seeking to understand DevOps, we initiated our research by conducting a literature
review searching for papers with the keyword “DevOps”. In this review, we thoroughly
examined 50 scientific papers, which were carefully selected after we initially found almost
200 articles somehow related to DevOps. We noted that publications of papers on DevOps
grew by a factor of four from 2014 to 2015, reaching a peak in 2016 (see Figure 2.1). We
consider this high number of publications in the years preceding our study as an indication
of how relevant such a theme has become to academia.

By analyzing the 50 selected papers, we: devised conceptual maps organizing DevOps
concepts into four categories: process, people, delivery, and runtime (see Figures 2.2, 2.3,
2.4, 2.5, and 2.6); linked these concepts to the engineer’s and manager’s perspectives;
presented DevOps tools, classifying them and associating them to DevOps concepts (see
Table 2.1); listed significant DevOps implications for engineers, managers, and researchers;
and detected four fundamental DevOps challenges. Our literature review was published in
the ACM Computing Surveys journal [Lei+19].

11

12

2 | BACKGROUND

=== Journal Es
401 #7 Magazine 529
B Conference Z ES 59
30+ 4 é S
> _ Z =22
= B %
= | | 7
c s]
g 7
3 20+
10
0
.0
2006 2008 2010 2012 2014 2016 2018

Year

Figure 2.1: Publications about DevOps found in our survey by source types and publication year

Engineering
perspective

Management
perspective

Runtime People

Ops related

Dev related

Delivery Process

Figure 2.2: DevOps overall conceptual map

We now present some topics related to DevOps, most of them taken from our survey,
relevant to the rest of this thesis. Thus, we discuss the history of DevOps, our DevOps
definition, and the found DevOps challenges.

2.1.1 History

DevOps is an evolution of the agile movement [Chr16]. Agile Software Development
advocates small release iterations with customer reviews. It assumes that a team can release
software frequently in a production-like environment. However, pioneer Agile literature
puts little emphasis on deployment-specific practices. No Extreme Programming (XP) prac-
tice, for example, is about deployment [BA04]. The same sparse attention to deployment
is evident in traditional software engineering processes [KK03] and books [Pre05; Som11].
Consequently, the transition to production tends to be a stressful process in organizations,
containing manual, error-prone activities, and, even, last-minute corrections [HF10]. De-
vOps proposes a complementary set of agile practices to enable the iterative delivery of
software in short cycles effectively.

2.1| DEVOPS

ﬁes\ Top-management sponsorship

DevOps

provides benefits and
imposes obstacles to

Risk and t
isk and cos Change

copes with extends
Compliance

Regulations

reduces
is based on
advocates

enables embraces

Agile / Lean

advocates
Frequent and reliable
release process
Continuous improvement
Product management
over

Short Feedback Cycle

enables

project management without improves
fear enables
can be introduced Innovation Product quality
with the help of of Customer satisfaction

to assess

Small features builds
Pilot teams

Lead customer

Measurement Trust relationships

Figure 2.3: DevOps conceptual map: process

From an organizational perspective, the DevOps movement promotes closer collabo-
ration between developers and operators. The existence of distinct silos for operations
and development is still common: operations staff are responsible for managing software
modifications in production and for service levels [Wo016]; development teams, on the
other hand, are accountable for continuously developing new features to meet business
requirements. Each one of these departments has its independent processes, tools, and
knowledge bases. The interface between them in the pre-DevOps era was usually a ticket
system: development teams demanded the deployment of new software versions, and the
operations staff manually managed those tickets.

In such an arrangement, development teams continuously seek to push new versions
into production, while operations staff attempt to block these changes to maintain software
stability and other non-functional concerns. Theoretically, this structure provides higher
stability for software in production. However, in practice, it also results in long delays
between code updates and deployment, as well as ineffective problem-solving processes,
in which organizational silos blame each other for production problems.

Conflicts between developers and operators, significant deployment times, and the
need for frequent and reliable releases led to inefficient execution of agile processes. In
this context, developers and operators began collaborating within enterprises to address
this gap. This movement was coined “DevOps” in 2008 [Deb08].

In the Continuous Delivery book [HF10], Humble and Farley advocate for an automated
deployment pipeline, in which any software version committed to the repository must be a

13

14

overcomes

2 | BACKGROUND

Collaboration and

h communication
barriers

Cross-functional

"You build it, you run it"
After-hours support for Devs
Operators at agile events
Deployment triggered by Devs

can have different
organizations,
such as:

Global community
knowledge Knowledge,
skills, and
must teach capabilities
for DevOps

requires certain

Personal responsibility
Failure as opportunity
for improvement

relies on

DevOps role

may or may not have a

Programming education
have

NoOps
SmartOps
ChatOps must be Teams
SecDevOps imposes need
challenges for
Small and E :
loosely coordinated xperience
originates
variants as Culture of shared across achieve
collaboration different types of
based on
sharing
breaks down
/_> Silos
Dev s Knowledge Autonomy
Tools Morale
Processes Confidence
Practices Less stress

is about

Aligning incentives

Figure 2.4: DevOps conceptual map: people

production-candidate version. After passing through stages, such as compilation and auto-
mated tests, the software is sent to production by the press of a button. This process is called
Continuous Delivery. A variant is continuous deployment [Hum10], which automatically
sends to production every version that passes through the pipeline. Many authors closely
relate DevOps to continuous delivery and deployment [SBZ16; WAL15b; YK16; WAL15a].
Yasar, for example, calls the deployment pipeline a “DevOps platform” [YK16].

Besides automating the delivery process, DevOps initiatives have also focused on
using automated runtime monitoring for improving software runtime properties, such as
performance, scalability, availability, and resilience [Chr16; Bas+16; BHJ16; Roc13]. From
this perspective, “Site Reliability Engineering” [Bey+16] emerged as a new term related to
DevOps work at runtime.

2.1.2 Definitions

The first impact when researching DevOps is to perceive that even after a decade of
discussions, this term still lacks a widely accepted definition. By consolidating the most

2.1| DEVOPS

are able to

Roll back /_\
DevOps

imposes
challenges for

Architecture
Embedded systems
loT

it is not the
same than

Backwards compatibility

. Microservices
with

abstracts

innovated on

Versioned APls with or without

Complexity

Release engineering

Versioning

Build Management
Static Analysis
Testing Automation

Pre-production 3 i
Continuous Integration

continuous

i enable
maintenance Build once Tools
Artifact management \/
\’) Configuration Management provide enables

copes with the Deployment pipeline are normally

sustainability of the

Correcteness
ensure Open source
easies
Automation
support requires

Continous Delivery require

Continous Deployment

can work on
uses
Mainframe
Firmware

Mobile apps
Virtualized Network Services
or any doamin

On-boarding

implemented by

Frequent and reliable
release process

Feature toggle

Figure 2.5: DevOps conceptual map: delivery

cited definitions of DevOps, we crafted our definition, similar to the one proposed by Dyck
et al. [DPL15]:

DevOps is a collaborative and multidisciplinary effort within an organization to
automate continuous delivery of new software versions, while guaranteeing their
correctness and reliability. [Lei+19]

There is a current trend in the industry of adopting DevOps as a role, the “DevOps
engineer” [HCM17]. But our DevOps definition is according to the original spirit of the
DevOps movement, which was about breaking down the silos (“DevOps is a collabora-
tive and multidisciplinary effort within an organization”). This spirit was portrayed, for
example, by the novel The Phoenix Project [KBS18], authored by a prominent figure of
the DevOps movement. Our definition is also in accordance with a shared view in the
literature that closely relates DevOps to continuous delivery (“to automate continuous
delivery of new software versions”), evidenced by the title of the seminal paper on DevOps
“Why enterprises must adopt DevOps to enable continuous delivery” [HM11]. Finally,

15

2 | BACKGROUND

Security
Stability

provides opportunities and
Infrastructure as code imposes challenges to
Virtualization
Containerization
Cloud services
Business metrics
Resource metrics

Alerting

manages

Post-production
infrastructure with

continuous
maintenance
provides

builds
through
Continous runtime monitoring the code
Application rollback relies on

Log management

should
ensure

Runtime experiments performs

A/B testing
Canary release

smulates Dev ps
designs and performs

Software crlses
Copes with
Chaos engineering
\/ Performance guarantees that

Availability
Scalability

copes with Resilience Environments are similar
Reliability

_7 Less human intervention

achieved with

Figure 2.6: DevOps conceptual map: runtime

our definition is also aligned with more recent developments that face the fact that it is
not enough to deliver faster, but also that reliability is paramount (“while guaranteeing
their correctness and reliability”), such as the discussion presented in the Site Reliability
Engineering book [Bey+16].

Other definitions in the DevOps context are relevant to this thesis. First, infrastructure
refers to all of the hardware, software, networks, facilities, etc. that are required to build
and operate IT services, according to the ITIL glossary [Foul9]. In our context, it is
helpful to add, to this definition, the notion that infrastructure is a layer of the software
stack that can be provided as a commodity [Ful09]. Although infrastructure must meet
application non-functional requirements, it usually is provided regardless of the application
domain, enabling organizations to offer it for different applications in a standardized
manner. We adopted this careful definition to include in the infrastructure work not only
physical machines but also virtualized machines and even deployment platforms, such as
Kubernetes'.

Second, we are considering development teams (also called product teams) as
responsible for developing business services. On the other hand, the infrastructure
staff uniformly provides computational resources for diverse applications. This second
definition aligns with Woods’ view about infrastructure engineers: the ones providing
the infrastructure services the system relies on [Woo16].

L https://cloud.google.com/google/kubernetes

https://cloud.google.com/google/kubernetes

17

2.1| DEVOPS
Category Examples Actors Goals Concepts
Rocket Chat Culture of collaboration
Knowledge GitLab wiki Human Sharing knowledge
. . Everyone . . .
sharing Redmine collaboration Breaking down silos
Trello Collaborate across departments
. Human Versioning
Git . .
collaboration Culture of collaboration
Source code SVN Dev .
Sharing knowledge
management CVS Ops . . .
Continuous Breaking down silos
ClearCase .
delivery Collaborate across departments
Maven Release engineering
Build Cradle Continuous Contlnuqus delivery
rocess Rake Dev deliver Automation
P JUnit y Testing automation, Correctness
Sonar Static analysis
Frequent and reliable releases
Jenkins Release engineering
Continuous GitLab CI Dev Continuous Continuous integration
Integration Travis Ops delivery Deployment pipeline
Nexus Continuous delivery, Automation
Artifact management
Chef, Puppet Frequent an'd reli'able releases
. Release engineering
Docker Continuous Configuration management
Deployment Heroku Dev delivery '8 panag
. Continuous delivery
automation Open Stack Ops
N Infrastructure as code
Rancher Reliability . o .
Fl Virtualization, Containerization
yway Cloud services, Automation
You built it, you run it
Nagios After-hours support for Devs
Monitorin Zabbix Obs Continuous runtime monitoring
& Logein & Prometheus DEV Reliability Performance, Availability, Scalability
ggmg Logstash Resilience, Reliability, Automation
Graylog Metrics, Alerting, Experiments

Log management, Security

Table 2.1: Major DevOps tools related to actors and DevOps concepts

Third, in this work, we use the term operations to refer to the operations activities,
such as application deployment, infrastructure setup, and service operation in run-time.
We avoid the term operators or even operations staff. In some companies, there are workers
dedicated to such tasks. As put by Woods: operations staff accept and operate new and
changed software in production and are responsible for its service levels [Woo16]. However,
in the pre-DevOps context, such tasks were usually attributed to the professionals in charge
of providing the infrastructure. Our research seeks to understand how these activities
were redistributed between development and infrastructure professionals with the DevOps
advent. We, therefore, prefer to use the term infrastructure professionals instead. Still, in
other industries, it is common to apply the term operator to menial workers who control

18

2 | BACKGROUND

machines, so we would have engineers projecting machines and operators operating them.
If the “machine” built by software engineers is the software system, operators could be
the system users. This use could be adequate to situations in which users are employees
of the client (who demanded the system), as it would be the case for supermarket cashiers.
Clearly, this use is not related to the “ops” in DevOps.

2.1.3 Challenges

The four DevOps challenges we reported in our survey were:

1. How to re-design systems toward continuous delivery, especially considering the
relation between DevOps practices and microservices architecture [BHJ16; Ebe+16].

2. How to organize the relations between development and infrastructure professionals
to adopt DevOps, especially considering that mutual support between devs and ops
is a very different thing from cross-functional teams [NSP16; Gra06].

3. How to assess the quality of DevOps practices in organizations, considering survey
and system data and the pitfalls of any metric when used to promote or punish
professionals [FK18; Bro18].

4. How to qualify engineers for DevOps practice, discussing the laborious endeavor
of professors preparing practical DevOps classes and evaluating students’ assign-
ments [Chr16; Bai+18].

We selected the second listed challenge as our guide to this doctoral research?. Based on
this initial elaboration, we derived our research questions. Chapter 2.4 presents more works
related to the problem of structuring development and infrastructure professionals within
software-producing organizations. Subsequently, we reproduce the second challenge as
published in the DevOps survey.

How to deploy DevOps in an organization

A hard question not yet fully answered by the literature is how — perhaps whether
— an organization should be restructured to adopt DevOps. We believe the literature is
incomplete and even contradictory regarding this subject. We discuss a few studies that
have evaluated this matter.

The seminal paper of Humble and Molesky about DevOps presents three scenarios.
First, preserving the structures of development and operations departments, DevOps is led
by human collaboration between developers and operators, with operators attending agile
ceremonies and developers contributing to incident solving [HM11; Jaa18]. Alternatively,
product teams, also called cross-functional teams, effectively incorporate operators. Finally,
in a third scenario, one product team is composed of only operators offering support
services (continuous integration, monitoring services) to the entire organization.

2 Based on our experience on Software Engineering and research, we considered the second challenge to be
more manageable from an academic perspective, being more a sociological inquiry than an engineering
endeavor.

2.1| DEVOPS

Similarly, Nybom et al. also present three distinct scenarios to the adoption of De-
vOps [NSP16]: i) collaboration between development and operations departments; ii) cross-
functional teams; and iii) creation of “DevOps teams” These approaches are summarized
in Table 2.2 and discussed in detail in the following paragraphs.

Collaborating departments

Development and operations departments collaborate closely.

It implies overlapping of developers and operators responsibilities.

Downside: new responsibilities can be unclear for employees.
Cross-functional team

The product team is responsible for deploying and operating (You built it, you run it).
Recommended by Amazon and Facebook.

Downside: requires more skilled engineers.

DevOps team

Acts as a bridge between developers and operators.

It is better accepted when it is a temporary strategy for cultural transformation.
Downside: risk of creating a third silo.

Table 2.2: DevOps adoption approaches

In the first approach, developers’ responsibilities overlap with operators’ [NSP16;
CSA15; SBZ16; DMC16]. A high risk for adopting this strategy occurs when new responsi-
bilities do not become evident in the organization [NSP16; CSA15], which could lead to
frictions between developers and operators [Che15]. This is especially true when delivery
automation is not prioritized [NSP16].

Cross-functional teams resemble the “whole team” practice from XP [BA04], and seems
to prevail in literature [FFB13; Gra06; Cuk13; BHJ16]. This structure appeals to “T-shaped”
professionals, who have expertise in few fields and basic skills in multiple correlated
areas [Deb11; Gue91]. In this model, at least one team member must master operations
skills. From this perspective, the so-called “DevOps engineer” [HCM17], also called the
“full stack engineer” [HCM17], is known as a developer with operations skills.

One could wonder whether it makes sense to talk about collaborations between de-
velopers and operators in a cross-functional team context. Adopting cross-functional
teams may just be a matter of moving operators to product teams. However, this is not
trivial, considering that large organizations usually have only a small pool of operators
for several development teams [NSP16]. Therefore, companies must hire people with both
development and operations skills or train some of their developers in operations skills.
Nevertheless, pressuring developers to learn operations can be ineffective, as they are
already overwhelmed with other skills they need to learn. Transforming development
teams into product teams has still another major cultural shift, as developers become re-
sponsible for 24/7 service support [SBZ16; Deb11]. This is true even when services should
be designed to remain available without human interaction [Ham07]. An extra challenge
for cross-functional teams is guaranteeing that specialists interact with their peer groups to
share novelties in the field [Deb11]. Spotify, for example, achieves this through inter-team
“guilds,” which are communities of common interest within the organization [Kni14].

19

20

2 | BACKGROUND

Assigning a “DevOps team” as a bridge between developers and operators [NSP16]
has become a trend [Vel+14]. However, it is not clear what precisely “DevOps teams” are,
and how they differ from regular operations teams [NSP16; Vel+14]. This approach is
criticized by Humble, who considers that potentially creating a new silo is not the best
policy to handle the DevOps principle of breaking down walls between silos [Hum12].
Skelton and Pais present some variations, called “DevOps topologies,” and also DevOps
anti-patterns [SP13]. They argue that, although the DevOps team silo is an anti-pattern,
it is acceptable when it is temporary and focused on sharing development practices to
operations staff and operations concerns to developers. Siqueira et al. report how a DevOps
team with senior developers and rotating roles among members was a key decision to
construct and maintain a continuous delivery process [Siq+18].

There is yet the strategy adopted by Google, called Site Reliability Engineering
(SRE) [Bey+16], which involves the evolution of the operations engineer role. In addition
to product teams, Google has SRE teams responsible for product reliability engineering,
which includes performance, availability, monitoring, and emergency response. SRE teams
have an upper limit of using 50 percent of their time on operational tasks because they must
allocate at least 50 percent of their time increasing product reliability through engineering
and development activities.

One should also question the impact of deployment automation on operators’ roles.
Chen reported that, after continuous delivery adoption, operations engineers only needed
to click a button to release new versions [Chel5]. One should question the role of an
engineer in such a context. Moreover, if software updates are adequately broken down into
small increments, and delivery automation turns deployment in a “non-event” [HM11],
practices such as “development and operations teams should celebrate successful releases
together” [HM11] can be perceived as contradictory.

Therefore, if operations provide support services (continuous integration, monitor-
ing) [HM11] and product reliability is appropriately designed, product teams can easily
deploy and operate their services. Thus, one can even replace operations with third-
party cloud services, as done by Cukier [Cuk13], and achieve an organizational structure
known as “NoOps”. Some blog posts promote NoOps concepts, but the literature has
not yet covered this subject. One possible definition is: “NoOps (no operations) is the
concept that an IT environment can become so automated and abstracted from the un-
derlying infrastructure that there is no need for a dedicated team to manage software
in-house™ [Roul15]. Cross-functional teams can embrace NoOps, with a particular focus
on employing cloud technology that automates much of the operational work, rather than
reallocating operators or teaching developers all the operational work.

2.2 Delivery performance

Delivery performance combines three metrics: frequency of deployment, time from
commit to production, and mean time to recovery [For+20]. These metrics have become

3 Although, according to this very definition, it would be more suitable for NoOps to mean “no operators”
rather than “no operations.”

2.2 | DELIVERY PERFORMANCE

very popular for measuring IT-performance and DevOps adoption [Sal+21]. Moreover, de-
livery performance correlates to the organizational capability of achieving both commercial
goals (profitability, productivity, and market share) and noncommercial goals (effectiveness,
efficiency, and customer satisfaction) [FHK18]. We used this construct as an indication of
how successful an organization has been in adopting continuous delivery.

Based on a survey with 27,000 responses, Forsgren et al. [FHK18] applied cluster
analysis to these metrics and discovered three groups: High performers were characterized
as those with multiple deployments per day, commits that take less than 1 hour to reach
production, and incidents repaired in less than 1 hour. Medium performers deployed once
per week to once per month, had a time from commit to production between one week
and one month, and took less than one day to repair incidents. Low performers presented
the same characteristics of medium performers for deployment frequency and time from
commit to production, but took between one day and one week to repair incidents.

In our research, we are interested in distinguishing between high and non-high per-
formers, not in identifying medium or lower performers. However, the above clusters
present a problem, because there is a gap in the values used to identify the high and the
medium performers clusters. We circumvented this problem by considering an organization
as a high performer if (i) it is within the boundaries limiting the cluster of high performers
defined above, or (ii) it violates no more than one high-performance threshold by no more
than one point in the scale adopted for the metric. The scales for each metric are:

« Frequency of deployment scale: multiple deploys per day; between once per day and
once per week; between once per week and once per month; between once per
month and once every six months; fewer than once every six months.

« Time from commit to production scale: less than one hour; less than one day; between
one day and one week; between one week and one month; between one month and
six months; more than six months.

« Mean time to recovery scale: less than one hour; less than one day; between one
day and one week; between one week and one month; between one month and six
months; more than six months.

During our interviews of Phase 2, we asked interviewees about these metrics in their
organizations, so we could classify their contexts as being of high performance or not.
Here, context relates to the primary deployable units [Sha+19] with which the practitioner
worked in recent times.

Forsgren et al. initially considered also change failure rate to compose IT perfor-
mance [Vel+14]. However, statistical tests considered it less significant than the other three
presented metrics. Nonetheless, researchers still used this fourth metric [FHK18; Sal+21].
Therefore, although we did not employ this metric for high-performance classification,
we considered it to broaden our perception of practitioners’ situations. The scale for this
metric is:

« Change failure rate scale: 0% - 1%; 1% - 15%; 15% - 30%; 30% - 50%; More than 50%.

Thus, for the interviews we conducted (described in Section 3.5), by assessing the
presented metrics for services maintained by the participants, we perceived how con-

21

22

2 | BACKGROUND

tinuously they could deliver new software versions while guaranteeing reliability. That
is, how successful they have been in adopting continuous delivery, a crucial target of
DevOps.

2.3 The structures of organizations

Based on several studies [SF95; Don99; Hal84], Oliveira summarizes the basic elements
of organizational structures as differentiation (division of labor) and integration (coordi-
nation) [Oli12]. Such definition aligns well with how Conway’s Law compares graphs
abstracting system structures (subsystems’ interconnections) and the structures within an
organization (communication paths among groups of people) [Con68]. Figure 2.7 illustrates
this concept. Therefore, “organizational structure” (or just “structure” in this thesis) can be
understood as “differentiation and integration patterns”.

A

Figure 2.7: According to Conway’s Law, the represented graph may refer, for example, to (i) services
A and B using the underlying infrastructure C, or (ii) development teams A and B demanding the
infrastructure group C.

Organizations and their structures have been extensively studied in the management
and administration fields. The studies of organizational structures deal with the disposition
of groups (e.g., departments) in a firm and the existing relations among them [Oli12]. The
roots of thinking on how the division of labor affects the productive forces of work in
industrial settings can be traced back to Adam Smith [Smil4]. Later, Frederick Taylor
reinforced the notion of maximum division of labor as the path to attain productivity
gains [Oli12; Win14]. In this way, Taylor founded a management school advocating rational
administrative procedures, clear channels of authority, centralized command and control,
and interchangeability of employees [YH98]. Taylorism also relates to the Weberian
bureaucratic theory: managers must avoid favoritism, nepotism, and intuition [YH98].
Taylorism also led to the emergence of Fordism, which focused on the mass production of
standardized goods through the assembly-line [Jes92]. This view of classical management
laid the basis for profoundly segregating development and operations in the software
industry.

Despite the outstanding popularity of Tayloristic approaches until the 60s, the use
of top-down enforced rules and standards is effective only in stable environments (e.g.,
assemble lines) [YH98]. Moreover, Taylorism worked with the assumption that global
optimization comes from local optimizations [YH98], which is disputed®. Also, some

4 Theory of constraints alerts that local optimizations lead to global optimizations only when applied to the
bottlenecks of the process [GC14].

2.3 | THE STRUCTURES OF ORGANIZATIONS

industries felt tensions in segregating departments. During the Boeing 777 construction,
for example, the formerly isolated departments of design and manufacture were reconciled
in the “working together” system, which promoted the free flow of information between
departments and even suppliers [Sab96]. The “working together” aptitude aligns with the
DevOps movement’s impetus in making development and infrastructure staffs collaborate
among them [AH09].

Yeatts and Hyten claim that in uncertain or unstable environments, employees need
to make unique decisions quickly, in such a way that rules and standards are of little
value [YH98]. In such a context, they advocate that better performance is achieved with
more informal and decentralized organizational designs. They, then, propose the adoption
of self-managed work teams (SMWT), which relates to the cross-functional teams strategy
adopted by Amazon [Gra06]. Such a position defies the view of maximum division of labor
as the supreme efficiency enabler. Yeatts and Hyten define a self-managed work team as
“a group of employees responsible for managing and performing technical tasks that result
in a product or service being delivered to an internal or external customer.” These teams
would have the following properties:

« Having typically from 5 to 15 employees.

« Being responsible for all the technical aspects of work.

« Rotating management and technical responsibilities among themselves periodically.
+ Not being short-term purpose groups.

« Providing group members with autonomy, responsibility, meaningful tasks, and the
opportunity to pursue different skills (what can satisfy in different degrees diverse
employees).

By examining the sectors of manufacturing, public service, and health care, Yeatts
and Hyten found that SMWTs promote higher performance at less cost, and produce
more innovation and creativity. The rationale is that decisions are more effective because
team members taking decisions are the most knowledgeable persons about the work.
However, the authors acknowledge that it is hard to prove such propositions through a
quantitative analysis due to the difficulty in isolating factors. For example, some models
predict self-reported performance well but not actual performance.

Besides maximum division of labor versus SMWTs, it is also possible for each employee
to report to both a product manager and a functional manager. This structure is called
matrix; it provides dual authority, likely to cause confusion and conflict [Gal08]. Fayol
corroborates this vision, stating that duality of command would be a perpetual source
of conflicts, very grave sometimes [Fay13]. Galbraith also presents a more sophisticated
structure, the “front-back structure,” aiming at the achievement of global scale [Gal08]. In
this structure, part of the organization (the front half) focuses on customers, while the
other (the back half) focuses on products, providing services to the front half.

Another alternative to Fordism and maximum division of labor is the Toyota Production
System (TPS) [Ohn88]. In this system, mass production is restrained by a just-in-time
philosophy. Quality becomes a shared responsibility among all employees, not only a
specialization: the production line must be stopped to fix problems. This philosophy has

23

24

2 | BACKGROUND

influenced the ideas of lean software development, which focus on principles derived from
TPS, such as reducing waste and bottlenecks [PP06].

It is also possible to analyze an organizational structure around other dimensions
beyond the division of labor and integration. Researchers have proposed several classi-
fications for organizational structures over the years. Mintzberg, for example, proposes
a structure classification around three dimensions: prime coordinating mechanism, key
part of the organization, and type of decentralization [Lun12]. In this way, his proposed
structures are:

Simple structure, with direct supervision, strategic apex as key part, and both vertical
and horizontal centralization.

Machine bureaucracy, with standardization of work processes, technostructure as key
part, and limited horizontal decentralization.

Professional bureaucracy, with standardization of skills, operating core as key part,
and both vertical and horizontal decentralization.

Divisionalized form, with standardization of outputs, middle line as key part, and lim-
ited vertical decentralization.

Adhocracy, with mutual adjustment, support staff as key part, and selective decentral-
ization.

There are also other organizational studies that are more concerned with the dynamics
of organizational changes than with the understanding of structures at a certain point
in time [Sen+99; KC12; MR04]. Such studies are anchored in systems thinking (or com-
plex thinking), related to complex systems, which is a dynamic view of organizations
based on biological metaphors [Mor11]. Complex systems consider the interplay between
growth processes and limiting processes [Sen+99]. Senge et al., for example, identify
growth processes (“because it matters,” “because my colleagues take it seriously,” and
“because it works”), and strategies to limit these processes (e.g., “don’t push so hard for
growth”) [Sen+99]. Researchers also represent complex systems as networks of factors that
mutually affect each other through reinforcing and balancing feedback loops [Pen+18].
Moreover, complex systems encompass leverage points, in which small changes in one
aspect can provoke significant system-wide changes [Pen+18]. In other words, while classi-
cal management focuses on the division of labor among working groups, complex thinking
focuses on the integration of such groups (“how things connect are more important than
what they are” [Sin20]).

Assuming that organizations are complex systems has implications. Sosa et al. found
a strong tendency for design interfaces and team interactions to be aligned [SER04],
corroborating Conway’s Law. Nonetheless, in complex systems, they perceived such a
match is not perfect. Another implication is that central processes of organizations must
focus on change, such as Toyota’s katas, which are work patterns or routines focusing
on continuous improvement and adaptation [Rot09]. In our work, complex thinking is
not central. Nonetheless, we consider organizations as heterogeneously encompassing
different structures, and such structures to vary over time (“transitions”). Also, the causes
and conditions we study for each structure are implied in the forces operating such

2.3 | THE STRUCTURES OF ORGANIZATIONS

transitions.

Authors tackling complex systems have also published books to support managers in
carrying organizational changes in their companies [Sen+99; KC12; MR04; Pfl14]. They, for
example, list elements necessary to successful transformations (e.g., support from the CEO
and reducing barriers within the organization [Sen+99]). Kotter and Cohen provide eight
steps toward change: “increase urgency,” “build the guiding team,” “get the vision right,”
“communicate for buy-in,” “empower action,” “create short-term wins,” “don’t let up,” and
“make change stick” They also reveal core patterns associated with successful change: see,
feel’, and change. Manns and Rising defend that change is best introduced bottom-up with
support at appropriate points from management, both local and at a higher level [MR04].
Such proposition resonates with our empirical findings (see Section 5.4). They also see
change and innovation as a process, rather than an event, composed of stages: knowledge,
persuasion, decision, implementation, and confirmation.

A significant part of the refereed business books [Sen+99; KC12; MR04] sees actions
over people’s culture, feelings, and emotions as more important than actions over structures.
Senge et al. state that “it is not enough to change strategies, structures, and systems, unless
the thinking that produced those strategies, structures, and systems also changes” [Sen+99]
(at least one of our interviewees thought in this way too — see Section 4.3.1). Kotter and
Cohen reported: “the central issue is never strategy, structure, culture, or systems (although
these elements can be very important). The core of the matter is always about changing
the behavior of people” [KC12], which is contradictory since they define culture as a group
of norms of behavior and shared values. Manns and Rising relate culture and people to the
speed up or slow down of innovation-decision processes [MR04].

Nonetheless, this centrality on culture is disputable. Consider Pflaeging’
view [Pfl14]:

“Culture is not a success factor, but an effect of success or failure. (...) That is why it
also cannot be influenced directly. (...) Culture is observable but not controllable. (...)
A company cannot choose its culture, it has exactly the culture it deserves. Culture is
something like the restless memory of an organization. (...) It endows something like a
common "style" which all can rely on. (...) Culture, in this sense, is autonomous. Culture
neither is a barrier to change, nor does it encourage change. It can provide hints to what
an organization must learn. To change culture is impossible, but culture observation is
valuable. (...) Culture allows us to indirectly observe the quality of change efforts: change
trickles through into the culture.”

Such a view is somewhat corroborated by other stands, including historical materialism,
for which the mode of production (and we can include its structures) of a society conditions
the superstructure of this society (which includes culture) [Mar20]. Forsgren et al., for
example, find out that practices of lean product development and lean management
promote a performance-oriented culture [FHK18]. Therefore, we consider it relevant to
study the forms of production of a society, regardless of their interplay with culture and
psychological factors (that do exist and are also relevant).

Pflaeging also has a proposal for structuring the production in complex organizations

> Other theorists also question the pure rational model of decision making (i.e., the homo economicus) [MS93].

25

26

2 | BACKGROUND

toward high-performance [Pfl14]. He advocates a drastic change in the management
approach to a non-management approach, organizing the company in a value-creating
network of self-managed teams that interact as peers. He also proposes broad participation
of employees in decision-making, roles rather than positions for employees, emergent
leadership, and assessment of team performance rather than individual performance®.
Davis and Daniels call this stand holacracy, in which decisions are made by self-organizing
teams, not by a traditional management hierarchy [DD16]. Davis and Daniels also alert to
the risks of holacracy, in which career development is less clear, and people without the
necessary management skills end up unofficially filling power vacuums.

In this section, the reader was able to perceive that the general literature on organi-
zations and their structures is vast and rich. However, one could also note that studies
in this literature are not consensual about many dimensions. This legitimates studies
in specific areas, such as in software production. Thus, in the next section, we explore
the specific literature in the context of software production. Finally, we hope the issues
discussed in this section have provided the reader with a broader perspective to interpret
the propositions of this thesis.

2.4 Related work

Organizations and their structures have also been studied in the software engineer-
ing context. Seaman and Basili consider an organizational structure to be a network of
relationships of different types (e.g., collaborating and reporting) among developers in a
company [SB98]. They investigate the association between organizational attributes and
developers’ communication efforts in code inspection meetings. Herbsleb and Roberts study
how developers can optimally coordinate decision-making by considering the interplay
among multiple decisions [HR06]. Nagappan et al. provide eight metrics to quantify orga-
nizational complexity, seeking to associate such metrics with software quality [NMB08].
However, these earlier works focus on development activities, without considering infras-
tructure or operations concerns.

In Section 2.1.3, we already discussed the quandary brought by the DevOps movement
regarding how to structure the working groups of development and infrastructure. Re-
searchers and practitioners have proposed taxonomies [Ral19] for the interactions between
development and infrastructure professionals [SP13; SP19; NSP16; MBK18; Sha+17; Lop+21;
MB20; Kim+16]. However, most of them do not focus on the conception of their taxonomies
and instead take them as a starting point for their work. Nonetheless, Shahin et al. [Sha+17]
systematically conducted interviews and surveys, and found four types of team structures:
i) separate Dev and Ops teams with higher collaboration, ii) separate Dev and Ops teams with
a facilitator in the middle; iii) small Ops team and more responsibilities for the Dev team,
and iv) no visible Ops team.

Independently from Shahin et al., we created a taxonomy of structures to organize
development and infrastructure professionals, which mostly coincides with that of Shahin

6 While advocating cross-functional teams, Donnellon also favors team evaluation over individual evaluation,
toward a more collaborative way of working [Don93].

2.4 | RELATED WORK

et al. In particular, a significant difference between our taxonomy and theirs is that we
identified the platform teams, a pattern recently advocated by practitioners [SP19; BSK20].
Thus, we identified the following structures:

« Segregated departments, with highly bureaucratized cooperation between devel-
opment and infrastructure groups.

+ Collaborating departments, focusing on facilitated communication and collabo-
ration between development and infrastructure groups.

« API-mediated departments, in which the infrastructure team (the platform
team) provides highly-automated infrastructure services to assist developers.

« Single departments, in which teams take responsibility for both software develop-
ment and infrastructure management.

We provide a complete description of each structure in Section 4.3, presenting them as
a grounded theory [GS99] in the taxonomy form (i.e., as a classification system) [Ral19].
We observed that professionals may be organized differently for different deployable
units [Sha+19] and that an organization can be in a transitional state from one structure
to another. We also found evidence that API-mediated departments promote better
delivery performance [For+20].

Lopez-Fernandez et al. developed a taxonomy concurrently with ours [Lop+21]. Al-
though they organize their taxonomy differently from ours, both results present essen-
tial common elements, encompassing the ideas of collaborating departments, cross-
functional teams, and the provisioning of platforms. Lopez-Fernandez et al. [Lop+21]
acknowledge the common points among the works of Shahin et al. [Sha+17], ours, and
theirs, highlighting different insights brought by them and stressing how these models
can be appreciated in conjunction, providing data and methods triangulation. More on the
differences between our taxonomy and those of other researchers are in Section 4.5.

However, the above-related works present taxonomies to describe structures. They do
not explain why different companies adopt different organizational structures, which is also
a research goal of us. Nonetheless, Erich et al. [EAD17] authored an earlier article closer
to this goal, in which they seek to provide an explanation for DevOps. For six interviewed
organizations, they explored: why and how to adopt DevOps, and the consequences
(problems and results) of adopting it. They also explored organizational structures (e.g.,
discussing DevOps teams and the distribution of responsibilities). Still, their analysis
targets specific organizations, with no theory building. In other words, they do not provide
a taxonomy of DevOps structures, but simply describe the DevOps structures of six
organizations. Moreover, causes and consequences are related to the “DevOps adoption”
category, not to different structures, as we do in Section 5.4.

27

Chapter 3

Research design

This thesis presents a theory based on data collected from semi-structured interviews
conducted in real-world organizations. By analyzing the data extracted from the interviews,
we built a theory integrating concepts organized around a taxonomy. In this chapter, we:
disclose our understanding of theory and taxonomy; explain our base methodology -
Grounded Theory (GT) [GS99]; and present the steps of our research design. We also make
explicit how we conducted the literature review throughout our research process.

3.1 Theories and taxonomies

We present our theory by structuring its concepts around a taxonomy. Broadly speak-
ing, a theory is a system of ideas for explaining a phenomenon [Ral19], or knowledge
accumulated in a systematic manner [Gre06]. Taxonomies, on the other hand, are classifi-
cations, i.e., collections of classes, wherein each class is an abstraction that describes a set
of properties shared by the instances of the class' [Ral19]. A taxonomy is a classification
system that groups similar instances to increase users’ cognitive efficiency, enabling them
to reason about classes instead of individual instances [Ral19]. If a taxonomy provides an
explanation, it can be considered a theory for understanding: a system of ideas for making
sense of what exists or is happening in a domain [Ral19]. While applying “taxonomy” to
denote a theoretical formulation, we employ “classification” in a broader sense, including
classification proposals without theoretical formulation.

We can categorize our study as a field study [SF18], a category of knowledge-seeking
studies, in opposition to solution-seeking studies [SF18]. In this way, it is essential to note
that although our theory is intended to be used by practitioners in practical settings, as is
the goal of a grounded theory, the theory itself provides an explanation of the world, i.e.,
a guide for reasoning, not a straightforward guide for action. This aligns with Ralph, who
says a theory should explain, not prescribe [Ral19].

! The scientific literature as a whole does not employ the concepts of taxonomy, typology, and classification in
a unified and consistent manner [DG94; McK82]. In our research, we follow Ralph’s considerations [Ral19],
provided in the software engineering context.

29

30

3 | RESEARCH DESIGN

One could see a knowledge-seeking theory as of little practical relevance. However,
Gregor defies such a view. He states that accumulated knowledge in theories enlightens
professional practice [Gre06] — “nothing is so practical as a good theory” [Lew45]. Gregor
still ensures that all types of theories can have social or political implications: “the mere
act of classifying people or things into groups and giving them names (e.g., black versus
white) can give rise to stereotypical thinking and have political and social consequences.”
We provide more practical implications of our theory in the conclusion of this thesis
(Chapter 7).

Gregor also provides a taxonomy of theory types in information systems re-
search [Gre06]. The types are: I - analysis (description), II - explanation, III - prediction,
IV - explanation and prediction, and V - design and action. In this framework, we fit
our theory in type II, a theory to explain a specific phenomenon. We also fit our effort of
Phase 2 as initially building only a theory do describe (type I) some existing patterns in the
world.

Still, Glaser and Strauss classify theories into substantive and formal theories [GS99].
Substantive theories are grounded in research on one particular substantive area (e.g.,
work, juvenile delinquency, medical education, mental health), and they might apply to
that specific area only. A formal theory is more abstract than a substantive one, it is
developed for a formal, or conceptual, area of sociological inquiry (e.g., stigma, deviant
behavior, formal organization, socialization, status congruence, authority and power,
reward systems, or social mobility). An example of a substantive theory is: “How doctors
and nurses give medical attention to dying patients according to the patient’s social
value” A corresponding formal theory could be “How professional services are distributed
according to the social value of clients.” Our theory is a substantive one, i.e., we constraint
our theoretical formulations to the context in which the involved researchers are experts,
the software field. In particular, Glaser and Strauss claim that substantive theories can
have important general implications and relevance, laying the foundations for developing
subsequent formal theories.

For our research context, building a formal theory would mean fully integrating
our findings to more general theories on the study of organizations, usually published
in the fields of administration and management. Although we do not covet such an
accomplishment, we do not ignore these other works. In Section 2.3, we provided an
overview of this general literature about structures in organizations. In this way, the reader
can, at least, appreciate our work considering a broader picture.

3.2 Grounded Theory

To build a theory, one must initially embrace some scientific approach geared to theory
production. The rise of modern science was sustained by the mathematical and experi-
mental pillars, being experiments strongly conjoined with statistical methods [Rad09]. In
the mid-1970s, even sociological sciences, in which strict experimental control is often
unfeasible, focused on experimental work [Rad09]. On the other hand, by the time, qual-
itative research was being seen as lacking scientific rigor, and emphasis was on theory

3.2 | GROUNDED THEORY

verification [Hod21]. However, especially in social sciences, there was a gap: how to
produce theories to be tested by the established scientific methods?

Grounded Theory (GT) is a methodology originated in social sciences to support
researchers to build theories based typically on qualitative data in a disciplined manner.
With its systematic and rigorous procedures, the introduction of GT re-established the
value of qualitative research in sociology, arguing for theory development as a fundamental
research objective [Hod21]. The term “grounded” means a grounded theory is backed
(grounded) by data. Generating a theory from data means that most hypotheses and
concepts are systematically worked out in relation to the data during the course of the
research — generating a theory involves a research process [GS99].

Software engineering encompasses several social and human concerns, as it is, for
example, the issue of organizational structures in corporations. In this way, the use of
GT in the software engineering field has become commonplace [SRF16; Lop+21; MB20;
Jov+17; WNA15; HN17; San+16; FJT16; LPB19]. A grounded theory must fit the data, have
relevance to the field, and be modifiable [GS99]. Its primary advantage is to encourage
deep immersion in the data, which may protect researchers from missing instances or
oversimplifying and over-rationalizing processes [Ral19]. GT is also adequate for our
purposes since it is well-suited for questions like “what is going on here?” [SRF16]. In our
case, we want to know what is going on in software-producing organizations.

Since there are multiple GT variants, it is important to state which one to adopt. In
our work, we base our approach on the seminal book The Discovery of Grounded Theory
from Glaser and Strauss [GS99], which describes what is known as the “classical Grounded
Theory” [SRF16]. Historically, this is the first GT variant, and it is epistemologically?
more influenced by the views of objectivism® and positivism?; in this case, theory is
discovered from data [SRF16]. While a theory itself must emerge from data, classical
GT do not disallow pre-established research questions®. There are other GT variants,
including ones based on interpretivism® and constructivism’, in which knowledge and truth
are created, not discovered [Sch98]. However, debates among scholars make no variant
universally endorsed [SRF16; Cha08]. More recentlty, Hoda proposed a new GT variant,
the Socio-Technical Grounded Theory (STGT), tailored for use in software engineering
and information systems research [Hod21]. However, STGT was not available when we
elaborated our research design.

2 Epistemology refers to what can be treated as knowledge and how that knowledge is gained, in a research
context [Hod21].

3 For objectivism, there is a single, correct description of reality [SRF16].

4 At least in our context, positivism refers to a definite, assured, and certain nature of reality that can be

studied through direct observations, and it excludes traditional metaphysics and theology [Hod21].

> Examples of questions guiding sociological inquiries in the GT context: “Does the incest taboo exist in all
societies?”, “Are almost all nurses women?” [GS99].

® Interpretivism assumes no universal truth or reality exists, systems exhibit emergent behaviors not reducible
to their component parts, and that typical quantitative methods are insufficient for understanding social
phenomena [SRF16].

7 For constructivism, reality is socially constructed and researchers’ and participants’ presence and interac-
tions construct the reality that is studied [Hod21].

31

32

3 | RESEARCH DESIGN

The constant comparative method is the core method for producing a grounded theory.
It relies on rigorous analysis of qualitative data, and it is accomplished with coding, a
process of condensing original data into a few words with conceptual relevance, which give
emergence to theoretical concepts. Glaser and Strauss do not prescribe a precise coding
format [GS99], sufficing that the researcher annotates concepts and adheres to the following
rules: (i) when noting a concept, compare its occurrence with previous occurrences of the
same or similar concepts and (ii) while coding, if conflicts and reflections over theoretical
notions arise, write a memo on the ideas. A memo is an unstructured note reflecting the
researcher’s thoughts at a specific point in time.

Besides the rigorous analysis of qualitative data, GT also relies on the researcher’s
theoretical sensitivity; i.e., their capacity to have theoretical insight into a substantive
area. Our theoretical sensitivity comes from direct experience in the IT industry® and our
previous works on DevOps and software engineering [Siq+18; CK18; Wen+20]. Moreover,
we sharpened our sensitivity by conducting our survey on the DevOps literature [Lei+19].
This acquired theoretical sensitivity explains our capacity to pose the research questions
of this doctoral research.

In GT, data collection and analysis co-mingle and build on each other, so the emerging
theory guides which data to sample next, considering gaps and questions suggested in prior
analysis. This process—called theoretical sampling—avoids the usual statistical notions
of verificational methods, such as significant sample. Instead, researchers must establish
the theoretical purpose of the sample, defining multiple comparison groups, maximizing
variation among groups to identify similarities, and minimizing variation to determine
differences.

Ideally, the researcher should continue the analysis until theoretical saturation is
achieved, which means that new data no longer meaningly impact the theory. Nonetheless,
as an ever-evolving entity, rather than a finished product, new data can always be analyzed
to alter or expand a grounded theory. Accordingly, practitioners could (and potentially
will) adjust the theory when applying it to their concrete scenarios [GS99].

3.3 Overview of the steps in our research process

To better structure the presentation of our research steps, here we borrow the nomen-
clature defined by Hoda for the Socio-Technical Grounded Theory (STGT) [Hod21]:

Basic stage: encompasses Basic Data Collection and Analysis (DCA), which involves
lean literature review, study preparation and piloting, and iterations of basic data
collection and analysis. Initial theoretical concepts start to emerge.

Advanced stage: encompasses theory development, involving targeted literature review
if necessary, and selecting the emergent or the structured mode of theory develop-
ment.

8 The doctoral candidate is also a professional software developer.

3.3 | OVERVIEW OF THE STEPS IN OUR RESEARCH PROCESS

Emergent mode: enables the emergence of theory through the iterative targeted data
collection and analysis, ending with theoretical saturation and resulting in a mature
and integrated theory.

Structured mode: enables the structured development of theory through structured data
collection and analysis, ending with theoretical saturation and resulting in a mature
and structured theory.

Lean literature review (LLR): a lightweight and high-level review performed early in
the study, during the basic stage, to identify research gaps and motivate the need
for a study.

Targeted literature review (TLR): an in-depth review of literature targeting relevance
to the emerging concepts, performed periodically during the advanced stage.

With this frame, Figure 3.1 presents the steps of our research. In Phase 1, we conducted
an initial literature review to identify research gaps. This was a “lean review” regarding
the goal of this thesis (understanding the organization of development and infrastructure
professionals in the software industry), but a broad and solid review regarding the topic of
the review itself, which was “DevOps”. We presented the results of this review, published
in a journal (Paper 1), in Section 2.1. The primary output of Phase 1 was the research
questions of this thesis.

In Phase 2, the basic stage continued with brainstorming sessions with DevOps special-
ists. We then fine-tuned our research questions and gathered input to build our research
protocol. This stage also yielded some relevant concepts, such as platform teams. We
explain these brainstorming sessions in Section 3.4.

With a well-defined protocol, we then initiated the advanced stage, geared to theory
generation. We iteratively applied GT recommended analysis selection and procedures,
especially open coding, to produce concepts in our theoretical framework. By using such
concepts and comparing interview data (using the comparison sheet), we integrated such
concepts into a taxonomy. We then gathered some feedback from the study participants.
In this way, we produced our taxonomy, published in a journal (Paper 4). We expound how
we planned to conduct interviews and to analyze data, including the review process, for
Phase 2 in Sections 3.5, 3.6, and 3.7. Chapter 4 unfolds the results of the planned actions: the
process of participants selection, the achievement of saturation, the produced taxonomy,

and the gathered feedback.

In Phase 3, we continued our theory development, now in structured mode and using
a theoretical coding template (6C) recommended in the context of GT. We also performed
a structured analysis of resonance, labeling interview excerpts as showing support or
confusion about our taxonomy. After another round of participants’ feedback, we finished
our theory formulation (refined based on resonance analysis and structured in the 6C
template), which we submitted to publication in a journal (Paper 6). We expound how we
planned to conduct interviews and to analyze data, including the review process, for Phase
3 in Sections 3.8, 3.9, 3.10, and 3.11. Chapter 5 unfolds the results of the planned actions: the
process of participants selection, the achievement of saturation, the consolidated theory,
and the gathered feedback.

33

34

Phase 1

Abstract steps
(STGT)

Our concrete steps

Initial literature review:
DevOps

3 | RESEARCH DESIGN

Products

Research questions

Basic stage

Advanced stage

Phase 2

Brainstorming sessions

Targeted DCA
in emergent mode

Theory reporting

Constant comparative method

Participants selection

Interviews conduction

Review process

| Theoretical saturation

Targeted literature review:
rival DevOps taxonomies

Refined research questions

Interview protocol

Comparison sheet

Conceptual framework

Our taxonomy

Phase 3

time

Targeted DCA
in structured mode

Theory reporting

Participants selection

Interviews conduction

| Theoretical coding - 6C |

Resonance analysis

Review process

| Theoretical saturation

Targeted literature review:
organizational structures
in the general literature

DCA = data collection and analysis

Interview protocol

Resonance analysis sheet |

Theory

Refined taxonomy

Figure 3.1: Steps and products of our research

3.4 | BRAINSTORMING SESSIONS

Finally, in Section 3.12, we clarify the timing and role of our literature reviews.

3.4 Brainstorming sessions

After drafting our research questions, we conducted “brainstorming sessions” with
seven specialists, experienced with DevOps. Some of them have witnessed DevOps trans-
formations in large organizations, while others have actively shaped such transformations
in large and small companies (such as a senior consultant and a serial entrepreneur we
know).

The base script for these sessions aimed to elicit feedback on our research questions and
spark discussion about concerns raised by our survey on the DevOps literature [Lei+19].
The conversations were essential for us to fine-tune our research questions and research
approach. These sessions also helped us to target better the script for the following semi-
structured interviews toward concerns learned from these experts. Therefore, the concrete
outputs of this phase were: the research questions presented in this text and the interview
script, which we finished just after the brainstorming sessions.

We did not apply the analysis procedures detailed in Section 3.6 for these preliminary
conversations, considering they were not intended to provide answers for our research
questions. Nevertheless, we did not dismiss the theoretical insights provided by them. For
example, the notion of a platform team began to take shape in the brainstorming sessions
and, thus, influenced subsequent analysis. After these brainstorming sessions, we started
the semi-structured interviews.

3.5 Conducting the interviews of Phase 2

Since our initial goal was to discover existing organizational structures, and not to
verify a preconceived set of structures in the field, it would be unsuitable to use only closed
questions; instead, we conducted semi-structured interviews. Semi-structured interviews
mix closed and open-ended questions, often accompanied by “why” and “how” questions;
the interview can deviate from the planned questions, allowing for discussion of unfore-
seen issues [Ada10], which fits the purpose of theory generation. With semi-structured
interviews, we could also focus on different topics in different conversations, according to
the relevance of each theme for each context.

Before starting the interviews, we built an interview protocol (Appendix A) to guide
the process based on our previous experience with interviews [CK18], on other relevant
works [HN17; Ada10], and on the guidelines offered by a website for journalists, called
ijnet’.

The interview protocol contained the questions that guided the interviews, which
mainly were derived from the brainstorming sessions and our survey of the DevOps litera-

? https://ijnet.org/en

https://ijnet.org/en

36

3 | RESEARCH DESIGN

ture [Lei+19], and hence also grounded in data'®. The themes addressed by the interview
questions of Phase 2 included: (1) interviewee company and role; (2) responsibility for
deployment, building new environments, non-functional requirements, configuring and
tracking monitoring, and incident handling, especially after-hours; (3) delivery perfor-
mance (using the metrics and scales defined in Section 2.2); (4) future improvements in the
organization; (5) effectiveness of inter-team communication; (6) inter-team alignment for
the success of the projects; (7) description of DevOps team or DevOps role, if existing; and
(8) the policy for sharing specialized people (e.g., security and database experts) among
different teams.

The interview protocol was not a static document. As we conducted interviews, we
changed how we asked some questions, focused more on some questions and less on others,
and created new questions to explore rising hypotheses. We provide some indications
about the evolution of the questions in the interview protocol itself.

3.6 Analyzing the interviews of Phase 2

We followed the core Grounded Theory principles of constant comparative method and
coding, which are intended to discipline the creative generation of theory. During this
process, we created two artifacts for each interview: transcripts and codes. We also created
two global artifacts: a comparison sheet and a conceptual framework. Finally, by analyzing,
comparing, and using all these artifacts, we elaborated our taxonomy.

Transcripts. We listened to each audio record and transcribed it in the language of the
interview (Portuguese or English). We did not transcribe the full interview. Instead, we
excluded minor details and meaningless noise [GA08]. For instance, we transcribed the
following part of a conversation:

“If you break the SLA, there are consequences. You have to improve things; you can’t go back to
feature development until SLA has recovered. Any problem in final service: developer is paged. If it’s
infrastructure-related, developers call the infrastructure team. And we solve together. We try to help
anyway, because at the end of the day if users can’t use the system, we all suffer.”

Example of part of the conversation not transcribed:

“Actually if you haven’t read The Phoenix Project [KBS18], read The Goal [GC14] first. You'll see
what I mean... because you ill get the foundations first and then the way it is being implemented in
the third millennium.”

This was helpful advice that, indeed, we followed. Nevertheless, in this case, it was
enough to take note of the suggested material.

Codes. After transcribing an interview, we then derived the coding by condensing the
interviewers’ transcripts into a few words (the essence of the interview in relation to our
research questions). Each interview has its list of coding, representing the particular reality

10 GT also considers the library as a source of data.

3.6 | ANALYZING THE INTERVIEWS OF PHASE 2

of that interviewee. The above fragment of transcription, for example, led to the following
coding:

Developers — own the availability of their services
Broken SLA — blocks feature development

Broken SLA — page developers

Broken SLA — if needed, call infra

Even for interviews in Portuguese, we produced the codes in English (at least starting
from the seventh interview). Our supplementary material presents more examples of the
coding we performed''.

The comparison sheet. To support the constant comparison of different interviews and
codings, we summarized the main characteristics of each interview in a spreadsheet. We
filled the cells with concise statements, with rows representing interviews and columns
including the following characteristics: interview number, organizational structure, supple-
mentary properties, delivery performance, observation, continuous delivery, microservices,
cloud, other teams, non-functional requirements (NFRs), monitoring / on-call, alignment,
communication, bottleneck, responsibility conflicts, database, security, specialists sharing,
and DevOps team/role.

Conceptual framework. From the constant comparison of codes of different interviews
emerged theoretical concepts. These concepts and their relations form the unified concep-
tual framework, which comprises the shared understanding among researchers about the
analyzed data [MH13]. Our conceptual framework is not a representation of our theory or
taxonomy, but rather an intermediary artifact used to consolidate, in a single place, the
concepts yielded by the coding process, working as the source of concepts to the shaping
of our theory.

We maintained a visual representation of our conceptual framework as the research
evolved. In such visual representation, as illustrated by Figure 3.2, rectangles represent
concepts abstracted from data, while rounded boxes represent properties of these concepts
(i-e., an attribute or a characteristic of a concept). Figure 3.3 provides as example a fragment
of our conceptual framework. We provide all the versions of our conceptual framework in
the supplementary material (see Section 6.2).

Concept 1

relation among
concepts

Conceptual property
Concept 2

Figure 3.2: Conceptual framework nomenclature

As we evolved the conceptual framework and filled our comparison sheet, we de-
veloped our taxonomy by classifying each interview by its organizational structure and

1 The supplementary material to this thesis provides extra material reporting our thorough chain of evidence
and enabling the replication of our procedures. See Section 6.2.

37

38

3 | RESEARCH DESIGN

self-serviced for /
provides autonomy for

demand new features for

N

Infrastructure services

Product teams

use

decoupled from /
not bottleneck for /
can help and

collaborate with offers

Platform team

Y
On call for infrastructure services.
Product teams on call for
final services.

Figure 3.3: A fragment of our conceptual framework

its supplementary properties. The classification process was based on the concepts
provided by the framework and on the analysis of similarities and differences between
the interviews, summarized in the comparison sheet. As we evolved our understanding
with new interviews, we revisited the classification of previous interviews to refine our
taxonomy. For example, after the emergence of a supplementary property, we checked
whether we could classify previous interviews with the new property. We present the
taxonomy emerged from this process in Section 4.3.

3.7 Review process of Phase 2

After some interviews, the doctoral candidate developed the first version of the cod-
ing lists, the comparison sheet, the conceptual framework, and the taxonomy. Based on
the transcriptions, other two researchers thoroughly reviewed these artifacts, triggering
discussions that affected their evolution. When making a decision that could impact our
taxonomy, we involved a fourth researcher. One example of how we evolved and enhanced
our taxonomy is how we developed the supplementary properties after twenty inter-
views. Additional rounds of analysis, discussions, and theory elaboration were undertaken.
We went through this internal review process to reduce the bias of a single researcher
performing analysis with preconceived ideas.

3.8 Conducting the interviews of Phase 3

In the conducted semi-structured interviews of Phase 3, after presenting our taxonomy
to the interviewee, we approached: which organizational structure was adopted in the
context of the interviewee according to their opinion; why that structure was chosen over
the others; whether a different structure would be more suitable for the interviewee’s

3.9 | RESONANCE ANALYSIS

context; what were the perceived (or expected) disadvantages of the discussed structures;
and what were the strategies to handle such disadvantages. During interviews, we followed
Adams’s guidelines [Ada10]. We provide our complete script with the rationale of each
question in Appendix B.

3.9 Resonance analysis

The interviews of Phase 2 provided us with enough data to build the first versions of
our taxonomy of organizational structures. In such conversations, we employed second-
level questions [Yin09] to avoid exposing the emerging structures to interviewees. After
this, we performed a brief and limited member check [Gub81] through online surveys.
The following and necessary step was to observe the use of our taxonomy in practice,
verifying whether it achieves the goal of a classification (support reasoning by increasing
users’ cognitive efficiency [Ral19]) and serves as a grounded theory (being applicable by
practitioners [GS99]). To answer RQ2 and RQ2.1, we set up a favorable context to apply
and refine our taxonomy — we had to use its concepts during interviews of Phase 3.

We refer to the taxonomy refinement process as resonance analysis, where “resonance”
alludes to the degree to which findings are understandable to participants [Ral19]. By
assessing resonance in the Grounded Theory context, we do not aim to determine whether
the taxonomy is “valid” or not. Under GT principles, when faced with new conflicting
evidence (e.g., a taxonomy misuse), we adapted and evolved our theory, strengthening
it. We note that social theories are rarely confirmed but are instead corroborated, con-
fronted, or evolved by new studies [Sir+11; Pin86; And83]. Steinmacher et al., for example,
gathered qualitative data to refine their grounded theory with additions, deletions, and
reorganizations in their model [Ste+16]. Similarly, our process guided us on managing such
operations in our taxonomy: adding, deleting, reorganizing, and renaming its high-level
elements.

For each interview, we coded relevant excerpts as:

« providing support to our theory, when the interviewee employs the terms of the
taxonomy to discuss reality or possibilities in a precise and confident way; or

« displaying confusion about our theory, when the interviewee employs a term from
the taxonomy in a different way than we would expect, or there is difficulty in
selecting a term to describe its reality or possibilities.

For each excerpt coded as confusion, we defined an action to handle the situation
or justified our choice of not taking any action. In consequence, the taxonomy evolved
with new versions. We did not wait for interviews to be over to apply such actions; we
interleaved collection, analysis, and actions, following GT principles. In this way, we
conducted the last interviews based on the latest taxonomy version.

The procedures of our resonance analysis combine aspects of directed content analysis
(coding by using predefined categories) and summative content analysis (counting codes
and assessing the contexts for confusions) [HS05]. We present the results of the resonance
analysis in Section 5.3.

39

40

3 | RESEARCH DESIGN

3.10 6C analysis

Glaser proposed 18 theoretical coding families to guide researchers in labeling data at
the conceptual level [Gla78]. These families were intended to sensitize these professionals
to the many ways through which a concept could be examined. The “bread and butter”
coding family for sociologists are what he labels “The Six C’s: causes, contexts, contingen-
cies, consequences, covariances, and conditions” [Sal15]. Some GT studies on software
engineering use this practice [HNM11; vv13; Jov+17].

Glaser states that theoretical codes are vital because they potentiate a theory’s explana-
tory power and increase its completeness and relevance, resulting in a grounded theory
with a greater scope and parsimony [Gla05]. Hernandez explains that “without theoretical
codes, the substantive codes become mere themes to describe (rather than explain) a
substantive area; the descriptive thematic approach is characteristic of qualitative research
methods such as phenomenology or ethnography but not Classic GT” [Her09]. Indeed,
in this doctoral research, we present not just a “theory for analyzing,” but a “theory for
explaining” [Gre06].

As it happened with Hoda et al. [HNM11], when comparing theoretical coding families,
it became evident that the 6C coding family is the most suited for our research goals. We
understand that our research questions can be answered in the 6C format since, for a given
context and certain conditions, there are causes that lead organizations to take actions
expecting specific consequences — although contingencies may emerge as well. Moreover,
there may be a covariance of such causes, consequences, and contingencies in specific
contexts and conditions.

Thus, we transcribed each interview, highlighted key points from the interviews (the
excerpts with potential theoretical interest), extracted codes from the key points, and
associated them with 6C labels. Usually, theoretical coding associates codes with the core
category of the study. In our case, the four organizational structures of our taxonomy are
our core categories. As the coding process advanced, we merged and abstracted different
codes, as it is common to open coding too. Hence, a code may have different sources
(interviews). We provide the key points and the extracted codes as supplementary material
(see Section 6.2).

Although the original 6C labels provide a robust analysis framework, there is no reason
to force relevant codes to fit into them. Therefore, as we perceived a need during analysis,
and as agreed in review sessions, we adapted the labels — such flexibility agrees with
Glaser’s ideas [Her09]. Thus, the employed definitions of the labels used during our 6C
analysis were:

+ Characterization: identifying structures’ characteristics, i.e., aspects that enable
relating companies to structures.

 Conditions: environmental conditions that are necessary to implement a structure
(i.e., prerequisites).

+ Causes: reasons/motivations/opportunities that led the organization to adopt a
particular structure and not another.

3.11 | REVIEW PROCESS OF PHASE 3

 Avoidance reasons: reasons/motivations that led the organization not to adopt a
particular structure.

« Consequences: outcomes that happen or are expected to happen after an organiza-
tion adopts a structure, including unexpected issues.

. Contingencies: strategies to overcome a structure’s drawbacks'?.

We did not analyze context and covariance interview-by-interview. The context of
our interviews corresponds to our sample (see Section 5.1). We performed the covariance
analysis after the last interview. We used characterization codes to link interviews and
their codes to structures. Nevertheless, as they largely overlap with our taxonomy’s core
categories, we do not explicitly report them here.

It is troublesome to differentiate facts from interviewees’ opinions. We mitigated this
issue by reporting only codes supported by at least three interviews. The rationale is that an
idea supported by three persons, thus in at least two companies, is worthy of consideration
to some degree. We call the conditions, causes, avoidance reasons, consequences,
and contingencies supported by at least three interviews as strong codes. We present
the results of the 6C analysis in Section 5.4.

3.11 Review process of Phase 3

The doctoral candidate conducted the initial analysis of each interview. Periodically,
other two researchers joined for review sessions in which we held discussions until
reaching a consensus. While the doctoral candidate is also a software developer, it is
relevant to note that one of the review researchers is also an experienced infrastructure
professional. Receiving insight from this type of professional for a DevOps-related study
was a recommendation given by an interviewee of Phase 2, aiming to soften possible biases
given the doctoral candidate’s metier. We held 14 review sessions, from January to October
2021, with most of them taking around two hours.

3.12 Our approach to the related literature

A key component of Grounded Theory is limiting the exposure to the literature at
the beginning of the research [SRF16]. This advice diverges from recommendations of
other methodologies, such as Case Study [Yin09]. The goal is to prevent researchers from
testing existing theories or thinking in terms of established concepts [SRF16]. As put by
Glaser and Strauss: “covering all the literature before commencing research increases the
probability of brutally destroying one’s potentialities as a theorist” [GS99].

Nonetheless, it is not feasible to acquire theoretical sensitivity and formulate opportune
research questions with no literature exposure at all. Therefore, we had to manage literature

12 One of the meanings of “contingency” in the Cambridge Dictionary is “an arrangement for dealing with
something that might possibly happen or cause problems in the future” (https://dictionary.cambridge.org/
dictionary/english/contingency).

41

https://dictionary.cambridge.org/dictionary/english/contingency
https://dictionary.cambridge.org/dictionary/english/contingency

42

3 | RESEARCH DESIGN

exposure in this doctoral research carefully. We started, in Phase 1, with a literature review
on DevOps (Chapter 2) in which we studied a few papers unfolding our research questions
concerning organizational structures. After reading this bare minimum to formulate our
research questions, we did not look for more readings on organizational structures. The
main idea was to avoid making our open coding process biased with concepts elaborated
in other works. Such care makes the findings in our research much more significant, such
when we discovered the concept of platform teams. However, with the results of our
DevOps survey, we already had some relevant concepts at hand. As much as possible, we
tried not to consider these concepts during our open coding process. An example of a
promising concept found in our survey was the “DevOps team,” which one could expect to
emerge as a structure of our taxonomy. The fact that this did not happen is evidence that
we, fortunately, did not drive our analysis by the initial concepts yielded by our DevOps
survey.

At the end of Phase 2, we started to look for similar works (i.e., other works proposing
taxonomies for organizing development and infrastructure professionals in software-
producing companies). We then elaborated a detailed comparison between our taxonomy
and these other studies, which we present in Section 4.5.

While conducting Phase 3, we continued to track similar works that could appear.
Nevertheless, we also broadened the scope of our target literature review at this stage.
We started to look for works discussing more generally on organizational structures, not
only in the software production context. Such works, the “general literature,” are usually
published in the management and administration fields. The objective of these readings
was to provide perspective on our substantive theory. We did not aim to integrate such
general theories with ours. Such integration would lead us to the work of formulating
a formal theory [GS99], which is out of the scope of this doctoral research. However,
ignoring this research landscape would not be suitable. Therefore, we present this general
literature in Section 2.3.

Chapter 4

A taxonomy for describing
organizational structures

In this chapter, we present the outputs of our research Phase 2. First, we explain
our approach to the participant selection and the resulting sample (Section 4.1). Then,
we explain our saturation criteria to stop selecting new participants (Section 4.2). After
that, and most importantly, we present the first versions of our taxonomy for organizing
development and infrastructure professionals (Section 4.3). We also present the result of
our member check process (Section 4.4) and the comparison between our taxonomy and
other similar works (Section 4.5).

4.1 Sample

We sent out about 90 interview invitations using a convenience approach: the first
invitations were close contacts in our research group’s network. We also contacted par-
ticipants suggested by our interviewees and colleagues. The only requirement was that
the participant should work in an industrial context that has adopted continuous delivery
or has implemented efforts toward it. Some invited participants did not reply, and some
demonstrated interest in participating, but could not make time for it. Ultimately, we inter-
viewed 37 IT professionals (~ 41%). Following ethical procedures [Str19], we anonymized
all the interviewees and their organizations. We recorded the interviews for later analysis,
keeping the audio records under restricted access. We conducted the interviews from April
2019 to May 2020. Nine interviews were conducted in person’, five of which took place
at the interviewee’s company, and 28 were held online. The sessions took from 24 to 107
minutes (median of 48 minutes).

We employed several strategies to foster diversity and enhance comparison possibilities
in our sample, as recommended by GT guidelines [SRF16]. We aimed to include a broad
range of organization and interviewee profiles, as perceivable in Table 4.1. For instance,

! These in-person interviews were before the COVID-19 pandemic.

43

44

4 | A TAXONOMY FOR DESCRIBING ORGANIZATIONAL STRUCTURES

we selected organizations of different sizes?: small (30%), medium (32%), and large (38%);
of different types: private (90%), governmental (5%), and others (5%); and from different
sectors and countries. We included male (73%) and female (27%) professionals, and also
chose interviewees with different roles.

Role

17: Developer

7: Development manager
5: External consultant

3: Infrastructure manager
2: Infrastructure engineer
1: Executive manager

1: Enabler team member
1: Designer

Gender

27: Male

10: Female

Time since graduation
15: More than 10 years
13: From 5 to 10 years

9: Less than 5 years
Degree

22: Undergraduate

Team location

21: Brazil

5: USA

4: Globally distributed
2: Germany

2: Portugal

1: France

1: Canada

1: Ttaly

Number of employees
in the organization
14: More than 1000

12: From 200 to 1000

11: Less than 200
Organization type

33: Private for profit

2: Governmental

1: Private nonprofit

13: Masters 1: International organization
2: PhD

Table 4.1: Number and description of participants and organizations

Table 4.1 describes the participants, presenting only an aggregated profile of par-
ticipants to cope with anonymization [Str19; San+16]. Location refers to that of the
interviewee’s team; we had four participants working remotely for globally distributed
teams. When describing roles, enabler team indicates a specialized technical team that
supports developers, but without owning any services. For interviews with consultants, the
number of employees refers to the size of the companies hiring the consultancy companies
(and not to the consultants’ employers). The interviewees worked in the following business
domains: 10T, finance, defense, public administration, justice, real estate, maps, education,
Internet, big data, research, insurance, cloud, games, e-commerce, telecommunication,
fashion, international relations, mobility, office automation, software consulting, inventory
management, vehicular automation, team management, and support to software develop-
ment. Five of the interviewed companies were unicorns (startups with a valuation over
U$1 billion), and two of them were tech giants (among the top 4 IT companies in the
world).

We also selected participants with theoretical purposes in mind, thus applying the-
oretical sampling [GS99]. We interviewed participants who work in scenarios where it

2 We employed 200 and 1,000 as size thresholds because they are used in information publicly available on
LinkedIn.

4.2 | SATURATION

is particularly challenging to achieve continuous delivery (e.g., IoT, games, or defense
systems), aiming to understand the limits and eventual corner cases. After the twentieth
interview, we more actively sought people: in a cross-functional team, in (or interacting
with) a platform team, with no (or few) automated tests, with monolithic systems, and
labeled as “full-stack engineers”. We adopted these criteria due to hypotheses not well-
supported by our chain of evidence at that time.

To support our findings, we included excerpts from these conversations in our chain
of evidence (see Section 6.2) and in this thesis. The excerpts are formatted in italics and
within quotes. Excerpts and other accounts refer to interviews using tokens in the format
“IN”. Thus, “I2” refers to the second interview, interviewee, or interviewee’s organization.
Brainstorming sessions are indicated as “BN”. Such excerpts and citations are intended to
make readers “feel they were also in the field,” a GT recommendation [GS99].

4.2 Saturation

We consider the size of our conceptual framework as a proxy for how much we have
learned so far about our research topic. We define the size of the conceptual framework
as the number of elements in the diagram representing it, by counting the number of
concepts, conceptual properties, and links. Consider Figure 4.1-(a): the x axis represents
the number of interviews, while the y axis represents the number of elements in our
conceptual framework. In this figure, we see that the last 15 interviews (40% of them)
increased the size of our conceptual framework by only 9%. Moreover, the last three
interviews did not increase the size of the conceptual framework to any degree. This
suggests more interviews would provide only a negligible gain for our framework.

a) Conceptual framework growth b) Taxonomy high-level view growth

325 A

300 A 8

N
~
w
~
L

(=]
L

EN
L

N
o
o
Number of elements
in the taxnomy
w

Number of elements
in the conceptual framework
w

175 4 2
—e— Number of organizational structures
150 4 14 —a— Number of supplementary properties
5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Number of interviews Number of interviews

Figure 4.1: Evidence of theoretical saturation

In addition to measuring the size of the conceptual framework, an intermediary artifact,
we also measured the growth of the taxonomy itself. Figure 4.1-(b) shows that in the first
five interviews we discovered our four organizational structures. It also shows that by

46

4 | A TAXONOMY FOR DESCRIBING ORGANIZATIONAL STRUCTURES

interview 22, we already had all but one of the supplementary properties. The last
discovered supplementary property is an exceptional case, and it was applied only for
one interview. Therefore, the decreasing growth of the taxonomy suggests that the last
interviews contributed a lot less to shaping our theory.

By conjoining these two observations of Figure 4.1, we claim to have reached enough
of saturation for our purposes.

4.3 The taxonomy of organizational structures

In this section, we answer our research questions RQ1, RQ1.1, and RQ1.2 by present-
ing our taxonomy of the organization of development and infrastructure teams, including
the organizational structures we identified, alongside their core and supplementary
properties. Core properties are expected to be found in corporations with a given
structure. When applicable, we use core properties to discuss delivery performance.
Supplementary properties refine the explanation of a structure, but their association
with organizations is noncompulsory.

For each interview, we classified the organizational structure observed. As the differen-
tiation and integration patterns between development and infrastructure may vary for each
deployable unit [Sha+19], it is not possible to assign a single structure to an organization. So
the classification is applied according to the interviewee’s context. Moreover, we observed
in some cases a process of gradually adopting new structural patterns while abdicating
from old ones; we classified this as a transition from one structure to another.

Figure 4.2 presents the high-level view of the first version of our taxonomy. We evolved
this first version until a fourth version (Figure 4.3), which was published [Lei+21] (we
clarify such an evolution in Section 5.3). This diagram encompasses discovered organiza-
tional structures, the primary elements of our taxonomy, alongside the supplementary
properties, which qualify the elements pointed out by the arrows. The circles group
supplementary properties that can be equally applied for a given element. Table 4.2 shows
the classification (organizational structure and supplementary properties) applied for each
interview, alongside the achieved delivery performance, and the number of employees in
the corresponding organization.

Our comprehensive chain of evidence (see Section 6.2) indicates how much of our
findings are backed by the data we collected. The chain of evidence links each organiza-
tional structure and supplementary property to supporting coding, memos, and excerpts.
Such linkage is critical for the credibility of qualitative research findings [Yin09; Ral19;
Gub81]. Figure 4.4 features a word cloud built from the chain of evidence, thus providing
an overview of the topics discussed during the interviews.

We now present each one of the organizational structures and their core and supple-
mentary properties.

4.3 | THE TAXONOMY OF ORGANIZATIONAL STRUCTURES

Interview Organizational Supplementary Delivery Organization
structure properties performance size
In Cross-functional with dedicated infra professionals High [200, 1000]
12 Classical DevOps High [200, 1000]
13 Cross-functional without infra background Not-high < 200
14 Platform team cloud fagade High > 1,000
with enabler team
I5 Siloed departments Not-high > 1,000
I6 Classical DevOps Not-high [200, 1000]
17 Siloed departments Not-high [200, 1000]
to Classical DevOps
I8 Siloed departments with a customized private platform Not-high > 1,000
to Platform team
19 Platform team cloud fagade High [200, 1000]
with enabler team
110 Siloed departments Not-high < 200
111 Classical DevOps with enabler team Not-high [200, 1000]
112 Platform team with a customized private platform High [200, 1000]
with enabler team
113 Siloed departments Not-high > 1,000
114 Classical DevOps cloud facade Not-high [200, 1000]
to Platform team
115 Siloed departments Not-high [200, 1000]
to Classical DevOps
I16 Cross-functional with dedicated infra professionals Not-high > 1,000
to platform team with a customized private platform
with enabler team
117 Classical DevOps with enabler team High [200, 1000]
118 Classical DevOps with enabler team Not-high > 1,000
119 Siloed departments Not-high < 200
120 Siloed departments with an in-house open source platform High > 1,000
to Platform team
121 Classical DevOps with developers having infra background High < 200
to Cross-functional
122 Classical DevOps with a platform Not-high > 1,000
with a customized private platform
123 Siloed departments Not-high < 200
124 Siloed departments with dedicated infra professionals High [200, 1000]
to cross-functional
125 Cross-functional with developers having infra background Not-high < 200
with a platform
cloud fagade
126 Siloed departments Not-high > 1,000
to Classical DevOps
127 Cross-functional with dedicated infra professionals Not-high < 200
128 Cross-functional with dedicated infra professionals Not-high [200, 1000]
129 Classical DevOps High < 200
130 Siloed departments with enabler team Not-high > 1,000
with a platform
with an in-house open source platform
131 Classical DevOps infra as development collaborator Not-high > 1,000
with enabler team
132 Cross-funcional without infra background Not-high < 200
133 Platform team cloud facade High > 1,000
134 Classical DevOps Not-high < 200
135 Cross-functional with dedicated infra professionals Not-high < 200
136 Classical DevOps Not-high > 1,000
137 Siloed departments Not-high > 1,000

Table 4.2: Interview’s classification. In the second column, “to” indicates transitioning from one

structure to another.

47

48

4 | A TAXONOMY FOR DESCRIBING ORGANIZATIONAL STRUCTURES

infra as development collaborator with enabler team

[Siloed deparrmems] (Classical DevOps] (Cross—funcrional reams] (Platform team]

with infra expert(s)

with full-stack engineer(s)

with no infra experts

cloud fagade
with a platform

with a platform of its own

‘ (Organizational structure J —— supplementary property

with an in-house open-source platform

Figure 4.2: High-level view of the first version of our taxonomy: the discovered organizational
structures and their supplementary properties

4.3.1 Siloed departments

With siloed departments, developers and the infrastructure staff are segregated
from each other, with little direct communication among them. The core problem of this
structure, as vividly portrayed in the novel “The Phoenix Project” [KBS18] and witnessed
by interviewee 119, are the frictions between silos since developers want to deliver as much
as possible, whereas operations target stability, blocking deliveries. The DevOps movement
was born in 2008 [Deb08] to handle such problems. We found seven organizations adhering
to this structure, and six others transitioning out of this structure.

Core properties

While supplementary properties did not emerge for this structure, we found seven
core properties for corporations with siloed departments.

— Developers and operators have well-defined and differentiated roles; as stated
by 120: “the wall was very clear: after committing, our work [as developers] was done.”
Therefore, there are no conflicts concerning attributions. Well-defined roles and pipelines
can decrease the need for inter-departmental direct collaboration (110).

— Each department is guided by its own interests, looking for local optimization
rather than global optimization, a problematic pattern exposed by Goldratt and Cox over
30 years ago [GC14]. Participant 126 told us about conflicts involving many departments:
“there is a big war there... the security, governance, and audit groups must still be convinced
that the tool [Docker / Kubernetes] is good. All the world uses it... but they do not understand...
I get sick with this.”

4.3 | THE TAXONOMY OF ORGANIZATIONAL STRUCTURES

(Siloed deparrmenfs] (Classical DevOps] (Cross—funcrional reams) (Platform team J
infra as develop-
ment collaborator

no infra

background

with a platform Q/—\
can quali R
;&gg{;’;‘;@@;’y _ canqually [Organizational structure J
supplememary can quallfy sfructures supplememary
property(ies) quallﬁed as property(ies)

Figure 4.3: High-level view of the fourth version of our taxonomy, published in the IST journal

dedicated infrastructure
professionals

developers with
infra background

cloud fagade
customized
private platform

in-house
open-source platform

application care C|0Ud code communication configuration create database

deploy wpoymen: developers devops

d eVS engneer environment gy help I nfra
INfrastruCture .. inenviewee wonesse kubernets oas
manage monitoring nfr operaions 0ps paes PEOPIE pertormance
e PlAtfOrmM problems production provides e

responsibility security servers SerVICGS SI€ support system takes

te am tests things work

Figure 4.4: Word cloud built from the chain of evidence of Phase 2

— Developers have minimal awareness of what happens in production (126).
So monitoring and handling incidents are mostly done by the infrastructure team (I5).

— Developers often neglect non-functional requirements (NFRs), especially
security (I5). In I30, conflicts between developers and the security group arise from dis-
agreement on technical decisions. In other cases, developers have little contact with the
security group (126).

— Limited DevOps initiatives, centered on adopting tools, do not improve com-
munication and collaboration among teams (I30) or spread awareness about automated
tests (I5, 115). In 130, a “DevOps team” maintaining the deployment pipeline behaves as
another silo, sometimes bottlenecking the delivery, thus fulfilling Humble’s forethought

49

50

4 | A TAXONOMY FOR DESCRIBING ORGANIZATIONAL STRUCTURES

about DevOps teams [Hum12]. Moreover, developers “infiltrated” infrastructure teams to
skip enterprise workflows. As I15 mentioned: “When this group was established for working
with DevOps, the easy part was the outside guy [external consultant], who knew Azure and
all the tools. This was not the problem, the problem was cultural, because all the hierarchies,
powers, and necessities were maintained.” Interviewee 130 claimed that “it’s a matter of
silos of power... I have power, I'm important, I can deny you something... so you must have a
network, be friend of people, friend of the [ruling] party... to the friends everything, to the
enemies: the death.”

— Organizations are less likely to achieve high delivery performance as devel-
opers need bureaucratic approval to deploy applications and evolve the database schema
(I5, 130). Table 4.3 shows that only two of 13 siloed organizations presented high delivery
performance, and these two were already transitioning to other structures. This finding
resonates with interviewee I5’s thought “Will developers have an agile mindset? If not, it is
worthless.”

However, we observed cases in which low delivery performance was not a problem. In
113, applications are short-lived research experiments, not requiring frequent updates. In
110, regular releases of content (new phases of a game) usually do not require code changes
since i) designers produce content with well-established support tools and ii) correction
patches are hardly necessary due to comprehensive testing. Network isolation policies
may also hinder frequent deployment (B1, 17).

— We observed a lack of proper test automation in many siloed organizations (I5,
115, 123, 126). In 126, developers automate only unit tests. Organization 115 was leaving
test automation only for QA people, which is not suitable for TDD or unit tests. Although
siloed organizations are not the only ones that lack test automation (I3, 132, 135), in this
structure developers can even ignore its value (I5, I37) and label a peer as “incompetent”
because he is “taking too much time with tests” (123). We notice that some of the observed
scenarios were more challenging for test automation, such as games.

Key characteristics of siloed departments: limited collaboration among depart-
ments and barriers for continuous deployment.

4.3.2 Classical DevOps

The classical DevOps structure focuses on collaboration between developers and
the infrastructure team. This mindset does not imply the absence of conflicts among
these groups, but “what matters is the quality of conflicts and how to deal with them” (134).
We named this structure “Classical DevOps” because we understand that a collaborative
culture is the core DevOps concern [LPB19; DD16], concurring to our DevOps definition: “a
collaborative and multidisciplinary effort within an organization to automate continuous de-
livery of new software versions, while guaranteeing their correctness and reliability” [Lei+19].
We classified ten organizations into this structure. We also observed three organizations
transitioning to this structure and three transitioning out of this structure.

4.3 | THE TAXONOMY OF ORGANIZATIONAL STRUCTURES

Organizational Delivery Number of
structure performance interviews

Siloed departments Not-high 7
Classical DevOps High 3
Classical DevOps Not-high 7
Cross-functional High 1
Cross-functional Not-high 6
Platform team High 4
Siloed departments Not-high 3
to Classical DevOps

Siloed departments High 1
to Cross-functional

Siloed departments High 1

to Platform team

Siloed departments Not-high 1
to Platform team

Classical DevOps High 1
to Cross-functional

Classical DevOps Not-high 1
to Platform team

Cross-functional Not-high 1
to Platform team

Table 4.3: Organizational structures and delivery performance observed in our interviews

Core properties

The nine core properties observed for organizations adopting classical DevOps are
as follows:

— We observed that, in classical DevOps settings, many practices foster a culture of
collaboration. We saw the sharing of database management: infrastructure staff creates
and fine tunes the database, whereas developers write queries and manage the database
schema (I17). We heard about open communication between developers and the infras-
tructure team (12, 16, 117, 122, 131, I36), even before the product deployment in some cases.
Participant 16 mentioned that developers more concerned with architectural and NFR
issues, the “guardians,” have close contact with the infrastructure team. Participant 12
highlighted that: “Development and infrastructure teams participate in the same chat; it even
looks like everyone is part of the same team.” Developers also support the product in its
initial production (I31). In short, development and infrastructure teams are “partner teams
that are helping each other” (136).

— Roles remain well-defined, and despite the collaboration on some activities, there
are usually no conflicts over who is responsible for each task®.

3 We later removed this core property in Phase 3 (see Section 5.3).

51

52

4 | A TAXONOMY FOR DESCRIBING ORGANIZATIONAL STRUCTURES

— Developers feel relieved when they can rely on the infrastructure team since “in
the product team you don’t have time to worry about so many things” (I17). Participant
I31 claimed that his previous job in a cross-functional team had a much more stressful
environment than his current position in a development team in a classical DevOps envi-
ronment. On the other hand, stress can persist at high levels for the infrastructure
team (I34), especially “if the application is ill-designed and has low performance” (136). In
other words, “operations people are the first ones to get f***ed” (136).

— In this structure, the project’s success depends on the alignment of different
departments, which is not trivial to achieve. In B3, different teams understood the orga-
nization’s goals and the consequences of not solving problems, like wrongly computing
amounts in the order of millions of dollars. Moreover, 17 described that alignment emerges
when employees focus on problem-solving rather than role attributions.

— Development and infrastructure teams share NFR responsibilities (I117). For
example, in 12, both were very concerned with low latency, a primary requirement for
their application.

— Usually, the infrastructure staff is the front line of tracking monitoring and
incident handling (12, 111, 129, I31, 136). However, if needed, developers are summoned
and collaborate (I17, I34). In I34, monitoring alerts are directed to the infrastructure team
but copied to developers. However, in some cases developers never work after-hours (I12).
In 122, usually, only development leaders are called after-hours.

— Some observed organizations rebranded their infrastructure teams as DevOps
or SRE [Bey+16] teams (12, 16, 114, I17). Although there is some debate about the difference
between DevOps/SRE departments and traditional operations departments [Vel+14], in
our observations, these DevOps/SRE teams are just infrastructure teams, but more inclined
to adopt automation and to cooperate with developers when compared to infrastructure
teams in the siloed structure. This need for embracing automation imposes some pressure
on some infrastructure professionals to learn new skills, especially in large organizations
(I36). Participant 129, a consultant, declared that “many infrastructure professionals are lazy
for embracing cloud computing”.

— Humble expects a culture of collaboration between developers and the infrastructure
staff to prescind from a “DevOps team” [Hum12]. We understand this criticism applies
to DevOps teams with dedicated members, like we saw in 130, since they behave as new
silos. However, we found in 136 a well-running DevOps team working as a committee for
strategic decisions — a forum for the leadership of different departments. We also found
DevOps groups working as guilds (14, I8), supporting knowledge exchange among different
departments [Knil4].

— Collaboration and delivery automation, critical values of the DevOps movement,
are not enough to achieve high delivery performance. Of 10 classical DevOps orga-
nizations not transitioning from or to other structures, only three presented high delivery
performance (Table 4.3). One possible reason is the lack of proper test automation (122,
136)[SB20], which is a hard goal to achieve since nearly all developers must master it.

Another limitation for delivery performance is the adoption of release windows (I11,

4.3 | THE TAXONOMY OF ORGANIZATIONAL STRUCTURES

131, 114, I36), which seek to mitigate deployment risk by restricting software delivery to
periodic time slots. Such strategy seeks to lessen the negative impact of any deployment
problem. Release windows are adopted by considering either the massive number of users
(I31) or the system’s financial criticality (I36). Release windows may also result from fragile
architectures (I37) or the monolith architectural style (I11) since any deployment has an
increased risk of affecting the whole system. Nonetheless, this is a controversial theme:
while some developers dislike release windows because it blocks deliveries (I24), others
understand it as necessary (I31, 136).

Supplementary properties

For classical DevOps organizations, we found infra as development collaborator
as the only supplementary property: the infrastructure staff contributes to the application
code to optimize the system’s performance, reliability, stability, and availability. Although
this aptitude requires advanced coding skills from infrastructure professionals, it is a
suitable strategy for maintaining large-scale systems, like the ones owned by I31.

Key characteristic of classical DevOps: intense collaboration between developers
and the infrastructure team.

4.3.3 Cross-functional teams

In our context, a cross-functional team takes responsibility for both software devel-
opment and infrastructure management. This structure aligns with the Amazon motto
“You built it, you run it” [Gra06] and with the “autonomous squads” at Spotify [Kni14]. This
gives more freedom to the team, along with a great deal of responsibility. As interviewee I1
described: “it’s like each team is a different mini-company, having the freedom to manage its
own budget and infrastructure.” That said, we found seven organizations with this structure,
two organizations transitioning to this structure, and one transitioning out of it.

Core properties

The four core properties found for cross-functional teams are as follows:

— Independence among teams may lead to misalignment. Lack of communica-
tion and standardization among cross-functional teams within a single organization
may lead to duplicated efforts (128). However, this is not always a problem (I1). In a scenario
with too many products, organization I35 promotes alignment among the single cross-
function team and the customer needs by making developers knowledgeable about the
business.

— It is hard to ensure a team has all the necessary skills. For instance, we inter-
viewed two cross-functional teams with no infrastructure expertise (I3, I32). Participant
127 recognizes that “there is a lack of knowledge” on infrastructure, deployment automation,

53

54

4 | A TAXONOMY FOR DESCRIBING ORGANIZATIONAL STRUCTURES

and monitoring. A possible reason for such adversity is that, as 129 taught us, it is hard to
hire infrastructure specialists and senior developers.

— We expected cross-functional teams to provide too much idle time for specialists,
as opposed to centralized pools of specialization. However, we find no evidence of idle-
ness for specialists. From 116, we heard quite the opposite: the infrastructure specialists
were too busy to be shared with other teams. Having the infrastructure specialists coding
features in their spare time avoids such idleness (I35).

—> Most of the cross-functional teams we interviewed were in small organiza-
tions (Table 4.4), likely because there is no sense in creating multiple teams in too small
organizations.

Organizational Organization Number of
structure size interviews
Siloed departments < 200 3
Siloed departments > 1,000 4
Classical DevOps < 200 2
Classical DevOps [200, 1000] 4
Classical DevOps > 1,000 4
Cross-functional < 200 5
Cross-functional [200, 1000] 2
Platform team [200, 1000] 2
Platform team > 1,000 2
Siloed departments [200, 1000] 2
to Classical DevOps

Siloed departments > 1,000 1
to Classical DevOps

Siloed departments [200, 1000] 1
to Cross-functional

Siloed departments > 1,000 2
to Platform team

Classical DevOps < 200 1
to Cross-functional

Classical DevOps (200, 1000] 1
to Platform team

Cross-functional > 1,000 1

to Platform team

Table 4.4: Organizational structures and organization size observed in our interviews

Supplementary properties

Dedicated infra professionals. The team has specialized people dedicated to infras-
tructure tasks. In I1, one employee specializes in physical infrastructure, and another is

4.3 | THE TAXONOMY OF ORGANIZATIONAL STRUCTURES

“the DevOps”, taking care of the deployment pipeline and monitoring. In this circumstance,
the infrastructure specialists become the front-line for tackling incidents and monitoring
(128, 135).

Developers with infra background. The team has developers knowledgeable in
infrastructure management; these professionals are also called full-stack engineers or even
DevOps engineers (I125). Participant 125 is a full-stack engineer and claimed to “know all
the involved technologies: front-end, back-end, and infrastructure; so I'm the person able to
link all of them and to firefight when needed.” Participant 129, a consultant, is skeptical
regarding full-stack engineers and stated that “these people are not up to the task.” He
complained that developers are usually unaware of how to fine tune the application,
such as configuring database connections. Indeed, we heard of problems with database
connections in a microservice context elsewhere (127).

No infra background. Product teams manage the infrastructure without the corre-
sponding expertise. We saw this pattern in two places. One was a very small company
and had just released their application, having only a few users (I32) and being uncertain
about hiring specialized people soon. Interviewee I3 understands that operations work
(e.g., spotting errors during firmware updates in IoT devices and starting Amazon VMs
for new clients) is too menial for software engineers, taking too much of their expensive
time. So the organization was planning the creation of an operations sector composed of
a cheaper workforce (considering the complexity of IoT deployment requires dedicated
staff). Interviewee 119 argued that such an arrangement could not sustain growth in his
company in the past: “as we grew up, we saw we couldn’t do everything if we wanted our
product to be improved quickly... we can’t do all the maintenance, monitoring, etc. So we
really need an external team to manage that.”

Key characteristic of cross-functional teams: self-sufficient teams in charge for
both development and infrastructure management.

4.3.4 Platform teams

Platform teams are infrastructure teams that provide highly automated infrastruc-
ture services that can be self-serviced by developers for application deployment. The
infrastructure team is no longer a “support team”; it behaves like a product team, with the
“platform” as its product and developers as internal customers. In this setting, infrastructure
specialists need coding skills; product teams have to operate their business services; and
the platform handles much of the non-functional concerns. We found four organizations
fully embracing this model and four others in the process of adopting it. We also observed
the platform team pattern in three of the brainstorming sessions.

Core properties

The core properties of platform teams are as follows:

— Product teams are fully accountable for the non-functional requirements

55

56

4 | A TAXONOMY FOR DESCRIBING ORGANIZATIONAL STRUCTURES

of their services. They become the first ones called when there is an incident, which is
escalated to the infrastructure people only if the problem is related to an infrastructure
service (I8, 19, 112, I33). This situation differs from the classical DevOps scenario, in
which usually the infrastructure staff is the first to take care of any incident, summoning
developers only if needed.

— Although the product team becomes fully responsible for NFRs of its services, it is
not a significant burden that developers try to refuse (I33). The platform itself handles
many NFR concerns, such as load balancing, auto-scaling, throttling, and high-speed
communications among data-centers (14, 18, 116, 133). As participant 133 told us, “you don’t
need to worry about how things work, they just work.” Moreover, we observed infrastructure
people willingly supporting developers for the sake of services availability, performance,
and security (19, 114).

— Product teams become decoupled from the members of the platform team.
Usually, the communication among these teams happens when developers and infras-
tructure people gather to solve incidents (I8, I9); when infrastructure people provide
consulting for developers to master non-functional concerns (I9); or when developers
demand new capabilities from the platform (I8, I12). In this way, the decoupling between
the platform and product teams does not imply the absence of collaboration between these
groups.

— The infrastructure team is no longer requested for operational tasks. The
operational tasks are automated by the platform. Therefore, one cannot merely call
platform-team members “operators,” since they also engineer the infrastructure solution.
We remark that, in other industries, “operator” is a title attributed to menial workers.

— The platform avoids the need for product teams to have infrastructure spe-
cialists, as it would be the case for cross-functional teams. Participant 133 expressed
wanting to understand better what happens “under the hood” of the platform, which
indicates how well the platform relieves the team from mastering infrastructure concerns.
On the other hand, since developers are responsible for the deployment, they must have
some basic knowledge about the infrastructure and the platform itself, differently from a
siloed structure (“throw over the wall” aptitude).

— The platform may not be enough to deal with particular requirements,
which happens when a given project is so different, regarding non-functional concerns,
from other projects within the organization. Participant 116 stated that “if a lot of people do
similar functionality, over time usually it gets integrated to the platform... but each team will
have something very specialized...” to explain the presence of infrastructure staff within
the team, even with the usage of a platform, considering the massive number of virtual
machines to be managed.

— If the organization develops a new platform to deal with its specificities, it will
require development skills from the infrastructure team. Nevertheless, even with-
out developing a new platform, the infrastructure team must have a “dev mindset” to
produce scripts and use infrastructure-as-code [Mor16] to automate the delivery path
(I14). One strategy we observed to meet this need was to hire previous developers for the

4.3 | THE TAXONOMY OF ORGANIZATIONAL STRUCTURES

infrastructure team (114).

— All four organizations that have fully embraced the platform team structure are
high performers, while no other structure provided such a level of success (Table 4.3).
An explanation for such a relation is that this structure decouples the infrastructure and
product teams, which prevents the infrastructure team from bottlenecking the delivery
path. As stated by 120: “Now developers have autonomy for going from zero to production
without having to wait for anyone.” This structure also contributes to service reliability
by letting product teams handle non-functional requirements and incidents. Therefore,
we claim that having a platform team is a promising way to achieve high delivery
performance. As stated by B5, “the idea is to facilitate the life of development teams: they
get these [monitoring] dashboards for free, without effort.”

— In Table 4.4, no organization with platform teams had less than 200 employees.
Since assembling a platform team requires dedicated staff with specialized knowledge,
it makes sense that such a structure is not suitable for small companies.

Supplementary properties

The description of a platform can be refined by applying one of the following supple-
mentary properties:

Cloud facade. The platform ultimately deploys applications on public clouds, such
as Amazon WS, Google Cloud, or Microsoft Azure. Although these clouds allow easier
deployment when compared to managing physical servers, they still offer dozens of
services and a multitude of configurations. The in-house platform standardizes the usage
of public cloud vendors within the organization, so developers do not need to understand
many details about the cloud (14, 114, I33); i.e., it “enhances the usability of the [cloud]
infrastructure” (116).

We also observed a small company with a “platform mindset” but without the resources
to build a platform of its own (I14). So the infrastructure team prepares Terraform* tem-
plates encompassing good practices, so developers would need only to provide a few data
fields for deployment.

Customized private platform. The platform is built on top of internal physical
servers (B1, I1, I8, 112, 120), hiding infrastructure complexities from developers, such as the
use and even the existence of Kubernetes®, an open-source platform used for managing
the lifecycle of Docker containers.

In-house open-source platform. The platform is an open-source software deployed
on-premise. Organization 120 uses Rancher®, a graphical interface for developers to interact
with Kubernetes.

4 https://terraform.io
> https://kubernetes.io

® https://rancher.com

57

https://terraform.io
https://kubernetes.io
https://rancher.com

58

4 | A TAXONOMY FOR DESCRIBING ORGANIZATIONAL STRUCTURES

Key characteristic of platform teams: infrastructure team provides a platform with
highly-automated infrastructure services to empower product teams.

4.3.5 Shared supplementary properties

This section presents the found supplementary properties that are not linked to
one organizational structure only. These properties are relevant since they are shared
among multiple organizational structures, as depicted in Figure 4.3.

Enabler team. An enabler team provides consulting and tools for product teams but
does not own any service. Consulting can be on performance (I18) or security (19, 116, I31),
for example. Tools provided by enabler teams include the deployment pipeline (14, 130),
high-availability mechanisms (I11), monitoring tools (I12), and security tools (I117). We
found them in every organizational structure. We learned the term “enabler team” during
our interview with I11.

With a platform. The organization possesses a platform that can provide deploy-
ment automation, but do not follow the patterns of human interaction and collaboration
described by the core properties of platform teams. Participant 125 developed an “au-
tonomous IaaC for integration and deployment with Google Cloud,” which provides platform
capabilities to other developers of the team. However, since in this context there is a single
cross-functional team, it cannot be called a “platform team.” We classified organization
130 as a siloed structure, even with a platform team, since developers and the platform
team have a conflicted relationship. The supplementary properties of platform teams
can also be applied to organizations with a platform.

4.3.6 'Transitioning

Organizations are not static. We identified nine of them transitioning from one struc-
ture to another. Considering the transition flows in Figure 4.5, we perceive that i) no
organization is transitioning to siloed departments, ii) most of the transitions are from
siloed departments, and iii) no organization is transitioning out of the platform team.
These empirical observations agree with our theoretical considerations about the problems
of siloed structures and the promises of platform teams.

Nonetheless, transitioning organizational structures is a hard endeavor, as confirmed
by some interviewees. Although his organization did an excellent job transitioning to a
platform structure and achieving high-delivery performance, interviewee 120 claims that
the “old world” still coexists with the “new one”. In the same way, as reported by Nybom et
al. [NSP16], there are some responsibility conflicts and “dissident forces”: some operations
personnel do not like developers with administrative powers, while some developers do
not want such powers. The interviewee 120 declared that “it’s not yet everybody together.”
Similarly, interviewee 121 stated that “There are two worlds... one was born in the cloud,
and it’s nice that it influences the legacy system to become more robust. There are many
worlds we wish to bring together. However, we need to rewrite even the culture; we must reset
everything.”

4.4 | MEMBER CHECK

3 [Classical DevOps j —
[Siloed departments j L

: v
\[

Platform team] <!

=

[Cross—func'rional 'reams]

n
[Organizarional structure 1] —_— [Organizarional structure 2]

n is the number of observed organizations
transitioning from structure 1 to structure 2

Figure 4.5: Observed transition flows

4.3.7 Summary

We close the description of our taxonomy by highlighting the key differences among
its organizational structures. Table 4.5 summarizes, for each structure, (i) the differen-
tiation between development and infrastructure groups regarding operations activities
(deployment, infrastructure setup, and service operation in run-time); and (ii) how these
groups interact (integration).

Organizational Development Infrastructure Integration

structure differentiation differentiation

Siloed departments | Just builds the Responsible for all Limited collaboration
application package operations activities among the groups

Classical DevOps Participates/collaborates in Responsible for all Intense collaboration
some operations activities operations activities among the groups

Cross-functional Responsible for all Does not exist —

teams operations activities

Platform teams Responsible for all Provides the platform, Interaction happens
operations activities automating much of in specific situations,
with the platform support the operations activities not on a daily basis

Table 4.5: Summary of organizational structures — operations responsibilities and interactions in each
structure

4.4 Member check

Grounded Theory aims to formulate a theory that has relevance for practitioners, so it
is crucial to also investigate whether findings make sense to them [Ral19]. Moreover, practi-
tioners can help to identify taxonomy errors, such as inclusion and exclusion errors [Ral19].
Therefore, we collected feedback on our taxonomy from the study participants, using an
online survey (available in the supplementary material — see Section 6.2).

We sent to each one of the 37 interviewees the feedback form asking whether the

59

60

4 | A TAXONOMY FOR DESCRIBING ORGANIZATIONAL STRUCTURES

interviewee agreed with the chosen classification (organizational structure and supplemen-
tary properties) for its context using the following Likert scale [Jos+15]: strongly agree,
weakly agree, I do not know, weakly disagree, strongly disagree. In case of disagreement,
there were free text fields for explanation. We also asked the interviewees whether they
perceived our taxonomy as comprehensive and whether they would add or remove any
elements. Finally, we also left a free field for general comments. We report the answers to
our open questions in Appendix D. We sent the form in four batches of twenty, five, five,
and seven emails spread across the last five months of our interviewing period; we used
the feedback incrementally to refine our taxonomy.

We also attached to the emails a digest describing our taxonomy. It briefly introduced
each organizational structure, each core property, and each supplementary property.
We provide this digest as supplementary material. Figures 4.6, 4.7, 4.8, and 4.9 are the
figures we used in the digest to convey the structures to the participants; we exhibited
them here with the same captions used in the digest.

Figure 4.6: With siloed departments, operators and developers are each one in their own bubbles.
They do not interact directly too much and communication flows slowly by bureaucratic means (ticket
systems).

Figure 4.7: With classical DevOps, operators and developers in different departments seek to work
together, even if not easy, by direct contact and close collaboration.

We received 11 answers. Nine participants strongly agreed with the received classifica-
tion regarding the organizational structure, while two of them weakly agreed with it. No
one disagreed. Five participants strongly agreed with the received classification regarding
the supplementary properties, while one of them weakly agreed with it. Regarding our
model’s comprehensiveness, seven participants strongly agreed with it, three of them
weakly agreed with it, and one of them did not know. This result suggests resonance of

4.5 | COMPARISON TO OTHER TAXONOMIES

Figure 4.8: The platform team provides automated services to be used, with little effort, by developers.
The platform team and developers are open to hear and support each other.

Figure 4.9: A cross-functional team contains both operators and developers.

the participants with our theory, which refers to the degree to which findings make sense
to participants.

The free-text answers from participants were valuable in refining the taxonomy. We
conceived the supplementary properties from the analysis of the first round of feed-
back. One interviewee’s comments helped us improve our taxonomy digest (we refined a
figure to express better the idea of platform team). Moreover, some participants raised
concerns about how different parts of the organization act under different patterns, and
how this evolves. We considered such concerns since our classification is not for the whole
organization, but for the interviewee’s context at a point in time.

4.5 Comparison to other taxonomies

In this section, we discuss the existing literature [HM11; Kim+16; NSP16; MBK18;
SP13; SP19; Sha+17] by comparing their classifications of inter-team relations to our
taxonomy.

In one of the foundational writings on DevOps [HM11], Humble and Molesky start by
criticizing the siloed department structure and management by project. They then follow
by advocating cross-functional teams and management by product. However, they also
suggest practices for strengthening collaboration between development and operations,

61

62

4 | A TAXONOMY FOR DESCRIBING ORGANIZATIONAL STRUCTURES

which makes sense in the classical DevOps structure. Such practices include operators
attending agile ceremonies and developers contributing to incident solving. Humble
and Molesky also envision operation groups offering support services (e.g., continuous
integration) and infrastructure as a service to product teams, which relates in our taxonomy
to enabler teams and the platform team structure.

In the The DevOps Handbook [Kim+16], its authors describe three primary types of
organizational structures: functional-oriented, optimizing for expertise, division of labor,
and cost; market-oriented, optimizing for responding quickly to customer needs; and matrix-
oriented, attempting to combine functional and market orientation. In the sequence, they
campaign for companies embedding ops in service teams (cross-functional teams) or
using automated self-service platforms (platform teams). The rationale is to avoid hand-
offs caused by the segregation of development and operations. However, they acknowledge
the existence of admired companies retaining functional orientation of operations. In such
cases, mitigations include high-trust culture, slack in the system, encouraging employees to
be generalists, keeping team sizes small, and curtailing the scope of each team’s domain. In
this way, they expect to reduce communication and coordination needs so that operations
are not a constraint for product teams.

Nybom et al. present three distinct approaches to DevOps adoption [NSP16]: (i) assign-
ing development and operations responsibilities to all engineers; (ii) composing cross-functional
teams of developers and operators; and (iii) creating a DevOps team to bridge development
and operations. However, the article is about a case study matching the first approach only;
developers undertook operational tasks, and collaboration was promoted between the
development and operations departments. According to our taxonomy, such a scenario was
an attempt to migrate from siloed departments to classical DevOps. However, despite
some perceived benefits, new sources of friction emerged between the departments, and
several employees disagreed with the adopted approach. We associate these sub-optimal
results to the reported lack of automation investments, which suggests that trying any
DevOps adoption without aiming for continuous delivery is not promising.

The 2018 State of DevOps Report surveyed respondents about the organizational
structures used in their DevOps journeys [MBK18], offering a closed set of alternatives:
cross-functional teams responsible for specific services or applications, dedicated DevOps teams,
centralized IT teams with multiple application development teams, site reliability engineering
teams, and service teams providing DevOps capabilities (e.g., building test environments,
monitoring). However, the text does not further describe such options. Thus, associating our
structures to the options presented by the survey would be an error-prone activity.

Skelton and Pais present nine “DevOps topologies” and seven anti-patterns [SP13],
as the most informal of our comparison sources — a blog post. The presentation of each
topology and anti-pattern is short, lacking details about how corporations apply them.
We now present the correspondences between the DevOps topologies (T) / anti-patterns
(AP) and our taxonomy. Dev and ops silos (AP) corresponds to our siloed departments
structure. Dev don’t need ops (AP) corresponds to our cross-functional teams with
no infra background. In some organizations adopting classical DevOps, we saw the
rebranding of the infrastructure team to SRE or DevOps (12, 16, I31), but this situation
did not entirely match rebranded sysadmin (AP) since there were cultural changes in the

4.5 | COMPARISON TO OTHER TAXONOMIES

observed cases. Ops embedded in dev team (AP)’ corresponds to our cross-functional
teams with dedicated infra professionals, although we saw positive results with this
configuration in I1. In a siloed organization (I30), we also observed the DevOps team
silo (AP). Dev and ops collaboration (T) corresponds to our classical DevOps structure.
Ops as infrastructure-as-a-service (platform) (T) corresponds to our platform teams. We
consider SRE team (T) to match our classical DevOps structures with infra as development
collaborator, although the topology description does not include this SRE activity of coding
the application to improve its non-functional requirements [Bey+16].

The Team Topologies book [SP19], from the same authors of the DevOps topologies,
presents four dynamic patterns of teams for software-producing corporations: stream-
aligned teams, delivering software in a business-aligned constant flow; complicated sub-
system teams, with highly specialized people working on a complicated problem; enabler
teams, providing consulting for stream-aligned teams in a specific technical or product
domain; and platform teams, providing internal services for self-service by stream-aligned
teams, abstracting infrastructure and increasing autonomy for stream-aligned teams.

The stream-aligned team corresponds to what we call a product team or development
team. The complicated sub-system team is not considered in our taxonomy since it is related
to splitting work within development only. The enabler team proposed by Skelton and
Pais is very close to what we also call an enabler team (e.g., interviewee 118 was in an
enabler team providing consulting on performance for product teams); however, Skelton
and Pais advocate that such consulting must be time-bounded, which is an aspect absent
from our observed enabler teams. Finally, the platform team proposed by Skelton and
Pais includes our notion of platform team; however, our concept is restricted to the
services related to the execution environment of applications, i.e., while we considered
teams providing pipeline services as enabler teams, Skelton and Pais would consider
them as platform teams.

Another significant difference between team topologies and our work is that the book
seeks to present things how they should be, while we try to summarize thing how they are.
In this sense, although we acknowledge the existence of the classical DevOps structure,
it is not included in the team topologies, since the authors discourage the handover it
causes. We also note that the terms “platform team” and “enabler team” emerged from our
interviewees, without the Teams Topologies book’s influence.

Most of the discussed work so far [NSP16; HM11; MBK18; SP13] presents sets of
organizational structures without an empirical elaboration of how such sets were con-
ceived. The Team Topologies book suggests that the proposed topologies emerged from
field observations; but even so, it lacks a scientific methodology. In this way, Shahin et
al. [Sha+17] present a closer work to ours, with a set of structures based on field data and
scientific guidelines.

Shahin et al. [Sha+17] conducted semi-structured interviews in 19 organizations and
surveyed 93 practitioners to empirically investigate how development and operation teams

7Tt is interesting to note that while Ops embedded in dev team is an anti-pattern for Skelton and Pais [SP13],
it is advocated by other authors [Kim+16; SB20]. Skelton and Pais’ rationale is that “the value of Ops is
diminished because it’s treated as an annoyance for Devs (as Ops is managed by a single Dev team manager
with other priorities).”

63

64

4 | A TAXONOMY FOR DESCRIBING ORGANIZATIONAL STRUCTURES

are organized in the software industry toward adopting continuous delivery practices. They
found four types of team structures: i) separate Dev and Ops teams with higher collaboration,
ii) separate Dev and Ops teams with a facilitator(s) in the middle; iii) small Ops team with
more responsibilities for Dev team, and iv) no visible Ops team. Structures i and iii map to
classical DevOps in our taxonomy. Structure ii corresponds to the adoption of a DevOps
team as a bridge between development and operations. One of our interviewees reported
that such a pattern occurred in the past in his organization (I4) and we also observed the
DevOps team as a committee bringing together development and operations leadership
in another organization (I36); therefore, DevOps teams serving as bridges are likely no
longer common. Finally, structure iv maps to cross-functional teams. Shahin et al. did
not identify the platform teams structure, the most promising alternative we found in
relation to delivery performance. Moreover, their work does not present the notion of
transitioning between structures.

Shahin et al. [Sha+17] also explored the size of the companies adopting each structure.
They found that structure i is mainly adopted by large corporations, while structure iv was
observed mainly in small ones. These findings are corroborated by our data in Table 4.4:
classical DevOps was less observed in small organizations, while cross-functional
teams were not prevalent in large organizations. In other paper, Shahin and Babar recom-
mend adding operation specialists to the teams [SB20], which favors cross-functional
teams with dedicated infra professionals.

Lopez-Fernandez et al. also developed a taxonomy of DevOps Team Structures [Lop+21].
They employed Grounded Theory considering: industrial workshops®, observations at
organizations, and chiefly 31 semi-structured interviews in software-intensive companies.
They analyzed six variables in the interviewed companies: shared ownership, leadership
from management, organizational silo, cultural silo, collaboration frequency, and autonomy.
Based in such analysis, they derived four patterns of DevOps Team Structures: Pattern
A: Interdepartmental Dev & Ops collaboration, Pattern B: Interdepartmental Dev-Ops team,
Pattern C: Boosted cross-functional DevOps team, and Pattern D: Full cross-functional DevOps
team. Pattern A relates to our classical DevOps structure, while Pattern D corresponds
to cross-functional teams. Pattern B is a matrix structure (employee reports to both a
product and a functional manager), and Pattern C is a transitory pattern, in which DevOps
experts support a team until it reaches Pattern D.

These researchers [Lop+21] also found that horizontal teams usually support product
teams that follow the above-described patterns. Pattern A and Pattern B are usually
supported by platform teams (in the same sense of our platform teams). They observed
cases in which the platform is provided by a DevOps chapter, gathering DevOps experts
of various product teams. Also, Patterns C and D are supported by a DevOps Center
of Excellence (which we classify as an enabler team). Moreover, they concluded that
companies implementing Patterns C and D (that they considered more mature) achieve
better software delivery performance (measured with lead time, mean time to recovery, and
delivery frequency). However, they did not consider horizontal teams in their analysis of
delivery performance, thus achieving a conclusion that contrasts with ours (we concluded
that platform teams are a significant driver for high delivery performance).

8 https://www.youtube.com/watch?v=rDHv3dK_Ams8

https://www.youtube.com/watch?v=rDHv3dK_Am8

4.5 | COMPARISON TO OTHER TAXONOMIES

Finally, we note that Lopez-Fernandez et al. developed their work simultaneously
to the production of this doctoral research. They acknowledge that by 2018, little work
had empirically analyzed team structures in companies adopting DevOps. They also
acknowledge that the work of theirs, ours, and that of Shahin et al. [Sha+17] bring common
elements and different insights, concluding that “it is important to take into account that
the aforementioned works of research are contemporary and have been carried out in
different parts of the world, so that a triangulation of studies could be later analyzed in a
systematic study”

65

Chapter 5

A theory for explaining
organizational structures

In this chapter, we present the outputs of our research Phase 3. First, we explain our
approach to the participant selection and the resulting sample (Section 5.1). Then, we
explain our saturation criteria to stop selecting new participants (Section 5.2). Later, and
most importantly, we present the results of the refinement process (Section 5.3) and the
results of framing our theory under the 6C format (Section 5.4). We also present the result
of our member check process (Section 5.5) and a discussion on the results (Section 5.6),
which links our findings to our research questions.

In particular, through the refinement process, we renamed the structures like this:
siloed departments to segregated departments, classical DevOps to collaborating
departments, platform teams to API-mediated departments, and cross-functional
team to single department. Beginning in this chapter, we employ this evolved terminol-

ogy.

5.1 Sample

To understand “why different organizations adopt different structures” (RQ1), it is
crucial to analyze organizations adopting different structures. Therefore, we selected
companies already visited by us in Phase 2 to make sure that we would get a good coverage
of all the different structures. Since company size is expected to be a relevant factor
regarding our research question (as discussed in Section 4.5), we also aimed to select
organizations of different sizes. Then, to accomplish our selection goal, we:

« Considered transitional situations as distinctive structures (e.g., collaborating
departments is one structure, while transitioning from collaborating to API-
mediated departments is another one).

« Grouped the visited organizations by structure and size (small, medium, large).

67

5 | A THEORY FOR EXPLAINING ORGANIZATIONAL STRUCTURES

+ Discarded the groups (structure and size) with only one member (less relevant
groups).

« Aimed to visit one company from each remaining group.

Such a selection strategy left us with the goal of revisiting 11 organizations within
the following groups: large collaborating departments, medium collaborating de-
partments, small collaborating departments, medium single departments, small
single departments, large API-mediated departments, medium API-mediated de-
partments, large segregated departments, small segregated departments, medium
segregated departments transitioning to collaborating departments, and large seg-
regated departments transitioning to API-mediated departments.

Considering our need for increasing generalizability, we also visited new organizations.
Since it was not possible to know in advance what a company’s structure would be, we
selected them taking into account only their sizes. We did not preestablish a target on
the number of new organizations to be visited — interviews continued until we reached
saturation (see Section 5.2). As a form of triangulation, we also sought to interview a
developer and an infrastructure professional from each organization, whenever it was
applicable and possible.

Within Phase 3, one can see our sample as following a purposive strategy, in which
selection follows some logic or strategy [BR20; Pat14], possibly occurring before analysis.
This deviates from the GT prescription of theoretical sample, in which selection criteria are
driven by data analysis [GS99]. However, considering our research process as a whole, our
selection process for Phase 3 fits theoretical sample since it is dependent on the concepts
and findings emerged in Phase 2.

Nonetheless, we note that having access to IT professionals willing to expose organi-
zations’ internal affairs cannot be guaranteed in advance. Therefore, although the above
strategy guided our selection, we could not strictly stick to it. In this way, Table 5.1 presents
the 31 carried interviews in Phase 3, which extend the previous 37 interviews to the total of
68 interviews analyzed in our research. For each interview/interviewee, we also assigned
an identifier (e.g., I38) to reference in this text. We conducted these interviews from May
2020 to October 2021, and they took from 20 to 63 minutes (median of 35 minutes).

The interviewees worked in the following business domains: education, healthcare,
logistics, telecommunications, public administration, development support, hiring, market-
place, travel, manufacturing, finances, mobility, games, defense, networking, semiconduc-
tors, IoT, and cloud computing. One interviewed company was a tech giant, while three
were unicorns.

Although we did not plan to balance the structures among new companies, in the
end, our sample was reasonably balanced. From the 17 new companies, four presented
the collaborating departments structure, six showed the single department structure,
and seven had the API-mediated structure. For this count, we considered a company
transitioning from structure X to Y as in Y. In particular, all the interviewed companies
with segregated departments were already transitioning to some other structure.

Figure 5.1 shows how we interleaved data collection (interviews) with data analysis

5.2 | SATURATION

Revisit Organizational structure Number of employees Reference codes and Interviewee
in the organization roles of interviewees location
No Single depart. > 1000 138) Developer USA
No Segregated to collaborating depart. > 1000 139) Developer Brazil
Yes Segregated to API-mediated depart. > 1000 140) Developer Brazil
141) Infrastructure manager
Yes Collaborating depart. [200, 1000] 142) Infrastructure manager ~ USA
143) Infrastructure engineer
No API-mediated depart. [200, 1000] 144) Development manager Brazil
No Single depart. < 200 145) Developer Brazil
Yes API-mediated depart. > 1000 146) Development manager Brazil
No Single depart. < 200 147) Development manager Brazil
Yes API-mediated depart. [200,1000] 148) Infrastructure manager ~ Spain
149) Development manager
No Collaborating depart. [200, 1000] 150) Developer Brazil
Yes Segregated to collaborating depart. [200, 1000] I51) Infrastructure engineer ~ Brazil
No Collaborating depart. > 1000 152) Infrastructure manager Brazil
154) Development manager
No API-mediated depart. [200, 1000] 153) Infrastructure manager Brazil
Yes Segregated to API-mediated depart. > 1000 155) Infrastructure manager Brazil
No API-mediated depart. > 1000 156) Consultant Brazil
No Single depart. > 1000 157) Infrastructure engineer ~ Brazil
Yes Single depart. [200, 1000] 158) Infrastructure manager Brazil
No Collaborating to API-mediated depart. < 200 159) Infrastructure manager Brazil
No Collaborating depart. < 200 160) Developer Brazil
No API-mediated depart. [200, 1000] 161) Infrastructure manager Brazil
162) Infrastructure manager
No Single to API-mediated depart. < 200 163) Development manager ~ USA
No Single depart. < 200 I64) CTO USA
No Collaborating to single depart. [200, 1000] 165) Developer Brazil
167) Infrastructure engineer
No Segregated to API-mediated depart. > 1000 166) Architecture manager Brazil
Yes Collaborating depart. > 1000 168) Development manager ~ Brazil

Table 5.1: Description of participants and organizations

(6C and resonance analysis), as advocated by Grounded Theory.

5.2 Saturation

At each analysis snapshot (an interview analysis or a review session), we tracked a few
metrics to identify theoretical saturation [GS99]. For the 6C analysis, we defined the follow-
ing metrics: number of codes, number of strong codes, and conceptual density.

The number of codes indicates the total “amount of learning” we had in each interview.
Although we can always learn something new from new people, we expect diminishing
returns in this metric as we approach theoretical saturation. Strong codes are supported by
at least three interviews, excluding characterization codes. We also expected this metric
to initially grow with new interviews and then stabilize when reaching saturation.

Each code has a support number, that is, the number of sources supporting that code.
The conceptual density is the sum of support numbers divided by the total number
of codes. The idea is that a high density indicates that codes are supported by multiple
interviews, pointing to robust results. The expectation was that the value of this metric
should only grow.

70

5 | A THEORY FOR EXPLAINING ORGANIZATIONAL STRUCTURES

e Interviews

6C and resonance analysis
x 6C analysis reviews
v Resonance analysis reviews

v v v v v v v

2020-05 2020-07 2020-09 2020-11 2021-01 2021-03 2021-05 2021-07 2021-09 2021-11

Time

Figure 5.1: Interleaving of data collection and analysis in Phase 3

As observable in Figure 5.2, along with the interviews, the metrics followed the expected
trends, indicating enough theoretical saturation. In detail, we note that the decreases in
the number of codes (L1) are related to the review sessions, in which we deleted codes we
judged to be inadequate, besides merging other ones, forming more abstract codes.

For the resonance analysis, we defined two metrics: support level and taxonomy
changes. The support level is the difference between the number of support codes and
the number of confusion codes. A high support level indicates a good resonance of the
taxonomy with participants. This metric should ideally only grow.

Taxonomy changes is the number of changes in the high-level view of our taxonomy:
addition, renaming, and removal of elements. We derived these changes from observed
confusions in the interviews or even neutral comments pointing to potential improve-
ments. We expected an initial increase in the number of changes (after all, updating the
taxonomy based on practitioners’ views was in our process), followed by stabilization,
indicating that the previous modifications subsequently caused fewer confusions among
the interviewees. As observable in Figure 5.3, the metrics again followed the expected
trends, indicating enough theoretical saturation.

We clarify that the metrics used here were intuitively conceived by us, given the lack
of metrics to detect theoretical saturation in Grounded Theory studies [HNM11; vv13;
WNA15].

5.3 Results on refining the structures

After the 37 semi-structured interviews of Phase 2, following GT guidelines, we con-
cluded the elaboration of what we considered our first taxonomy version. Figure 4.2
illustrates it. After that, we gathered feedback from participants through online surveys
and started the interviews of Phase 3. To ask feedback, we shared with the participants a
taxonomy digest, containing Figure 4.2. Based on this referred feedback and on the first
two interviews of Phase 3, we elaborated more on our taxonomy until its fourth version
(Figure 4.3), which figured in our journal publication [Lei+21].

After that, while interviewing more 31 participants, we conducted our resonance
analysis process, in which we coded key points as support or confusion fragments. Key

5.3 | RESULTS ON REFINING THE STRUCTURES

a) Number of codes

—— L1) All codes - should stabilize

2301 L2) Strong codes - should grow limited by L1

200 -

150 4

Number of codes

50 4

5‘ lb 1‘5 26 2‘5 3b 3‘5
Number of analysis snapshots

b) Conceptual density

—— Should grow forever

2.01

Global density of
sources per concepts

5 10 15 20 25 30 35
Number of analysis snapshots

Figure 5.2: Metrics of theoretical saturation for the 6C analysis

points are interview excerpts that we considered of theoretical interest for the coding
activities. Figure 5.4 features a word cloud built from the key points, thus providing some
view of the discussed topics during the interviews. When comparing this word cloud to
the word cloud produced for Phase 2 (Figure 4.4), we note that some main themes persist
(e.g., development, infrastructure, team, platform, and people), while some disappear
or decrease (e.g., DevOps, monitoring, problems, and production), and others emerge
(e.g., think and company). Interestingly, we can relate the “DevOps” disappearance to the
usage of our taxonomy, whose well-grounded concepts diminish the need to talk in terms
of “DevOps.” The themes of “monitoring/problems/production” decreased since we had
specific questions about them in Phase 2. Finally, questions of Phase 3 were more abstract
than questions of Phase 2 (e.g., “How did your company arrive at this structure?”), so
participants expressed themselves much more in terms of “I think” when talking about
their companies as a whole.

71

72

5 | A THEORY FOR EXPLAINING ORGANIZATIONAL STRUCTURES

a) Support level (in interviews)

1204 T Should grow forever

.
o
5]

80

60 -

40+

Cumulative sum of the (support - confusion)
diff of each interview

4 10 15 20 25 30
Number of interviews

b) Taxonomy changes

—— Should stabilize

Cumulative sum of changes

.‘; 1‘0 1‘5 Zb 2‘5 Sb
Number of interviews

Figure 5.3: Metrics of theoretical saturation for the resonance analysis

already api application area buid care change cloud collaborating

company create departments oy dev
development devops different €nd everything going guy help
Infra Infl’aStI’UCtU I'© lot management maybe model needs
operaion PEOPIE person - PlAtfOrm proviem

pI’Od UCtIOﬂ prOjeCt really responsible SeI’VICGS something SI'€ standards

Started talk te am thlngS th i n k today tools Work

Figure 5.4: Word cloud built from the key points of Phase 3

5.3 | RESULTS ON REFINING THE STRUCTURES

For each excerpt coded as confusion, we defined an action to handle the situation
or justified our choice of not taking any action. In total, we recorded 35 actions, 26 of
them classified as change the taxonomy, five as improve interview presentation, and four
as improve report. The “change the taxonomy” actions affected the high-level elements of
our taxonomy (organizational structures and supplementary properties) with additions,
removals, and renamings. We considered “interview presentation improvements” in how
we explained the taxonomy to the subsequent interviewees. We incorporated “report
improvements” in descriptions presented in our online digest of organizational structures’.
Table 5.2 discloses all the 35 taken actions. We provide the list of supports and confusions
as supplementary material (see Section 6.2).

One example of a fragment (I44) coded as confusion that led to a taxonomy
change:

“I think it’s an in-house open-source platform, because although we built it on
top of cloud services, AWS in particular, our ecosystem is mostly open-source,
based on Kubernetes and its ecosystem.”

Before this comment, we considered that open-source platforms were installed and
ran in physical infrastructure only. Then we noted the following memo [GS99] during
analysis:

“Good point... maybe we have to expand the scope of the in-house platform and
the customized platform even when built in the cloud, when this use of the cloud
is merely the use of virtual machines; the company is still building/installing/-
managing something on its own.”

Therefore, to address this confusion, we took the action of renaming the supplemen-
tary property “in-house open-source platform” to “in-house-administered open-source
platform.” Adding the word “administered” suggests that what matters is the company
administering the open-source platform regardless of whether it is installed in a physical
server or in a virtual machine provided by a cloud vendor.

A notable change in the taxonomy was renaming “Platform team” to “API-mediated
departments” We had confusions in four interviews (140, 142, 150, 152) due to the am-
biguous meanings of the terms “platform” and “platform team.” Moreover, the current
name reflects the structure better, since the platform team is just one of its interplaying
teams.

We also explicitly adopted the term “dev & infra departments” to rename the structures.
This aligns better with the fact that the structures reflect the division of operational
activities between development and infrastructure groups.

Finally, one more example of how we evolved our taxonomy. After a discussion with
152 about the terms infrastructure and operations, we reflected that the “no infra back-
ground” situation could happen because in some single departments the operations
work is much bigger than the infrastructure work (“lightweight infra effort”). Thus, after
revising I3 and considering it to match collaborating departments, we dropped the

Lhttp://ime.usp.br/ leofl/devops/2021-06-20/structures-digest.html

73

http://ime.usp.br/~leofl/devops/2021-06-20/structures-digest.html

74

5 | A THEORY FOR EXPLAINING ORGANIZATIONAL STRUCTURES

After Type Action
interview
39 Change the taxonomy “With infra experts” renamed to
“dedicated infrastructure professionals”
39 Change the taxonomy “With full-stack engineers” renamed to
“developers with infra background”
39 Change the taxonomy “With no infra experts” renamed to “no infra background”
39 Change the taxonomy “With a platform of its own” renamed to
“customized private platform”
43 Change the taxonomy “Classical DevOps” renamed to “Collaborating departments”
43 Change the taxonomy “Cross-functional teams” renamed to “No infra department”
43 Change the taxonomy “Infra people occasionally embedded in dev teams” added
44 Change the taxonomy “No infra department” renamed to “Unified departments”
44 Change the taxonomy “Platform team” renamed to “API-mediated departments”
44 Change the taxonomy “Infra people occasionally embedded in dev teams” renamed to
“Infra people occasionally embedded in product-centered dev teams”
44 Change the taxonomy “Developers with infra background” renamed to
“developers with infra background and attributions”
44 Change the taxonomy “No infra background” renamed to
“with infra attributions, but no background”
44 Change the taxonomy “Cloud fagade” renamed to “cloud facade with specialized API”
44 Change the taxonomy “Customized private platform” renamed to “custom platform”
44 Change the taxonomy “In-house open-source platform” renamed to
“in-house-administered open-source platform”
46 Improve interview presentation =~ When explaining collaborating departments, provide as example
“ops take part in agile meetings” and project visible to ops
(beyond the ticket)
47 Change the taxonomy “Siloed departments” renamed to “siloed dev & infra departments”
47 Change the taxonomy “Collaborating departments” renamed to
“Collaborating dev & infra departments”
47 Change the taxonomy “API-mediated departments” renamed to
“API-mediated dev & infra departments”
47 Change the taxonomy “Unified departments” renamed to
“Unified dev & infra departments”
48 Improve interview presentation =~ When explaining "collaborating departments", explain
"infra people embedded in dev teams" too
(to avoid confusion with single department)
50 Change the taxonomy “Unified dev & infra departments” renamed to
“Single dev/infra department”
50 Improve report Reinforce in the API-mediated departments:
there is an infra group responsible for the running infrastructure
50 Improve report Reinforce in the API-mediated departments:
devs operate and deploy services in production
51 Improve interview presentation Highlight the difference between
“infra people occasionally embedded in dev teams”
and “unified departments”
52 Change the taxonomy “With infra attributions, but no background” removed
52 Change the taxonomy “Lightweight infra effort” added
54 Change the taxonomy “Deployment pipeline provider” added
54 Change the taxonomy “Consulting team” added
54 Improve interview presentation Emphasize about “single department”:
there isn’t a central infra group
56 Change the taxonomy “Coordination committee” added
56 Improve interview presentation Reinforce: diagram boxes are unordered
56 Improve report Reinforce: while there is some correlation,
cloud usage is not necessary in single departments.
57 Improve report A relevant difference between collaborating departments
and single department is the hierarchical structure
(in single depart same boss to devs and infra)
62 Change the taxonomy “Siloed dev & infra departments” renamed to

“Segregated dev & infra departments”

Table 5.2: Summary of the actions took during our resonance analysis

75

5.3 | RESULTS ON REFINING THE STRUCTURES

“no infra background” concept and created the “lightweight infra effort” supplementary
property.

Figure 5.5 presents the consolidated version of our taxonomy, as evolved from the
refinements. The figure shows the taxonomy’s high-level elements: its structures and
their associated supplementary properties. We provide all the versions of the high-level
view of our taxonomy as supplementary material (see Section 6.2), while we disclose the

versioning history in Table 5.3.
consulrmg team coordination
deploymenr pipeline committee
pl’OVI er \

%

Segregated dev & infra Collaborating dev & infra APl-mediated dev & infra Single dev/infra
eparfments deparfments departments epartment

/ /

infra eog|e as
development collaborators

Infra eogle occamongllél/ embedded
gro uct-centered dev feams

-
with a platform
supplementary can qualify - supplementary can qualify sfructures supplementary
‘ property(ies) > | Organizational structure property(ies) qualified as > property(ies)

Figure 5.5: High-level view of the 12! version of our taxonomy, the last one produced by our refinement
process

dedicated infrastructure
professionals

d velopﬁrs wnh
infra background
and aftribUtions

lightweight infra effort

loud d
wnhcs?puemgl?zaec?APl
cusfom plafform

in-house-administered
open-source platform

Version Date (yyyy-mm-dd) Last analyzed interview Observation

vl 2020-04-30 137

v2 2020-05-24 139

v3 2020-05-29 139 Submitted to the IST journal
v4 2020-08-30 139 English review, published in the IST journal
v5 2021-02-04 143

v6 2021-03-08 144

v6.1 2021-03-08 144 Just visual reordering

v7 2021-03-20 147

v8 2021-05-04 I51

v9 2021-05-16 154

v10 2021-05-17 153 We analyzed 154 before 153
vll 2021-05-26 156

v12 2021-11-09 168 Submitted to the TSE journal

Table 5.3: Taxonomy versioning history

After the resonance analysis process, we also checked the consistency of the taxon-
omy’s core properties with our new results. Thus, we decided to drop the property “no

5 | A THEORY FOR EXPLAINING ORGANIZATIONAL STRUCTURES

conflicts over who is responsible for each task” of collaborating departments since we
found conflicting evidence regarding this concern. We then updated our taxonomy digest
accordingly.

5.4 Results on explaining the structures

Now we present, in Tables 5.4, 5.5, 5.6, and 5.7, the 46 discovered strong codes grouped
by organizational structure. Each strong code is preceded by its identifier (e.g., SC02) and
the amount of supporting interviews. These strong codes, alongside the refined taxonomy,
comprise our grounded theory. No other taxonomy available in the literature, built to
explain the organization of development and infrastructure professionals, provide such a
level of theoretical analysis given the explanatory dimension added to our taxonomy by
the herein reported strong codes.

Consequences
SC01 (5) Devs lack autonomy and depend on ops
SC02 (4) Low delivery performance (queues and delays)
SC03 (3) Friction and blaming games between devs and infra

Table 5.4: Strong codes for segregated dev & infra departments

Conditions
SC04 (5) Enough infra people to align with dev teams
SC05 (3) Top management support
Causes
SC06 (4) In anon-large company / with few products, it is easier to be collaborative
SC07 (3) Trying to avoid the delivery bottleneck
SC08 (3) Bottom-up initiative with later top-management support
Consequences
SC09 (6) Growing interaction inter-areas (e.g., knowledge sharing)
SC10 (5) Precarious collaboration (ops overloaded)
SC11 (4) Discomfort/frustration/friction/inefficiency with blurred responsibilities
(people don’t know what to do or what to expect from others)
SC12 (3) Waiting (hand-offs), infra still a bottleneck
SC13(3) Automation supports collaboration
Contingencies
SC14 (3) Giving more autonomy to devs (in staging or even production)

Table 5.5: Strong codes for collaborating dev & infra departments

During the coding process, we linked a few codes to supplementary properties
of our taxonomy. The strong codes having such attribution are SC15 (associated with
“dedicated infrastructure professionals”) and SC22 (associated with “developers with infra
background and attributions”).

We also report, in Table 5.8, the total number of codes (not only strong codes) found
per code class (6C label vs. organizational structure). One example of a code that is not

5.5 | MEMBER CHECK

Conditions
SC15(3) Enough ops for each dev team
Causes

SC16 (10) Startup scenario (small, young, weak infra scalability requirements,
business focus, use of cloud services to limit costs)

SC17 (6) Cloud services decrease the need of infra & ops staff

SC18 (3) Delivery velocity, agility, critical project

Avoidance reasons

SC19(4) Not suitable for applying corporate governance & standards
SC20(3) More costs: duplication of infra work among teams,
high salaries for infra professionals, underused infra professionals

Consequences

SC21(9) No [infra] defaults across teams: freedom, but possibly leading to
duplication of efforts and high maintenance costs
Contingencies

SC22 (3) Improve infra skills in-house, inclusive with tech talks

Table 5.6: Strong codes for single dev & infra departments

a strong code, an avoidance reason for single departments found in I55 and I58, is
“specialized knowledge brings scale gains” We list all the codes in the supplementary
material (see Section 6.2). In the “6C analysis sheet”, each code is linked to its supporting
interviews. In Appendix C, we also provide examples of supporting fragments from the
interviews to some strong codes.

5.4.1 Covariance analysis

Covariance, part of the 6C analysis, means the occurrence of one code correlates
with the occurrence of another code [HNM11; Gla78]. Covariance analysis reveals codes
commonly supported by multiple interviews, providing more insight into theory building.
We define a strong covariance group as a group of at least three codes related to a set of
at least three sources. For example, codes A, B, and C are in the same strong covariance
group when all of them are supported by interviews 1, 2, and 3.

Following this definition, we found: 17 strong groups with 3 codes linked to a 3
source-set; 1 strong group with 4 codes linked to a 3 source-set; 1 strong group with 5
codes linked to a 3 source-set; and 2 strong groups with 3 codes linked to a 4 source-set.
Table 5.9 describes the last four just-listed strong covariance groups, which are the
strongest ones since they have more codes or more sources than the first 17 groups.

5.5 Member check

Grounded Theory aims to formulate relevant theories for practitioners, so it is crucial
to investigate whether findings make sense to them [Ral19]. However, it is opportune to
highlight that the goal of our member check is to assess only the theory resonance [Ral19]

77

78

5 | A THEORY FOR EXPLAINING ORGANIZATIONAL STRUCTURES

Conditions
SC23 (8) Medium to large sized company
SC24 (5) Top-down initiatives/sponsorship
SC25(4) Upfront investment
SC26 (3) Requires coding skills from infra people
Causes
SC27 (8) Delivery bottleneck in infra management
SC28 (4) Compatible with existing rigid structures (low impact on organogram)
/ Only a few people needed to form a platform team
SC29 (4) Fosters continuous delivery
SC30 (4) A hero or visionary (hero culture)
SC31 (4) Emerged as best solution; other initiatives not so fruitful
SC32 (3) Multiple products / multiple dev teams / multiple clients
(requires high delivery performance)
Consequences
SC33 (8) Interaction (devs x platform team) to: support devs, make things work,
and demand new capabilities from the platform
SC34 (7) The platform provides common mechanisms
(e.g., scaling, billing, observability, monitoring)
SC35(4) Promotes continuous delivery, agility, and faster changes
SC36 (4) Devs responsible for infra architecture / concerns (e.g., NFR)
SC37 (4) Platform team provides consulting and documentation to devs
SC38 (4) Adding devs do not require adding [proportionally] more infra people
SC39 (3) Eliminated previous bottleneck
SC40 (3) Small platform team (excellence center)
SC41 (3) High costs when using public clouds
SC42 (3) Devs skills are too focused on corporate needs, lacking base infra knowledge
(bad for devs themselves, not for the company)
SC43 (3) The cost of managing the platform (even using open-source software) is high
SC44 (3) Risk: platform is magic to devs; neglect quality because they trust too much in the
platform, any problem they blame the platform and do not know what to do,
even for simple problems or when the problem is in the application itself
SC45 (3) Devs possibly unable to understand the infra or to contribute to the platform
Contingencies
SC46 (3) Decide how much devs must be exposed to the infra internals

(some places more, some places less)

Table 5.7: Strong codes for API-mediated dev & infra departments

with participants and not to validate the theory itself. Participants are not obliged to
verify whether the abstractions risen from diverse data are conceptually adequate [Gla02].
Therefore, readers should consider member check together with other quality treatments

(Chapter 6).

We performed a member check by collecting feedback on our results from the partici-
pants using online surveys, which we provide as supplementary material (see Section 6.2).
For each structure, we prepared one form listing its corresponding strong codes. For
each strong code, the respondent had to tick one option within the following Likert

5.5 | MEMBER CHECK

D o« &
NQJ ,(0' b‘\
(&o & . o N
g o » o
Characteristics 5 4 6 2
Conditions 0 4 6 3
Causes 5 9 25 8
Avoidance reasons 1 1 3 7
Consequences 7 16 32 13
Contingencies 1 9 13 18
Table 5.8: Amount of codes found per code class
Group Strong Supporting
reference codes interviews
Gl1 SC27, SC33, SC34, SC37 157, 159, 162
G2 SC10, SC24, SC27, SC30, SC31 140, 141, 148
G3 SC27, SC33, SC34 148, 157, 159, 162
G4 SC10, SC24, SC27 140, 141, 148, 149

Table 5.9: Strong covariance groups

» » «

scale [Jos+15]: “true”, “usually true”, “no correlation / I don’t know”, “usually false”, “false”.
We also left a field for general comments. We report the answers to this open question in
Appendix D. Because opining on all strong codes would take too long, we asked each
participant to answer only one form as a strategy to increase the response rate. Nonetheless,
they were free to answer all the forms if they so wished.

We sent the feedback requests in three rounds: (i) to Phase 2 interviewees, (ii) to Phase
3 interviewees, and, after some time, (iii) to the ones who did not reply to us and to the 7
participants of the initial brainstorming sessions. We received responses from 39 of these
75 participants. We received 8 responses for the segregated departments form, 12 for the
collaborating departments form, 12 for the API-mediated departments form, and 15
for the single departments form. From the 564 manifested opinions on strong codes, 365
were favorable (65% of the participants considered them to be true or usually true), while
only 83 (15%) were unfavorable (usually false or false). In particular, every strong code
received favorable feedback. This result suggests a good resonance of the participants with
our theory.

According to a respondent’s comment, disagreements related to single departments
may relate to possible interpretations depending on single departments having infras-
tructure specialists. Indeed, in the forms, we did not associate SC15 and SC22 to their
respective supplementary properties (see Section 5.4), which possibly jeopardized re-
spondents’ reasoning. This issue was fixed for the second round of feedback requests.

79

80

5 | A THEORY FOR EXPLAINING ORGANIZATIONAL STRUCTURES

5.6 Discussion

This section discusses the relationship between our findings and our research questions
RQ2 and RQ2.1, besides drawing some implications of these results.

RQ2 is about why different organizations adopt different structures for development
and infrastructure professionals. Conditions and causes in the 6C analysis point in this
direction. For example, a startup, still struggling to validate its value proposition, is not in
a moment to be so cautious about infrastructure requirements. Therefore, such a startup
scenario (SC16) usually leads to the adoption of single departments, with developers
taking care of infrastructure concerns. After scalability and other infrastructure concerns
gain relevance for the company, and the company increases its portfolio with multiple
products to multiple clients (SC32), API-mediated departments is seen as a path to
overcome existing delivery bottlenecks (SC27), and this promise seems to be fulfilled
(SC39). Collaborating departments requires certain parity in the ratio of development
to infrastructure people (SC15) to increase its success possibility. Therefore, having a
low number of infrastructure professionals and a hierarchy culture (SC28), hampering
direct contact between departments on a daily basis, are forces pushing to API-mediated
departments.

RQ2.1 inquires about the drawbacks and mitigation measures for each structure.
Avoidance reasons, consequences, and contingencies in the 6C analysis provide us
answers. Although planned to increase direct cooperation (SC09), collaborating de-
partments may present side effects since responsibilities become blurred (SC11). Some
interviewees expressed concerns about governance and technological standardization.
We found that multiple single departments in mid-sized or large companies can be an
obstacle to such standardization (SC19). If this is a concern?, the company may prefer
to adopt API-mediated departments. A peculiar disadvantage of API-mediated de-
partments is that programmers are less likely to be aware of the infrastructure (SC42),
which may not be a disadvantage for the company, but possibly for their careers. In this
context, we witnessed discussions about to which degree to expose infrastructure details
to developers (SC46) and strategies to communicate how to use the platform, such as
personalized consulting and mass communication (SC37). These discussions also emerged
from situations with programmers overly relying on the platform, ignoring the bare
minimum of infra management they should master (SC44).

In this way, the association of concepts of our taxonomy to 6C codes provides expla-
nations about the structures’ phenomenon. Such a new explanatory dimension enables
scholars to understand structures more deeply and better equip practitioners to discuss
them and make decisions.

We discuss more concrete implications of strong codes to practitioners in Appendix C.
There, we further discuss five strong codes (SC04, SC28, SC19, SC11, SC46) — one condition,
one cause, one avoidance reason, one consequence, and one contingency. This additional
discussion unveils some rich insights behind strong codes, such as: bosses fearing losing

2 We interviewed one very large company (I38) adopting single departments that were not concerned with
standardization: fostering an inner “free market” of solutions was an innovation strategy.

5.6 | DISCUSSION

their positions as an inhibitor of radical changes in structures (SC28), low participation
of infrastructure professionals in agile ceremonies as an indication of failure in adopting
collaborating departments (SC04), and onboarding time being a reason for the managers’
concern with corporate standards for infrastructure (SC19).

Unfortunately, the codes of different 6C labels were not evenly distributed across the
structures of our taxonomy. In particular, we found more strong codes for API-mediated
departments, and we had only three contingency strong codes. We identified many
more contingencies (38 in total), but most of them were supported by only one interview.
This may point to a lack of structure awareness by the community, so each company
tries to handle the problems in different ways. It could also reflect the peculiarities of
the organizations, but evaluating the raw data, that does not seem to be the case. For
example, “Playground area so that devs can learn infra” (I50) appears to be a contingency
that could be applied to many more organizations. Another interpretation points to the
analysis strategy: we considered a contingency as “a solution to one problem,” which
may split a common solution to different problems into different codes.

The largest class of strong codes (6C label and structure) we found was conse-
quences for API-mediated departments (32 consequences). This suggests that this
structure may have more predictable outcomes than the others. Also, from the eight codes
within the strong covariance groups, seven are related to API-mediated departments.
This also puts API-mediated departments as a more understandable phenomenon. In-
terestingly, the presence of a disadvantage of collaborating departments (SC10) within
strong covariance groups (G2, G4) shows a motivation for adopting API-mediated
departments.

The structure for which we found more codes suggesting failure scenarios was collab-
orating departments (SC10, SC11, SC12). We suppose it may be easier for large organi-
zations with segregated structures trying to move first to collaborating departments.
However, having a limited number of infrastructure professionals and not giving them
enough budget to interact with developers are recurring factors leading to overload (SC10).
Such a situation makes professionals forget the DevOps initiative and revert to the previous
siloed style of work. Giving more autonomy to devs (SC14) is an attempt to handle this
scenario. Moreover, we found more examples of collaborating departments in which
the infrastructure remained as a bottleneck in the delivery path (SC12). This reinforces
our previous finding that there is no correlation between collaborating departments
and delivery performance (Section 4.3).

Finally, an additional benefit of our theory, provided by its building process, is offering
a taxonomy with objective terms. This concern, for example, led us to replace “silo” (a
metaphor) with “segregated” in our refinement process. Such objectiveness is valuable
considering the amount of energy and time practitioners take discussing again and again
what DevOps is® [Lei+19].

3 See, for example, the “Chef Style DevOps Kungfu” talk.

81

https://youtube.com/watch?v=_DEToXsgrPc

Chapter 6

Quality criteria and limitations

According to Ralph, good taxonomies should increase cognitive efficiency and assist
reasoning by facilitating more inferences [Ral19]. A path to evaluate taxonomies is to
conduct case studies [Yin09]. However, although case studies can test theories [Eis89],
they are more helpful in demonstrating how a current theory is incomplete or inadequate
to explain observed cases [Pin86; And83]. A single case study does not prove a social
theory. Moreover, even after decades of robust tests confirming theories, new work can still
expand them [Sir+11]. On the other hand, Grounded Theory (GT) focuses on generating
theories rather than validating preconceived hypotheses. Although researchers can be
tempted to try to validate their theory as soon as it is created, Glaser and Strauss caution
that verificational approaches hinder theory development too early [GS99].

Though it is inadequate to evaluate our theory as simply valid or not, we can evaluate
our process of generating the theory [GS99; Ral19]. This can be done by checking adherence
to GT prescriptions (i.e., theoretical sampling, open coding, theoretical coding, theoretical
sensitivity, and theoretical saturation), which we address in the chapters containing our
research design and results. Ralph still cautions that researchers should be careful when
selecting evaluation criteria to assess a theory development. Since multiple criteria exist
and there is no universally accepted set of criteria, researchers must choose what make
sense for the emerging theory [Ral19].

For our research, we chose the quality criteria of Guba for naturalistic inquires [Gub81].
Although the naturalistic paradigm contrasts with the rationalist one [Gub81], in which
classical GT is based, the use of Guba’s criteria for a social and abstract phenomenon is
suitable. In this way, these criteria are widely employed by software engineering studies
adopting GT as methodology [Wat14; Jov+17; SB20; Lop+21]. In the following section,
we present such criteria and how we meet them. In particular, we devote a whole section
about generalizability, one of these criteria, since it requires a more in-depth discussion.
Finally, we also present the limitations of this work, considering especially Ralph’s recom-
mendations for taxonomy generation [Ral19].

83

84

6 | QUALITY CRITERIA AND LIMITATIONS

6.1 Quality criteria

The quality criteria we pursued are the ones defined by Guba [Gub81]: credibility (how
plausible or true the findings are); dependability (methodology applied consistently); con-
firmability (opportunities for correcting research bias); and transferability (generalizability).
For meeting such criteria, we applied the following treatments [Wat14]:

« Providing a chain of evidence (available in the supplementary material — see Sec-
tion 6.2), which contributes to credibility and dependability.

« Collecting interviewees’ opinions on the results, i.e., member check (Sections 4.4
and 5.5), which contributes to credibility and confirmability.

« Having a selection of participants with varying roles, experience levels, and genders,
working in companies with varying sizes, locations, and domains (Sections 4.1
and 5.1). In particular, in Phase 3, we triangulated interviews with development
and infrastructure staff within some organizations. These procedures contribute to
transferability.

« Triangulating among researchers through a review process (Sections 3.7 and 3.11)
and methodology revision by a colleague experienced in qualitative methods [Mel15],
which contribute to confirmability.

« Providing quantified evidence of saturation (Sections 4.2 and 5.2), which contributes
to dependability (this is an additional quality measure, not standard in other works).

« For Phase 3, reporting only codes confirmed by multiple participants (strong codes),
which contributes to credibility and transferability.

« In Phase 3, we also conducted a process for refining our taxonomy based on our
interactions with participants (Sections 3.9 and 5.3). This process improved con-
firmability (we evolved the taxonomy) and transferability (we applied our taxonomy
to scenarios that did not feed its initial versions).

Table 6.1 offers another view on the trace between quality criteria and their treatments,
so the reader can more quickly check the treatments we adopted for each criterion. In
this way, one can see we applied at least two treatments for each criterion. The table also
indicates the section of this thesis tackling the referred treatment.

6.2 Supplementary material

The supplementary material to this thesis, available online', provides the chain of
evidence supporting the findings here reported. In this way, readers can fully judge how
much data back our theory.

We provide the following files as supplementary material for Phase 2:

Lhttp://ime.usp.br/~leofl/devops/assets/files/mst.tar.gz.

http://ime.usp.br/~leofl/devops/assets/files/mst.tar.gz

85

6.2 | SUPPLEMENTARY MATERIAL

28 ‘0\\'@ &0\\\@ &6\\\@
& R & %@‘
Q/b'\ QQ“ (&\ @(\c’
Treatment ¢ o o8 < Section
Chain of evidence X X Supplementary
material
Member check X X 4.4 and 5.5
Diverse sample X 4.1 and 5.1
Researchers X 3.7 and 3.11
triangulation
Evidence of saturation X 4.2 and 5.2
Reporting stronger X X 3.10
evidences only
Refinement process X X 3.9 and 5.3
in Phase 3

Table 6.1: Our treatments for the adopted quality criteria

« Chain of evidence (PDF), linking our theory’s primary elements (the structures
and the supplementary properties) to codes, memos, and transcript excerpts that
originated them.

« Conceptual framework history (PDF), which are all the versions of the diagram
representing our conceptual framework.

« Feedback survey (PDF), with the questions sent online to the study participants.
« Structures digest (PDF), elaborated to support participants in giving us feedback?.
We provide the following files as supplementary material for Phase 3:

« Key points (PDF), which are the transcription excerpts used in the 6C and resonance
analysis.

« Resonance analysis sheet (XLS), providing the fragments coded as support or con-
fusion.

« 6C analysis sheet (XLS), with the applied theoretical coding.

« Taxonomy versions (PDF), which are all the versions of the diagram with the high-
level view of the taxonomy.

Feedback survey (PDF), with the questions sent online to the study participants.

For Phase 2, the “chain of evidence” document directly links high-level concepts to
supporting interview fragments. For Phase 3, one must find the interviews linked to high-
level concepts (theoretical codes) in the “6C analysis sheet”, and then search for support
in the corresponding interviews in the “key points” document.

2 An updated version is available on http://ime.usp.br/ leofl/devops/2021-06-20/structures-digest.html.

http://ime.usp.br/~leofl/devops/2021-06-20/structures-digest.html

86

6 | QUALITY CRITERIA AND LIMITATIONS

6.3 Generalizability

Although we cannot claim generalizability with statistical confidence, the employed
methods and the taken sample provide some relative generalizability to our theory (at
least more than case studies [Yin09] usually provide).

We took a diverse sample. Considering semi-structured interviews in the first and
second research phases, we interviewed 20 companies with more than 1,000 employees,
17 with between 200 and 1,000 employees, and 17 with less than 200 employees. We
interviewed people in 8 countries. The company domains also varied wildly.

In Phase 3, we applied our taxonomy in conversations with professionals working
in companies that did not provide data to the classification construction in Phase 2. In
the context of our resonance analysis, among the interviews in new companies, we
had 99 codes of support and 25 codes of confusion (four times more support than
confusion), which contributes to showing the generalizability of our theory. In addition,
confusion codes started to rarefy at the last interviews since we used confusions to
improve the theory. In the 6C analysis, we found 15 characteristics (of 17 characteristics
codes) that define the organizational structures in 15 new companies (88% of the new
interviewed companies), which also contributes to show that our theory applies to these
new contexts.

We also were cautious about the diversity of the interviewees’ roles. Only five (13%) of
the interviewees had an infrastructure role in Phase 2. In Phase 3, we were able to improve
this situation. From the 31 interviewees in the second phase, 14 of them (nearly half)
had an infrastructure role. Since, for Phase 3, we looked for people with more in-house
experience, so they could answer our “why questions,” we ended up also interviewing a
larger fraction of managers (30% of managers in Phase 2 vs. 61% in Phase 3).

The 6C analysis also provided more evidence for some findings of the first phase. In
particular, API-mediated departments still seems to be a promising path to achieve high
delivery performance in comparison with the other structures. We heard of bottlenecks
in the delivery path, especially in the segregated and the collaborating departments
structures, while some interviewees claimed that the API-mediated structure removed
the bottleneck previously existing. Another reinforced findings are that single depart-
ment is more associated with small organizations, while API-mediated departments is
not.

In summary, the points strengthening our theory’s generalizability are: (i) diversity of
professional and company profiles in our sample; (ii) applying our taxonomy to scenarios
that did not feed its initial versions; (iii) gathering evidence of support for the theory
among new companies; and (iv) the discovery of more evidence corroborating preliminary

findings.

6.4 | LIMITATIONS AND THREATS TO VALIDITY

6.4 Limitations and threats to validity

Despite our best efforts to meet the exposed quality criteria, every work has threats to
validity. We now discuss them.

The reader must take into account the typical limitations of taxonomy theories. The
most important limitation is that they rarely make probabilistic predictions in terms of
dependent and independent variables, as variance theories, common in Physics, do [Ral19].
Thus, it is not appropriate to discuss, for a grounded theory, the number of interviewees
in terms of statistical sampling.

As usual to grounded theories, some factors (such as interviewees anonymity and
unavoidable subjectivity in analysis) make the research not fully replicable. In particular,
anonymity goes along with ethical research [Str19]. It is also a crucial trade-off with the
potential number of interviewees: many participants might not accept an invitation to par-
ticipate in a non-anonymous interview. Moreover, anonymity copes with social desirability
bias [Dd14]. Still, violating anonymity does not provide reproducibility: interviewing the
same person again does not necessarily yield the same results®.

There is another subtle disadvantage in employing GT, which is a drawback of em-
bracing empirical methodologies. Other approaches, such as the one advocated by Doty
and Glick to build typologies?, claim to free researchers from empirical world limitations.
These authors state that “because typologies are based on ideal types of organizations,
they may allow researchers to identify types of organizations that are more effective than
any organizations currently observed” [DG94]. This statement implies that, while seeking
to guide practitioners regarding organizational structures, a grounded theory will miss
optimal structures if they do not exist yet in the real world.

Although we relied on previous work [FHK18; For+20] to adopt the delivery perfor-
mance construct, we needed to adapt the original thresholds due to the reasons exposed in
Section 2.2. We also did not differentiate low from medium performers, as we judged that
such differentiation would not help distinguish how the structures contribute to delivery
performance, partly because low and medium performers are much more similar among
themselves than when compared to high performers [For+17]. Therefore, by changing
some decisions related to delivery performance, other researchers could reach different
conclusions based on the same data. We handled this concern mainly by stating our defini-
tions regarding this topic. Nonetheless, as already stated, GT does not guarantee that two
researchers working in parallel with the same data would achieve identical results [GS99].
Still, relying on self-reported metrics may be subject to some bias; nonetheless, collecting
such metrics from system data in many organizations would be extremely difficult.

In an ideal process, different researchers would analyze the interviews independently,
avoiding some possible agreement bias favored by review discussions (one could even
calculate interrater agreement scores [Ban+99]). However, the cost for independent analysis
would be too onerous (analyzing one interview takes hours). Regarding the review process,

3 “One cannot step into the same river twice” [Vla55].

4 Typologies identify multiple ideal types with no rules to classify instances; each ideal type represents a
unique combination of attributes that determine relevant outcomes [DG94].

87

88

6 | QUALITY CRITERIA AND LIMITATIONS

instead of relying on the transcripts produced by a single researcher, all researchers could
have listened to the original records. Yet, such an approach also would be too costly in
terms of time commitment. Alternatively, two research collaborators took part in a few
initial interviews to standardize the transcription procedures and assess how the doctoral
candidate conducted these interviews. Beyond this, the researchers who take part in the
analysis read some transcription excerpts only. Whenever needed during reviews, we
searched for these relevant excerpts to support our discussions.

Our research data corresponds to people’s views and opinions, which may drift from
objective reality. Therefore, an observational research approach would be desirable [Ral19].
Rother, for example, argued about how an observational approach was crucial for his
research since Toyota people had difficulty in articulating and explaining their unique
thinking and routines [Rot09]. However, our research questions are too abstract to grasp
only by observation, even meeting observations, without further conversations with the
observed people. Our context thus differs from other software engineering situations,
such as observing a pair-programming session. Therefore, observational research with the
same goal as ours would be much more expensive, if at all feasible, especially involving
as many organizations as we did. Nonetheless, anonymity reduces such a “drift from
objective reality” by favoring an open attitude from the participants. We were also careful
so as not to ask the research questions directly to participants, which would force our
preconceptions onto them [Ral19]. We carefully crafted second-level questions [Yin09],
which are more objective than the research questions and, therefore, reduce the gap from
report to reality.

We are aware that large companies usually present groups at different maturity levels,
and that such groups could be classified, in Phase 2, differently if we had chosen different
interviewees. To verify this, we interviewed two persons from the same company (116
and [18) working in different teams. We noted that, indeed, the organizational patterns
were not identical. This effect also happens when transitioning from one structure to
another, since transitioning can be a long process and take different paces at different
organization segments. Therefore, the reader must note that our descriptions characterize
our respondents’ contexts, not the organizations in their totality. Moreover, as already
stated, in Phase 3 we had more cases of two interviews for the same company.

In Phase 3, responses were dependent on how we presented the taxonomy, which
interviewees could misunderstand. A mitigation for this issue was analyzing how to
improve the taxonomy presentation for the subsequent sessions.

Chapter 7

Conclusion

Our research provides a theory on how software-producing companies organize their
development and infrastructure workforce according to different organizational structures.
Answering RQ1 (What are the organizational structures adopted by software-producing or-
ganizations to structure operations activities among development and infrastructure groups?),
such structures are:

1. Segregated departments, with seven core properties;

2. Collaborating departments, with eight core properties and two supplemen-
tary properties;

3. Single department, with four core properties and three supplementary prop-
erties;

4. API-mediated departments, with nine core properties and three supplemen-
tary properties.

Supplementary properties reveal relevant variations represented in our taxonomy,
as, for example, that single departments may or may not encompass staff dedicated to
infrastructure. Beyond the eight supplementary properties directly related to one structure
each, we also found two other supplementary properties applicable to more than one
structure. And for one of them (enabler team), we identified three subtypes. In this way,
our taxonomy presents a total of 13 supplementary properties. The core properties,
describing each organizational structure, plus the supplementary properties answer RQ1.1
(What are the properties of each of these organizational structures?).

Our research also answers RQ1.2 (Are some organizational structures more conducive to
continuous delivery than others?) by finding evidence that API-mediated departments
are more suitable for achieving continuous delivery given its relationship with delivery
performance. An explanation fitting our theoretical analysis is that API-mediated depart-
ments provide a better balance between specialization (division of labor) and inter-team
coordination (integration): workers are more specialized than it is the case for single
departments, but integration is more fluid than for segregated and collaborating de-
partments. Also, the API-mediated approach reduces the costs of forming autonomous
teams by not demanding an infrastructure expert in each product team.

89

90

7 | CONCLUSION

Still about RQ1.2, we also observed that segregated departments are more common
in organizations with less-than-high performance. Additionally, there was no apparent rela-
tion between delivery performance and the other structures (collaborating departments
and single department). Nonetheless, we critically state that reaching high delivery
performance is not a need for every software-producing organization, as adopting API-
mediated departments is not adequate for every organization. In particular, a promising
topic for future research is investigating whether the organization domain influences the
need of high delivery performance.

We, then, found why different organizations adopt (or do not adopt) different structures
and the conditions leading to this choice. Such findings answer RQ2 (Why do different
software organizations adopt different organizational structures regarding development and
infrastructure groups?). For example, a cause for API-mediated departments is try-
ing to address delivery bottlenecks; an avoidance reason for single departments is
its unsuitability in enforcing corporate standards; and a condition for collaborating
departments is having a certain proportion of infra people per development team.

To answer RQ2.1 (How do organizations handle the drawbacks of each organizational
structure?), we identified the drawbacks of each structure and the ways organizations deal
with such disadvantages. For example, a consequence of collaborating departments is
possibly leading to conflicts due to blurred responsibilities; tuning the platform abstraction
level is a contingency to prevent developers from over-relying on the platform as magical.
A notable result is that we found many contingencies, but only a few shared among
different organizations, which can be a consequence of the lack of awareness of organiza-
tional structure patterns in the software industry. We hope our work can contribute to
spreading such awareness.

7.1 Implications

Understanding the world is the primary goal of science [Knu74]. Many fields in physics,
biology, and sociology, possibly more than in computer sciences, are dedicated to under-
standing world phenomena. Discovering regularities in the world and providing better
vocabulary to describe such regularities lay the basis for both advancing science itself,
through new research, and changing the world based on a more scientific comprehension
of it. In this way, we hope our research has contributed to somehow evolving our views
on the software production phenomenon. Such comprehension by academics is vital, in
the first place, to support the teaching of software engineering to the rising number of
computing students. In particular, a new vocabulary has the power to change practitioners’
goals, expectations, and actions, besides basing discussions and arguments (consider the
“technical debt” concept [Cun92], to take only one example).

Therefore, our work has implications for practice. Software companies could realize
that there are several kinds of organizational structures they could adopt to excel in
continuous delivery and plan which organizational structure they are interested in moving
to, maximizing their chances to succeed in the transition. Further, we clarified the roles
that the participants have to play in each organizational structure. This evidence could help

7.2 | FUTURE WORK

practitioners cooperate with less friction toward organizational transformation. Moreover,
by increasing the awareness of organizational structures in the community, practitioners
can better discuss the current situation of their corporations, besides making more informed
decisions on structural changes and drawback handling. Having an up-to-date view of what
“other companies are doing” is always a relevant input for practitioners’ decision-making.
An example is that practitioners can relate observed problems in their organizations to
expected consequences under our theory. Such explicit associations can avoid hours of
unfruitful discussions, possibly assuming the problem to be “something that only happens
here” Other example of applicability is that our taxonomy supports understanding the
state of an unknown organization, which can help, for example, engineers in job interviews
to evaluate the suitability of working for a given company.

This work also has implications for scholars and research. The elements of our taxonomy,
provide a common vocabulary to support the formulation of new research questions. For
example, researchers can investigate the impact of each taxonomy property on other
perspectives (e.g., software architecture, security, database management). Another valuable
endeavor would be to investigate the relation between our taxonomy’s elements and the
internal organization of development and operation groups, especially platform teams
(as part of API-mediated departments). Also, professors can update their understanding
of the software production phenomenon based on concepts and relations grounded on
the current behavior of the software industry. Thus, professors and IT instructors can
update their software engineering classes accordingly. A secondary and methodological
contribution of our work for developing new grounded theories is providing an objective
approach to detect theoretical saturation, which is rarely seen in the literature.

In addition, we observed that test automation is still not adequately practiced in
many software companies, as also noted by Olsson et al. [OAB12], and that the lack of
tests is a limiting factor for achieving high delivery performance. This suggests research
opportunities for proposing automated test generation techniques, especially in envi-
ronments in which tests are intrinsically difficult, such as games or IoT. Moreover, we
noticed participants practicing DevOps while maintaining a monolithic application, which
contrasts with the literature that strongly associates DevOps with microservices [BHJ16;
Ebe+16]. This suggests researchers should further investigate the differences in applying
DevOps to monoliths and microservices-based systems. Similarly, since we also observed
some participants maintaining a monolith core with peripheral microservices and achiev-
ing high delivery performance with the microservices, researchers could propose novel
techniques and tools that could (semi-) automatically extract peripheral services from
monolith applications. One more example of research pursuit is envisioning techniques to
avoid release windows and, thus, increase delivery performance.

7.2 Future work

Grounded theories can always be adapted according to the discovery of new instances
of the phenomenon. Therefore, further research on the topic is welcome, especially con-
sidering that, usually, software engineering theories (as social theories) cannot be proven
true. In particular, observational studies would be desirable to strengthen (or dispute) our

91

92

7 | CONCLUSION

theory.

Given the existence of other taxonomies in the DevOps context, promising future work
is conciliating them in a unified model. Such unification may also demand methodological
advances: e.g., how to merge taxonomies and validate such an integration? We also believe
many more insights and discussions can be derived from our strong codes, be it in
academic or practitioners forums. In particular, each strong code could be submitted to
validation studies or, at least, be a starting point to new investigations.

Finally, the organizational structure agenda applied to software engineering is vast. For
example, it is still controversial how to share responsibility on security across a groups of
experts, specialists embedded in product teams, and non-specialist developers [Man+19].
Therefore, software engineering research may still provide more light to practitioners on
distributing responsibilities linked to specific software attributes (e.g., security, quality,
performance, user experience). Alternatively, if it is not possible to clarify the best option
for each concern, at least new research could unveil each structural option’s benefits,
drawbacks, and contingencies.

7.3 Final words

The workforce dedicated to software production has grown over the world. Neverthe-
less, the demands of clients have heightened too: new features must be shipped quicker
and quicker. Furthermore, new features must support more users while dealing with
more robust non-functional requirements (for example, society and governments are
now demanding more security and data protection from software products than ever
before).

In this scenario, it is not uncommon for companies to try to address such demands by
simply pressuring more on their employees or expecting a single employee to master a vast
set of skills. Correspondingly, it is also not uncommon to experience slow or unavailable
software in our daily lives. Solving these issues is not just a matter of demanding more of
individual employees. As told a long ago by Adam Smith, a single worker could barely
produce 20 pins per day, while just ten employees, when wisely organized, could produce
thousands of pins per day in a manufacture [Smil4].

To tackle the contemporary challenges of software production, we expect that advances
brought by software engineering research, ours included, can promote more rational ways
of organizing the software workforce. In particular, we hope that such progress benefits
companies, which will produce more software, workers, which will have better work
conditions, and consumers, which will enjoy better software.

Appendix A

Interview protocol for Phase 2

The purpose of this protocol is to guide the interviewer in the preparation, conduction
and analysis of semi-structured interviews in the context of our research (organizational
structures for infrastructure management in the context of continuous delivery) following
academic guidelines, including Grounded Theory.

We also hope that this protocol can support other researchers in conducting semi-
structured interviews for software engineering research.

A.1 Purpose of the interviews

By using Grounded Theory, start the development of a theory addressing the following
research questions:

« RQ1 Which organizational patterns are organizations currently adopting?
« RQ2 Are there organizational patterns delivering better results than others?
« RQ3 Which forces drive organizations to take different organizational patterns?

« RQ4 Which are the advantages, challenges, and enablers for each organizational
pattern?

The questions were designed to address mainly RQ1 and RQ2, and to start to deal with
RQ3 and RQA4.

A.2 Inputs for this protocol

« Original research proposal (research questions above)

« Appendix “Research Protocol for constructing a Conceptual Framework and Mapping
Regional Software Startup Ecosystems” of “A Conceptual Framework for Software
Startup Ecosystems: the case of Israel” (a technical report of our research group)

93

94

APPENDIX A

« “Protocol to be used in the interviews at startups” (a document of our research
group)

« Article “The Grounded Theory of Agile Transitions” (ICSE, 2017)
« Interview tips of Ijnet, a website for journalists

« Tips from Daniel Cukier, a former PhD student of our research group who conducted
interviews within the startup environment

« Our experience with the brainstorm sessions with specialists

« The chapter “Conducting semi-structured interviews” of the book “Handbook of
Practical Program Evaluation” (Adams, 2010).

« Our own experience with the interviews conducted under this protocol (we evolved
this protocol with more tips based on this experience).

A.3 Method

Use of semi-structured interviews. According to Adams, “Conducted conversationally
with one respondent at a time, the semi-structured interviews (SSI) employs a blend of
closed - and open - ended questions, often accompanied by follow - up why or how
questions. The dialogue can meander around the topics on the agenda — rather than
adhering slavishly to verbatim questions as in a standardized survey — and may delve into
totally unforeseen issues”

A.4 Target population

People who have (in the present or recent past) involvement with teams within software
developer organizations who use continuous delivery of software or who are going through
the process of adopting continuous delivery.

A.5 Guidelines and tips

Before the interview:

« Diversified selection. Organization: size, type, location. Interviewee: gender, position
(from developer to marketing).

« Test audio recording before the first interview.
« For online interviews, check the audio recording before each interview.

+ Choose a recorder that is as discreet as possible. At this point smartphones are
suitable, since people are used to cell phones on the table.

A5 | GUIDELINES AND TIPS

Avoid scheduling interviews in noisy places.
When possible, prefer face-to-face interviewing to online interviewing.
Avoid, if possible, asynchronous text-based interviews.

Prepare a printed version of the questions of this protocol to assist the interviewer
during the interview.

If you make notes on the same board for different interviewees, use different colors.

When inviting people, provide a link with a dynamic listing of the interviewers’
available days and times. Try to offer as much as time slots as possible.

Do not send too many invitations at once. You may fill all your slots and, thus, not
have time to analyze between interviews.

Send a LinkedIn connection invitation to the interviewee. It is an opportunity for
the interviewee to know better who is interviewing her.

During the interview:

Always be polite.

Try to be pleasant. A quick unrelated conversation right before the interview can
help. Example: “How long have you lived in the city?” Or “Why did you move to
Sao Paulo?”. Easier to do this when the interview is in person.

Listen. Avoid talking unnecessarily.

While the interviewee speaks, do not display strong emotions such as enthusiastic
agreement, disagreement or surprise.

Avoid giving opinion during the interview.
Do not debate (try to contradict) the respondent’s answers.

You can demonstrate knowledge to the interviewee, but humbly, without putting
yourself as more expert than the interviewee.

At times, repeat what the interviewee said to show interest and understanding in
the message.

Respect the silence, let the interviewee reflect as much as necessary.

On the other hand, prepare extra questions to keep the interviewee talking. Or
improvise. Extra questions can also lead to unexpected revelations.

Be open to explore other unforeseen topics. New questions more interesting than
those already established may arise.

Do not drive the interviewee to say what we want to hear. On the contrary, if possible
try to make him speak what we do not want to hear.

If the interviewee dodges the question, after a while try to return to the question
with another approach. But do not insist too much. Especially in the first interviews,
the avoidance may be a sign that the question is not very good.

95

96

APPENDIX A

+ Do not follow the script mechanically. The order of the questions in the protocol
don’t need to be followed.

+ Questions can be tailored to the interviewee’s profile.
« Make hooks based on what the respondent commented.
« Do not be afraid to ask naive questions.

« Ask for clarification when needed. But avoid saying “what do you mean...?” As it
seems that you are scolding the interviewee for not communicating properly.

« If the interview is online: if feasible, video chat; otherwise, at least try to greet the
interviewee (and say goodbye) by video; and explain to the respondent that the
video will be turned off for connectivity reasons.

« It may be impolite to ask the interviewee to turn on the video; The interviewer
should just turn on his own video, which suggests to the interviewee to turn on her
video too. If in this case the interviewee does not turn on the video, that’s fine.

« Avoid using the term “DevOps” (broad and ill-defined in the community). But
especially in explaining the motivation of the interview it can be difficult to escape
from this.

« Avoid very specific terms related to the organizational patterns we already know of
(e.g., SRE).

« Focus on the interviewee’s latest experiences on her team. Do not ask for an expla-
nation about the organization as a whole. Consider projects only from the recent
past.

« Estimated length of interview: 1 hour.

« To calibrate the time, you may want to “test the script” before the first interview
or conduct the first interview with someone you already know, who will be more
tolerant of any endurance.

+ Try to minimize note-taking to focus on the interviewee. Write down points during
the conversation that lead to the next questions. Choose a standardized place or a
different sheet for this, so you do not forget to ask these questions.

« For online interviews, a good software for audio recording is OBS. When starting
the interview, pay attention to the audio capture bars (mic and desktop audio), so
you are sure that audio is being recorded.

After each interview:

+ Do the interview analysis as soon as possible. Advantages: 1) the interview is more
“fresh” in memory and 2) we have a more agile (iterative) approach, since 10 analyzed
interviews are worth more than 40 interviews without analysis.

+ Check the audio. If the recording did not work, try to do the analysis on the same
day or as early as possible.

A.6 | INTERVIEW SCRIPT

A.6 Interview script

Before the interview:

« Collect respondent data. Do not spend interview time on this. Search for data, for
example, in Linkedin.

— Name

- Linkedin

- E-mail

- Gender

- Graduation course

— Higher degree (no graduated, graduated, master, PhD)
- Graduation year

- Role

- Years in the company

— Years in the role

— Company

- Company founding year

— Number of employees in the company

— Number of IT employees in the company

+ Research about the interviewee before the interview. This search goes beyond profile
data. It helps to create “intimacy” with the interviewee.

« On the interview eve, remind the interviewee about the interview.

« If the interview is in person: arrive early (about 15 min); if possible try to know the
environment of the company.

Starting the interview:

« Mention group researchers.

« Explain the purpose of the research.

« Mention expected benefits for the community (software producing organizations).

« Mention that the interview can also benefit the interviewee by helping her to reflect
on her work environment.

« Explain the protocol.
« Explain why the recording and its confidentiality.

« Explain that the publications will treat companies and respondents anonymously.

97

APPENDIX A

Explain that any results will be sent to the respondent firsthand.

Mention that our group will be open for future collaborations.

Ask permission to start recording.

Start recording by saying "OK, it’s recording now."

Start with an easy and open question ("icebreaker"). Helps the interviewee become
more comfortable.

During the interview:
+ Record the audio.

+ Record with the cellphone. But take the portable recorder in case of any problem
with the phone.

+ Take only a few notes (on the computer) but always remember to keep eye contact
with the interviewee.

« If another researcher is present, the second researcher may take further notes.
Main questions:

« Please, tell me about your company, your role within your company, and the project
in which are currently working.

- Rationale: Icebreaker question
« Who is responsible for deploying the solution in production?
— Rationale: Directly linked to RQ1

- Rationale: Starting with “relevant but still non threatening questions” (Adams,
2010).

+ In a new project, who builds the new environment?
— Rationale: Directly linked to RQ1
+ And about the Cloud? PaaS / serverless? What do you think?

— Rationale: In our DevOps literature review, we already found that the use
of cloud platforms, especially PaaS and serverless, can strongly impact on
expected skills of software engineers.

— Evolution notes: Usually we did not need to ask this directly.
« Who is in charge for non-functional requirements?

— Integrity, availability, flow rate, response time.

Capacity planning, load balancing, overload management, timeout and retrials
configuration.

Deploys without unavailability.

Rationale: Directly linked to RQ1

A.6 | INTERVIEW SCRIPT

« Who is responsible for configuring monitoring?

Rationale: Directly linked to RQ1

« Who is responsible for tracking the monitoring?

Rationale: Directly linked to RQ1

« Who is on-call for incident handling?

After-hours frequency
Blameless post-mortem?

Rationale: Directly linked to RQ1

Delivery performance:

Time from commit to production

«+ <1h/1week <t <1 month/>1month
Deployment frequency

+ Under demand (many times per day)

« 1 per week < f < 1 per month

« f>1 per month
Mean time for repair

+ <lh/<1day/1day<t<1week/>1week
Frequency of failures (% of deliveries)

* 0-1%/1-15%/15-30% / 30 - 50% / More than 50
Reasons for the above results.

Rationale: Directly Connected to RQ2. Provides a link between the organiza-
tional structure and its “delivery performance” (“better results” in RQ2). We
use “delivery performance” as defined by Forsgren. The questions alternatives
follow the results found in the State of DevOps Surveys.

« What would you change in this work system of your team/company?

Why is it hard to implement such changes?
Why did this problem arise? Why do they remain?

Rationale: Directly connected to RQ2. A more qualitative approach to feel the
respondent’s (in)satisfaction with the results of the organizational pattern in
which she is immersed.

Rationale: Sub-questions help to answer RQ3, because at this point the in-
terviewee will probably justify the reasons for the existing organizational
structure.

99

100

APPENDIX A

— Rationale: Sub-questions help to answer RQ4 since what could be improved may

refer to “advantages, challenges and enablers” of the existing organizational
pattern.

Rationale: Follows the guideline “rather than asking people to identify what
is “bad,” asking advice on “how to make things better” and “areas that need
improvement” can help minimize defensiveness” (Adams, 2010).

Rationale: “The most potentially embarrassing, controversial, or awkward
questions should come toward the end” (Adams, 2010). In that case, the most
complicated of the main questions is at the end of the main questions.

Specific questions:

« Rationale: These questions should be dynamically chosen according to the “advan-
tages, challenges and enablers” that have so far been revealed in the interview. They
serve to deepen the understanding of the “advantages, challenges and enablers” of
the existing organizational structure.

« Inter-team communication; problem?
« Little communication? Over communication?

— Rationale: The classic idea of DevOps calls for closer approximation between

devs and ops (“tearing down walls between silos”). But more communica-
tion is not necessarily better communication, especially between different
departments. Organizational patterns may be directly linked to the need for
communication between the organization’s professionals.

« Are different teams aligned (committed to the project)?
— How do this happen?
— Consequences

— Rationale: DevOps literature advocates that different teams and departments

should be aligned. But little is said about how to achieve such alignment.
However, in organizational patterns that maintain separate, collaborating de-
partments (devs and ops), alignment is essential and, therefore, deserves to be
questioned.

+ Clear definition of responsibilities?
— If not, any problem?
- If yes, long hand-offs?

— Rationale: There are reports of “DevOps deployments” in which devs and

ops passed to share responsibilities, especially on deployment automation.
However, reports show that conflicts arise from this responsibility sharing as
professionals question the responsibilities of those involved in the project (“Am
I doing something the other should do?”, “Are they doing what I should do?”).

« Is there a “DevOps team”? What is it about?

A.6 | INTERVIEW SCRIPT

Rationale: The literature comments on the existence of DevOps teams in orga-
nizations, but little is known what exactly these teams are.

« Are there people with the “DevOps role”? What is it about?

Rationale: The literature also comments on the existence of the “DevOps engi-
neer” or “full-stack engineer”. However, the very initial idea of DevOps (devs
and ops collaborating) seems to be against the idea of a DevOps role.

« If there are no “dedicated ops”: how do software engineers improve their skills on
infrastructure?

Were they hired with such skills?
Everyone in the team knows about infrastructure?
How people are chosen for “knowing more” about infrastructure.

Rationale: The lack of “exclusive ops” is a feature we expect to find in many
organizations. It is associated with the so-called cross-functional teams. Ad-
vocates argue for higher productivity (less wait time between teams) in this
model. But the big challenge is getting a single team to possess a wide range
of expertise in different technical topics.

Evolution notes: After interview 120, we diminished the focus on this question
and the following two ones since they were not contributing so much for the
evolution of our taxonomy.

« Is there any kind of incentive from the company about continuous education?

community of practices
FLOSS

internships

teams mutation
timeshare for studying

Rationale: Again, in cross-functional teams, the ability to learn is even more
important than in more traditional structures.

« If a team needs knowledge/skills that they do not have, what to do?

Study with team mate

Search for help in another teams
Search for in-home specialist
Search for external consultant

Rationale: Continuation of the previous question.

« Does each team have their own specialists? Are there shared specialists?

Sharing policy

101

102

APPENDIX A

— Handoffs problems

— Rationale: The way specialists spread across the organization is totally tied to
the issues of organizational patterns.

Extra questions:

« Rationale: Most of these questions further explore the impacts of choices on how
experts spread across the organization.

« How does the “DBA role” work in your organization?
« Is there production problems related to database?
— Availability, connection between application and database
- Evolution notes: By the end, we asked less this specific question.
« Are there any security experts in the company?
« How do developers become aware about security concerns?
— E.g., known vulnerabilities
« For your last project, were vulnerabilities found in production?
- Were they exploited by attackers?

- Rationale: “The most potentially embarrassing, controversial, or awkward ques-
tions should come toward the end (...) along with reminders of confidentiality
as needed” (Adams, 2010).

— Evolution notes: By the end, we asked less this specific question.
« Microservices: do you use? What do you think?

— Rationale: This question will probably arise naturally if that is the case. But
as it is a theme strongly linked to DevOps and cross-functional teams, it is
worth to briefly explore it. But it is good to leave more to the end, so it does
not improperly take the time of the interview.

— Evolution notes: As we rose some hypotheses related to microservices, we
strengthened the relevance of this question. However, most of the times we
did not need to ask it directly.

Some other additional questions we created after 120 to support the elaboration of
rising hypotheses:

« Do you have few automated tests? How do you deal with the tradeoff velocity vs
quality?

« How is the collaboration among developers and members of the platform team?

+ Do you feel the platform provides more benefits for microservices than for monolithic
services?

Ending the interview:

A.6 | INTERVIEW SCRIPT

Ask: "About your technology stack, would you have a favorite tool to recommend?”
Quick and easy research-related question to give a final “chill out”. I think in general
people are excited to talk about tools.

— Evolution notes: Due to time, in general this question was not asked.
Ask: "Would you have any questions for me or a final comment?"
Ask for suggestions of other people to be interviewed (snowballing).
Ask to take a picture together: "Can I take a selfie with you?"

After the interview is over, wait a moment: sometimes it is at this time of relaxation
that the interviewee remembers something interesting to add. Selfie time can also
help in this regard.

Thank for the interview.
Offer a business card.
At the end of the day, send a “thank you” message.

After the interview, save the audio with metadata: interviewee, date, and location.

After each interview:

Analyze what went right and what went wrong in the interview:

Have the research questions been answered?

Were the guidelines and tips followed?

Has any new and exciting topic come up?

Raise improvement points for upcoming interviews.

If necessary, evolve the interview protocol.
— Do this exercise mainly for the first interview.

Take notes of references (books, articles, lectures, etc.) that may have been indicated
by the interviewee.

103

Appendix B

Interview questions for Phase 3

B.1 Research goals

Goal 1 - Answer research questions:

« Why do different software organizations adopt different organizational structures
regarding development and infrastructure groups?

« How organizations handle the drawbacks of each organizational structure?

Goal 2 - Refine the taxonomy (adding, removing, and renaming taxonomy high-level
elements).

B.2 Semi-structured script (for previously visited
organizations)

« Explaining our research: we want to understand the division of labor between
development and infrastructure groups in the software industry, and how these
groups interact with each other.

« Ask permission to record
+ QO Context: what do you do? / type of software built by the company.
— Rationale Q0: Mostly ice-breaker.

« Q1 Concerning the operation activities, such as deployment, infrastructure setup,
tracking monitoring, and so on... Do you believe there is a clear expectation of how
such tasks should be split or shared between developers and infrastructure people?
Is there a clear expectation of how these groups should interact?

- Rationale Q1: Interviewee starts to think about the organizational structure.

Input for the decision point (after Q2).

« Explain how we have classified the interviewee’s organization under our taxonomy.

105

106

APPENDIX B

« Q2A What do you think about this classification? Is it intelligible?

If it is applicable, explain the supplementary properties attributed to the interviewee’s

organization under our taxonomy.

Q2B (if pertinent) What do you think about this classification? Is it intelligible?

Rationale Q2: It provides input to analysis regarding Goal 2.

+ (Decision point) Here, we have two variables:

clarity = is there clarity for the interviewee about its structure?

match = does the interviewee agree with our description of its structure?

If there is no clarity and no match, ask questions from phase 2 (to help understanding

the structure):

Who is responsible for deploying the solution in production?
In a new project, who builds the new environment?

Who is in charge of non-functional requirements?

Who is responsible for configuring monitoring?

Who is on-call for incident handling?

Rationale (decision point): if there is no clarity and no match, the answers for
the next questions may not provide good data.

« Q3 Now, I would like to understand how your company reached this structure:

Have you considered other alternatives for structuring devs and ops?
Have you ever had other structures?

Who had defined the structure?

Was it a top-down imposition? From whom?

Was it a formal decision?

Was it a bottom-up suggestion? From whom?

How was the decision made?

Were decisions based on references, consulting, or known cases?
Was the change incremental or abrupt?

Rationale Q3: It is related to Goal 1, since it provides mainly the causes, condi-
tions, and consequences for the organization’s structure.

« Briefly present our taxonomy (only structure, not supplementary properties).

+ Q4A Why do you think that your organization, in its context, adopted this structure
and not some other?

107

B.3 | SEMI-STRUCTURED SCRIPT (FOR NEW ORGANIZATIONS)

« (If pertinent) Present the supplementary properties related to the organization’s
structure.

« Q4B (If pertinent) Why do you think that your organization, in its context, adopted
these supplementary properties and not others?

— Rationale Q4: It reinforces the point of the previous question, but also provides
data to analysis regarding the Goal 2. L.e.: pushes the interviewee to answer
again to the same question, but this time discussing it by using the taxonomy.
Q4 is also expected to possibly provide contingencies about other structures
(Goal 1).

« Q5 Do you think your organization, in its context, should choose another organiza-
tional structure? Why? (ask about the supplementary properties as well).

- Rationale Q5: It encourages the interviewee to talk about causes, consequences
and conditions of some other structure (Goal 1). It also provides data regarding
Goal 2.

« Q6 How do you handle the disadvantages of the adopted structure? (ask about the
supplementary properties too).

— Rationale Q6: It is mostly expected to provide the contingencies of the organi-
zation’s structure (Goal 1).

B.3 Semi-structured script (for new organizations)

« Explaining our research: we want to understand the division of labor between
development and infrastructure groups in the software industry, and how these
groups interact with each other.

+ Ask permission to record
+ QO Context: what do you do? / type of software built by the company.
— Rationale Q0: Mostly ice-breaker.

« Q1 Concerning operation activities, such as deployment, infrastructure setup, track-
ing monitoring, and so on... Do you believe there is a clear expectation of how such
tasks should be split or shared between developers and infrastructure people? Is
there a clear expectation of how these groups should interact?

— Rationale Q1: Interviewee starts to think about the organizational structure.
« Briefly present our taxonomy (only structure, not supplementary properties).
+ Q2A How would you classify your organization? Why?

« If the reasoning behind the choice does not fit what we could expect, then we discuss
more on this.

« Explain pertinent supplementary properties.

108

APPENDIX B

« Q2B (if pertinent) How would you classify your organization regarding the supple-
mentary properties?

Rationale Q2: It provides input to analysis regarding Goals 2 and 3.

« Q3 Now I would like to understand how your company arrived at this structure:

Have you considered other alternatives for structuring devs and ops?
Have you ever had other structures?

Who had defined the structure?

Was it a top-down imposition? From whom?

Was it a formal decision?

Was it a bottom-up suggestion? From whom?

How was the decision made?

Were decisions based on references, consulting, known cases?

Was the change incremental or abrupt?

Rationale Q3: It is related to Goal 1, since it provides mainly the causes, condi-
tions, and consequences for the organization’s structure.

+ Q4 Why do you think that your organization, in its context, adopted this structure
and not some other? (ask about the supplementary properties too).

Rationale Q4: It reinforces the point of the previous question, but also provides
data to analysis regarding the Goal 2. It is also possibly expected to provide
contingencies about other structures (Goal 1).

« Q5 Do you think your organization, in its context, should choose another organiza-
tional structure? Why? (ask about the supplementary properties too).

Rationale Q5: It encourages the interviewee to talk about causes, consequences
and conditions of some other structure (Goal 1). It also provides data regarding
Goal 2.

« Q6 How do you handle the disadvantages of the adopted structure? (ask about the
supplementary properties too).

— Rationale Q6: It is expected mostly to provide the contingencies of the organi-

zation’s structure (Goal 1).

Appendix C

Examples of strong codes concrete
implications

C.1 SCo04 - Enough infra people to align with dev
teams

Code class: condition for collaborating dev & infra departments

The collaborating departments structure is centered on fostering a culture of collab-
oration. One recommendation that literature gives about promoting such collaboration
is inviting infrastructure people to the agile ceremonies (daily, review, and retrospective
meetings), so infrastructure people become aware of the project context and feel part of
the delivery.

Nonetheless, organizations should be aware that such an initiative is likely to fail if
the company has much more developers than infrastructure people. In the beginning,
infrastructure people will start to attend the agile ceremonies, but their task queues may
not decrease. Instead, ideas in these meetings may generate more workload for them. After
some time, infrastructure people think it is better to stop attending the meetings, and
things are back as before.

Suppose the company has a low ratio of infrastructure people to developers and,
even so, it wishes to try this collaborative approach. In that case, it must be aware that
some measure is necessary. For example, giving more autonomy to developers (SC14) so
infrastructure people do not become more overloaded than before.

Some supporting statements:

« "There are technically enough SRE teams to align with the same structures that the
dev teams have." (143)

« "When I joined the company, we were more like collaborating dev & infra depart-
ments. So, we [infra] were the bottleneck. We had more engineers working in dev
teams compared to the infra team. One reason to change our approach was that

109

110

APPENDIX C

people were struggling to deploy into production or to access the infra. So they
[devs] were stuck, while we [infra] were firefighting, and we hadn’t time to help
people [devs]." (148)

+ "We tried this approach [collaborating departments] for a while, and it didn’t work.
(...) The infra team was small, and it had to be in several teams at the same time."
(149)

C.2 SC28 - Compatible with existing rigid structures
(low impact on organogram) / Only a few people
needed to form a platform team

Code class: causes of API-mediated dev & infra departments

Some practitioners advocate that their organizations should adopt single departments
to eliminate hand-offs and bottlenecks. However, in a big company with a centralized pool
of infrastructure professionals, it is hard to break the hierarchy and scatter infrastructure
people across different departments. When performing such a transformation, many people
will lose their positions as bosses, which may lead to friction.

On the other hand, assembling an experimental platform team can be cheaper and
bring less resistance. The platform team can be formed as a group within operations,
possibly bringing some developers to it. It will start as a non-compulsory platform, and if
it has no success, people can more easily go back to their groups of origin. If the platform
achieves some initial success, the platform team can grow little by little, considering that
adding more services or clients to the platform does not require proportionally more infra
people within the platform team (SC38). In this way, hierarchies are affected at a slow
pace.

Some supporting statements:

+ "[In a company adopting API-mediated departments] Cross-functional teams not
adequate for the company structure having a development and an operations de-
partment (devs and ops in totally different structures)." (140)

+ "You don’t have managers willing to give up their main employees and you don’t
have the possibility to hire people. The platform team was ideal because it was how
we managed to move people within the company without generating a very big
impact to other areas to set up a platform. There are about 15 people on the platform,
it’s not enough to cross-functional." (141)

« "It is the best model [platform team] for the size of the company. I don’t have enough
people to put one [infra] person on each team. I think this allows us to have a leaner
platform team." (144)

111

C.3 | SC19 - NOT SUITABLE FOR APPLYING CORPORATE GOVERNANCE AND STANDARDS

C.3 SC19 - Not suitable for applying corporate
governance and standards

Code class: avoidance reason for single dev & infra departments

With the infrastructure staff scattered across different departments, several managers
are concerned with different teams taking different approaches to infrastructure manage-
ment. Organizations considering migrating to single departments should be aware of this
concern.

Enforcing corporate standards may require more effort in single departments when
compared to the scenario with a centralized infrastructure group. Therefore, top managers
must evaluate: if enforcing standards is really necessary, are single departments worth it?
If the organization enforces corporate standards over single departments, the company
must plan it effectively, considering the need for innovation. Having a homogeneous
infrastructure is really necessary?

The principal claim of managers to require homogeneous infrastructure is the worry
with the on-boarding time when professionals move from one team to another. Such
justification could trigger relevant discussions in practitioners’ forums: is this worry valid?
Do employees indeed switch teams so often? Moreover, do not employees frequently move
from company to company nowadays? If so, maybe professionals must be prepared to
adapt to new technology anyway. Researchers could also take this quandary and start new
research around it.

Some supporting statements:

+ "So there are advantages in standardizing things. I think isolated super-independent
teams tend to get a bit messy. [about standardization] Both infra and programming
language standardization, so things don’t get out of control, and people do not use
exotic databases... then nobody knows how to maintain it. This has certainly been a
concern." (I54)

+ "To accelerate you need a certain standard. It’s no use talking ’ah, everyone does
what they want, everyone puts in production.’ I find it difficult for a large institution,
with a reputation to uphold, to work in this way. It won’t be like that..." (I55)

« "They are afraid of being too open and start to lose control over the best practices
and care with security, availability, attacks... Those [infra] people would lose their
roots and become less connected to their area of expertise." (168)

112

APPENDIX C

C4 SCi11-
Discomfort/frustration/friction/inefficiency with
blurred responsibilities (people don’t know what
to do or what to expect from others)

Code class: consequence of collaborating dev & infra departments

The collaborating departments structure is centered on fostering a culture of collabo-
ration. The idea is that development and infrastructure professionals will collaborate to
perform operational activities.

However, sometimes problems arise because of unclear responsibilities over some
tasks. We saw cases in which a group had expectations about what the other group would
do and, in the end, such expectations were not fulfilled.

Companies wishing to foster a culture of collaboration must consider this issue. Maybe
imposing rigid rules on responsibilities can hind the collaboration. So, a possible solution
is aligning different groups with a common goal, so people become more focused on
"what can I do so we achieve the goal" than on "what is my responsibility?". Nevertheless,
even in this case, care is needed. Sometimes people may feel wronged when the goal
is not achieved and their groups did everything that was needed, especially when the
achievement of the goal is linked to some reward.

Some supporting statements:

« "A team that experimented Classical DevOps: the team split into two, a dev team and
another infra team. They ended up giving up and going back. Problem: if there is a
problem, it may not be clear who owns the problem - and this creates inefficiency.
This division hurts ‘ownership’." (I38)

« "The groups have the expectations about other groups, but the expectation is not
always fulfilled." (I51)

« "This division of responsibility is not very clear. In an ideal world, individual teams
own the entire infrastructure, teams are super independent to do whatever they
need to do, you don’t need to depend on the infra team. But there is not this super
clear division of you do this, I do that." (I154)

C.5 SC46 Decide how much devs must be exposed to
the infra internals (some places more, some
places less)

Code class: contingency for API-mediated dev & infra departments

The goal of a platform is to abstract the infrastructure so that developers can effortlessly
operate their services. So, in principle, the higher the abstraction, the better.

113

C.5 | SC46 DECIDE HOW MUCH DEVS MUST BE EXPOSED TO THE INFRA INTERNALS (SOME PLACES MORE, SOME PLACES LESS)

However, we observed at least two problems with too abstract platforms. First, devel-
opers expect too much from the platform. Sometimes the service is not running because
of a coding or configuration issue, but developers unduly contact the platform team when
they could have just read the log file and figured out the problem. The second problem is
that to increase the platform abstraction, the platform team becomes more overloaded,
sometimes adding features that could be avoided with developers writing one line of
configuration.

Therefore, an organization with a platform must carefully discuss the level of abstrac-
tion of its platform. We saw at least one case of a company in which this debate was
promoted and became highly disputed. Possibly, the organization will have to consider
the skill level of its developers and also how it foresees these developers should evolve to
become better developers; i.e., if becoming a better developer encompasses the notion of
improving operational skills, which will contribute to services reliability, or if the focus is
just "release soon".

Some supporting statements:

« "Deployment is magic, you click on a button and the application appears there. If
I click on the button and got an error, I open a ticket. But why your deploy is not
working? Do you understand how your pipeline works? Do you understand what
settings you need to apply? Here at the company, we are considering a lot how far
we want to automate and how far we want to expose people to the complexity of
infrastructure." (I52)

« "The biggest discussion around here was about to what extent devs have to under-
stand the infra. That was a really big discussion. I was one of the guys who radically
thought devs should know some minimum. But the guys who were tech leads on
my team thought differently, that devs didn’t have to know anything, didn’t even
have to know Docker." (I53)

« "I think a disadvantage would be that you don’t give the dev a vision of what’s
happening. One way we think about it is to give the dev freedom to know how we
provide for it so that it can contribute to this model" (I57)

Appendix D

Answers for the open questions of
our feedback forms

D.1 Phase 2 feedback

Question: “Especially in case of disagreement [of our proposed classification of struc-
ture], please, explain why you disagree. Would you classify it differently?”

Answers:

« Ithink the platform team also implies that the product teams are doing devops but
have no distinction of that role inside the product team. Inside the product team it’s
system and sw engineering using tools and services that abstract away complexity
provided by the platform teams where we also have systems and sw engineering...
i think the picture didn’t work for me since it implies platform only does systems
engineering and product only sw engineering.

Question: “Especially in case of disagreement [of our proposed classification of supple-
mentary property], please, explain why you disagree. ”

No answers for this question.

Question: “Would you add more DevOps organization structures [or supplementary
properties] to our model? Which Ones?”

Answers:

« We have a third pillar in the Operations/Development duo which is Observability.
A team that collects metrics and data for everything. Both the platform and the
applications and can correlate those to provide better insight in incidents.

« No.

Question: “Would you have any other thoughts or criticism regarding the proposed
model?”

Answers:

115

116

APPENDIX D

No. I agree with the proposed model.

You're missing all the "automated" operations. Systems that handle rolling deploys
and other similar "in production but under (automated) scrutiny". Those, today, are
still not properly owned/viewed. Some being provided by the platform, some defined
by the development teams and some just completely separate.

Nice job, can I share the model publicly?

I agree with the proposed model and I think specially in large companies on different
projects some times the teams/departments can work on slightly different models
from the main company model.

It’s a pretty good characterization of X and Y and Z'.

Thanks for forwarding on your theory. I guess I feel that we have historically
been mostly siloed however occasionally we fit into the more collaborative cross-
functional team as the project requires it. Additionally I would say we are naturally
evolving more towards the platform model with the deployment of aaS or self-service
platforms.

D.2 Phase 3 feedback

Question: “Would you have any thoughts on the matter?”

Answers about siloed departments:

Bureaucracy between segregated departments should be minimized. The alternatives
are how to better interact among the team and evaluate the communication/opera-
tion.

I believe that the low performance of deliveries is affected by the silos, but it’s not
the only factor.

Similarly to automated platforms, when the infra folks treat the devs as their cus-
tomers, even with the manual interactions necessary that doubtlessly increase
friction and time to resolution, the relationship is more productive as the infra team
tends to optimize for the common needs of the devs.

It may be that I didn’t understand the questions but in my experience none of these
problems are directly related to the separation of departments. In my experience,
this reduces bureaucracy, increases the autonomy and efficiency of the processes.

In my previous company, those assertions were mostly true for environments fully
managed by the ops team, on others where continuous delivery was set up, the dev
teams was autonomous enough and there were less friction.

1X, Y, and Z are big techies at which the interviewee has already worked.

D.2 | PHASE 3 FEEDBACK

I think that one of the reason the devs lack autonomy is because lack of knowledge
about infra by the devs and this cause a lack of autonomy and freedom to do things
like pipelines.

Answers about collaborating departments:

Sounds like your research overlaps with the Teams Topologies "types"
and google’s "engagement models". I'm sure you've seen these already
but just in case, here’s some links: https://web.devopstopologies.com/ and
https://cloud.google.com/blog/products/devops-sre/how-sre-teams-are-organized-
and-how-to-get-started

Collaboration breaks down when the infra team (the one providing the platform)
is understaffed and is incapable of fulfilling the needs of the dev teams. The real
true contingency for this one is to automate as much as possible on the infra land as
time goes by (usually moving towards an API-mediated situation) because, end of
the day, if the company is successful, the ratio between devs and infra team is only
going to grow.

Collaborative areas tend to reach their goals faster, as they have a better understand-
ing of the whole and a better distribution of knowledge for problem solving.

On a regular day of an infra worker and a dev worker there’s almost no time to get
together and share knowledge between these two areas. In my opinion a top-to-
bottom decision making approach is the most viable way to implement organizational
structures.

Another contingency is the constant alignment of expectations between the teams,
as it is very common for one of the teams to act on problems at the wrong time and
this creates a great friction that can affect the entire organization.

I didn’t understand the meaning of contingencies in the last question (even looking
in the dictionary).

Answers about API-mediated departments:

One of the key differentiators in my experience for API-mediated departments to
provide a good platform is whether they consider the dev teams to be their customers
the same way the dev teams consider the company customers to be their customers.
When that mindset is present, the interactions from the platform providing team
tend to be much more driven to identify the right balance between hiding complexity
and providing transparency therefore mitigating a lot of the risks/consequences you

described.

"API-mediated platform teams are a double-edged sword: on one hand, they abstract
the infrastructure from developers in user-facing teams, helping them to become
more agile as they can delegate their infrastructure needs to a third party; on the
other hand, they abstract the infrastructure from developers in user-facing teams,
alienating them from implementation details that can affect their products. As
any software engineering decision, adopting API-mediated infrastructure teams
is a decision with many trade-offs. It helps companies to increase the impact of

117

118

APPENDIX D

cloud-based infrastructure while reducing the number of people required for the
infrastructure role. Conversely, it can create silos of knowledge and a "me against
you" if the company does not provide its developers with the right amount of
infrastructure knowledge. For me, finding this equilibrium is the greatest challenge
of applying this kind of organizational pattern.”

+ Alot "depends" upon the situation so I often answered "No correlation /I don’t know".
The contingency can be dependent on the system, the team, and the organization.

Answers about single department:

« I do not necessarily attribute single departments with lack of standardization and
collaboration with dev teams. I believe you can have multiple "single dev + infra"
teams that can collaborate. In our company, we have two separate dev teams, each
with their own infrastructure engineers. But we hold biweekly "future of software
development" meetings with the heads of the dev departments to map common
infrastructures and establish best practices. Once those are established, they are
documented for future teams and usage. The idea is that over time, we will establish
all the standards and guidelines, and inform all future devs of existing initiatives
they can take advantage of and avoid duplication. This has proven to be a successful
approach so far, and I do believe it scales up, as long representatives have to join. If
the company was much larger, these could be held at less frequent paces (looking
more like a conference than a meeting), with intermediary needs for sync being
fulfilled by a head of software (Director/VP)

« Consequence of adopting a single structure: difficulty in diagnosing problems; high
recovery time in case of serious infrastructural failures.

+ Based on the link at the top of this questionnaire it seems you’re calling "single
dev/infra" both teams were infra responsibilities are shared across all team members
(no specialization) and teams were infra specialists are embedded in the team. I
personally think those are completely different models. IMO, the single team with
embedded infra professional is closer to the "Collaborating dev & infra departments”
model than to "single team". The key for single team to work (and thus for collecting
its benefits) is exactly to enable the "you built it, you run it" part, and it seems to me
the single team with specialized infra resources is closer to "devs on the team built
it, infra specialists on the team run it"

« To establish the devs and ops in a single team, maintaining standards and governance,
itis necessary to be able to keep the team stable (without many changes of employees)
and to have well-documented common processes between teams.

« This one presents the same problem as all the other embedded functions in a multi-
functional team structure: lack of tie between the experts. The most common pro-
posed contigency is guilds or whatever other name representing an informal (in the
sense of not represented by the organization structure reporting tree) gathering of
experts to define the direction that specialty will head towards. Having an expert in
a team, so long as the expert collaborates with other team members, tends to solve
the problem of developing in-house skills (to varying levels) on that team without
requiring formal training.

119

D.2 | PHASE 3 FEEDBACK

« Criticizing the format of the questions, I think they were formulated a little strangely,
perhaps as a suggestion I think the options could be (Agree, somewhat/partially
agree, neither agree nor disagree, partially disagree, disagree) it would give more
the idea of opinion and not so much true or false questions (as in a test). Second,
I found strange the way the questions were prepared, for example in the second
question ("Startup scenario [...]" is a cause of single departments) a translation would
be: "In a startup scenario (basically chaotic) is a cause of single departments" in
my opinion it doesn’t make much sense; maybe something that would make more
sense to formulate (to select alternatives that people agree or disagree with) would
be: "A startup scenario tends to use single departments" (A startup environment
leans towards single departments). Another example would be in the 6th question
("More costs: duplication of infra work among teams, high infra professionals salary,
underused infra professionals" is an avoidance reason for single departments), in
my opinion there is 1 point that tends in favor of single departments and 2 against,
in the case of "duplication of infrastructure work between teams" is a point in favor
of having a dedicated infrastructure department. The wording of the phrase " "more
costs: .." is an avoidance reason for .." also sounds a little strange to me, a translation
would be " "Higher costs: .." are reasons for evasion of single departments", perhaps
another suggestion to formulate the sentence would be "More costs: ... are common
reasons/excuses to use (a structure of) single departments" (More costs: ..., are
common reasons to apply a single department structure). About devops teams, I
have had experience in 2 companies so far, the first had a tech team of 6 people,
which naturally required much less cloud operations (and tech in general) which
ended up tending to a single department model, and the second had a dedicated infra
team from the beginning (when we were only 6 devs in total, 1 of them was infra
focused already). Both were startups. I think that most of the statements/questions
in the form can make sense when maybe there are less technical people behind the
management or because it doesn’t make much sense for the business model they
are doing/elaborating. On the other hand, any company with a greater focus on
developing digital products, I really believe that it strongly needs an infrastructure
department. Infrastructure monitoring and management alone already demands a lot
from a team and having experts on the subject helps a lot to reduce costs, have more
security, speed up / facilitate everyone’s life, stability, among many other benefits.

« As the cloud services offering get more mature it becomes leases important the
necessity to build and maintain our own dedicated infra team allowing teams to
focus on the product instead of infra with less friction.

« Currently in my organization people are discussing the "dedicated department"
existence not only on infrastructure context, but also regarding design matters.
Arguments like "hanging on to designers/ops professionals availability to move
things forward is slowing down deliveries - devs could do most of simple things
themselves" were raised. My contribution on the matter was that sharing these
resposabilities with the dev team (being it ops or design tasks) strongly depends
on culture and documentation that draw a very clear line of where devs should
stop, step back and let more seasoned professionals take the lead. In our case, we do
not have devs who are mature enough for single department strucutre (devs write

120

APPENDIX D

code AND manage ops). From this perspective, the way is still to have a dedicated
department for infrastructure, as it is today.

In my experience, platforms with Heroku end up being more expensive than using
AWS directly, but the cost benefit was well worth it for a company that doesn’t have
an application that demands a lot of infrastructure resources. The price difference
is not that big, it reduces maintenance a lot (since the service provides several)
and greatly reduces the "skill-cap". I, for example, am not a very skilled person in
infrastructure, but with a small team we were able to scale the application well using
Heroku and other connected PaaS.

I answered false in the first one because a team can depend on another one that
has a more experienced person and/or with more privileged access to the CI/CD
systems.

References

[Ada10]

[AHO09]

[And83]

[BA04]

[Bai+18]

[Ban+99]

[Bas+16]

[BBO6]

[Bey+16]

[BHJ16]

[BR20]

[Bro18]

William C. Adams. “Chapter 16: Conducting semi-structured interviews”.
In: Handbook of Practical Program Evaluation. 3rd. Jossey-Bass, 2010 (cit. on
pp- 35, 39).

John Allspaw and Paul Hammond. 10+ Deploys Per Day: Dev and Ops Cooper-
ation at Flickr. At Velocity 2009. Slides available on https://pt.slideshare.net/
jallspaw/10-deploys-per-day-dev-and-ops-cooperation-at-flickr, accessed in
Nov 2021. 2009 (cit. on p. 23).

Paul A. Anderson. “Decision Making by Objection and the Cuban Missile
Crisis”. In: Administrative Science Quarterly 28.2 (1983), pp. 201-222 (cit. on
pp. 8, 39, 83).

Kent Beck and Cynthia Andres. Extreme Programming explained: embrace
change. Addison-Wesley Professional, 2004 (cit. on pp. 12, 19).

Xiaoying Bai et al. “Continuous Delivery of Personalized Assessment and
Feedback in Agile Software Engineering Projects”. In: Proceedings of the 40th
International Conference on Software Engineering: Software Engineering Educa-
tion and Training. ICSE-SEET ’18. 2018, pp. 58—67 (cit. on p. 18).

Mousumi Banerjee et al. “Beyond kappa: A review of interrater agreement
measures”. In: Canadian Journal of Statistics 27.1 (1999), pp. 3-23 (cit. on
p. 87).

Ali Basiri et al. “Chaos Engineering”. In: IEEE Software 33.3 (2016), pp. 35-41
(cit. on p. 14).

David Budgen and Pearl Brereton. “Performing Systematic Literature Reviews
in Software Engineering”. In: Proceedings of the 28th International Conference
on Software Engineering. ICSE "06. ACM, 2006, pp. 1051-1052 (cit. on p. 3).
Betsy Beyer et al. Site Reliability Engineering: How Google runs production
systems. O’Reilly, 2016 (cit. on pp. 14, 16, 20, 52, 63).

Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. “Microservices
Architecture Enables DevOps: Migration to a Cloud-Native Architecture”. In:
IEEE Software 33.3 (2016), pp. 42-52 (cit. on pp. 14, 18, 19, 91).

Sebastian Baltes and Paul Ralph. “Sampling in software engineering research:
A critical review and guidelines”. In: arXiv preprint arXiv:2002.07764 (2020)
(cit. on p. 68).

Donovan Brown. Our DevOps journey - Microsoft’s internal transformation
story. DevOneConf 2018, https://www.youtube.com/watch?v=cbFzojQOjyA,
accessed in Jul 2018. 2018 (cit. on p. 18).

121

https://pt.slideshare.net/jallspaw/10-deploys-per-day-dev-and-ops-cooperation-at-flickr
https://pt.slideshare.net/jallspaw/10-deploys-per-day-dev-and-ops-cooperation-at-flickr
https://www.youtube.com/watch?v=cbFzojQOjyA

122

[BSK20]

[Cha08]

[Che15]

[Chri6]

[CK18]

[Con68]

[CSA15]

[Cuk13]

[Cun92]

[Dd14]

[DD16]

[Deb08]

[Deb11]

[DG94]

[DMC16]

REFERENCES

Alanna Brown, Michael Stahnke, and Nigel Kersten. 2020 State of DevOps
Report. https://www2.circleci.com/2020- state- of - devops - report. html,
accessed in Dec 2021. 2020 (cit. on p. 27).

Kathy Charmaz. “Chapter 7: Grounded Theory as an emergent method”.
In: Handbook of Emergent Methods. Ed. by Sharlene Nagy Hesse-Biber and
Patricia Leavy. The Guilford Press, 2008 (cit. on p. 31).

Lianping Chen. “Continuous delivery: Huge benefits, but challenges too”. In:
IEEE Software 32.2 (2015), pp. 50-54 (cit. on pp. 1, 19, 20).

Henrik Beerbak Christensen. “Teaching DevOps and Cloud Computing Using
a Cognitive Apprenticeship and Story-Telling Approach”. In: Proceedings of
the 2016 ACM Conference on Innovation and Technology in Computer Science
Education. ITiCSE 16. ACM, 2016, pp. 174-179 (cit. on pp. 12, 14, 18).

Daniel Cukier and Fabio Kon. “A maturity model for software startup ecosys-
tems”. In: Journal of Innovation and Entrepreneurship 7 (2018) (cit. on pp. 32,
35).

Melvin E. Conway. “How do committees invent”. In: Datamation 14.4 (1968),
pp. 28-31 (cit. on p. 22).

Gerry Gerard Claps, Richard Berntsson Svensson, and Aybiike Aurum. “On
the journey to continuous deployment: Technical and social challenges along
the way”. In: Information and Software Technology 57 (2015), pp. 21-31 (cit. on
p. 19).

Daniel Cukier. “DevOps Patterns to Scale Web Applications Using Cloud
Services”. In: Proceedings of the 2013 Companion Publication for Conference on
Systems, Programming, & Applications: Software for Humanity. SPLASH ’13.
ACM, 2013, pp. 143-152 (cit. on pp. 19, 20).

Ward Cunningham. “The WyCash Portfolio Management System”. In: Adden-
dum to the Proceedings on Object-Oriented Programming Systems, Languages,
and Applications. OOPSLA °92. ACM, 1992, pp. 29-30 (cit. on p. 90).

Dimitra Dodou and Joost C.F. de Winter. “Social desirability is the same in
offline, online, and paper surveys: A meta-analysis”. In: Computers in Human
Behavior 36 (2014), pp. 487-495 (cit. on p. 87).

Jennifer Davis and Ryn Daniels. Effective DevOps: building a culture of collab-
oration, affinity, and tooling at scale. O’Reilly Media, 2016 (cit. on pp. 2, 26,
50).

Patrick Debois. Agile Infrastructure & Operations. At Agile 2008 Toronto.
Slides available on https://docplayer.net/23874035- Agile-infrastructure-
operations.html, accessed in Nov 2021. 2008 (cit. on pp. 13, 48).

Patrick Debois. “Devops: A software revolution in the making”. In: Cutter IT
Journal 24.8 (2011), pp. 3-5 (cit. on p. 19).

D. Harold Doty and William H. Glick. “Typologies As a Unique Form Of The-
ory Building: Toward Improved Understanding and Modeling”. In: Academy
of Management Review 19.2 (1994), pp. 230-251 (cit. on pp. 29, 87).

Elisa Diel, Sabrina Marczak, and Daniela S. Cruzes. “Communication Chal-
lenges and Strategies in Distributed DevOps”. In: 11th IEEE International
Conference on Global Software Engineering (ICGSE). 2016, pp. 24-28 (cit. on

p. 19).

https://www2.circleci.com/2020-state-of-devops-report.html
https://docplayer.net/23874035-Agile-infrastructure-operations.html
https://docplayer.net/23874035-Agile-infrastructure-operations.html

REFERENCES

[Don93]

[Don99]

[DPL15]

[EAD17]

[Ebe+16]
[Eis89]

[Fay13]

[FFB13]

[FHK18]

[FT16]

[FK18]

[For+17]

[For+20]

[Fou19]

[Ful09]

[GA08]

Ann Donnellon. “Crossfunctional teams in product development: Accomodat-
ing the structure to the process”. In: Journal of Product Innovation Management
10.5 (1993), pp. 377-392 (cit. on p. 26).

Lex Donaldson. “Teoria da contingéncia estrutural”. In: Handbook de estudos
organizacionais. Atlas, 1999 (cit. on p. 22).

Andrej Dyck, Ralf Penners, and Horst Lichter. “Towards Definitions for Re-
lease Engineering and DevOps”. In: 2015 IEEE/ACM 3rd International Workshop
on Release Engineering. 2015, pp. 3-3 (cit. on p. 15).

Floris Erich, Chintan Amrit, and Maya Daneva. “A qualitative study of DevOps
usage in practice”. In: Journal of Software: Evolution and Process 29.6 (2017)
(cit. on p. 27).

Christof Ebert et al. “DevOps”. In: IEEE Software 33.3 (2016), pp. 94-100 (cit. on
pp. 18, 91).

Kathleen Eisenhardt. “Building Theories from Case Study Research”. In:
Academy of Management Review 14.4 (1989), pp. 532-550 (cit. on p. 83).
Henri Fayol. General and industrial management. Reprint of 1949 Edition;
originally published in French in 1916. Martino Fine Books, 2013 (cit. on
p- 23).

Dror G. Feitelson, Eitan Frachtenberg, and Kent L. Beck. “Development and
deployment at Facebook”. In: IEEE Internet Computing 17.4 (2013), pp. 8-17
(cit. on p. 19).

Nicole Forsgren, Jez Humble, and Gene Kim. “Chapter 2: Measuring Perfor-
mance”. In: Accelerate: The science of lean software and DevOps: Building and
scaling high performing technology organizations. I'T Revolution Press, 2018
(cit. on pp. 21, 25, 87).

Breno B. Nicolau de Franca, Helvio Jeronimo Junior, and Guilherme Horta
Travassos. “Characterizing DevOps by Hearing Multiple Voices”. In: Proceed-
ings of the 30th Brazilian Symposium on Software Engineering. SBES *16. ACM,
2016, pp. 53-62 (cit. on pp. 8, 31).

Nicole Forsgren and Mik Kersten. “DevOps Metrics”. In: Communications of
the ACM 61.4 (2018), pp. 44-48 (cit. on p. 18).

Nicole Forsgren et al. 2017 State of DevOps Report. https://puppet.com/
resources/whitepaper/2017-state-of-devops-report, accessed in Dec 2020.
2017 (cit. on p. 87).

Nicole Forsgren et al. “A Taxonomy of Software Delivery Performance Profiles:
Investigating the Effects of DevOps Practices”. In: Proceedings of The Americas
Conference on Information Systems 2020. AMCIS 2020. AIS, 2020, pp. 1-6
(cit. on pp. 20, 27, 87).

ITIL Foundation. ITIL 4" edition, Glossary. https:// purplegriffon . com /
downloads/resources/itil4-foundation-glossary-january-2019.pdf, accessed
in Nov 2021. 2019 (cit. on p. 16).

Jeffrey Fulmer. “What in the world is infrastructure”. In: PEI Infrastructure
Investor 1.4 (2009), pp. 30-32 (cit. on p. 16).

Svetla Georgieva and George Allan. “Best Practices in Project Management
Through a Grounded Theory Lens”. In: The Electronic Journal of Business
Research Methods 6.1 (2008), pp. 43-52 (cit. on p. 36).

123

https://puppet.com/resources/whitepaper/2017-state-of-devops-report
https://puppet.com/resources/whitepaper/2017-state-of-devops-report
https://purplegriffon.com/downloads/resources/itil4-foundation-glossary-january-2019.pdf
https://purplegriffon.com/downloads/resources/itil4-foundation-glossary-january-2019.pdf

124

[Galog]

[GC14]

[Gla02]

[Gla05]
[Gla78]
[Gra06]
[Gre06]

[GS99]

[Gub81]

[Gue91]
[Hal84]

[HamO7]

[HCM17]

[Her09]

[HF10]

[HM11]

[HN17]

REFERENCES

Jay R. Galbraith. “Chapter 18: Organization Design”. In: Handbook of Orga-
nization Development. Ed. by Thomas G. Cummins. Sage Publications, 2008,
pp- 325-352 (cit. on p. 23).

Eliyahu M. Goldratt and Jeff Cox. The Goal: A Process of Ongoing Improvement.
30th anniversary edition. North River Press, 2014 (cit. on pp. 22, 36, 48).
Barney G. Glaser. “Conceptualization: On Theory and Theorizing Using
Grounded Theory”. In: International Journal of Qualitative Methods 1.2 (2002),
pp. 23-38 (cit. on p. 78).

Barney Glaser. The grounded theory perspective III: Theoretical coding. pp. 70.
The Sociology Press, 2005 (cit. on p. 40).

Barney Glaser. Theoretical sensitivity: Advances in the methodology of Grounded
Theory. The Sociology Press, 1978 (cit. on pp. 40, 77).

Jim Gray. “A conversation with Werner Vogels”. In: ACM Queue 4.4 (2006),
pp. 14-22 (cit. on pp. 2, 18, 19, 23, 53).

Shirley Gregor. “The nature of theory in information systems”. In: MIS quar-
terly (2006), pp. 611-642 (cit. on pp. 4, 29, 30, 40).

Barney Glaser and Anselm Strauss. The discovery of grounded theory: strategies
for qualitative research. Originally published in 1967. Aldine Transaction, 1999
(cit. on pp. 4, 27, 29-32, 39, 41, 42, 44, 45, 68, 69, 73, 83, 87).

Egon G. Guba. “Criteria for assessing the trustworthiness of naturalistic
inquiries”. In: Educational Technology Research and Development (ECTJ) 29
(1981), pp. 75-91 (cit. on pp. 39, 46, 83, 84).

David Guest. The hunt is on for the Renaissance Man of computing. The Inde-
pendent (London). Sept. 1991 (cit. on p. 19).

Richard H. Hall. Organizagoes, estruturas e processo. Prentice-Hall, 1984 (cit. on
p. 22).

James Hamilton. “On Designing and Deploying Internet-Scale Services”. In:
Proceedings of the 21st Large Installation System Administration Conference.
LISA °07. USENIX, 2007, pp. 231-242 (cit. on p. 19).

Wagar Hussain, Tony Clear, and Stephen MacDonell. “Emerging Trends for
Global DevOps: A New Zealand Perspective”. In: Proceedings of the 12th
International Conference on Global Software Engineering. ICGSE ’17. IEEE
Press, 2017, pp. 21-30 (cit. on pp. 15, 19).

Cheri Ann Hernandez. “Theoretical coding in Grounded Theory methodol-
ogy”. In: Grounded Theory Review 8.3 (2009) (cit. on p. 40).

Jez Humble and David Farley. Continuous Delivery: Reliable Software Releases
through Build, Test, and Deployment Automation. Addison-Wesley Professional,
2010 (cit. on pp. 12, 13).

Jez Humble and Joanne Molesky. “Why enterprises must adopt DevOps to
enable continuous delivery”. In: Cutter IT Journal 24.8 (2011), pp. 6—12 (cit. on
pp. 1, 8, 15, 18, 20, 61, 63).

Rashina Hoda and James Noble. “Becoming Agile: A Grounded Theory of
Agile Transitions in Practice”. In: 2017 IEEE/ACM 39th International Conference
on Software Engineering. ICSE °17. 2017, pp. 141-151 (cit. on pp. 31, 35).

REFERENCES

[HNM11]

[Hod21]

[HRO6]

[HS05]

[Hum10]

[Hum12]

[Jaa18]

[Jes92]

[Jos+15]

[Jov+17]

[KBS18]

[KC07]

[KC12]

[Kim+16]

[KK03]

Rashina Hoda, James Noble, and Stuart Marshall. “The impact of inadequate
customer collaboration on self-organizing agile teams”. In: Information and
software technology 53.5 (2011), pp. 521-534 (cit. on pp. 40, 70, 77).

Rashina Hoda. “Socio-Technical Grounded Theory for Software Engineering”.
In: IEEE Transactions on Software Engineering (2021). Early access, pp. 1-1
(cit. on pp. 31, 32).

James Herbsleb and Jeff Roberts. “Collaboration In Software Engineering
Projects: A Theory Of Coordination”. In: International Conference on Informa-
tion Systems 2006 Proceedings. ICIS 2006. 2006, pp. 553-568 (cit. on p. 26).
Hsiu-Fang Hsieh and Sarah E. Shannon. “Three approaches to qualitative
content analysis”. In: Qualitative health research 15.9 (2005), pp. 1277-1288
(cit. on p. 39).

Jez Humble. Continuous Delivery vs Continuous Deployment. https : / /
continuousdelivery.com/2010/ 08/ continuous - delivery - vs - continuous -
deployment/, accessed in Aug 2019. 2010 (cit. on p. 14).

Jez Humble. There’s No Such Thing as a “Devops Team” https : / /
continuousdelivery.com/2012/10/theres-no-such-thing-as-a-devops-team,
accessed in Aug 2018. 2012 (cit. on pp. 20, 50, 52).

Martin Gilje Jaatun. “Software Security Activities that Support Incident Man-
agement in Secure DevOps”. In: Proceedings of the 13th International Confer-
ence on Availability, Reliability and Security. ARES 2018. ACM, 2018, 8:1-8:6
(cit. on p. 18).

Bob Jessop. “Chapter 3: Fordism and post-Fordism: a critical reformulation”.
In: Pathways to industrialization and regional development. Routledge, 1992,
pp- 54-74 (cit. on p. 22).

Ankur Joshi et al. “Likert scale: Explored and explained”. In: British journal of
applied science & technology 7.4 (2015), pp. 396-403 (cit. on pp. 60, 79).
Milo$ Jovanovi¢ et al. “Transition of organizational roles in Agile transfor-
mation process: A Grounded Theory approach”. In: Journal of Systems and
Software 133 (2017), pp. 174-194 (cit. on pp. 31, 40, 83).

Gene Kim, Kevin Behr, and George Spafford. The Phoenix Project: A Novel
about IT, DevOps, and Helping Your Business Win. 3rd ed. IT Revolution Press,
2018 (cit. on pp. 15, 36, 48).

Barbara Kitchenham and Stuart Charters. Guidelines for performing System-
atic Literature Reviews in Software Engineering. Tech. rep. Keele Universit,
University of Durham, 2007 (cit. on p. 3).

John P. Kotter and Dan S. Cohen. The heart of change: real-life stories of how
people change their organizations. Harvard Business Review Press, 2012 (cit. on
pp- 24, 25).

Gene Kim et al. “Chapter 7: How to design our organization and architecture
with Conway’s law in mind”. In: The DevOps handbook: How to create world-
class agility, reliability, and security in technology organizations. IT Revolution
Press, 2016 (cit. on pp. 26, 61-63).

Per Kroll and Philippe Kruchten. The Rational Unified Process made easy: a
practitioner’s guide to the RUP. Addison-Wesley Professional, 2003 (cit. on

p- 12).

125

https://continuousdelivery.com/2010/08/continuous-delivery-vs-continuous-deployment/
https://continuousdelivery.com/2010/08/continuous-delivery-vs-continuous-deployment/
https://continuousdelivery.com/2010/08/continuous-delivery-vs-continuous-deployment/
https://continuousdelivery.com/2012/10/theres-no-such-thing-as-a-devops-team
https://continuousdelivery.com/2012/10/theres-no-such-thing-as-a-devops-team

126

[Kni14]

[Knu74]

[Lei+13]

[Lei+19]

[Lei+20a]

[Lei+20b]

[Lei+21]

[Lew45]

[LKM20]

[Lop+21]

[LPB19]

[Luni2]

[Man+19]
[Mar20]

[MB20]

[MBK18]

REFERENCES

Henrik Kniberg. Spotify engineering culture (part 1). https://labs.spotify.com/
2014/03/27/spotify-engineering-culture-part-1, accessed in Aug 2019. 2014
(cit. on pp. 19, 52, 53).

Donald E. Knuth. “Computer programming as an art”. In: Communications of
the ACM 17.12 (1974), pp. 667-673 (cit. on p. 90).

Leonardo Leite et al. “A systematic literature review of service choreogra-
phy adaptation”. In: Service Oriented Computing and Applications 7.3 (2013),
pp. 199-216 (cit. on p. 3).

Leonardo Leite et al. “A Survey of DevOps Concepts and Challenges”. In:
ACM Computing Surveys 52.6 (2019), 127:1-127:35 (cit. on pp. 3, 5, 11, 15, 32,
35, 36, 50, 81).

Lenardo Leite et al. “Platform Teams: An Organizational Structure for Con-
tinuous Delivery”. In: IEEE/ACM 42nd International Conference on Software
Engineering Workshops. ICSEW’20. 2020, pp. 505-511 (cit. on p. 6).

Leonardo Leite et al. “Building a Theory of Software Teams Organization in a
Continuous Delivery Context”. In: 42nd International Conference on Software
Engineering Companion. ICSE "20 Companion. 2020, pp. 294-295 (cit. on p. 6).
Leonardo Leite et al. “The organization of software teams in the quest for
continuous delivery: A Grounded Theory approach”. In: Information and
Software Technology 139 (2021), p. 106672 (cit. on pp. 7, 46, 70).

Kurt Lewin. “The Research Center for Group Dynamics at Massachusetts
Institute of Technology”. In: Sociometry 8.2 (1945), pp. 126—136 (cit. on p. 30).
Leonardo Leite, Fabio Kon, and Paulo Meirelles. “Understanding context and
forces for choosing organizational structures for continuous delivery”. In: 10th
CBSoft’s Workshop on Theses and Dissertations. WTDSoft 2020. 2020 (cit. on
p. 7).

Daniel Lopez-Fernandez et al. “DevOps Team Structures: Characterization
and Implications”. In: IEEE Transactions on Software Engineering (2021) (cit. on
pp. 2,8, 26, 27, 31, 64, 83).

Welder Pinheiro Luz, Gustavo Pinto, and Rodrigo Bonifacio. “Adopting De-
vOps in the real world: A theory, a model, and a case study”. In: Journal of
Systems and Software 157 (2019), p. 110384 (cit. on pp. 31, 50).

Fred C. Lunenburg. “Organizational structure: Mintzberg’s framework”. In:
International journal of scholarly, academic, intellectual diversity 14.1 (2012)
(cit. on p. 24).

Andi Mann et al. 2019 State of DevOps Report. https://www2.circleci.com/2019-
state-of-devops-report.html, accessed in Mar 2022. 2019 (cit. on p. 92).

Karl Marx. “Preface”. In: A contribution to the critique of political economy.
Originally published in German in 1859. Lector House, 2020 (cit. on p. 25).
Ruth W. Macarthy and Julian M. Bass. “An Empirical Taxonomy of DevOps
in Practice”. In: 2020 46th Euromicro Conference on Software Engineering and
Advanced Applications (SEAA). 2020, pp. 221-228 (cit. on pp. 2, 26, 31).

Andi Mann, Michael Stahnke Alanna Brown, and Nigel Kersten. 2018 State
of DevOps Report. https://puppet.com/resources/whitepaper/2018-state-of-
devops-report, accessed in Jul 2019. 2018 (cit. on pp. 26, 61-63).

https://labs.spotify.com/2014/03/27/spotify-engineering-culture-part-1
https://labs.spotify.com/2014/03/27/spotify-engineering-culture-part-1
https://www2.circleci.com/2019-state-of-devops-report.html
https://www2.circleci.com/2019-state-of-devops-report.html
https://puppet.com/resources/whitepaper/2018-state-of-devops-report
https://puppet.com/resources/whitepaper/2018-state-of-devops-report

REFERENCES

[McK82]

[Mel15]

[MH13]

[Mor11]

[Mor16]
[MR04]
[MS93]

[NMB08]

[NSP16]

[OAB12]

[Ohn388]

[Oli12]

[Pat14]
[Pen+18]

[Pfl14]

[Pin&6]

Bill McKelvey. Organizational systematics - taxonomy, evolution, classification.
University of California Press, 1982 (cit. on p. 29).

Claudia Melo. “Productivity of agile teams: an empirical evaluation of factors
and monitoring processes”. PhD thesis. University of Sao Paulo, 2015 (cit. on
p- 84).

Matthew Miles and Micahel Huberman. “Chapter 2: Focusing and Bounding
the Collection of Data - the Substantive Start”. In: Qualitative Data Analysis:
A Methods Sourcebook. 3rd. Sage Publications, 2013 (cit. on p. 37).

Gareth Morgan. “Reflections on Images of Organization and Its Implications
for Organization and Environment”. In: Organization & Environment 24.4
(2011), pp. 459-478 (cit. on p. 24).

Kief Morris. Infrastructure as Code: Managing Servers in the Cloud. O’Reilly
Media, 2016 (cit. on p. 56).

Mary Lynn Manns and Linda Rising. Fearless Change: Patterns for Introducing
New Ideas. Addison Wesley, 2004 (cit. on pp. 24, 25).

James March and Herbert Simon. Organizations. 2nd. Wiley Blackwell, 1993
(cit. on p. 25).

Nachiappan Nagappan, Brendan Murphy, and Victor Basili. “The influence
of organizational structure on software quality”. In: 2008 ACM/IEEE 30th
International Conference on Software Engineering. 2008, pp. 521-530 (cit. on
p- 26).

Kristian Nybom, Jens Smeds, and Ivan Porres. “On the Impact of Mixing
Responsibilities Between Devs and Ops”. In: International Conference on Ag-
ile Software Development. XP 2016. Springer International Publishing, 2016,
pp. 131-143 (cit. on pp. 1, 2, 18-20, 26, 58, 61-63).

Helena H. Olsson, Hiva Alahyari, and Jan Bosch. “Climbing the "Stairway
to Heaven" — A Mulitiple-Case Study Exploring Barriers in the Transition
from Agile Development towards Continuous Deployment of Software”. In:
38th Euromicro Conference on Software Engineering and Advanced Applications.
2012, pp. 392-399 (cit. on p. 91).

Taiichi Ohno. Toyota Production System: Beyond Large-Scale Production. Origi-
nally published in Japanese in 1978. Productivity Press, 1988 (cit. on p. 23).
Nelio Oliveira. “Chapter 2: Organizational structure, format, shape design
and architecture”. In: Automated organizations: Development and structure of
the modern business firm. Physica-Verlag HD, 2012 (cit. on pp. 2, 22).
Michael Quinn Patton. Qualitative research & evaluation methods: Integrating
theory and practice. Sage publications, 2014 (cit. on p. 68).

Birgit Penzenstadler et al. “Software Engineering for Sustainability: Find the
Leverage Points!” In: IEEE Software 35.4 (2018), pp. 22-33 (cit. on p. 24).
Niels Pflaeging. Organize for complexity: how to get life back into work to build
the high-performance organization. 5th. Betacodex Publishing, 2014 (cit. on
pp- 25, 26).

Lawrence T. Pinfield. “A Field Evaluation of Perspectives on Organizational
Decision Making”. In: Administrative Science Quarterly 31.3 (1986), pp. 365-388
(cit. on pp. 8, 39, 83).

127

128

[PP06]

[Pre05]
[Rad09]

[Ral19]

[Roc13]
[Rot09]

[Rou15]

[Sabo6]

[Sal+21]

[Sal15]

[San+16]

[SB20]

[SBOS]

[SBZ16]

[Sch+16a]

REFERENCES

Mary Poppendieck and Tom Poppendieck. Implementing Lean Software De-
velopment: From Concept to Cash. Addison-Wesley Professional, 2006 (cit. on
p. 24).

Roger S. Pressman. Software engineering: a practitioner’s approach. 6th. Pal-
grave Macmillan, 2005 (cit. on p. 12).

Hans Radder. “The philosophy of scientific experimentation: a review”. In:
Automated Experimentation 1.1 (2009) (cit. on p. 30).

Paul Ralph. “Toward Methodological Guidelines for Process Theories and
Taxonomies in Software Engineering”. In: IEEE Transactions on Software En-
gineering 45.7 (2019), pp. 712-735 (cit. on pp. 26, 27, 29, 31, 39, 46, 59, 77, 83,
87, 88).

James Roche. “Adopting DevOps Practices in Quality Assurance”. In: Com-
munications of the ACM 56.11 (2013), pp. 38—43 (cit. on p. 14).

Mike Rother. Toyota kata: managing people for improvement, adaptiveness and
superior results. McGraw-Hill, 2009 (cit. on pp. 24, 88).

Margaret Rouse. What is NoOps? — Definition from Whatls.com. https://
searchcloudapplications.techtarget.com/definition/noops, accessed in Mar
2022. 2015 (cit. on p. 20).

Karl Sabbagh. 21st Century Jet — Building the Boeing 777 [Film]. Skyscraper
Productions. 1996 (cit. on p. 23).

Marc Sallin et al. “Measuring Software Delivery Performance Using the Four
Key Metrics of DevOps”. In: Agile processes in software engineering and Extreme
Programming. Ed. by Peggy Gregory et al. Springer International Publishing,
2021, pp. 103-119 (cit. on p. 21).

Johnny Saldana. The coding manual for qualitative researchers. Sage, 2015
(cit. on p. 40).

Ronnie Santos et al. “Building a Theory of Job Rotation in Software Engineer-
ing from an Instrumental Case Study”. In: 2016 IEEE/ACM 38th International
Conference on Software Engineering. ICSE *16. 2016, pp. 971-981 (cit. on pp. 31,
44).

Mojtaba Shahin and M. Ali Babar. “On the Role of Software Architecture in
DevOps Transformation: An Industrial Case Study”. In: Proceedings of the
International Conference on Software and System Processes. ICSSP °20. ACM,
2020, pp. 175-184 (cit. on pp. 52, 63, 64, 83).

Carolyn B. Seaman and Victor R. Basili. “Communication and organization:
an empirical study of discussion in inspection meetings”. In: IEEE Transactions
on Software Engineering 24.7 (1998), pp. 559-572 (cit. on p. 26).

Mojtaba Shahin, Muhammad Ali Babar, and Liming Zhu. “The Intersection
of Continuous Deployment and Architecting Process: Practitioners’ Perspec-
tives”. In: Proceedings of the 10th ACM/IEEE International Symposium on Empir-
ical Software Engineering and Measurement. ESEM °16. ACM, 2016, 44:1-44:10
(cit. on pp. 14, 19).

Gerald Schermann et al. “An empirical study on principles and practices
of continuous delivery and deployment”. In: Peer PrePrints 4 (2016), e1889
(cit. on p. 1).

https://searchcloudapplications.techtarget.com/definition/noops
https://searchcloudapplications.techtarget.com/definition/noops

REFERENCES

[Sch+16b]

[Sch98]

[Sen+99]

[SER04]

[SF18]

[SF95]

[Sha+17]

[Sha+19]

[Sin20]

[Sig+18]

[Sir+11]

[Smil4]
[Som11]
[SP13]

[SP19]

[SRF16]

Gerald Schermann et al. “Towards quality gates in continuous delivery and de-
ployment”. In: 24th IEEE International Conference on Program Comprehension.
ICPC. 2016, pp. 1-4 (cit. on p. 1).

Thomas Schwandt. “Chapter 7: Constructivist, interpretivist approaches to
human inquiry”. In: The landscape of qualitative research: theories and issues.
Sage publications, 1998 (cit. on p. 31).

Peter Senge et al. The dance of change: The challenges to sustaining momentum
in learning organizations. Broadway Business, 1999 (cit. on pp. 24, 25).
Manuel E. Sosa, Steven D. Eppinger, and Craig M. Rowles. “The Misalignment
of Product Architecture and Organizational Structure in Complex Product
Development”. In: Management Science 50.12 (2004) (cit. on p. 24).

Klaas-Jan Stol and Brian Fitzgerald. “The ABC of Software Engineering Re-
search”. In: ACM Transactions on Software Engineering and Methodology 27.3
(2018) (cit. on p. 29).

James Stoner and R. Edward Freedman. Administracao. Prentice-Hall, 1995
(cit. on p. 22).

Mojtaba Shahin et al. “Adopting Continuous Delivery and Deployment: Im-
pacts on Team Structures, Collaboration and Responsibilities”. In: Proceedings
of the 21st International Conference on Evaluation and Assessment in Software
Engineering. EASE’17. ACM, 2017, pp. 384-393 (cit. on pp. 2, 26, 27, 61, 63-65).
Mojtaba Shahin et al. “An empirical study of architecting for continuous deliv-
ery and deployment”. In: Empirical Software Engineering 24 (2019), pp. 1061-
1108 (cit. on pp. 21, 27, 46).

Toby Sinclair. 12 Organisational Design Principles that Embrace Complexity.
Available on https://www.tobysinclair.com/post/organisational - design-
principles-that-embrace-complexity, accessed in Mar 2021. 2020 (cit. on
p. 24).

Rodrigo Siqueira et al. “Continuous Delivery: Building Trust in a Large-Scale,
Complex Government Organization”. In: IEEE Software 35.2 (2018), pp. 38-43
(cit. on pp. 20, 32).

David G. Sirmon et al. “Resource orchestration to create competitive advan-
tage: Breadth, depth, and life cycle effects”. In: Journal of management 37.5
(2011), pp. 1390-1412 (cit. on pp. 8, 39, 83).

Adam Smith. “Chapter 1: Of the division of labour”. In: The Wealth of Nations.
Originally published in 1776. Createspace, 2014 (cit. on pp. 22, 92).

Ian Sommerville. Software engineering. 9th. Addison-Wesley, 2011 (cit. on
p- 12).

Matthew Skelton and Manuel Pais. DevOps Topologies. https : / / web .
devopstopologies.com/, accessed in Nov 2021. 2013 (cit. on pp. 20, 26, 61-63).
Matthew Skelton and Manuel Pais. Team Topologies: Organizing business and
technology teams for fast flow. IT Revolution Press, 2019 (cit. on pp. 26, 27, 61,
63).

Klaas-Jan Stol, Paul Ralph, and Brian Fitzgerald. “Grounded Theory in Soft-
ware Engineering Research: A Critical Review and Guidelines”. In: 2016
IEEE/ACM 38th International Conference on Software Engineering. ICSE ’16.
2016, pp. 120-131 (cit. on pp. 31, 41, 43).

129

https://www.tobysinclair.com/post/organisational-design-principles-that-embrace-complexity
https://www.tobysinclair.com/post/organisational-design-principles-that-embrace-complexity
https://web.devopstopologies.com/
https://web.devopstopologies.com/

130

[Ste+16]

[Str19]

[Vel+14]

[VIa55]

[vv13]

[WAL15a]

[WAL15b]

[Wat14]

[Wen+20]

[Win14]

[WNA15]

[Woo016]
[YH938]
[Yin09]

[YK16]

REFERENCES

Igor Steinmacher et al. “Overcoming Open Source Project Entry Barriers with
a Portal for Newcomers”. In: Proceedings of the 38th International Conference
on Software Engineering. ICSE "16. ACM, 2016, pp. 273-284 (cit. on p. 39).
Per Erik Strandberg. “Ethical Interviews in Software Engineering”. In: Inter-
national Symposium on Empirical Software Engineering and Measurement 2019.
ESEM ’19. 2019 (cit. on pp. 43, 44, 87).

Nicole Forsgren Velasquez et al. 2014 State of DevOps Report. https://puppet.
com/resources/whitepaper/2014-state-devops-report, accessed in Aug 2019.
2014 (cit. on pp. 20, 21, 52).

Gregory Vlastos. “On Heraclitus”. In: The American Journal of Philology 76.4
(1955), pp. 337-368 (cit. on p. 87).

Guus van Waardenburg and Hans van Vliet. “When agile meets the enterprise”.
In: Information and Software Technology 55.12 (2013), pp. 2154-2171 (cit. on
pp. 40, 70).

Johannes Wettinger, Vasilios Andrikopoulos, and Frank Leymann. “Auto-
mated Capturing and Systematic Usage of DevOps Knowledge for Cloud
Applications”. In: 2015 IEEE International Conference on Cloud Engineering.
IEEE, 2015, pp. 60-65 (cit. on p. 14).

Johannes Wettinger, Vasilios Andrikopoulos, and Frank Leymann. “Enabling
DevOps Collaboration and Continuous Delivery Using Diverse Application
Environments”. In: On the Move to Meaningful Internet Systems. OTM 2015
Conferences. Springer International Publishing, 2015, pp. 348-358 (cit. on
p. 14).

Michael Grant Waterman. “Reconciling agility and architecture: a theory of
agile architecture”. PhD thesis. Victoria University of Wellington, 2014 (cit. on
pp- 83, 84).

Melissa Wen et al. “Leading successful government-academia collaborations
using FLOSS and agile values”. In: Journal of Systems and Software 164 (2020),
p. 110548 (cit. on p. 32).

Frederick Taylor Winslow. The Principles of Scientific Management. Reprint of
1911 Edition. Martino Fine Books, 2014 (cit. on p. 22).

Michael Waterman, James Noble, and George Allan. “How Much Up-front?:
A Grounded Theory of Agile Architecture”. In: 2015 IEEE/ACM 37th IEEE
International Conference on Software Engineering. ICSE ’15. 2015, pp. 347-357
(cit. on pp. 31, 70).

Eoin Woods. “Operational: The Forgotten Architectural View”. In: IEEE Soft-
ware 33.3 (2016), pp. 20—23 (cit. on pp. 13, 16, 17).

Dale E. Yeatts and Cloyd Hyten. High-Performing Self-Managed Work Teams:
A Comparison of Theory to Practice. Sage Publications, 1998 (cit. on pp. 22, 23).
Robert K. Yin. Case Study Research, Design and Methods. 4th. Sage Publications,
2009 (cit. on pp. 7, 39, 41, 46, 83, 86, 88).

Hasan Yasar and Kiriakos Kontostathis. “Where to Integrate Security Practices
on DevOps Platform”. In: International Journal of Secure Software Engineering
(IFSSE) 7.4 (2016), pp. 39-50 (cit. on p. 14).

https://puppet.com/resources/whitepaper/2014-state-devops-report
https://puppet.com/resources/whitepaper/2014-state-devops-report

	Introduction
	Problem outline
	Research questions
	Research phases
	Produced articles
	Contributions
	Thesis structure

	Background
	DevOps
	History
	Definitions
	Challenges

	Delivery performance
	The structures of organizations
	Related work

	Research design
	Theories and taxonomies
	Grounded Theory
	Overview of the steps in our research process
	Brainstorming sessions
	Conducting the interviews of Phase 2
	Analyzing the interviews of Phase 2
	Review process of Phase 2
	Conducting the interviews of Phase 3
	Resonance analysis
	6C analysis
	Review process of Phase 3
	Our approach to the related literature

	A taxonomy for describing organizational structures
	Sample
	Saturation
	The taxonomy of organizational structures
	Siloed departments
	Classical DevOps
	Cross-functional teams
	Platform teams
	Shared supplementary properties
	Transitioning
	Summary

	Member check
	Comparison to other taxonomies

	A theory for explaining organizational structures
	Sample
	Saturation
	Results on refining the structures
	Results on explaining the structures
	Covariance analysis

	Member check
	Discussion

	Quality criteria and limitations
	Quality criteria
	Supplementary material
	Generalizability
	Limitations and threats to validity

	Conclusion
	Implications
	Future work
	Final words

	Interview protocol for Phase 2
	Purpose of the interviews
	Inputs for this protocol
	Method
	Target population
	Guidelines and tips
	Interview script

	Interview questions for Phase 3
	Research goals
	Semi-structured script (for previously visited organizations)
	Semi-structured script (for new organizations)

	Examples of strong codes concrete implications
	SC04 - Enough infra people to align with dev teams
	SC28 - Compatible with existing rigid structures (low impact on organogram) / Only a few people needed to form a platform team
	SC19 - Not suitable for applying corporate governance and standards
	SC11 - Discomfort/frustration/friction/inefficiency with blurred responsibilities (people don’t know what to do or what to expect from others)
	SC46 Decide how much devs must be exposed to the infra internals (some places more, some places less)

	Answers for the open questions of our feedback forms
	Phase 2 feedback
	Phase 3 feedback

	References

