Visual analytics for machine learning

Computing and leveraging decision
boundary maps

Francisco Caio Maia Rodrigues

THESIS PRESENTED TO THE
INSTITUTE OF MATHEMATICS AND STATISTICS
OF THE UNIVERSITY OF SA0 PAuLO
IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS
FOR THE DEGREE OF
DoOCTOR OF SCIENCE

Program: Computer Science
Advisor: Prof. Dr. Roberto Hirata Jr.
Coadvisor: Prof. Dr. A. C. Telea

During this work, the author was supported by CAPES

Sao Paulo
November 9th, 2020

Visual analytics for machine learning

Computing and leveraging decision
boundary maps

Francisco Caio Maia Rodrigues

This version of the thesis includes the
corrections and modifications suggested
by the Examining Committee during the

defense of the original version of the work,
which took place on November 9th, 2020.

A copy of the original version is available
at the Institute of Mathematics and

Statistics of the University of Sdo Paulo.

Examining Committee:
« Prof. Dr. Roberto Hirata Jr. (advisor) - IME-USP
« Prof. Dr. Alexandru C. Telea (co-advisor) - BI-RUG
« Prof. Dr. Alexandre Falcio - IC-UNICAMP
« Prof. Dr. Michael Biehl — BI-RUG
Prof. Dr. Roberto Marcondes Cesar Junior — IME-USP

Autorizo a reproducéo e divulgagdo total ou parcial deste trabalho, por
qualquer meio convencional ou eletronico, para fins de estudo e pesquisa,

desde que citada a fonte.

Agradecimentos

Eu gostaria de agradecer aos meus orientadores, Prof. Dr. Roberto Hirata Jr. e Prof. Dr.

Alexandru Telea, pelos ensinamentos durante todo o curso de doutorado.

Também gostaria de agradecer aos membros da banca, por terem aceitado a ingrata
tarefa de revisao da presente tese (trés vezes!). Sinceramente espero que possam ter tirado

algum proveito desse processo.

Agradeco também aos meus amigos e colegas com quem convivi durante o curso,
tanto no Brasil como na Holanda, pelas discussdes estimulantes que tivemos e por terem

aguentado minha companhia.

Sou grato também pelo apoio incondicional que recebi da minha familia durante esses

quase cinco anos de doutorado.

Por fim, agradeco a Amanda, por estar sempre ao meu lado (mesmo que as vezes ha

milhares de quilometros de distancia) e me apoiando quando mais preciso.

O presente trabalho foi realizado com apoio da Coordenagio de Aperfeicoamento de
Pessoal de Nivel Superior - Brasil (CAPES) - Codigo de Financiamento 001. Portanto, deixo

aqui meu agradecimento a CAPES.

Resumo

Francisco Caio Maia Rodrigues. Visual analytics para aprendizado de maquina:
Computando e analisando mapas de fronteiras de decisdo. Tese (Doutorado). Ins-

tituto de Matematica e Estatistica, Universidade de Sao Paulo, Sao Paulo, 2020.

Modelos de aprendizado de maquina chamados classificadores constroem fronteiras de decisdo que
particionam um certo espago de dados em um conjunto de regides, associando-as a um rétulo. Entender a
estrutura e forma de tais fronteiras de decisdo pode ser de grande ajuda no uso pratico de tais classificadores,
respondendo, por exemplo, questdes sobre como espera-se que certo modelo se comporte em uma regido
vazia do espago. Além disso, tal entendimento pode ajudar a dar ideias que levem a melhoria do treino de
um certo modelo, por exemplo através da indicacdo de onde mais dados de treino poderiam ser coletados.
Nessa tese, propomos e exploramos métodos de visualizagio para a criacdo e o uso de modelos visuais das

fronteiras de decisdo inferidas por classificaores de aprendizado de maquina.

Atualmente, métodos utilizados para visualizar o comportamento de um classificador treinado em um
certo conjunto de dados fazem uso scatterplot, colorindo os pontos de acordo com a classe atribuida pelo
modelo. Nesta tese, propomos uma técnica baseada em imagens para aprimorar tais visualizacdes. Nosso
método amostra o espago 2D de uma projecio, codificando nas cores dos pixels aspectos relevantes de um
classificador treinado, como a maioria dos rétulos naquela regido, o grau de confuséo e a densidade de amos-
tras, criando uma imagem densa das fronteiras inferidas em espagos de alta dimensdo. O método proposto
é simples de implementar, funciona para qualquer classificador e possui apenas dois parametros intuitivos.
Demonstramos o uso da técnica proposta em diferentes datasets de alta dimensionalidade, classificadores,
projecdes diretas e inversas. No nosso conhecimento, nosso trabalho é o primeiro capaz de criar tais visu-
alizacdes explicitas das fronteiras de classificadores, para qualquer dataset e classificador, sem necessidade

do conhecimento do funcionamento de detalhes internos dos modelos.

Baseado nas descri¢des visuais das fronteiras de decisdo, nés desenvolvemos um workflow de visual
analytics e uma ferramenta grafica que permite aos usuérios realizarem a rotulagem interativa de amostras.
Mostramos ainda que o nosso método proposto de visualizacéo é capaz de ajudar em cenarios de rotulagéo,

como é o caso de aprendizado ativo.

Palavras-chave: Aprendizado de Maquina. Visualizacdo de Dados. Redugio de Dimensionalidade.

Abstract

Francisco Caio Maia Rodrigues. Visual analytics for machine learning: Computing
and leveraging decision boundary maps. Thesis (Doctorate). Institute of Mathema-

tics and Statistics, University of Sdo Paulo, Sdo Paulo, 2020.

Machine learning classifiers construct decision boundaries that partition data space into a set of regions
to which labels are assigned. Understanding these decision boundaries can notably help the actual practical
usage of such classifiers (by answering questions such as showing how a certain model is expected to
behave on an empty region), as well as give insights on how to improve the training of a given model (by
answering questions such as telling where should more training data be provided). In this thesis we propose
and explore visual analytics methods for the explicit creation, construction, and use of decision zones of

machine learning classifiers.

Current methods employed to visualize how a classifier behaves on a dataset mainly use color-coded
sample scatterplots, which do not explicitly show the actual decision boundaries or confusion zones. We
propose an image-based technique to improve such visualizations. The method samples the 2D space of a
projection and color-codes relevant classifier outputs, such as the majority class label, the confusion, and the
sample density, to create a dense visual depiction of the high-dimensional decision boundaries. Our techni-
que is simple to implement, handles any classifier, and has only two simple-to-control free parameters. We
demonstrate our proposal on several real-world high-dimensional datasets, classifiers, direct and inverse
projection techniques. To our knowledge, our work is the first that can create such explicit depictions of
decision boundaries and decision zones for any dataset and any classifier, without explicit knowledge of

the classifier’s internals.

Based on these visual depictions of decision boundaries, we developed a visual analytics workflow and
associated tooling that allows users to perform two common techniques in machine learning - data aug-
mentation and interactive labeling of unseen samples. We show that our approach can be used to perform
guided data augmentation in order to shape the decision boundaries learned by a classifier according to the
user’s input. For interactive labeling, we show that our proposed visual depiction of decision boundaries

helps in producing improved labeling in an active learning scenario.

Keywords: Machine Learning. Visual Analytics. Dimensionality Reduction.

Sumario

1 Introduction

1.1
1.2
1.3
1.4
1.5

Classifier design in machine learning

Decision Zones and Decision Boundaries

Visualizing Decision Boundaries

Research Questions

Thesis Structure

2 Related Work

2.1

2.2

Machine Learning
2.1.1 LogisticRegression Lo oL
2.1.2 Support Vector Machines
2.1.3 k-Nearest Neighbors
214 RandomPForests oo
215 NeuralNetworks
Visual Analytics for Machine Learning
2.2.1 High-Dimensional Data Visualization
2.2.2 Dimensionality Reduction
2.2.3 Inverse Projection Techniques
2.2.4 Visual analytics techniques for classifier engineering
225 Conclusions L

3 Deep feature extraction evaluation

3.1
3.2
3.3
34
3.5

Introduction

Problem Context

Deep Feature Extraction

Experiment Setup . . .

Datasets and Networks

351

CNN MODELS

0 NN W N =

11
11
15
16
19
22
24
28
29
32
39
42
45

47
47
47
49
49
50
53

vii

viii

3.5.2 Featureextraction, . 55

3.6 Classifier Evaluation 56

3.7 Discussion and conclusion L oL 58

4 Constructing Decision Boundary Maps 61
41 Densemaps 62

4.2 Decision Boundary Map Construction 65
42.1 Parametersetting o Lo 66

4.2.2 Implementationdetails 68

43 Experimentalresults. Lo 69
43.1 Segmentationdataset. Lo L 69

432 MNISTdataset 70

4.4 DISCUSSION 74

45 Conclusion L 75

5 Evaluating Decision Boundary Maps 77
5.1 Preliminaries 78

5.2 ExperimentSetup L o 80

5.3 Analysis of EvaluationResults 84
5.3.1 Phase 1: Picking the Best Projections 84

5.3.2 Phase 2: Refined Insights on Complex Data 85

54 Discussion 87

6 Inverse Projections for Decision Boundary Maps 91
6.1 Inverse Projection by Neural Networks 92

6.2 ExperimentsandResults L. 93
6.2.1 Scalability in training and inference 94

6.2.2 Quantitative Assessment of Quality 95

6.2.3 Qualitative Assessment of Quality 95

6.3 Discussionand Conclusion o Lo 98

7 Visual Refinements of Decision Boundary Maps 101
7.1 Projection Filtering 102

7.2 Distance-enriched Dense Maps 105
7.2.1 Image-based Distance Estimation 106

7.2.2 Nearest-neighbor Based Distance Estimation 107

7.2.3 Adversarial Based Distance Estimation 107

7.24 Visualizing Boundary Proximities 109

7.3 DISCUSSION v v e s 112

8 End to End Evaluation

8.1 Semi Supervised Learning L

8.2 Visual analytics for semi supervised learning

8.3 Manual labeling experiments Lo L.

8.3.1 Classifiers description

8.3.2 Datasets description o oL

8.3.3 Experimentalset-up, .

8.4 Manual labeling resultso oo

8.4.1 Comparison with automatic labeling

8.5 Discussion

9 Conclusion

9.1 Deep Feature Extraction Evaluation

9.2 Decisionboundarymaps Lo

9.3 Impact of direct projectionson DBMs

9.4 Impact of inverse projection on DBM formation
9.5 Visual refinementsof DBMs oL
9.6 Endtoendapplication

9.7 Future work

Referéncias

115
116
117
119
120
121
121
123
128
129

133
133
134
134
135
135
136
136

139

ix

Capitulo 1

Introduction

1.1 Classifier design in machine learning

Machine Learning (ML) is a branch of the Artificial Intelligence field whose main ob-
jective is to create algorithms that induce models, i.e., learn, from data. ML methods are
showing huge success when solving problems in many application areas such as medi-
cal diagnosis Hu et al., 2013; KONONENKO, 2001; PoLAT e GUNES, 2007, recommendation
systems PAzzANI e BiLisus, 2007, text classification SEBASTIANI, 2002, games SILVER et
al., 2016, facial recognition OsuNa et al, 1997, among many others. Recently, approa-
ches known as deep learning achieved breakthrough results when solving hard computer
vision problems GIRSHICK et al., 2014, in special image classification KrRizHEVSKY et al,
2012.

Traditionally, machine learning tasks are divided into three major types ABuU-
MosTAFA et al., 2012: supervised learning, reinforcement learning and unsupervised
learning. Supervised learning uses labeled data, that is, data samples which have additio-
nal information associated to them. A successful algorithm in supervised learning must
learn how to imitate the labeling process. In general, this process is done by presenting a
set of examples (multidimensional vectors) and the expected output (label), the so-called
training set, to the algorithm. Thus, a supervised learning method seeks for the model
that optimally fits this mapping of points to labels. In unsupervised learning, the job of
the algorithm is to induce a model from interactions with an environment. The idea is
that good decisions, that is a series of actions that lead the system to a desirable state, are
rewarded, while bad decisions are punished. Finally, unsupervised learning uses unlabeled
data as input. In this case, the methods seek to find so-called structural characteristics of
the data, such as clusters or its generative distribution.

Supervised learning can also be further split into two types of problems: classification
and regression. In classification problems, the labels are discrete; labels usually have cate-
gorical values; and the set of possible labels is small. In regression problems, labels are in
general continuous quantities. Another possible classification of ML techniques separa-
tes them into active versus passive learning. While a passive learner builds its knowledge
from the information given to it, an active learner may query the user at training time,

1 | INTRODUCTION

asking, for example, for the user to label certain dubious data samples SHALEV-SHWARTZ
e BEN-DAvVID, 2014.

This thesis mainly focuses on supervised learning, specifically on classification pro-
blems. In this context, the training phase of a ML algorithm can be usually reduced to
the optimization task of finding a function g in a set of hypothesis H that minimizes a
certain error measure for the training set. A learning algorithm is successful when the
model obtained from it can be used to make inferences on new data, not originally part
of the training set. To estimate how a predictor will behave in practice, i.e. when applied
to solve a real world problem, it is a common practice to evaluate error on a so-called test
or validation set, which is not used during the training.

1.2 Decision Zones and Decision Boundaries

A classifier training process can be seen as dividing the high-dimensional data space
into so-called decision zones. All samples from a given zone will be seen as similar, in the
sense that they receive the same label. Such decision zones are separated by so-called deci-
sion boundaries. These are, in general, curved surfaces embedded in the high-dimensional
space. Figure 1.1 illustrates the above concepts. Figure 1.1(a) presents a simple two-class
2D toy dataset composed of red squares and blue circles. Figure 1.1(b) shows a non-linear
decision boundary (black curve) that partitions this space into two decision zones, corres-
ponding to the red, respectively blue areas. The objective of a classifier algorithm is to find
this border so that (a) all training samples, represented by the squares and circles Figure
1.1(a), fall within the correct decision zone; and (b) unseen (test, validation) samples, not
available during the training phase, will also fall within their correct respective decision
zones.

A successful training of a classifier can, thus, be seen as a process that leads to the
construction of the “correct” decision boundaries (or decision zones, given that the former
imply the latter and conversely). However, doing this is a fundamental open problem in
machine learning for a number of reasons. Not exhaustively, these include

« a fitting problem: Given a labeled training set and a classifier model, how can one
tune the internal parameters of the model so that decision zones emerge that pre-
cisely contain all samples of each class in the same decision zone? This is relatively
easy to do when the number of classes is small, and when their training samples
are well separated in the data space - that is, same-class samples are close to each
other, while different-class samples are far away from each other. Simple classifiers
such as logistic regression have limited freedom herein, since their decision boun-
daries are by construction hyperplanes. However, such classifiers are simple to train
since they have few parameters. Slightly more complex classifiers, such as k-nearest
neighbors (kNNs) are very similar with respect to their decision boundaries, as these
correspond to the faces of a n-dimensional Voronoi diagram in the data space whose
sites are the labeled samples. Conversely, more complex classifiers such as neural
networks Yann LECUN et al.,, 2015 have massive freedom in creating very complex
decision boundaries, which can be curved piecewise-manifold surfaces embedded
in the data space. However, such classifiers are more complex to train since they

1.3 | VISUALIZING DECISION BOUNDARIES

have thousands up to millions of parameters. In general, it is far from clear how to
actually control the training process of a classifier so that it creates decision boun-
daries there where they are needed to obtain maximal accuracy on the training set;

« a generalization problem: Even for the favorable cases where one can train a classi-
fier to optimally partition samples from the training set, it is far from clear whether
the so-constructed decision surfaces will perform well on unseen test and/or vali-
dation data. When this is not the case, a process of fine-tuning of the classifier kicks
in. Such a process involves many operations, such as tuning the training parameters
and the so-called hyperparameters of the model itself; and changing the training set
by adding, deleting, or changing samples and/or their labels. This tuning process
can be tedious, lengthy, and is not guaranteed to converge to a good result.

(a) (b)

Figura 1.1: Simple toy dataset with two-class samples (a). A possible boundary decision a classifier
might have induced from this training data (b).

1.3 Visualizing Decision Boundaries

As we have seen in the previous section, the (successful) training of a classifier is in-
timately related to the process of constructing the correct decision boundaries. However,
as also explained there, the complexity of this process is intuitively proportional with the
complexity of the decision boundaries. In the above, we can roughly partition classifiers
(and the above-mentioned challenge) into two classes, as follows.

Explicit boundaries: These are classifiers whose models are simple enough so that one
can compute, and reason about, their decision boundaries in an explicit way. For instance,
linear classifiers induce from a n-dimensional dataset, a n-dimensional hyperplane that
splits data space into regions. Given a data point in this space, the question of to which
class it belongs could be answered simply by checking whether this point lies to one side
or the other of the hyperplane. Moreover, the confidence of classification can be well
approximated by the distance of the point to its closest hyperplane boundary, something
which is simple to compute and reason about analytically. The same can be said about

1 | INTRODUCTION

other simple classifiers such as kNNs, given that one can explicitly compute, and reason
about, following their underlying Voronoi diagram model: Given a new data point, it
will be assigned the same class as the point closest to it in the training set. However, the
decision boundaries of such simple classifiers are also very limited in their flexibility to
“squeeze between” complex distributions of labeled samples present in the data space so
as to successfully partition them.

Implicit boundaries: Formally speaking, even complex classifiers such as neural
networks do create explicit decision boundaries. The problem is that one cannot extract
an analytical formulation of such boundaries, as that would involve complex equations
having thousands up to millions of parameters (the network weights), which also do
not have an intuitive meaning. Hence, the decision process used by the classifier is not
simple to understand. For instance, it can be challenging for a user to understand why
two apparently similar data points (i.e., having similar coordinates in the data space)
were assigned different labels - that is, why a decision boundary “squeezed through”
these two points. Even though, formally, a decision boundary is explicitly computed
by the classifier, in practice, one can only implicitly assess where this boundary is, by
evaluating the classifier with samples (e.g., test and validation) and seeing which labels
are produced. Hence, we cannot (easily) reason analytically about the decision boundaries
for such models in the same way we could for the explicit decision boundaries of simpler
classifiers. In the field of machine learning, such models are commonly regarded as black
boxes, given the difficulty to explain the logic behind some of their decisions in simple
terms.

The black-box nature of deep learning models is highly related to how they are trained.
Take image classification tasks as an example. While a “classic” image classification pipe-
line requires manually designed features to be defined, current deep learning approaches
take images directly as input and output a class label. In this case, features are implicitly
learned during training process and they may not match exactly domain experts defini-
tion Yosinski, CLUNE, NGUYEN et al., 2015. In other words, classic methods would require
a user to specify what patterns the classifier should seek for, e.g., roundness, corners, or
specific textures; while deep learning models are trained in a end-to-end fashion, defining
as the process unfolds which features are important. Understanding decision boundaries
is, for the deep learning case — or more generally, for cases where the input features are
numerous and/or not easy to reason about — additionally challenging.

Given the above mentioned challenges of complex classifiers, which do not allow one
to analytically study their decision boundaries, how can we approach this problem?

Visualization is a field of Computer Graphics that seeks to convey into images infor-
mation about data. Visualization is mainly focused on creating insightful figures that help
users understand and even discover new patterns and behavior present in a given dataset.
More generally, visualization aims to leverage the user’s visual system ability to recognize
complex patterns to solve data-related problems that cannot be easily mapped to explicit
queries or analyses suitable to computer automation.

Visualization is traditionally divided into two operational subfields: Scientific visuali-

1.3 | VISUALIZING DECISION BOUNDARIES

zation (SciVis) focuses on addressing problems related to data which is spatially embedded
in two or three dimensions and comes from continuous processes such as measurements
of physical quantities. SciVis has shown huge success, being vastly applied on data from
medical science, civil engineering, geosciences, and physics HANSEN e JoHNSON, 2005;
Alexandru C TELEA, 2015. Information Visualization (InfoVis) focuses on addressing pro-
blems related to data which is either embedded in high-dimensional spaces, or which does
not even have a spatial nature MUNZNER, 2015. Moreover, InfoVis data can be of more
than the quantitative type covered by SciVis - its data values can be of any type, e.g.,
ordinal, integral, categorical, text, images, video, or relations. Such datasets include social
network feeds, and news (text data), hospital patient data, software quality metrics, and
business data (tabular data), information flows in a network, flight destinations, subway
maps, and software systems structure (relational data). In general, handling InfoVis data
is considered harder than handling SciVis data, given its typical non-spatial nature, high
dimensionality, and mix of attribute types

DATA FEATURES + — 2 HIDDEN LAYERS OUTPUT

Which dataset do Which properties do Test loss 0.006
you want to use? you want to feed in? m @ Y= Training loss 0.001
] 000 5 ©
a90 0 ¥ 5,0

4 neurons 2 neurons

Ratio of training to
test data: 50%

—0

Noise: 0

Batch size: 10

—0

REGENERATE
Colors shows
data, neuron and ! ¥
1 0 1
weight values

3 Show test data Discretize output

Figura 1.2: Tensorflow visualization of decision boundaries for a simple neural network classifier for
2D two-class data. See Sec. 1.3.

Visual analytics (VA) builds up on techniques from SciVis and InfoVis by creating inte-
ractive methods and tools to allow users to explore a complex data space and underlying
hypotheses (questions) THoMAs e CooK, 2005; Keim et al., 2008. Key to VA is the explora-
tion process: Simply put, while both SciVis and InfoVis offer tools and techniques where
users can interactively change various parameters to create different views of the data, VA
places this exploratory process, and its support by interactive tools and techniques, in the
center. As such, VA solutions are, in general, specific to a given problem and application,
aiming to provide both tools and workflows, i.e., procedures that empower users to obtain
the answers to their problems by methodologically following an iteration of hypothesis
posing, (in)validation, and refinement steps.

Given the challenge of training classification models for cases where boundaries can-
not be computed and/or reasoned explicitly about; and given the power of InfoVis for
helping users to reason with complex, high-dimensional, and abstract data - characte-
ristics that our ML classification data fully share — we advocate that it is interesting to

1 | INTRODUCTION

consider InfoVis and VA for depicting, explaining, and understanding such decision boun-
daries.

The added value of visualization for this task is illustrated by Figure 1.2, generated
with TensorFlow SmiLkov e CARTER, 2018. Here, a simple two-dimensional dataset is
considered. In this dataset, points are of two classes, and the goal is to train (and unders-
tand) a neural network classifier for this data. The actual points in the training set follow
a checkerboard pattern, as shown by the orange and blue points in the visualization at the
right. A simple two-hidden-layer neural network is used to learn a classification model
from this pattern. The image to the right shows, in the background, a coloring of the
two-dimensional data space by the labels that the classifier would assign to every (x, y)
possible data point in this space. As visible, this shows the apparition of two decision
zones — a compact one for the blue label and one consisting of two blobs for the orange
label, respectively. The two zones nicely contain the training samples of the two classes,
i.e,, the classifier has maximal accuracy on the training set. Besides that, activation maps
are displayed as thumbnails for all units in all layers, showing which class label these
would produce for any possible data point. Additionally, users can vary the architecture,
training and test data, and hyperparameters of the network interactively and see how the
visualization changes.

Figure 1.2 is a good example of how one can use visualization of the decision bounda-
ries and decision zones to understand the operation of a classifier. Unfortunately, the un-
derlying techniques used to produce this visualization are not generalizable to data higher
than two dimensions, nor is the visualization clearly scalable for datasets having thousands
of samples or more. This example, and the previous considerations outlined in this section,
leads us to the formulation of our main research questions described next.

training and test data Decision boundary maps (1)
Classification

model
adapt
training
process (2B)

User

adapt insights
training data (2A)

Figura 1.3: Workflow of this thesis capturing its two research questions — visualizing the decision
boundaries (1) and creating a VA loop for gathering insight to improve training (2A,2B). See Sec. 1.4.

1.4 | RESEARCH QUESTIONS

1.4 Research Questions

In this thesis, our focus is on developing new visualization and visual analytics
techniques specifically suited for understanding and improving ML classifiers. Our first
research question can be thus stated as:

How to use information visualization and visual analytics to get more insight into a
classifier’s operation and performance?

There are many ways in which the operation of a classifier can be thought of. Simi-
larly, performance of a classifier can be measured by many different metrics SokoLova
e LAPALME, 2009 and subject to many parameters, e.g., the size, quality, and distribution
of samples in the training and test sets, and setting of the many hyperparameters of
the underlying model. However, in our work, we focus on the link outlined in Sec. 1.3
between a classifier’s operation and the decision boundaries it constructs. Specifically,
we further refine the above question to become:

How can we depict the decision boundaries of a classifier and use these to understand its
operation and performance?

Answering the above question helps the users of a classifier to understand why, for
instance, a classifier performed well (or not) in a given situation, that is, a given pair of
training and test sets and a given setting of its hyperparameters. Information visualization
is the key enabling instrument for answering this question, as we will need to create expli-
cit, visual, depictions of the high-dimensional and complex decision boundaries, decision
zones, and related quantities, e.g. the distance of samples to their closest decision bounda-
ries. Simply put, answering this question aims to create, for any dataset and classification
problem, images as simple as the ones shown in Fig. 1.1b. Figure 1.3(1) outlines this re-
search question: We start with training and test data, and create a classification model.
Next, we visualize its decision boundaries to get more insights in its operation.

However, in the case classifier performance is not optimal, the natural goal is to next
try to improve this situation. Hence, we state our second research question as follows:

How to use visual analytics, supported by decision boundary visualizations, to improve
a classifer?

Visual analytics will also play an important role in answering this question (see also
Fig. 1.3(2)): Based on the visual representation proposed by the answer to the first question
(step (1) in the figure), we will add interactive mechanisms to inspect classification pro-
blems, suggest their causes (hypotheses), and allow the user to iteratively explore several
alternative solutions to these problems, such as changing the training data (step (2A) in
the figure) and/or changing the model’s hyperparameters (step (2B) in the figure), so as
to ultimately leading to an improved classifier.

1 | INTRODUCTION

We aim to answer our research questions in the broadest possible sense. This adds
several so-called non-functional requirements (to use a well-known terminology in re-
quirements engineering) to the functional ones related to depicting decision boundaries
and using this information to understand and improve a classifier. These non-functional
requirements are as follows:

« Generality: Our solutions should be applicable to the widest possible family of clas-
sifier techniques.

« Genericity: Refining generality, we ideally want to treat a classifier as a functional
“black box” that receives training and test data and outputs a sample labeling. That
is, our solutions should not need to know the internals and/or implementation de-
tails of a specific classifier technique. This way, we can apply them easily to satisfy
the generality requirement.

« Ease of use: Our solutions should be easily deployable and usable by users who have
only limited knowledge of machine learning, no specific knowledge of the internals
of a particular classifier technique, and no intimate knowledge of information vi-
sualization technicalities.

« Scalability: Our solutions should scale well, both computationally and in terms of
the screen size required to display the results, to datasets containing tens of thou-
sands of samples (or more), each having hundreds up to thousands of dimensions.

+ Replicability: Our results should be easily replicable by interested users. This im-
poses subsequent constraints on their ease of use, description of their parameter
setting, and availability of third-party components of our end-to-end pipeline, such
as classification technique implementations.

As we shall see starting with Chapter 4, answering our research questions under these
assumptions will introduce additional technical and conceptual challenges that need spe-
cific algorithms and techniques to be developed to be addressed.

1.5 Thesis Structure

Following the two research questions outlined in Sec. 1.4, we structure the remainder
of this thesis as follows:

Chapter 2 presents the necessary theoretical background on machine learning, in-
formation visualization, and visual analytics that are relevant to our work. This chapter
also discuss existing visualization techniques that have machine learning in their focus,
outlining limitations thereof that we will aim to alleviate.

Chapter 3 presents a typical ML scenario in which one wants to develop a good clas-
sifier for a specific dataset, starting from a pre-trained model on different data. The main
contribution of this chapter is the comparison of how different Deep Neural Networks
used as feature extractor impact classification accuracy. The material in this chapter also
serves as a concrete illustration for the types of difficulties that machine learning prac-
titioners face when trying to understand, and further tune, “black box” classifiers, and

1.5 | THESIS STRUCTURE

hence supports the claims for the added value of exploring the visual analysis of decision
boundaries which are expanded on further in the thesis.

Chapter 4 presents the idea of computing and depicting the inferred decision bounda-
ries of any given classifier by a dense, or image-based, approach. Two possible directions
to achieve this objective are discussed, and one of them is chosen upon reflections on
strengths and weaknesses of both with respect to the non-functional requirements ou-
tlined at the end of Sec. 1.4. The output of this technique is an image called a Decision
Boundary Map (DBM), that explicitly depicts the continuous nature of the actual deci-
sion zones and their decision boundaries that a classifier implicitly constructs during its
training.

Chapter 5 explores in detail the DBM concept and idea introduced in Chapter 4. Spe-
cifically, since the computation of DBMs depends crucially on the choice and parameteri-
zation of so-called dimensionality reduction techniques, or projections, we explore here
empirically which such techniques provide the best results for DBM computation for a
range of datasets and classifier models. The chapter concludes proposing good configu-
rations for the DBM computation process which we will use next in our work.

Chapter 6 explores a second (and last) technical aspect of the DBM computation,
namely the use of inverse projection methods. Together with the (direct) projection
methods, whose effect is discussed in Chapter 5, inverse projections equally affect the
quality and computational effort required to create DBMs, thus directly relate to our
non-functional requirements. We explore here the suitability of several inverse projec-
tion methods known in the literature for DBM computation and outline their limitations.
Considering these, we also propose a novel method for computing inverse projections
based on deep learning which has favorable quality and speed properties as compared to
existing methods, and can be also used in any generic inverse projection task. We compare
our method with existing ones for the task of computing DBMs.

Chapter 7 refines the basic DBM model introduced in Chapter 4 (and further refined
in Chapters 5 and 6). While the previous two chapters focused on computational aspects
of DBMs, we now focus on their visual presentation. Specifically, we propose a set of
mechanisms to increase the amount of information displayed by DBMs by highlighting
regions and distances on these maps that serve various tasks related to understanding the
behavior of a classifier model. Hereby, we conclude our addressing of the first research
question, which covers Chapters 4 to 7.

Chapter 8 addresses the second research question by proposing a visual analytics tool
that uses the DBMs created with techniques presented in the previous chapters to support
the process of improving a classifier. Our tool and underlying methodology allow detec-
ting classification problems on the DBM, determining the order in which the user may
want to address these problems, and subsequently perform user-driven labeling to create
a better training set. We demonstrate the working and added value of our VA approach
on several classification problems involving real-world data.

Finally, Chapter 9 presents a brief summary of our contributions and how they are
related to each other to attempt answering the two research questions proposed above.
We close this chapter, and the thesis, by proposing directions for future work.

Capitulo 2

Related Work

In this chapter we present a summary of the theoretical background required for this
thesis, as well as related works which aim at a similar objective to ours, that is, the use
of visualization to support the understanding (and improvement) of machine learning
classifiers as outlined in Chapter 1. In Section 2.1 we give the basic definitions related to
Machine Learning that we are going to use throughout this thesis. Besides that, a brief
explanation of the main classification techniques that we use in the remaining of this
thesis is presented. Next, in Section 2.2 we discuss information visualization techniques
for machine learning. In particular, we dedicate attention to Dimensionality Reduction
(DR) and Inverse Projection (IP) techniques, which are fundamental to the interpretability
of a model. We dedicate special attention to several such techniques, such as t-SNE and
UMAP, as these are the ones most frequently used in the other chapters of the thesis.
Similarly, we explain in detail two inverse projection methods, as they will be referred to
in Chapter 6 when we compare our novel inverse projection method to them.

2.1 Machine Learning

This brief summary of supervised machine learning is not intended as a complete
reference, instead its purpose is to contextualize different techniques that will be needed
in the next chapters. For a complete background on machine learning, we refer to standard
textbooks in the area ABU-MOSTAFA et al., 2012; SHALEV-SHWARTZ ¢ BEN-DAVID, 2014;
Bisaop, 2006.

As mentioned in Chapter 1, classifiers are part of a branch of supervised learning that
attempts to induce a mapping from data points to labels.

Preliminaries: Formally put, let D a dataset of N ordered pairs (x;, y:), i.e. D =
{1, 1), ..., (XN, Yn)}, generated by a real or simulated phenomenon modeled as a dis-
tribution P(y|x). The set of observations, or samples, is denoted as X = {xi,...,xn},
where x; € R”, and n can be tens, up to thousands, of dimensions. Each such observa-
tion x; = (x/,..., x/") can be thus seen as a n-dimensional feature vector. We call x!, with
1 < j < n the j* attribute, or dimension, or variable, of point x;. The sets X/ = {x/},

11

12

2 | RELATED WORK

1 < i = N, are called the attributes, or dimensions, of the entire set of samples X'. Hence,
X can be represented as a data table with rows corresponding to observations x; and
columns corresponding to the attributes X/, respectively. For each observation x;, a label
y; can be attributed to it accordingly to distribution P(y|x). Let Y = {y, ..., yn} be the set
of samples’ labels.

As outlined in Chapter 1, for classification problems, these samples take values typi-
cally in a categorical set whose values indicate the different classes (types) of samples.
The goal of supervised learning is to find a function g : X — Y, that best approximates
the outcomes of P(y|x) from the finite dataset D. The search for g is performed by a
learning algorithm on the space of the Hypothesis Set 7{, in general guided by an error
measure computed on the candidate functions h € H.

Error measures: An error measure gauges how well g represents the outcomes of P(y|x).
An error function can be defined for the whole dataset, and denoted hence as E(g(X),),
or alternatively in a point-wise fashion, denoted as a function e(g(x;), y;). Supervised
machine learning algorithms will seek for a function that minimizes the error, often also
called loss or cost. Besides guiding the learning algorithm on the exploration of H, error
measures also serve the purpose of evaluating model’s performance.

Performance measuring: For classifiers, a measure of performance that is similar to
computing the error over a finite dataset is accuracy. Accuracy of a classifier is sim-
ply the count of correct guesses over the total number of samples in the dataset, i.e.
Acc = £ ¥V [g(x;) = yi], where [] is one if g(x;) = y; and zero otherwise. While ac-
curacy is simply the percentage of correct guesses, error functions in general depend of
the computation of probabilities and may not be as easy to grasp. As such, accuracy values
are simpler to interpret, and used more often to understand, classifiers than the respective
error values.

Although an error function computed on D guides the search for the best model, a
machine learning program is useful if it is capable of making correct inferences when
applied in a production environment, specially on new, unseen, data. In other words, in
machine learning we are interested in finding a model that will generalize to samples
outside the training set. A simple algorithm that memorizes every entry in D would not
be interesting even with E = 0.0, as the out of sample error will most likely be high, i.e.
this model would not generalize. In practice, error measured on the set of samples using
for training is not completely useless, as the memorization algorithm just mentioned is
not practical, and is still used to estimate a model’s performance.

Training, testing, and validation: When the performance measured in production of a
trained model does not reflect the error obtained during training, we say overfitting has
occurred. That is, the model works very well on the training data, but generalizes poorly
on different data. A common approach in machine learning to avoid overfitting is to split
D into two sets, one for training and another for testing. As the samples in the test set
were not seen by the model during the training phase, computing the error or accuracy
on this set serves as a better proxy to the true classifier error expected in production

2.1 | MACHINE LEARNING

mode.

A slight variation of the above is to split D into three sets: training, validation and test.
In this setting, a model is trained using the samples from training, but different hyperpa-
rameters or configurations can be experimented with, reporting the achieved accuracies
or error values on the validation set. This dataset partition can be used even to compare
and choose between different models. When the best configuration is chosen, the final
model is trained again using all the samples from both training and validation sets and
final accuracy or error is then reported on the samples from the test set, which were not
used before.

A generalization of this technique is called cross validation. Cross validation consists
in partitioning a dataset D of size N into K sets of sizes ¥, which is known as K-fold
cross validation. In this setting, there are K configurations in which one of those sets is
left out for validation, and the remaining K - 1 sets are used to train a model. The set left
out is used to evaluate performance (accuracy or error) for each configuration, and since
there are K of them, a good out of sample performance can be estimated averaging their
values. In one extreme scenario with K = N, sets of one element are set up, leading to a
good out of sample accuracy estimate. However, this leave one out strategy is impractical
due to the computational resources needed, thus in general, 3 < K > 10 is a commonly
chosen value. Such cross validation strategies seek to balance the search performed by
the learning algorithm to minimize error in the data by estimating the true expected error
the model will present when applied in real scenarios. Hence, cross validation techniques
aim at improving generalization.

Regularization: Besides cross validation, another heuristic commonly employed to pre-
vent overfitting is regularization. Regularization consists in limiting the search for candi-
date functions in the hypothesis set H, allowing to train on a space of complex, i.e. flexible,
functions, but avoiding candidates that would overfit to the training data. Arguably, the
most usual path to implement a regularization mechanism into a learning algorithm is
by adding a penalty term to the error function in order to prevent undesirable configu-
rations, as Ep.,(g(X,Y) = Eya(g(X),Y) + AR(g), where R(g) is the regularization term
and A a weight to gauge the importance of regularization to the task. An usual example
of such a restriction during the training phase of a parametric model is enforcing the
preference for simpler candidate functions by penalizing large parameter values. In this
type of scenario, that is, inducing a parametric model g(x) that depends on parameters
w, a commonly applied regularization is R(g) = w!w. By penalizing large values of w,
simpler models are expected to be inferred as some elements of the vector of parameters
will be too small or even zero. Intuitively, regularization can be seen as adding a certain
“stiffness” to the function learned by the model, so as to balance between fitting well
the training data, but allowing sufficient flexibility to approximate well the test (unseen)
data.

Two other types of regularization mechanisms that are commonly used in ML, in
particular when training neural networks, are early stopping and dropout SRIVASTAVA
et al., 2014. Early stopping can be used for iterative methods and consists in monitoring
the error on a validation set at each iteration, and halting the training if this error starts

13

14

2 | RELATED WORK

to increase. Highly adaptable and flexible models could still decrease the error on the
training set, but if the validation error increases, then the model must be overfitting to
the training data. The second heuristic mentioned, dropout, consists in removing each
neural network’s node, with a probability 1 — p, at each training iteration. In this setting,
the parameter associated with that node will not be updated in this training phase, but
the node will be reinserted into the network in the next iteration. During testing, or
deployment, each node output will be weighted by p, the probability that the node would
not be removed in any given iteration.

Choice of techniques: At this point, we revisit our main research question introduced
in Sec. 1.4. As stated there, we aim to use visualization to get insight into a classifier’s
operation and performance. Also, we aim to do this in a general and generic fashion, i.e.,
without having to rely upon implementation details or knowledge of the operation of
specific classification techniques. However, during this process, we will also need to test
our proposed solutions, and for this purpose we need to choose a number of classifica-
tion techniques. While, in theory, any subset of the universe of all possible classification
techniques would do for testing, we prefer a reasoned selection in order to better assist
our testing task. Specifically, we will choose classifier techniques to test our visualization
solutions against based on the following criteria:

+ Relevance: We aim to include techniques which, albeit not among the modern state-
of-the-art, are well battle-tested, deployed, and known in the ML community. Sim-
ple techniques will also help us in understanding how our visualizations works.
Indeed, since for such techniques, we do have a good understanding of the deci-
sion boundaries they create, as outlined in Sec. 1.3, we can use this “ground truth”
knowledge as a way to gauge our visualization results.

« Variation: We aim to include techniques that use very different underlying imple-
mentations, rather than using many instances of the same type of technique (e.g.,
different architectures of a deep learning model). This way, we arguably “sample”
the universe of classification techniques better, and thus test our visualization pro-
posals more exhaustively.

« Replicability: We aim our work to be readily replicable, both in terms of reproducing
the results of our experiments, but also allowing interested users to set up similar
pipelines using the same software implementations of e.g. classification techniques
(see the replicability requirement in Sec. 1.4). Hence, we favor classification tech-
niques that exist as part of well-known, well-documented, publicly available, ML
libraries, such as scikit-learn PEDREGOSA et al., 2011 and Keras CHOLLET, 2018.

Based on the above requirements and rationale, we have selected several classification
techniques to investigate next in our work. These are described in detail in the following.
We order these in increasing order of their complexity - that is, start by the arguably
simplest techniques and end by the more complex, but also more powerful, ones.

2.1 | MACHINE LEARNING

2.1.1 Logistic Regression

Linear models are functions of the form I(x) = w’x. In this section, we assume that
x is a bias-augmented vector, that is, x = (1,x’)7, where x’ is original feature vector in
the dataset and the first coordinate of w is the bias, or independent term. Where w is a
vector of real-valued parameters induced by the learning algorithm. Such functions define
a hyperplane in which every point x that satisfies I[(x) = 0 lies on it. In addition, one can
check whether x lies to one side or another of this hyperplane by evaluating the signal
of I(x). In this case, the simplest classification rule possible for a two-class problem with
labels -1 and +1, would be given by the function

-1, if I(x) < 0;
g {+1, otherwise. @1
Such classification rule imposes a hard threshold on the linear combination of model’s
parameters and input values. A smoother version, more used in practice, outputs class pro-
bability values in the range [0, 1]. Intuitively put, such probabilities describe how certain
the model is that a given sample is of a given class. Logistic Regression is likely the best
known probabilistic model of this type. For this type of learning method, the hypothesis
set H is composed of functions of the form O(w'x), where 6 : R — [0, 1] is defined as
0(s) = ef%l is a logistic function and e is Euler’s number. As stated earlier in Sec. 2.1, the
objective of supervised machine learning is to approximate P(y|x). For that, we can use
the function h(x) just described, leading to the probability

O(wTx) fory = 1;

2.2
1-0(wlx) fory=-1. (2.2)

P(ylx) = {
Given that we assume class labels to be either +1 or -1 and noting that 1-0(x) = 6(-x),
Eqn. 2.2 can be compactly written as
P(ylx) = 0(yw"x).

Hence, the probability of correctly assigning labels to every sample in a finite dataset is
given by

N
H O(yw'x). (2.3)

Thus, to fit the best model according to the logistic regression rules just presented, it
is necessary to find the set of parameters w that maximize the product in Eqn. 2.3. This
is equivalent to minimizing the following expression:

! Nl —l 2.4
N "<0<yanxn>>' &9

Replacing the logistic function defined earlier in Eqn. 2.4, an error function for a Logistic

15

16

2 | RELATED WORK

Regression learning model can be defined as

N

E(w) = % Y in (1 " e-WTXn) . (2.5)

n=1

The parameters w that minimize the error function in Eqn. 2.5 can be found with
ease applying standard optimization methods. The usual choice in this context is to apply
gradient based methods, such as Gradient Descent, or Stochastic Gradient Descent. As the
gradient of a function is a vector that points to the direction of greatest increase, those
methods consist in iteratively updating the set of parameters towards the opposite direc-
tion of the gradient of the error function, effectively minimizing the error. Such methods
are capable of returning global minimum of a convex function, as is the case for LR error
function. When the function is not convex, the absolute minimum value is not guaran-
teed to be found, i.e., a local minimum point is found (we return to that on Sec. 2.1.5, when
discussing Neural Networks). We refer to BorTou, 2012 for a more extensive explanation
of gradient methods, in special Stochastic Gradient Descent, in ML.

Arguably, Logistic Regression’s key added values are its simplicity of implementation
and ease of understanding how it operates. Basically, for two-class problems, we can think
of it as drawing a hyperplane that best separates samples of the two classes, according to a
probabilistic definition of separation. Using this intuition, we can also immediately see the
limitations of this technique — namely, the fact that it cannot separate (well) more complex
sample distributions. Nevertheless, the method’s simplicity and intuitiveness make it an
ideal candidate for testing our visualization methods introduced later in this thesis.

2.1.2 Support Vector Machines

Support Vector Machine (SVM) is a popular linear classifier frequently used in practice.
While a Logistic Regression model seeks for parameters that maximize a probability me-
asure, SVM employs a geometric approach and seeks for the parameters that lead to the
hyperplane that best separates data. In this sense, the best separating hyperplane is the
one that maximizes the distance it is placed to the data points. Intuitively, the larger the
distance from the separator plane to the nearest data points the more robust the model is
to noise and errors in general.

We use next a slightly different notation from Sec. 2.1.1 in order to simplify the pre-
sentation, making the bias term b of the parameters explicit. We define a hyperplane as
h = (b, w), where w is a normal vector to the hyperplane, and any point x’ that lies on the
plane must satisfy w’x’ + b = 0. The distance between any point x and the hyperplane h
can be computed as the scalar projection of the vector (proj) x - x’, where x’ is any point
that lies on the surface of the hyperplane. Thus, this distance can be computed as

T —
dist(x, h) = proj(x - x’)":—" _w (”’; ”) _w T (2.6)

Assuming -1 and +1 as class labels for a two-class problem, and using Eqn. 2.6, we can

2.1 | MACHINE LEARNING

write the distance from any data point x; to the hyperplane h as

) (wWwix;+b
dist(x;, h) = %

A hyperplane that completely separates a dataset into two sets of points having dif-
ferent labels is such that y;(w'x; + b) > 0 for every pair (x;, y;) € D. This inequality can
be modified by normalizing the hyperplane’s parameters (w and b). In particular, one can
normalize a hyperplane to ensure that y,(w’x; + b) = 1. This can be accomplished by
modifying the weights as follows: Let v > 0 be the smallest value of w’x; + b among all
data points, create another hyperplane b’ = (b/v, w/v). In this case h and h’ are equivalent
regarding classification rules, i.e., checking whether samples fall on one side or the other
of the hyperplane, but now the smallest value of the signal w’x; + b is 1.

Considering such normalized hyperplane, the distance of the closest data point to it
is given by

dist(x, h) = — 27)

[wl

Thus, finding the hyperplane that separates the dataset and such that it is of maximum
distance to the closest point is equivalent to maximizing the quantity in Eqn. 2.7. The
maximum-margin separating hyperplane can be similarly found solving the minimization
problem

1
minimize -w!w
bw 2 (28)

subject to y,(W'x, + b) = 1.

The formulation in Eqn. 2.8 assumes that data is linearly separable. For non-separable
datasets, the problem above can be reformulated by introducing so-called slack variables
& = 0 that allow a number of data points to violate the separability condition y,(w'x;+b) =
1 - &. This way, the minimization problem can be written as

1 N
minimize -w'w+ C Z &
bw,t 2 el (2 9)
. T .
subjectto y,(W' x,+b) 21-¢,

£ =20

In Eqn. 2.9, C is a user-defined parameter that controls the amount of separability
violation that is acceptable.

Optimization problems may be viewed from two closely related perpectives: a primal
problem and a dual problem. In general, the solution for the dual problem provides a lower
bound to the primal. The solution for the primal optimization problem posed in Eqn. 2.8
and its dual version are equivalent, that is, the hyperplane obtained from one of them is

17

18

2 | RELATED WORK

exactly the same that would be obtained from the other. Consider de canonical quadratic
minization problem below:

e . 1 T T
minimize Eu Qu+pu
u

subject to alu >,

which is equivalent to the following:
1
minimize EuTQu +p’u+max a(c-a’u),
u a=0

where « is the Lagrangian multiplier. The problem above can be compactly written
as:

min max L(u, @), (2.10)
u a=0

T

where L(u, @) = %uTQu +plu + a(c - aTu) is the Lagrangian function.

Hence, the Lagrangian dual formulation for the linearly separable SVM presented in
Eqn. 2.8 is:

1 n=N
L(b,w,a) = EWTW + Z o,(1 = yu(w'x, + b)).

n=1

From Eqn. 2.10, we have that we must minimize £ with respect to b and w and maximize it
with respect to a. By deriving and setting the derivatives to zero, we obtain the following
Lagrangian:

1NN N
max L(a) = 5 Z Z ynymanamx,fxm + Z a,. (2.11)
- m=1 n=1 n=1

Solving this maximization problem will return the optimal parameters o, which can be
used to obtain the hyperplane parameters w and b.

The dual formulation for SVM allows non-linear transformations to be easily perfo-
med, thus resulting in a non-linear classification rule, through the technique known as
the kernel trick. Notice that Eqn. 2.11 depends on the dot product x!x,, and hence one can
use kernel functions to obtain non-linear separating hyperplanes. A kernel function has
the following form

Ky(x,x') = ¢(x)" p(x),

where ¢ is a non-linear transformation function. The main benefit of using the kernel trick
is that the actual transformation does not need to be computed. For instance, consider the

2.1 | MACHINE LEARNING

following non-linear transformation

P(x) = exp(-x?) (1, \/%x, \/%xz, \/%Jﬁ >

it is not feasible to be computed in practice, as it is an infinite dimensional transformation.
However, the inner product between two vectors that would be transformed to this space
can be obtained efficiently as

Ky(x,x) = exp (~y |x - x/IF) .

Hence, the dual formulation of SVM enables for the application of the kernel trick, al-
lowing non-linear data classification in a computationally efficient manner.

Overall, Support Vector Machines can be seen as generalizing the hyperplane separa-
tion idea of Logistic Regression models by using a different definition of what a “good”
separation hyperplane is, based on the minimal separation distance. While a discussion
of the exact differences is not within our scope, one intuitive way to summarize these is
to note that Logistic Regression uses all the samples equally to determine the placement
of the hyperplane. In contrast, for Suppot Vector Machines the only data points that af-
fect how the method induces the hyperplanes are the ones closest to it, i.e. the so-called
support vectors.

In our context, we consider Support Vector Machines as a good candidate for testing
our visualization proposals for the same reasons we included Logistic Regression — na-
mely, intuitive understanding of the algorithm, presence in the ML literature and practice,
and readily available implementations.

2.1.3 k-Nearest Neighbors

Different from the two previous classifiers presented, k-Nearest Neighbors (kNN) is a
nonparametric learning model. While Logistic Regression and SVM go through an opti-
mization process to fit a set of parameters that are combined with data points to form a
classification rule, thus are regarded as parametric models, kNN does not depend on such
parameters to be used on its classification function. Instead, the classification function
depends on distances computed in data space, returning the label common to the majo-
rity of its k closest samples in the dataset. For k = 1, such a classification rule induce
a known tessellation of data space known as Voronoi diagramsBERG et al., 2000. Simply
put, the ndimensional space in which the samples (called sites in Voronoi terminology)
exist is split into convex polyhedra, called cells. Each cell contains a single sample. Cell
faces are hyperplane segments (polygons) that are at equal distance between two samples.
That is, all points within a cell are closest to that cell’s site than to any other sites in the
dataset.

Figure 2.1 illustrates Voronoi diagrams. The first image (a) shows a 2D site-set (white
points) and their corresponding cells, color-coded for clarity. The visualization is created
by an open-source code sample A. TELEA, 2014. Brightness is modulated at every point

20

2 | RELATED WORK

Figura 2.1: Examples of 2D Voronoi diagrams. a) Classical diagram of a point set. b) Generalized
diagram of a set of complex sites (in white), with diagram in black and distance field color mapped.
c) Classical diagram with its multiplicat-weighted distance counterpart (d).

to reflect the distance to the closest site. In detail, let S be the site-set we consider. The
function
DTs(x) = min |x -y, (2.12)
yeS

also called the distance transform (DT) of point y, gives the 2D Euclidean distance between
from x to the closest site in SCosTa e CESAR, 2000. Note that here y € R? which is
different from y a discrete class label used before. This site is given by the so-called feature
transform of the set S

FTs(x) = arg min |x - y|. (2.13)

yeS

The image (a) shows, at each pixel, the values of FTs color-coded categorically, and the
values of DTs encoded by pseudo-shading. In detail, DTs is passed through a transfer
function to construct an effect similar to diffusely-illuminated equal-radii spheres which
are centered at the sites as viewed from above. While not exactly encoding DTs, every
Voronoi cell is thereby rendered as a convex shaded cushion, which allows one to easily

2.1 | MACHINE LEARNING

visually separate adjacent cells. Shaded cushions know a long history in information vi-
sualization vAN WIJK e VAN DE WETERING, 1999 for the visualization of various types of
partitions of, and structures embedded in, 2D space A. TELEA e J. v. WIJK, 2001; Jarke J van
WIJK e Alexandru TELEA, 2001; A. TELEA e ERsoy, 2010. We shall use variations of shaded
cushions in our visualization proposals in Chapter 7. Classical Voronoi diagrams, that is,
computed by using standard Euclidean distance to the site-set, can be created by com-
putational geometry methods BERG et al., 2000, but also by image-based techniques Horr
et al., 1999; STRZODKA e A. TELEA, 2004.

However, such diagrams are not directly reflecting the context of kNN classifiers. In-
deed, for these classifiers, the actual decision zones would not be the same as the cells of
a classical Voronoi diagram, since each such cell corresponds to the influence area of a
single sample. Rather, we need to consider Voronoi cells that are created by a collection
of all sites having the same labels. This corresponds to so-called generalized Voronoi dia-
grams, where sites can be arbitrary collections of points or even higher-order primitives
(curves, surfaces) embedded in some space. Figure 2.1(b) shows such a generalized Vo-
ronoi diagram. Here, the sites are the structures marked in white, which correspond to
curves describing the furniture placed in a building, including the building’s walls. The
corresponding Voronoi cells, computed by the image-based method in STRzoDKA e A. TE-
LEA, 2004, are the curves drawn in black. As visible, these are (far) more complex than
the straight lines that delimit Voronoi cells in classical diagrams. A second complication
implied by the decision boundaries of kNNs is that k is typically set to values higher
than 1. The corresponding Voronoi diagrams created by this extension have, thus, more
complex shapes, and a more complex interpretation. Attempts to visualize such diagrams
have been made A. TELEA e]. v. WIJK, 2001; however, their visual complexity still remains

very high.

Voronoi diagrams can be generalized also in other respects besides the definition
of their sites. Two well-known generalizations replace the Euclidean distance trans-
form (Eqn. 2.12) by additively-weighted, respectively multiplicatively-weighted versions,
where each site has a corresponding weight. These generalizations, known under the
names of Johnson-Mehl diagrams and Apollonius diagrams respectively AURENHAMMER,
1991, are very relevant in the context of decision boundaries of kNNs, since such classi-
fiers also typically use similar weighting in their construction. Figure 2.1 (d) shows the
Apollonius (multiplicatively-weighted) diagram corresponding to the classical Voronoi
diagram in Fig. 2.1(c). The green highlights in image (d) give the relative weights of the
sites. As visible, this weighting causes cell boundaries to curve, yielding thus more com-
plex shapes.

All above show that, albeit having a simple definition, kNN classifiers can create quite
complex decision boundaries. Indeed, to the complexities mentioned above, we should add
the fact that kNNs work in high-dimensional spaces, whereas all above examples discuss
Voronoi diagrams in 2D only. To our knowledge, there is no generic way to compute
such generalized Voronoi diagrams in any dimension — let alone to visually explore them.
Hence, understanding the boundaries of such classifiers is clearly challenging.

For kNN classifiers, k is the only user defined hyperparameter. The decision bounda-
ries induced by the method will be highly dependent the chosen k. In one extreme setting,

21

22

2 | RELATED WORK

for k = 1, a model very susceptible to errors due to noise or outliers will be inferred, while
for larger values of k smoother decision boundaries will be formed. For too large k values,
however, important information in the data might be ignored as small data clusters might
be ignored. Cross validation, as mentioned earlier in this chapter, can be employed to
assist the selection of this hyperparameter.

The computational costs of kNN can be relatively high as distance computations for
large datasets of high dimensional data is expensive. However, acceleration techniques
exist here, which compute the approximate nearest neighbors (ANNs) Arva et al., 1998.
Conceptually speaking, such techniques trade off a small user controlled tolerance e
when evaluating Eqns. 2.12 and 2.13. This allows them to effectively partition the high-
dimensional space into hierarchical structures such as BSP trees or kd-trees. These can
next be searched top-down to yield the k nearest neighbors very efficiently. This way,
while formally speaking, the kNN learning method has no “training” phase, the training
costs can be thought of being the costs required to build the search structures for ANN.
For more information of efficient k nearest neighbors search structures, we refer to recent
surveys VERMEULEN et al., 2017.

kNN is a simple yet very powerful classification method for smooth target functi-
ons, which same class points are clustered together. Arguably the most common distance
metric used with this method is the Euclidean distance. Depending on the data, other
similarity measures might perform better, as they better reflect data points relations in
original data space. As discussed in this section, kNN decision boundaries have intimate
connections to Voronoi diagrams and, for simple cases, can also be visualized this way.
Given these aspects, we included kNN in the set of classifier techniques we study next.
In Chapter 7, we will explore further the relation between distance transforms, feature
transforms, and the decision boundaries of such classifiers.

2.1.4 Random Forests

Decision Trees (DT) are another type of nonparametric classifiers. The classification
rule employed by this model consists in traversing a tree from the root to a leaf, where the
class labels are stored. During the traversal, each intermediate node, i.e. non-leaf nodes,
in the path splits input space at a certain feature according to a rule the controls what
is the next node to follow on the path. Arguably, the most common rule for real valued
features consists in thresholding, such as [[xl’ < t], where ¢ is the threshold, i is the index
of the data point, and j is the index of a feature in a data point vector x. Another common
rule, but for binary (or categorical) features would be [x] = 1]. As x € R, this kind of
rule is in fact partitioning input space along dimension i. Each path from the root to a leaf
node defines a unique region of data space, thus the number of regions created by the DT
method are equal to the number of leaves in the tree. Trees with many leaves may overfit
to the data as the thresholding rules will be in fact memorizing the dataset and, in order
to avoid that, it is important to penalize large trees.

As an optimal tree construction algorithm is unfeasible, several heuristics, e.g. greedy
search, are used that lead to acceptable performances SHALEV-SHWARTZ e BEN-DAVID,
2014. One example of such algorithms is Iterative Dicotomizer 3 (ID3), described in Al-
gorithm 1, which seeks to repeatedly split the dataset along the feature that has the most

2.1 | MACHINE LEARNING

Figura 2.2: Simple representation of a Decision Tree. Internal nodes, which perform a decision, are
represented by circles and leaf nodes, which hold labels, are drawn as squares. A traversal in this tree
moves to the left if the condition is satisfied, or to the right child if it is not.

information gain (or entropy), that will be reviewed after the algorithm presentation. ID3
is a recursive algorithm that stops when either all samples in the dataset have the same
label, every feature has been split or there are no more samples with respect to which
split the dataset.

Information gain function can be computed using Shannon entropy: E(Y) =
2.ey —P(y)log p(y), where p(y) is the probability of label y. The idea is to measure
the difference in entropy of the label distribution after a certain feature is removed:

G(X,¥,i) = EY) - Y P(x] = 0)EQ|f; = v).

P(x] = v) is computed by dividing the number of samples for which the jth feature is
equal to v by the total number of samples.

Due to the stop conditions defined, the algorithm above usually build large trees,
which leads to overfitting. To avoid overfitting a common strategy is to prune the induced
trees, reducing its size, traversing the tree multiple times starting from the leaves to the
root, merging nodes that would not affect the generalization error.

Random Forests is a classifier that consists in combining a set of Decision Trees. The
classification rule outputs the label returned by the majority of the individual trees when
queried to label a data point, as follows

M
h(x) = argmax;. ZHDTi(X) = k],

where M is the number of Decision Trees employed and C is the list of all possible la-

bels.

In order for the trees to induce different models, a common strategy, known as bagging
in the literature, is to build them using different training sets, randomly sampled from the

23

24

2 | RELATED WORK

Algorithm 1ID3(D, A)

Input: Dataset D, index set of features A c [n]
Output: Node n of the tree
if y; = y¥y;,y; € Y then
return leaf node n with label y;
end if
if A =@ then
return leaf node n with label argmax, .- 3y cy[yi = K]
end if
if D = @ then
return leaf node n with same label as most common class in parent node.
end if
G = InformationGain(&X4) {//Find feature that maximizes information gain}
i = arg maxG {//Split dataset at that feature}

D, = {(x}_, y;) € D, x’:‘ <t}

D, = {(x;,) € D,x; = t}

A = {A\{i}}

New node n

Left child of nis n; = ID3(D;, A”)
Right child of n is n, = ID3(D,, A”)
return n

original input dataset, and also different possible lists of available features for each of
those sets. In this strategy, different trees will be constructed using different data points
while also taking into consideration different features for inference.

While it is easy to visualize and explain the decision process of a single Decision Tree,
it might be challenging to understand the final ensemble of classifiers, which is the case for
Random Forests. Hence this model belongs to a potentially interesting area of classifiers
to be inquired by the visualization methods.

2.1.5 Neural Networks

Neural Network models are conceptually inspired from the functioning of a biologi-
cal human brain and are based on the combination of neurons as basic computing units.
Analogous to their biological counterparts, the artificial neuron (the so-called perceptron)
receives stimulus (inputs) and might fire a reponse (output) according to its inner wor-
kings (activation function).

Figure 2.3 shows a basic neuron that outputs a signal y = (3, w « x)) = O(w'x,),
where 0 is an activation function'. Here, x = {x',...,x"} is the n-dimensional vector
containing the inputs x’ of the neuron, and w = {w', ..., w"} is a corresponding weight
vector. In its basic form, the perceptron computes a linear model, as the Logistic Regres-
sion discussed in Sec. 2.1.1 selecting 6 as the logistic function, or even the basic linear
model presented in Eqn. 2.1. The classification power of a single perceptron is small, as

! As with Logistic Regression, we assume that x is a bias augmented vector.

2.1 | MACHINE LEARNING

1 1
ZU,% w?
O(wlx;)
n
27—

Figura 2.3: Representation of a perceptron. An input vector x; is linearly combined with a weight
vector w and the output is return by a funtion 0.

it is a simple linear combination of parameters and inputs. However, perceptrons are ca-
pable of inducing complicated and flexible decision boundaries when combined into a
computational graph (or network) in which the output of a given neuron becomes the
input of one or several other neurons.

T TN
S g e

AN 0 O

X : X o o o X —>h(X)
Cy 0 9J L@

% n % o s

Figura 2.4: Graph representation of the computation carried out by a Multi Layer Perceptron. Input
layer ly is a data point x, followed by k hidden layers L, ..., Iy, and an output layer is li.,, which
returns the classification decision.

At a basic level, perceptrons can be combined into a so-called Multi Layer Perceptron
(MLP), a model in which neurons are stacked into layers as in Fig. 2.4. An input data
point x is said to be the input layer. The last layer is called the output layer. All layers
between input and output are known as hidden layers. The decision rule is computed
by feeding the output of a given layer as input to the next, in a procedure known as
forward pass. As the number of neurons in each layer vary and based on the choice of
the activation function, each layer effectively performs subsequent data transformations,
even modifying the feature vector dimension in the path up to output layer.

The forward pass, i.e., the decision rule, of a MLP model can be efficiently computed
by consecutive matrix-vector multiplications. At a certain layer [, let x"! be the input
vector to layer [of dimension d'"! + 1, that is, the bias-augmented output of the previous
layer (I - 1). Let W' be a matrix of dimensions d'! + 1 x d!, where d! is the number of
neurons in [. W' represents the weights that connect the outputs of layer I - 1 to every
unit in layer [, as the rows of W represent a single output unit from [- 1 (plus another
row for the bias term) and the columns of W are the neurons in [. With these notations,

25

26

2 | RELATED WORK

the output o’ of layer [is given by

o' =0 ((W) x").

The bias-augmented input to the next layer [+ 1 is then

hence, a MLP that is formed by k hidden layers, as in Fig.2.4, computes a decision rule
h(x) = Lgi(...(La(L1(x)))) = y. We can see the set of all parameters of this model in a
vectorized fashion as w = W', W2, .., W**!, This notation allows us to compactly, and in
accord to previous sections, refer to an error function for this model as E.

A typical error function used to train different Machine Learning models, which is
well suited for MLP, is the mean squared error (MSE), defined as

1 N
N > (h(x) -). (2.14)

n=1

E(w) =

Similarly to the other methods discussed previously, the training algorithm searches
for the parameters w that minimize Eqn. 2.14 by gradient based optimization. However,
different from Logistic Regression (LR) or SVM, the minimum possible error, i.e. global
minimum, for a given dataset is not guaranteed to be found as E(w) in Eqn. 2.14 is not a
convex function CHOROMANSKA et al., 2015. Hence, gradient based optmization methods
will likely find a set of parameters that lead to a local minimum for Neural Networks,
while the same methods can find the global minimum error for LR and SVM due to the
convex nature of the error functions employed. However, in practice, this is not usually a
problem, as neural network training algorithms can find weights that achieve reasonable
performance.

Backpropagation is the algorithm used to update the weights of a neural network du-
ring the training phase. As the output of a single perceptron depends on the output of the
layer behind it, the backpropagation algorithm consists in computing the partial derivati-
ves of the errors with regard to each weight by successively applying the chain rule. The
idea behind this algorithm is to compute the partial derivatives starting from the output
layer back to the input, performing a backward pass that computes the partial derivatives
of a layer [using those of layer [+ 1.

Besides MLP, other layouts (also called architectures) are possible with Neural
Networks. In particular, the so-called Convolutional Neural Networks (CNNs) are compo-
sed of convolutional layers, max pooling layers, and regular fully connected layers. This
type of architecture achieved breakthrough performance on diverse computer vision
tasks and is now the standard tool for image classification problems Yann LECUN et al.,
2015; KR1ZHEVSKY et al., 2012.

A convolutional layer is composed of stacked masks that apply convolutions on the
layer’s input to output a “filtered signal” to the next layer. In a simplified setting, the

2.1 | MACHINE LEARNING

parameters of a convolutional layer are the number of filters K, their size F, stride S
and the amount of zero-padding P. Stride controls how many units the mask will move
when sliding on the input volume, thus a stride of 1 will visit every input (e.g., pixel of
an image), while a value of 2 of this parameter will skip one pixel as the mask moves.
The zero-padding parameter sets how many pixels are added to the borders of the input
dataset (with a value of 0). Without zero-padding, the output is necessarily smaller than
the input since it is not possible to center a mask over every pixel. F determines the width
and height of the filters, while their depth must necessarily match the depth of the input
to the layer.

The input to a convolutional layer is a volume, such as an image of dimensions W x

H x C, where W is the width, H is the height, and C is the number of channels, e.g.,
1 for grayscale images or 3 for color (e.g., RGB) images, respectively. The output of a
convolutional layer is a volume of dimensions W’ x H’ x C’, which is the transformed
input layer by each of the K filters stacked together. The dimensions of the output volume
can be computed as

W’ = (W - F +2P)/S + 1;

H' =(H-F+2P)/S+1,;

C’ =K.

A convolution is computed between the input and the weights of a filter. For a single input
coordinate (i,) of the image (or volume) space, the output of a convolution is

K F F
g(w,h) = Z Z Z LiiaijeajiMaiaj 1, (2.15)
=1

di=-F dj=—F

where M is a certain mask and I is the input volume. Note that as the input and the
filter have the same depth, we do not consider variations across that dimension. A full
convolution is the result of the application of Eqn. 2.15 to every coordinate (i,j) of the
input volume.

A max pooling layer is usually placed after a convolutional layer, or a sequence of
convolutional layers, and its objective is to reduce the size of the feature maps. The pa-
rameters of a max pooling layer are its size F and the stride S, similar to the parameters
of a convolutional layer. In this type of layer, a mask of size F x F is applied to each slice
of the volume along its depth, i.e. number of filters K in the previous convolutional layer.
As the mask defined by the max pooling layer slides over a slice of size W x H, only
the maximum value among the F x F features under the mask is kept to the next layer,
discarding the remaining. Notice that a max pooling layer does not contain any weight
that will be learned during the training phase of the network.

A depiction of the data transformation performed by the layers of CNN is shown
in Fig. 2.5. In this example, the input is a (grayscale) image of a handwritten digit from
the MNIST dataset Y. LECUN et al., 2010. Data is transformed by consecutive layers until
it is linearized into a feature vector. From that point onward, regular fully connected
layers can be applied to compute a decision rule and output a data label in a classification
scenario.

27

28

2 | RELATED WORK

Y

(a) (b) (c) (d) (e) (f) (@) (h)

Figura 2.5: Data transformation performed by a CNN. Yellow volumes represent the output of a
convolutional layer. Red volumes are the output of max-pooling layers. In this example, the network
takes a grayscale image as input (a) and the first convolutional layer transforms it into a volume of
stacked filtered signals (b). After that, a max-pooling layer reduces the size of the volume along two
dimensions and outputs the new volume in (c). The sequence of convolutional and max-pooling layers
continue to perform data transformations (d) - (g) — until the volume is “linearized” in (h).

In the context of our work, neural networks are arguably the most interesting ML
model to study. The reason is two-fold: (a) they are state of the art methods that deliver
high-quality results for many challenging classification and regression problems; and (b)
these models are, in general, typically seen as “black boxes”, due to the lack of interpreta-
bility of their decision function. Opening this black box is seen as highly valuable in a wide
range of fields AzobiI et al.,, 2020; Z1HNI et al., 2020; DosiLovr’cC et al., 2018; SHWARTZ-Z1v
e TisuBy, 2017.

2.2 Visual Analytics for Machine Learning

Information visualization has been largely applied to the visualization and unders-
tanding of high-dimensional data. As such, it relates to our context in two different ways.
First, since machine learning inherently deals with high-dimensional data, visualization
methods that generically enable users to see the structure of such data and reason about it,
are of evident interest. Secondly, more specific techniques have been proposed in the vi-
sual analytics context for explaining and improving classifiers. At a high level, the second
class of techniques can be seen as relying upon, but also specializing, the first class.

We structure this discussion as follows. First, we briefly overview in Sec. 2.2.1 a num-
ber of general-purpose information visualization techniques for high-dimensional data.
While these techniques are used in some applications related to machine learning, they are
not the first or most-encountered candidates for such tasks in practice. We explain their
limitations, and based on these, our reasons for not subsequently considering them in our

2.2 | VISUAL ANALYTICS FOR MACHINE LEARNING

work. Section 2.2.2 introduces dimensionality reduction techniques. These have several
key advantages when dealing with high-dimensional data, and thus form the mainstream
of visualization approaches used in machine learning. As such, we also chose to base our
visualization work next on techniques in this class. We explain further in this section a few
of the techniques in this class that we further consider in our work. Section 2.2.3 presents
a separate class of techniques - inverse projections — which perform the inverse operation
to dimensionality reduction. We outline several salient examples of these techniques and
explain how they can contribute to our visualization goals. Finally, Section 2.2.4 presents
specialized visual analytics techniques and tools designed to support tasks in machine
learning such as explaining and improving classifiers.

2.2.1 High-Dimensional Data Visualization

In the preliminaries definitions for Machine Learning in Sec. 2.1, we defined a high
dimensional dataset D to be composed of pairs of observations (x;) and labels (y;). For vi-
sualization purposes, we refer to X as our dataset of interest, and the definitions described
earlier still apply.

High-dimensional data visualization is a subdomain of information visualization
(Infovis) which aims at creating visual depictions of such high-dimensional datasets
X KEHRER e HAUSER, 2013; MUNZNER, 2015; Alexandru C TELEA, 2015; S. L1U et al., 2015.
In general, and within suitable simplifications required by a brief presentation, such te-
chniques can be classified between two extremes, as follows. At one extreme, dimension-
centric techniques aim to explicitly encode the dimensions X/ of X in the available visual
space. Thereby, such techniques support well tasks and questions which are intrinsically
related to dimensions, such as finding (groups of) strongly correlated dimensions, seeing
how the sample values change along a given dimension, and finding extremal or outlier
values of these values along one or more dimensions. However, reasoning about specific
observations is not (always) easy with such techniques, since the observations are not (sa-
liently) displayed by the visual representation. A very simple example of such a technique
would be a correlation matrix showing, for each dimension-pair (i,) € [1, n] x [1, n] the
Pearson correlation of X’ and X’. We can see these correlations explicitly, but we do not
know how the observations contribute to them. At the other extreme, observation-centric
techniques do the opposite: They explicitly encode the observations x; of & in the visual
representation, but leave little space for explaining their dimensions. These techniques,
thus, support well tasks where reasoning about a specific observation is important. One
simple example hereof is a classical Excel table view: In this table, we can search for a
given observation (row) and fully see all its details. However, we cannot (easily) reason
about entire columns (dimensions).

In practice, high-dimensional visualization techniques are always in between the
above-mentioned two extremes. We next discuss three of the most used, and best known,
such techniques.

Table lensesRao e CARD, 1994 generalize the simple idea of Excel (or similar) table
views. Figure 2.6(a, left) shows such a table view in which several tens of rows (observa-
tions) are displayed, each having seven attributes (columns). As explained above, such a
detailed table view allows one to precisely reason about the observations, but not much

29

30

2 | RELATED WORK

W | e | tme | om | [dme |

in 5015 1100 1460000 = 1460000 | [MGOOOON 1460000 v

I/ [0/ & 65:“
ol | o e B qéj &

o A0 1400 1500000 ® 1500000 | SATO00ON 1.470000

s 250441300 1500000 ¢ 1520000 | SHO00M 1.520000

4% ABRA 1200 1470000 ¢ 150000 | SATOGON 150000 C

il 2514 1000 1510000 = 1510000 | NSHONNON 1510000 B =

o z
bl A0 1500 1490000 # 140000 | [SHGOOOON 1460000 Z & o

9
B

] BRI 140 LMD ¢ 13000] LBO0 1300 3
an 5010 1300 L3000 e 1350000| 1310000 1360000 3
40 205010 200 1300000 1310000 130000 1310000 | = -
481 5010 100 130000 = 100000 1300000 100 3

42 A5 1600 L0000 ¢ 120000 L1000 1220000 5 a8

N

@ s 20 12300 e 10
@ s 150 L2000 ¢ 10000 1200000 1290000 v
% IEpM BE (WM elamo Lo 1aom o
© e RO B0 *1F00| B0 1500

a5 AR 1500 12000 6 1300 120000 13000 &

4% 2050203 1400 1340000 ® 1.340000[1310000 1310000

a0 A5R0 10 L3000 = 1300 L300 L300

) ASRE 20 L3000 6 13000 LA000 L300

4 AERER B0 12000 ¢ 12000 1270000 127000 X

S0 ABRE 140 1200 61240000 L2000 1240000
sit ASRE 30 120000 612000 L2000 120000 3
s ABRE 200 L0000 o 124000] A

s A5Q00 600 L9000 = 1190000 LS00 L190000 &
S04 05040 150 1180000 ¢ 1190000 L180000 1190000 (3
S5 ABGROL 100 LIG00 * 16000 LIS L1600

S0 AE®H 60 U000 *Lumd L0 Li00) $£
S0 AERG GO 100D eluDD LW Luwm

S AERG 2O 000 -LOND LN LIOWOD

=1l | M8l bl

46.6 8 0 230.0 5140.0 248

year

- mu /"‘b-um\/ |

HOlS&pows 34100 Acceluration
133.0 158

MPG=
162

90 10 460 1613.0 80 0.C
MPG Cylinders Horsepowe Weight Acceleration 82

Figura 2.6: Examples of high-dimensional visualizations. a) Table view and its corresponding
zoomed-out table lens. b) Scatterplot matrix. c) Parallel coordinates plot.

more. Figure 2.6(a, right) shows the underlying idea of a table lens. Simply put, this is
a zoomed-out view of the detailed view, where each row is shrunk to become a single
horizontal pixel line. In this design, cell text is no longer visible. However, the actual cell
values can be mapped to colors and/or bar lengths. This way, essentially each column is
reduced to a line or bar chart. Hence, users can reason about entire dimensions at a time,
by seeing trends in the respective charts. For example, in Figure 2.6(a, right), we can easily
see that several columns show very similar charts, thus have strongly correlated attribu-
tes. Conversely, the leftmost two columns show opposite-pattern charts, thus, indicate
inversely correlated attributes. The “lens” idea comes in next, by allowing users to select
a specific point (row) in the charts, upon which rows close to that point are rendered atop
the zoomed-out view to show details on demand. Table lenses scale very well to datasets of
hundreds of thousands of observations by using suitable aggregations of contiguous table
rows that would have otherwise subpixel size A. C. TELEA, 2006. However, the number of
dimensions (columns) this technique can handle is limited to roughly 10..20. Moreover,
table lenses cannot easily show more complex data patterns such as groups of samples
(rows) that are similar.

Scatterplot matrices CARR et al., 1987, or SPLOMs, are closer to a dimension-centric

2.2 | VISUAL ANALYTICS FOR MACHINE LEARNING

technique than table lenses. Simply put these use a small-multiple design that creates a
table of scatterplots, one for each pair of dimensions (X', X/, with1 < i < n,1 < j < n.
Figure 2.6b shows such a scatterplot matrix for a n = 7-dimensional dataset. The table
allows one to see how each such dimension-pair is correlated (or not), but also whether
different dimension-pairs exhibit similar correlation patterns. Note that the displayed ma-
trix is symmetric by definition so, strictly speaking, displaying only its upper-triangular
half, or the other half, would be enough. However, SPLOMs are not very effective when
supporting observation-centric tasks. An observation, actually, does not even have a clear
visual identity in this metaphor, as it is represented by a set of n® points, one located within
each SPLOM cell. While SPLOMs have been further enhanced by various interaction and
visualization mechanisms YATEs et al., 2014; RENSINK e BALDRIDGE, 2010, their usage can
become cumbersome when the number of dimensions exceeds roughly d = 10. This poses
a clear limitation in the context of our work.

Scagnostics]. W. Tukey e P. A. TUukEey, 1988; WILKINSON et al., 2006 recognize the
aforementioned problem of SPLOMs and aim to address it, for large n, by explicitly sear-
ching, among the set of all possible n? scatterplots, for a small subset of “interesting” ones.
Upon finding such plots, they are presented to the user for further inspection. Interest
can be defined, and computed, by using many types of metrics, which essentially search
for specific patterns in the scatterplot, related to specific tasks that the user is interested
in DANG e WILKINSON, 2014; LEHMANN et al, 2012; PANDEY et al., 2016. Simple patterns
include distributions close to lines (showing thus strong direct or inverse correlations),
clumpiness (showing the presence of well-separated data clusters), or the presence of ou-
tliers. However, such techniques have several limitations. One must, in general, compute
all n® possible scatterplots to search for interesting patterns, which is expensive. The de-
tection of patterns is also far from being a trivial process. More importantly in our context,
finding patterns which are spanned by more than a few dimensions, but do not appear
in any of the corresponding two-dimensional scatterplots, is problematic Stps et al., 2009:
If we are to search for such patterns, the search complexity explodes; and even if we
can find them, how to show them using scatterplots only? Several additional techniques
related to scatterplots, and thus scagnostics exist. Principal curves and their variations
allow simplifying a scatterplot distribution to a set of curves, thereby making depiction
more compact and also allowing to search for structural patterns in the data HASTIE e
STUETZLE, 1989; OZERTEM e ERDOGMUS, 2011; FLORES et al., 2019. Summarizing the above,
and especially given the fact that we do not know which exact patterns we are looking
for in the high-dimensional data of our machine learning applications (to display decision
boundaries), we do not consider scagnostic techniques further.

Parallel coordinate plots INSELBERG e DIMSDALE, 1990, or PCPs, are the fourth and last
type of technique we discuss here. PCPs use a similar layout to table lenses (see Fig. 2.6d):
They create n vertical axes, one per dimension, and use the values of x/ to place points
along these axes for all samples. Next, they connect all values x] for a given sample x; to
depict this sample as a polyline. The overall design allows several analyses. First, one can
look at each axis j to see the distribution of values along X/, or compare several such axes
to reason about their distribution differences. More interestingly, the rendered polylines
show patterns describing relations between dimensions. For instance, an X-like pattern,
as visible in Fig. 2.6d between the leftmost two axes, indicates a strong inverse correlation.

31

32

2 | RELATED WORK

Parallel-line patterns, such as between the two axes in the middle of the image, indicate a
strong direct correlation. In contrast to SPLOMs, reasoning about specific observations is
easier in PCPs, as these can be directly selected or brushed over to examine them — such
as the observation marked in red in the figure. Despite these features, PCPs also have
limitations. Just as table lenses, they cannot show more than roughly 10..20 dimensions.
Moreover, ordering dimensions is necessary to be able to examine correlation patterns
between adjoint dimensions in the visualization. Finally, PCPs can easily create clutter
since every observation takes significant screen space. Given our work context, we also
do not see how PCPs could be leveraged to reason about patterns formed by multiple
observations together, beyond those such a simple correlations and similar, and thus we
do not consider PCPs further.

Table 2D projection

[id] category | name | date || time open high low | close
% o B3 3 0

20041130 | 1400 795000 0735000 0795000 0.7
20041130 | 12:00 200000 0200000 0795000 0795000
SIFL 20041130 | 13:00 795000 0735000 795000
SIFL 20041130 | 16:00 735000 0735000 0795000 0735000
SIFL 20041130 | 15:00 795000 0735000 s
SIFL 20050002 | 12:00 755000 0730000 0785000 0730000
SIF1 20050002 | 13:00 790000 0735000 0.790000 0735000

e son oot [e Jooooososooorcaseors osooon)

P

;

‘

"

3

F

i

i

3

r

' tabl t

a table row gets

S SIF1 20050003 | 13:00 735000 0735000 0735000 0.735000 %
621 s SIF1L 2005-00.03 | 1400 735000 0795000 0.795000 0.735000 dt t
mapped to a poin

F

i

"

F

3

;

3

F

i

‘

i

i

:

:

SIFL 2005.0003 [12:00 795000 0735000 0795000 0795000

SIFL 20050006 | 11:00 730000 0730000 0790000 0730000
SIFL

2005.00. 12:00 7 X
SIF1 20050008 | 14100 795000 0735000 0.795000 0795000

~‘/2I,D point distance reflects
nD row similarity

color map values of
a selected column

Figura 2.7: Using projections in machine learning. From a high-dimensional dataset (left), a projec-
tion (right) is created using the independent data attributes (features). Next, one can color map the
dependent data attribute (class label) to see how the features succeed (or not) to predict it.

2.2.2 Dimensionality Reduction

Interesting problems often involve high-dimensional data, such as image recognition
(where every pixel represents a value along one dimension) or medical task related to
genomic data, where millions of combinations are possible. Even trivial tasks, such as
hand written digit recognition (MNIST Y. LECuUN et al,, 2010) from 28 x 28 pixels grayscale
images already requires the handling of 784-dimensional data.

The curse of dimensionality is an important concept for every task that handles data in
high-dimensions. As the number of dimensions grow, our human intuitions are no longer
(fully) valid, since a finite set of samples can only sparsely cover a high-dimensional data
space, as its volume grows exponentially with the number of dimensions n. Moreover,
the computational power needed to train ML models also increases with the number of
dimensions. As the complexity of many algorithms depends on the number of dimensions,
high dimensional data also poses a problem due to scalability.

Although most real problems are high-dimensional, the samples are often restricted to
a small region of data space. Consider the example of MNIST dataset cited above, where

2.2 | VISUAL ANALYTICS FOR MACHINE LEARNING

the set of samples are contained in a 784-dimensional space, i.e. x; € 255’**, only a small
fraction of all the possible points in this space are valid digits.

One approach to handle such a scenario is through the use of dimensionality reduc-
tion techniques. The basic idea is to transform data from a high dimensional space into a
lower-dimensional one, while keeping important properties from the original space in the
new space. Formally put, given a set of N n-dimensional samples X, we want to create an
identical-size set P(X) = {y;}, 1 < i = N, where each sample y; € R™ is embedded within
a (far) lower dimensional space, that is, m « n. In the above process, it is very important
to mention that there is a one-to-one correspondence of original and low-dimensionality
samples, i.e., y; corresponds to x;. This can be denoted by writing y; = P(x;). When refer-
ring to a dimensionality reduction context, we denote the set Y = {yy,...,yn} as the set of
samples in a lower dimensional space, different from Sec. 2.1 where Y was a set of labels.
With that we aim at preserving the notation used most commonly by dimensionality
reduction community.

Here, P can be seen as the dimensionality-reduction (DR) operation, also called so-
metimes multidimensional projection. Note, however, that this notation does not imply
that the projection of y; can be solely computed by knowing x;. Rather, we can speak,
in functional terms of the entire dataset P(X’) being computed by projecting the entire
dataset X.

Making inferences in this new, low-dimensional, space should be easier as the dimen-
sionality is lower, since computing various characteristics of the data is easier. A particular
instance of this statement refers to visualization. Indeed, when m € {2, 3}, we can directly
draw P(X), e.g., as a scatterplot. Then, by visualizing this scatterplot, we can find (hope-
fully) patterns which exist in the high-dimensional space and the projection operator P
managed to preserve.

In our context, projections are particularly interesting instruments. Figure 2.7 illustra-
tes this schematically. Consider a high-dimensional dataset, represented by the table left
in the image. Assume this table has n + 1 columns, where n columns represent the data
features, and the final column represents the class labels, such as present in a training
or test set. The n feature vectors can be used to generate a projection, such as shown
on the right. Assuming that the projection technique P used for this will preserve data
structure — which typically means that samples which have similar feature vectors are
projected close to each other — the projection can help us with two main tasks. First, if
we see groups, or clusters, of points forming in the projection, it means that the data is
not uniformly distributed in the high dimensions, but rather consists of sets of clusters
too. This is already an important unsupervised machine learning insight: Indeed, if the
data (as represented by its feature vectors) were uniformly distributed in this space, then it
would not be likely that we can use the respective features to “split” the data into different
classes. Secondly, we can color the projection by the values of the class attribute (column).
If we, next, see that clusters of points (in the projection) have the same color, it means
that the respective samples, which are similar given their feature vectors, are of the same
class, and hence the feature vectors are likely suitable to predict the class attribute. Con-
versely, if we see that such clusters consist of a mix of colors, the respective features may
have trouble in building a good classification model. By extension, seeing a few “outlier”

33

34

2 | RELATED WORK

points — having one color but surrounded by many points of a different color - indicates
us potential classification problems. Finally, plotting the actual misclassified points atop
of such a projection allows us to reason about which data attributes these have and how
these may have caused problems to the classifier. These, and other, scenarios have been
recently examined in recent literature P. RAUBER et al,, 2015; P. E. RAUBER et al, 2017;
Paulo E RAUBER et al, 2017. In particular, Rauber et al. P. E. RAUBER et al.,, 2017 show
that projections can be used as good predictors for the ease of constructing a good clas-
sifier from a given training set. The idea is further developed in BENnaTO et al, 2018, who
show how projections can be used to improve an existing classifier by semi-supervised
training.

Hence, given all above observations, we deem projections to be the most suitable
method for further exploring for our research goals. Also, at this point, we can further
connect our specific visualization aims - depicting decision zones - to the projection me-
taphor. Consider again Fig. 2.7. If, as in that figure, we observe that our machine learning
dataset projects into a set of well-separated clusters, and coloring these by the class labels
inferred by a trained classifier shows compact same-color point groups, it is clear that the
decision boundaries fall somewhere in between these colored groups. However, projec-
tions — depicted as class-label-colored scatterplots — do not explicitly show where such
boundaries occur, leaving this task to the intuition, and largely imagination, of the user
to place them in the blank space between points. As we shall see starting from Chapter 4,
our goal will be to construct and explicitly visualize such decision boundaries atop of, and
using, projection scatterplots.

In the past decades, tens of projection techniques have been proposed. These are
discussed in detail in several surveys ENGEL et al, 2012; POLZLBAUER, 2004; MAATEN e
PosTtMA, 2009; FOoDOR, 2002; HOFFMAN e GRINSTEIN, 2002; YIN, 2007; CUNNINGHAM €
GHAHRAMANTI, 2015; NONATO e AUPETIT, 2018; SORZANO et al., 2014. These surveys have
emerged from various fields, such as data science, statistics, machine learning, and infor-
mation visualization. As such, they cover different aspects, such as proposing taxonomies
to classify projection techniques according to their underlying algorithms and models;
ways to define and measure the errors created by projections; types of patterns that spe-
cific projection techniques are good at capturing; and assumptions about the input high-
dimensional data these techniques expect. It is impossible, and arguably of little use to
summarize these findings and relate them to our concrete research context.

Rather, for choosing which dimensionality reduction we will next use in our work, we
will consider a separate recent survey M. EsPADOTO, MARTINS et al., 2019. In this survey,
the authors analyze 44 actual implementations of projection techniques against 20 data-
sets, using six different quality metrics from the literature. The presented experiments,
done by performing extensive grid searches over the projections’” hyperparameters, pro-
vide several important insights in the quality, and computational complexity, of the res-
pective algorithms. Following their analysis, we selected next three projection techniques
to consider in our research work. These are described next.

2.2 | VISUAL ANALYTICS FOR MACHINE LEARNING

LAMP: Local Affine Multidimensional Projection

Local Affine Multidimensional Projection (LAMP) Jo1a et al., 2011 is a parametric dimen-
sionality reduction method that aims at preserving in the lower dimensional embedding
the Euclidean distance observed between the points in the original, high dimensional,
data space.

To accomplish this, LAMP algorithm constructs an affine mapping for each of the
high-dimensional data points x; by using a set of so-called control points. Control points
are a small subset of the entire dataset that is already be projected. More formally, we
denote the set of control points as Xs = {x3,...,x3}, Xs € X.Let Vs = {y}, ...,y }, Vs c R?,
be the projections of X’s. These projections can be constructed by any suitable method,
be it one of the multidimensional projection techniques known in the literature, or even
by having the user manually place the points in Vs in the 2D space to reflect perceived
similarities. The key idea of LAMP is that constructing a projection for the control point
set X's is much easier (and/or faster) than constructing a projection for the typically far
larger dataset X. Hence, LAMP “extrapolates” the control-point projection Ys to project
the entire dataset X, by an affine mapping.

For every point x, LAMP defines an affine mapping of the form f,(p) = pM + t. The
matrix M and the vector t are found by solving the following optimization problem

k
minAi4r)¥1ize ; a; “fx(xf) - yf)||2
subject to M'M =1 (2.16)
1
ith iz e g2
w1 o fo ~ XHZ

Hence, for each point x to be projected, the objective of LAMP is to find a mapping that
best matches the projection done for the set control points X5, weighted by the distances
from x to each control point.

As shown in the original publication Joia et al, 2011, the minimization problem in
Eqn. 2.16 is equivalent to the minimization problem below

k
min}i\gnize Z a; |xiM - yi||2
i1

subjectto MM =1

k
with X=X — M (2'17)
| i k s
Zi=1 a;
k
5}, — _ Zi=1 a;yi
1= i k

After M is found by solving the optimization problem in Eqn. 2.17, the projection of
a given point is obtained as

35

2 | RELATED WORK

k k
P(X) — (X _ Zi:kl alxl> M " Zi:kl aly1‘ (2.18)
Dt Qi Do Qi

LAMP can be modified to work as a local projection method by restricting the number
of points from the control set Xs used when inducing M. For this, a common choice is to
consider in Eqn. 2.18 only a (small) number of the nearest control points to the current
point x to project.

LAMP is an easy to implement and relatively fast method, as the minimization problem
can be solved by employing Singular Value Decomposition (SVD). However, the fact that
LAMP relies on the projection of a control point set can be a problem. If the control point
set X5 does not describe well the total dataset X to be projected, then LAMP may create
a poor quality projection. This can happen, for example, when & samples a much larger
region of the high-dimensional data space than Xs. This issue is not unique to LAMP; all
other projection methods based on control points (or landmarks) suffer from the same
limitation NoNATO e AUPETIT, 2018; CHEN et al.,, 2006; V. d. S1Lva e TENENBAUM, 2003.
Interestingly, recent projection methods based on deep learning also exhibit the same
limitation M. EspapoTO, HIRATA et al, 2020a. The analogy here is that a learning algo-
rithm can extrapolate the information learned from a training set only up to a maximal
“distance” to this training set.

A second important ingredient of LAMP is the assumption of an inverse projection
method, i.e., a mapping from a pointy € R? to a point x € R" that would project at (or close
to) y. We discuss this inverse projection separately in Sec. 2.2.3, as inverse projections will
be central to our own work in visualizing decision zones.

t-SNE: t-Distributed Stochastic Neighbor Embedding

t-Distributed Stochastic Neighbor Embedding (t-SNE) MAATEN e G. HiNTON, 2008
is a nonparametric, nonlinear projection technique based on minimizing the difference
between the distributions of data points similarity in high and low dimensions. That is,
similarities inferred for the 2D space must be as close as possible to that of the original nD
data space. This method is popular and frequently employed for the visualization of high-
dimensional datasets due to its underlying neighborhood preservation property, that is,
it is likely that neighbor points in nD will be projected closely in 2D. As a consequence,
if one has a dataset in which reasonably well separated sample clusters exist (in R"), then
t-SNE will create a projection in which these clusters also appear well separated. t-SNE
has few hyparameters, from which perplexity is the most important one, as discussed
next.

In the t-SNE algorithm, data similarity in R” is computed for each pair of data points
x; and x;. In detail, the method computes the probability that x; picks x; as its neighbor,
sampled from a Gaussian distribution centered at x; and of standard deviation o; as

exp (- [xi - x| 125%)
> iii €XP (— Ix; - xi|? /20?)’

pjli =

2.2 | VISUAL ANALYTICS FOR MACHINE LEARNING

where p;; = 0. The parameter o; is computed based on perplexity = which is a hyperpara-
meter of the method defined by the user. First, p;; is computed for a predefined value o;.
The next step consists in finding ¢ values that satisfy

T = 22 Piilog, pji (2.19)

The o; values are found by solving Eqn. 2.19 by numerical methods, e.g., using bisec-
tion.

After this step, a symmetric version of the similarities is computed as

__ Pt piy
Pi 2n

Similarity for the projected data P(x;) is separately modeled by a Student’s t-
distribution

2y 1
(el yh)
_1 b
Dkel (1 +|yx - Yl||2)
As for the similarity of the high-dimensional points, g; = 0 and g;; = g;;.

ij (2.20)

Having now defined similarities of points in the high-dimensional space and in the 2D
projection, the aim is to construct a mapping that minimizes differences between them.
This difference is measured by computing the Kullback-Leibler divergence between the
respective distributions of P and Q, i.e.

KLPIO) = 3 Y pylog (221

To minimize this difference, t-SNE starts from a random initial state, or random projection
Y = {yi,...,¥a}, and next iteratively updates the projected points y; by moving them
downstream in the gradient of the cost function (Eqn. 2.21).

In contrast to other projection techniques, t-SNE is strictly used for data visualization
rather than dimensionality reduction from n dimensions to some other number of m « n
dimensions. The reason for this is that the similarity model used for the projected points
(Eqn. 2.20) is specifically tailored to two (maximally three) dimensions, so as to repel
dissimilar data points while grouping similar ones in the projection.

As mentioned, t-SNE’s strongest point is the ability to depict the presence of well-
defined clusters of similar samples, when such clusters exist in the high-dimensional data.
However, an important drawback of the method is the difficulty to find a good value for
the perplexity 7z, which can strongly depend on the input dataset. Also, t-SNE is relatively
computationally expensive. Still, we weigh t-SNE’s advantages as being larger than its
limitations, and therefore consider it in our work in visualizing decision boundaries.

UMAP: Uniform Manifold Approximation and Projection

Uniform Manifold Approximation and Projection (UMAP) McINNEs e HEALy, 2018 is
a dimensionality reduction technique based on the theoretical framework of algebraic

37

38

2 | RELATED WORK

topology. In contrast to t-SNE, presented in the previous section, UMAP is suitable for
general dimensionality reduction. Also, UMAP can be used to create projections with
out-of-sample capability. That is, UMAP can learn a mapping from R" to R? (rather than
a projection of a single dataset X’ to P(X)), which can then be used to project multiple
datasets, or multiple versions of the same dataset.

While discussing the theoretical foundations of UMAP is outside the scope of this
thesis, we present next a brief description of the algorithm. Similarly to t-SNE, UMAP
induces a representation of the high dimensional input dataset X based on a similarity
measure d : X x X — R,.

The algorithm starts by computing for each data point x; € & its k nearest neighbors
NN} = {x,...,x; } with respect to the similarity measure d, where is k a hyperparameter
of the algorithm.

For each x;, let
pi = min {d(x;x;)},
XijENNIL

be the minimal distance d between x; and its nearest neighbors.

Similar to t-SNE, UMAP aims to numerically find the value o; that satisfies

K _ max <)o
Zexp(max (0, d (x;,x;) pl)):logz(k).

o

Using p; and o;, a weighted directed graph G = (V, E, w) is constructed. The vertices are
the samples from the input dataset X. Edges are created from each x; to its neighbors in
NN}, with edge weights computed as

- maX(Oa d(Xb Xi‘) - pl)
w(X;, X;,) = exp ! .
Oi
Note that G is a directed graph. To symmetrize the problem, an undirected graph G is
computed using the adjacency matrix A of G. We refer to the adjacency matrix of G as B,
which is computed as
B=A+AT - AAT, (2.22)

where MoN denotes the pointwise product between matrices M and N. The projected
points y; are now computed as the layout, i.e. vertex positions, of the graph G, represented
by the matrix B in Eqn. 2.22. In detail, y; are initialized randomly and next iteratively
updated according to attraction and repulsion rules.

Similarly to t-SNE, UMAP can produce projections that exhibit clearly separated visual
clusters for data points which are separated in the high-dimensional space. The method
is computationally less expensive than t-SNE, has easy-to-set parameters and, as already
mentioned, has the out-of-sample capability, which is important when one wants to pro-
ject the same (or related) dataset(s) multiple times and compare the projections. A more
detailed comparison of t-SNE and UMAP is given in McINNEs e HEALy, 2018; M. Espa-
DOTO, MARTINS et al, 2019. Given all above, we also consider UMAP, along with LAMP

2.2 | VISUAL ANALYTICS FOR MACHINE LEARNING

and t-SNE, in our work next.

2.2.3 Inverse Projection Techniques

In Sec. 2.2.2, we presented the overall idea of projections as functions which associate
to every point x in the high-dimensional space a corresponding point y = P(x) in the
low-dimensional space. Given this functional view, an interesting (and natural) question
comes: Can we define, and compute, an inverse function P! that, given a point y in the
low dimensional space, returns the point x that would have projected to y by using the
mapping P? Or, putting it simpler: What would be the table row, in Fig. 2.7, that would
correspond to any 2D point selected in the right image?

Before explaining why inverse projections are useful, it is important to understand
that, in the above, we cannot speak about an inverse function, in the strict mathematical
sense of the word, for several reasons. First, certain projection techniques do not propose
a mapping from the R" to the low-dimensional R™ space, but a mapping from the high-
dimensional dataset X to the low-dimensional scatterplot (thus, also dataset) P(X). When
X changes, the mapping P changes too. Stronger, even when the same projection algo-
rithm is run several times on a given dataset X', non-parametric algorithms can generate
different scatterplots P(&X’), subject to various stochastic initializations. Examples hereof
are LAMP and t-SNE, discussed earlier. Hence, if we aim to compute an inverse by con-
sidering any point y € R™, we actually need a mapping between the spaces R™ and R".
Graphically put: If we select to inversely-project a point y that corresponds to empty space
in the scatterplot in Fig. 2.7, there is no actual data sample that P projected there. Hence,
P! will have to somehow interpolate between the actual data samples in D. Secondly,
projection techniques do not need to be injective mappings: It is very well possible that,
given two points x; € &, X, € X, X; # X, these get projected in the same location, i.e.,
P(x;) = P(x;). Principal Component Analysis (PCA) JOLLIFFE, 1986 is a simple example of
an algorithm that can generate such issues. Hence, when considering P(x;), what should
be its inverse?

Regardless of the fact that we cannot formally define P! as an inverse function of P,
the inverse idea can be defined in a weak sense. That is, given a projection P of a dataset
D, an inverse projection should, ideally

- associate, for every y € P(X), the point x € X that projected there (if such a single
point projected at that place) or, more loosely, a suitable blending (interpolation) of
all points in X that project at, or close to, y;

« behave in a continuous, interpolating, fashion. That is, a point y* € R™ which is
close to several points y € P(&X) should inversely project close to the points x € X,
where y = P(x).

Within the above weak definition of inverse projections, such techniques have a num-
ber of uses. For example, assume a projection where each point visually depicts a high-
dimensional data instance, such as a shape. Clicking somewhere close to a set of existing
shapes, e.g. in the middle of their respective scatterplot points, would generate, by inverse
projection, a shape that suitably blends to the existing shapes projected there. This type
of technique can be very effective for generating additional data from a given, finite-

39

40

2 | RELATED WORK

size, dataset SANTOS AMORIM et al., 2012. Similarly, imagine that the projected data points
represent presets of the parameters of some simulation or process. Clicking somewhere
between a set of such presets would generate a parameter-set that suitably blends between
the respective presets OVERVELD e J.]. van WIJK, 2003; A. TELEA e VOINEA, 2006. By extra-
polation, we find inverse projections a very interesting mechanism to study in the context
of exploring the decision spaces of classifiers, if these spaces are presented by means of
projection scatterplots.

In contrast to (direct) projections, only a few inverse projection algorithms exist in the
literature. We present the two such algorithms we are aware of next. In Chapter 6, we will
propose a new method for inverse projections and compare it with these two algorithms
presented below.

Inverse LAMP

Inverse Local Affine Multidimensional Projection (iLAMP) is an inverse projection te-
chnique based on the same theoretical foundations of LAMP, discussed in Sec. 2.2.2. As
with LAMP, for each new point y € R? to be inverted (or inversely projected), a new affine
transformation has to be induced, based on a subset of the projected data points from the
entire projection) and their high dimensional counterparts in X.

The iLAMP algorithm starts by finding the set Vs = {yj, ..., y«} of the k closest points
to y in the projection, i.e. Vs ¢ Y, and their nD counterparts Xs = {xy,...,xx} ¢ X. The
goal of the algorithm is to find an affine transformation of the form f,(p) = pM +t, where
the matrix M and the vector t depend on y, and are such that they obey the following

condition
k

minAi4r,Pize Z a; “fy(Yi) - Xi)“2

i=1
subjectto MM =1
1

with o= ——.
lys - y]*

The above optimization problem is equivalent to the minimization below

k
min}i\}nize Z a; ||§’iM -)A(i”Z
i=1

subjectto MM =1

A Zi;l aiX;

with X; =X - = ,
i
k
_ i QY
YZ - yi - k

Given M, found by solving the optimization problem above, the inverse projection of the

2.2 | VISUAL ANALYTICS FOR MACHINE LEARNING

2D point y is given by

k k
Pl(y) = _ X @i\ o K FiXi
y y Zk .

i=1 @i ;

As with LAMP, the algorithm to find M relies on SVD, which has fast and readily
available implementations in many numerical methods packages.

RBF based Inverse

As an alternative to iLAMP, E. AMORIM et alE. AMORIM et al., 2015 use radial basis
functions (RBFs) to interpolate among 2D and nD data points to output a high-dimensional
candidate for a given point in the 2D projection plane. RBFs are real valued functions that
depend only on the distance of the argument to a given point, i.e., satisfy the property
o(x) = ¢(|x - c|), where c is a reference point and |-| is a distance metric.

While iLAMP performs data interpolation weighted by Euclidean distance, RBF-based
inverse projection uses kernels to estimate data similarity. Kernels commonly used in
practice are the Gaussian ¢(r) = e and Multiquadrics ¢(r) = /1 - (er)?, where € is
a parameter controlling the kernel’s shape. Let P"'(y) = (P;!(y),..., P,'(y)) be the nD
inverse of the 2D point y. The k" coordinate (1 < k < n) of the inverse of a given 2D
point y is obtained by interpolation as follows

N

P(y) = Y. A olly: - yl) (2.23)

i=1

The coefficients A from Eqn. 2.23 are determined from the constraint that the inverse
mapping suits the data for which we know actual projection locations, i.e., given by P(X) =
Y. That is, for a 2D point y; € Y and its high dimensional counterpart x; € X, RBF-based
inverse method finds A that satisfy

N
P(y)) =), Aellyi - vil) = X (2.24)
i=1

The coefficients A¥ for a given coordinate k can thus be found by solving the linear system
of equations below

P11 P12 0 OIN A{c Xlk

Ak xk
Qo1 P22 PN || A2 | _ | X2 (2.25)
N1 PNz o] LA X\

where ¢;; is the value of the RBF ¢ for reference point i and evaluation point j and x]
is the j* dimension of point i of X. Thus, to find all coefficients A needed to evaluate
the interpolation in Eqn. 2.23, it is necessary to solve n systems of equation, where n is
dimensionality of X.

This method can achieve smoother and more natural-looking inverse projections than
iLAMP, as demonstrated by several use-cases E. AMoRIM et al, 2015. However, its com-

42

2 | RELATED WORK

putational costs are also higher than iLAMP. Given this trade-off, which is, we argue,
application dependent, we will use both iLAMP and the RBF method to invert projections
in our work further on.

2.2.4 Visual analytics techniques for classifier engineering

Even before the advent of what is currently known as Explainable Artificial Intelli-
gence (XAI) ADADI e BERRADA, 2018, numerous techniques have been proposed at the
crossroads of Machine Learning, Artificial Intelligence, data science, and visualization for
helping the engineering — that is, selection, construction, fine-tuning, and validation — of
classifiers. We discuss below a number of salient techniques in this family. As with pro-
jections (Sec. 2.2.2), the complete set of such techniques is too wide to summarize here.
As such, we focus below on methods which are either broadly accepted and used (thus,
with which our own proposals will compete), or methods which are technically related to
our proposals. We organize the surveyed techniques into three groups, depending on the
kind of information they focus on (classes, observations, or the classifier’s architecture),
and by analogy with how we organized the more general visualization techniques for
high-dimensional data (Sec. 2.2.1), as follows.

Class-centric techniques

Class-centric techniques focus on understanding how a classifier behaves in relation to
the classes it is supposed to infer from data. That is, it allows one to reason about aspects
such as the general classification accuracy (how well the classifier infers correct labels for
all the present classes), per-class accuracy (how well the classifier infers correct labels for a
specific class), and how these accuracies depend on various parameters. Techniques in this
family include measuring aggregated metrics for an entire dataset (or class in the dataset),
such as precision, recall, sensitivity, F1 score, and specificity TING, 2011. These can be next
presented by means of simple graphical metaphors such as truth tables and confusion
matrices. At a more refined level, Receiver Operating Characteristic (ROC) plots FAWCETT,
2006 can be created to show how sensitivity and specificity relate to each other for a whole
range of model hyperparameters, therefore allowing users to make informed trade-offs
between the two parameters.

Class-centric techniques are the earliest, and still most used, exploration techniques
for classifiers, for a number of good reasons. Following the set of requirements we outlined
in Sec. 1.4, these techniques are definitely simple to use and interpret, generic (work for
any classifier), and computationally very scalable. Their visual presentation is also very
compact and uses only simple means such as tables, charts, and function plots, which users
are expected to understand easily. However, they also have disadvantages: They only
tell aggregated insights at class, or higher, level. We can see for instance what a certain
accuracy is for an entire test set, but we cannot see which parts (in terms of sample subsets)
of the respective test set are more (or less) prone to classification problems. By implication,
this means that these techniques are good for telling us how well a classifier works, but in
the case its performance is unsatisfactory, they do not generally help one with engineering
the classifier to improve its performance. More specifically to our research goals, they do
not tell anything about where the decision boundaries exist in the data space and/or how

2.2 | VISUAL ANALYTICS FOR MACHINE LEARNING

these are created from the training samples.

Observation-centric techniques

Observation-centric techniques recognize the above-mentioned limitations of class-
centric techniques and proceed differently towards explanation. Rather than selecting
classes, they select (groups of) instances x; or feature vectors X’ as the element to base
explanations on. The simplest, and widely used, such observation technique is the scatter-
plot, constructed by a projection, of samples, colored by class or misclassification informa-
tion discussed in Sec. 2.2.2). As outlined there, such scatterplots already can show which
samples are prone to misclassification, either in general, or specific to a given class.

While such scatterplots are simple and efficient to compute, they have a major draw-
back: Depending on the size of S (sample count), how it is distributed over the space,
and how well the projection P preserves distances or neighborhoods, gaps will appear
between the points of the resulting 2D scatterplot. One can only guess what happens
between such samples.

To mitigate this general issue of scatterplots, so-called image-based methods, or dense
maps, have been proposed. The key idea is to color every pixel p; € R? of the target image
to represent information pertaining to that pixel in the data space R". There are several
ways to “fill in” these pixels and thereby create a dense, compact, image from the sparse,
discrete, scatterplots, as follows.

Prior to applications in ML, several researchers have recognized that the discrete na-
ture of scatterplots poses interpretation problems, especially when the underlying data
is drawn from a continuous phenomenon. Early techniques converted scatterplots S (not
necessarily coming from a projection) to continuous scalar fields ¢ : R* — R* using
so-called kernel density estimation (KDE) methods SILvERMAN, 1986. This can be done by
simply convolving points x € S by a suitably chosen (typically, Gaussian or Epanechnikov)
2D isotropic kernel. The kernel radius acts as a low-pass filter: Small values yield relati-
vely discrete images, showing concentrated peaks on the image ¢ where many samples
in S are close to each other. Larger values “blur” the KDE, by showing coarse-scale groups
and structures. The produced density map ¢ can be next visualized by mapping it to color,
brightness, or opacity, leading to the well-known “heatmaps” in visualization. This way,
one can easily spot high-density regions of samples in a scatterplot at a user-chosen scale,
given by the kernel radius parameter. Early examples of such techniques include graph
splatting LIERE e DE LEEUW, 2003 for visualizing graph drawings.

Closer to our machine learning context, Martins et al. propose several dense maps to
encode the per-pixel errors created by dimensionality reduction methods MArTINS, COIM-
BRA et al., 2014; MARTINS, R. MINGHIM et al., 2015. Similar dense map methods are used
to encode the (categorical) identity of dimensions that make close points in a projection
similar to each otherR. d. SiLva et al., 2015. Variants of this idea have been proposed to
handle categorical data, using a Voronoi cell sampling of the image space, rather than a
uniform pixel grid AUPETIT, 2007; BROEKSEMA et al., 2013. Key advantages of image-based
methods are their ability to use every available pixel to show information, which increases
the chance that complex data patterns are spotted without the need for the user to “guess”
what happens between discrete samples; the lack of occlusion present in discrete methods,

43

44

2 | RELATED WORK

such as scatterplots; and the ability to handle large datasets by aggregating data over the
available pixels. Given the above, we deem that image-based techniques are ideally suited
for our goal of visualizing classifier decision zones and boundaries.

However, while such methods can handle arbitrary high-dimensional datasets, none
of them was adapted to show classifier decision boundaries, with one notable exception:
The well-known TensorFlow toolkit MARTN ABADI et al.,, 2015 contains a simple applica-
tion which creates a dense map where pixel p; is color-coded to indicate the class label,
and corresponding weight, that a neural network achieves for a sample x; that would cor-
respond to p;. Figure 1.2 discussed in Chapter 1 shows an example of this visualization.
However, this works only because the input space (for the toy examples used in SMILKOV
e CARTER, 2018) is two-dimensional, so the R"” to R? mapping is trivial and invertible,
being the identity function.

Closer to our scope, Hamel has proposed dense self-organizing image-based maps to
visualize classifier decisions for high-dimensional feature spaces HAMEL, 2006. However,
this method only handles Support Vector Machine (SVM) classifiers. More importantly,
the actual decision boundaries, while plotted on the respective maps, seem to be manu-
ally constructed by the user rather than by the method. Migut et al. actually construct and
visualize such decision boundaries for high-dimensional data classification MiGuT et al,
2015. However, they use for this a sequence of 2D projections, each along a pair of dimen-
sions; hence, the user has to mentally infer the actual position of the high-dimensional
boundaries by interactively correlating multiple projections.

Last but not least, the LIME technique RIBEIRO et al.,, 2016 proposes an ambitious set
of techniques for “explaining the predictions of any classifier”. Briefly put, given such a
classifier, which has a globally complex, and generally unknown, decision boundary, LIME
locally approximates this boundary by densely sampling the prediction function and next
fitting a linear boundary to the obtained labels. This way, while it is still not possible to
get insights in the global decision boundaries, good (linear) local approximations can be
computed on demand. In terms of visualization, LIME uses various standard instruments,
such as tables and charts highlighting the types of observations that are most relevant for
a given classification decision. Alternatively, when the feature space is easy to represent
visually, such as in the case of images processed by deep learning (where each pixel is
basically a feature), so-called activation maps can be computed, which highlight pixels in
a given input sample (image) that have been most responsible for its classification in a
certain category. Overall, LIME is a very powerful technique for analyzing the behavior
of a classifier. However, it does not explicitly bring new insights into how the respective
decision boundaries look like.

Architecture-centric techniques

A third and last class of explanatory techniques focuses on the architecture, or inter-
nals, of a classifier. Such techniques are especially useful in case of classifiers that have
(very) complex architectures, such as neural networks. These consist of thousands up to
hundreds of thousands of units (neurons) connected by up to millions of weights. As such,
their overall operation is largely still a black box. Explanatory techniques in this class aim
to shed light upon the roles of various layers, units, and connections during both training

2.2 | VISUAL ANALYTICS FOR MACHINE LEARNING

and inference, and therefore both understand how and what the network has learned, and
how to improve this process. A recent survey of techniques in this class is given in GARc1A
et al, 2018.

The area of architecture-centric techniques is growing very fast, with tens of such
techniques launched in recent years, fed by the growing interest in deep learning. Howe-
ver, from the perspective of the research in this thesis, such techniques occupy a periphe-
ral roles, for two reasons. First, they are specific to neural networks (or any other given
architecture) only, whereas we aim at generic explanatory techniques. Secondly, these
techniques do not explicitly aim to visualize the place, shape, and nature of decision zo-
nes in the data space, but rather concentrate on understanding the intermediate (latent)
representations that are generated by a given classifier.

2.2.5 Conclusions

In this chapter, we have reviewed related work to the areas at the crossroads of which
our research question lies, namely machine learning (with a focus on classification) and
visualization and visual analytics (with a focus on assisting classifier engineering). Focu-
sing on the second of the above topics — which is related directly to our aim — we conclude
that multidimensional projections are a better candidate than other high-dimensional data
visualization techniques for visually exploring the type of high-dimensional datasets en-
countered in classifier engineering. Within this area, we have identified three projection
techniques and two inverse projection techniques which present good properties in terms
of results’ quality, computational scalability, genericity, and ease of use. Separately, we
have seen that image-based visualization methods match well, on the one hand, with the
type of data we encounter in classification problems, and on the other hand with the
visual metaphor used by projections. Hence, these methods are interesting candidates to
study further when addressing our research question.

In the same time, we have seen that the problem of visually depicting (and further
exploring) the decision boundaries and decision zones of any classification models is ba-
rely touched in the literature. In the remainder of this thesis, we will therefore focus on
the above-mentioned instruments - direct and inverse projections and image-based visu-
alization methods — and show how we can combine, adapt, and extend, such methods to
address our goals.

45

Capitulo 3

Deep feature extraction
evaluation

3.1 Introduction

As explained in Chapter 2, deep learning methods are among the state of the art tech-
niques for constructing classification models for complex data. However, as also explained
there, engineering such models is, in general, far from trivial, and raises questions related
to the suitable selection of training sets, network architecture, and hyperparameter values.
In the following chapters, we will introduce several visual analytics techniques that aim
to help this process, specifically by depicting decision zones and boundaries and showing
how these can provide feedback to the model engineer. In this chapter, we aim to justify
the need for such assisting techniques by an actual example of classifier engineering. For
this, we pick a real-world image classification problem, and show the steps required for the
construction of a non-trivial end-to-end classification model for that problem. By doing
this, we outline the types of questions and challenges that model engineers are typically
confronted with in their work, and also outline the limitations of classical support tools
available in this process - thereby indirectly motivating our claim for the need for better
tools.

3.2 Problem Context

Deep Learning methods are the current state of the art tool to perform natural image
classification, as well as other pattern recognition tasks such as speech recognition and
shape analysis, among others. The influential work of KR1ZHEVSKY et al. KRIZHEVSKY et al.,
2012 has demonstrated how Graphics Processing Units (GPUs) could make the training

This chapter is based on the following publication:
Francisco Caio Maia RODRIGUES. et al. “Evaluation of transfer learning scenarios in plankton image classifi-
cation”. Em: Proceedings of the 13th International Joint Conference on Computer Vision, Imaging and Computer
Graphics Theory and Applications - Volume 5: VISAPP, SciTePress, 2018, pgs. 359-366

47

48

3 | DEEP FEATURE EXTRACTION EVALUATION

of complex Deep Convolutional Neural Networks feasible in acceptable time frame. More
importantly, they achieved breakthrough results on ImageNet Challenge RUSSAKOVSKY et
al., 2015, results largely impacting computer vision and neural networks by stimulating
novel research in the area. Since the proposal of AlexNet KrizHEVSKY et al., 2012, a number
of other Deep Neural Networks were developed and achieved ground-breaking results on
different image classification challenges SZEGEDY, VANHOUCKE et al., 2016; SIMONYAN e
ZISSERMAN, 2014; Kaiming HE et al., 2016.

To properly train Deep Neural Networks, a large amount of data is necessary, besides
extensive parameter-tuning, since such models often consist of millions of parameters.
To avoid overfitting, diverse and rich datasets are often mandatory. However, in many
real-world scenarios, labeled data is costly and scarce. One example of such scenario is
the study of plankton populations, an important research area as they form the basis of
aquatic food webs and exert a major influence on material cycles relevant to global cli-
mate change, such as carbon dioxide and methane. To precisely estimate the spatial and
temporal distributions of planktonic organisms in the ocean, challenging image acquisi-
tion efforts are necessary. In order to employ obtained images to train Machine Learning
models, the time-expensive task of manual image labeling is necessary, which requires
trained domain-expert individuals.

In ML, an usual approach to deal with the above mentioned problem of training data
unavailability is Transfer Learning (TL) PAN e YANG, 2009. TL expresses the concept of
using or adapting a model induced in a specific context to another context. For instance,
using or adapting a model induced using a plankton dataset from Atlantic ocean to classify
another one from the Pacific ocean.

In this chapter, we present how to employ the simplest form of transfer learning based
on Deep Neural Networks to solve a real problem of plankton classification. By leveraging
on the public availability of labeled planktonic data, DNNs can be used to help the training
of classifiers on local in-house collected data, that are usually small. We note that plankton
image classification using CNNs started to be considered only recently AL-BARAZANCHI
et al., 2015; DATI et al, 2016; Py et al., 2016 and, in particular, transfer learning of features
computed by CNNs ORENSTEIN e BElJBoM, 2017 has not been explored much yet in this
context. Hence, we also aim at deepen our understanding of transfer learning, in special
for planktonic data.

The remainder of this chapter is organized as follows. Section 3.3 presents a more
detailed description of TL using DNNs. Section 3.4 explains how different TL scenarios
were setup to train and compare different models and datasets. Section 3.5 gives a brief
explanation of the source and target datasets used as well as the DNN models employed
in the following experiments. Section 3.6 presents the results obtained for each dataset/-
network combination. Finally, Section 3.7 presents how one could extract useful insights
from this experiment and points to limitations of this approach, motivating the need for
better visual analytics tools to perform classifier engineering and understanding.

3.3 | DEEP FEATURE EXTRACTION

3.3 Deep Feature Extraction

Representations learned by CNNs are reported to be very useful for the classification
of data, even in distinct domains BENGIO, 2012; Yosinsk1, CLUNE, BENGIO et al., 2014. The
usual approach to exploit this is to select an intermediate layer as a target layer, freeze it
and its preceding layers and adjust the subsequent layers. The earlier the layer chosen,
the more general and therefore, more transferable the representation is Yosinski, CLUNE,
BENGIO et al., 2014, but also the more data is necessary to adjust it, since it has a higher
dimension. The adjustment of subsequent layers may be done via fine-tuning, continuing
training with new samples, or by training an entirely new classifier from scratch using
the output of the intermediate target layer as features, which is called (deep) feature
extraction. In this work we chose the latter option, using pre-trained CNNs as feature
extractors.

3.4 Experiment Setup

Plankton communities form the basis of aquatic food webs and exert a major influence
on material cycles relevant to global climate change, such as carbon dioxide and methane.
Therefore, it is essential to understand the spatial distribution and temporal variability of
planktonic organisms in the ocean.

Deep feature extraction based approaches to data classification enables the easy ap-
plication of deep learning techniques to solve different problems, specially when the pro-
cess of labeled data acquisition is costly, as is the case for many important “local” pro-
blems.

Planktonic image classification is an example of such problem. Understanding the spa-
tial distribution and temporal variability of planktonic organisms in the ocean is essential
to the study of different important topics, such as global climate change.

Thus, to classify our in-house dataset, which we refer to as LAPSDS, we resort to
adapt pre-trained models as feature extractors by taking advantage of the fact that there
exists a public available massive dataset of plankton images used in Kaggle’s National
DataScience Bowl (NDSB) competition, via the In Situ Icthyoplankton Imaging System
(ISIIS)!, and deep neural networks trained on it.

Although there are differences in the datasets with respect to the classes of plankton
species they include, either because a particular species or class in one of the datasets
is not in the other or because some artificial classes are created based on other criteria
not related to taxonomy, it is reasonable to expect that they could be efficiently classi-
fied by similar sets of features. To further investigate the quality of the features obtained
from this process, we also employ a different CNN trained on this same dataset and on
ImageNet Russakovsky et al., 2015, which contains images from a completely distinct
domain. By using CNNs and external domain source datasets, we would like to unders-
tand how transfer learning performs and whether an external dataset will help or not the
classification of our data.

Thttps://www.kaggle.com/c/datasciencebow!

49

https://www.kaggle.com/c/datasciencebowl

50

3 | DEEP FEATURE EXTRACTION EVALUATION

The choice of the datasets is justified by the fact that a relatively mature stage of CNN
development has been already achieved for both domains. In addition, the first dataset is
of a similar domain to ours, while the second is of a completely distinct domain (several
images collected from the Internet).

The experiments have been designed to answer the following questions:

+ how DeepSea trained on ISIIS (NDSB competition) — DeepSea(ISIIS) — will perform
on our in-house dataset (LAPSDS)?

« how classifiers using features extracted from DeepSea(ISIIS) will perform on
LAPSDS?

« how classifiers using features extracted from AlexNet trained on ISIIS - Alex-
Net(ISIIS) — will perform on LAPSDS?

+ how classifiers using features extracted from AlexNet trained on ImageNet — Alex-
Net(ImageNet) — will perform on LAPSDS?

In addition to these TL scenarios, we also consider the traditional feature extraction
approach that will serve as a baseline. Diagram in Fig. 3.1 summarizes the scenarios to
be evaluated. Four sets of features are extracted from LAPSDS and they are used to train
SVM classifiers as detailed ahead in Section 3.4.

[train DeepSea } [train AlexNet } [train AlexNet }
! !

AlexNet(ImageNet)

/ /

[apfly } [apply }

CNN
feature
extraction

Figura 3.1: Deep feature extraction scenarios considered here. ISIIS ImageNet and LAPSDS denote

image datasets, gray shaded nodes indicate the pre-trained CNNs, and CNN feature extraction consists
of extracting the values from a specific layer of a CNN, after a forward pass of samples in LAPSDS.

CNN
feature
extraction

CNN
feature
extraction

shape
feature
extraction

3.5 Datasets and Networks

In situ plankton images have been acquired with a submersible instrument developed
at our lab LAPS-IOUSP?. The instrument has been vertically deployed between surface
and 30m depth off the lab base® and gray-scale images were acquired at approximately 15

2Laboratory of Plankton Systems, Oceanographic Institute, University of Sao Paulo, Brazil
3(1at:-23.499913, long:-45.119381)

3.5 | DATASETS AND NETWORKS

frames per second, with dimensions of 2448 x 2050 pixels and resolution of ~5um. Image
stacks belonging to the same vertical profile were converted into video files to mitigate
data storage and management. A total of 230,000 Regions of Interest (ROI) were extracted
from 16 selected videos and 5175 ROIs were used in the creation of in-house dataset. A
labeling process was carried by plankton experts belonging to the same lab.

LAPSDS is composed of 20 classes containing at least 100 samples each, and as expec-
ted, the number of images varies from class to class. Table 3.1 shows the class distribution
of the dataset, as well as the name and the identifier number of each class. Instances of
some of the classes are shown in Fig. 3.2.

ID H classes Size ID H classes Size
0 appendicularia_shape_s 216 10 detritus_uf stick_bw 286
1 appendicularia _curve 114 11 dinoflagellates_tripus_2 242
2 cladocera 435 12 dinoflagellates_tripus 316
3 copepod_calanoid 315 13 nauplii 465
4 copepod_cyclopoida 106 14 phytoplankton_0 259
5 copepod_poecilostomatoida 163 15 phytoplankton_1 127
6 detritus_df bk 288 16 phytoplankton_5 159
7 detritus_uf dot_bk 344 17 chaetocero 546
8 detritus_uf dot_bw 274 18 diatoms_coscinodiscus 120
9 detritus_uf stick bk 152 19 shadow 249

Tabela 3.1: Histogram of classes of the LAPSDS.

In-situ images are prone to natural variability in illumination, turbulent flow and tur-
bidity, among other factors, which may compromise image quality because ROIs from
different videos may have different background intensities (see Fig. 3.2). Thus, for conve-
nience, the background of the ROIs have been removed using a technique of background
subtraction adapted to deal with illumination changes JACQUEs et al., 2006. An example
is shown in Fig. 3.3.

Kaggle’s National Data Science Bowl

The National Data Science Bowl (NDSB) was a competition hosted by Kaggle in a colla-
boration with Oregon State University’s Hatfield Marine Science Center. Several research
teams competed to develop and train supervised classifiers, given a dataset provided by
the Hatfield Marine Science Center COWEN et al., 2015.

According to the competition organizers, the images were collected in the Straits of
Florida using an underwater imaging system called ISIIS (In Situ Ichthyoplankton Imaging
System). It captured high-resolution continuous images that were parsed in 2048x2048
pixel frames. The resulting frames were thresholded and segmented. Finally, regions of
interest were extracted and became the images that comprise the dataset after being an-
notated by the Marine Science Center’s personnel.

The dataset was divided by taxonomy, behavior and shape into 121 classes. Each class
contained between 9 and 1979 individual examples, totaling 30,336 images.

51

52

3 | DEEP FEATURE EXTRACTION EVALUATION

Figura 3.3: Background removal example: (a) Original image, labeled as “appendicularia_shape_s”
and (b) result of the background removal of image in (a).

ImageNet

ImageNet is a dataset that became one of the benchmarks for object classification and
detection. It is comprised of over 14 million images divided into 1000 classes hierarchically
subdivided Russakovsky et al., 2015. The classes subjects range from human persons to
animals and fungi to everyday objects, constituting a very general dataset. Since 2010 a
competition including diverse tasks such as classification and detection on pictures or

3.5 | DATASETS AND NETWORKS

Figura 3.4: Assorted plankton from the ISIIS dataset. Each sample is from a different class. Note the
absence of background.

video on this dataset is held each year.

3.5.1 CNN MODELS

The two network architectures used in this work are from winning teams in computer
vision competitions. They are the AlexNet KrizHEVSKY et al., 2012, from the 2012 Image-
Net Large Scale Visual Recognition Competition (ILSVRC), and a model from the "Deep
Sea"team, that won Kaggle’s NDSB in 2014.

AlexNet

AlexNet is a Convolutional Neural Network model that was introduced in the ILSVRC
held in 2012. Under the team name of “SuperVision”, it won both the classification and
localization tasks by a large margin?, being the first case of success in applying this kind of
model in the competition and establishing a strong trend of its use in the next years.

*http://image-net.org/challenges/LSVRC/2012/results

53

http://image-net.org/challenges/LSVRC/2012/results

54

3 | DEEP FEATURE EXTRACTION EVALUATION

] 1
j

(a) AlexNet

(e | (] [0 (ESRSA [eoou] (ST (SN (ESRNA [eoot [T (1ENWA (ESHTH (IR [eoor

[([() [e

(b) DeepSea’s convroll4 network

Figura 3.5: Neural Networks architectures used in the experiments. Although DeepSea’s model is
much deeper than AlexNet, it has less parameters (i.e. filters in Convolutional layers and units in
Fully Connected layers) to fit during the training. The dashed boxes indicate which layer was used in
the transfer learning experiments.

This model introduced and popularized a lot of novelty features for improving training
time, performance and reducing overfitting including, but not limited to: ReLU nonlinea-
rity as activation function, Dropout as means of reducing overfitting and Local Response
Normalization. We refer to the original paper for a more detailed explanation of these
innovations and their impact KrizHEVSKY et al., 2012 (see Fig. 3.5(a) for a representing
diagram of the CNN).

We did not explicitly train AlexNet model in the ImageNet dataset, but used instead
a pre-trained model with available weights online °. In order to feed our images to this
model, a couple minor modifications were required. First, ImageNet samples are RGB
images, hence to feed our in-house dataset, which is composed of grayscale images, to this
network we chose to repeat the same values across the three input channels. Second, since
the required input is much larger than the average of ours images, we decided to resize
them via a wrap padding tactic, in which the image was centered and repeated across
each axis. Furthermore we also subtracted each channel with the mean of the training set
of said channel, as this information was also available to us.

The AlexNet implementation that was trained on ISIIS dataset was heavily based on
DeepSea’s model, following exactly the same training procedure for both networks (i.e.
data preprocessing and data augmentation). Thus, this network’s input expects grayscale
images with size 95x95 and its final layer contains 121 units.

Deep Sea’s Model

Deep Sea was the winning team of the Kaggle NDSB competition. They used an en-
semble of multiple deep learning models with minor differences to improve generaliza-
tion. We used the most simple model available, consisting solely of a CNN, which here
we call DeepSea.

The main innovation brought by the team was a couple of layers designed to increase
the network robustness to cyclic variation DIELEMAN et al., 2016. In the "cyclic slice"layer
the input is rotated four times and processed separately by the network from that point
onward. Then, in the "cyclic roll"layer, the feature maps from the four paths are permuted
and interchanged. Eventually, in the “cyclic pooling” layer the four network paths are

>https:/github.com/BVLC/caffe/tree/master/models/bvic_alexnet

https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet

3.5 | DATASETS AND NETWORKS

merged again into a single one. We again refer to the paper on this architecture for a more
detailed explanation DIELEMAN et al., 2016 (see Fig. 3.5b for a diagram of the CNN).

3.5.2 Feature extraction

Deep learning models are in general trained in a end-to-end fashion, that is, images
(or other raw data) are given as input in one end and classes are returned as output in
the other end, as mentioned in Chapter 2. The last layer of a neural network classifier
simply performs the classification task on its input, hence we can see the hidden layers
as performing suitable data transformations that will lead to a small classification error,
and the output of a given layer is a feature vector that is input to the next. Next, we detail
how we collect those features for each network, i.e. define from which layer we collect
the output, and also describe the set of shape features they will be compared to.

Deep features

Features From DeepSea (ISIIS): The features were extracted from the output of the
last Cyclic Pooling Layer, as shown in Figure 3.5b highlighted by enclosing dashed lines,
resulting in 256 features per images. These features correspond to F1 in the diagram of
Fig. 3.1. In a Cyclic Pooling Layer the effect of rotations introduced by previous Cyclic
Slice and Cyclic Roll layers are undone, hence capturing the output from this layer is the
most appropriate choice since we can leverage on the learned invariances.

Features from AlexNet (ISIIS) and AlexNet (ImageNet): From the two pre-trained
AlexNet, AlexNet(ISIIS) and AlexNet(ImageNet), features were extracted from the first
fully connected layer, as shown in Figure 3.5a highlighted by enclosing dashed lines, re-
sulting in 4096 features per image. These features correspond to F2 and F3, respectively,
in the diagram in Fig. 3.1.

Shape Features

We extracted 74 features commonly used in traditional shape recognition procedures.
They are divided into the following three categories:

« 54 shape features (area, perimeter, solidity, convexity, etc). Most of the feature des-
criptors are implemented in the OpenCV library and they are usually presented in
automatic plankton classification works that use shape features Brascuxo et al.,
2005.

« 10 from Local Binary Patterns (LBP) histograms Ojara et al., 2000 extracted using
a 3 x 3 window.

« 10 from Haralick descriptors, extracted from the co-occurrence matrix HARALICK,
SHANMUGAM et al., 1973.

Shape and LBP features are extracted from the images segmented using Otsu’s th-
reshold OT1su, 1979. Haralick’s descriptors are extracted from graylevel images. These
features correspond to F4 in the diagram in Fig. 3.1.

55

56

3 | DEEP FEATURE EXTRACTION EVALUATION

3.6 Classifier Evaluation

To train and evaluate the SVM classifiers with respect to each of the four feature sets,
namely features extracted from DeepSea (ISIIS), from AlexNet trained with planktonic
data (NDSB), from AlexNet trained on natural images (ImageNet), and regular, “classic”,
shape recognition features. We performed a 9:1 train-test split that preserved class pro-
portions. This split resulted in a training set of 4658 and a test set of 517 samples.

Before training, a data normalization to convert all feature values to the [0, 1] range
was applied to each individual feature of the four feature sets, that is a simple linear scaling
in which the highest value for each feature in the whole training set will be mapped to
1 and the lowest value will be mapped to 0. The normalization parameters were inferred
using the training samples only in order to not add bias to the classifier. Test samples were
then transformed by those same parameters.

Sklearn’s PEDREGOsA et al., 2011 grid search with cross-validation was employed to
explore the space of possible parameters for SVM, namely the kernel type, value of C and,
if a RBF kernel was used, y values. In this work, we considered linear and RBF kernels,
C € {1,10,100,200} and y € {0.01,0.001,0.0001, %}, where nf is the number of features,
a well-known heuristic for setting y. The best parameters found for each feature set are
displayed in Table 3.2. The same table also shows the overall accuracies computed on the
test set.

Feature extractor SVM parameters Acc.
kernel | C Y
DeepSea(ISIIS) rbf | 100 | 0.01 | 84%

AlexNet(NSDB) rbf 10 | 0.01 | 81%
AlexNet(ImageNet) | rbf | 100 | 0.0002 | 80%
Shape Features linear | 100 - 72%

Tabela 3.2: Table summarizing the results obtained from different transfer learning scenarios. The
value of 0.0002 for y was selected because of the % option. Accuracy refers to the test set.

Global accuracy alone, especially in cases such as ours, where the compared methods
present similar performance, is not too informative. To better understand the results, we
also plotted a confusion matrix (Fig. 3.6) for each feature set.

As it can be seen in Fig. 3.6, the first (leftmost) plot corresponding to DeepSea(ISIIS),
which achieved the best performance, has a darker diagonal compared to the other plots.
Confusion is larger in the last (rightmost) plot, which corresponds to the experiment using
shape features. In general, there is confusion between class 3 (copepod_calanoid) and clas-
ses 4 (copepod_cyclopoida) and 5 (copepod_poecilostomatoida); between classes 7 (detri-
tus_uf dot_bk) and 8 (detritus_uf dot_bw), and beween classes 9 (detritus_uf_skick_bk)
and 10 (detritus_uf stick_bw).

Figure 3.7(a) presents some examples of copepods subtypes that can confuse the clas-
sifiers. The figure is organized in three columns, one for each copepod subtype: column 1
shows four examples of calanoids; column 2 shows three examples of cyclopoida; and co-
lumn 3 shows four examples of poecilostomatoids. Each image is labeled with zero to four

3.6 | CLASSIFIER EVALUATION

DeepSea AlexNet (ISIIS)
ol I.
14 .- J
24 4
31 || 1 -I
4 [| 1 .
54 4
61
7]
91 A
10 n] l...
> 11 4 1
= 121 ...] 1.0
13 4 1 .
14 - [| 1 |
15 .. 1 [|
i m] Lol &
18 .. 1 u
w{_ w0 -
SHNMTNON®O g NN NgR g SHNMYNON®OgaNNINENY Y 06
Predicted Label Predicted Label
AlexNet (ImageNet) Shape Features 0a
ol 1 .
1 4
2 1
‘3‘< .. 1 .. 0.2
51 [| [|
g - “n
2 o O] o
51;’: [| . [|
[t .
e ™ _ s
Fis I.] [|
14 1 [|
15 .. . [|
16 g |]
17 4
18 B
R L' IS N .

OrdANMTNO~NODIIOANM
A

Predicted Labe

n o~ oo OHANMTNONDODO AN
= - - ~ o~

Predicted Labe

13

Figura 3.6: Confusion matrices for each classifier trained on different sets of features. Top row we
shows the confusion matrix for the classifier trained on features from DeepSea network trained on
ISIIS (left) and AlexNet also trained on ISIIS dataset. Bottom row shows matrices for AlexNet trained
on ImageNet and for classic shape features.

colored squares that indicate which of the four considered classifiers (DeepSea, AlexNet
(ISTIS), AlexNet (ImageNet), and Shape Features) could correctly classify that image. As
one can see, the plankton belonging to these classes are similar in several aspects and it
is not difficult to understand why these classes cause confounding errors. A similar sce-
nario has been found for detrital particles. Figure 3.7(b) presents a similar set of images
of examples of detritus subtypes (detritus_uf dot_bk and detritus_uf dot_bw) that can
confuse several of the considered classifiers.

Figure 3.8 shows another view of the obtained results. We show here a bar chart dis-
playing the accuracy of each classifier per class. Classes 2, 11, 12, 13, and 18 were well
classified by all the four classifiers and therefore they could be considered as the “easy”
classes. On the other hand, classes 4 and 9 are those where most classifiers did poorly,
and thus they are the hardest ones. Classes 0 and 1 are those with the largest variation
between the best and worst performing classifiers.

Hand designed features performed clearly worse than any of the CNN extracted ones.

58

3 | DEEP FEATURE EXTRACTION EVALUATION

Calanoid Cyclopoida Poecilostomatoida Detritus_uf_dot_bk Detritus_uf_dot_bw

i£ '—ﬁyﬁ'll - I
g 1a 10 e

|]
* ‘o I -,
M DeepSea M AlexNet (ISIIS) M AlexNet (ImageNet) M Shape Features
(a) Cyclopoida, Calanoid, Poecilostomatoida (b) uf _dot_bk, uf dot_bw

Figura 3.7: Two sets of plankton images from confounding classes.

1.0 A1

0.8

0.6

0.4

0.2

0.0 -

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Il DeepSea I AlexNet (IS11S) B AlexNet(ImageNet) I Shape Features

Figura 3.8: Class accuracy histogram.

Although no careful feature selection was performed, it is also true that no careful deep
feature extraction was performed. Thus, in a situation where a quick solution is required,
making use of a pre-trained CNN could be more effective than using a large set of hand
designed feature extractors.

3.7 Discussion and conclusion

We have presented an evaluation of transfer learning scenarios in the context of
plankton image classification. We have used CNNs pre-trained on external datasets as
feature extractors from our in-house dataset images. In particular, we have considered
two very distinct external datasets, one of plankton images (and thus similar to our data)
and another of natural images (ImageNet), and the corresponding “winning” CNN ar-
chitectures. Transfer learning experiments showed that the architecture developed for

3.7 | DISCUSSION AND CONCLUSION

plankton images (DeepSea) performed better than the architecture developed for natu-
ral image classification (AlexNet), even when both were trained with the same plankton
image dataset. We also observed that AlexNet trained on natural images performed almost
as well as the same network trained on plankton images. These two observations indicate
that, in transfer learning using CNNss, the architecture may play an important role, even
larger than the dataset per se. To complement these observations, it would be interesting
to train DeepSea with ImageNet and evaluate how well it will perform on our data.

As expected, features extracted from pre-trained CNNs performed better than hand
crafted ones. Although the experiments in this chapter were designed to evaluate different
deep feature extraction scenarios, it is clear that deep learning techniques can be promptly
applied to different problems, even when dataset size is small. The available technology
is mature and accessible with respect to both software and hardware, besides the public
availability of data from different domains, creating a low-entry barrier environment to
apply deep neural networks to different problems.

To support the analysis and comparison of the constructed classifiers, we used only
simple visualization tools, which are typically encountered in many classifier engineering
workflows. While providing useful insights, we also noticed several clear limitations of
these tools, as follows:

Global metrics: Comparing accuracies across classifiers is certainly useful in providing
a simple ranking between them (Tab. 3.2). However, as already indicated there, such
metrics are too aggregated for allowing more fine-grained interpretations. For instance,
Tab. 3.2 shows us that DeepSea (ISIIS), AlexNet (NSDB), and AlexNet (ImageNet) are very
close to each other, differing only by a few percentage points of accuracy. This does not
tell us how these classifiers actually differ from each other, leaving the possibly wrong
impression that they behave similarly. We argue that these limitations are inherent for
all other global metrics besides accuracy.

Confusion matrices: This instrument refines the insights provided by global metrics
by providing information at class level (Fig. 3.6). However, following the terminology
introduced in Sec. 2.2.4, confusion matrices are class-centric techniques: They show
which classes are easy (or hard) to classify, but not which are the kinds of observations
(in a class or several classes) that actually create classification problems. Also, they do
not show whether certain classes are hard to classify because their instances are, for
example, quite similar to each other.

Individual observations: Figure 3.7 takes the opposite extreme from the above two
plots. Here, detailed information is presented for individual instances (observations).
This lets us see which are the classifiers that succeed, or fail, in handling these specific
instances; and also allows us to visually compare the instances themselves to infer possi-
ble causes for the confusion. However, this visualization is manually created, by having
the user select (by browsing) a set of interesting samples to examine. In other words:
Once we know which are interesting samples, we can visualize them in detail this way,
but how to find the interesting samples in the first place? Moreover, this visualization is

59

60

3 | DEEP FEATURE EXTRACTION EVALUATION

not scalable, being able to accommodate a few tens of images at best. Finally, while users
can visually compare images to elicit similarities, the visualization provides no insight in
how the classifiers actually see the images as being similar or not due to their features.

Class histograms: Figure 3.8 presents a final visualization of our results, this time in
terms of per-class accuracy for all classifiers, all classes. At a high level, the insights con-
veyed by this visualization are quite similar with those from confusion matrices (Fig. 3.6).
The barchart design, however, allows for an easier comparison of accuracies both across
classes and across classifiers. Still, just as the confusion matrices, this visualization does
not convey any observation-centric or feature-centric information.

Summarizing the above, we see that classical visualization techniques, albeit useful in con-
veying several insights, and answering several questions, related to classifier engineering,
also have clear limitations. In particular, (a) such techniques convey little insight on how
observations and/or classes resemble each other from the perspective of their features;
and (b) they do not convey any information on where, in the feature space, a classifier
actually “flips” to change the inferred class. The visualization techniques presented in the
following chapters aim to address these limitations.

Capitulo 4

Constructing Decision Boundary
Maps

In Chapter 3, we have presented an end-to-end application of classifier engineering
using deep learning. While the presented results show that, given suitable engineering,
one can construct a classification model giving good results (in terms of overall and per-
class accuracy), the process of classifier engineering itself raises several questions. First,
the visualization techniques used in this process — tables, matrix plots, bar charts, and
individual samples — provide only limited, and typically aggregated, insights on the actual
behavior of the models at hand. In other words, we see what the overall behavior of a
classifier may be, but not why the classifier behaves that way. Secondly, in cases where
the performance of the classifier is deemed insufficient, these tools do not tell us how to
improve the performance (or help us in the improvement process). We claim that, for both
above tasks, different, and more fine-grained visualizations, can help.

Related to our central research question stated in Chapter 1, we argue that visualizing
the decision boundaries of a classifier (Sec. 1.2) can be one such instrument. More specifi-
cally, being able to better understand how decision boundaries emerge in a feature space,
and how they are affected by the training process, can (a) convey useful information on
the effectiveness of the training process, and then (b) help the engineer in taking decisi-
ons that steer the training towards the desired optimal goal. For example, a visualization
of such decision boundaries can highlight areas in the feature space where the bounda-
ries are not suitable, e.g., too tortuous, fuzzy, uncertain, too close to certain samples, or
cutting wrongly through samples of different classes. Seeing this, the user can act upon
the training data and/or classifier hyperparameters, triggering the recomputation of new
boundaries. By monitoring this “computational steering” loop, the user can arguably drive
the classifier construction to the desired outcome.

To address the above goal, we propose in this chapter a method to actually construct

This chapter is based on the following publication:
Francisco Caio M RODRIGUES et al. “Image-based visualization of classifier decision boundaries”. Em: 2018
31st SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI). IEEE. 2018, pgs. 353-360

61

62

4 | CONSTRUCTING DECISION BOUNDARY MAPS

visual depictions of decision boundaries and decision zones. For brevity, we refer to both
of these next as decision boundary maps. We proceed as follows. Section 4.1 formulates the
construction of decision boundary maps in an image-based (dense visualization) setting.
Section 4.2 details the actual techniques used to construct these maps. Section 4.3 shows
several results of our proposed technique for different datasets and classification models.
Section 4.4 discusses our technique. Section 4.5 concludes this chapter.

4.1 Dense maps

Let us revisit the core idea behind the definition and construction of decision bounda-
ries and decision zones for a classifier. As already introduced in Sec. 1.2, decision boun-
daries and decision zones are, typically, visualized only implicitly. As shown in Fig. 1.1,
this can be done by showing a scatterplot of a classified dataset (constructed by using
dimensionality reduction, see Sec. 2.2.2), color-coded next by the class values inferred by
the model. The decision zones are then implicitly perceived as areas of densely packed
same-color points in the projection. By implication, the decision boundaries are imaginary
(that is, not explicitly drawn) curves that separate such decision zones, i.e., pass between
points having different colors. This process of imagining the decision zones and their
boundaries is clearly error prone, as the user is forced to imagine the actual trajectory of
the high-dimensional decision boundaries purely based on the distribution of colors in a
2D scatterplot.

We propose to enhance this perception by drawing the decision boundaries by first
coloring each pixel in the 2D projection space according to the output of the classifi-
cation function for the high-dimensional point that corresponds to the respective pixel.
We call the resulting images decision maps. The process of constructing such maps will
effectively “fill in” the blank areas that exist between projected samples in current scatter-
plots, thereby making the position of the decision boundaries explicit and pixel-accurate.
Additionally, when high-dimensional points having different classes project to the same
pixel, we will indicate this by suitably mixing the class colors of the respective points,
and thereby indicate a fuzzy region of the classifier — that is, a high-dimensional data
region in which the classifier assigns different labels. Besides making the decision boun-
daries explicit, the dense map produced by the above method will give a hint to the user
on what one should expect when the classifier is given samples outside of the training
dataset. Those hints could in turn give the user knowledge about where his/her classifier
is uncertain; the user could react by generating more samples, targeted on these uncer-
tain regions, to overcome this deficiency. In turn, this will have the effect of shifting the
decision boundaries as more training samples are added. The process loops in a visual
analytics fashion until the user is satisfied with the achieved decision boundaries and/or
the corresponding classifier accuracy.

Let us now formalize the process of constructing decision maps. Let D < R" be the
data space input by a classifier, e.g., the space of all handwritten digit images for a MNIST-
like problem. Let f : D — C be a classifier function, where C is a categorical domain
containing the various labels assigned by f. For the MNIST example, C is the set of digits
from 0 to 9. The function f is constructed via a so-called training-set S; ¢ (D x C) and
next extrapolated to the entire data space D. In this setting, f can be seen as partitioning

4.1 | DENSE MAPS

nD space
2D space
A
Vi

a) what to draw here?

2D space

AR
MBAS

nD space
P

2D space

\ el

Vi

= Vz(/yi) e

\J

c)

Figura 4.1: Challenge of visualizing decision zones and boundaries represented implicitly in a scat-
terplot (a). Dense map construction by scattering (b) and gathering (c) approaches.

64

4 | CONSTRUCTING DECISION BOUNDARY MAPS

D into |C| decision zones D, so that | J;D; = D; D; n D; = @,Vi # j; and all points in a
given zone D; have the same label in C. Consequently, decision boundaries are precisely
the boundaries of the compact zones D;.

Typically, decision zones and their boundaries are not directly computed nor visuali-
zed in the above setting. Rather, one selects a finite point-set Sy € D, e.g., a test set for the
classifier. Then, one projects this point set to 2D by using any suitable projection method,
and next color-codes the resulting scatterplot by the label values f(x|x € S7) (Fig. 4.1a). As
already explained, this is only a sparse sampling of the actual classifier behavior, and the
user has to mentally reconstruct (or guess) how the decision zones and their boundaries
look like from the scatterplot P(St).

Ideally, a (two-dimensional) dense map that depicts the behavior of the classifier f
would (a) map every point x € D in the classifier’s data space to some point y in 2D,
so that the entire space D is shown; and (b) depict the value f(x) at the point y. Howe-
ver, achieving this is practically impossible in most cases for two reasons: Desiderate (a)
above would imply that we are able to map the entire nD space in D to 2D space in some
meaningful way'. Desiderate (b) above could imply that we need to depict different labels
¢ € C,c; € C,c; # ¢, at two 2D points y; € R%y, € R? which are closer to each other
than the available screen resolution.

Since creating a dense map that satisfies both conditions (a) and (b) above is not possi-
ble in general, we resort to a sampling-based approximation. Let I < R? be the (compact)
domain represented by the screen space in which we visualize the scatterplot — this cor-
responds to the interior of the black rectangle in Fig. 4.1a (right). Ideally, the image of D
through P, denoted P(D), would cover the entire domain I, thereby delivering (at least)
one label f(x)|x € D for any pixel y € I.

To construct a dense map that covers all pixels of I, two approaches can be taken. In
the following, let T be and finite set of sample values from D. We call our two approaches
gathering, respectively scattering, following the terminology used in image processing
for computing convolutions of images (see e.g. ZWAN et al., 2016). These are as follows.

Scattering approach: In this approach, we can create new observations x; € D by
densely sampling the neighborhoods v"(x;) of all samples in T, computing their labels
f(x;), projecting x; to 2D, and color-coding the pixels y; = P(x;) by the labels f(x;)
(Fig. 4.1b). This method of scattering data from R" to R* does not guarantee that all
pixels of I get covered, unless potentially very large neighborhoods v" are used, which
is computationally expensive. More specifically, a scattering strategy is impractical as
the number of samples needed to cover the data space D grows exponentially with the
number of dimensions n. As it is usual for ML datasets to contain hundreds or even
thousands of dimensions, it is infeasible to generate such amount of data by brute force.

Gathering approach: An alternative to scattering is to supersample I with N > 1 sam-

!Formally speaking, we can construct many continuous mappings that achieve the above. However,
in general, these would not allow one to decode properties of nD points, such as similarities, from the 2D
representation, thus would be not useful in practice.

4.2 | DECISION BOUNDARY MAP CONSTRUCTION

ples per pixel y; find the point x € D that projects to y, by using an (approximate) inverse
projection function P~'; and color y to summarize all labels of points that project onto that
pixel (Fig. 4.1c). This gathering method guarantees that every pixel depicts information
from at least N high-dimensional samples, with a limited computational cost. Note that
gathering strategies are also preferred to scattering ones in image processing, as exem-
plified by Zwan et al., 2016.

4.2 Decision Boundary Map Construction

Given its computational advantage we choose for our goal the gathering strategy, and
implement it as follows. Let N be the user-specified minimal number of samples per pixel
desired. Larger N values increases the confidence of our visualization, as we have more
information to decide the value of each pixel. Given a sparse labeled set of samples X, we
first compute its scatterplot P(X). This delivers n(y) labels per pixel y, where n(y) = 0 for
most pixels, given the above-mentioned sparsity. To ensure our target of N samples per
pixel, we synthesize max(N - n(y), 0) 2D points randomly spread over each pixel y, and
compute their R” counterparts using P~'. Pixels which are already densely covered by
points in P(X) need fewer additional samples, whereas pixels not at all covered by P(&X)
receive N additional samples each.

At this point, every pixel is covered by at least N labels. We next encode the sample
density, classifier confusion, and classifier decision at each pixel, as follows.

Decision: We define the decision d for a pixel y as the majority class label for all samples
yiiny, ie.

d(y) = argmax,. >, [f(P"(y)) = k], (4.1)

yi€y

where [[-] denotes Iverson’s bracket. We encode d in the hue H(y) via a categorical color
map, as follows. For each class label k € C, we define a basic hue Hr(k) and a slightly
lighter version thereof Hj,,(k). If a pixel y has the majority label k, and there are points
in the original input dataset T that project over y, we set H(y) = Hr(k), otherwise, we set
H(y) = Hsynin(k). This way, we can distinguish between pixels covered by the scatterplot
P(T), which use Hr(k), and pixels for which we needed to synthesize additional samples,
which will use Hyy4(k).

Confusion: We define the confusion c(y) for all samples of a pixel y as the ratio between
the number of samples of the class label having most instances over y and the total sample
count for that pixel, i.e.,

maXgec Yy e LF(PT (Y1) = K]

n(y) 42)

o(y) =
Higher ¢ values indicate more consensus for the samples over a pixel, whereas lower
values indicate that the respective pixel is close to, or on, a decision boundary. We
encode confusion into the saturation S(y): Colorful pixels indicate areas where f chooses
consistently a single label (depicted by hue, see above), whereas gray pixels indicate areas

65

66

4 | CONSTRUCTING DECISION BOUNDARY MAPS

close to decision boundaries.

Density: We define the density of samples, p, for a pixel, y, as the total number of samples
covering this pixel’s extent. These can be either samples in T or additionally generated
samples created as described above. Visualizing p is useful as it tells us which dense-
map areas have more information (samples), thus, we can be more confident about. Let
Pmax be the highest sample density over all pixels of I. We could directly encode p into
the value (brightness) V(y) = p/pmax. However, a problem of this design is that inherently
darker hues, e.g. blue, will exhibit less brightness variation than brighter hues, e.g., yellow,
so density variations for the dark-hue labels will be hard to see. Hence, we choose to
encode p in both brightness and saturation, as follows. First, we normalize p to [0, 1] by

computing
1
p=max| — P , 1),
20 Pavg

where p,., is the average sample density over all pixels in I. Next, if p € [0,0.5], we
compute V by linearly interpolating between a low brightness value V,,;, = 0.1 and the
maximal V = 1. If p € [0.5,1], we set V = 1 and compute the saturation S by linearly
interpolating between full saturation S = 1 and a low saturation S,;, = 0.2. The net
effect is that low densities will appear as darker hues; average densities will show the
full brightness of the corresponding hue; and high densities will increasingly brighten
the respective hue towards white. The values V,,;, and S,,;, are chosen so that we do
not reach pure black or pure white, so the user does not confuse the emerging colors
with those corresponding to maximal confusion values (grays). The decision zones of f
will appear as “shaded cushions” whose domes indicate high density areas, akin to the
results shown (by a different implementation and for a different goal) inR. d. SiLva et al,
2015.

Figure 4.2 summarizes the HSV color synthesis proposed above to encode decision,
confusion, and density for a class label mapped to the hue red (for illustration purposes).
Along the y axis, we see how brightness increases to map higher density values. When
the normalized density p is equal 0.5 and confusion is zero, we get a pure fully saturated
red color. Lower density values map to darker reds, while higher densities map to increa-
singly whitish reds. Along the x axis, we see how saturation decreases to map increasing
confusion values. When confusion is maximal, we only see gray tints.

4.2.1 Parameter setting

Our proposed dense map depends on two free user parameters: the resolution R of
the target image I and the minimal desired number of samples per pixel N. We next
explore the insights delivered by varying these parameters on a simple two-class data-
set. This dataset is a subset of the well-known MNIST benchmark Y. LECUN et al., 2010,
created by keeping only the images of the digits 0 and 1 (for further details on MNIST,
see Sec. 4.3.2). For illustration purposes, we trained a Logistic Regression classifier (f) on
this dataset, achieving a 99.8% accuracy. Any other classifier could be used - leading, of
course, to different dense maps showing the behavior of that classifier. For projection, we
used LAMP Jo1a et al., 2011.

4.2 | DECISION BOUNDARY MAP CONSTRUCTION

A
low confusion, high confusion,
1 high density high density
(S =Sy V=1) (S=0,7=1)
(=%
2
‘®
c
[}
©
low confusion, h!gh confgsion,
0.5 average density high density
(S=1,7=1) (S=0,7=0.5)
low confusion, high confusion,
0 low density high density
(S: LV= Vmin) (S: 0, V= Vmin)
0 confusion ¢ 1 -

Figura 4.2: Color scheme encoding decision, confusion and density values.

Figure 4.3 shows the impact of varying R and N on the dense map. Several obser-
vations follow, first and foremost, we see that the differences between dense maps for
different parameter values are small and, more importantly, vary continuously with the
parameters. This tells that our dense map construction is stable with respect to parame-
ter choice, which is very important for its practical usability. Secondly, we see how the
brightness bump, visible on the top-left image (N = 1, R = 50 x 50 decreases as either R or
N increase. This is expected, and interpreted as follows: for low N and R values, density
variations of the raw input dataset D are visible, since there are no additional samples
needed to construct the dense map. For our example, the red brightness bump tells that
the “red” class samples are overall much denser than the “blue” class samples. Such ima-
ges can be seen as a direct, depiction of D. As either N or R increases, the number n(y) of
samples in D per pixel y will decrease becoming eventually lower than N (the minimal
number of desired samples per pixel), so we need to synthesize additional samples. When
adding these extra samples, the overall spatial density of samples over the image becomes
relatively constant, converging to N in the limit, so we see less brightness variation. We
can interpret such high-N, high-R images as converging to the actual continuous decision
boundaries in the limit. As R increases, we also see how the decision boundaries become
more refined, showing more fine-scale details. Separately, the fact that we see few desa-
turated (gray) colors in the images tells us that the depicted classifier is quite consistent
— that is, it assigns the same class to close samples.

67

68

4 | CONSTRUCTING DECISION BOUNDARY MAPS

N=1 N=5 N=10 N=15

Figura 4.3: The effect of varying both resolution R (rows) and number of minimum number of samples
per pixel N (columns).

50 x 50

R=

100 x 100

R=

200 x 200

R=

500 x 500

R=

To better understand confusion zones, Fig. 4.4 shows a zoomed-in view on the same
dataset, but uses a simpler color coding than Fig. 4.3 — hue encodes the majority class
label per pixel d(y) (Eq. 4.1) and saturation encodes confusion c(y) (Eq. 4.2). Hence, whi-
tish pixels indicate zones where the classifier has a high confusion. As we increase the
sampling density N, confusion bands appear more pronouncedly along the red-blue de-
cision boundary, which is expected, since close to this boundary the classifier needs to
change decisions. We also see small confusion areas within the compact blue zone, which
indicate that this classifier has likely “drawn” the decision boundary in a too simple and
inaccurate way.

4.2.2 Implementation details

We implemented our dense maps in Python using t-SNE MAATEN e G. HINTON, 2008
and LAMP Jo1a et al., 2011 for the direct projection P and iLAMP SANTOS AMORIM et al,
2012 for the inverse projection P~'. LAMP and iLAMP are simple to implement, and, as

4.3 | EXPERIMENTAL RESULTS

N=10 N=15

Figura 4.4: Confusion zones (bright pixels) along the decision boundaries as function of minimum
samples per pixel N.

shown in several works, achieve higher accuracies in preserving distances than similar-
type projection methods Joia et al.,, 2011; MARTINS, COIMBRA et al., 2014. In contrast, t-
SNE has a better ability to separate high-dimensional clusters MAATEN e G. HINTON, 2008
than LAMP. LAMP and t-SNE are further compared in Sec. 4.3.2.

4.3 Experimental results

We illustrate our technique by applying it to two high-dimensional datasets, four clas-
sifiers, and two dimensionality reduction techniques, as follows.

4.3.1 Segmentation dataset

The Image Segmentation Dataset DHEERU e KARRA TANISKIDOU, 2017 contains 2310
image instances with 19 features each, divided into 7 classes. Features measure image
attributes, e.g., color intensity mean, contrast, hue, and saturation. Classes relate to types
of outdoor images, i.e., brickface, sky, foliage, cement, window, path and grass. We trained
three different classifiers, i.e. Logistic Regression (LR), Support Vector Machine (SVM),
and K-Nearest Neighbors (KNN), all implemented in scikit-learnPEDREGOSA et al., 2011,
on this dataset, with the aim of comparing their decision boundaries. As parameters, we
used the default ones in scikit-learn, except radial basis functions (SVM), and k = 5 nearest

69

70

4 | CONSTRUCTING DECISION BOUNDARY MAPS

neighbors (KNN). Data was split into 70% training samples and 30% test samples. The
obtained accuracies were 89% (LR), 87% (SVM), and 95% (KNN).

Figure 4.5 (top row) shows three LAMP projections for the three classifiers, each ca-
tegorically colored by the training and test-set labels. This is a typical way that ML prac-
titioners use to assess how the classifiers “divide” the data space into different zones for
different classes. From these images, we only see small-scale differences between the th-
ree classifiers. Moreover, as already explained, such images are subject to occlusion and
overplotting. Also, from these images, it is not clear what a classifier would decide for a
sample which is relatively far away from existing ones.

The dense maps, generated at a resolution R = 500% pixels, and with a minimum
number of N = 5 samples per pixel, attempt to overcome these issues (Fig. 4.5, bottom
row). They show us several insights. First, there is no overplotting in these images, so we
are sure that each pixel carries the exact information pertaining to the samples that fall
over it. Secondly, the differences between the decision zones corresponding to the seven
classes are now much easier to see. For instance, for all classifiers, class 1 (orange) has
a quite smooth and clear decision boundary touching mainly classes 3 (dark blue) and
5 (yellow-green). However, subtle differences between the classifiers also show up - for
instance, the class-1 decision zone of LR contains a few isolated islands for class 2 (green)
and class 3 (dark blue). These islands are different for SVM and KNN. Separately, we see
that the decision boundaries for the other classes, most notably class 0 (blue) and class 5
(yellow-green) are much more jagged, for all classifiers. Verifying the actual classification
results shows, indeed, that instances in these classes are harder to classify than in e.g.
class 1 or class 6.

Finally, we see some interesting differences between the dense map of KNN and the
other two (Fig. 4.5, white stippled lines): the decision boundary of class 4 (purple) is visibly
stretched upwards in zone A for KNN, whereas for LR and SVM, the purple zone is much
smaller and does not protrude upwards through the class-0 (blue) area. Similarly, the de-
cision boundary of the same class 4 protrudes significantly upwards in the green area in
zone B for KNN, but not for the other two classifiers. Finally, the decision boundary for
class-0 (blue) protrudes significantly downwards in the purple area for KNN, but not for
the other two classifiers. Note that these differences cannot be explained by the projec-
tion, since we use the same projected points for all three classifiers. Overall, the decision
boundaries of KNN show larger, and more mixed, per-class areas, except for class 1. This
explains both the increase in accuracy of KNN wvs the other two classifiers, but also for
which regions (types of images) of the data space these differences occur. Note, again,
that spotting such differences using only standard color-coded projection scatterplots is
very hard, or even impossible.

4.3.2 MNIST dataset

Our second dataset, MNIST, is a standard dataset in ML consisting of 70K handwritten
digit images, commonly employed to evaluate the performance of machine learning image
classifiers, split into 60K training and 10K testing images Y. LECuN et al., 2010. Each 28
x 28 pixels grayscale image can be interpreted as a point in a 784-dimensional space. We
use this dataset to explore two other questions, as follows.

71

4.3 | EXPERIMENTAL RESULTS

a) Logistic regression (89%) b) Support vector machines (87%) c) k Nearest neighbors (95%)

Figura 4.5: Projections (top) and dense maps (bottom) for segmentation dataset, three classifiers.

Figura 4.6: MNIST projected using t-SNE, color coded by class labels.

72

4 | CONSTRUCTING DECISION BOUNDARY MAPS

First, we show that dense maps can also be used for deep learning classifiers, apart
from the more classical ones such as LR, SVM, or KNN. For this, we built a simple Convo-
lutional Neural Network (CNN) composed of two convolutional layers, one max-pooling
layer and two densely connected layers. This CNN was implemented and trained using
Keras CHOLLET, 2018, and obtained an accuracy of 99.2% on the test data after 14 training
epochs. We next computed a 2D projection from a subset of 2000 samples of the training
dataset using t-SNE (Figure 4.6). We did not use the full training dataset as t-SNE is quite
slow (quadratic in the number of data points). If we had only this projection to analyze
the decision boundaries assigned by the classifier, what would then be the conclusions to
be drawn?

For instance, consider the top-right class-2 (green) and class-0 (blue) groups (marked
A and B in Fig. 4.6). These appear equally well separated from the rest of the projection,
equally compact, and have a similar (low) number of other-class points embedded in them.
As such, with only the sparse projection information, we would likely conclude that the
decision areas and boundaries for these two classes are quite similar. Likely, the user
seeing this projection would draw the decision zones corresponding to A and B much like
the dashed lines shown in Fig. 4.6. Let us look at the dense map for this dataset. Figure 4.7
shows it, at a resolution R = 300? pixels, computed for four different values of the per-
pixel sample density N. We see now that the decision zones and boundaries of class-2
and class-0 are, in fact, much more complex than we could infer from the scatterplot.
In particular, we see a non-negligible number of small “islands” corresponding to other
labels than 0 and 2 embedded in the zones for these two labels. Also, we see that the class-
0 zone is much more compact than class-2 - it contains a single small island for class 5
(Fig. 4.7, marker C).

Separately, let us consider the question of what happens close to outlier training sam-
ples. Take, for instance, the point marked X in the scatterplot (Fig. 4.6). What label would
be assigned to a digit image that projects there? We see that we have an isolated class-3
outlier and the closest samples are the relatively large class-8 group (orange). So, based on
the scatterplot, one would reckon that some class-3 decision boundary surrounding the
outlier point will be created. However, what is the exact shape and size of this decision
boundary? We cannot answer this question using only the scatterplot. The dense map
gives us precisely this answer: the point X falls within an “island” decision zone that
corresponds to class 3 (dark blue). This island is quite large, so it tells us that the impact
of a single outlier in the training set is important in such sparsely-sampled areas. Note
that this is not an approximate result: our method indeed synthesized a group of samples
that project around (and on) the point X, ran it through the classifier, and obtained class
3 as a result. Moreover, we see that the dense maps are practically identical for different
per-pixel sample densities, which increases the confidence that the class-3 island we see
is indeed there. We could not have obtained this insight using the scatterplot only.

Another use of our dense maps is in showing how the decision boundaries change du-
ring training of a classifier. Figure 4.8 shows four such dense maps, for four different epo-
chs (E) of training the CNN for the MNIST dataset, using stochastic gradient descent, with
a learning rate of 0.001. For the first epoch (Fig. 4.8a), we see how the decision boundaries
are highly jagged, while clear decision zones are mainly visible for the outlier samples.
This confirms the insight that during a deep neural network training, outliers are handled

4.3 | EXPERIMENTAL RESULTS

ON=10 = =
01 567 89

smm d) N=15
2 34

Figura 4.7: Dense maps for MNIST dataset classified by CNN, different sample density values N.

the easiest, as surrounding them by decision boundaries is far easier than “drawing” such
boundaries through a compact area of very similar samples Paulo E RAUBER et al., 2017.
From epoch 5, decision boundaries get significantly more refined in the central dense-
sample region. The dense maps for epochs 10 and 15 clearly show how the training con-
verges, as the decision boundaries basically stabilize. The dense maps correlate very well
with the testing accuracies reported in Fig. 4.8. Such images generalize the simple 2D ani-
mations of 2D dataset classifications provided by TensorFlow MARTN ABADI et al., 2015
to nD datasets and arbitrarily complex networks. They help directly seeing when further
training does not bring added value (in our case, from E = 10 onwards).

Finally, let us consider the projection algorithm choice. In Sec. 4.2.1, we have shown
that LAMP is a good choice for a simple two-class dataset. Above, we have shown that
t-SNE works well for the high-dimensional MNIST dataset. We consider the same MNIST
dataset (and classifier), but use LAMP for the 2D projection instead of t-SNE. The resulting
projection (Fig. 4.9a) shows clearly more class mixing than the t-SNE projection (Fig. 4.6).
The explanation follows: t-SNE aims to preserve the high-dimensional nearest neighbors
in the projection. Also, t-SNE pre-processes the data by PCA dimensionality reduction
prior to projection, to make the 2D embedding task easier MAATEN e G. HINTON, 2008. In
contrast, LAMP aims to preserve high-dimensional Euclidean distances between points.
So, for hundreds of dimensions (like the 784 ones in MNIST), LAMP vyields far less cluster

73

74

4 | CONSTRUCTING DECISION BOUNDARY MAPS

a) E=1 (accuracy: 40%) b) E=5 (accuracy: 86%) c) E=10 (accuracy: 91%) d) E=50 (accuracy: 95%)

Figura 4.8: Dense maps for four training epochs E, CNN classifier, MNIST dataset.

separation in the projection, even if the high-dimensional data is well separated. A poor-
separation projection leads, next, to a dense map showing fragmented decision zones
with complex borders (see Fig. 4.9b, which uses the same N and R values as Fig. 4.7d). So,
we conclude that for low-dimensional datasets, LAMP and t-SNE are comparably good
(with LAMP being significantly faster); for high-dimensional datasets, t-SNE should be
definitely used instead of LAMP.

e, @

a) 0123456189 b)

Figura 4.9: LAMP projection and dense map for MNIST dataset, CNN classifier.

4.4 Discussion

We discuss next several important aspects of our image-based visualization of classi-
fier decision boundaries.

Genericity: Our dense maps work for any classifier and dataset, as long as the data can
be represented by a feature vector in R", so that we can project such features via generic
methods such as LAMP or t-SNE, respectively invert the projection via iLAMP. No specific

4.5 | CONCLUSION

constraints on data dimensionality n, data type, classifier internals, or classifier training
process, exist. For instance, we can visualize the decision boundaries of an insufficiently
trained classifier and compare them with those of a better trained one, to tell us how
training shifts these boundaries (see the example in Sec. 4.3.2).

Robustness: We have shown that our method is robust even for sparsely-sampled data
spaces (limited number of training samples). Our dense map construction guarantees a
user-specified number of labeled samples N per pixel, at a user-given resolution R. As N
increases, every point of the 2D image becomes equally densely sampled, meaning that
we also have the same confidence everywhere on our dense maps.

Projection: Our dense maps obviously depend on the quality, of the projection being
used. A projection that, for instance, does not respect well high-dimensional distances
or neighborhoods will also yield an artificially confused dense map. Yet, two key obser-
vations must be made. First, this (well known) limitation of projections applies equally
to using scatterplots when visualizing a classifier’s results, so our dense maps do not add
any extra problem here. Secondly, the projection space should be seen as an abstract, and
not Euclidean, space, in which decision zones are depicted. That is, topological tasks like
finding the neighbors of a decision zone along its boundary, finding islands, and finding
confusion zones, can be completed well even if a projection doesn’t perfectly preserve
point neighbors and/or inter-point distances. All our experiments showed that t-SNE is a
good projection in this respect, in line with earlier findings in the same direction MAATEN
e G. HINTON, 2008; MAATEN e PosTtMmaA, 2009; Paulo E RAUBER et al., 2017.

Limitations: Our current implementation cannot handle tens of thousands of points at
interactive rates. The reason hereof is the already-mentioned high computational comple-
xity of t-SNE. Yet, recent t-SNE accelerations could be used Nicola PEzzoTT1 et al, 2017;
N. PEzzOTTI et al, 2016, when such techniques become publicly available. Also, we need
to compute the projection only once for a given dataset. A separate limitations regards
the methods used to construct dense maps. So far, we only tested two projection methods
(t-SNE and iLAMP) and one inverse projection method (iLAMP). How dense maps would
differ when computed using other method combinations is a topic to be studied separately
in Chapter 5.

4.5 Conclusion

We have presented a technique to visualize decision boundaries of arbitrary machine
learning classifiers. For this, we propose an image-based approach where every pixel of
the 2D output space is attributed a color to show the exact behavior of the classifier in the
corresponding region of the high-dimensional space. For this, we use a combination of
direct and inverse dimensionality-reduction methods, and we also propose several visual
encodings of the classification result, confusion, and sample density. Our method is simple
to implement and can handle any classifier and feature-based dataset with no changes. We
demonstrate our method on several datasets, classifiers, and using two different projection
techniques.

75

76

4 | CONSTRUCTING DECISION BOUNDARY MAPS

Several directions of refining the dense maps are possible. As already mentioned, de-
cision maps can be constructed using different combinations of direct and inverse pro-
jections. We explore these topics in Chapters 5 and 6. The decision boundary maps can
be augmented to show more information, such as explicit misclassification regions, and
high-dimensional distances or neighborhoods. This would help understanding why a clas-
sifier constructed its decision boundaries in a certain way and, thus, help in improving
them. We will cover this aspect in Chapter 7. Separately, decision boundary maps can be
extended in an active learning approach to propose to the user areas where new labels
would be needed to e.g. reduce confusion or increase classification accuracy. We study
this last topic in Chapter 8.

Capitulo 5

Evaluating Decision Boundary
Maps

In the previous chapter, we presented a technique to construct and visualize the de-
cision boundaries and decision zones induced by a given classifier. As described there,
our technique depends on two main ingredients — the projection technique used to map
the high-dimensional data to the 2D visualization space, and the inverse projection tech-
nique used to map points in this visualization space to the high-dimensional data space.
Since the resulting decision boundary map images will depend strongly on the choice of
these techniques, the question is which are suitable combinations of direct and inverse
projections that lead to decision boundary map images that are easy to interpret and
convey a trustworthy impression of the actual decision boundaries that a classifier has?
For instance, a projection technique that preserves well neighborhoods in the data space
is, arguably, better for constructing decision boundary maps that one that spreads such
neighborhoods all over the projection plane. However, the definition of a “best” projection
for our task may depend also on how the projection interacts with the actual classifier
whose decisions we want to visualize.

The “design space” of all possible combinations for constructing decision boundary
maps is very large, as it involves direct projections, inverse projections, classifier tech-
niques, actual datasets, and hyperparameter values. In related work, Espadoto et al. M.
EspADOTO, MARTINS et al., 2019 have attempted to analyze a related, but much lower-
dimensional, space consisting of the behavior of projection techniques for different types
of datasets and hyperparameter values, and for this end they needed to evaluate thousands
of combinations. Given that our design space has more dimensions, we will not attempt
to densely sample it for evaluation. Rather, we will focus, in this chapter, on gauging
the effect of a single dimension, namely the type of direct projection technique used to
construct decision boundary maps. As such, we aim next to answer two questions:

This chapter is based on the following publication:
M. Espapoto, F. C. M. RODRIGUES et al. “Visual analytics of multidimensional projections for constructing
classifier decision boundary maps”. Em: Proc. IVAPP. SciTePress, 2019

77

5 | EVALUATING DECISION BOUNDARY MAPS

1. How do the depicted decision boundaries differ as a function of the chosen projec-
tion technique?

2. Which projection techniques are best for a trustworthy depiction of decision boun-
daries?

5.1 Preliminaries

For easing the reader’s burden, we briefly repeat here the construction of decision
boundary maps, and associated notations, introduced in Chapter 4. Let D < R" be a data
space of interest in a classification problem. Let f : D — C be a classification model
that maps from data points in D to some label set C. The model f is constructed using a
training set S; ¢ D and tested using a test set Sy ¢ D, St n S; = @. Let P be a projection
technique from D to R?, and let P! be an inverse projection technique from R* to D. A
decision boundary map for f is an image I constructed as follows (see also Fig. 5.1a):

For every pixel y € I, we gather all data samples x € D that project into y, and, if their
count Y is below a user-prescribed value U, we add to them U - Y synthetically created
points P7'(y’), where y’ are random points inside pixel y. Having now R = max(U, Y)
data samples x;, ..., Xg for each image pixel y, we color y the labels L = {f(x;),..., f(Xr)}
assigned by the model f. Compact same-color areas in I indicate decision zones where the
classifier f infers the same label, i.e., reflect the underlying so-called contiguity hypothesis
typical in many ML contexts MANNING et al., 2008; frontiers separating different colors
in I indicate decision boundaries. Few compact zones with simple (smooth) boundaries
indicate that the classifier has little difficulty in taking decisions over D. Multiple disjoint
same-color zones and/or zones with tortuous boundaries indicate the opposite. Small-size
“islands” of one color embedded in large zones of different colors suggest misclassificati-
ons and/or training problems.

However, the trustworthiness of our dense map technique heavily depends on the
direct (P) and inverse (P™') projection techniques it uses. Consider, for example, a toy
two-class kNN classifier for a 3D data space D c R® trained with a simple S, consisting
of one sample of each class. We know in this case that the decision boundary should be
a plane halfway the two training samples. So, a good 2D projection P should ideally lead
to a decision boundary map image that shows two compact decision zones separated by
a straight line. Conversely, a poor P may create several same-class zones having complex
curved boundaries; if we saw such an image, we would wrongly judge the behavior of
this simple classifier.

As discussed in Chapter 2, tens of different projection techniques P exist. Which ones
are best for constructing decision boundary maps is, however, not evident. To find these,
we can use, up to some extent, the analysis of Espadoto et al. M. EspADOTO, MARTINS et al,
2019 that quantitatively compared over 40 such techniques against six different quality
metrics. However, the respective quality metrics are chiefly aimed at gauging how well a
projection succeeds in creating a scatterplot that faithfully conveys the high-dimensional
data structure. In our case, there is, formally speaking, no scatterplot whose quality we
want to maximize, but a dense map image. Hence, it is not evident that projections deemed
best by the survey of Espadoto et al. are automatically best for our task.

5.1 | PRELIMINARIES

A second evaluation problem exist in our context: How to gauge the quality of a deci-
sion boundary map produced by a given projection technique P? For this, we need some
ground truth to compare the map with. In the survey of Espadoto et al., this was (relati-
vely) easy to obtain, since projections were compared with ground truth inferred from the
high-dimensional data points they represent. In our case, this is not possible, since, except
trivial cases, we do not know the shape and position of decision boundaries of classifiers

in high-dimensional space.

Given the above, we approach the problem of determining the suitability of projecti-

ons for decision boundary map construction as a two-phase process, as follows:

1. We construct maps (using all projections) for a simple dataset and two-class classifi-
cation problem, for which we know how the decision boundaries look like. We next
rank the tested projections in terms of how well they generate maps that correspond

to our prior knowledge on the decision boundaries for this simple problem;

2. We select a small subset of projections that perform best on the experiment in the
first phase, and assess how they behave on more complex classification problems
and datasets. Since we do not have ground truth here, we only assess the results
qualitatively, in terms of noisiness and fragmentation of the resulting decision zones
and boundaries.

s subsamples y’ inimum
newly created samples P ~'(y’) Pl |< R sample
density U
Y nD sample x P(x) e o
Augmented data | | Test data S ——>~| P > &pixely
0% | densemap
scatterplot
»| Classifier f S
labels f(x)
a)
stage 1 4 x 28 = 112 dense maps
st 5, [28 siections). EpEEEAEgE
4 classifiers select 5 best
Fashion MNIST projections
stage 2 SarE
subset S, o> | 5 Projections [<——— , IN_==
b) 4 classifiers £ Pl
4 x 5 =20 dense maps

Figura 5.1: Two-phase experiment set-up.

79

80

5 | EVALUATING DECISION BOUNDARY MAPS

5.2 Experiment Setup

To answer the two questions stated at the beginning of this chapter, we designed a
two-stage experiment to study how dense maps depend on dimensionality reduction (DR)
techniques and classifiers, covering a combination of 28 DR techniques and 4 classifiers
(Figure 5.1b). The ingredients of this experiment are as follows:

Data: We select two different subsets of the Fashion MNIST X140 et al., 2017, a state-of-
the-art ML benchmark with clothing and accessory images, which supersedes complexity-
wise the traditional MNIST dataset Y. LECUN et al., 2010. Both MNIST and Fashion MNIST
have 70K grayscale images of 28 x 28 pixels, split into a training set (|S;| = 60K samples)
and a test set (|S7| = 10K samples). The two subsets are as follows:

« S;: A two-class subset (classes T-Shirt and Ankle Boot) that we hand-picked to be
linearly-separable; the reason for this is that, for such a simple configuration, we
know what to expect in the corresponding decision boundary map. Namely, the
respective map should (ideally) partition the visual space into two regions separated
by a smooth boundary;

« Sio: An all-class subset (T-Shirt, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker,
Bag, and Ankle Boot). This is a non-linearly-separable dataset.

Classifiers: We consider the same classifiers as in Francisco Caio M RODRIGUES et al.,
2018: LR, RF, kNN (implemented in scikit-learn, using their toolkit’s default parameters),
and CNN (implemented in keras). For CNN, we used two convolutional layers with 64
filters each and 3 x 3 kernels, followed by one 4096-element fully-connected layer, trained
with the Adam optimizer Kingma e Ba, 2014. These classifiers create very different
decision boundaries: At one extreme, LR boundaries are linear (hyperplanes). kNN
boundaries are piecewise-linear (facets of nD convex polyhedra). RF creates typically
more complex boundaries than k-NN. At the other extreme, CNN boundaries can have
arbitrarily complex topologies and geometries, due to the complex decision function f
coded by the deep network structure. However, CNNs are known to perform very well
for classifying images like our dataset, while at the other extreme simple classifiers like
LR are highly challenged by such data.

Tabela 5.1: Accuracy of classifiers, 2-class and 10-class problems.

Classifier technique 2-class | 10-class
Logistic Regression (LR) 1.0000
Random Forest (RF) 1.0000 | 0.8332

k-Nearest Neighbors (KNN) 0.9992 | 0.8613
Conv. Neural Network (CNN) | 1.0000 | 0.9080

Training: The four classifiers were separately trained on the two subsets S, (|S;| = 2160
samples, |Sy| = 240 samples) and S;y (|S;| = 10800 samples, |S7| = 1200 samples). We
verified that the training yielded good accuracies in all cases (Tab. 5.1). This is essential
to know when we next gauge the dense maps’ ability to capture a classifier behavior (see

5.2 | EXPERIMENT SETUP

stage 1 below).

Projections: Table 5.2 lists the 28 selected projection techniques (P) to create dense
maps as well as the parameter settings (default indicates using the standard ones the
algorithms come with). As inverse projection (P'), we used iLAMP in all cases, just as
in Chapter 4. As selection criteria, we considered well-known projections of high quality
(following a recent survey NONATO e AUPETIT, 2018'), good computational scalability,
ease of use (P should come with well-documented parameter presets), and publicly
available implementation.

Dense maps: We use a two-stage creation and analysis of dense maps, as follows (Fig. 5.1).
In stage 1, for S,, we create dense maps using all 28 projections for all 4 classifiers, yielding
a total of 112 dense maps. All maps have a 400x400 pixel resolution. Since S, is quite simple
(two linearly separable classes), and since all classifiers for S, have very high accuracies
(Tab. 5.1), the resulting maps should display (ideally) two compact zones separated by a
smooth, ideally linear, boundary. We visually verify which of the 112 maps best comply
with these criteria, and next select the five projections (of the 28 tested ones) which realize
these maps. These are shown in bold in Tab. 5.2. Next, in step 2 of the study, we create
dense maps, for all 4 classifiers again, but using the more complex S,y dataset. Finally, we
explore these visually to gain fine-grained insights allowing us to further comment on
the dense-map suitability of these 5 hand-picked projections.

IThe survey of Espadoto et al. M. EspADOTO, MARTINS et al., 2019 was not published at the date when
we conducted this work. However, upon a detailed comparison, we see that there are no high-quality pro-
jections reported in Espadoto et al. which our evaluation did not include.

81

82

5 | EVALUATING DECISION BOUNDARY MAPS

Isoma|

LTSA

UMAP

Isoma|

LTSA

a) Logistic Regression

Factor Analysis FastICA Fastma| Random Proj. (Gauss. LLE ‘Hessmn|
Kernel PCA (Linear Kernel PCA ‘POI“ Kernel PCA ‘RIF| Kernel PCA (Sigmoid LAMP

Laplacian Eigenmaps LLE (Modified MDS (Metric MDS (Non-Metric

Proj. By Clusterin Ralid Sammon Slarse PCA Random Proj.

b) Random Forest

Factor Analysis FastIiCA Fastma| Random Proj. (Gauss. LLE ‘Hessuan|
Kernel PCA (Linear Kernel PCA ‘POI“ Kernel PCA ‘RIF| Kernel PCA (Sigmoid LAMP

Landmark Isomap _ Laplacian Eigenmaps LLE (Modified

IDMAP

LLE
PCA
t-SNE

IDMAP

LLE
PCA

MDS (Metric MDS (Non-Metric

Ralid Sammon S|arse PCA Random Proj. UMAP

Figura 5.2: Dense maps for Logistic Regression (a) and Random Forest (b) classifiers on the 2-class S,
dataset, all 28 tested projections.

5.2 | EXPERIMENT SETUP

a) k Nearest Neighbors

Factor Analysis FastICA Fastma, Random Proj. (Gauss. LLE ‘Hessmn|
Kernel PCA (Linear Kernel PCA ‘Pol‘| Kernel PCA ‘RIF| Kernel PCA (Sigmoid LAMP

Landmark Isomap _Laplacian Eigenmaps LLE (Modified

Proj. By Clusterin: Ralid Sammon S|arse PCA Random Proj. t-SNE UMAP

b) Convolutional Neural Network
Factor Analysis FastICA Fastma, Random Proj. (Gauss. LLE ‘Hessian| Isoma|

Kernel PCA ‘Pol‘| Kernel PCA ‘RBF| Kernel PCA (Sigmoid LAMP LTSA
Landmark Isoma Laplacian Eigenmaps LLE (Modified MDS (Non-Metric

Proj. By Clusterin: Ralid Sammon Slarse PCA Random Proj. t-SNE UMAP

Figura 5.3: Dense maps for k-NN (a) and CNN (b) classifiers on the 2-class S, dataset, all 28 tested
projections.

Isoma|

LTSA

MDS (Non-Metric

MDS (Metric

Kernel PCA (Linear

MDS (Metric

83

5 | EVALUATING DECISION BOUNDARY MAPS

Tabela 5.2: Projections tested in phase 1 (Sec. 5.3.2). Projections tested in phase 2 (Sec. 5.3.2) are
marked in bold.

Projection Parameters

Factor AnalysisJOLLIFFE, 1986 iter: 1000

Fast Independent Component Analysis (FastiICA)HYVARINEN, 1999 fun: exp, iter: 200
FastmapFaLouTsos e LIN, 1995 default parameters
IDMAPMINGHIM et al., 2006 default parameters
IsomapTENENBAUM et al., 2000 neighbors: 7, iter: 100
Kernel PCA (Linear) SCHOLKOPF et al., 1997 default parameters
Kernel PCA (Polynomial) degree: 2

Kernel PCA (RBF) default parameters
Kernel PCA (Sigmoid) default parameters
Local Affine Multidimensional Projection (LAMP)Jo1A et al., 2011 iter: 100, delta: 8.0
Landmark IsomapCHEN et al., 2006 neighbors: 8
Laplacian EigenmapsM. BELKIN e N1vOGI, 2002 default parameters
Local Linear Embedding (LLE)ROWETs e SAUL, 2000 neighbors: 7, iter: 100
LLE (Hessian)DoNOHO e GRIMES, 2003 neighbors: 7, iter: 100
LLE (Modified)Z. ZHANG e J. WANG, 2007 neighbors: 7, iter: 100
Local tangent space alignment (LTSA)Z. ZHANG e ZHA, 2004 neighbors: 7, iter: 100
Multidimensional Scaling (MDS) (Metric)KrRUSKAL, 1964 init: 4, iter: 300

MDS (Non-Metric) init: 4, iter: 300
Principal Component Analysis (PCA) JOLLIFFE, 1986 default parameters
Part-Linear Multidimensional Projection (PLMP) Paurovich, C. T. SiLvA et al., 2010 | default parameters
Piecewise Least-Square Projection (PLSP) PaurovicH, ELER ef al, 2011 default parameters
Projection By ClusteringPaurovicH e R. MINGHIM, 2006 default parameters
Random Projection (Gaussian)DAsGuPTA, 2000 default parameters
Random Projection (Sparse)DAsGupTa, 2000 default parameters
Rapid SammonPEKALSKA et al., 1999 default parameters
Sparse PCAZou et al., 2006 iter: 1000
t-Stochastic Neighbor Embedding (t-SNE)MAATEN e G. HINTON, 2008 perplexity: 20, iter: 3000
Uniform Manifold Approximation (UMAP)McINNES e HEALY, 2018 neighbors: 10

5.3 Analysis of Evaluation Results

We next discuss the results and insights obtained in our two-stage experiment.

5.3.1 Phase 1: Picking the Best Projections

As stated earlier, all four tested classifiers yield almost perfect accuracy for the simple
2-class problem S, (Tab. 5.1). Hence, their decision boundaries are “where they should
be”, i.e., perfectly separating the two classes in S,. Moreover, since S, is by construction
linearly separable, the dense maps constructed for these classifiers should clearly show
two compact decision zones separated by a smooth, simple, boundary. We use this as
a visual criterion to rank how well the tested projection techniques can achieve this.
Figures 5.2 and 5.3 show the dense maps for all 28 tested projections vs the four tested
classifiers, where red and blue indicate pixels mapping samples classified to one of the
two labels in S,. Interestingly, we see that even for this very simple problem not all
projections perform the same. Our key observations are as follows:

Stability: The dense maps are surprisingly stable for the same projection over all four

5.3 | ANALYSIS OF EVALUATION RESULTS

classifiers, except for LLE, LTSA, Random Projection (Gaussian), and Random Projection
(Sparse). Hence, we already flag these four projections as less suitable.

Smoothness: All projections have relatively smooth boundaries, except Random Pro-
jection (Gaussian), Random Projection (Sparse), and MDS (Non-Metric). Since we expect
smooth boundaries, these projections are less suitable. The projections which yield
boundaries closest on average to the expected straight line are MDS, UMAP, Projection
by Clustering, t-SNE, and PLMP.

Compactness: Projections succeed up to widely different degrees in creating the expec-
ted two compact, genus-zero, decision zones. t-SNE, UMAP, Projection by Clustering,
and IDMAP do this almost perfectly. MDS (Non-Metric), the two Random Projections,
LLE (Hessian), and LTSA perform the worst.

Summarizing the above, we select MDS (Metric), PLMP, Projection by Clustering,
UMAP, and t-SNE as the overall best projections to analyze further in phase 2, discus-
sed next. At this point, it is interesting to remark that, three of the above five methods -
Projection by Clustering, UMAP, and t-SNE, were also ranked among the top projections
in the independent study of Espadoto et al. M. EspADOTO, MARTINS et al., 2019, which
used different quality metrics than our work.

5.3.2 Phase 2: Refined Insights on Complex Data

We now examine how the five projections selected in phase 1 perform on the 10-class
dataset S, which is a tough classification problem X140 et al., 2017. We already see this
in the lower achieved accuracies (Tab. 5.1). Hence, we expect to have significantly more
complex boundaries. Figure 5.4, that shows the dense maps for our 4 classifiers for the 5
selected projections, confirms this. Several interesting patterns are visible, as follows.

Overall comparison: For a given projection, the dense map patterns are quite similar
over all four tested classifiers. This is correct, since the dense map is constructed based
on the scatterplot created by that projection from the test set Sy, which is fixed. The
variations seen along columns in Fig. 5.4 are thus precisely those capturing the differen-
ces of decision boundaries of different classifiers. We see, for instance, that LR tends to
create slightly simpler boundaries than the other three classifiers. Conversely, variations
along rows in Fig. 5.4 can be purely ascribed to the projection characteristics. Techniques
designed to better separate data clusters, such as t-SNE and UMAP, show more compact
decision zones with simpler boundaries than MDS, PLMP, and Projection by Clustering.
Also, the choice of neighborhood used internally by the projection technique to estimate
points in the lower dimension (2D) does not seem to play a key influence: MDS, which
uses global neighborhoods, shows similar pattern-variations along classifiers to the other
four projections, all of which use local neighborhoods.

Another salient visual element of the dense maps in Fig. 5.4 is the presence of many
small color islands - that is, small-area compact zones of some color (class) surrounded

85

86

5 | EVALUATING DECISION BOUNDARY MAPS

MDS (Metric) PLMP Proj. By Clustering t-SNE UMAP

c
-
n
0
o
2
o
)
o
v
]
2
o
o
-

Random Forest

Figura 5.4: Dense maps for all classifiers, 10-class dataset, five best-performing projections.

by larger-area zones of another color (class). Let us analyze these in more detail. An island
indicates that (at least) one sample was assigned a label different from the labels of samples
that project close to it. In turn, this means that

a) the island does not actually exist in the high-dimensional space D, so the projection
P did a bad job in distance preservation when mapping nD points to 2D; or

b) the island may exist in D, i.e., there exist very similar samples that get assigned
different labels. This case can be further split into

b1) the island actually exists in D, i.e. similar points in D do indeed have different
labels, and the classifier did a good job capturing this; or

b2) the island does not exist in D, i.e., the classifier misclassified points which are
similar in the feature space but actually have different labels.

To understand which of these cases actually occur in Fig. 5.4, we plot misclassified
points atop the dense map as half-transparent white disks. Figure 5.5 shows this for the
LR and CNN classifiers, all projections. Regions having many (densely packed) misclas-
sifications show up as white areas. The insets (t-SNE dense map) exemplify how islands
point to two of the above-mentioned issues: In Fig. 5.4a, we see two very small color
islands around the misclassified samples A and B. These islands indicate the extent up to
which other samples, close to A or B, would also get misclassified. In contrast, the detail

5.4 | DISCUSSION

in Fig. 5.4b shows a (red) island containing no white dots (misclassifications). This island
either reflects a real variation of the label over similar points in D (case (b1) above), or
else reflects a t-SNE projection artifact (case (a) above). To decide which of these cases
actually occurs, we need additional techniques. We will present such techniques in Chap-
ter 7.

Separately, we see that, overall, the LR dense maps have more white dots than the
CNN ones, which correlates with the lower LR accuracy (Tab. 5.1). We also see that the
white points are non-uniformly spread over the dense maps by different projections. MDS
and PLMP show many islands without white dots. As explained above, this either reflects
densely-packed different-label points in D (case (b1)) or MDS and PLMP projection er-
rors (case (a)). At the other extreme, t-SNE, and even more so UMAP, strongly pack the
white dots, which tells that misclassifications actually occur for quite similar data samples.
Densely-packed white points effectively show the confusion zones, so one can use them
to decide which kinds of samples need to be further added to the training set to improve
accuracy.

Another finding is that hard samples on the dataset, i.e., the ones located far away from
their label group and which appears as “islands” of one color inside another, are easy to
spot and if classified correctly, shows that the classifier did a good job on those.

MDS(Metric) PLMP Projection by Clustering t-SNE UMAP
5 : “we g

Logistic Regression

Convolutional Neural Network

Figura 5.5: Classification errors (white dots) shown atop of the dense maps, LR and CNN classifiers.

5.4 Discussion

We summarize our findings and insights concerning the construction and interpreta-
tion of classifier decision maps as follows.

Best techniques: We evaluate the construction of dense maps using 28 direct projection
techniques and 3 inverse projection techniques respectively. To limit the amount of work

87

88

5 | EVALUATING DECISION BOUNDARY MAPS

required to analyze hundreds of classifier-projection combinations, we designed a two-
phase experiment where we pre-select the best projections (using a simple classification
problem) to study next in detail. t-SNE and UMAP appear to be the best projections
for constructing dense maps in terms of recognizability of decision boundaries in the
produced patterns, limited errors (spurious islands), and concentration of confusion zones
(misclassifications). Since UMAP has similar properties with t-SNE but is significantly
faster, we label it as the optimal candidate for this task. Interestingly, the survey of
Espadoto et al. M. EspADOTO, MARTINS et al., 2019 on the quality of projection techniques
also flags t-SNE and UMAP between the three best techniques, although it gauges a
different task and uses different quality metrics. We believe that this is not by chance, but
it actually indicates that these two techniques are indeed among the best in existence for
a wide variety of tasks.

Influence factors: As mentioned, dense maps depend not only on the direct projection
P but also on its inverse P~'. We studied in detail the dependency on P, but only used a
single P~! implementation (iLAMP). This is due to the fact that (at the time of doing this
work) we were not aware of any other scalable, generic, and publicly-available inverse
projection alternative. However, designing such alternatives is an interesting topic. We
will cover this point in Chapter 6.

Experiment coverage: Dense maps constructed using projections are a novel technique
in high-dimensional visualization. Besides their use discussed here for showing classifier
boundaries, they are also used to analyze projection quality AUPETIT, 2007; MARTINS,
CoimBRraA et al., 2014. All such maps strongly depend on the projection technique being
used. To our knowledge, our current work that evaluates how dense maps depend on
the choice of 28 possible projection techniques, is the broadest evaluation of this type
in existence. To limit the amount of work required to analyze over hundred classifier-
projection combinations, we designed a two-phase experiment where we pre-select the
best projections (using a simple classification problem) to study next in detail. This, of
course, limits the potentially interesting insights one can find. The same is true for our
choice of using a single (though, highly-recognized complex ML benchmark) dataset.

Replicability and extensibility: To be useful, our work on evaluating projection-based
dense maps must be accessible, replicable, and extensible. All involved materials and
methods (projections, datasets, dense maps, classifiers, automated workflow scripts) are
available online?. We intend to organically extend this repository with new instances
along all above-mentioned dimensions.

In this chapter we have presented a methodology for evaluating the quality of multi-
dimensional projections for the task of constructing 2D dense maps to visualize decision
boundaries of ML classifiers. To this end, we have evaluated 28 well-known projections
on a two-class, respectively ten-class, subset of a well-known ML benchmark, using four
classifiers often used in practice. Our evaluation shows wide, and to our knowledge, not
yet known, differences between the behavior of the studied projections. The closest work

2https://mespadoto.github.io/dbm/

https://mespadoto.github.io/dbm/

5.4 | DISCUSSION

to ours that we are aware of is the projection benchmark study of Espadoto et al. M. Espa-
DOTO, MARTINS et al., 2019, which evaluates 44 projection techniques from the perspective
of quality metrics related to the assessment of scatterplots constructed by projecting data.
While our task for which we use projections is different (constructing decision boundary
maps), and our evaluation criteria are also different (we want decision maps which faith-
fully reflect prior knowledge on how the decision boundaries look for specific datasets
and classifiers), it is interesting to see that both our work and that of Espadoto et al. find
a common subset of “best” projections, namely UMAP, t-SNE, and Projection by Cluste-
ring.

Using a visual analytics methodology, we next refined our analysis to a small set of five
high-quality projections, and found that t-SNE and UMAP perform best for this task. On
the practical side, our results can be used to drive the selection of suitable projections for
other types of dense maps used in high-dimensional visualization. On the methodological
side, our workflow can serve as a model for the exploration of a large design space in
similar visual analytics contexts.

As already pointed out several times in this chapter, decision boundary maps depend
both on the direct and the inverse projection technique used in their construction. In this
chapter, we studied the effect of the former. The effect of the latter, including improve-
ments upon existing inverse projection techniques, is the topic of the next chapter.

89

Capitulo 6

Inverse Projections for Decision
Boundary Maps

The construction of decision boundary maps introduced in Chapter 4 relies on two
central techniques — direct projection and inverse projection. In Chapter 5, we studied the
effect of the choice of direct projection technique on the resulting maps, and shown that
among the studied techniques, t-SNE and UMAP deliver the best results. In this chapter,
we focus on the effect of the choice of inverse projection techniques.

The importance of inverse projections to the construction of decision boundary maps
has two components, as follows.

Computational effort: Following our usual notation, let D be a finite dataset, e.g., test
set, used to assess the working of a classifier f. Let P be the projection technique used
to project D to yield a two dimensional scatterplot Y. Let P! be an inverse projection
technique. Finally, let I be an image of N pixels that stores the computed decision
boundary map. As explained in Chapter 4, computing this map implies three steps: (a)
projecting D to yield the scatterplot Y = P(D); (b) for each pixel y € I, subsample y to
create R points; (c) for each of these points y’, compute x = P~!(y’), and next color y based
on the labels f(x). A typical test set D would contain thousands of samples (which need
to be projected via P), while a typical decision boundary map would have a resolution N
of several hundred thousand pixels. Given that each such pixel is sampled N times, the
cost of the entire computation is dominated by the evaluation of f and the computation
of P! at each such pixel sample point. Hence, having an efficient way to evaluate P! is
paramount for using decision boundary maps in a visual analytics interactive setting.

Quality: As discussed in Chapter 5, the quality of decision boundary maps strongly de-
pends on the quality of the underlying projection technique P. Projections which exhibit

This chapter is based on the following publication:
Mateus EspapoTO et al. “Deep Learning Inverse Multidimensional Projections”. Em: Proc. EuroVis Workshop
on Visual Analytics (EuroVA). The Eurographics Association, 2019

91

92

6 | INVERSE PROJECTIONS FOR DECISION BOUNDARY MAPS

many false neighbors and/or missing neighbors MARTINS, COIMBRA et al, 2014 will “mix
up” data coming from unrelated regions in the high-dimensional space when creating
the scatterplot, thus lead the undesired effects such as noisy decision boundaries and/or
spurious islands in decision zones. By following the same reasoning, it is clear that errors
in inverse projections P~! would lead to similar problems. Hence, we need high-quality
inverse projections for our goal.

In this chapter, we study the effect of inverse projections to the construction of deci-
sion boundary maps, with two main contributions. First, we study two existing inverse
projection techniques, namely iLAMPSANTOs AMORIM et al., 2012 (discussed in Sec. 2.2.3)
and RBF based inverse projection E. AMORIM ef al., 2015 (detailed in 2.2.3). Secondly, we
propose a new inverse projection method based on deep learning. We compare all three
inverse projection methods from the viewpoints of computational speed and quality of
resulting decision boundary maps, and show that the neural-network inverse projection
— next dubbed NNinv — achieves the best quality and speed from all three studied techni-
ques.

This chapter is structured as follows. First, we detail the construction of our new
inverse projection technique NNinv (Sec. 6.1). Having presented this method, we now
compare all three inverse projection methods (iLAMP, RBF, and NNinv) using various
datasets, classifiers, and direct projection techniques (Sec. 6.2). Section 6.3 concludes this
chapter by a discussion of our results.

6.1 Inverse Projection by Neural Networks

The idea of using deep learning to help dimensionality reduction tasks is, in itself,
not new. Early on, autoencoders have been proposed to reduce the dimensionality n of
some data space, sampled by a training set, to a (typically much) lower dimensionality
m « nG. E. HINTON e SALAKHUTDINOV, 2006. If one sets m = 2, this approach basically
delivers a projection algorithm from nD to 2D. Refinements of this approach have been
proposed in various works, e.g. using variational autoencoders Kingma e WELLING, 2013.
One of the important advantages of deep learning is its parametric nature. Namely, the
trained network learns (from the provided training set) the structure of the space that
these samples imply, and next, during inference, behaves deterministically. That is, given
the same (or slightly different) input sample, the network will infer the same (or sligh-
tly different) output value. The added-value of this is obvious when computing projecti-
ons, which should be stable with respect to small changes in the input data, to maintain
the user’s mental map. A detailed discussion of projections stability has recently been
proposed by Vernier et al. VERNIER et al., 2020. Van der Maaten has recognized this ear-
lier, and proposed a modification of the t-SNE method to behave parametrically, using
deep learning MAATEN, 2009. Closest to our work, Espadoto et al. M. EspapoTO, HIRATA
et al., 2020b have recently proposed deep learning to construct direct projections based
on a (small) training set projected with a user-chosen method such as t-SNE, UMAP, or
any other similar algorithm. Our inverse projection method shares many commonalities
with M. EspapoTo, HIRATA et al., 2020b - the key difference being that we address the
more challenging task of learning a mapping from 2D to nD rather than one from nD to
2D.

6.2 | EXPERIMENTS AND RESULTS

In detail, our method (NNinv) works as follows. We start with a dataset D < R” and a
projection technique P. Both can be freely chosen by users depending e.g. on their appli-
cation of interest and the features that P should manifest, e.g., good cluster segregation,
distance preservation, or any other known quality metrics NonATO e AUPETIT, 2018; MA-
ATEN e PosTmA, 2009; XIE et al, 2017; CUNNINGHAM e GHAHRAMANTI, 2015. We hypothe-
size that the way in which P captures the data structure in D can be used to create an
inverse projection P! by using a small training set S, « D and its respective projection
P(S;) = P(D). We next construct P! by training a neural network on the training set
T, = (S, P(Sy)), with S, selected by random sampling of D. We use the remaining data
D, = (D\S;, P(D)\ P(S;)), unseen during training, for validation. The cost function aims to
generate samples in D that are as close as possible to the training ones in S;. Summarizing,
our method has three steps: In step 1, we create the projection P(S;) of the training samples
S: using any desired projection technique P. In step 2, we train a neural network using
the training set T;. In step 3, we validate the trained network using the test set D,. The
trained network is our inverse projection P~!. For any given 2D point y, we can now infer
its high-dimensional counterpart by P~!(y).

After extensive empirical testing, varying the number of layers, neurons per layer, and
activation functions, we set the architecture of P! to four fully-connected hidden layers,
with 2048 units each, using ReLU activation functions, followed by an n-element layer,
which uses a sigmoid activation to encode the inverse projection, scaled to the interval
[0, 1] for implementation simplicity — that is, we assume that our high-dimensional data
resides in [0, 1]" instead of R". We initialize weights with the He uniform-variance scaling
initializer K. HE et al,, 2015, and bias elements by a constant value 0.01, which showed
good results during testing. We use the Adam KiNGmA e Ba, 2014 optimizer to train P! for
up to 300 epochs. We stop training automatically on convergence, defined as the moment
when the validation loss stops decreasing. In practice, we need 150 epochs on average for
convergence (see Sec. 6.2.1). As cost function, we use mean squared error, which showed
better convergence speed during testing than mean absolute error and log hyperbolic
cosine (logcosh). To test quality, we compare the nD inferred samples P~'(D,) with ground
truth D, using the mean squared error metric.

6.2 Experiments and Results
We tested our method on the following materials:

Projections: We use for P t-SNEMaATEN e G. HinTON, 2008 and UMAP McINNES
e Heary, 2018, which have high-quality and are well known in the dimensionality
reduction community NoNATO e AUPETIT, 2018. We also tested our method with other
projections such as PCA and LAMP. However, given that t-SNE and UMAP score as the
best techniques when used as direct projections for computing our decision boundary
maps (Chapter 5), we focus next on presenting and discussing the results of NNinv with
these two projection methods.

Inverse projections: We compare our method with two alternatives: iLAMP SANTOS
AMORIM et al, 2012 and RBFE. AmoriM et al,, 2015). Besides PCA, these are the only

93

94

6 | INVERSE PROJECTIONS FOR DECISION BOUNDARY MAPS

inverse projection methods we are aware of. PCA shows poor results as both direct and
inverse projections for data of high intrinsic dimensionality, so we omit this from the
presentation.

Datasets: We use one synthetic dataset and two well-known real-world benchmark da-
tasets in machine learning. The synthetic dataset (Blobs) has 60K observations sampled
from a Gaussian distribution with 5 different centers (clusters) and 50 dimensions. The
MNIST dataset Y. LECUN et al., 2010 has 70K observations of handwritten digits from 0 to 9,
rendered as 28 x 28-pixel grayscale images, flattened to 784-element vectors. The Fashion
MNIST dataset X140 et al, 2017 has 70K observations of 10 types of pieces of clothing,
rendered as 28x28-pixel grayscale images, flattened to 784-element vectors.

We next discuss our method in terms of scalability (Sec. 6.2.1), quantitative assessment
of quality (Sec. 6.2.2), and qualitative assessment of quality (Sec. 6.2.3)

6.2.1 Scalability in training and inference

Scalability implies the effort required to train our method and, separately, the effort
needed to infer P~'(Y) as function of the size |Y| of the dataset Y to inversely project.
Table 6.1 shows the number of training epochs needed to obtain convergence (defined as
in Sec. 6.1) as function of the training set size |S,|, for all three considered datasets and
P = t-SNE. The figures for other projections (UMAP, PCA) are very similar. Columns 2..4
indicate averages for multiple runs that select S; by randomly sampling D (see Sec. 6.1).
Overall, we see that we obtain convergence for roughly 150 epochs for all datasets and
training-set sizes, and also that this number of epochs is quite stable for training-set sizes
|S;| larger than 1K samples.

Tabela 6.1: Training effort until convergence.

Average # epochs for each dataset D
training set size |S;| | Blobs | Fashion-MNIST | MNIST | Avg.
500 268.0 214.0 213.5 192.5
1000 190.5 129.0 147.5 149.0
2000 153.0 112.0 111.0 112.5
5000 103.0 120.5 138.0 127.5
7000 127.0 118.5 151.0 144.0
10000 82.0 124.5 142.5 146.5
average |S;| per D | 153.9 136.4 150.6 145.3

Figure 6.1 shows the inference speed for all three datasets. Note that speed does not
depend on the projection method P, by construction. Also, in this experiment, we consider
any point y € R, i.e.,, not only points in the test-set S;, since we don’t need ground truth
information to assess speed, and since in actual use one would not have such ground
truth available. We see that both RBF and iLAMP have a superlinear behavior, while iNN
(our method) is almost linear. More importantly, iNN is roughly one magnitude order
faster than RBF and nearly two orders of magnitude faster than iLAMP for 40K samples
or more. This speed-up is crucial for applications that need to inversely project hundreds

6.2 | EXPERIMENTS AND RESULTS

of thousands of samples (or more), like in the construction of decision boundary maps,
presented in Chapter 4 (see M. EspapoTo, F. C. M. RODRIGUES et al., 2019; Francisco Caio
M RODRIGUES et al., 2018 and Sec. 6.2.3 next). In such cases, iNN allows constructing
such maps in seconds, whereas iLAMP and RBF require (tens of) minutes, which makes
human-in-the-loop usage of such dense maps impossible in visual analytics scenarios —
which is one of the key reasons why dense maps are built in the first place.

70 Blobs iLAMP 170 MNIST iLAMP 170 FashionMNIST iLAMP
=== RBF === RBF == RBF
60 iNN 60 iNN 60 iNN
__{50 50 50
[%2)
=]
<
S 140 40 40
k)
§ 30 30 (30
2 2 T
10 S 10 g 7 10

5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40 5 10 15 20 25 30 35 40
number of samples to inversely project (x1000)

Figura 6.1: Inverse projection speed as function of number of samples.

6.2.2 Quantitative Assessment of Quality

Besides being fast, we want an inverse projection to be accurate. That is, given some
ground truth pair (x € R",y = P(x) € R?), unseen by training, we want that P"'(y) be as
close as possible to x. This follows the same idea as, on the one hand, normalized stress
metrics used to gauge the quality of projections in the literature Sorzano et al., 2014;
MAATEN e PosTMA, 2009, and on the other hand classical validation of inference models
in machine learning. We measure quality in our case by computing the average inverse-
projection mean square error MSE = |x - P~'(P(x))|*/|D,| over the test set D,. The closer
MSE is to zero, the better P! is. Figure 6.2 shows MSE for our three datasets, two projec-
tions (t-SNE and UMAP), three tested inverse projections (iLAMP, RBF, and iNN). We also
consider several training-set sizes |S;| to show how MSE depends on the training amount.
For Blobs, a relatively easy-to-project synthetic data, all methods have basically zero error,
except RBF. MNIST and FashionMNIST show similar behavior: Our method (iNN) achieves
consistently lowest error. The second-best method is iLAMP. Errors are larger for these
real-world complex datasets than for the synthetic Blob, which is expected.

6.2.3 Qualitative Assessment of Quality

We now show why having a fast and accurate inverse projection is important
for our concrete application — understanding the decision zones of classifiers. For
this, we construct decision maps for projections P € {tSNE,UMAP}, datasets D €
{Blobs, MNIST, FashionMNIST}, inverse projections P! € {iLAMP, RBFp, RBFc, iNN},
and classifiers C € {LR, CNN}. Here, RBFp and RBFc are two versions of the RBF inverse

95

96

6 | INVERSE PROJECTIONS FOR DECISION BOUNDARY MAPS

MSE Blobs == [LAMP+SNE MNIST FashionMNIST
iLAMP+UMAP
0.08 iNN+t-SNE
== iNN+UMAP
RBF+-SNE
0.07 RBF+UMAP
0.06 \ =
0.05
0.04
0.03 —
0.02 -
iLAMP+SNE
0.01 e
— all other methods
051 2 5 7 10 1 2 5 7 10 1 2 5 7 10

number of training samples (x1000)

Figura 6.2: Mean square error of inverse projection (lower=better).

projection, using fixed control points, respectively control points defined as centers of
clusters obtained from the input data D (for details, we refer to the original paperE.
AMORIM et al., 2015). LR is a simple logistic regression classifier, used since we know it
produces piecewise-linear decision boundaries and hyperpolyhedral decision zones; and
CNN is a convolutional neural network, which we know it works well for image data
like (Fashion)MNIST. All decision maps are images of 500° pixels, so |D,| = 250000 points
(Fig. 6.3). Importantly, all maps were constructed completely from unseen data — that is,
we do not use any of the data points or their projections present in the training set S,.
We discuss our results next.

Blobs dataset: As expected, for this simple dataset, both t-SNE and UMAP separate well
the 5 clusters present in the data. The LR trained on this dataset achieved 100% accuracy.
All inverse projections P! appear as compact zones that surround the corresponding
projection scatterplots. For the LR classifier, we know that the decision boundaries should
be piecewise linear. UMAP yields more concentrated clusters, so the corresponding dense
maps resemble very much Voronoi diagrams of the respective cluster configurations -
which is indeed expected, and a positive sign of the correctness of the dense maps. For
the t-SNE projection, iLAMP and iNN are closest to such linear boundaries, while RBFp
and RBFc create more jagged boundaries. This is a first hint that iLAMP and iNN are
better inverse projections.

MNIST dataset: The CNN classifier used obtained a 99.6% training-set accuracy. As the
projection (and underlying dataset) is more complex, the inverse projections are more
challenged. Recent studies have empirically shown that decision zones of such neural
networks, used for natural-image dataset classification, are connected, with relatively
smooth boundaries Fawz1 et al., 2018. Hence, we expect our dense maps to show this. In
Fig. 6.3, we first observe that both iLAMP and iNN are closest to the above properties,
while RBFc generates highly noisy, sprayed-points-like, disconnected, and complex-
shaped decision zones (see dashed-line annotations in figure). These generate the false
impression that the classifier has difficulties for such samples, which is not true, given

6.2 | EXPERIMENTS AND RESULTS

Projection scatterplot P! =iLAMP P! = RBF clusters (RBFc) P! = RBF fixed control points (RBFp) P! = Our method (iNN)

=LR)

=t-SNE,C

Blobs (P

=LR)

UMAP.C

Blobs (P

=CNN)

t-SNE,C

MNIST (P

=UMAP,C = CNN)

MNIST (P

=CNN)

t-SNE,C

CNN) FashionMNIST (P

UMAP,C =

FashionMNIST (P

Figura 6.3: Dense maps constructed for combinations of classifiers C, projections P, inverse projections
P71, and datasets. See Sec. 6.2.3.

97

98

6 | INVERSE PROJECTIONS FOR DECISION BOUNDARY MAPS

the observed accuracy. RBFp also generates noisy/disconnected zones, albeit less than
RBFc, but more than iLAMP and iNN. Both RBFp and RBFc also generate visible “false
islands”, i.e., significant-size areas in the decision maps that have a label which does
not match any significant number of points having the same label in the scatterplots
(see continuous-line annotations in figure). These convey the false impression that the
classifier creates certain decision zones in areas where actually nothing like this happens.
While both above phenomena exist also for iNN, this is to far smaller extents.

FashionMNIST dataset: The CNN classifier used obtained a 98.7% training-set accuracy.
We can make the same observations made for MNIST’s decision zones, even to stronger
extents. RBFc and RBFp generate highly fragmented, jagged, and disconnected decision
zones, with RBFp being better than RBFc. iLAMP and iNN generate smoother, more con-
nected, and quite similar zones. This is quite interesting, since the two methods are com-
pletely different. However, iLAMP generates noisier zones and more jagged boundaries
(see annotations in figure). Given, again, the mentioned insights on how such zones/-
boundaries should be Fawzr et al., 2018, we find iNN being better than iLAMP.

6.3 Discussion and Conclusion

We have presented a new method — NNinv - for computing inverse projections
from 2D to high-dimensional data spaces by learning the behavior of a direct projection
method. Our method is generic (can handle any direct projection method and type of high-
dimensional dataset), automatic (does not require any user parameters), one to two orders
of magnitude faster than existing inverse projection methods (RBF and iLAMP), and sim-
ple to implement using existing out-of-the-box deep learning toolkits CHOLLET, 2018. We
compared our method on three datasets, two state-of-the-art projections (UMAP and t-
SNE), against three inverse projection methods (iLAMP, RBFc, and RBFp). We found our
method to deliver higher accuracy, and decision zones that match equally well or better
to known properties of such zones for both simple (linear regression) and more complex
(convolutional neural network) classifiers. As such, we deem NNinv to be the solution of
choice for inverse projection when constructing decision boundary maps.

The work on inverse projections is more general, and can be pursued in more di-
rections, than the construction of decision boundary maps. As such, it is interesting to
think of the implications and extensions of the NNinv method in a broader sense. First,
the design space of NNinv’s underlying neural network can be better explored to reach
higher accuracy and/or less training effort. For this, the interested researcher could fol-
low the methodology proposed in M. EspapoTO, FALCAO et al., 2020 for the similar task
of improving the performance of deep-learned direct projections M. EspapoTO, HIRATA
et al., 2020b. Secondly, different quality metrics can be used to deliver inverse projections
which are specifically suited for specialized tasks such as assessing confusion zones of
classifiers. This is a particularly interesting topic from a theoretical perspective too, since,
to our knowledge, there are no established quality metrics for inverse projections — as op-
posed to many quality metrics in existence for direct projections. Finally, one can apply
our inverse projection to support more applications beyond decision map exploration in
machine learning, following the use-cases and examples in E. AMORIM et al., 2015.

6.3 | DISCUSSION AND CONCLUSION

With the above presented comparison of different inverse projection techniques, spe-
cifically for the construction of decision boundary maps, we close the loop on covering
the two major technical dependencies of the method we proposed back in Chapter 4. In
the next chapter we present how decision boundary maps can be enhanced to convey
more information, thereby making them more effective for analyses related to classifier
engineering.

99

Capitulo 7

Visual Refinements of Decision
Boundary Maps

The dense visualization provided by decision boundary maps allows for an explicit
representation and visual exploration of a classifer’s decision boundaries and decision
zones, an improvement in comparison to plain color-coded scatterplots, as discussed in
depth in Chapter 4. In Chapters 5 and 6, we have studied the effect of choosing speci-
fic direct, respectively inverse, projection techniques on the resulting dense maps, for a
variety of synthetic and real-world datasets and classifier techniques.

Overall, the key insight obtained by the above-mentioned experiments is that, for sim-
ple datasets (where classes are very well separated in the data space), decision boundary
maps constructed by using t-SNE or UMAP (for the direct projection) and our own NNinv
(for the inverse projection) match well the expectations we have, such as being smooth
for classifiers where we know that this should be the case, such as LR or KNN. Howe-
ver, such ideal conditions are quite far away from real-world cases. Indeed, in practical
classification problems, one encounters a far clearer separation of the classes; projections
have difficulties in keeping similar samples close to each other in the 2D space; inverse
projections suffer from related errors; and more complex classifiers, such as deep learning
models, have boundaries which are far more complex in shape.

The experiments discussed in the previous two chapters show that, for the above real-
world cases, decision boundary maps suffer from imperfections that manifest themselves
as jagged boundaries and numerous small-scale color islands. These can be very proble-
matic for the analysts using such images to understand the behavior of a classifier, as they
are not sure whether they are looking at an artifact of the visualization (to be ignored,
thus) or an actual problem of the classifier (which should be corrected).

In this chapter, we propose several refinements of the construction of decision boun-
dary maps that aim to alleviate the above issues, as follows. In Section 7.1 we propose

This chapter is based on the following publication:
F. C. M. RoDRIGUES et al. “Constructing and visualizing high-quality classifier decision boundary maps”.
Em: Information 10.9 (2019), pgs. 280-297

101

102

7 | VISUAL REFINEMENTS OF DECISION BOUNDARY MAPS

to filter out badly projected points, according to a neighborhood based criterion, thereby
reducing the amount of island-like noise present in the visualization. In Section 7.2, we
enrich the visual encoding of decision boundary maps to display information beyond the
sample density and classifier confusion. Specifically, we focus on displaying information
showing the distance to decision boundaries. This is motivated by the fact that points
close to decision boundaries are more prone to misclassification, thus, such areas are of
higher interest to the classifier engineer than “safe” zones located deep inside decision
zones. Section 7.3 closes the chapter with a discussion of the proposed refinements, as
well as a summary of our contributions in relation to our first research question stated in
Chapter 1 and a comparison thereof with other approaches in the literature.

7.1 Projection Filtering

Throughout this thesis, we explored the construction of decision boundary maps un-
der a very different settings. Even when training completely different classifiers on very
different datasets, the resulting DBMs exhibit patterns such as non-smooth decision boun-
daries and/or small islands in the decision zones (, for example).

In Chapter 5, Sec. 5.3.2, we pointed to the presence of small-scale “islands” on dense
maps. These are visible in Fig. 5.4. Further examples of such islands are to be seen in
Fig. 4.7. As explained there, such islands are regions of a color (class) completely immersed
in a region of a different color (class). As outlined in Sec. 5.3.2, such islands correspond to
two different situations:

a) the island does not actually exist in the high-dimensional space D, so the projection
P did a bad job in distance preservation when mapping nD points to 2D; or

b) the island may exist in D, i.e., there exist very similar samples that get assigned
different labels. This case can be further split into

b1) the island actually exists in D, i.e. similar points in D do indeed have different
labels, and the classifier did a good job capturing this; or

b2) the island does not exist in D, i.e., the classifier misclassified points which are
similar in the feature space but actually have different labels.

Hence, such artifacts can be caused by either densely-packed different-label points in
the data space D (case (b1)) or errors of the projection P (case (a)). For test data, for which
we have ground-truth, we can disambiguate between these two cases — islands containing
(many) misclassifications are likely due to case (b1), whereas the remaining islands are
likely due to case (a).

However, using this method to interpret dense map images is suboptimal, since

« we need to interpret such maps also in actual inference mode (after testing), when
no ground-truth labels are available;

« having to visually filter dense map artifacts like decision boundary jaggies and small
islands is tedious.

7.1 | PROJECTION FILTERING

Moreover, we note that such artifacts are very likely to happen anyways, even for a
well-trained classifier (few misclassifications): Due to the ill-posed nature of dimensiona-
lity reduction (DR), even the best performing projections P will eventually misplace points
in a 2D scatterplot. This limitation is well known and discussed in several works NoNnaTO
e AUPETIT, 2018; AUPETIT, 2007; MARTINS, R. MINGHIM et al., 2015; MARTINS, COIMBRA et
al., 2014. In particular, the problem case (a) is created by so-called false neighbors MARTINS,
COIMBRA et al., 2014, i.e., points which are far away in the data space (thus, likely, have
different labels) but project close to each other (thus, create islands). Note that the other
type of projection artifact discussed in MARTINS, COIMBRA et al., 2014, missing neighbors,
i.e. points which are close in data space but get projected far away in visual space, is also
very likely to create islands. Indeed, a missing neighbor must be projected somewhere
in the 2D space, so it will become implicitly a false neighbor. Interestingly, this quite
obvious relationship between false and missing neighbors has not been further discussed
in MARTINS, COIMBRA et al., 2014. The same limitations (concerning projection errors) are
shared by the inverse projection P! SANTOS AMORIM et al., 2012; Mateus EspapoTO ef al.,
2019; E. AMORIM et al., 2015.

We propose to alleviate such artifacts by filtering the 2D scatterplot based on a qua-
lity metric that computes, locally, how well P preserves the high-dimensional data struc-
ture in D. Several such metrics exist, such as trustworthiness, continuity, and normalized
stress NONATO e AUPETIT, 2018; neighborhood hits Jo1a et al., 2011; false neighbors, mis-
sing neighbors MARTINS, COIMBRA et al., 2014; and the projection precision score SCHRECK
et al., 2010. Given our goals of characterizing how well a nD compact neighborhood maps
to a similarly-compact 2D neighborhood, we use here the Jaccard set-distance MARTINS, R.
MINGHIM et al., 2015 between the k-nearest neighbors vZ(i) of a point in the 2D projection
and its neighbors v} (i) in nD, given by

_ [2R(0) n 9jG0)
[0(0) v of ()

JDi(i) (7.1)

where | - | denotes set size.

The JD value of a point i ranges between zero (if none of the 2D k-nearest neighbors
of point i are among its nD k-nearest neighbors, worst case) and one (if all of its 2D
k-nearest neighbors are exactly the same as its nD k-nearest neighbors, best case).

Having computed the JD rank (Eqn. 7.1), we next filter out from the projection low-
ranked points and construct the dense map from the remaining points as usual. Setting an
absolute removal threshold is however hard, and moreover depends on the neighborhood
size k. To explain this, Fig. 7.1 shows the distribution of number of samples per JDj value
for the MNIST dataset projected by t-SNE for four different k values. As visible, the dis-
tribution shape is relatively stable as function of k. As k increases, the distribution shifts
to the right, as the likelihood that large neighborhoods coincide in 2D and nD increases
— in the limit, when k equals to the total point count, /D = 1 for all points. Conversely, as
k decreases, the distribution slightly shifts to the left, as the likelihood that neighbors of
a point come in exactly the same order in 2D and nD is very small.

Figure 7.1 shows a second, equally important, aspect, namely that the signal Dy has
a discrete nature. Indeed, for a given k, Eqn. 7.1 can take at most k + 1 different values.

103

104

7 | VISUAL REFINEMENTS OF DECISION BOUNDARY MAPS

k =20 k =100

8000
3000

6000 - 2500 A

4000 -1

2000 A |

L1,]
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
k =600 k = 3000

o

0- 0-
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Figura 7.1: Histogram of J Dy rank for varying values of k for MNIST dataset, t-SNE projection.

Hence, for low k, J Dy splits the projected points in k bins, with relatively more points per
bin as when using higher k values — compare e.g. the vertical axes of the images in Fig. 7.1
for low vs high k values. In turn, this means that setting an absolute threshold to eliminate
low J Dy value points is hard: A too low threshold will eliminate too few points, while a
slightly higher threshold may eliminate too many points. Hence, we proceed by (1) using
a higher k value (roughly 10% of the dataset size), and next (2) we sort points on their JDy
value and remove the 7 lowest-ranked points, where 7 is a user-given percentage of the

total dataset size.

¢) Removing T = 10% (6000) of all projected points d) Removing t = 20% (12000) of all projected points

Figura 7.2: Removing poorly projected points with low J Dy ranks to filter dense map artifacts for the
MNIST dataset, projected by t-SNE, inversely projected by iLAMP.

Figure 7.2 shows results for different 7 values for the MNIST dataset, projected by
t-SNE. Setting 7 is intuitive: Small values keep more data points, including potentially

7.2 | DISTANCE-ENRICHED DENSE MAPS

wrongly-projected ones, which cause islands and boundary jaggies in the dense maps.
Larger values filter the projection better, yielding smoother decision boundaries and/or
fewer islands due to projection problems, but show fewer data in the final image. As
visible, filtering does not change overall size and shape of the depicted decision zones,
which is important, as it does not affect the insights that the filtered images convey. In
practice, we found that 7 values in the range of 15% to 20% of the dataset size give a good
balance between removing island artifacts and keeping enough data to have an insightful
dense map. This is the setting used next in all images in this chapter.

7.2 Distance-enriched Dense Maps

The dense map filtering effectively removes many of the confusing small-scale islands
created by projection errors, thus, creates simpler-to-inspect decision zones. As already
explained, a key use-case for these is for users to see which points (in the data space D)
are close, respectively far away from, the decision boundaries. The distance-to-boundary
information indicates the classification confidence - so, if a classifier performs poorly,
one can use this distance to infer on what kind of data in D such problems occur, and
next alleviate this by e.g. adding more training samples of that kind (class).

To analyze this further, let us introduce some notations. Let Z ¢ R" be a decision zone
in the data space, and let dDZ < R" be the boundary of this zone. The decision maps,
constructed as explained so far, do not show the distance d,p(x) from a sample x € D to
its closest decision boundary dDZ in the nD space. Rather, the maps show how close the
projection P(x) of x is to the projection P(0DZ) of the decision boundaries. Simply put, for
every pixel y having some color (label), the user can visually find the closest differently-
colored pixel y’.

The distance

d = min -y 7.2
Lo(Y) opmn ly -yl (7.2)

can thus be seen as a projection' of the actual nD distance d,p(x) we are interested in. The
two distances are not the same, nor even linearly related, given the local compression
and stretching caused when mapping the nD space to 2D by nonlinear projections such
as t-SNE or UMAP AUPETIT, 2007; NONATO e AUPETIT, 2018. Note that Eqn. 7.2 is nothing
but the so-called distance transform FABBRI et al., 2008 of the set of pixels that constitute
the projections of the decision zone boundaries dDZ.

An exact computation of d,p is impossible in general, since we do not have an analytic
description of dDZ for typical classifiers. Simply put, we do not know where dDZ are
located in data space — if we knew this, our entire endeavor would have been solved from
the beginning. Hence, we next propose two classifier-independent heuristics to estimate
d,p (Secs. 7.2.1 and 7.2.2) as well as a third, more exact, method, and better suited for
neural network classifiers, based on adversarial examples (Sec. 7.2.3).

Figure 7.3 compares the 2D distance-to-boundary d,p (computed by Eqn. 7.2, imple-

IWe use projection here in the weak sense of the word. Indeed, we cannot formally say that dyp(y) =
P(d,p(x), since a projection P maps points, not distances.

105

106

7 | VISUAL REFINEMENTS OF DECISION BOUNDARY MAPS

mented using the fast distance transform method in Cao et al., 2010), with two versions
of the d,p estimation we propose next, called d ¢ and d" respectively. In this figure,
distances are encoded by a luminance colormap for illustration purposes. The decision
zones and distance maps in Fig. 7.3 depict a synthetic “Blobs” dataset with 60K observa-
tions sampled from a Gaussian distribution with 5 different centers (clusters), each one
representing samples of one class, and 50 dimensions. For classification, a simple logistic
regression model was used, so as to create simple-to-interpret decision boundaries, which
are best as we next want to study the distance-to-boundary behavior. The same dataset
was used in Chapter 6 to test the quality of the NNInv inverse projection.

In Figure 7.3, we see that, while d,p and d,p are both low close to the decision boun-
daries and high deep in the decision zones, they have quite different local trends. For
instance, points which have the same colors in Fig. 7.3b, i.e., are at the same distance-
to-boundary (d,p) in 2D, can have quite different colors in Figs. 7.3¢,d, i.e., have different
distances d,p to the true nD decision boundaries. Hence, we cannot use d;p as a “proxy”
to assess d,p. We need to compute, and show, d,p to the user so one can estimate how
close (or far) from a decision boundary an actual sample is.

w

[—

a) decision zones b) Euclidean distance transform d,, c) Image-based distance dn‘r;“g d) Neighbor-based distance d)

Figura 7.3: Dense map (a) and various distance-to-boundary maps (b-d) for Blobs dataset, computed
using UMAP for P and NNInv for P~'.

7.2.1 Image-based Distance Estimation

For every pixel q in the dense map, we find the closest pixel r having a different label
(Fig. 7.4a). Let Q and R be the sets of nD samples in St that map to q and r respectively via
P~'. By construction, points in Q and R have thus different labels. Hence, the nD decision
boundary dDZ lies somewhere between these point-sets. To estimate where, for every
point pair (xp € Q, Xg € R), we compute the point xog along the line segment (xp, xz) ¢ D
where the classifier function f changes value, i.e, turns from the label f(x() to the label
xg). For this, we use a bisection search, as we assume that f varies relatively smoothly
between x(and xz. We use a maximum number of T = 5 bisection steps, which proved
to give good results in practice. We then estimate the distance of q to the closest decision
boundary as the average

. 1
dpi(q) = —— Ixo - Xgrl.- (7.3)
b IOIIR] QZ e

107

7.2 | DISTANCE-ENRICHED DENSE MAPS

2D image space nD data space 2D image space nD data space

Figura 7.4: Estimation of distance-to-boundary d:l'gg (a) and d)'; (b). See Secs. 7.2.1 and 7.2.2.

Although Eqn. 7.3 is simple to evaluate, it can produce noisy estimations of d,p. The
main issue is that it assumes that the closest decision boundary to some point q in the 2D
projection (i.e. pixel r) corresponds, by the inverse mapping P, to the closest decision
boundary in nD to P7(r).

7.2.2 Nearest-neighbor Based Distance Estimation

We can improve upon the dense map-based heuristic presented in Sec. 7.2.1 by dispo-
sing of the dense map as a tool to compute d,p. Rather, we rely on searching the nD data
directly for nearest-neighbor samples that have a different label, as follows (Fig. 7.4b). For
every pixel q in the dense map, let again Q be the set of nD samples that map to it via P™".
For each xy € Q, we next find the closest data point xz ¢ Q that is classified differently
than x, and then again apply bisection to find where, along the line segment (x, xz), the
classifier f changes value. Finally, we compute d,p(q) by averaging all distances from x
to the corresponding bisection points xpg. Formally put, we compute d,p as

1
di(q) = — > %o ~ Xorl. (7.4)
|Q| XQ€Q,xg= argmin [x-Xo|
x€QIf(x)#f(xQ)

Estimating d,,p this way is more accurate than using Eqn. 7.3 since we do not rely on
computing xg using the possibly inaccurate dense map, but directly use the nD points S.
We implement Eqn. 7.3 by searching for nearest neighbors in nD space using the kd-tree
spatial search structure provided by scikit-learn PEDREGOSA et al., 2011.

7.2.3 Adversarial Based Distance Estimation

The third proposed heuristic is based on adversarial examples SZEGEDY, ZAREMBA et
al., 2013; GOODFELLOW et al., 2014. An adversarial perturbation € of a data sample x can
cause a trained classifier to assign a wrong label to this so-called adversarial example x+¢€,
i.e., alabel different from the one that it assigns to the unperturbed sample x. By definition,
the minimal length | €| of such a perturbation is the distance from x to the closest decision
boundary to x. Hence, we can compute the distance-to-boundary for a dense map pixel q
by first gathering again all points Q that project to q, and next averaging their distances
to their closest nD boundaries computed as above. This defines

108

7 | VISUAL REFINEMENTS OF DECISION BOUNDARY MAPS

d**(q €l. 7.5
0l X;Qﬂx@#f(xw) | (73)

Compared to the distance-to-boundary heuristics given by Eqns. 7.3 and 7.4, Equa-
tion 7.5 yields a mathematically accurate distance to boundary, within the limits of sam-
pling the perturbation space €. In practice, this demands extensive computational resour-
ces, roughly three times more than evaluating Eqn. 7.4 and 30 times more than evaluating
Eqn. 7.4. Moreover, the method is not guaranteed to yield a valid adversarial perturbation
for all possible samples x. Another limitation is that this approach is only suitable for
classifiers f obtained through an iterative gradient-based optimization process, such as
neural networks GOODFELLOW et al., 2014.

MNIST

FashionMNIST

a) decision zones b) image-based distance d";mg ¢) neighbor-based distance ¢ ' d) adversarial-based distance d"'”‘[‘jv

Figura 7.5: Dense map and distance maps for MNIST (top row) and FashionMNIST dataset (bottom
row), with projection P set to UMAP and P~ to NNInv respectively.

Figure 7.5a shows the dense maps (a) for the MNIST (top row) and FashionMNIST
(bottom row) datasets respectively. Images (b-d) show the three distance-to-boundary
functions d,llgg ,dyp, and dggv given by Eqns. 7.3, 7.4, and 7.5, respectively, visualized using
the same luminance colormap as in Fig. 7.3. Several observations follow. First, we see that
the nD distances d,p roughly follow the patterns of the 2D Euclidean distances d;p, i.e.,
are low close to the 2D decision boundaries and high deeper inside the decision zones.
However, the nD distances are far less smoothly varying as we get farther from the 2D
boundaries. This indicates precisely the stretching and compression caused by P and P!
mentioned earlier. Secondly, we see that d'8 is significantly less smooth than d™2. This is
explained by the lower accuracy of the former’s heuristic (Sec. 7.2.1). A separate problem
appears for d*4?: For the FashionMNIST dataset, the image shown is very dark, indica-
ting very low dfl‘d” values for most pixels. Upon further investigation, we found that the
neural network model trained for this case was too fragile — for almost every sample, an
adversarial sample could be easily obtained. Moreover, as already mentioned, the cost of
computing d'} is far larger than for the other two distance models. Given all above, we

7.2 | DISTANCE-ENRICHED DENSE MAPS

conclude that d]} offers the best balance of quality and speed, and we choose next to use
this distance-to-boundary model.

7.2.4 Visualizing Boundary Proximities

Visualizing the raw distance d,p by direct luminance coding (Fig. 7.5) does not op-
timally help us in exploring the regions of space that are close to decision boundaries.
However, these are the areas one is most interested in, since these are the regions where
classifiers may work incorrectly, by definition. For this, we apply a nonlinear transfor-
mation to d,p to compress the high-value ranges and allocate more bandwidth to the
low-value range. Also, we combine both decision zone information (shown by categori-
cal colors in earlier figures) with the distance-to-boundary information in a single image.
For this, we set the S (saturation) and V (value) color components of every pixel q in this
image to

V(q) = 0.1+ 0.9(1 = d"(q)/ dmax)" (7.6)
S(Q) = Sbase(1~0 - drr:lr)l(q)/dmax)k2 (77)

Here, d,, is a normalization factor equal to the maximal value of d} over the entire
dense map; k; and k, are constants that control the nonlinear distance normalization;
and Sy, is the original saturation value of the categorical color used for q’s label. The
H (hue) component stays equal to the categorical-color encoding of the decision zone
labels. Figure 7.6 shows the effect of k; and k, for the MNIST and FashionMNIST datasets.
Compared to showing only the decision-zone information (Fig. 7.6a), adding the distance
information highlights (brightens) areas that are close in nD to the decision boundaries.
Higher k; values highlight these zones more and darken areas deep in the decision zo-
nes more. Higher k, values strengthen this effect, as pixels close to decision boundaries
become desaturated. This allows us to ensure that such pixels will be bright in the final
images, no matter how dark the original categorical colors used to encode labels are.

Figure 7.6 is to be interpreted as follows: Dark areas indicate data samples deep in-
side decision zones, i.e., areas where a classifier will very likely not encounter inference
problems. Bright areas indicate zones close to decision boundaries, where such problems
typically appear, and in which one should look for misclassifications and/or add extra
labeled samples to improve training. Thin bright areas tell that the nD distance varies
there much more rapidly than the perceived 2D (image-space) distance, so the projection
compresses distances there. These are areas on which one will typically want to zoom in,
to see more details. In contrast, thick bright areas tell that the nD distance varies there
slower than the perceived 2D distance, so the projection stretches distances there. Such
areas normally do not require zooming to see additional details.

Figure 7.7 shows a different use-case for distance maps. Atop of the distance maps
shown in Fig. 7.6 (k; = 2, k; = 0.9), we now plot the misclassified points for MNIST and
FashionMNIST, encoding their respective distance-to-boundary d,p in opacity. Misclas-
sifications which are close to decision boundaries show up thus as opaque white, while
those deeper in the decision zones show up half-transparent. We see now that most mis-
classifications occur either close to the smooth decision boundaries (MNIST) or atop of

109

110

7 | VISUAL REFINEMENTS OF DECISION BOUNDARY MAPS

MNIST

FashionMNIST

i

4 Y
a) decision zones b) blended map &, = 0.5,

k,=03 c)blended map k, =1.5,k,=0.7 d)blended map k, =2,%,=0.9

Figura 7.6: (a) Dense map for MNIST (top row) and FashionMNIST (bottom row) datasets. (b-d)
Combined dense map and distance-to-boundary maps for different ki and k, values.

Figura 7.7: Misclassifications with opacity coding distance-to-boundary for the (a) MNIST and (b)
FashionMNIST datasets.

7.2 | DISTANCE-ENRICHED DENSE MAPS

small decision-zone islands (FashionMNIST). Since islands, by definition, create decision
boundaries, it follows that, in both cases, misclassifications predominantly occur close to
decision boundaries. Hence, decision boundaries can serve as an indicator of areas prone
to misclassifications, thus potential targets for refining the design of a classifier e.g. by
data annotation or augmentation.

Enridged Distance Maps

Figure 7.6 encodes distance-to-boundary by luminance and saturation, which are good
visual variables for ordinal tasks, e.g., estimating which points are closer or farther from
decision boundaries. However, this encoding is less suitable for quantitative tasks, e.g.,
estimating equal-distance points or how much farther (or closer) a given point is to its
closest decision boundary than another point. We address these tasks by using enridged
cushion maps Jarke J van Wijk e Alexandru TELEA, 2001. For this, we first slightly smooth
d,p by applying a Gaussian filter with radius K pixels. Next, we pass the filtered distance
through a periodic transfer function f(x) = (x mod h)/h and use the resulting value f(d,p)
instead of d,p to compute S and V via Eqns. 7.6 and 7.7. Note that the transfer function
f is only piece wise continuous and, as shown in Jarke] van Wik e Alexandru TELEA,
2001, requires smooth signals as input to yield visually smooth cushions. Since our high-
dimensional distance d,p is not overall smooth, due to the already discussed inherent
projection errors and also due to the numerical approximations used when computing it
(see Secs. 7.2.1 - 7.2.3), filtering is required. Besides filtering, a second difference between
our approach and the original technique Jarke J van Wijk e Alexandru TELEA, 2001 is that
we visualize directly the distance, whereas Jarke] van Wik e Alexandru TELEA, 2001
visualized a shaded height plot of the distance. We choose in our case to visualize the
distance directly as this is faster to compute and more robust to noise — height plot shading
requires normal computations which, given our inherently noisy distance estimations,
can easily become unreliable.

Figure 7.8 shows the results for the MNIST and FashionMNIST datasets. Each ap-
parent luminance band in the image shows points located within the same distance-
to-boundary interval. Dark thin bands are analogous to contours, or isolines, of the
distance-to-boundary. Finally, the thickness of the bands indicate distance compression
(thin bands) respectively distance stretching by the projection (thick bands). We also see
how increasing the filter radius K progressively smooths the image, removing projection
artifacts and making it easier to interpret.

111

112

7 | VISUAL REFINEMENTS OF DECISION BOUNDARY MAPS

- ¥ f -
a) decision zones b) no smoothing c) smoothing K = 2 d) smoothing K = 4 e) smoothing K = 6

Figura 7.8: Enridged distance maps for MNIST (top row) and FashionMNIST (bottom row) datasets.
Images (b-e) show the progressive noise-smoothing effect of the filter radius K.

7.3 Discussion

The refinements presented in this chapter — namely, the filtering of islands created
by projection errors; and the visual depiction of distance-to-boundary over the decision
zones conclude our proposed designs for visualizing decision boundary maps, and
therefore our technical contributions in answering the first research question posed in
Chapter 4, which we repeat below

How can we depict the decision boundaries of a classifier and use these to understand its
operation and performance?

While a detailed discussion of our entire work is given in Chapter 9, we present next
a summary of our technical contribution, highlighting its key assets.

Genericity: We can generically construct decision maps, including the estimation of
distance-to-boundary, for datasets having quantitative values in any dimension and for
any classifier. This makes our techniques easily usable for a wide range of applications
in machine learning.

Technical foundations: Our method is based on the application of direct and inverse
projections. We have explored both spaces of techniques in Chapter 5 and 6, respectively,
collecting insights on which techniques work best for the construction of decision
boundary maps.

Limitations: Constructing accurate decision maps is an even harder problem than the
already difficult task of accurately projecting high-dimensional data into 2D. While our
work showed that the (UMAP, NNInv) combination of direct and inverse projection tech-

7.3 | DISCUSSION

niques yields good results in terms of visually easy-to-identify decision zones, we cannot
guarantee such results for any high-dimensional dataset and classifier combination.
More precisely, errors caused by the direct and/or inverse projections can still manifest
themselves as jaggy boundaries and/or islands present in the resulting decision maps.
These errors can be decreased by further filtering wrongly projected points that lead to
poor neighborhood preservation (Section 7.1). Also, showing the distance-to-boundary
(Section 7.2) can highlight the presence of remaining errors.

Novelty: While dense maps have been used earlier in high-dimensional data visualization
to analyze projection quality MARTINS, COIMBRA et al., 2014; AUPETIT, 2007, they have not
been used for explicitly visualizing the decision zones of any classifier. Besides showing
the actual decision zones by color coding, we also compute and show the actual distance-
to-boundary, which highlights zones close to boundaries, where a classifier is most prone
to misclassify data.

The work of Schulz et al. ScauLz et al., 2015 is closest to our work and, to our kno-
wledge, the only other method (apart from ours) which aims to explicitly visualize classi-
fier decision zones. However, several important differences between our work and theirs
exist, as follows:

« Computation of inverse projection P~': In their method, this is done by extending
non-parametric projections P to parametric forms, by essentially modeling P as
the effect of several fixed-bandwidth Gaussian interpolation kernels. This is very
similar to the way iLAMP works. However, as shown in Chapter 6, iILAMP is far less
accurate and far slower than other inverse projection approaches such as NNinv.
In our work, we let one freely choose how P! is implemented, regardless of P. In
particular, we use the deep-learning inverse projection NNinv which is faster and
more accurate than iLAMP;

« Supervised projections P: For ScHULZ et al., 2015, the projection P is implemented
using so-called discriminative dimensionality reduction which selects a subset of
the nD samples to project, rather than the entire set, so as to reduce the complexity
of DR and thus make its inversion more well posed. More precisely, label informa-
tion for the nD samples is used to guide the projection construction. While this,
indeed, makes P easier to invert, we argue that it does not parallel the way typical
practitioners work with DR in machine learning. Indeed, in most cases, one has an
nD dataset and projects it fully, to reason next about how a classifier trained on that
dataset will behave. Driving P by class label is, of course, possible but risky, since P
next does not visualize the actual data space. Moreover, discriminative DR is quite
expensive to implement (O(N?) for N sample points). Note that our outlier filtering
(Section 7.1) achieves roughly the same effect as discriminative DR but at a lower
computational cost and with a very simple implementation;

« Distance to boundary:In ScHULZ et al., 2015, this quantity, which is next essential for
creating dense decision boundary maps, is assumed to be given by the projection
algorithm P. Quoting from ScHULZ et al, 2015: “We assume that the label f(x) is
accompanied by a nonnegative real value r(x) € R which scales with the distance
from the closest class boundary.” Obviously, not all classifiers readily provide this

113

114

7 | VISUAL REFINEMENTS OF DECISION BOUNDARY MAPS

distance. Moreover, getting hold of this information (for classifiers which provide
it) implies digging into the classifier’s internals and implementation. We avoid such
complications by providing ways to estimate the distance to boundary generically,
that is, considering the classifier as a black box (Section 7.2).

« Computational scalability: Schulz et al. ScuuLz et al., 2015 does not discuss the sca-
lability of their proposal, only hinting that the complexity is squared in the number
of input samples. Complexity in the resolution of the decision maps is not discussed.
In contrast, we detail our complexity (see Scalability above).

Applications: Currently, our decision maps can only show how a classifier partitions the
high-dimensional space into decision zones corresponding to its different classes. This can
help the practitioner to better understand the behavior of such a classifier but not directly
to improve the classifier. Recent separate work has shown that projections are effective
tools for data annotation purposes, that is, creating new labeled samples for increasing
the size of training sets with little human effort by visually extrapolating labels of existing
samples to close unlabeled ones BENATO et al.,, 2018. Our decision maps can very likely
help such data annotation by informing the user how to perform this visual extrapolation
so as not to cross decision boundaries. We explore this idea in the next chapter.

Capitulo 8

End to End Evaluation

Over the previous chapters, decision boundary maps (DBMs) were presented as a tool
to provide insights in the way classifiers partition their data space. The focus of our work
so far has been in constructing DBMs that represent the actual decision boundaries and
decision zones as accurately as possible, subject to the inherent limitations posed by direct
and inverse projections, as well as the finite resolution of the images used to synthesize
the DBMs. By this, we have attempted to answer our first research question outlined in
Chapter 1.

In this chapter, we turn our attention to the actual usage of DBMs to assist classifier
engineering. Specifically, we explore how DBMs can be used to improve the accuracy of a
given classifier by analyzing a Semi-Supervised Learning (SSL) with a human-in-the-loop
scenario. For this, we developed an interactive visual analytics tool, based on DBMs, that
allows the classifier engineer to assign labels to a set of unlabeled samples. This is done
based on the visual cues jointly presented by projected samples and DBMs constructed
using the visual refinements from Chapter 7. We next used this tool to conduct several
experiments involving different datasets and classifier models. These experiments aim to
evaluate the usefulness DBMs: If a human user can correctly assign labels to given data
points, it means that the visual hints given by the tool were sufficiently informative and
accurately reflect data behavior in original data space. At a higher level, if by doing this
one can improve the performance of a classifier, it means that DBMs have demonstrable
added value in classifier engineering.

The structure of this chapter is as follows. Section 8.1 introduces SSL and the added
value of the human-in-the-loop model. Section 8.2 presents a visual analytics tool that we
have designed to assist SSL, in particular label propagation, in which DBMs play a key
role. Sections 8.3 and details several experiments that we have conducted to assess the
efficiency and effectiveness of our proposed visual tool. Section 8.4 details the results of
these experiments. Section 8.5 discusses our end-to-end proposal.

115

116

8 | END TO END EVALUATION

8.1 Semi Supervised Learning

A SSL setting commonly supposes that labeled data is scarce. In most real-world pro-
blems, data is labeled by domain experts, thus creating a dataset of annotated samples
can be a costly activity. For many problems it is usual that abundant unlabeled data is
available while little labeled data is at disposal SINDHWANTI et al., 2005. SSL approaches
seek for ways to use information present in the unlabeled dataset to build better machine
learning models than ones that could be inferred using only the little amount of available
labeled data.

Common methods for SSL involve heuristics to guess labels for a unlabeled dataset U.
The most naive approach consists of training a classifier f on the set of labeled samples
L, using it to predict the labels of data in the unlabeled set and training f again with the
induced labels L u f (U). It is expected that iterative repetitions of those steps lead to a
robust model that learned from features present in U SINDHWANT ef al., 2005.

A second class of approaches propagates the labels from samples in L to the samples
in U by using information present in the data, such as exploring neighborhood infor-
mation F. WANG e C. ZHANG, 2008, geometric information Mikhail BELKIN et al., 2006,
constructing similarity graphs from the data samples]. L1u et al, 2009; W. P. AMORIM
et al., 2016, and metric learning GUILLAUMIN et al., 2009. Detailing all these methods is
beyond the scope of this thesis. The interested reader can refer for this goal to various
surveys PISE e KULKARNI, 2008; ZHU e GOLDBERG, 2009; PRAKASH e NITHYA, 2014.

The key advantage of automatic label propagation techniques is that they require lit-
tle or no effort from the user to be deployed in order to generate a rich enough labeled
training set for the subsequent training of a classifier. Such techniques have been demons-
trated to be effective in many contexts where small labeled training sets were available.
However, from a conceptual viewpoint, such techniques make the same (strong) assump-
tion that classifiers do — namely, that they can extrapolate information from a (small)
given labeled dataset to points outside it. One difference, in this context, between classi-
fiers and label propagation techniques is that a classifier does not know, at training time,
which are the points (test set or validation set) on which it will be used next; in contrast,
label propagators do typically know this as they have the locations of the unlabeled data
points that they need to propagate to. Still, as said above, the automatic nature of both
classifiers and label propagators assumes that such techniques can correctly “guess” the
label of a data point based on the structure of the data around it.

A related, but different, approach is taken by combining visual analytics (VA) with
label propagation. The key idea behind this is that a human can spot relevant structure
in a high-dimensional dataset by visualizing a (low dimensional) representation thereof,
and, based on this structure, can propagate labels better than an automatic method can.
This was demonstrated recently by Benato et al. BENaTO et al., 2018. Their work projects
a high-dimensional dataset to 2D using t-SNE and colors the resulting scatterplot by the
labels of the (few) available samples. Next, the user infers how to propagate labels based
on the structure of data present in the projection. For instance, if one sees a compact
cluster of unlabeled points in which a few labeled points exist with label ¢, then one
can decide (based on additional information, e.g., exploring the actual samples by means

8.2 | VISUAL ANALYTICS FOR SEMI SUPERVISED LEARNING

of image tooltips) to propagate c¢ to the entire cluster. The authors have compared this
semi-supervised labeling strategy based on the human-in-the-loop with automatic label
propagation techniques such as Laplacian Support Vector Machines (LapSVM SINDHWANT
et al., 2005; Mikhail BELKIN et al.,, 2006) and Optimum Path Forest (OPF-Semi W. P. AMORIM
et al., 2016). They showed that the VA-based approach can achieve superior performance
- both in the label propagation accuracy and in the accuracy of a classifier trained with
the propagated labels — as compared to automatic label propagation techniques.

The above is a very interesting result, as it points to the fact that a human user can
discover more information (for label propagation, that is) in a two-dimensional, and ne-
cessarily imperfect, projection, than an automatic tool can do even when having access
to the full high-dimensional data. While Benato et al. do not further speculate or analyze
why this is so, we believe that this has to do with the fact that the human user literally
“sees” more complex data patterns, appearing at different scales, in the projection, than
a typical automatic label propagator can do. For instance, they report that the user will
propagate labels with a high confidence when they see a “clearly separated” cluster of
observations which is also “far away” from other similar clusters; in contrast, the user
will be reluctant to propagate labels in areas in the projection where one sees a mix of
different labels and/or which are close to the fuzzy separation frontier of two clusters.
Given our understanding of how automatic label propagation techniques work, such pat-
terns are not detected or used for propagation by such techniques, which typically work
in a more local fashion.

Our work in this chapter parallels (and extends) the work of Benato et al.. Specifically,
while Benato et al. used only a color-coded projection scatterplot to perform the manual
propagation, we use, for the same task, the same projection scatterplots overlaid over
the DBMs. We measure the added value of the visual hints provided by DBMs by several
experiments along the same lines as Benato et al..

8.2 Visual analytics for semi supervised learning

Our proposal for a VA approach in a SSL setting consists in a visual tool that conveys
to the user information about a dataset and classifier through the rendering of DBMs
and color-coded projections. To explain this tool, we introduce first some notations. Let
D = (X,p, Y) be a dataset consisting of a number of n-dimensional samples X,p and their
corresponding categorical labels Y. Let X,p be the projection of the dataset X,,, computed
by any suitable dimensionality reduction technique, e.g., t-SNE. Let f be the classifier
chosen by the user to engineer, e.g., SVM.

Our tool creates and displays two main elements — the projection X,p color coded by
class labels and, optionally, misclassification information (when used in testing mode),
and the DBM computed from D and the trained classifier f, using the techniques presen-
ted in Chapter 7. Further on, the tool provides details-on-demand on specific samples by
mechanisms such as brushing and selection.

The visual analytics workflow starts by loading the original dataset D and selecting a
classifier f of interest. Next, the projection X,p is computed, using either t-SNE or UMAP.
The user then defines how the data is going to be split into three sets: labeled (L), unlabeled

117

118

8 | END TO END EVALUATION

(U), and validation (V). The classifier is trained using the samples in L, while the labels of
the samples in U are hidden from the user. Classifier performance is evaluated using all
samples in L, which yields a training error; and also using all samples in V, which yields
a validation error. At this point, the user can decide how to continue: If the training and
validation errors are low enough for the problem at hand, one concludes that the training
was successfully completed, and the process stops. If not, the visual analytics process for
improving the classifier starts, as described below.

Using the loaded data and trained classifier, a DBM is computed and rendered. On
top of the DBM, the set of projected points X;p is shown. In this set, misclassifications are
highlighted by a white border. Next, the tool renders in dark grey N = 20 unlabeled points
at a time, in order they appear in the unlabeled set. We next call these points the working
set. Keyboard shortcuts are provided allowing the user to show additional working sets of
N points, and to go forward and backward through the list of unlabeled samples U. The
user can next visually inspect the working set points in terms of their neighbors in the
projection and their location with respect to the decision boundaries. Since, as explained
already at several moments, the projection technique P cannot preserve all neighbors, we
provide a tool to show the true nD neighbors v(x) of each point x in the working set by
linking the projection P(x) of x with lines to all points {P(y)|y € v(x)}. This effectively
shows the missing neighbors of x in the projection. A depiciton of the Graphical User
Interface of the tool, with all the feature just described, used to label samples is shown in
Fig. 8.1.

Based on all above visual hints, the user can next decide how to propagate labels to
points in the working set. The overall idea here is similar to the proposal of Benato et
al. BENATO et al., 2018. That is, one would typically propagate a label (of a point x € L) to
points in U which project close to P(x) and are not in or close to confusion zones of the
classifier, as depicted by the underlying DBM. They key difference between our work and
Benato et al. is that we provide more hints (in terms of the DBMs and true neighbors) to
the user besides the color-coded scatterplot. If one does not find enough suitable points
to propagate to, one can advance to the next working set in U, as described above. We
chose this working set design rather than allowing the user to see all the unlabeled points
U at a time so as to limit overplotting and visual and interaction complexity.

Once the user assigns a label to a point in U, the point is moved out of U in a set of
manually labeled points L,,. Initially, L,, is empty. Next, the user trains the same classifier
on the enriched label set L u L,, and re-evaluates the obtained performance. Three cases
can occur concerning this performance after retraining:

« Performance improves: In this case, the user likely keeps the labels added in the
last iteration of constructing L. If more training effort (time) is available and the
performance is still not the desired one, the user continues manual labeling with
the next working set;

« Performance degrades: In this case, the user likely undoes (removes) the labels added
in the last iteration of constructing L,,;

« Performance stays constant: In this case, one typically keeps the labels added in the
last iteration of constructing L,,, even if performance slightly drops. Indeed, it might

8.3 | MANUAL LABELING EXPERIMENTS

Unlabeled samples

5 No label - |

8 No label e ‘
9 No label |
10 No label v \
11 No label A \
12 No label > \
13 No label > ‘
14 No label ~ ‘
15 No label v \
16 Nolabel ~| '~

Train/Validation accuracy: 0.7435/0.732921568627451

Figura 8.1: Screen capture of the visual analytics tool designed to assist manual labeling by using
DBMs. A projection is shown on top of the decision map, with samples marked as labeled, unlabeled, or
wrongly labeled (by a trained classifier). Users can analyze the positions of these samples with respect
to the underlying DBM to decide which of the unlabeled ones they next want to label, and which labels
to assign to these.The left widget lists the unlabeled samples and allows manually selecting labels from
these from the drop-down menus. For a selected unlabeled sample, the main window also shows its
five closest nD neighbors by black lines.

be useful to keep the label assignment, as this provides more information to the
classifier to learn from.

After each iteration, the user can decide whether to continue or not the labeling pro-
cess, based on the classifier performance obtained so far and the amount of effort one
wishes to spend in manual labeling. If one decides to continue, the next working set is
examined. Since the classifier is retrained after each iteration, a new DBM is computed
for the new classifier and shown to the user. This way, one effectively sees how the de-
cision boundaries move due to the assignment (or removal) of labeled points, thereby
conveying an idea of how the learning process actually uses the training set. As a side
note, we completely retrain the classifier after each batch of label assignment is finished
for implementation simplicity. Alternatively, one could apply online training, i.e. update
the classifier using the new labeled samples in the current iteration.

8.3 Manual labeling experiments

We designed five experiments of different dataset-classifier combinations in increa-
sing order of complexity to assess the quality of manual sample annotation. The scenarios
go from simple linear classifiers to convolutional neural networks (Sec. 8.3.1); and from
synthetic two-class dataset to ten-class natural image data (Sec. 8.3.2).

To assess the quality of the manually assigned labels, we compare these with an au-
tomatic label (AL) propagation technique, at two levels of detail:

119

120

8 | END TO END EVALUATION

« Full automation: We first compare manual labeling against AL’ing the entire U. This
scenario answers the question: What is more effective — to let AL handle all samples
or to invest manual effort?

« Same effort: We next compare manual labeling with k randomly drawn samples
from AL, where k is the number of manually assigned labels. Note that in most cases
k « |U|, as the user typically labels only a small fraction of all available unlabeled
points, either because manual labeling starts being time-consuming after a while,
or because visual hints are not informative enough to allow one to confidentially
label certain points. This scenario answers the question: Given the same number of
labels k, who can produce better ones, AL or the user?

As AL method, we use a standard graph based label propagation method DELALLEAU
et al., 2005, whose implementation is readily available in scikit-learn. If desired, other AL
methods can be immediately used, e.g., LapSVM SINDHWANI et al., 2005; Mikhail BELKIN
et al., 2006) or OPF-Semi W. P. AMORIM et al., 2016.

8.3.1 Classifiers description

We used three types of classifiers in the experiments: a Logistic Regression (LR) mo-
del, a shallow Multi-Layer Perceptron (MLP) and a small Convolutional Neural Network
(CNN). A detailed description of each of those classifiers is presented next.

Logistic Regression: A linear classifier is arguably one of the simplest forms of machine
learning discriminant. Intuitively, the rigid shape of the decision boundaries induced by
such classifier indicates that supplying new labeled points might not be helpful to change
them. We used the scikit-learn implementation of this classifier with default parameters.

Multi-Layer Perceptron: Nonlinear classifiers, in particular neural networks, allow for
the formation of complex-shaped decision boundaries in data space. Thus, it is reasonable
to expect that labeling new samples could cause modifications locally, allowing a user
to effectively influence (by manual labeling) the shape of the partitions induced by the
classifier. In the experiments presented next, we used MLP consisting of three hidden
layers of sizes 32, 32, and 16 units respectively, trained with early stopping and the Adam
optimizer, as provided by the Python package scikit-learn.

Convolutional Neural Network: CNNs are the most used model for computer vision
tasks, thus experimenting with such model is of practical relevance. We used the PyTorch
library to create a small CNN with the following configuration: a convolutional layer
consisting of 6 filters of sizes 5x5, max pooling layer of size 2x2, a second convolutional
layer consisting of 16 filters of sizes 5x5, another max pooling layer of size 2x2, followed by
two fully-connected layers of sizes equal to 60 and 30 units respectively. ReLU activation
function was used for every layer. We use this CNN on two datasets, one consisting of
four different classes and another that consists of ten classes. Hence, the last (output)
layer of the CNN contains 4, respectively 10 units, depending on the dataset.

8.3 | MANUAL LABELING EXPERIMENTS

8.3.2 Datasets description

We used five different datasets in the experiments of manual sample annotation, as
follows.

Two-class synthetic (syn2a): Generated from two Gaussian clusters, this dataset is
composed of 600 samples of dimensionality 10, split into labeled, unlabeled and valida-
tion sets as follows: |L| = 200, |U| = 200, |V| = 200. A t-SNE projection of this dataset in
shown in Figure 8.2(a) and was used as input to the visual tool.

Two-class synthetic (syn2b): This dataset is very similar to the previous one. It is
generated with the same set of parameters, but consists of 6000 samples. This dataset was
split into |L| = 200, |U| = 1200, |V| = 3600 by randomly selecting the respective number
of points from the dataset. We use the same procedure to split the other datasets as well.

Three-class synthetic (syn3): This dataset was generated from three Gaussian clusters
in 10 dimensions and consists of 6000 samples. We split this dataset into |[L| = 200,
|U| = 1000, |V| = 3800. A UMAP projection of this dataset is shown in Figure 8.2(b).

Four-class image (fm4): This dataset is a subset of FashionMNIST and contains only
the first four classes (T-shirt/top, Trouser, Pullover and Dress). It contains 24000 images,
6000 of each class, of size 28x28 split into |L| = 2000, |U| = 1000, |V| = 21000. A t-SNE
projection of this dataset is shown in Figure 8.2(c).

Ten-class image (fm10): The last dataset used in our experiments consists of all the
ten-classes in FashionMNIST, split similarly to fm4 but with a much larger validation set
(|L| = 2000, |U| = 1000 and |V| = 51000). We removed 6000 of the worse-projected points
according to the Jaccard Distance, following the ideas presented in Chapter 7. A t-SNE
projection of this dataset is shown in Figure 8.2(d).

8.3.3 Experimental set-up

Combining all the three classifiers (Sec. 8.3.1) with all five datasets (Sec. 8.3.2) would
create fifteen potential experiments to execute. While this is certainly doable, we argue
that it would not be optimal. For instance, it does not make much sense to use LR (a very
simple and not that powerful classifier) for fm10, which is a very challenging dataset to
classify. Hence, from this total of fifteen possibilities, we selected five classifier-dataset
combinations to experiment with. These are listed under the names (I - V) in the leftmost
column of Tab. 8.1. We chose these five combinations so as to match the perceived clas-
sification challenge (implied by the complexity of a dataset) to the classifier power and
flexibility, and also to cover a wide range of possibilities.

Figure 8.2 shows the initial projection of the labeled samples L for the datasets syn2,
syn3, fm4, and fm10. The projected points are color coded by their respective trained

121

122

8 | END TO END EVALUATION

(b)

(d)

Figura 8.2: Projections for the datasets used during the experiments. (a) 2-class synthetic, (b) 3-class
synthetic, (c) 4-class FashionMNIST subset, (d) 10-class FashionMNIST. In all cases, we only show the

points L for which we have label information. See Sec. 8.3.2.

Tabela 8.1: Initial accuracies for each experiment.

Experiment Baseline Accuracy
Train (T) | Validation (V)

(I) LR and syn2a 87.5% 84.0%

(I) MLP and syn2b 64.0% 58.9%

(IlT) MLP and syn3 76.0% 68.8%

(IV) CNN and fm4 86.7% 85.3%

(V) CNN and fm10 74.6% 73.0%

8.4 | MANUAL LABELING RESULTS

classifier. That is, each point is assigned a categorical color depending on which class the
classifier assigned to it. Note that, in case of training errors, this color will not be the
same as the sample’s true label from L. This view reveals the classifier “sees” the training
set.

Table 8.1 presents the baseline accuracies of each experiment. By baseline, we mean
here the accuracies computed when training each classifier on the set L of available labels
for the respective datasets (Sec. 8.3.2). For Experiments I, IV and V, train and validation
accuracies are quite close, a sign that there was no overfitting. For Experiments II and
I11, a big discrepancy between train and validation errors hints that not enough data was
available for training, that is, the classifier has too many parameters to adjust, thus cau-
sing overfitting. Apart from that, the overall (training and validation) accuracies are quite
low, which indicates that these classifiers could be improved. We will aim to do preci-
sely this using labels created manually using the visual analytics workflow outlined in
Sec. 8.2.

8.4 Manual labeling results

We next present the use of our visual analytics tool (Sec. 8.2) to create manual la-
bels for the five experiments described in Sec. 8.3. For each experiment, we used three
iterations of the labeling workflow. An iteration consists of examining the DBM of the
currently-trained classifier, and labeling a small batch of typically 5 to10 samples, after
which classifier retraining and recomputation of the DBMs is done. We believe that this
set-up reflects quite well what a typical user would do when using our tool in practice.
Indeed, having larger batches would imply that one needs to put more labeling effort
before actually seeing what this effort leads to (classifier accuracy increase, stagnation,
or decrease). If the accuracy decreases, the labeling needs to be undone (see Sec. 8.2),
which means more effort is lost than if a smaller batch was used. Conversely, having
smaller batches would imply that the classifier needs to be retrained and the DBMs need
to be recomputed more frequently, which is computationally intensive. Moreover, using
smaller batches may mislead the user — one should not, after all, take decisions based on
how a single sample affects a classifier or its DBM.

We next present several snapshots of the DBMs computed during this iterative
labeling process and discuss them, as follows.

Initial situation: Figure 8.3 shows the initial DBMs for all five experiments. Projec-
ted points are shown on top of the decision boundary maps. Misclassified points are
highlighted by a white outline. This information is important and serves as guidance to
manual labeling. For instance, the user can decide to manually label samples that are
close to (groups of) misclassified samples, so as to “push” the decision boundaries in
the right direction. Apart from this, the images in Fig. 8.3 show several other insights.
For Experiment I, we see that most misclassifications are quite close to the left decision
boundary which separates the orange from the light blue decision zone. Since most of
these misclassifications are blue, this likely means that the boundary is drawn too far to
the left — that is, points that should have been orange are actually classified as blue. Hence,

123

124

8 | END TO END EVALUATION

manual labeling should aim at pushing the decision boundary to the right, deeper into
the blue zone. For Experiment II we see a different situation. Here, misclassifications are
spread deeper into the decision zones. Solving these by modifying the shape or location
of the decision boundary is arguably more complex. Experiment III shows a situation
roughly similar to the one for Experiment I. Here, we see that most misclassifications are
either orange points located inside the top dark-blue decision zone (these points should
have been classified as blue), or blue points located in the large light-blue decision zone to
the left (these points should have been classified as orange). Hence, the orange decision
zone should extend deeper inside the light-blue zone and the dark-blue zone should be
smaller. The DBMs for Experiments IV and V are more complex and harder to interpret
due to the larger number of misclassifications and also the larger number of classes.

Iterative labeling: Figures 8.4 and 8.5 show how the decision maps change after three
iterations of labeling for each of the five experiments. For each experiments, the figures
show six images (a-e), structured as follows: The three images on the top row (a,c,e) show
the points labeled by the user, in each of the three consecutive iterations) as full white
disks, rendered atop the DBMs visible at that moment. The corresponding images in the
bottom row (b,d,f) show the effect of the respective labeling iteration, i.e., how the DBMs
change and which are the misclassifications that the classifier, trained with the labeled
points shown in the top row, produces. That i: The user started the process seeing the
DBM in image (a); after adding some labels and retraining, she could observe the effect in
(b). From this visual insight, the user decided to add more labels, as shown in (c), leading
to the result in (d), and so on.

These image sequences offer several insights, as follows. First, in general, we see that
the changes in the DBMs, due to the manually added labels, are quite small and local. This
is not unexpected, since we add only a few tens of labels manually to training sets that
contain hundreds up to thousands of labels. So, small changes to the training sets imply
small changes to the behavior of the respective classifiers and their DBMs.

More specifically, we see that, for the easier problems, manual labeling has a visible
and positive impact. For instance, in Experiment I(b) (Fig. 8.4), we notice a small cluster of
misclassified points in the bottom-left area of the image. The user notices this, and adds a
few labels manually in this area (white dots in Experiment I(c) (Fig. 8.4). The classifier is
retrained using this information, and the number of misclassifications in this area drops
(Experiment I(d), Fig. 8.4). In the same time, we see that this adjustment of the decision
boundaries is quite local: While the classifier improves in this area, it does not get worse
far away from it — the number and positions of misclassified points far away from this
area stays the same. The user next concentrates on the few misclassifications located
deeper in the upper-left orange area, visible in Experiment I(d), Fig. 8.4. To correct these,
a few labels are manually added around this zone (Experiment I(e), Fig. 8.4). As an effect,
these misclassifications are removed: Experiment I(f), Fig. 8.4 shows that the upper-left
orange area is now quite free of misclassifications (except one outlier point in the upper
region). Most misclassifications occur now on the boundary of this area, apart from those
occurring deep inside the blue area.

8.4 | MANUAL LABELING RESULTS

Figura 8.3: Initial decision boundary maps for the dataset/classifier pairs proposed for this experiment
(a) Experiment I, (b) Experiment II, (c) Experiment III, (d) Experiment IV, (d) Experiment V.

Final situation: The rightmost column in Figures 8.4 and 8.5 show, for all five expe-
riments, the initial DBM and also the final DBM, after manual labeling is finished. In
general, the differences of the initial vs final maps are quite small, which is expected, as
explained above, given the quite small number of manually added labels. However, the
images for Experiment V (Fig. 8.5, right column) show an exception: The effects of manual
label assignment are clearly visible, as the blue island located inside the green decision
zone in the initial DBM shrinks considerably in the final DBM. This effect is desirable,
as the images for Experiment V in the same figure show many misclassifications in this
same region.

Effects of manual labeling: Figure 8.6 shows how training and validation accuracies
for each experiment varied as batches of samples were labeled. For Experiments I, III, and
V, the accuracy does, however, increase quite visibly - so, for these cases, we can say
that manual labeling has a clear added value. For Experiment V, accuracy increases only
slightly. For Experiment II, accuracy is relatively flat or can be seen as slightly decrea-
sing. Overall, this indicates that having a consistent gain in accuracy as more samples are
manually labeled is not an easy task in general.

125

8 | END TO END EVALUATION

Initial DBM

Experiment |

Final DBM

Initial DBM

—
c
]

£
e
8]
o
x

L

Final DBM

Initial DBM

Experiment Il

Final DBM

Figura 8.4: Sequences of manual label assignment, Experiments I-III. Images (a), (c) and (e) show the
points selected to label as white disks atop of the DBMs. Images (b), (d) and (f) show the resulting
DBM s after retraining the classifier with the new points added.

127

8.4 | MANUAL LABELING RESULTS

Experiment IV
Initial DBM

Final DBM

=
@
(m)
<[
E

Experiment V

Final DBM

Figura 8.5: Sequences of manual label assignment, Experiments IV-V. Images (a), (c) and (e) show
the points selected to label as white disks atop of the DBMs. Images (b), (d) and (f) show the resulting
DBM s after retraining the classifier with the new points added.

128

8 | END TO END EVALUATION

0.88)
0.8 0.90 k/
. A/
0.87 J\ 0.85
0.86 |07 0.80
0.85 0.75
0.6
0.84 0.70
(@ (b) (0)
0.88
0.76
0.87
0.75 —— Train
0.74
0.85

(d) (e)

Figura 8.6: Graphs showing the classifier’s accuracy change during labeling experiments. For each
experiment, both training and validation accuracy are tracked. (a) Experiment I, (b) Experiment II,
(c) Experiment III, (d) Experiment 1V, (d) Experiment V.

8.4.1 Comparison with automatic labeling

Let us now study the accuracy gain delivered by manual labeling as compared to the
baseline (no additional labels) and also as compared to automatic labeling (AL). Table 8.2
shows these figures. When compared to the baseline accuracy (Tab. 8.1), the resulting
classifier accuracy after manual sample annotation shows an improvement of 4%, 16.2%,
22.5%, 1.5% and 0.2% for each of the five experiments, respectively (see Tab. 8.2, columns
“Manual”). Experiments I and III, both using synthetic data and a MLP classifier, show the
highest gains. However, as mentioned previously, this may be due to classifier overfitting
in these cases. Nevertheless, the displayed gains justify that manual labeling supported
by DBMs brings, in general, significant added value as opposed to using only the original
labels.

Let us now compare manual labeling to fully automatic labeling (AL) under the two
conditions mentioned in Sec. 8.3. In the first condition, we recall that AL is allowed to
assign a label to every sample in U. The results of this process are shown in Tab. 8.2,
columns “Automatic (full)”. We see that manual labeling performs quite similar to AL for
Experiments I and III, but significantly better for Experiments II, IV, and V.

In the second condition, we allow AL to assign a label to every sample in U, but only
k of them are randomly drawn to be used for the training of the classifier. We repeat this
process of random drawing of labeled samples and classifier training-and-evaluation ten
times. Table 8.2, columns “Automatic (k)” show the averaged results for each experiment.
The number k of used labels equals the number of labels assigned manually, and is indi-
cated in brackets in the first column. For Experiments L, II, and III, we see that AL slightly
decreases in accuracy as compared to full labeling, while accuracy strongly increases vs
full labeling for Experiments IV and V. Still, overall, our manual labeling performs better

8.5 | DISCUSSION

than AL under this condition.

For a final comparison, Tab. 8.2, columns “True labels (k)” show the results of training
the classifier with true labels added to k points from U. As for the second condition, we
did this experiment ten times and averaged results. This would be the optimal situation,
equivalent to an AL method that perfectly guesses the labels for k such points. The ob-
tained accuracies are now higher, but still, in general, slightly lower than those obtained
using manual labeling.

Table 8.3 shows the number of correctly assigned labels for the manual labeling and AL
under the two conditions. For the easiest case (Experiment I), we see that AL beats manual
labeling. However, as Tab. 8.2 shows, the added value in terms of classifier accuracy is not
too large, since this experiment uses a quite simple classifier (LR). In all other cases, we see
that manual labeling guesses labels better than AL, even dramatically so for Experiments
IV and V.

Tabela 8.2: Comparing achieved accuracies for each experiment with automatic label propagation.

Experiment (k) Manual Automatic (full) | Automatic (k) True labels (k)
T \' T \% T \% T \'

1(25) 86.0% 88.0% 88.5% 85.5% 87.4% 84.5% 87.3% 84.5%

11 (58) 80.0% 75.1% 63.2% 60.7% 76.2% 70.6% 79.0% 72.5%

11 (79) 91.3% 91.3% 91.6% 90.8% 71.6% 65.7% 81.7% 76.6%

1V (77) 87.8% 86.6% 23.5% 25.2% 60.1% 60.1% 87.1% 86.2%

V (53) 75.4% 73.2% 09.3% 10.6% 61.7% 62.0% 74.7% 72.9%

Tabela 8.3: Comparing the number of correct labels assigned manually and automatically.

Experiment (k) | Manual | Automatic (full) | Automatic (k)
1(25) 88.0% 94.0% 94.8%
1I (58) 96.5% 92.5% 93.0%
TI (79) 98.7% 94.3% 94.3%
IV (77) 89.6% 30.3% 28.3%
V (53) 84.9% 10.8% 12.0%

8.5 Discussion

We discuss below several insights obtained during our experiments for assessing the
working and added value of manual labeling assisted by DBMs.

Added value: As shown by the comparisons in Sec. 8.4.1, manual labeling aided by
DBMs does bring visible added value in terms of both guessing the correct labels for
data points and, more importantly we argue, obtaining classifiers with a higher accuracy.
The difference (in terms of accuracy values) however does vary quite significantly as a
function of the used classifier and classification problem (dataset). That is, for a simple
problem, automatic methods perform quite well, as they arguably can easily “find their
way’ in the high-dimensional space. For more complex problems, however, the user’s
insights, obtained using DBMs, appear to beat the performance of automatic methods.
We note that very similar trends have been exposed by the experiments of Benato et
al. BENATO et al., 2018. Since their experiments used different datasets, classifiers, and AL
methods, we argue that our work strengthens the claim that visual analytic methods are

129

130

8 | END TO END EVALUATION

a useful tool for classifier engineering in semi-supervised learning.

Local information: One important question is which are the visual hints that determine
a user to assign a certain label to a certain point - or, alternatively, skip the point from la-
beling. As already explained, one such hint is the existence of clusters of misclassifications
which are far away from decision boundaries, thus, which appear to be easily correctable
by adding a few extra labeled points close to them. However, even when global data
properties are preserved by projection methods, i.e. data points of the different classes
are nicely split into different visual clusters, local properties can be more relevant to label
assignment, such as local neighborhood information. For this reason, during our manual
labeling experiments, the drawing of lines to indicate the true neighbors of an unlabeled
point was very important when deciding how to label it.

User effort: Manual labeling is a time consuming task as users need to take a lot of
information into consideration in order to decide which class to assign to a sample. For
this reason, we limited our experiments to labeling only a few tens of points (see Tab. 8.2),
and used the working set concept to offer only a few points at a time to the user to label, to
limit visual clutter. While some of samples presented to the user were confusing to label,
as explained earlier, most of the others did not seem to add much information to the
classifier as they appeared to be deep into decision zones, as indicated by the distance-to-
the-closest-decision boundary, visible as low luminance in the DBMs. One potential idea
to reduce the labeling effort would be to offer selection mechanisms for users to remove
from the labeling process samples which are deep into these zones, thereby concentrating
the effort on arguably more important samples close to the decision boundaries. On the
other hand, while we acknowledge that manual labeling is a difficult task, the proposed
procedure allowed for a correct class attribution to samples, as Tab. 8.3 shows.

Another possible way to reduce user effort is to select the working set of samples
offered to labeling in a more informed way than the order they come in the dataset
(Sec. 8.2), using an active learning approach. This may focus the user’s labeling effort in
areas where it has the most impact. However, in this case, one may wonder what is the
added value of seeing the DBM. Since we wanted (as also explained next under “Ground
truth hints”) to test the added-value of DBMs independently on other mechanisms, we did
not investigate this path. Nevertheless, seeing whether a combination of active learning
mechanisms and the DBM can provide added value is an interesting future work direction.

Ground truth hints: During our experiments, the user was not allowed to look at
the actual features (although we did implement the facility to display this information
in our tool). We did this so as to better assess how the DBMs by themselves can assist
manual labeling and classifier engineering. Note that this is in contrast to Benato et
al., where users actively used tooltips to inspect the unlabeled images during manual
label propagation. Still, even under this restrictive condition, our results are arguably
quite good, thereby justifying the added value of DBMs in isolation. For image data, it is
reasonable to expect that adding the option to see the images during label propagation
would only increase the performance of the human-in-the-loop method. Doing this

8.5 | DISCUSSION

experiment is left to future work.

Extensions: Additional experiments with a human-in-the-loop may benefit from VA to-
ols, for example in the case of imbalanced datasets. In such a scenario, we conjecture that
human intuition could help correctly labeling data better than automatic methods, which
would be biased by the class having most samples. As for the previous point, we leave
this investigation to future research.

131

Capitulo 9

Conclusion

Throughout this manuscript, we investigated and developed methods for the visual
exploration of the decision zones and decision boundaries of Machine Learning classifiers,
with the aim of helping the classifier engineer to better understand how such classifiers
partition their input data space into decision zones and, when possible, influence this
partition to improve the performance of the respective classifier.

The main contribution of this thesis is the proposal of a visualization method that
constructs explicit and dense visual representations of decision zones and their respective
boundaries. We augmented this visualization by several mechanisms in order to provide
additional information on the explored data space, and we used the resulting techniques
to construct a visual analytics (VA) tool and workflow that supports the process of la-
bel creation in semi-supervised machine learning scenarios. The proposed techniques,
together with their deployment in the VA tool, are our answer to the research questions
raised in Section 1.4.

We next briefly discuss each chapter of this thesis next, summarizing their relevance
to our research objectives. We end this chapter with some pointers to future work and
possible improvements to our work.

9.1 Deep Feature Extraction Evaluation

In Chapter 3, transfer learning was used to solve a practical problem of planktonic
image classification. Besides achieving a high accuracy on the task at hand, we wanted
to investigate the impact of dataset similarity, i.e. different sources S;, and of classifier
architecture, ie. different C;, on classifying our local data. This analysis was conducted
by computing accuracy metrics for different pairs of classifier-dataset combinations and
by using standard, but very simple, visualization tools such as tables, confusion matrices,
and aggregated bar charts.

This chapter showed that, using the currently available simple visualization tools, one
can still construct and validate a classifier than produces good results for a given practical
problem. In the same time, this work highlighted several challenges and limitations that

133

134

9 | CONCLUSION

such visualization tools have in terms of limited insights that they produce and ques-
tions that they cannot answer. As such, the material here provides us with a practical
justification for the need for developing more powerful visualization tools for classifier
engineering.

9.2 Decision boundary maps

While confusion matrices, used in Chapter 3, can relate different classes in a single
image, indicating which ones are harder for a classifier to discriminate, the information
provided is far too simple and cannot relate individual samples, which have to be manually
explored.

In Chapter 4 we proposed an image-based method to depict how the decision bounda-
ries induced by a classifier are related. In contrast to the aggregated visualization methods
discussed in Chapter 3, our proposal is an observation-centric method which dedicates
space in the visualization to every sample. This way, observation-related patterns, such as
clusters of similar samples and/or outliers, can be readily explored. Our proposed visua-
lization literally “fills” the empty gaps that exist in scatterplots created by dimensionality
reduction methods by telling the user how a classifier would behave for data that would
map to such gaps. To our knowledge, our decision boundary maps, or DBMs (as we call
our method) is the first method to explicitly compute and visualize the shape and location
of decision zones and their boundaries for any classifier applied on any high-dimensional
dataset.

As shown in subsequent chapters through a number of examples, our method is indeed
capable of providing relevant insights into the classifier-dataset relationship, allowing for
both a global view of the decision zones and providing local details.

9.3 Impact of direct projections on DBMs

The construction of decision boundary maps depends on two key techniques: a direct
projection and an inverse projection. In Chapter 5, we evaluate how DBMs depend on the
choice of the direct projection technique being used. In total, we studied 28 projection
techniques for this task, allowing for a broad comparison. Different classifier conditions
were also explored, starting from a linear classifier that is capable of classifying a simple
dataset with 100% accuracy up to a Convolutional Neural Network applied to a more
complex task of classifying natural image data.

The results of this study pointed out to a small set of methods, namely t-SNE and
UMAP, which appear to be the best for the construction of DBMs for all studied classifiers
and datasets. In the same time, we highlighted several problems that appear during DBM
construction — such as jagged boundaries and spurious islands - and which cannot be
fully removed by the change of the projection technique used. We address these problems
further in Chapter 7.

9.4 | IMPACT OF INVERSE PROJECTION ON DBM FORMATION

9.4 Impact of inverse projection on DBM
formation

In Chapter 6, we study the second key ingredient of computing DBMs, namely the
inverse projection technique being used. For this, we considered first two inverse projec-
tions available in the literature, namely iLAMP and RBF. The results obtained with these
methods indicate that DBMs still suffer from problems such as the aforementioned spu-
rious islands. Equally importantly, the execution time of both these inverse projections is
very large, which prohibits the use of the so-created DBMs in interactive visual analytics
contexts.

We address the above limitations by proposing a novel method to compute inverse
projections based on deep learning the inverse transformation implied by a direct pro-
jection method. We compare the three alternatives (iLAMP, RBF, and our deep learned
inverse projection called NNinv), and show that our proposed method produces better
DBMs, and with a significantly lower computational cost, than iLAMP and RBF. Besides
DBM computation, our inverse projection can be generically used in any other application
which requires inverse projection capabilities.

9.5 Visual refinements of DBMs

Following the work of the previous two chapters, we converge with the design of
DBMs based on t-SNE or UMAP as direct projections, and NNinv as inverse projection
respectively. However, even when using these elements, DBMs still suffer from impreci-
sions caused by the inherent limitations of both direct and inverse projections.

In Chapter 7, we refine both the construction and visualization of DBMs as follows.
First, we propose a filtering strategy that removes points from the projection which cause
the spurious island problems. While slightly reducing the amount of data shown to the
user, the remaining data is shown much more accurately, therefore obtaining an overall
better, less confusing, visualization. Secondly, we enhance DBMs to show, for each pi-
xel, the distance to the closest decision boundary. This way, users can readily separate
the areas which are deep inside decision zones (therefore, less interesting for classifier
engineering as these are arguably easy to decide upon) from the areas closer to decision
boundaries (where arguably a classifier has more problems, thus, where the user’s effort
for improving the classifier should concentrate). We provide three different heuristics for
computing the distance-to-boundary, which offer different trade-offs between computa-
tional speed and accuracy.

With the techniques presented in this chapter, we conclude our answers to the first
research question posed in Section 1.4, that we repeat below:

How to use visual analytics to get more insights into a classifier’s performance?

135

136

9 | CONCLUSION

9.6 End to end application

In Chapter 8, we focus on our second research question presented in Section 1.4,
which we repeat below:

How to use visual analytics to improve a classifer?

We address this question by presenting a visual analytics tool, and correspon-
ding workflow, that combines classifier training, testing, and validation, with a semi-
supervised learning process based on manual sample annotation (labeling). Central to
this process is the usage of DBMs and various other visualization mechanisms (tooltips,
nearest neighbors) to help the user in the selection and labeling of samples.

We demonstrate our approach by using our proposed visual analytics tool and work-
flow in the process of semi-supervised learning for five scenarios that combine five dif-
ferent datasets with three classifier techniques. In each experiment, we allow the user
to label only a few tens of samples, and next test the increase of accuracy due to these
samples as compared to the original training set (baseline), but also compared to using a
fully automatic label propagation (AL) procedure.

The results of these experiments show several insights. On the positive side, our ma-
nual labeling assisted by DBMs produces significantly more correctly labeled samples
than AL, which, in turn, lead to classifiers having a better performance than the AL-
trained ones. On the less positive side, the overall increases in performance as compared
to the baseline training are limited. Our results strengthen independently executed com-
plementary recent research in using visual analytics to assist semi-supervised learning,
and, as such, motivate the pursuing of future work in this area.

9.7 Future work

Several directions for future work are possible, as follows.

On the practical side, one interesting direction consists in applying our techniques for
visualizing decision boundaries in different machine learning settings, such as on regres-
sion problems. This would extend the application area, and therefore the practical added
value, of DBMs to different problems.

On the technical side, it is definitely of interest to revisit the basic DBM computation
algorithm proposed in Chapter 4. A major point of interest would be to re-think the al-
gorithm so as to minimize errors in the entire DBM. Right now, our algorithm still suffers
from errors of both the direct and the inverse projection, and these projections (and their
errors) are computed based on a typically small number of sample points. Since DBMs aim
to visualize the entire high-dimensional space (in the limit), they use a very large number
of points in their construction. Hence, it should be possible to cast the DBM construction
problem as an explicit model that joins the costs of direct and inverse projection for all
the points which ultimately create the DBM. We believe that this would lead to DBMs of

9.7 | FUTURE WORK

significantly higher quality.

Finally, half-way between the technical and practical sides, it is interesting to further
refine the VA workflow and associated tools based on DBMs aimed at supporting classi-
fier engineering. Our current approach was minimal, in the sense of using only a single-
resolution view of DBMs, with only a few additional interactive investigation mechanisms
such as tooltips and nearest neighbor markers. It is well known that VA tools excel in their
task when offering a wide range of finely-tuned exploration options to the user. This
would translate in our context to providing ways to compute DBMs in a multiresolution
fashion, e.g. to allow users to seamlessly zoom-in-and-out in specific areas of the data
space, or compute additional metrics that rank samples for manual labeling and inform
the user on this ranking. In the long run, providing real-time computation and visua-
lization of DBMs would allow a truly immersive experience, where one could literally
label and/or move sample points in the projection and see how the decision zones and
their boundaries change, thereby getting an intimate feeling of how a classifier works to
construct these important, but still elusive, boundaries.

137

Referéncias

[ABU-MOSTAFA et al. 2012] Yaser S ABU-MoOSTAFA, Malik MAGDON-ISMAIL e Hsuan-
Tien LIN. Learning from data. Vol. 4. AMLBook New York, NY, USA: 2012 (citado
nas pgs. 1, 11).

[ADADI e BERRADA 2018] A. ADADI e M. BERRADA. “Peeking inside the black-box: a
survey on explainable artificial intelligence (XAI)”. Em: IEEE Access 6 (2018).
DOI:10.1109/ACCESS.2018.2870052 (citado na pg. 42).

[E. AMORIM et al. 2015] Elisa AMORIM et al. “Facing the high-dimensions: inverse pro-
jection with radial basis functions”. Em: Computers & Graphics 48 (2015), pgs. 35—
47 (citado nas pgs. 41, 92, 93, 96, 98, 103).

[W.P. AMORIM et al. 2016] Willian P. AMorim, Alexandre X. FALcAo0, Jodo P. Papa e
Marcelo H. CArvALHO. “Improving semi-supervised learning through optimum
connectivity”. Em: Pattern Recogn. 60.C (dez. de 2016), pgs. 72—85. 1SsN: 0031-3203
(citado nas pgs. 116, 117, 120).

[ARrYA et al. 1998] S. Arya, D. MOUNT, N. NETANYAHU, R. SILVERMAN e A. WU. “An op-
timal algorithm for approximate nearest neighbor searching”. Em: J. of the ACM
45.6 (1998), pgs. 891-923 (citado na pg. 22).

[AupeTIT 2007] M. AUPETIT. “Visualizing distortions and recovering topology in conti-
nuous projection techniques”. Em: Neurocomputing 10.7-9 (2007), pgs. 1304-1330
(citado nas pgs. 43, 88, 103, 105, 113).

[AURENHAMMER 1991] F. AURENHAMMER. “Voronoi diagrams: a survey of a fundamen-
tal geometric data structure”. Em: ACM Computing Surveys 23 (1991), pgs. 345—
405 (citado na pg. 21).

[Azop1 et al. 2020] C. Azobi, J. TANG e S. SHIU. “Opening the black box: interpretable
machine learning for geneticists”. Em: Trends in Genetics 6.26 (2020), pgs. 442-455
(citado na pg. 28).

[AL-BARAZANCHI et al. 2015] Hussein A AL-BArRAazANcHI, Abhishek VERMA e Shawn
WAaNG. “Performance evaluation of hybrid cnn for sipper plankton image calssi-
fication”. Em: 2015 Third International Conference on Image Information Processing
(ICIIP). IEEE. 2015, pgs. 551-556 (citado na pg. 48).

139

140

REFERENCIAS

[M. BELKIN e N1YOGI 2002] M. BELKIN e P. N1vocr. “Laplacian eigenmaps and spectral
techniques for embedding and clustering”. Em: Advances in Neural Information
Processing Systems (NIPS). 2002, pgs. 585-591 (citado na pg. 84).

[Mikhail BELKIN et al. 2006] Mikhail BELKIN, Partha N1vocr e Vikas SINDHWANTI. “Ma-
nifold regularization: a geometric framework for learning from labeled and un-
labeled examples”. Em: J. Mach. Learn. Res. 7 (dez. de 2006), pgs. 2399-2434. 1sSN:
1532-4435 (citado nas pgs. 116, 117, 120).

[BENATO et al. 2018] Barbara Caroline BENATO, Alexandru Cristian TELEA e Alexandre
Xavier FALcA0. “Semi-supervised learning with interactive label propagation gui-
ded by feature space projections”. Em: 2018 31st SIBGRAPI Conference on Graphics,
Patterns and Images (SIBGRAPI). IEEE. 2018, pgs. 392-399 (citado nas pgs. 34, 114,
116, 118, 129).

[BENGIO 2012] Yoshua BENGIO. “Deep learning of representations for unsupervised
and transfer learning”. Em: Proceedings of ICML workshop on unsupervised and
transfer learning. 2012, pgs. 17-36 (citado na pg. 49).

[BERG et al. 2000] Mark de BErG, Marc van KREVELD, Mark OVERMARS e Otfried
CHEONG-SCHWARZKOPF. Computational Geometry — Algorithms and Applications.
Springer, 2000 (citado nas pgs. 19, 21).

[Bisaop 2006] Christopher M BisHop. Pattern recognition and machine learning. Sprin-
ger, 2006 (citado na pg. 11).

[BLAscHKO et al. 2005] Matthew B BLASCHKO et al. “Automatic in situ identification of
plankton”. Em: 2005 Seventh IEEE Workshops on Applications of Computer Vision
(WACV/MOTION’05)-Volume 1. Vol. 1. IEEE. 2005, pgs. 79-86 (citado na pg. 55).

[BorTou 2012] Léon BotToU. “Stochastic gradient tricks”. Em: Neural Networks, Tricks
of the Trade, Reloaded. Ed. por Grégoire MONTAVON, Genevieve B. Orr e Klaus-
Robert MULLER. Lecture Notes in Computer Science (LNCS 7700). Springer, 2012,
pgs. 430-445 (citado na pg. 16).

[BROEKSEMA et al. 2013] B BROEKSEMA, A. TELEA e T. BAUDEL. “Visual analysis of
multi?dimensional categorical data sets”. Em: Computer Graphics Forum 32.8
(2013), pgs. 158-169 (citado na pg. 43).

[Cao et al. 2010] Thanh-Tung Cao, Ke TANG, Anis MOHAMED e Tiow-Seng TaN. “Pa-
rallel banding algorithm to compute exact distance transform with the GPU”. Em:
Proc. ACM I3D. 2010, pgs. 83-90 (citado na pg. 106).

[CARR et al. 1987] D. B. CARR, R. J. LITTLEFIELD, W. L. NICHOLSON e J. S. LITTLEFIELD.
“Scatterplot matrix techniques for large n”. Em: Journal of the American Statistical
Association 82.398 (1987), pgs. 424-436 (citado na pg. 30).

141

REFERENCIAS

[CHEN et al. 2006] Y. CHEN, M. CRAWFORD e J. GHOSH. “Improved nonlinear manifold
learning for land cover classification via intelligent landmark selection”. Em: Proc.
IEEE IGARSS. 2006, pgs. 545-548 (citado nas pgs. 36, 84).

[CHOLLET 2018] Francois CHOLLET. Keras Machine Learning Framework. https ://
github.com/fchollet/keras. 2018 (citado nas pgs. 14, 72, 98).

[CHOROMANSKA et al. 2015] Anna CHOROMANSKA, Mikael HENAFF, Michael MATHIEU,
Gerard Ben Arous e Yann LECUN. “The Loss Surfaces of Multilayer Networks”.
Em: Proceedings of the Eighteenth International Conference on Artificial Intelligence
and Statistics. Vol. 38. Proceedings of Machine Learning Research. PMLR, 2015,
pgs. 192-204 (citado na pg. 26).

[CosTA e CESAR 2000] L. Costa e R. CEsAR. Shape analysis and classification. CRC
Press, 2000 (citado na pg. 20).

[CowEN et al. 2015] CowEeN, Robert K., S. SPONAUGLE, K.L. ROBINSON e J. Luo. “Plank-
tonSet 1.0: Plankton imagery data collected from F.G. Walton Smith in Straits of
Florida from 2014-06-03 to 2014-06-06 and used in the 2015 National Data Science
Bowl”. Em: (2015). por: 10.7289/V5D21V]D (citado na pg. 51).

[CUNNINGHAM e GHAHRAMANI 2015] J. CUNNINGHAM e Z. GHAHRAMANI. “Linear di-
mensionality reduction: survey, insights, and generalizations”. Em: JMLR 16
(2015), pgs. 2859-2900 (citado nas pgs. 34, 93).

[Dar1 et al. 2016] Jialun DA1, Ruchen WaNG, Haiyong ZHENG, Guangrong J1 e Xiaoyan
Q1a0. “Zooplanktonet: deep convolutional network for zooplankton classifica-
tion”. Em: OCEANS 2016-Shanghai. IEEE. 2016, pgs. 1-6 (citado na pg. 48).

[DANG e WILKINSON 2014] Tuan Nhon DANG e Leland WILKINSON. “Scagexplorer: ex-
ploring scatterplots by their scagnostics”. Em: Visualization Symposium (Pacific-
Vis), 2014 IEEE Pacific. IEEE. 2014, pgs. 73-80 (citado na pg. 31).

[DasgupTA 2000] S. DAasGUPTA. “Experiments with random projection”. Em: Proc. of
the Sixteenth conference on Uncertainty in artificial intelligence. Morgan Kauf-
mann. 2000, pgs. 143-151 (citado na pg. 84).

[DELALLEAU et al. 2005] Olivier DELALLEAU, Yoshua BENGIO e Nicolas LE Roux. “Effi-
cient non-parametric function induction in semi-supervised learning.” Em: AIS-
TATS. Vol. 27. 28. Citeseer. 2005, pg. 100 (citado na pg. 120).

[DHEERU e KARRA TaNIsKIDOU 2017] Dua DHEERU e Efi KARRA TaNIsKIDOU. UCI Ma-
chine Learning Repository. 2017. URL: http://archive.ics.uci.edu/ml (citado na

pg. 69).

[DIELEMAN et al. 2016] Sander Di1ELEMAN, Jeffrey DE Fauw e Koray KavukcuogLu.
“Exploiting cyclic symmetry in convolutional neural networks”. Em: arXiv pre-
print arXiv:1602.02660 (2016) (citado nas pgs. 54, 55).

https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://doi.org/10.7289/V5D21VJD
http://archive.ics.uci.edu/ml

142

REFERENCIAS

[DonoHOo e GRIMEs 2003] D. L. DonoHO e C. GRIMES. “Hessian eigenmaps: locally li-
near embedding techniques for high-dimensional data”. Em: Proceedings of the
National Academy of Sciences 100.10 (2003), pgs. 5591-5596 (citado na pg. 84).

[Dosirovr'c et al. 2018] F. K. Dosiovr'c, M. Brer'c e N. Hruer'c. “Explainable artifi-
cial intelligence: a survey”. Em: Proc. 41° International Convention on Information
and Communication Technology, Electronics and Microelectronics (MIPRO). 2018,
pgs. 210-215 (citado na pg. 28).

[ENGEL et al. 2012] D.ENGEL, L. HOTTENBERGER € B. HAMANN. “A survey of dimension
reduction methods for high-dimensional data analysis and visualization”. Em:
Proc. IRTG Workshop. Vol. 27. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2012, pgs. 135-149 (citado na pg. 34).

[M. EspapoTo, FaLcAo et al. 2020] M. EspapoTo, A. FALcao, N. HIRATA e A. TELEA.
“Improving neural network-based multidimensional projections”. Em: Proc.
IVAPP. SciTePress, 2020 (citado na pg. 98).

[M. EspaDOTO, HIRATA et al. 2020a] M. Espapoto, N. HIRATA e A. TELEA. “Deep le-
arning multidimensional projections”. Em: J. Information Visualization (2020).
https://doi.org/10.1177/1473871620909485 (citado na pg. 36).

[M. EspADOTO, HIRATA et al. 2020b] M. Espabporo, N. HIRATA e A. TELEA. “Deep
learning multidimensional projections”. Em: Information Visualization (2020).
DOI:10.1177/1473871620909485 (citado nas pgs. 92, 98).

[M. EspADOTO, MARTINS et al. 2019] M. EspADOTO, R. MARTINS, A. KERREN, N. HIRATA
e A. TELEA. “Towards a quantitative survey of dimension reduction techniques”.
Em: IEEE TVCG (2019). doi:10.1109/TVCG.2019.2944182 (citado nas pgs. 34, 38,
77,78, 81, 85, 88, 89).

[M. EspapoTo, F. C. M. RODRIGUES et al. 2019] M. EspapoTo, F. C. M. RODRIGUES e A.
TELEA. “Visual analytics of multidimensional projections for constructing clas-
sifier decision boundary maps”. Em: Proc. IVAPP. SciTePress, 2019 (citado nas
pgs. 77, 95).

[Mateus EspapoTo et al. 2019] Mateus EspapoTo, Francisco Caio Maia RODRIGUES,
Nina S. T. HIrATA, Roberto HIRATA JR. e Alexandru C. TELEA. “Deep Learning
Inverse Multidimensional Projections”. Em: Proc. EuroVis Workshop on Visual
Analytics (EuroVA). The Eurographics Association, 2019 (citado nas pgs. 91, 103).

[FABBRI et al. 2008] R. FaBBRI, L. CosTa, J. ToreLLU e O. BrRuno. “2D Euclidean dis-
tance transform algorithms: a comparative survey”. Em: ACM Computing Survey
40.1 (2008), pgs. 1-44 (citado na pg. 105).

[FarouTsos e Lin 1995] C. Faroutsos e K. LiN. “FastMap: a fast algorithm for inde-
xing, data-mining and visualization of traditional and multimedia datasets”. Em:
ACM SIGMOD Newsletter 24.2 (1995), pgs. 163—174 (citado na pg. 84).

https://doi.org/10.1177/1473871620909485

REFERENCIAS

[FAWCETT 2006] Tom FAWCETT. “An introduction to ROC analysis”. Em: Pattern Re-
cognition Letters 27.8 (2006), pgs. 861-874 (citado na pg. 42).

[Fawz1 et al. 2018] Alhussein Fawzi, Seyed-Mohsen Moosavi-DezrooLi, Pascal Fros-
SARD e Stefano SoatTo. “Empirical study of the topology and geometry of deep
networks”. Em: Proc. IEEE CVPR. 2018, pgs. 3762-3770 (citado nas pgs. 96, 98).

[FLORES et al. 2019] J. M. FLOREs, M. FISCHER, A. TELEA e L. LINSEN. “Scatterplot sum-
marization by constructing fast and robust principal graphs from skeletons”. Em:
Proc. IEEE PacificVis. 2019 (citado na pg. 31).

[Fopor 2002] 1. K. Fopor. A Survey of Dimension Reduction Techniques. Rel. técn. Tech.
report UCRL-ID-148494. US Dept. of Energy, Lawrence Livermore National Labs,
2002 (citado na pg. 34).

[GARcIA et al. 2018] R. GARCIA, A. TELEA, L. da S1LvA, J. TORRESEN e J. COMBA. “A task-
and-technique centered survey on visual analytics for deep learning model engi-
neering”. Em: Computers and Graphics 77 (2018), pgs. 30-49 (citado na pg. 45).

[GIrsHICK et al. 2014] Ross GIRSHICK, Jeff DONAHUE, Trevor DARRELL e Jitendra MA-
LIK. “Rich feature hierarchies for accurate object detection and semantic segmen-
tation”. Em: Proc. IEEE CVPR. 2014, pgs. 580-587 (citado na pg. 1).

[GooprELLOW et al. 2014] Ian J GoobpreLLow, Jonathon SHLENS e Christian SzEe-
GEDY. “Explaining and harnessing adversarial examples”. Em: arXiv preprint
arXiv:1412.6572 (2014) (citado nas pgs. 107, 108).

[GUILLAUMIN et al. 2009] M. GuiLLAUMIN, T. MENSINK, J. VERBEEK e C. ScHMID. “Tag-
prop: discriminative metric learning in nearest neighbor models for image auto-
annotation”. Em: 2009 IEEE 12th International Conference on Computer Vision.
Set. de 2009, pgs. 309-316 (citado na pg. 116).

[HaMmEL 2006] L. HAMEL. “Visualization of support vector machines with unsupervised
learning”. Em: Proc. Computational Intelligence and Bioinformatics and Computa-
tional Biology (CIBCB). IEEE, 2006 (citado na pg. 44).

[HANSEN e JouNsoN 2005] C. HANSEN e C. JoHNSON. The visualization handbook. El-
sevier, 2005 (citado na pg. 5).

[HARALICK, SHANMUGAM et al. 1973] Robert M HaraLick, Karthikeyan SHANMUGAM
et al. “Textural features for image classification”. Em: IEEE Transactions on sys-
tems, man, and cybernetics 6 (1973), pgs. 610-621 (citado na pg. 55).

[HAsTIE e STUETZLE 1989] T. HASTIE e W. STUETZLE. “Principal curves”. Em: J. Ameri-
can Statistical Association 84.406 (1989), pgs. 502-516 (citado na pg. 31).

143

144

REFERENCIAS

[K. HE et al. 2015] K. HE, X. ZHANG, S. REN e]J. SUN. “Delving deep into rectifiers: sur-
passing human-level performance on ImageNet classification”. Em: Proc. IEEE
ICCV. 2015, pgs. 1026-1034 (citado na pg. 93).

[Kaiming HE et al. 2016] Kaiming HE, Xiangyu ZHANG, Shaoqing REN e Jian SuN.
“Deep residual learning for image recognition”. Em: Proceedings of the IEEE con-
ference on computer vision and pattern recognition. 2016, pgs. 770-778 (citado na

pg. 48).

[G. E. HINTON e SALAKHUTDINOV 2006] G. E. HINTON e R. R. SALAKHUTDINOV. “Re-
ducing the dimensionality of data with neural networks”. Em: Science 313.5786
(2006), pgs. 504-507 (citado na pg. 92).

[HorF et al. 1999] K. HorF, T. CULVER, J. KEYSER, M. LIN e D. MANOCHA. “Fast compu-
tation of generalized Voronoi diagrams using graphics hardware”. Em: Proc. ACM
SIGGRAPH. 1999, pgs. 277-286 (citado na pg. 21).

[HoFFMAN e GRINSTEIN 2002] P. HOFFMAN e G. GRINSTEIN. “A survey of visualizati-
ons for high-dimensional data mining”. Em: Information Visualization in Data
Mining and Knowledge Discovery 104 (2002), pgs. 47-82 (citado na pg. 34).

[Hu et al. 2013] Xinhai Hu et al. “Artificial neural networks and prostate cancer—tools
for diagnosis and management”. Em: Nature Reviews Urology 10.3 (2013),
pgs. 174-182 (citado na pg. 1).

[HYVARINEN 1999] A. HYVARINEN. “Fast ICA for noisy data using gaussian moments”.
Em: Proc. IEEE ISCAS. Vol. 5. 1999, pgs. 57-61 (citado na pg. 84).

[INSELBERG e DIMSDALE 1990] A. INSELBERG e B. DiMsDALE. “Parallel coordinates: a
tool for visualizing multi-dimensional geometry”. Em: Proc. IEEE VIS. 1990,
pgs. 361-378 (citado na pg. 31).

[JacQUEs et al. 2006] Julio Cezar Silveira JacQUEs, Claudio Rosito JUNG e Soraia Raupp
Musse. “A background subtraction model adapted to illumination changes”. Em:
2006 International Conference on Image Processing. IEEE. 2006, pgs. 1817-1820 (ci-
tado na pg. 51).

[Jo1a et al. 2011] P.Joia, D. COIMBRA, J. A. CUMINATO, F. V. PAuLovicH e L. G. NoNAToO.
“Local affine multidimensional projection”. Em: IEEE Transactions on Visualiza-
tion and Computer Graphics 17.12 (2011), pgs. 2563-2571 (citado nas pgs. 35, 66,
68, 69, 84, 103).

[JorLirrE 1986] 1. T. JoLLIFFE. “Principal Component Analysis and Factor Analysis”.
Em: Principal component analysis. Springer, 1986, pgs. 115-128 (citado nas pgs. 39,
84).

REFERENCIAS

[KEHRER e HAUSER 2013] J. KEHRER e H. HAUSER. “Visualization and visual analysis of
multifaceted scientific data: a survey”. Em: IEEE TVCG 19.3 (2013), pgs. 495-513
(citado na pg. 29).

[KeM et al. 2008] Daniel KEmm et al. “Visual analytics: definition, process, and challen-
ges”. Em: Information Visualization. Springer, 2008, pgs. 154-175 (citado na pg. 5).

[KiINGMA e Ba 2014] D. P. KINGMA e J. BA. “Adam: a method for stochastic optimiza-
tion”. Em: arXiv:1412.6980v9 [cs.LG] (2014) (citado nas pgs. 80, 93).

[Kingma e WELLING 2013] D. P. Kingma e M. WELLING. Auto-encoding variational
Bayes. arXiv:1312.6114 [cs.ML]. 2013 (citado na pg. 92).

[KoNONENKO 2001] Igor KoNONENKO. “Machine learning for medical diagnosis: his-
tory, state of the art and perspective”. Em: Artificial Intelligence in Medicine 23.1
(2001), pgs. 89-109 (citado na pg. 1).

[KR1ZHEVSKY et al. 2012] Alex KrizHEVsKY, Ilya SUTSKEVER e Geoffrey E HINTON.
“Imagenet classification with deep convolutional neural networks”. Em: Advances
in neural information processing systems. 2012, pgs. 1097-1105 (citado nas pgs. 1,
26, 47, 48, 53, 54).

[KrRUSKAL 1964] J. B. KRUSKAL. “Multidimensional scaling by optimizing goodness of
fit to a nonmetric hypothesis”. Em: Psychometrika 29.1 (1964), pgs. 1-27 (citado
na pg. 84).

[Y. LECuN et al. 2010] Y. LECuN, C. CorTEs e CJ] BURGEs. MNIST handwritten digit da-
tabase. AT&T Labs [Online]. Available: http://yann.lecun.com/exdb/mnist. 2010
(citado nas pgs. 27, 32, 66, 70, 80, 94).

[Yann LECUN et al. 2015] Yann LECuUN, Yoshua BENGIO e Geoffrey HINTON. “Deep le-
arning”. Em: nature 521.7553 (2015), pgs. 436—444 (citado nas pgs. 2, 26).

[LEHMANN et al. 2012] Dirk J LEHMANN, Georgia ALBUQUERQUE, Martin EISEMANN,
Marcus MAaGNOR e Holger THEISEL. “Selecting coherent and relevant plots in large
scatterplot matrices”. Em: Computer Graphics Forum 31.6 (2012), pgs. 1895-1908
(citado na pg. 31).

[L1eRrE e DE LEEUW 2003] Robert van LIERE e Wim DE LEEUw. “GraphSplatting: visu-
alizing graphs as continuous fields”. Em: Visualization and Computer Graphics,
IEEE Transactions on 9 (mai. de 2003), pgs. 206—212 (citado na pg. 43).

[J. Liu et al. 2009] Jing Liu, Mingjing L1, Qingshan Liu, Hanqing Lu e Songde Ma.
“Image annotation via graph learning”. Em: Pattern Recognition 42.2 (2009). Lear-
ning Semantics from Multimedia Content, pgs. 218-228. 1ssN: 0031-3203 (citado
na pg. 116).

145

http://yann.lecun.com/exdb/mnist

146

REFERENCIAS

[S. Liu et al. 2015] S. L1u, D. MALjovec, B. WANG, P.-T. BREMER e V. Pascucci. “Visua-
lizing high-dimensional data: advances in the past decade”. Em: IEEE TVCG 23.3
(2015), pgs. 1249-1268 (citado na pg. 29).

[MAATEN 2009] L. van der MAATEN. “Learning a parametric embedding by preserving
local structure”. Em: Proc. 12th Intl. Conf. on Artificial Intelligence and Statistics.
2009 (citado na pg. 92).

[MAATEN e G. HINTON 2008] L. van der MAATEN e G. HINTON. “Visualizing data using
t-SNE”. Em: JMLR 9.Nov (2008), pgs. 2579-2605 (citado nas pgs. 36, 68, 69, 73, 75,
84, 93).

[MAATEN e PosTma 2009] L. van der MAATEN e E. PosT™MA. Dimensionality Reduc-
tion: A Comparative Review. Tech. report TiCC TR 2009-005, Tilburg University,
Netherlands. 2009 (citado nas pgs. 34, 75, 93, 95).

[MANNING et al. 2008] C. D. MANNING, H. ScHUTZE e P. RAGHAVAN. Introduction to In-
formation Retrieval. Vol. 39. Cambridge University Press, 2008 (citado na pg. 78).

[MARTINS, COIMBRA et al. 2014] R. MARTINS, D. CoiMBRA, R. MINGHIM e A. C. TELEA.
“Visual analysis of dimensionality reduction quality for parameterized projecti-
ons”. Em: Computers & Graphics 41 (2014), pgs. 26—42 (citado nas pgs. 43, 69, 88,
92, 103, 113).

[MARTINS, R. MINGHIM et al. 2015] R. MARTINS, R. MINGHIM e A. C. TELEA. “Explai-
ning neighborhood preservation for multidimensional projections”. Em: Proc.
CGVC. Eurographics, 2015, pgs. 121-128 (citado nas pgs. 43, 103).

[MARTN ABADI et al. 2015] MARTN ABADI et al. TensorFlow: Large-Scale Machine Le-
arning on Heterogeneous Systems. Software available from tensorflow.org. 2015.
URL: https://www.tensorflow.org/ (citado nas pgs. 44, 73).

[McINNEs e HEALY 2018] L. McINNEs e J. HEaLy. “UMAP: Uniform Manifold Ap-
proximation and Projection for Dimension Reduction”. Em: arXiv:1802.03426v1
[stat.ML] (2018) (citado nas pgs. 37, 38, 84, 93).

[MiGUT et al. 2015] M. A. MicuT, M. WORRING e C. J. VEENMAN. “Visualizing multi-
dimensional decision boundaries in 2D”. Em: Data Mining and Knowledge Disco-
very 29.1 (2015), pgs. 273-295 (citado na pg. 44).

[MINGHIM et al. 2006] R MINGHIM, F. V. PauLovicH e A. A. LopEs. “Content-based text
mapping using multi-dimensional projections for exploration of document col-
lections”. Em: Proc. SPIE. Vol. 6060. Intl. Society for Optics e Photonics. 2006 (ci-
tado na pg. 84).

[MUNzNER 2015] Tamara MUNZNER. Visualization analysis and design. CRC Press, 2015
(citado nas pgs. 5, 29).

https://www.tensorflow.org/

REFERENCIAS

[NonAaTO e AUPETIT 2018] L. NoNATO e M. AUPETIT. “Multidimensional projection
for visual analytics: linking techniques with distortions, tasks, and layout en-
richment”. Em: IEEE TVCG (2018). DOI:10.1109/TVCG.2018.2846735 (citado nas
pgs. 34, 36, 81, 93, 103, 105).

[OjALA et al. 2000] Timo OjALA, Matti PIETIKAINEN e Topi MAENPAA. “Gray scale and
rotation invariant texture classification with local binary patterns”. Em: European
Conference on Computer Vision. Springer. 2000, pgs. 404-420 (citado na pg. 55).

[ORENSTEIN e BEjBoMm 2017] Eric C ORENSTEIN e Oscar BEjBoM. “Transfer learning
and deep feature extraction for planktonic image data sets”. Em: 2017 IEEE Winter
Conference on Applications of Computer Vision (WACV). IEEE. 2017, pgs. 1082-
1088 (citado na pg. 48).

[Osuna et al. 1997] Edgar Osuna, Robert FREUND e Federico GIrosIT. “Training sup-
port vector machines: an application to face detection”. Em: Computer vision and
pattern recognition, 1997. Proceedings., 1997 IEEE computer society conference on.
IEEE. 1997, pgs. 130-136 (citado na pg. 1).

[O1su 1979] Nobuyuki Otsu. “A threshold selection method from gray-level histo-
grams”. Em: IEEE transactions on systems, man, and cybernetics 9.1 (1979), pgs. 62—
66 (citado na pg. 55).

[OVERVELD e J. J. van Wik 2003] C. W. A. M. van OVERVELD e J. J. van WIJK. “Preset
based interaction with high dimensional parameter spaces”. Em: Data Visualiza-
tion. Springer, 2003, pgs. 391-406 (citado na pg. 40).

[OzerTEM e ERDOGMUS 2011] U. OzERTEM e D. ERDOGMUS. “Locally defined principal
curves and surfaces”. Em: JMLR 12 (2011), pgs. 1249-1286 (citado na pg. 31).

[PAN e YANG 2009] Sinno Jialin PAN e Qiang YANG. “A survey on transfer learning”. Em:
IEEE Transactions on knowledge and data engineering 22.10 (2009), pgs. 1345-1359
(citado na pg. 48).

[PANDEY et al. 2016] Anshul Vikram PANDEY, Josua KRrAUSE, Cristian FELIX, Jeremy
Boy e Enrico BERTINI. “Towards understanding human similarity perception in
the analysis of large sets of scatter plots”. Em: Proc. ACM CHI. 2016, pgs. 3659—
3669 (citado na pg. 31).

[PauLoVICH, ELER et al. 2011] F. V. PauLovicH, D. M. ELER et al. “Piecewise laplacian-
based projection for interactive data exploration and organization”. Em: Compu-
ter Graphics Forum 30.3 (2011), pgs. 1091-1100 (citado na pg. 84).

[PauLovicH e R. MINGHIM 2006] F. V. PAULOVICH e R. MINGHIM. “Text map explorer:
a tool to create and explore document maps”. Em: Proc. Intl. Conference on Infor-
mation Visualisation (IV). IEEE. 2006, pgs. 245-251 (citado na pg. 84).

147

148

REFERENCIAS

[Paurovich, C. T. SiLva et al. 2010] F. V. PaurovicH, C. T. SiLva e L. G. NoNATO. “Two-
phase mapping for projecting massive data sets”. Em: IEEE TVCG 16.6 (2010),
pgs. 1281-1290 (citado na pg. 84).

[PazzAaNT e BiLisus 2007] Michael J Pazzant e Daniel Brirsus. “Content-based recom-
mendation systems”. Em: The adaptive web. Springer, 2007, pgs. 325-341 (citado

na pg. 1).

[PEDREGOSA et al. 2011] Fabian PEDREGOSA et al. “Scikit-learn: machine learning in
python”. Em: journal of machine learning research 12.0ct (2011), pgs. 2825-2830
(citado nas pgs. 14, 56, 69, 107).

[PEKALSKA et al. 1999] E. PEKALSKA, D. de RIDDER, R. P. W. DuIN e M. A. KRAAIJVELD.
“A new method of generalizing Sammon mapping with application to algorithm
speed-up”. Em: Proc. ASCL Vol. 99. 1999, pgs. 221-228 (citado na pg. 84).

[N. PEzzoTTI et al. 2016] N. PezzotTi, T. HOLLT, B. LELIEVELDT, E. EISEMANN e A. VI-
LANOVA. “Hierarchical stochastic neighbor embedding”. Em: Computer Graphics
Forum 35.3 (2016), pgs. 570-580 (citado na pg. 75).

[Nicola PEzzOTTI et al. 2017] Nicola PEzzOTTI et al. “Approximated and user steerable
t-SNE for progressive visual analytics”. Em: IEEE TVCG 23.7 (2017), pgs. 1739-
1752 (citado na pg. 75).

[P1sE e KULKARNT 2008] N. P1se e P. KULKARNI. “A survey of semi-supervised lear-
ning methods”. Em: Proc. Intl. Conf. on Comp. Intell. and Security. 2008 (citado
na pg. 116).

[PoraT e GUNES 2007] Kemal PoLAT e Salih GUNEs. “Breast cancer diagnosis using le-
ast square support vector machine”. Em: Digital Signal Processing 17.4 (2007),
pgs. 694-701 (citado na pg. 1).

[POLZLBAUER 2004] G. POLZLBAUER. “Survey and comparison of quality measures
for self-organizing maps”. Em: Proc. Workshop on Data Analysis (WDA). 2004,
pgs. 67-82 (citado na pg. 34).

[PRAKASH e NITHYA 2014] V. PRAKASH e L. NITHYA. “A survey on semi-supervised le-
arning techniques”. Em: International Journal of Computer Trends and Technology
8.1(2014), pgs. 25-29 (citado na pg. 116).

[PY et al. 2016] Ouyang Py, Hu HoNG e Shi ZrnongzHI. “Plankton classification with
deep convolutional neural networks”. Em: 2016 IEEE Information Technology,
Networking, Electronic and Automation Control Conference. IEEE. 2016, pgs. 132—
136 (citado na pg. 48).

[Rao e CARD 1994] R.Rao e S. K. CArD. “The table lens: merging graphical and sym-
bolic representations in an interactive focus+context visualization for tabular in-
formation”. Em: Proc. ACM SIGCHI. 1994, pgs. 318-322 (citado na pg. 29).

REFERENCIAS

[P. RAUBER et al. 2015] P.RAUBER et al. “Interactive image feature selection aided by di-
mensionality reduction”. Em: Proc. EuroVA. Eurographics, 2015 (citado na pg. 34).

[P. E. RAUBER et al. 2017] P. E. RAUBER, A. X. FaLcAo e A. C. TELEA. “Projections as
visual aids for classification system design”. Em: Information Visualization 17.4
(2017), pgs. 282-305 (citado na pg. 34).

[Paulo E RAUBER et al. 2017] Paulo E RAUBER, Samuel G FADEL, Alexandre X FAL-
cao e Alexandru C TELEA. “Visualizing the hidden activity of artificial neural
networks”. Em: IEEE TVCG 23.1 (2017), pgs. 101-110 (citado nas pgs. 34, 73, 75).

[RENSINK € BALDRIDGE 2010] Ronald A RENSINK e Gideon BALDRIDGE. “The percep-
tion of correlation in scatterplots”. Em: Computer Graphics Forum 29.3 (2010),
pgs. 1203-1210 (citado na pg. 31).

[RIBEIRO et al. 2016] Marco Tulio RiBEIRO, Sameer SINGH e Carlos GUESTRIN. “Why
should i trust you? explaining the predictions of any classifier”. Em: Proc. ACM
KDD. 2016 (citado na pg. 44).

[F. C. M. RODRIGUES et al. 2019] F. C. M. RoDpRIGUES, M. EspapoTO, R. Hirata Jr e A.
TeLEA. “Constructing and visualizing high-quality classifier decision boundary
maps”. Em: Information 10.9 (2019), pgs. 280-297 (citado na pg. 101).

[Francisco Caio M RODRIGUES et al. 2018] Francisco Caio M RoDRIGUES, Roberto Hi-
RATA e Alexandru Cristian TELEA. “Image-based visualization of classifier deci-
sion boundaries”. Em: 2018 31st SIBGRAPI Conference on Graphics, Patterns and
Images (SIBGRAPI). IEEE. 2018, pgs. 353-360 (citado nas pgs. 61, 80, 95).

[RODRIGUES. et al. 2018] Francisco Caio Maia RODRIGUES. et al. “Evaluation of trans-
fer learning scenarios in plankton image classification”. Em: Proceedings of the
13th International joint Conference on Computer Vision, Imaging and Computer
Graphics Theory and Applications - Volume 5: VISAPP, SciTePress, 2018, pgs. 359-
366 (citado na pg. 47).

[RoweErs e SAUL 2000] S. T. Rowers e L. L. K. SAuL. “Nonlinear dimensionality reduc-
tion by locally linear embedding”. Em: Science 290.5500 (2000), pgs. 2323-2326
(citado na pg. 84).

[RussAKOVSKY et al. 2015] Olga Russakovsky et al. “ImageNet Large Scale Visual Re-
cognition Challenge”. Em: International Journal of Computer Vision (IJCV) 115.3
(2015), pgs. 211-252. por1: 10.1007/s11263-015-0816-y (citado nas pgs. 48, 49, 52).

[SANTOS AMORIM et al. 2012] Elisa Portes dos SANTOS AMORIM et al. “Ilamp: exploring
high-dimensional spacing through backward multidimensional projection”. Em:
2012 IEEE Conference on Visual Analytics Science and Technology (VAST). IEEE.
2012, pgs. 53-62 (citado nas pgs. 40, 68, 92, 93, 103).

149

https://doi.org/10.1007/s11263-015-0816-y

150

REFERENCIAS

[SCHOLKOPF et al. 1997] B. SCHOLKOPF, A. SMoLA e K. MULLER. “Kernel principal com-
ponent analysis”. Em: Proc. International Conference on Artificial Neural Networks.
Springer. 1997, pgs. 583-588 (citado na pg. 84).

[SCHRECK et al. 2010] T. SCHRECK, T. von LANDESBERGER e S. BREMM. “Techniques for
precision-based visual analysis of projected data”. Em: Information Visualization
9.3 (2010), pgs. 181-193 (citado na pg. 103).

[ScHULZ et al. 2015] Alexander ScHULZ, Andrej GISBRECHT e Barbara HAMMER. “Using
discriminative dimensionality reduction to visualize classifiers”. Em: Neural Pro-
cessing Letters 42.1 (2015), pgs. 27-54 (citado nas pgs. 113, 114).

[SEBASTIANT 2002] Fabrizio SEBASTIANI. “Machine learning in automated text catego-
rization”. Em: ACM computing surveys (CSUR) 34.1 (2002), pgs. 1-47 (citado na

pg. 1).

[SHALEV-SHWARTZ e BEN-DAVID 2014] Shai SHALEV-SHWARTZ e Shai BEN-Davip. Un-
derstanding machine learning: From theory to algorithms. Cambridge university
press, 2014 (citado nas pgs. 2, 11, 22).

[SHWARTZ-Z1v e TisHBY 2017] Ravid SHWARTZz-Z1v e Naftali TisuBY. “Opening the
black box of deep neural networks via information”. Em: arXiv:1703.00810v3
[es.LG] (2017) (citado na pg. 28).

[R. d. S1LvA et al. 2015] R. da SiLva, P. RAUBER, R. MARTINS, R. MINGHIM e A. TELEA.
“Attribute-based visual explanation of multidimensional projections”. Em: Proc.
EuroVA. Eurographics, 2015, pgs. 95-102 (citado nas pgs. 43, 66).

[V. d. SiLva e TENENBAUM 2003] V. de SiLvA e J. B. TENENBAUM. “Global versus local
methods in nonlinear dimensionality reduction”. Em: Proc. NIPS. Vol. 15. 2003,
pgs. 721-728 (citado na pg. 36).

[SILVER et al. 2016] David SILVER et al. “Mastering the game of go with deep neural
networks and tree search”. Em: Nature 529.7587 (2016), pgs. 484-489 (citado na

pg. 1).

[SILVERMAN 1986] B. W. SILVERMAN. Density Estimation for statistics and data analysis.
Monographs on Statistics and Applied Probability. Champan e Hall, 1986 (citado
na pg. 43).

[SIMONYAN e ZISSERMAN 2014] Karen SIMONYAN e Andrew ZISSERMAN. Very deep
convolutional networks for large-scale image recognition”. Em: arXiv preprint
arXiv:1409.1556 (2014) (citado na pg. 48).

REFERENCIAS

[SINDHWANT et al. 2005] Vikas SINDHWANTI, Partha N1voc1 e Mikhail BELKIN. “Beyond
the point cloud: from transductive to semi-supervised learning”. Em: Proceedings
of the 22Nd International Conference on Machine Learning. ICML ’05. Bonn, Ger-
many: ACM, 2005, pgs. 824-831. 1sBN: 1-59593-180-5 (citado nas pgs. 116, 117,
120).

[S1ps et al. 2009] Mike Sips, Boris NEUBERT, John P LEwis e Pat HANRAHAN. “Selec-
ting good views of high-dimensional data using class consistency”. Em: Computer
Graphics Forum 28.3 (2009), pgs. 831-838 (citado na pg. 31).

[SmiLkov e CARTER 2018] Daniel Smitkov e Shan CARTER. TensorFlow Playground.
https://playground.tensorflow.org. 2018 (citado nas pgs. 6, 44).

[SokoLovA e LAPALME 2009] M. Sokorova e G. LAPALME. “A systematic analysis of
performance measures for classification tasks”. Em: Information Processing and
Management 45 (2009), pgs. 427-437 (citado na pg. 7).

[SorzaNoO et al. 2014] C. SOrRzANO, J. VARGAS e A. PascuAL-MoNTANO. A survey of
dimensionality reduction techniques. arXiv:1403.2877 [stat.ML]. 2014 (citado nas
pgs. 34, 95).

[SrivasTAvVA et al. 2014] Nitish SrivasTava, Geoffrey HINTON, Alex KriZHEVSKY, Ilya
SUTSKEVER e Ruslan SALAKHUTDINOV. “Dropout: a simple way to prevent neu-
ral networks from overfitting”. Em: Journal of Machine Learning Research 15.56
(2014), pgs. 1929-1958 (citado na pg. 13).

[STRZODKA e A. TELEA 2004] R. STRZODKA e A. TELEA. “Generalized distance trans-
forms and skeletons in graphics hardware”. Em: Proc. VisSym. IEEE, 2004 (citado
na pg. 21).

[SZEGEDY, VANHOUCKE et al. 2016] Christian SzZEGEDY, Vincent VANHOUCKE, Sergey
IOFFE, Jon SHLENS e Zbigniew WoOJNA. “Rethinking the inception architecture for
computer vision”. Em: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2016, pgs. 2818-2826 (citado na pg. 48).

SZEGEDY, ZAREMBA et al. 2013] Christian SzZEGEDY, Wojciech ZAREMBA et al. “Intri-
]
guing properties of neural networks”. Em: arXiv preprint arXiv:1312.6199 (2013)
(citado na pg. 107).

[A. TELEA 2014] A. TELEA. Image-based visualization of Voronoi diagrams. https://www.
cs.rug.nl/svcg/DataVisualizationBook/Sp3. 2014 (citado na pg. 19).

[A. TELEA e Ersoy 2010] A. TeLea e O. Ersoy. “Image-based edge bundles: simpli-
fied visualization of large graphs”. Em: CGF 29.3 (2010), pgs. 543-551 (citado na

pg. 21).

151

https://playground.tensorflow.org
https://www.cs.rug.nl/svcg/DataVisualizationBook/Sp3
https://www.cs.rug.nl/svcg/DataVisualizationBook/Sp3

152

REFERENCIAS

[A. TELEA e VOINEA 2006] A. TELEA e L. VOINEA. “An open framework for CVS reposi-
tory querying, analysis and visualization”. Em: Proc. Mining Software Repositories.
ACM, 2006 (citado na pg. 40).

[A. TELEA e J. v. WIJK 2001] A. TELEA e].J. van WDJK. “Visualization of generalized Vo-
ronoi diagrams”. Em: Proc. VisSym. Springer, 2001 (citado na pg. 21).

[A. C. TELEA 2006] A. C. TELEA. “Combining extended table lens and treemap techni-
ques for visualizing tabular data”. Em: Proc. EuroVis. 2006, pgs. 120-127 (citado
na pg. 30).

[Alexandru C TeLEA 2015] Alexandru C TEeLEA. Data visualization — Principles and
Practice. 2* ed. CRC Press, 2015 (citado nas pgs. 5, 29).

[TENENBAUM ef al. 2000] J.B. TENENBAUM, V. De SiLva e J. C. LANGFORD. “A global geo-
metric framework for nonlinear dimensionality reduction”. Em: Science 290.5500
(2000), pgs. 2319-2323 (citado na pg. 84).

[THOMAS e Cook 2005]]J. THoMmAS e K. A. Cook. Illuminating the Path: The Research
and Development Agenda for Visual Analytics. National Visualization e Analytics
Ctr, 2005 (citado na pg. 5).

[TinG 2011] Kai Ming TinG. Encyclopedia of machine learning. Springer, 2011 (citado
na pg. 42).

[J. W. Tukey e P. A. TUKEY 1988] John W TUKEY e Paul A Tukey. “Computer graphics
and exploratory data analysis: an introduction”. Em: The Collected Works of John
W. Tukey: Graphics: 1965-1985 5 (1988), pg. 419 (citado na pg. 31).

[vAN WIJK e VAN DE WETERING 1999] J.J. vAN WK e H. VAN DE WETERING. “Cushion
treemaps: visualization of hierarchical information”. Em: Proc. IEEE InfoVis. Los
Alamitos, CA: IEEE Press, 1999, pgs. 73-78 (citado na pg. 21).

[VERMEULEN et al. 2017] Jordi L. VERMEULEN, Arne HILLEBRAND e Roland GERAERTS.
“A comparative study of k?nearest neighbour techniques in crowd simulation”.
Em: Computer Animation & Virtual Worlds 28.3-4 (2017) (citado na pg. 22).

[VERNIER et al. 2020] E. VERNIER, R. GARCIA, I. da SiLva, J. ComBA e A. TELEA. “Quan-
titative evaluation of time-dependent multidimensional projection techniques”.
Em: Computer Graphics Forum 39.20 (2020) (citado na pg. 92).

[F. WANG e C. ZHANG 2008] F. WANG e C. ZHANG. “Label propagation through linear
neighborhoods”. Em: IEEE Transactions on Knowledge and Data Engineering 20.1
(jan. de 2008), pgs. 55-67. 1sSN: 1041-4347. por: 10.1109/TKDE.2007.190672 (citado
na pg. 116).

https://doi.org/10.1109/TKDE.2007.190672

REFERENCIAS

[Jarke J van Wik e Alexandru TeLEA 2001] Jarke] van Wijk e Alexandru TELEA. “En-
ridged contour maps”. Em: Proceedings Visualization, 2001. VIS’01. IEEE. 2001,
pgs. 69-543 (citado nas pgs. 21, 111).

[WILKINSON et al. 2006] Leland WiLkiNsoN, Anushka ANAND e Robert GROSSMAN.
“High-dimensional visual analytics: interactive exploration guided by pairwise
views of point distributions”. Em: IEEE TVCG 12.6 (2006), pgs. 1363-1372 (citado
na pg. 31).

[X14a0 et al. 2017] H.X1ao0, K. RasuL e R. VOLLGRAF. Fashion-MNIST: A Novel Image Da-
taset for Benchmarking Machine Learning Algorithms. arXiv:1708.07747v2 [cs.LG].
28 de ago. de 2017 (citado nas pgs. 80, 85, 94).

[X1E et al. 2017] H. Xi1E, J. L1 e H. XUE. A survey of dimensionality reduction techniques
based on random projection. arXiv:1706.04371 [cs.LG]. 2017 (citado na pg. 93).

[YATEs et al. 2014] A. YATEs et al. “Visualizing multidimensional data with glyph
SPLOMs”. Em: Computer Graphics Forum 33.3 (2014), pgs. 301-310 (citado na

pg. 31).

[Yin 2007] H. YinN. “Nonlinear dimensionality reduction and data visualization: a re-
view”. Em: Intl. Journal of Automation and Computing 4.3 (2007), pgs. 294-303
(citado na pg. 34).

[Yosinski, CLUNE, BENGIO et al. 2014] Jason Yosinski, Jeff CLUNE, Yoshua BENGIO e
Hod Lirson. “How transferable are features in deep neural networks?” Em: Ad-
vances in neural information processing systems. 2014, pgs. 3320-3328 (citado na

pg. 49).

[YosinskI, CLUNE, NGUYEN et al. 2015] Jason Yosinski, Jeff CLUNE, Anh NGUYEN,
Thomas Fucus e Hod LipsoN. “Understanding neural networks through deep
visualization”. Em: arXiv preprint arXiv:1506.06579 (2015) (citado na pg. 4).

[Z. ZHANG e J. WANG 2007] Z. ZHANG e J. WANG. “MLLE: modified locally linear em-
bedding using multiple weights”. Em: Advances in Neural Information Processing
Systems (NIPS). 2007, pgs. 1593-1600 (citado na pg. 84).

[Z. ZHANG e ZHA 2004] Z.ZHANG e H. ZHA. “Principal manifolds and nonlinear dimen-
sionality reduction via tangent space alignment”. Em: SIAM Journal on Scientific
Computing 26.1 (2004), pgs. 313-338 (citado na pg. 84).

[ZHU e GOLDBERG 2009] X. ZHU e A. GOLDBERG. Introduction to Semi-Supervised Lear-
ning. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan
Claypool, 2009 (citado na pg. 116).

[Z1HNT1 ef al. 2020] Esra Z1HNI et al. “Opening the black box of artificial intelligence for
clinical decision support: a study predicting stroke outcome”. Em: PloS ONE 15.4
(2020) (citado na pg. 28).

153

154

REFERENCIAS

[Zou et al. 2006] H. Zou, T. HAsTIE e R. TIBSHIRANI. “Sparse principal component
analysis”. Em: Journal of Computational and Graphical Statistics 15.2 (2006),
pgs. 265-286 (citado na pg. 84).

[ZwAN et al. 2016] Matthew van der ZwaN, Valeriu CODREANU e Alexandru TELEA.
“CUBu: universal real-time bundling for large graphs”. Em: IEEE TVCG 22.12
(2016), pgs. 2550-2563 (citado nas pgs. 64, 65).

	Introduction
	Classifier design in machine learning
	Decision Zones and Decision Boundaries
	Visualizing Decision Boundaries
	Research Questions
	Thesis Structure

	Related Work
	Machine Learning
	Logistic Regression
	Support Vector Machines
	k-Nearest Neighbors
	Random Forests
	Neural Networks

	Visual Analytics for Machine Learning
	High-Dimensional Data Visualization
	Dimensionality Reduction
	Inverse Projection Techniques
	Visual analytics techniques for classifier engineering
	Conclusions

	Deep feature extraction evaluation
	Introduction
	Problem Context
	Deep Feature Extraction
	Experiment Setup
	Datasets and Networks
	CNN models
	Feature extraction

	Classifier Evaluation
	Discussion and conclusion

	Constructing Decision Boundary Maps
	Dense maps
	Decision Boundary Map Construction
	Parameter setting
	Implementation details

	Experimental results
	Segmentation dataset
	MNIST dataset

	Discussion
	Conclusion

	Evaluating Decision Boundary Maps
	Preliminaries
	Experiment Setup
	Analysis of Evaluation Results
	Phase 1: Picking the Best Projections
	Phase 2: Refined Insights on Complex Data

	Discussion

	Inverse Projections for Decision Boundary Maps
	Inverse Projection by Neural Networks
	Experiments and Results
	Scalability in training and inference
	Quantitative Assessment of Quality
	Qualitative Assessment of Quality

	Discussion and Conclusion

	Visual Refinements of Decision Boundary Maps
	Projection Filtering
	Distance-enriched Dense Maps
	Image-based Distance Estimation
	Nearest-neighbor Based Distance Estimation
	Adversarial Based Distance Estimation
	Visualizing Boundary Proximities

	Discussion

	End to End Evaluation
	Semi Supervised Learning
	Visual analytics for semi supervised learning
	Manual labeling experiments
	Classifiers description
	Datasets description
	Experimental set-up

	Manual labeling results
	Comparison with automatic labeling

	Discussion

	Conclusion
	Deep Feature Extraction Evaluation
	Decision boundary maps
	Impact of direct projections on DBMs
	Impact of inverse projection on DBM formation
	Visual refinements of DBMs
	End to end application
	Future work

	Referências

