
CharM — A Model for Characterizing the
Architecture of Service-based Systems

Thatiane de Oliveira Rosa

Thesis presented to the
Institute of Mathematics and Statistics

of the University of São Paulo
in partial fulfillment
of the reqirements

for the degree of
Doctor of Science

Program: Computer Science
Advisor: Prof. Ph.D. Alfredo Goldman

Coadvisor: Prof. Ph.D. Eduardo Martins Guerra

São Paulo - SP
July 28, 2023





CharM — A Model for Characterizing the
Architecture of Service-based Systems

Thatiane de Oliveira Rosa

This version of the thesis includes the
corrections and modi�cations suggested
by the Examining Committee during the

defense of the original version of the
work, which took place on July 28, 2023.

A copy of the original version is available
at the Institute of Mathematics and

Statistics of the University of São Paulo.

Examining Committee:
• Prof. Ph.D. Eduado Martins Guerra (Co-Advisor) - UNIBZ
• Prof. Ph.D. Elisa Yumi Nakagawa - ICMC-USP
• Prof. Ph.D. Kelly Rosa Braghetto - IME-USP
• Prof. Ph.D. Thais Vasconcelos Batista - UFRN
• Prof. Ph.D. Thelma Elita Colanzi - UEM



I authorize the reproduction and disclosure of this work, total or partial,
by any conventional or electronic means, for study and research purposes,
provided the mention of the source.



i

Acknowledgments

First, I thank God for always being present in my life, guiding me along good paths,
giving me great opportunities like this one, and giving me the strength to conquer my
dreams.

To my parents, Estevam and Maria Neuza, my brothers Thaíse and Stefan, my nephew
Tarso, and my niece Laura, for all their love, care, friendship, support, encouragement,
trust, and understanding. Thank you for always being there, encouraging me, welcoming
me, understanding my absence at di�erent times, allowing me to share my anxieties, and
celebrating every achievement I reached.

I would like to thank my husband and great friend, Bruno Vilar, for all his love, a�ection,
friendship, encouragement, patience, concern, understanding, and willingness to help
emotionally and professionally. Thank you for listening, understanding, and calming me
down.

I am grateful to my friends. To my great and dear childhood friend Francine for always
rooting for me, listening to me, advising, encouraging, and cheering me up. I also thank
the dear friends I made during this doctoral journey: Graziela Tonin, João Daniel, Luis
Araujo, Mairieli Wessel, Renato Cordeiro, and Samuel Plaça. I am very grateful to you for
all the conversations and advice, and for all the moments I had the opportunity and the
privilege of working, learning, and exchanging experiences with you. Mainly, I am very
grateful to have shared intense, challenging, sad, and happy moments with Luis and Mairi.
I feel that I have gained another brother and sister.

I also thank my English teacher, Raphaela Mathias, for all the teachings and all the
patience she had in revising my texts countless times. I also thank my psychologist, Priscila
Simião, for helping me through the arduous process of self-knowledge, which was essential
to overcoming many of the enormous challenges I faced during my Ph.D. Thank you both
for encouraging me and cheering me on.

I would like to thank Professor Alfredo Goldman for believing in my potential and



ii

accepting to be my advisor, allowing me to do my Ph.D. at one of the best universities
in the world. I am very grateful for challenging myself (in the most di�erent ways), for
encouraging me, for opening so many doors to so many incredible opportunities, for
worrying about me, for trying to understand me, for listening to me, and for allowing me
to exchange learning (scienti�c and life) like you.

I would also like to thank my co-advisor, Professor Eduardo Guerra, for his excellent
guidance, as well as for his professional advice and all his attention and care. I would also
like to thank Professor Filipe Correia for his guidance during the survey. Thank you very
much for all your patience, respect, and attention. I consider myself very privileged to
have had the opportunity to work and learn so much from you both.

I would also like to thank Professors Carolyn Seaman, Fabio Kon, João Eduardo Ferreira,
Mauricio Aniche, Sinai Robins, and Xiaofeng Wang, with whom I had the opportunity to
learn so much in subjects I studied during my Ph.D.

Thank you very much to the teachers who agreed to contribute to this research
as members of the evaluation committee for this Thesis. Thank you for sharing your
knowledge and experience at this important time in my life. Thank you very much,
teachers Elisa Nakagawa, Kelly Braghetto, Thais Batista, and Thelma Colanzi. I really
admire the work of each of you.

I would also like to thank the Federal Institute of Tocantins – IFTO for granting me
the license so that, for four years, I could dedicate myself exclusively to my Ph.D.

Finally, I would like to thank all my family, friends, Ph.D. and work colleagues, and
students who have always cheered for my success.



Resumo

Thatiane de Oliveira Rosa. CharM - Um Modelo para Caracterizar a Arquitetura de
Sistemas Baseados em Serviços. Tese (Doutorado). Instituto de Matemática e Estatística,
Universidade de São Paulo, São Paulo, 2023.

A arquitetura baseada em serviços surgiu para auxiliar pro�ssionais a superar desa�os tais
como di�culdade para escalar o software, baixa produtividade e forte dependência entre ele-
mentos de um sistema. Microsserviços é um estilo arquitetural baseado em serviço que oferece
vantagens como escalabilidade, agilidade, resiliência e reutilização. Esse estilo arquitetural
tem sido bem aceito e utilizado na indústria, assim como tem sido alvo de diversos estudos
acadêmicos. No entanto, ao analisar o estado da arte e da prática, percebe-se que existe um
limite nebuloso ao tentar classi�car e caracterizar a arquitetura de sistemas baseados em
serviços. Além disso, é possível perceber que é difícil analisar as perdas e os ganhos para
tomar decisões quanto ao projeto e evolução desse tipo de sistema. Alguns exemplos concretos
dessas decisões estão relacionados ao tamanho dos serviços, como eles se comunicam e como
os dados devem ser divididos/compartilhados. Com base nesse contexto, desenvolvemos o
CharM, um modelo de caracterização da arquitetura de sistemas baseados em serviços, que
adota diretrizes de microsserviços. Para atingir esse objetivo, seguimos as diretrizes da Design

Science Research em cinco iterações, compostas por revisões de literatura ad-hoc, discussões
com especialistas, dois estudos de caso e um questionário. A principal contribuição desta
tese é o CharM, que é um modelo de caracterização arquitetural de fácil compreensão, que
auxilia pro�ssionais com diferentes per�s a compreenderem, documentarem e manterem a
arquitetura de sistemas baseados em serviços.

Palavras-chave: Arquitetura de Software. Sistema Baseado em Serviço. Microsserviço.
Modelo de Caracterização





Abstract

Thatiane de Oliveira Rosa. CharM — A Model for Characterizing the Architecture of
Service-based Systems. Thesis (Doctorate). Institute of Mathematics and Statistics, Univer-
sity of São Paulo, São Paulo, 2023.

Service-based architecture emerged to overcome software development challenges, such as
di�culty to scale, low productivity, and strong dependence between elements. Microservice is
a service-based architectural style that o�ers advantages, such as scalability, agility, resilience,
and reuse. This architectural style has been well accepted and used in industry and has
been the target of several academic studies. However, analyzing the state of the art and
practice, we can notice a fuzzy limit when trying to classify and characterize the architecture
of service-based systems. Furthermore, it is possible to realize that it is di�cult to analyze
the trade-o�s to make decisions regarding the design and evolution of this kind of system.
Some concrete examples of these decisions are related to how big the services should be, how
they communicate, and how the data should be divided/shared. Based on this context, we
developed the CharM, a model for characterizing the architecture of service-based systems
that adopts microservices guidelines. To achieve this goal, we followed the guidelines of the
Design Science Research in �ve iterations, composed of ad-hoc literature reviews, discussions
with experts, two case studies, and a survey. The main contribution of this thesis is the
CharM, which is an easily understandable architectural characterization model that helps
professionals with di�erent pro�les to understand, document, and maintain the architecture
of service-based systems.

Keywords: Software Architecture. Service-based System. Microservice. Characterization
Model





vii

List of Figures

1.1 Overview of the research design . . . . . . . . . . . . . . . . . . . . . . . 4

3.1 Design process of the CharM . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 CharM’s dimensions, metrics, and microservices guidelines. . . . . . . . 24
3.3 Ruler of size dimension. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Ruler of data source coupling dimension. . . . . . . . . . . . . . . . . . . 25
3.5 Ruler of synchronous coupling dimension. . . . . . . . . . . . . . . . . . 26
3.6 Ruler of asynchronous coupling dimension. . . . . . . . . . . . . . . . . . 27
3.7 Overview of the Pingr architecture (notation inspired by Merson and

Jospeh Yoder (2019)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.8 User Service characterization. . . . . . . . . . . . . . . . . . . . . . . . . 29
3.9 Ping Service characterization. . . . . . . . . . . . . . . . . . . . . . . . . 30
3.10 Chat Service characterization. . . . . . . . . . . . . . . . . . . . . . . . . 31
3.11 Feed Service characterization. . . . . . . . . . . . . . . . . . . . . . . . . 32
3.12 Pingr characterization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Key steps of the multiple case study . . . . . . . . . . . . . . . . . . . . . 36
4.2 InterSCity case study steps. . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Resource Discovery characterization. . . . . . . . . . . . . . . . . . . . . 39
4.4 Actuator Controller characterization. . . . . . . . . . . . . . . . . . . . . 40
4.5 Data Collector characterization. . . . . . . . . . . . . . . . . . . . . . . . 41
4.6 Resource Adaptor characterization. . . . . . . . . . . . . . . . . . . . . . 42
4.7 Resource Catalog characterization. . . . . . . . . . . . . . . . . . . . . . . 43
4.8 InterSCity characterization. . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.9 Overview of the InterSCity architecture (notation inspired by Merson and

Jospeh Yoder (2019)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.10 Evaluation of the CharM’s usefulness, ease of understanding, and coher-

ence – InterSCity case study. . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.11 Uses of the CharM – InterSCity case study. . . . . . . . . . . . . . . . . . 48



viii

4.12 Hierarchical organization of the uses of the CharM – InterSCity case study. 49
4.13 Improvement suggestions to the CharM – InterSCity case study. . . . . . 51
4.14 Industry case study steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.15 Overview of Company A’s systems architecture. . . . . . . . . . . . . . . 58
4.16 Service A characterization. . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.17 Service B characterization. . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.18 Service C characterization. . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.19 Service D characterization. . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.20 Service E characterization. . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.21 Service F characterization. . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.22 Service G characterization. . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.23 Service H characterization. . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.24 Search System characterization. . . . . . . . . . . . . . . . . . . . . . . . 68
4.25 Overview of the Search System architecture (notation inspired by Merson

and Jospeh Yoder (2019)). . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.26 Evaluation of the CharM’s usefulness, ease of understanding the dimen-

sions, ease of understanding the results, and coherence – Industry case
study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.27 Uses of the CharM – Industry case study. . . . . . . . . . . . . . . . . . . 72
4.28 Hierarchical organization of the uses of the CharM – Industry case study. 73
4.29 CharM’s main categories of uses. . . . . . . . . . . . . . . . . . . . . . . 74
4.30 Improvement suggestions to the CharM – Industry case study. . . . . . . 75

5.1 Overview of the research design of the survey. . . . . . . . . . . . . . . . 80
5.2 Relationship between participants’ resident country and CharM’s evaluation. 81
5.3 Research variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4 Summary of participants general pro�le, according to gender, location, and

education level. From top to bottom, we present the (a) gender identify,
(b) participant location, and (c) highest completed education level. All
percentages were rounded based on simple rules of rounding numbers. . 85

5.5 Summary of participants professional actuation pro�le. (a) work �eld in
the past 2 years, (b) professional role in the past 2 years, (c) work sector in
the past 2 years, and (d) technological layer in the past 2 years. The sum
of percentages exceeds 100% as participants could select multiple answers.
All percentages were rounded based on simple rules of rounding numbers. 86



ix

5.6 Summary of participants self-declared experience with service-based archi-
tecture. (a) range of time of experience with service-based architecture, (b)
experience with di�erent service-based architectural styles - it was possible
to select multiple layers, and (c) experience level with Microservice-Based
Architectural Style. All percentages were rounded based on simple rules
of rounding numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.7 Participants’ perspective to which extent the CharM supports understand-
ing a service-based architecture. All percentages were rounded based on
simple rules of rounding numbers. . . . . . . . . . . . . . . . . . . . . . . 87

5.8 Participants’ perspective to which extent the CharM supports the mainte-
nance of a service-based architecture. All percentages were rounded based
on simple rules of rounding numbers. . . . . . . . . . . . . . . . . . . . . 88

5.9 Participants’ perspective to which extent the CharM supports the commu-
nication of a service-based architecture to stakeholders. All percentages
were rounded based on simple rules of rounding numbers. . . . . . . . . 89

5.10 Participants’ perspective on how easy it is to understand the CharM. All
percentages were rounded based on simple rules of rounding numbers. . 90

5.11 The CharM’s evaluation according to participants’ self-declared years of
experience with service-based architecture. All percentages were rounded
based on simple rules of rounding numbers. . . . . . . . . . . . . . . . . 91

5.12 The CharM’s evaluation according to participants’ self-declared level of
experience with microservices. All percentages were rounded based on
simple rules of rounding numbers. . . . . . . . . . . . . . . . . . . . . . . 92

6.1 Comparison of related research. . . . . . . . . . . . . . . . . . . . . . . . 100

B.1 Pattern diagram of the selected patterns (inspired by Richardson (2020)) 115
B.2 Trade-o�s diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

D.1 This diagram is a simpli�ed and anonymized replica of the diagram avail-
able in the company repository. . . . . . . . . . . . . . . . . . . . . . . . 131

E.1 Number of operations of each InterSCity service. . . . . . . . . . . . . . . 140
E.2 Relationship between services and data sources of the InterSCity. . . . . 141
E.3 Degree of the synchronous importance and synchronous dependence of

each service of the InterSCity. . . . . . . . . . . . . . . . . . . . . . . . . 142
E.4 Relationship between services requesting operations and services receiving

requests in the InterSCity Platform. . . . . . . . . . . . . . . . . . . . . . 142
E.5 Synchronous importance degree of each InterSCity service. . . . . . . . . 143



x

E.6 Synchronous dependence degree of each InterSCity service. . . . . . . . 143
E.7 Degree of the asynchronous importance and asynchronous dependence of

each service of the InterSCity. . . . . . . . . . . . . . . . . . . . . . . . . 144
E.8 Relationship between services that publish on a message queue and services

that are subscribed to receive messages from a queue in the InterSCity
Platform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

E.9 Asynchronous importance degree of each InterSCity service. . . . . . . . 145
E.10 Asynchronous dependence degree of each InterSCity service. . . . . . . . 145
E.11 Main structural elements of the InterSCity architecture. . . . . . . . . . . 146
E.12 Interactions between the InterSCity services (inspired by Richardson, 2018). 147

F.1 Number of operations of each Search System service. . . . . . . . . . . . 150
F.2 Relationship between services and data sources of the Search System. . . 151
F.3 Degree of the synchronous importance and synchronous dependence of

each service of the Search System. . . . . . . . . . . . . . . . . . . . . . . 152
F.4 Relationship between services requesting operations and services receiving

requests in the Search System. . . . . . . . . . . . . . . . . . . . . . . . . 153
F.5 Synchronous importance degree of each Search System service. . . . . . 154
F.6 Synchronous dependence degree of each Search System service. . . . . . 154
F.7 Degree of the asynchronous importance and asynchronous dependence of

each service of the Search System. . . . . . . . . . . . . . . . . . . . . . . 155
F.8 Relationship between services that publish on a message queue and services

that are subscribed to receive messages from a queue in the Search System. 156
F.9 Asynchronous importance degree of each Search System service. . . . . 157
F.10 Asynchronous dependence degree of each Search System service. . . . . 157
F.11 Interactions between the services and the message queue. . . . . . . . . . 158
F.12 Interactions between the services of the Company A’s Search System

(inspired by Richardson, 2018). . . . . . . . . . . . . . . . . . . . . . . . 159

List of Tables

2.1 Software architecture de�nitions . . . . . . . . . . . . . . . . . . . . . . . 8



xi

4.1 Participants pro�le – InterSCity case study. . . . . . . . . . . . . . . . . . 46
4.2 Participants pro�le – Industry case study. . . . . . . . . . . . . . . . . . . 70

A.1 Candidate metrics - Second version of the CharM . . . . . . . . . . . . . 110





xiii

Contents

1 Introduction 1
1.1 Research Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Research Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Originality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Relevance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.6 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 7
2.1 Software Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Monolithic Architectural Style . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Service-Based Architectural Styles . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Microservices Architectural Style . . . . . . . . . . . . . . . . . . 12
2.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 The CharM – Characterization Model 19
3.1 Design Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 De�nition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Fictional Scenario to Demonstrate the CharM Application . . . . . . . . 27
3.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Multiple Case Studies 35
4.1 InterSCity Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1.1 Research Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.2 Characterization of the Architecture of the InterSCity Platform . 38
4.1.3 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.1.4 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Industry Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



xiv

4.2.1 Research Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.2 Overview of the Company A’s Systems . . . . . . . . . . . . . . . 57
4.2.3 Characterization of the Architecture of the Search System . . . . 57
4.2.4 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2.5 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3 Multiple Case Study Discussion . . . . . . . . . . . . . . . . . . . . . . . 77
4.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Survey 79
5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3 Research Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.4 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.5 Execution and Replication . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.6 Limitations and Threats to Validity . . . . . . . . . . . . . . . . . . . . . 84
5.7 Evaluation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.7.1 Participants Pro�le . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.7.2 The Uses of the CharM . . . . . . . . . . . . . . . . . . . . . . . . 87
5.7.3 The Ease of Understanding of the CharM . . . . . . . . . . . . . 90
5.7.4 The Use and Ease of Understanding of the CharM According to

Professional Experience . . . . . . . . . . . . . . . . . . . . . . . 90
5.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.9 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6 Related Research 97
6.1 Architectural Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.2 Architectural Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3 Architectural Migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.4 Comparison of Related Research . . . . . . . . . . . . . . . . . . . . . . . 100
6.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7 Conclusion 103
7.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.2 Scienti�c Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.2.1 Published or Submitted Papers . . . . . . . . . . . . . . . . . . . 105
7.2.2 Papers in Progress . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107



xv

Appendices

A Ad-hoc Review of Metrics 109

B Method for Architectural Trade-o� Analysis 113
B.1 Demonstration – Architectural Trade-o� Analysis with Microservices

Structural Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
B.2 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

C Roadmap for the Manual Collection of a Service’s Metrics 123

D Supplementary Material for the Case Studies 125
D.1 InterSCity Case Study - Interview Script - CharM Evaluation . . . . . . . 125
D.2 Interview Code Book of the InterSCity Case Study . . . . . . . . . . . . . 127
D.3 Industry Case Study - Interview Script - System Architecture Overview . 129
D.4 Industry Case Study - Interview Script - Sub-system Architecture Overview 130
D.5 Industry Case Study - Interview Script - Metric Collection . . . . . . . . 132
D.6 Industry Case Study - Interview Script - CharM’s Evaluation . . . . . . . 133
D.7 Interview Code Book of the Company A Case Study . . . . . . . . . . . . 136

E Complementary Visualizations of the Characterization of the InterSCity
Architecture 139

F Complementary Visualizations of the Characterization of the Search Sys-
tem 149

References 161





1

Chapter 1

Introduction

Service-based architecture (SBA) emerged to overcome common challenges to mono-
lithic software, such as di�culty in maintaining and scaling the software, low productivity,
and strong dependence between elements (Richards, 2015; Bogner, Wagner, et al., 2017a).
Among service-based architecture advantages are greater development agility, scalability,
resilience, reuse, and support for technological heterogeneity (Mahmood, 2007; Newman,
2021; innoQ, 2015; Richardson, 2018). SOA (Service-Oriented Architecture) (Natis and
Schulte, 2003), Self-Contained Systems (innoQ, 2015), and, more recently, microser-
vice (Lewis and M. Fowler, 2014) are examples of service-based architectural styles. These
architectural styles are based on the principles of decomposing complex systems into
services, loosely coupled, and communicating by messages. In this work, we use “service-
based architecture” to denominate architectural styles that follow these principles.

Despite the bene�ts presented, architecting and developing service-based systems
(SBS) is complex. Among the main challenges faced today are the complexity of the
development process, di�culty in de�ning the size and level of coupling of the services,
maintaining data consistency, and the necessity to have a robust and automated infrastruc-
ture (Mahmood, 2007; Richards, 2015; innoQ, 2015; Newman, 2021; Soldani et al., 2018;
Ford, 2018). Furthermore, experience reports from companies, such as Amazon (Kolny,
2023), Istio (Mendonça et al., 2021), Segment (InfoQ, 2020), and Uber (Highscalability,
2020) reveal the confusion and highlight the di�culty in designing, understanding, and
characterizing the architecture of a given service-based system.

The Prime Video team migrated the architecture of the audio/video quality inspection
tool from microservices to a monolith. In the published report, the company explained
that the scaling bottlenecks and high cost to scale were some reasons for this architectural
migration. However, the company also clari�ed that they never intended nor designed such
a tool to run at a large scale. The strategy adopted by the Prime Video team to deal with the
identi�ed problems was to unite the three main components of the tool in a single process.
With that, the orchestration logic was simpli�ed, and data transfer now occurs inside the
process memory. This architectural change resulted in a 90% reduction in infrastructure
cost and a scalability increase (Kolny, 2023). The Istio development team thought that
microservices would be the right architectural solution for their system. However, since all
the components were installed and operated by a single team or individual, they realized



2

1 | INTRODUCTION

that it was not worth paying the price for the greater operational complexity inherent to
microservices. Faced with this scenario, the team analyzed the related trade-o�, rethought
the system, and migrated to a monolithic architecture (Mendonça et al., 2021).

In the case of Segment, to solve fault isolation and operational overhead problems,
the team decided to migrate its monolith to microservices. After three years of migration,
the team concluded that microservices were not the most suitable solution for the Seg-
ment. Upon realizing this, the team again adopted a monolithic style more consciously,
understanding the real problem to be solved and the advantages and disadvantages of
this new migration (InfoQ, 2020). On Uber, one of its teams, which currently adopts the
microservices architectural style, reported moving many of its microservices to what they
called “macroservices”, which would be “well-sized services”. One of the justi�cations for
this change is the high complexity of managing thousands of microservices (Highscala-
bility, 2020). It is important to note that all these reports are somehow associated with
microservices since this is considered the latest trend in software development (Zhou
et al., 2023).

In addition to these issues, when analyzing the discussions presented by Nadareishvili
et al. (2016) and Newman (2021), as well as the variety of terms that emerged recently re-
lated to service-based architectures (such as macroservice), it is possible to notice that there
is a fuzzy limit when trying to classify and characterize the architecture of service-based
systems. Therefore, this scenario demonstrates the value of a solution that characterizes a
service-based system’s architecture, since it can help to make grounded design decisions,
�nd acceptable architectural solutions, and know the related trade-o� to better meet the
desired quality attributes for a system.

1.1 Research Objective

Faced with the presented context, the main goal of this thesis is to develop amodel for
characterizing the architecture of service-based systems, adopting microservices
guidelines.

It is important to clarify that in this research, a characterization model is de�ned as a
way of describing and explaining something, listing some main qualities of the analyzed
thing. Therefore, it is useful for identifying problems and solutions in the context where it
is applied. The model we developed is named CharM and is organized into four dimensions,
allowing professionals to characterize a service-based system’s architecture based on static
metrics related to the structural attributes of size and coupling.

Thus, a model such as the CharM could be used to understand the architecture of
a service-based system and aid in the process of architectural communication, docu-
mentation, and maintenance. Furthermore, consequently, our model could support pro-
fessionals in identifying architectural trade-o�s and in grounded making architectural
decisions.



1.2 | RESEARCH DESIGN

3

1.2 Research Design

To achieve the research goal, we applied and evaluated the CharM through multiple
case studies and a survey. We aim to validate possible uses of the CharM and evaluate
the ease of understanding its structure and the architectural characterization generated
from its metrics. From the two case studies, we intend to answer the following research
questions:

• RQ1: “What uses of the CharM are perceived by participants?”

• RQ2: “What is the participants’ perception of the architectural characterization
generated from the CharM?”

• RQ3: “What aspects of the CharM can be improved?”

After analyzing the preliminary results of the case studies, we investigated the following
research questions during a survey application:

• RQ4: “To which extent does the CharM support understanding a service-based
architecture?”

• RQ5: “To which extent does the CharM support a service-based architecture mainte-
nance?”

• RQ6: “To which extent does the CharM support communicating a service-based
architecture to stakeholders?”

• RQ7: “How easy is it to understand the CharM?”

• RQ8: “Does the participants’ experience in�uences the perceived usefulness and
ease of understanding of the CharM?”

We conducted an empirical study combining di�erent research methods to attain the
proposed objective and address the presented research questions. Thus, the process of
developing and evaluating our characterization model was based on the Design Science
Research paradigm’s guidelines (Hevner et al., 2004). The methods used during this
process include exploratory and descriptive research combined with bibliographical and
documentary research procedures. Besides that, we conducted two case studies and a
survey and adopted quantitative and qualitative methods to analyze the results. Figure 1.1
illustrates an overview of the steps that compose the research.

We started the studies with exploratory and descriptive research. At �rst, we carried
out an ad-hoc bibliographical review where we consulted primary and secondary scienti�c
studies, as well as analyzed industrial experience reports. Our goal was to map key concepts
and understand the importance of software architecture. Additionally, we investigated the
workings, advantages, and challenges of monolithic, SOA, and Self-Contained Systems. At
this stage, we also aimed to identify relevant microservices characteristics and guidelines.
Therefore, from this investigation and discussions with experts in software architecture,
we identi�ed interesting structural attributes and thus re�ned the research problem. From
this, we elaborated the �rst version of the CharM.

In the following step, we performed a new ad-hoc literature search, where we also



4

1 | INTRODUCTION

Exploratory and descriptive research

Trade-off analysis of
microservices patterns

Ad-hoc bibliographic
research

Software architecture and
architectural styles and

discussions with specialists

Ad-hoc bibliographic
research - 

Candidate metrics

Development of the model

Development and
optimization of the

characterization model

Evaluation of the model

Case study
in industrial environment

Case study
in academic environment

RQ1, RQ2, RQ3

Survey
with specialists

RQ4, RQ5, RQ6, RQ7,
RQ8

Legend

Research QuestionResearch step

Figure 1.1: Overview of the research design

consulted primary and secondary scienti�c studies, as well as the documentation of
architectural patterns for microservices. At this step, we aimed to identify and select
metrics relevant to the context of this research related to the structural attributes of size
and coupling. As a result, we obtained a list of viable candidate metrics to compose the
CharM. Based on these results, we re�ned our characterization model.

Next, we performed a systematic analysis to identify the in�uence exerted by microser-
vice patterns on structural attributes related to size, coupling, and data source sharing.
From this analysis, we mapped trade-o�s of the analyzed architectural patterns. In addition,
we re�ned the research problem and identi�ed points that could be improved in the CharM,
generating its second version.

Afterward, we begin the process of evaluating our characterization model. For this, we
carried out two case studies (Runeson et al., 2012) and a survey (Callegaro et al., 2015;
Baltes and Ralph, 2020). In the �rst case study, we used the CharM to characterize the
architecture of the InterSCity Platform for smart cities (Esposte, 2018), developed in an
academic environment. A group of 11 professionals evaluated the results generated from
the CharM. At the end of this case study, we discovered some possible uses of the CharM.
We also evaluated its ease of understanding and identi�ed points for improvement. From
this, we generate the third version of our model.

In the second case study, we used the CharM to characterize the architecture of the
search system of an online handcrafts marketplace. During this study, we interviewed 18



1.3 | ORIGINALITY

5

employees of the company, of which six evaluated the generated architectural characteri-
zation. In the end, we con�rmed and discovered uses for our model and evaluated its ease
of understanding. Furthermore, we got new suggestions for improvements. Based on these
results, we elaborated the CharM’s fourth version. In both case studies, we conducted a
set of semi-structured interviews (a total of 37) and qualitatively analyzed the transcripts
using open and axial coding procedures (Corbin and A. Strauss, 2015; Stol et al., 2016).
After the two case studies, we obtained answers to research questions 1, 2, and 3.

Based on the results obtained from the two case studies, we designed a survey to obtain
an evaluation of our model by a wider audience. Our survey was targeted at professionals
who work with the architecture of service-based systems. In all, we received 58 valid
responses from professionals in ten countries. From the answers obtained, we validated
some previously identi�ed uses for the CharM, as well as its ease of understanding. We
also analyzed whether the results (uses and ease of understanding) varied according to the
interviewee’s professional experience. Furthermore, we discovered new uses and collect
new suggestions for improvement. With that, we generated the �fth version of the CharM.
We analyzed quantitatively and qualitatively the data collected during this evaluation
stage. From the survey, we obtained answers to research questions 4, 5, 6, 7, and 8.

1.3 Originality

By analyzing the state of the art, we identi�ed solutions that aid in mitigating the
problem of characterizing the architecture of service-based systems. These solutions
have varied objectives and may support architectural analysis, recovery, understanding,
evaluation, or migration (Granchelli et al., 2017a; Zdun et al., 2017; Engel et al., 2018;
Mayer and Weinreich, 2018; Cardarelli et al., 2019; Alshuqayran, 2020; Auer et al.,
2021; Peng et al., 2022; Cerny, Amr S. Abdelfattah, et al., 2022).

However, none of the analyzed solutions focuses on architectural characterization, as
the CharM. Furthermore, another characteristic that distinguishes our model from most
of the other analyzed solutions is code and infrastructure independence. This feature
enables the adoption of the CharM to characterize both the architecture of a service-based
system being designed and systems already in the production environment. It is also
worth mentioning that the CharM explores di�erent and didactic ways for architectural
visualization of services and systems.

1.4 Relevance

Our work contributes to the state of the art and practice by proposing an empirically
validated theoretical and conceptual model to characterize the architecture of service-
based systems. Our model aids software architects in better understanding the structural
characteristics of a given system and, consequently, identifying structural aspects that
must be improved or maintained. Besides that, the CharM facilitates the mapping and
measurement of di�erent impacts generated in the software architecture. It can also
support architectural decisions that consider di�erent quality attributes to balance the
independence and collaboration of services for a given system.



6

1 | INTRODUCTION

1.5 Main Contributions

The main scienti�c and technical contributions presented during this research can be
outlined as follows:

• [Primary scienti�c contribution] Model to characterize service-based sys-
tems architecture: We developed the CharM, a theoretical, conceptual, �exible,
and extensible model. Currently, this model comprises dimensions and metrics re-
lated to the structural attributes of size and coupling. Based on the three evaluation
stages in which it was submitted (Chapters 4 and 5), the CharM proved to be easy
to understand, as well as useful for understanding and maintaining a service-based
architecture, and communication of a service-based architecture to stakeholders;

• [Primary technique contribution] Architecture documentation of service-
based systems: By considering all the generated artifacts, as well as the received
feedback during the evaluation stages, the CharM is an approach that documents
the architecture of service-based systems in a consistent and valuable way.

• [Secondary scienti�c contribution] Systematic method for trade-o� anal-
ysis of the adoption of architectural patterns: we developed a step-by-step
method that guides software architects in identifying architectural patterns that best
meet the needs of a given project. We described this method in Appendix B;

• [Secondary technique contribution] Trade-o� analysis of themicroservices
patterns that in�uences the structural attributes of size and coupling: We
believe that the results obtained during one of the exploratory research stages of
this thesis and described in one of our published papers (Oliveira Rosa, Daniel,
et al., 2020) help in decision-making in the context of service-based systems. Since it
demonstrates the impact of certain microservice patterns on the analyzed structural
attributes;

1.6 Thesis Structure

We organized the remainder of this thesis as follows. In Chapter 2, we explore funda-
mental concepts in the context of this research. Thus, we begin this chapter by de�ning
software architecture. Soon after, we explore monolithic and service-based architectural
styles. We highlighted microservices, presenting their characteristics, advantages, and
challenges. In Chapter 3, we present our model’s design process, de�ne what the CharM is,
describe each of its dimensions, and demonstrate an example of applying our model in a
�ctional scenario. In Chapter 4, we detail the two case studies we carried out to evaluate the
CharM and present and discuss the results achieved. In Chapter 5, we describe the design
and execution of the survey and also present and discuss the results achieved. In Chapter 6,
we present related research and compare the CharM to solutions that can also support
professionals in assessing a service-based system’s architecture. Finally, in Chapter 7, we
summarize this thesis, present some considerations of the research questions, and propose
future work.



7

Chapter 2

Background

In this chapter, we provide a literature review of the concepts that underlie this research.
First, we present some main software architecture de�nitions, emphasizing the importance
of this �eld for the development process. Next, we detail monolithic and service-based
architectural styles. We present de�nitions, characteristics, advantages, and challenges
for each of these architectural styles. Among the service-based styles, we explored the
microservices architectural style more deeply.

2.1 Software Architecture

According to Perry and Wolf (1992), the software architecture area emerged to
facilitate the understanding of system requirements, as well as to serve as a technical
basis for software design and support process management and cost estimation. This
area was also created to allow software reuse (or some parts of it) and to be a source for
dependency analysis and project consistency. M. Fowler (2002) claims that two aspects
are common to de�ne software architecture: parts that compose a system and decisions
that are di�cult to change. Table 2.1 presents some de�nitions of software architecture,
published by researchers who are the reference in this study area.

From Table 2.1, we de�ne software architecture as the hierarchical organization of an

information system’s elements (e.g., modules, components, and services), which illustrates the

structure and form of interaction of these elements. The architecture also speci�es fundamen-

tals, proprieties, rules, and constraints that guide the design and software evolution. Moreover,

the architecture is essential to relate the software’s characteristics to its implementation

(coding).

By describing and exposing important aspects of the software, a well-de�ned software
architecture helps with complexity management, avoiding problems during the devel-
opment process, and facilitating software understanding, reuse, development, analysis,
evolution, and maintenance (C. Hofmeister et al., 1999; Clements, Kazman, et al., 2002;
Garland and Anthony, 2003; Garlan, 2014; Cervantes and Kazman, 2016). An appro-
priate architecture may help to ensure that a system satis�es quality attributes, such as
performance, reliability, portability, scalability, and interoperability. On the other hand, an



8

2 | BACKGROUND

De�nition Reference
“. . . software architecture involves the description of ele-
ments from which systems are built, interactions among
those elements, patterns that guide their composition,
and constraints on these patterns”.

Shaw and Garlan,
1996

“. . . architecture is the hierarchical structure of program
components (modules), the manner in which these
components interact and the structure of data that are
used by the components”.

Pressman, 2001

“. . . our de�nition of architecture ...the structure or struc-
tures of the system, each of which comprise elements,
the externally-visible behavior of those elements, and the
relationships among them”.

Clements, Bach-
mann, et al., 2002,

“The Software Architecture is the set of software com-
ponents, subsystems, relationships, interactions, the
properties of each of these elements, and the set of guid-
ing principles that together constitute the fundamental
properties and constraints of a software system or set of
systems”.

Garland and An-
thony, 2003

“. . . structure illuminates the top-level design decisions,
including things, such as how the system is composed
of interacting parts, what are the principal pathways of
interaction, and what are the key properties of the parts
and the system as a whole . . . Software architecture typi-
cally plays a key role as a bridge between requirements
and implementation”.

Garlan, 2014

“The software architecture of a system is the set of
structures needed to reason about the system, which
comprises software elements, relations among them, and
properties of both”.

Cervantes and
Kazman, 2016

“software architecture consists of the structure of the
system . . . , combined with architecture characteristics (“-
ilities”) the system must support, architecture decisions,
and �nally design principles”.

Richards and Ford,
2020

“fundamental concepts or properties of a system in its
environment embodied in its elements, relationships, and
in the principles of its design and evolution”.

ISO/IEC/IEEE42010,
2022

Table 2.1: Software architecture de�nitions

improper architecture may be catastrophic for the project, generating complex software
that is di�cult to maintain and evolve (Clements, Bachmann, et al., 2002; Garlan, 2014;
Cervantes and Kazman, 2016).

Martin (2018) con�rms this idea by indicating that a proper and well-organized
architecture facilitates software comprehension, development, and deployment, which



2.2 | MONOLITHIC ARCHITECTURAL STYLE

9

contributes to minimizing cost over software “lifetime” and maximize the developer pro-
ductivity. Therefore, the main aim of an architecture is to o�er support for the whole
software development cycle. Clements, Bachmann, et al. (2002) complement claiming
that an architecture enables greater control of the software elements and complex aspects,
thus allowing to focus on essential elements and their interactions, not on irrelevant
details.

Therefore, have adequate architecture is a critical success factor in the software devel-
opment process (Shaw and Garlan, 1996). For this reason, the relevance of studies about
architecture applied to areas, such as cloud computing, internet of things, autonomous
systems, and developing ecosystems with end-user are growing, and the theoretical and
practical challenges area diverse (Garlan, 2014). However, it is common to start software
development without having a clear and well-de�ned architecture (Foote and Joseph
Yoder, 1997; Garlan, 2014; Richards, 2015). Such a practice results in disorganized
source-code and system modules with poorly de�ned responsibilities and relationships,
a scenario known as the anti-pattern “big ball of mud” (Foote and Joseph Yoder, 1997;
Richards, 2015).

In this context, in order to de�ne the most appropriate architecture to the business
objectives and expected features for the software, architectural styles and patterns are
adopted (Richards, 2015). According to Taylor et al. (2009), in short, an architectural
pattern is a “collection of architectural design decisions that are applicable to a recurring
design problem”. Sommerville (2011) explains that architectural patterns emerge from
successful software development experiences. Besides that, a pattern comprises a stylized
and generic description (organization, strengths, and weaknesses) and presents a set of
experienced and tested good practices in di�erent software projects and environments.
In contrast, Taylor et al. (2009) de�ne architectural style as a named collection of design
decisions applicable in a given development context. The authors further explain that, at
the same time, an architectural style constrains design decisions and generates bene�cial
qualities for the system within a context. Nitto and Rosenblum (1999) complement by
stating that architectural “styles are a mechanism for categorizing architectures and for
de�ning their common characteristics”.

There are several architectural styles. However, in this thesis, we are going to address
only the monolith (Section 2.2) and service-based (Section 2.3) styles which are aligned
with the characterization model we propose. Thus, the following section presents an
overview of monolithic architecture.

2.2 Monolithic Architectural Style

According to C. U. Press (2019), monolithic is an adjective that characterizes something
“very large, united, and di�cult to change”. Monolithic systems in software architecture are
applications with a single executable or implementable component (Richardson, 2018).
Newman (2019) considers software as a monolith when all its functionalities have to be
deployed together. Richards (2015) de�nes monolithic applications as a set of “tightly
coupled components that are part of a single deployable unit”, which is “di�cult to change,
test, and deploy”.



10

2 | BACKGROUND

Villamizar et al. (2015) and Kalske (2017) explain that a monolithic application
has a single code base, which serves several di�erent services and interfaces, such as
REST (Representational State Transfer), APIs (Application Programming Interface), and
HTML (HyperText Markup Language) pages. For Lewis and M. Fowler (2014), monolithic
applications are usually composed of three main parts (layers), which form a single unit.
The three parts are: (i) the user interface (front-end technologies), (ii) a database (usually
a relational database), and (iii) the back-end code (single logical executable), which will
run on the server side.

There are di�erent types of monoliths. According to Newman (2019), probably the
most common type is single-process – the classic. One of the variations of this type is
known as modular monolith. In modular monoliths, the single process is made up of
separate modules, which can be worked independently. However, each module has to be
combined, forming a single deployment unit (Newman, 2019).

According to Richardson and Smith (2016), adopting the monolithic architectural
style makes sense when the software is lightweight and simple. Some strengths of clas-
sic monolithic applications are that they are simple to develop, quick to test, deploy,
and scale, as well as easy to perform radical modi�cations (for example, changing the
database) (Kalske, 2017; Richardson, 2018). Among the advantages of classic monoliths,
listed by Newman (2019), are the simplicity of monitoring, troubleshooting, and code
reuse (within the monolith itself). M. Fowler (2015) explains that adopting a monolithic
architecture is a good strategy to start the development of a simplistic version of a system,
better to understand its context, divisions, and functions. Newman (2019) also states
that adopting modular monoliths can favor the independent work of teams that deal with
di�erent contexts and aspects of a system.

On the other hand, when the software turns into large and complex, the monolithic
architecture becomes inadequate (Acevedo et al., 2017; Richardson, 2018). The main chal-
lenges are related to the possibility of high coupling between the system elements, making
it di�cult to understand, develop, update, test, and deploy the software. Furthermore, it
favors the occurrence of cascading failures and, at the same time, makes it di�cult to
isolate such failures (Villamizar et al., 2015; Bonér, 2016; Richardson and Smith, 2016).
Other points that are also considered challenging in this architectural style are: complexity
of understanding the functioning and integration of all parts of the software (Bonér,
2016; Richardson, 2018); di�culty and high risk of failures in performing maintenance
and continuous deployment (Lewis and M. Fowler, 2014; Newman, 2021; Bonér, 2016;
Kalske, 2017; Richardson, 2018); high cost and ine�ciency in scaling software (Lewis
and M. Fowler, 2014; Newman, 2021; Bonér, 2016; Ren et al., 2018; Richardson, 2018);
limited possibilities of changing the adopted technologies (such as programming language,
database, and framework) (Lewis and M. Fowler, 2014; Newman, 2021; Richardson,
2018); it takes a long time to load all the application code in the IDE (Integrated Develop-
ment Environment), reducing the developers’ productivity (Richardson, 2018); execution
of automated tests in the whole system may be a time-consuming task (Lewis and M.
Fowler, 2014; Kalske, 2017); and high complexity in aligning tasks between di�erent
teams working on the same project (Kalske, 2017; Richardson, 2018).

After presenting de�nitions, as well as some advantages and challenges related to



2.3 | SERVICE-BASED ARCHITECTURAL STYLES

11

the monolithic architectural style, in the next section, we are going to explore some
service-based architectural styles.

2.3 Service-Based Architectural Styles

Inspired by modular software development (Parnas et al., 1985), the service-based
architecture emerged to overcome challenges common to the monolithic style, such as
di�culty in maintaining and scaling the software, low productivity, and strong dependence
between elements (Richards, 2015; Bogner, Wagner, et al., 2017a).

The service-based architecture composes the service-oriented computing (SOC)
paradigm, which emerged as a way to develop maintainable and interoperable soft-
ware (Bogner, Wagner, et al., 2017a). In SOC, services are the “fundamental elements
for developing of applications/solutions” (Papazoglou, 2003). According to Papazoglou
(2003), in this paradigm, services perform from simple functions to complex business
processes. Bogner, Wagner, et al. (2017a) explain that services should be “self-contained,
composable, technology-neutral, loosely coupled, and allow for location transparency”.
Richards (2016) indicates that some common characteristics in service-based architectures
are modularity and distribution.

Service-Oriented Architecture (SOA), Self-Contained Systems (SCS), and more recently,
microservice (MS) are examples of service-based architectural styles. According to Natis
and Schulte (2003) and Bianco et al. (2007), SOA is a client/server design approach where
an application is composed of users (clients) and providers (servers) of software services
that emphasize the adoption of �exible coupling between components and independent
interfaces. Krafzig et al. (2005) explain that SOA designs systems as a network of related
services, where each service provides a speci�ed functionality in a well-de�ned interface.
Newman (2015) complements by stating that services collaborate to provide a �nal set of
resources (solution).

Self-Contained Systems aims to separate the functionalities of a complex system into
several autonomous systems, which have their “own user interface, speci�c business
logic, and separate data source”. Such autonomous systems communicate/collaborate
through RESTful HTTP (Hypertext Transfer Protocol) or lightweight mechanisms, mostly
asynchronously (innoQ, 2015).

According to Lewis and M. Fowler (2014), microservice is a way to design and de-
velop software as suites of independently deployable small services. The authors also
explain that each service is built around business capabilities, runs in its own process, and
uses lightweight communication mechanisms. Lewis and M. Fowler (2014) base their
microservice de�nition on nine characteristics that they observe as common in this type
of architecture.

These three architectural styles follow principle, such as decomposing complex sys-
tems into services (basic system unit), loosely coupled, and communicating by messages.
They also share the same principle: dividing complex systems into components which
communicate in some way.

There is a series of studies that, in some way, discuss and compare the characteristics



12

2 | BACKGROUND

of these di�erent service-based styles, such as the work by Salah et al. (2016), Wolff
(2016a), Wolff (2016b), Cerny, Donahoo, and Pechanec (2017), Rademacher et al.
(2017), Shadija et al. (2017), Cerny, Donahoo, and Trnka (2018), Baresi and Garriga
(2020), and Raj and Sadam (2021). Since the microservice is considered one of the most
popular service-based architectural styles, we explore it further, presenting its de�nition,
characteristics, advantages, and challenges in Section 2.3.1.

2.3.1 Microservices Architectural Style
According to Richardson and Smith (2016), the microservices style favors developing

software with more agility, scalability, and maintainability. There is still no exact, com-
plete, and consensual de�nition for the microservices architectural style. Newman (2021)
claims that microservices are modeled around a business domain and “are an approach to
distributed systems that promote the use of �nely grained services that can be changed,
deployed, and released independently”. The author also highlights that two of the main
qualities of microservices are loose coupling and high cohesion (Newman, 2015). Bonér
(2016) advocates that in a microservices-based architecture each service must have its
own data, and be independent, scalable, and resilient to failure. In one of the explanations
presented by Dragoni et al. (2017), microservice is de�ned as “a distributed application
where all its modules are microservices”. Richardson (2018) explains that a microservices-
based application is structured “as a collection of loosely coupled, independently deployable
services”.

Some of the main characteristics of the Microservices Architectural Style are:

• Software modularization into independent services (development, testing, deploy-
ment, scaling) (Lewis and M. Fowler, 2014; Jaramillo et al., 2016; Nadareishvili
et al., 2016; Dragoni et al., 2017)

• Small and isolated services (Lewis and M. Fowler, 2014; Jaramillo et al., 2016;
Nadareishvili et al., 2016)

• Services organized around business domain (Lewis and M. Fowler, 2014; Jaramillo
et al., 2016; Nadareishvili et al., 2016; Dragoni et al., 2017; Newman, 2021)

• Services with high cohesion (Thönes, 2015; Jaramillo et al., 2016; Nadareishvili
et al., 2016; Dragoni et al., 2017; Newman, 2021)

• Loose coupling services (Jaramillo et al., 2016; Dragoni et al., 2017; Newman,
2021)

• Smart services and dumb pipes (Lewis and M. Fowler, 2014)

• Open, standardized, and lightweight communication mechanisms (Lewis and M.
Fowler, 2014; Nadareishvili et al., 2016)

• Decentralized governance and data management (Lewis and M. Fowler, 2014;
Nadareishvili et al., 2016)

• Technological heterogeneity (Jaramillo et al., 2016; Nadareishvili et al., 2016)

• “Focused on product, not project” (Lewis and M. Fowler, 2014)



2.3 | SERVICE-BASED ARCHITECTURAL STYLES

13

• Multi-functional teams (Lewis and M. Fowler, 2014)

• Automated infrastructure (Lewis and M. Fowler, 2014; Nadareishvili et al., 2016)

• Software designed to evolve (Lewis and M. Fowler, 2014; Dragoni et al., 2017)

• Resilient software (Lewis and M. Fowler, 2014; Dragoni et al., 2017)

In line with these characteristics, some of the advantages of developing microservices-
based systems are:

• Agility: allows organizations to meet market demands by quickly delivering new
software features, as well as identifying and making technical and business adjust-
ments with more agility (Richards, 2015; Villamizar et al., 2015; Alshuqayran,
Ali, et al., 2016; Balalaie, Heydarnoori, and Jamshidi, 2016; S. J. Fowler, 2016;
Guo et al., 2016; Killalea, 2016; Nadareishvili et al., 2016; Pahl and Jamshidi,
2016; Richardson and Smith, 2016; Singleton, 2016; Vural et al., 2017; Soldani
et al., 2018);

• Deployment autonomy: new features are created or replaced in a production en-
vironment faster and with a lower risk of failure (Le et al., 2015; Newman, 2015;
Richards, 2015; Villamizar et al., 2015; Hassan and Bahsoon, 2016; Jaramillo
et al., 2016; Nadareishvili et al., 2016; Richardson and Smith, 2016; Richardson,
2018; Soldani et al., 2018; Taibi et al., 2018);

• Ease of continuous deployment: from deployment autonomy, it is possible to rebuild
and redeploy an entire service without depending on and a�ecting other parts of the
software (Krylovskiy et al., 2015; Newman, 2015; Richards, 2015; Alshuqayran,
Ali, et al., 2016; S. J. Fowler, 2016; Killalea, 2016; Pahl and Jamshidi, 2016;
Richardson and Smith, 2016; Singleton, 2016; Dragoni et al., 2017; Vural et al.,
2017; Richardson, 2018; Taibi et al., 2018);

• Management autonomy: favors software e�ciency and reduces unavailability time
(Nadareishvili et al., 2016; Soldani et al., 2018);

• Small and focused: each service has its scope well delimited and aligned with the
business. Therefore, development teams become more organized and prepared to
meet demands quickly and are encouraged to develop more complex solutions
iteratively (Le et al., 2015; Newman, 2015; Nadareishvili et al., 2016; Richardson
and Smith, 2016; Singleton, 2016; Dragoni et al., 2017; Richardson, 2018; Soldani
et al., 2018);

• Replaceability: the ease of replacement and reuse of software services promotes
continuous integration, makes the development process more agile, as well as reduces
and improves the management of technical debt ratios, making the software more
reliable (Krylovskiy et al., 2015; Le et al., 2015; Newman, 2015; S. J. Fowler, 2016;
Hassan and Bahsoon, 2016; Nadareishvili et al., 2016; Singleton, 2016; Dragoni
et al., 2017; Soldani et al., 2018);

• Simplicity: developing services with loose coupling and high cohesion simplify
the implementation of new functionalities and favor increasing the product’s local



14

2 | BACKGROUND

quality (Le et al., 2015; Richards, 2015; Nadareishvili et al., 2016; Richardson
and Smith, 2016; Soldani et al., 2018; Taibi et al., 2018);

• Technological heterogeneity: it makes it possible to choose the most appropriate
technologies (tools, programming languages, database management system) for each
context. Furthermore, it makes it easier to change and adopt di�erent technologies
when necessary (Lewis and M. Fowler, 2014; Newman, 2015; Krylovskiy et al.,
2015; Villamizar et al., 2015; Le et al., 2015; Nadareishvili et al., 2016; Hassan
and Bahsoon, 2016; Balalaie, Heydarnoori, and Jamshidi, 2016; Richardson
and Smith, 2016; S. J. Fowler, 2016; Singleton, 2016; Killalea, 2016; Dragoni
et al., 2017; Taibi et al., 2018; Richardson, 2018; Soldani et al., 2018);

• Greater e�ciency: the infrastructure costs and the chances of software being un-
available due to service failures are low (Villamizar et al., 2015; Nadareishvili
et al., 2016);

• Failure resilience: if a service fails, it is possible to isolate it and keep the rest
of the software working. This provides high availability rates and contributes to
a good user experience (Krylovskiy et al., 2015; Newman, 2015; Villamizar et
al., 2015; Alshuqayran, Ali, et al., 2016; Jaramillo et al., 2016; Killalea, 2016;
Nadareishvili et al., 2016; Pahl and Jamshidi, 2016; Vural et al., 2017; Richardson,
2018; Soldani et al., 2018; Taibi et al., 2018);

• Scalability: the division into services makes it possible to allocate infrastructure
resources in a customized way (expansion or reduction) and consequently adequately
meet the access load in each service (Newman, 2015; Richards, 2015; Villamizar
et al., 2015; Alshuqayran, Ali, et al., 2016; S. J. Fowler, 2016; Nadareishvili et al.,
2016; Pahl and Jamshidi, 2016; Richardson and Smith, 2016; Singleton, 2016;
Dragoni et al., 2017; Vural et al., 2017; Richardson, 2018; Soldani et al., 2018);

• Testability: the local service testing process is simpli�ed, as each service can be
tested separately and independently, which reduces the risk of implementation
failures (Richards, 2015; S. J. Fowler, 2016; Killalea, 2016; Nadareishvili et al.,
2016; Singleton, 2016; Dragoni et al., 2017);

• Maintainability: elements, such as software division into services and deployment
autonomy facilitate the software maintenance process (Le et al., 2015; Richards,
2015; Villamizar et al., 2015; Alshuqayran, Ali, et al., 2016; Richardson and
Smith, 2016; Dragoni et al., 2017; Richardson, 2018; Soldani et al., 2018; Taibi
et al., 2018);

• Flexibility: based on interoperability, the team responsible for the development of
each service has the freedom to choose the technology that best suits the needs of
the service and the team’s technical knowledge (Killalea, 2016; Pahl and Jamshidi,
2016; Richardson, 2018; Taibi et al., 2018);

• Composability: having services with loose coupling and high cohesion makes parts of
the software reusable in di�erent ways and for di�erent purposes, which reduces re-
work and increases the agility of software development and maintenance (Newman,
2015; Singleton, 2016; Taibi et al., 2018);



2.3 | SERVICE-BASED ARCHITECTURAL STYLES

15

• Organizational alignment: it allows the team to better align the architecture with
the real needs of the business, which optimizes the infrastructure use, the entire de-
velopment process, management, and team e�ort (Krylovskiy et al., 2015; Newman,
2015);

• Reliability: based on testability and scalability, more stable and reliable software is
obtained (Alshuqayran, Ali, et al., 2016; Singleton, 2016; Soldani et al., 2018).

Despite the cited bene�ts, developing microservices-based software also has a set of
challenges. Thus, it is relevant to know them to be able to compare, treat, and make con-
scious decisions about the trade-o�s. Some challenges related to microservices are:

• De�ne service size and coupling: identifying the scope and delimiting the “size”
and the coupling level of a microservice are some of the biggest challenges of the
microservices style. This is because, according to the level of coupling and cohesion
of the services, aspects, such as scalability, performance, reuse, maintainability,
and testability are directly a�ected (Richards, 2015; S. J. Fowler, 2016; Hassan
and Bahsoon, 2016; Jaramillo et al., 2016; Singleton, 2016; Richardson, 2018;
Soldani et al., 2018)

• Data consistency: the fact that software databases are distributed across services
makes managing and maintaining data consistency a major challenge in microser-
vices’ architectures (Newman, 2015; Alshuqayran, Ali, et al., 2016; Bonér, 2016;
Richardson and Smith, 2016; Richardson, 2018; Soldani et al., 2018);

• Service discovery: it is necessary to de�ne consistent communication patterns for
consumer services to discover the location of other services and endpoints. Besides
that, it is relevant to adopt correct strategies to report the discovery and availability of
services (Richards, 2015; Alshuqayran, Ali, et al., 2016; Balalaie, Heydarnoori,
and Jamshidi, 2016; Bonér, 2016; S. J. Fowler, 2016; Richardson and Smith, 2016;
Singleton, 2016; Sun et al., 2016);

• Tracking and recording of services: it is essential to adopt techniques and mecha-
nisms for tracking, auditing, and recording services (such as logs), to understand
how microservices-based software works (Newman, 2015; Alshuqayran, Ali, et al.,
2016);

• Performance: the constant and intense data-sharing between services may cause
overloads and delays in the communication process. Consequently, the performance
of the software may be impaired (Lewis and M. Fowler, 2014; Richards, 2015;
Alshuqayran, Ali, et al., 2016; Singleton, 2016; Soldani et al., 2018);

• Performance monitoring: since performance is a weak point in microservices-based
software, therefore, it is relevant to use tools to measure and understand the per-
formance of each service and the software as a whole (Krylovskiy et al., 2015;
Savchenko et al., 2015; Alshuqayran, Ali, et al., 2016; Jaramillo et al., 2016;
Richardson and Smith, 2016; Singleton, 2016; Sun et al., 2016; Soldani et al.,
2018);

• Complex development process: the development of a single service is simple. How-
ever, the development process of distributed software, composed of several services,



16

2 | BACKGROUND

is a challenging and complex activity (Newman, 2015; Villamizar et al., 2015;
Jaramillo et al., 2016; Nadareishvili et al., 2016; Richardson and Smith, 2016;
Singleton, 2016; Soldani et al., 2018; Taibi et al., 2018);

• Complex deployment: it is recommended to choose adequate platforms and tools as
well as follow guidelines that facilitate infrastructure management and service scal-
ing to thus own the continuous deployment activity as an advantage of microservices-
based software (Newman, 2015; Balalaie, Heydarnoori, and Jamshidi, 2016;
Bonér, 2016; S. J. Fowler, 2016; Richardson and Smith, 2016; Richardson, 2018);

• Network dependency: since the services communicate via a network, the correct
functioning, software availability, and communication interval between services di-
rectly depend on the network’s stability and latency (Newman, 2015; Alshuqayran,
Ali, et al., 2016; Taibi et al., 2018);

• Need for automation: since many services and relationships must be managed and
monitored, thus, automating activities and processes is critical in microservices-
based software (Krylovskiy et al., 2015; Savchenko et al., 2015; Jaramillo et al.,
2016; Richardson and Smith, 2016; Taibi et al., 2018);

• Failure tolerance: the microservices style is cloud-native, where cascading failures
are common. Thus, it is essential to develop adequate mechanisms for tracking,
interrupting, and recovering from infrastructure failures (Lewis and M. Fowler,
2014; Newman, 2015; Alshuqayran, Ali, et al., 2016; Bonér, 2016; S. J. Fowler, 2016;
Jaramillo et al., 2016; Killalea, 2016; Richardson and Smith, 2016; Singleton,
2016; Sun et al., 2016; Soldani et al., 2018);

• Security: security is critical in microservices-based software due to the di�erent
ways and levels of data sharing between services. This fact requires the implemen-
tation of additional and more sophisticated security mechanisms (Richards, 2015;
Alshuqayran, Ali, et al., 2016; Bonér, 2016; Sun et al., 2016; Dragoni et al., 2017;
Soldani et al., 2018);

• Complex integration tests: having many services and relationships between
them increases the complexity of integration tests in microservices-based
systems (Jaramillo et al., 2016; Richardson and Smith, 2016; Dragoni et al., 2017;
Richardson, 2018; Soldani et al., 2018; Taibi et al., 2018);

• Experienced team: it is necessary to have an experienced team to deal with the
high degree of complexity of the infrastructure, development, and management in
microservices-based systems (Villamizar et al., 2015; Balalaie, Heydarnoori, and
Jamshidi, 2016; Jaramillo et al., 2016; Taibi et al., 2018);

• Organizational structure: for the successful adoption of the microservices style, it is
necessary that the structure and communication strategy of the company and its
development teams would be reorganized (S. J. Fowler, 2016).



2.4 | CHAPTER SUMMARY

17

2.4 Chapter Summary

In this chapter, we conceptualized software architecture, underlining the importance of
this area in software development. We also explored de�nitions and characteristics of rele-
vant architectural styles in this research’s context. We further explored the microservices-
based architectural style, which is currently considered the latest trend in software develop-
ment. Thus, we sought to understand the main characteristics, advantages, and challenges
of microservices to base the structure of our characterization model of the architecture of
service-based systems.

After exploring the fundamental concepts related to this research context, in the next
chapter, we describe the proposed model to characterize the architecture of service-based
systems.





19

Chapter 3

The CharM – Characterization
Model

This chapter presents the design process of the proposed model, explains what the
CharM is, describes its four dimensions, and demonstrates an example of its application in
a �ctional scenario.

3.1 Design Process

In order to develop a model for characterizing the architecture of service-based systems,
our study follows the seven guidelines of the Design Science Research (G1: Design as
an Artifact; G2: Problem Relevance; G3: Design Evaluation; G4: Research Contributions;
G5: Research Rigor; G6: Design as a Search Process; G7: Communication of Research),
proposed by Hevner et al. (2004). According to Engström et al. (2020), the Design Science
Research (DSR) is a paradigm focused to solve real-world problems and commonly used in
research in the engineering and information systems �elds. Hevner et al. (2004) explain
that the DSR is a problem-solving paradigm, in which kernel theories are “applied, tested,
modi�ed, and extended through the experience, creativity, intuition, and problem solving
capabilities of the researcher”. Furthermore, the authors emphasize that, from the adoption
of the DSR, it is possible to iteratively build and evaluate artifacts (constructs, models,
methods, or instantiations). As already cited, the artifact developed in this study is a model,
which was built and evaluated in �ve iterations.

The �rst version of the proposed model emerged from ad-hoc bibliographic research
(Section 2.3.1), which was focused on the analysis of microservices style de�nitions and
characteristics and from discussions with researchers specialized in software architecture.
This version of the model is available in a previous paper (Oliveira Rosa, Goldman, et al.,
2020).

Following this, we extended the ad-hoc bibliographic research to identify candidate
metrics for each model dimension (Appendix A). It is worth clarifying that, during the
CharM design, the main criteria for selecting its metrics were: to be related to the dimen-
sions of the model and the components analyzed, as well as to be extracted independently



20

3 | THE CHARM – CHARACTERIZATION MODEL

of technology, source code, or infrastructure. During the second iteration, we still analyzed
(trade-o�) the in�uence of a set of microservices patterns on the structural attributes of
size and coupling (Appendix B). The results of this trade-o� analysis were also published
in a previous paper (Oliveira Rosa, Daniel, et al., 2020). At the end of this iteration,
we obtained a second version of the model with a more concise scope, more re�ned
dimensions, and a list of viable candidate metrics. Version 2 of the model is available in
another previous paper (Rosa et al., 2020).

In the third iteration, the model was submitted for a �rst evaluation. We carried out a
case study, where we adopted the second version of the model to characterize the architec-
ture of a platform for smart cities, called InterSCity (Esposte, 2018), developed as part of
an academic research project. After applying the model, the architectural characterization
was evaluated by 11 project members. At the end of the iteration, we obtained feedback
regarding the model uses and ease of understanding, as well as collected suggestions for
improvements.

Legend

Iteration Iteration result as input to Generates

1st version 
of the model 

Iteration 1
Ad-hoc bibliographic research
Microservices definitions and

characteristics
+

Discussions with specialists

2nd version
of the model

Iteration 2
Ad-hoc bibliographic research

Candidate metrics
+

Trade-off analysis of
microservices patterns

Iteration 3
1st model evaluation

Case study
in academic environment

Iteration 4
2nd model evaluation

Case study
in industrial environment

Iteration 5
3rd model evaluation

Survey
with specialists

3rd version
of the model

4th version
of the model

5th version
of the model

Figure 3.1: Design process of the CharM

We re�ned the model based on the feedback received during the third iteration. Here-
with, we added new metrics, rethought and adjusted the visual presentation of some
results’ characterization, and optimized the model’s explanation. Thus, we generated a
third version, called CharM. We submitted this version to an evaluation through a case
study in an industrial environment. We carried out this new case study in an online
handcrafts marketplace with more than 7 million announced products produced by more
than 100,000 active sellers. Since 2018, the architecture of this system is being migrated
from the monolithic style to a service-based approach.

In order to make the case study feasible, the CharM was applied to only one part of the
system, composed of eight services. After applying the CharM, the generated architectural
characterization was evaluated by six development team members. At the end of this
iteration, we also obtained feedback regarding the model uses and ease of understanding,



3.2 | DEFINITION

21

as well as collected suggestions for improvements. The CharM evaluation result through
the two case studies is described in Chapter 4.

Based on the CharM’s evaluation feedback received during the fourth iteration, we
identi�ed new uses and improved the results visualization and model explanation. There-
fore, we started the �fth and �nal iteration, in which we evaluated the CharM through a
survey, in which we obtained 58 answers (detailed in Chapter 5). The process design of
the CharM is illustrated in Figure 3.1.

Given the main goal of this research, it is possible to verify that the built and evaluated
artifact is a model, that satis�es the G1 guideline of the DSR. The arguments that we
presented in the Section 1 demonstrate that it is still di�cult to classify and characterize
the architecture of service-based systems, so we meet the G2 guideline. In this section, we
describe the rigor of the artifact (model) design (G5), its development (G6), and evaluation
(G3) process. In Sections 1.5, 4.3, and 5.8, we discuss the research contributions (G4). This
thesis and the previous papers Oliveira Rosa, Goldman, et al. (2020), Oliveira Rosa,
Daniel, et al. (2020) and Rosa et al. (2020) communicate our results, which complies with
the G7 guideline. Thus, we satis�ed the seven DSR guidelines proposed by Hevner et al.
(2004).

3.2 De�nition

Before de�ning the CharM, it is important to understand what a characterization

model is. According to the Cambridge Dictionary (C. U. Press, 2022), characterization can
be de�ned as “the way in which something is described by stating its main qualities”.
According to the Oxford Learner’s Dictionaries (O. U. Press, 2022), a model can be de�ned
as “a simple description of a system, used for explaining how something works [. . . ]”.
From Hevner et al. (2004) perspective, model-type artifacts “aid problem and solution
understanding and frequently represent the connection between problem and solution
components enabling exploration of the e�ects of design decisions and changes in the
real world”. Thus, we can de�ne a characterization model as a way to describe and explain
something, stating some of its main qualities. A characterization model also helps to
understand the problem of something that is analyzed and consequently identify possible
solutions and make conscious decisions.

Therefore, faced with the challenges presented in Chapter 1, the CharM is a characteri-
zation model created to describe and explain the architecture of service-based systems,
standing some of its main qualities. From this, the CharM helps professionals identify
problems and viable solutions for the architecture of a system and aid the decision-making
process. The current version of the CharM focuses on the structural attributes of size and
coupling and collects static metrics from the analysis of architectural design artifacts or
APIs (Application Programming Interface) and con�gurations �les.

Since microservices are the current trend for service-based systems development (O.
Zimmermann, 2017; Francesco et al., 2017; Bushong, Amr S Abdelfattah, et al., 2021;
Vera-Rivera et al., 2021), we used some of their guidelines to design the CharM. We
extracted �ve microservices guidelines from the de�nitions and some characteristics
presented in Section 2.3.1. During the guideline extraction process, we also analyzed de�-



22

3 | THE CHARM – CHARACTERIZATION MODEL

nitions and characteristics of modular and other service-based approaches to understand
their similarities and di�erences compared to microservices. Based on this investigation, we
identi�ed that microservices, SOA (Service-Oriented Architecture), and other service-based
approaches share the same principle: dividing complex systems into smaller components,
called services, which communicate in some way.

To de�ne our model dimensions, we considered challenging design decisions in service-
based systems, especially in the microservices context. Thus, from discussions grounded
by the studies of Lewis and M. Fowler (2014), Hassan and Bahsoon (2016), Bonér
(2016), Soldani et al. (2018), and Newman (2021), we identi�ed that some of the main
microservices challenges are related to the structural attributes of size and coupling (but
not limited just to these), such as the following: de�ning the services’ size, managing
distributed data, and de�ning the services’ coupling level. It is worth citing that such
challenges are not exclusive to the microservices’ context. The studies of Sneed, 2006;
Mahmood, 2007; Perepletchikov et al., 2007 address the importance of size and coupling
attributes in SOA and indicate them as challenging. We also identi�ed that patterns, such
as Business Microservice, Database per Service, Event Sourcing, and Saga aid professionals
deal with these challenges (Oliveira Rosa, Daniel, et al., 2020) in microservice-based
systems. A study by Bogner, Wagner, et al. (2017a), focused on metrics, reinforces the
importance of understanding size and coupling characteristics. This study demonstrated
that these two structural attributes are among the characteristics most commonly found
in the literature related to the maintainability of service-based systems. Then, from the
analysis of the microservices de�nitions, characteristics, challenges, and patterns, we
extracted the following guidelines that found the CharM: (i) small and independent services;

(ii) loose coupling; (iii) lightweight communicationmechanisms; (iv) deployment independence;

and (v) decentralized data management.

The CharM can be used to support di�erent stages of the software life cycle, such as
its design-time, architecture mapping 1, and architectural evolution. Besides that, it was
created to enable the analysis of di�erent components and perspectives according to the
interest scope. Therefore, one of the goals of the CharM is to facilitate the architectural
analysis of a system and identify if its characteristics are closer or farther from the listed
microservices guidelines. Another goal is to facilitate the identi�cation of the architectural
trade-o�s and make viable their balancing. To achieve these goals, the CharM is composed
of dimensions and metrics that help to verify whether the architecture is adequate to
meet the desired non-functional requirements, which, in some way, are in�uenced by
the structural attributes of size and coupling. It is important to clarify that in the current
version of the CharM, the metrics of each dimension are collected manually (the roadmap
for the manual metrics collection is available in Appendix C). For this, the professionals can
access and explore both architectural design artifacts and (if available) APIs, con�guration
�les, or source code of the system.

It is also worth citing that we designed the CharM to be simple and independent
of technology, source code, or infrastructure. Therefore, in its current version, we did
not explore some critical features in service-based systems such as cohesion. We chose

1Architecture mapping means identifying the elements that compose the architecture of a system
and how these elements relate to each other.



3.3 | DIMENSIONS

23

not to incorporate cohesion in the CharM because we identi�ed that the related metrics
(that we have studied so far) tend to make our model more complex and dependent on
technology/source code. However, this does not mean the cohesion aspect cannot be
incorporated later.

It must be made clear that the CharM is not a tool-based approach but a theoretical
and conceptual model designed to be applied at di�erent software life cycle stages. Besides
that, this model could be used as a reference for grounding and developing other solutions
with lower levels of abstraction. In the current version of the CharM, we are not interested
in guaranteeing the precision and objectivity of the collected metrics nor analyzing data
related to technological heterogeneity, performance, and message size.

Furthermore, it is not the CharM’s goal to characterize all service-based architectures
from the same perspective, ignoring their di�erences. Nor is it the aim of the CharM to
label a given architecture as good or bad or to recommend speci�c architectural changes.
The CharM’s goal is to provide information that helps professionals better understand the
architecture of a system and support them in making more grounded decisions. It is also
important to explain that although the CharM is rooted in microservices guidelines, its
application is not limited to systems that follow this architectural style since it analyzes
structural attributes considered interesting and challenging in di�erent service-based
approaches.

Therefore, we designed the CharM balancing the yearnings for it to be a lean and
comprehensive (applicable to di�erent service-based architectural styles) solution. Fur-
thermore, this model was created to be easy to understand, �exible, and expandable to
incorporate new dimensions and metrics.

3.3 Dimensions

The four dimensions composing the current version of the CharM are size, data source

coupling, synchronous coupling, and asynchronous coupling. As illustrated in Figure 3.2, each
dimension of the CharM was inspired by at least two of the �ve selected microservices
guidelines (Section 3.2). The Size dimension is directly related to the guidelines small

and independent services and deployment independence. The guidelines decentralized data
management and loose coupling are present in the Data Source Coupling dimension. The
Synchronous Coupling and Asynchronous Coupling dimensions are directly related to the
guidelines loose coupling and lightweight communication mechanisms.

Each dimension is composed of metrics and it is possible choose which components2

and perspectives3 will be evaluated. The components that can be analyzed using the CharM
are services and modules. In the context of this research, inspired by Richardson (2018),
a service is an application with cohesive and well-de�ned responsibility that implements
functionalities related to business tasks. Inspired by Martin (2018), a module is a cohesive
set of services deployed together, that is, a deployment unit. Regarding the perspectives, in

2A component is a part or element of a system. The components analyzed with the CharM are modules
and services.

3A perspective is the way in which a particular system component is analyzed. The CharM permits
some external and internal analyses.



24

3 | THE CHARM – CHARACTERIZATION MODEL

Size

Asynchronous
Coupling

Synchronous
Coupling

i. small and independent services

MS Guidelines

iv. deployment independence

ii. loose coupling

MS Guidelines

ii. loose coupling

MS Guidelines

v.  decentralized data management

ii. loose coupling

MS Guidelines

iii. lightweight communication
mechanisms

iii. lightweight communication
mechanisms

Data Source
Coupling

number of system components
number of services per module
number of operations per component
number of services with deployment dependency

Metrics

number of clients that invoke the operations of a given component
number of components from which a given component invokes operations
number of different operations invoked by each depending component
number of different operations invoked from other components

Metrics

number of clients that consume messages
published by a given component
number of components from which a given
component consumes messages
number of different types of messages consumed
by each depending component
number of different types of messages consumed
from other components
number of components that consume messages
from the queue
number of components that publish messages in
the queue

Metrics

number of system’s data sources
number of data sources per component
number of data sources that each component
shares with others
number of data sources where each component
performs write-only action
number of data sources where each component
performs read-only action
number of data sources where each component
performs read and write actions

Metrics

Figure 3.2: CharM’s dimensions, metrics, and microservices guidelines.

the CharM context, we can analyze a component in a particular way, i.e., from external 4,
internal 5 or both views.

The Size dimension aims to characterize the size and composition of di�erent system
components and compare them. The components that can be analyzed are services and
modules. The metrics that compose this dimension are: the number of system components,
the number of services per module, the number of operations

6
per component, and the number

of services with deployment dependency. According to the size of the component, we can
obtain di�erent advantages and disadvantages. Therefore, having access to these metrics
enables more conscious architectural decisions related to the size of the components. For
example, having a single deployment unit, which implements all business functionalities,

4External perspective pertains to the components outside the context of a system.
5Internal perspective pertains to the components inside the context of a system.
6An operation is a unit of functionality provided by a component (inspired by Shim et al. (2008)). In

this version of the CharM, an operation is considered a synonym of endpoint.



3.3 | DIMENSIONS

25

may facilitate the integration of the components but it may hinder scalability. On the other
hand, having each business functionality implemented in a di�erent service, which is an
independent deployment unit, may hinder the integration of the components but it may
favor the scalability. This scenario is illustrated in Figure 3.3.

– ease of integration 
+ scalability

+ ease of integration
– scalability

Figure 3.3: Ruler of size dimension.

The goal of the Data Source Coupling dimension is to characterize the strategy for
sharing data sources7 between the components of a system. The components that can be
analyzed are services and modules. Besides that, the desired components can be analyzed
from external, internal, or both perspectives. The metrics of this dimension are: the number

of system’s data sources, the number of data sources per component, the number of data

sources that each component shares with others, the number of data sources where each

component performs write-only action, the number of data sources where each component

performs read-only action, and the number of data sources where each component performs

read and write actions. Hence, from this set of metrics, we can obtain and evaluate di�erent
views of data source coupling between the components of a system and choose a more
appropriate sharing strategy. For example, if all system components share a single source,
the data coupling degree between the system components will be high, but this strategy
may decrease the complexity of managing data consistency. On the other hand, if each
component has its own exclusive data source, this may decrease the coupling between
system components. However, it may increase the complexity of managing data consistency.
Figure 3.4 exempli�es this case.

– data coupling 
+  data consistency complexity

+ data coupling
–  data consistency complexity

Figure 3.4: Ruler of data source coupling dimension.

The Synchronous Coupling dimension aims to characterize the synchronous interactions
between the components of a system. In this research, a synchronous interaction occurs
when a component G makes a request to a component ~ and waits for a response (inspired
by Richardson (2018)). With the CharM, we can analyze the synchronous coupling of
services and modules. Moreover, the selected components can be analyzed from external,
internal, or both perspectives. The metrics adopted in this dimension are: the number of

clients that invoke the operations of a given component, the number of components from which

a given component invokes operations, the number of di�erent operations invoked by each

depending component, and the number of di�erent operations invoked from other components.
7Data source is where it stores the data used by the components of a system



26

3 | THE CHARM – CHARACTERIZATION MODEL

Therefore, this set of metrics helps to understand the synchronous dependency relationship
between the components of a system, as well as the number of operations involved in each
interaction. Consequently, it provides relevant information to guide decisions related to
synchronous coupling trade-o�s. For example, if all services in a system communicate with
all the other services synchronously, then message exchange happens almost instantly,
but system performance may be impaired. On the other hand, if there is no synchronous
interaction between services, then the individual performance of each service may be
better, but this strategy may cause a lag in the communication between the services. This
situation is illustrated in Figure 3.5.

– instantaneousness
+  performance

+  instantaneousness
– performance

Figure 3.5: Ruler of synchronous coupling dimension.

The goal of the Asynchronous Coupling dimension is to characterize the asynchronous
interactions between the components of a system. Unlike synchronous, an asynchronous
interaction occurs when a component G sends a message to a component ~ and does not
wait for a response (inspired by Richardson (2018)). In this research, the main interest is in
interactions via message queues 8. The components that can be analyzed in this dimension
are services and modules. Besides that, the selected components can be analyzed from
external, internal, or both perspectives. The metrics that compose this dimension are: the
number of clients that consume messages published by a given component, the number of

components from which a given component consumes messages, the number of di�erent types

of messages consumed by each depending component, the number of di�erent types of messages

consumed from other components, the number of components that consume messages from

the queue, and the number of components that publish messages in the queue. Thus, these
metrics help to understand the asynchronous interactions between system components, the
number of di�erent messages involved in each interaction, and the relationship between
components and the message queue. Ergo, they provide relevant information to support
decisions related to asynchronous coupling and deal with the trade-o�s. For example, if
all services in a system communicate with all other services asynchronously, then the
operational complexity may increase but, at the same time, it may loosen the coupling.
On the other hand, if there is no asynchronous interaction between services, the coupling
may be higher, however, operational complexity may decrease. Figure 3.6 exempli�es this
scenario.

The CharM is an adaptable model, which means that, according to need and interest,
the professional can choose which dimensions, metrics, components, and perspectives
will be analyzed. Therefore, more valuable metrics may vary depending on the scenario.
Thus, one of the main goals of the CharM is to provide professionals with information that
allows a better understanding of the system architecture. Besides that, from the generated

8We have not considered other ways of asynchronous interaction in the current version of the CharM,
but we may incorporate them in future versions.



3.4 | FICTIONAL SCENARIO TO DEMONSTRATE THE CHARM APPLICATION

27

– operational complexity 
+  coupling

+ operational complexity
– coupling

Figure 3.6: Ruler of asynchronous coupling dimension.

information, the CharM can help search for an appropriate balance for the software project,
not tending to any of the ruler edges. Although there are other relevant dimensions and
metrics, the scope of the current version of the model will be limited to those already
described. Therefore, the model can be extended to include other dimensions, metrics, and
elements in the future. It is also worth citing that it is outside this thesis’s scope to identify
and compare metrics with better results. In the next section, we present a �ctitious CharM
application scenario, where we illustrate the characterization result, as well as exemplify
how our model can be useful to improve and evolve the architecture of a service-based
system.

3.4 Fictional Scenario to Demonstrate the CharM
Application

To demonstrate the application of the CharM dimensions and metrics, we created a
�ctional system named Pingr. A more detailed version of this demo scenario is available
on YouTube9. The Pingr is a social network in the microblog format, where users can
make posts limited to 160 characters. Each post is called ping and can receive likes and
pongs. A pong means that other users shared a ping. The historical set of pings is displayed
in a post feed, called main table. To post pings, people need to create an account. After
creating an account, a user can post pings and follow other users. Users can also interact
privately by chat. The quality requirements of Pingr are availability, scalability, perfor-
mance, failure resilience, security, and privacy. Figure 3.7 presents an overview of the
Pingr architecture.

As illustrated in Figure 3.7, there are four internal services, represented by the green
circles. These services are User, Chat, Ping, and Feed. There is also one external service
responsible for some authentication tasks. This external service is the gray circle. The
white rectangles around the circles represent the modules, that is, deployment units.
The yellow cylinders represent the data sources. The continuous blue lines represent
the synchronous interactions between the services. The red dotted lines represent the
asynchronous interactions between the services. Cardinalities with a blue background
represent the number of operations involved in synchronous interactions. Cardinalities
with a red background represent the number of messages involved in asynchronous
interactions.

At �rst, we present the characterization of the services, followed by the characterization
of the Pingr architecture, based on the 5Cℎ version of the CharM. The scales used in the

9Demonstration of application of the CharM: h�ps://youtu.be/bK9Yg9jmQXY

https://youtu.be/bK9Yg9jmQXY


28

3 | THE CHARM – CHARACTERIZATION MODEL

Other contexts 

2

Legend

Technological component Service Data source Synchronous interaction 
(sender -> receiver)

Asynchronous interaction 
(publisher -> subscriber)

Data read Data writeModule

Auth 
Service

Pingr   

Chat 
Service

chat

Feed 
Service

feed 
cache

Ping
Service

pings

2
User 

Serviceusers

1

1

3

Figure 3.7: Overview of the Pingr architecture (notation inspired by Merson and Jospeh Yoder

(2019)).

rulers of each dimension take data from the Pingr itself as a reference. Thus, the ruler
of the size dimension ranges from 0 to 9 (maximum number of services operations). The
scale used in the data source, synchronous, and asynchronous coupling dimensions ranges
from 0 to 4 (number of services in the Pingr).

The User Service is the biggest service in the Pingr system, with nine operations.
It accesses one exclusive data source performing read and write actions. Related to syn-
chronous coupling, it is the service with the biggest internal importance and is the only
one with external dependence. It is one of the services that perform asynchronous inter-
actions, publishing three topics on the message queue that the Chat Service consumes.
Figure 3.8 illustrates the User Service characterization, based on CharM dimensions and
metrics.



3.4 | FICTIONAL SCENARIO TO DEMONSTRATE THE CHARM APPLICATION

29

40

Data source coupling:  
   1 Data source 

   Internal 
      1 exclusive DS 
      0 shared DS 
      0 write-only operation 
      0 read-only operation 
      1 read and write operations 

Size: 
   9 operations

Operations: 9

90

Asynchronous coupling:   

   Internal 
      Importance degree: 1 
      Dependence degree: 0 

   External 
      Importance degree: 0 
      Dependence degree: 0 

   Total 
      Importance degree: 1 
      Dependence degree: 0 

Internal perspective

Internal dependence degree: 0

40

Internal importance degree: 1

40

Synchronous coupling: 

   Internal 
      Importance degree: 2 
      Dependence degree: 0 

   External 
      Importance degree: 0 
      Dependence degree: 1 

   Total 
      Importance degree: 2 
      Dependence degree: 1 

External perspective

External importance degree: 0

10

External dependence degree: 1

10

Total perspective

Total importance degree: 2

50

Total dependence degree: 1

50

Internal perspective

Share this DS with other: 0 services
Data source: users 

40

R-W

Internal perspective

Internal perspective

40

Internal dependence degree: 0

Internal importance degree: 2

Figure 3.8: User Service characterization.



30

3 | THE CHARM – CHARACTERIZATION MODEL

The Ping Service is the second-biggest service in the Pingr system, with �ve opera-
tions. It accesses one data source, which it shares with the Feed Service, performing read
and write actions. It has a synchronous dependency on User Service. It is one of the services
that perform asynchronous interactions, publishing two topics on the message queue that
the Chat Service consumes. Figure 3.9 illustrates the Ping Service characterization.

40

Data source coupling: 
   1 Data source

   Internal
      0 exclusive DS
      1 shared DS
      0 write-only operation
      0 read-only operation
      1 read and write operations

Size:
   5 operations

Operations: 5

90

Asynchronous coupling:  

   Internal
      Importance degree: 1
      Dependence degree: 0

   External
      Importance degree: 0
      Dependence degree: 0

   Total
      Importance degree: 1
      Dependence degree: 0

Internal perspective

Internal dependence degree: 0

40

Internal importance degree: 1

40

Synchronous coupling:

   Internal
      Importance degree: 0
      Dependence degree: 1

   External
      Importance degree: 0
      Dependence degree: 0

   Total
      Importance degree: 0
      Dependence degree: 1

Internal perspective

Data source: pings
Share this DS with other: 1 service

40

R-W

Internal perspective

Internal perspective

40

Internal importance degree: 0

Internal dependence degree: 1

Figure 3.9: Ping Service characterization.



3.4 | FICTIONAL SCENARIO TO DEMONSTRATE THE CHARM APPLICATION

31

The Chat Service has three operations. Access one exclusive data source performing
read and write actions. It does not have synchronous coupling. It is the service with the
biggest asynchronous dependency, consuming topics published by User Service and Ping
Service. Figure 3.10 illustrates the Chat Service characterization

Internal perspective

50

Data source coupling: 
   1 Data source

   Internal
      1 exclusive DS
      0 shared DS
      0 write-only operation
      0 read-only operation
      1 read and write operations

Size:
   3 operations

Operations: 3

90

Synchronous coupling:

   Internal
      Importance degree: 0
      Dependence degree: 0

   External
      Importance degree: 0
      Dependence degree: 0

   Total
      Importance degree: 0
      Dependence degree: 0

Internal perspective

Data source: chat
Share this DS with other: 0 services

40

R-W

Internal perspective

Total perspective

50

Total importance degree: 0

Total dependence degree: 0

Asynchronous coupling:  

   Internal
      Importance degree: 0
      Dependence degree: 2

   External
      Importance degree: 0
      Dependence degree: 0

   Total
      Importance degree: 0
      Dependence degree: 2

Internal importance degree: 0

40

40

Internal dependence degree: 2

Figure 3.10: Chat Service characterization.



32

3 | THE CHARM – CHARACTERIZATION MODEL

The Feed Service is the smallest service in the Pingr system, with two operations.
It accesses two data sources, one exclusive and one shared with the Ping Service. It has
a synchronous dependency on User Service. It does not have asynchronous coupling.
Figure 3.11 illustrates the Feed Service characterization

Share this DS with other: 0 services
Data source: feed_cache

40

R-W

Data source: pings
Share this DS with other: 1 service

40

R-O

40

Size:
   2 operations

Operations: 2

90

Asynchronous coupling:  

   Internal
      Importance degree: 0
      Dependence degree: 0

   External
      Importance degree: 0
      Dependence degree: 0

   Total
      Importance degree: 0
      Dependence degree: 0

Total perspective

Total dependence degree: 0

50

Total importance degree: 0

50

Synchronous coupling:

   Internal
      Importance degree: 0
      Dependence degree: 1

   External
      Importance degree: 0
      Dependence degree: 0

   Total
      Importance degree: 0
      Dependence degree: 1

Internal perspective

40

Internal importance degree: 0

Internal dependence degree: 1

Internal perspectiveData source coupling: 
   2 Data sources

   Internal
      1 exclusive DS
      1 shared DS
      0 write-only operation
      1 read-only operation
      1 read and write operations

Figure 3.11: Feed Service characterization.

The Pingr is a service-oriented system composed of four services. Each module is
composed of a single service. User Service is the biggest, with nine operations, while
the smallest service (Feed Service) has only two operations. The system has four data
sources, one of which is shared between two internal services. 60% of interactions between
services are synchronous. On the other hand, 40% of interactions between services are
asynchronous. Figure 3.12 illustrates the characterization of the Pingr system, based on
the CharM dimensions and metrics.



3.5 | CHAPTER SUMMARY

33

40

Service per module: 1

Data source coupling:  
   4 data sources 

   Internal 
      3 exclusive DS 
      1 shared DS 

40

Services that share the DS pings: 2

Size: 
   4 modules 
   4 services 
   1 services per module 

1000

% sync interactions:60Synchronous coupling: 

   Internal 
      Interactions: 2 

   External 
      Interactions: 1 

   Total 
      Interactions: 3 

1000

% async interactions: 40Asynchronous coupling:   

   Internal 
      Interactions: 2 

   External 
      Interactions: 0 

   Total 
      Interactions: 2 

Figure 3.12: Pingr characterization.

Given that Pingr is a �ctitious system, we can consider it to be at design time. Thus, the
characterization generated from the CharM could be very valuable in assessing whether
the designed architecture is adequate to meet the pre-established quality requirements.
Furthermore, the metrics, rulers, and graphs generated could guide and support re�ections
and discussions about this architecture.

The characterization also demonstrates that most of the Pingr services interact syn-
chronously. This characteristic can directly in�uence the system’s performance. Since
performance is a quality attribute listed as critical in Pingr, it is worth re�ecting on whether
it is advantageous to transform some synchronous interactions into asynchronous ones.
For example, the coupling between the services Ping and User and Feed and User.

3.5 Chapter Summary

This chapter described the CharM design and evolution steps carried out so far. We also
delimited what the CharM is and what it is not. In addition, we listed the microservices
guidelines that ground the current version of our model. Next, we described the dimensions
currently composing the CharM, presenting their goals, metrics, and usefulness. Finally,
we demonstrated the application of the CharM in a �ctitious scenario.

After presenting our characterization model, in the next chapter, we detail the two
case studies carried out to evaluate the CharM and thus identify possible uses and ease of
understanding degree.





35

Chapter 4

Multiple Case Studies

Considering the research goal, it is crucial to evaluate the CharM, in order to identify
its possible uses and if this model is easy to understand. As described in Section 3.1, we
submitted the CharM to three evaluation stages. In this chapter, we present the results of
the �rst two evaluations, carried out through two case studies. The �rst one was executed
in an academic environment. The second case study was performed in an industrial
environment. Based on this, we de�ned the following research questions (RQs):

• RQ1:What uses of the CharM are perceived by participants? — Considerations:
We want to identify tasks where the CharM can be useful. The main points that we
explored are architectural understanding and evolution.

• RQ2: What is the participants’ perception of the architectural characteriza-
tion generated from the CharM? — Considerations: We are interested in �nding
out if the architectural characterization generated by the CharM is easy to understand
and if it is coherent with the reality that each participant knows.

• RQ3: What aspects of the CharM can be improved? — Considerations: We are
keen to map aspects of the CharM that can be changed or included to make it more
useful and easier to understand.

In each case study, we selected a system to apply and evaluate the CharM. We adopted
the multiple case study research method, objecting to conducting an in-depth evaluation
of our model and obtaining a higher level of generality about the found outcomes. To then
use these results as a basis for generating a survey, as well as to perform triangulation of
the CharM evaluation. Such triangulation is relevant, as it will contribute to increasing
the degree of reliability of the �ndings (Easterbrook et al., 2008).

We de�ne three key steps for the multiple case study (Figure 4.1). The �rst consists of
obtaining a general understanding of the architecture of the system chosen for the study. In
the next step, the CharM is applied to characterize the architecture of such a system. Finally,
we invited project members to evaluate the architectural characterization generated from
our model. In each case study, we re�ne these steps according to the complexity of the
context. The main techniques we adopted to collect data were document analysis and
semi-structured interviews. To analyze the CharM evaluation data, we adopted open and



36

4 | MULTIPLE CASE STUDIES

axial analysis procedures and the constant comparison method.

Step 1: obtain a
system overview

Step 3: evaluate the
CharM

Step 2: characterize
the architecture

through the CharM

Figure 4.1: Key steps of the multiple case study .

In the following sections, we describe the two case studies carried out, detailing the
applied research design as well as the obtained results.

4.1 InterSCity Case Study

We conducted the �rst case study in an academic project named InterSCity. The
InterSCity is a Brazilian collaborative research project that aims to create a platform that
enables the development of robust, integrated, sophisticated applications for the smart
cities of the future (Batista et al., 2016). The platform designed in this project was also
named InterSCity. Thus, the InterSCity Platform was created to support collaborative work
development and enable experiments in the smart cities �eld. Furthermore, it is worth
mentioning that some important quality requirements considered and analyzed during
the design of this platform were scalability and evolvability (Esposte, 2018).

The architecture of the InterSCity Platform is microservices-based and has adopted the
following principles: modularity via services; distributed models and data; decentralized
evolution; reuse of open source projects; adoption of open standards; asynchronous versus
synchronous; and stateless services. Besides that, its architecture provides a set of high-
performance cloud-based mechanisms to manage heterogeneous IoT (Internet of Things)
resources, data storage and management, and context-aware resource discovery (Esposte,
2018). We chose the InterSCity Platform to carry out this case study because it has a service-
based architecture, is open-source, is constantly evolving, has extensive documentation,
and is composed of a few services.

4.1.1 Research Design
To achieve the proposed goal and answer the RQs 1, 2, and 3, we followed four main

steps in this study, as illustrated in Figure 4.2. This case study ran from May to August
2020.



4.1 | INTERSCITY CASE STUDY

37

Data collection:
Document analysis -

System architecture overview
and metric collection

Data analysis:
Architecture characterization

based on the CharM

Data collection:
Semi-structured interviews -

CharM's evaluation

Data analysis:
Open and axial coding -

CharM's evaluation

Figure 4.2: InterSCity case study steps.

At �rst, we carried out a document analysis to understand the goals of the InterSCity
Platform, obtain an overview of its architecture and collect the metrics of the CharM.
During this step, we studied a set of scienti�c work related to the development of this
platform 1. From this, we identi�ed the main elements of its architecture, especially its
services and their respective responsibilities. We also analyzed the documentation and
source code available in the GitLab repository 2. One of the objectives was to manually
collect the CharM’s metrics. This task was performed by two researchers (one of them is
the author of this thesis) in a dynamic similar to the agile practice of Pair Programming.
We examined and discussed each service of the platform con�guration �les and source
code 3.

In the next step, based on the data collected during document analysis and following the
dimensions and metrics of the CharM, we characterized the architecture of the InterSCity
Platform. The result of this characterization is detailed in Section 4.1.2.

After completing the characterization of the InterSCity Platform’s architecture, we
collected data to evaluate the CharM. For this, we conducted semi-structured interviews.
The respondents were invited via email. To contact them, we asked the InterSCity project
research group for suggestions from members who could collaborate with our study. From
these indications, we invited 11 (all male) platform contributors to evaluate the result
generated by the CharM. After accepting the invitation, each participant received the
interview protocol (Appendix D.1) and a video 4 explaining the CharM and the characteri-
zation of the InterSCity Platform architecture. It is worth clarifying that the protocol was
subjected to a pilot test with one interviewee and then was minor adjusted.

We started the interviews by brie�y explaining the research objectives and guidelines.

1Software Platforms for Smart Cities: Concepts, Requirements, Challenges, and a Uni�ed Reference
Architecture (E. F. Z. Santana et al., 2017) and A Scalable Microservice-based Open Source Platform for
Smart Cities (Esposte, 2018).

2InterSCity repository: gitlab.com/interscity/interscity-platform/interscity-platform
3A summary of the collected data, based the CharM, is available at:

https://drive.google.com/�le/d/1qVo2j7raTaOLUZYPu53PgiJCGoAHfTyK/view?usp=sharing
4The video explaining our model and the characterization of the architecture of the In-

terSCity Platform (in Portuguese) is available at: https://drive.google.com/�le/d/1XzQORjPuJu-
Pw7Yor5X2tpef3cghON2P/view?usp=sharing

https://gitlab.com/interscity/interscity-platform/interscity-platform
https://drive.google.com/file/d/1qVo2j7raTaOLUZYPu53PgiJCGoAHfTyK/view?usp=sharing
https://drive.google.com/file/d/1XzQORjPuJu-Pw7Yor5X2tpef3cghON2P/view?usp=sharing
https://drive.google.com/file/d/1XzQORjPuJu-Pw7Yor5X2tpef3cghON2P/view?usp=sharing


38

4 | MULTIPLE CASE STUDIES

The interview script was composed of four sets of questions: (i) the respondent’s experience,
(ii) the respondent’s perception of the InterSCity Platform, (iii) evaluation of the CharM and
the architectural characterization generated from it, and (iv) possibilities of architectural
evolution based on the result generated by the CharM.

The 11 interviews took place between July and August 2020 and were conducted
and recorded remotely via Google Meet after the respondents’ consent. On average, the
interviews lasted 34 minutes. In all, the 11 interviews lasted 6 hours and 22 minutes. It is
worth mentioning that the sample of participants in this study step is non-probabilistic and
combines convenience and referral-chain types (Baltes and Ralph, 2020). Furthermore,
our sample size is aligned with evidence from the anthropology �eld, which indicates that
10-20 knowledgeable people are su�cient to uncover and understand the core categories
in any study of lived experience (Bernard, 2011).

In the last step of the InterSCity case study, we analyzed the data collected from the
interviews using open and axial coding procedures (Corbin and A. Strauss, 2015; Stol
et al., 2016). We started by applying the open coding procedure, from which we mapped
some use categories of the CharM. For this, we performed an iterative process of inductively
coding the transcription of one interview at a time. Following, we did the axial coding,
where we further analyzed and reviewed the interviews to identify relationships between
the categories that emerged from the open coding analysis. The author of this thesis
conducted the preliminary analyses and multiple meetings with two other experienced
researchers (advisor and co-advisor of this thesis) to discuss and increase the results’
reliability and mitigate bias (Patton, 2014). Furthermore, throughout the coding process,
we adopted the constant comparison method (Glaser and A. L. Strauss, 2017), whereby
we continuously compare the results of an interview with those obtained in the previous
ones.

Due to con�dentiality reasons, we do not share the interviews’ transcription. However,
we made it publicly the code book available (Appendix D.2).

4.1.2 Characterization of the Architecture of the InterSCity
Platform

To characterize the architecture of the InterSCity Platform, we analyzed (documentation
and code) each of its �ve services. The metrics collected were arranged in rulers to illustrate
the service’s pro�le in each of the CharM dimensions. The scales used in the rulers of
each dimension take data from the InterSCity Platform itself as a reference. Thus, the
ruler of the size dimension ranges from 0 to 12 (maximum number identi�ed of services
operations). The scale used in the data source, synchronous, and asynchronous coupling
dimensions ranges from 0 to 5 (number of the platform services). At �rst, this section
presents the characterization of the services, followed by the characterization of the
platform architecture, based on the 5Cℎ version of the CharM.



4.1 | INTERSCITY CASE STUDY

39

Characterization of the Resource Discovery: It is the smallest service on the plat-
form, with just one operation. It accesses one exclusive data source, performing read
and write actions. It is the service with the biggest synchronous dependence degree
since it invokes operations from two other services. Furthermore, it is the only service
that does not have asynchronous coupling. Figure 4.3 illustrates the Resource Discovery
characterization.

Size: 
   1 operation

Operations: 1

0 12

Data source coupling:  
   1 data source 
   1 exclusive DS 
   0 shared DS 
   0 write-only 
   0 read-only 
   1 read and write 

Share this DS with other: 0 services

0 5

Data source: resource-discoverer-redis 

R-W

Asynchronous coupling: 
   Importance degree: 0 
   Dependence degree: 0 

Importance:0

0 5

Dependence:0 

0 5

Synchronous coupling: 
   Importance degree: 0 
   Dependence degree: 2 

0 5

0 5

Importance:0

Dependence:2

Figure 4.3: Resource Discovery characterization.



40

4 | MULTIPLE CASE STUDIES

Characterization of the Actuator Controller: It is the second-smallest service of
InterSCity, with two operations. It has one exclusive data source, which performs read
and write actions. It is the only service on the system which does not have synchronous
connections. Concerning asynchronous connections, only one service consumes messages
published by it in one of its topics. In contrast, it consumes messages published by two
other services on the platform, and it is one of the services with the highest degree of
asynchronous dependence on the system. Figure 4.4 illustrates the Actuator Controller
characterization.

Size: 
   2 operations

Operations: 2

0 12

Data source coupling:  
   1 data source 
   1 exclusive DS 
   0 shared DS 
   0 write-only 
   0 read-only 
   1 read and write 

Share this DS with other: 0 services

0 5

Data source: actuator-controller-mongo 

R-W

Synchronous coupling: 
   Importance degree: 0 
   Dependence degree: 0 

0 5

0 5

Importance:0

Dependence:0

Asynchronous coupling: 
   Importance degree: 1 
   Dependence degree: 2 

0 5

0 5

Importance:1

Dependence:2 

Figure 4.4: Actuator Controller characterization.



4.1 | INTERSCITY CASE STUDY

41

Characterization of the Data Collector: It is the third-smallest service on the plat-
form. It accesses two exclusives data sources, performing read and write actions. Only one
service requests synchronous messages from it. Among the services with an asynchronous
connection, it is the only one that just consumes but does not publish messages. Further-
more, it is one of the services with the highest degree of asynchronous dependence on the
platform. Figure 4.5 illustrates the Data Collector characterization.

Size: 
   4 operations

Operations: 4

0 12

Data source coupling:  
   2 data sources 
   2 exclusive DS 
   0 shared DS 
   0 write-only 
   0 read-only 
   2 read and write 

Share this DS with other: 0 services

0 5

Data source: data-collector-mongo 

Share this DS with other: 0 services

0 5

Data source: data-collector-mongo-cache 

R-W

R-W

Synchronous coupling: 
   Importance degree: 1 
   Dependence degree: 0 

0 5

Dependence:0

0 5

Importance:1

Asynchronous coupling: 
   Importance degree: 0 
   Dependence degree: 2 

Importance:0

0 5

Dependence:2 

0 5

Figure 4.5: Data Collector characterization.



42

4 | MULTIPLE CASE STUDIES

Characterization of the Resource Adaptor: It is the second-biggest InterSCity’s
service, with 8 operations. It has two exclusive data sources, performing read and write
actions. Furthermore, it is one of the platform’s services that makes synchronous requests.
It is the service with the highest asynchronous importance degree, since three other
services consume the messages it publishes. Furthermore, it is subscribed to a topic
published by another service of the system. Figure 4.6 illustrates the Resource Adaptor
characterization.

Size: 
   8 operations

Operations: 8

0 12

Data source coupling:  
   2 data sources 
   2 exclusive DS 
   0 shared DS 
   0 write-only 
   0 read-only 
   2 read and write 

Share this DS with other: 0 services

0 5

Data source: resource-adaptor-pg 

Share this DS with other: 0 services

0 5

Data source: resource-adaptor-redis 

R-W

R-W

Synchronous coupling: 
   Importance degree: 0 
   Dependence degree: 1 

0 5

0 5

Importance:0

Dependence:1

Asynchronous coupling: 
   Importance degree: 3 
   Dependence degree: 1 

0 5

0 5

Importance:3

Dependence:1 

Figure 4.6: Resource Adaptor characterization.



4.1 | INTERSCITY CASE STUDY

43

Characterization of the Resource Catalog: It is the biggest service in the system,
with 12 operations. It accesses two exclusives data sources, performing read and write
actions. It is the service with the biggest synchronous importance degree since two other
services invoke its operations. It is also the service with the biggest asynchronous im-
portance degree since two other services consume its messages. Figure 4.7 illustrates the
Resource Catalog characterization.

Size: 
   12 operations

Operations: 12

0 12

Data source coupling:  
   2 data sources 
   2 exclusive DS 
   0 shared DS 
   0 write-only 
   0 read-only 
   2 read and write 

Share this DS with other: 0 services

0 5

Data source: resource-cataloguer-pg 

Share this DS with other: 0 services

0 5

Data source: resource-cataloguer-redis

R-W

R-W

Synchronous coupling: 
   Importance degree: 2 
   Dependence degree: 0 

0 5

Dependence:0

0 5

Importance:2

Asynchronous coupling: 
   Importance degree: 2 
   Dependence degree: 1 

Importance:2

0 5

Dependence:1 

0 5

Figure 4.7: Resource Catalog characterization.

After mapping and understanding the pro�le of each service of the InterSCity, we
could characterize this platform’s architecture. As in the services’ characterization, we
arranged the collected metrics in rules. The rules of the size and data source dimensions
have a scale ranging from 0 to 5 (number of platform services). The scale used in the
rules of the synchronous and asynchronous coupling dimensions ranges from 0 to 100 to
represent the percentage of each type of communication.



44

4 | MULTIPLE CASE STUDIES

Characterization of the InterSCity Platform: The InterSCity platform can be clas-
si�ed as a small service-oriented system since each module comprises a single service.
Resource Catalog is the biggest service, with 12 operations, while the smallest service
(Resource Discovery) has only one operation. The system has eight data sources. The
platform services do not share these data sources with each other. Approximately 33% of
interactions between services are synchronous. On the other hand, 67% of interactions
between services are asynchronous. Figure 4.8 illustrates the characterization of the archi-
tecture of the InterSCity Platform, based on the CharM dimensions. Figure 4.9 presents an
overview of the platform architecture, containing the main structural elements analyzed
with the CharM.

50

Service per module: 1

Data source coupling:  
   8 data sources 

   Internal 
      8 exclusive DS 
      0 shared DS 

Size: 
   5 modules 
   5 services 
   1 services per module 

Synchronous coupling: 

   Internal 
      Interactions: 3 

   External 
      Interactions: 0 

   Total 
      Interactions: 3 

1000

% async interactions: 66.6Asynchronous coupling:   

   Internal 
      Interactions: 6 

   External 
      Interactions: 0 

   Total 
      Interactions: 6 

1000

% sync interactions:33.3

50

None the services share data sources

Figure 4.8: InterSCity characterization.

Appendix E complements the characterization of the platform and its services through
visualizations that consider the di�erent CharM dimensions, present di�erent perspectives,
and facilitate comparisons.



4.1 | INTERSCITY CASE STUDY

45

    InterScity Platform   
Legend

Service Data source Synchronous interaction 
(sender -> receiver)

Asynchronous interaction 
(publisher -> subscriber)

Data read Data writeModule

Resource 
Catalog

resource-
cataloguer-pg

resource-
cataloguer-redis

2Data 
Collector

data-collector-
mongo

Resource
Discovery

resource-
discoverer-redis

Resource 
Adaptor

resource- 
adaptor-pg

resource-adaptor-
redis

Actuator
Controller

actuator- 
controller-mongo

data-collector-
mongo-cache

1

1

3

2

1 1

1

1

Figure 4.9: Overview of the InterSCity architecture (notation inspired by Merson and Jospeh

Yoder (2019)).

4.1.3 Evaluation Results

Participants Pro�le

We interviewed 11 professionals with di�erent experiences contexts (academic and
industrial) and knowledge levels (from novices to specialists). These professionals acted in
di�erent roles in the project, such as manager, architect, consultant, developer, or external
contributor. The interviewees’ experience with service-based architecture varies from
5 months to 32 years (' 6 years and 1 month on average). The working time with the
InterSCity Platform varies from 5 months to 2 years (' 1 year and 4 months on average).
During this case study, 7 out of 11 respondents were working with the platform. The other
4 respondents have worked with the InterSCity some years before, mainly in the design
stage. Table 4.1 details interviewees’ pro�le.



46

4 | MULTIPLE CASE STUDIES

Participant ID Role Experience with
SBA (months)

Experience with
the Platform (months)

Experience
context

Current
member?

P1 Manager 26 26 Academic Yes

P2 External
contributor 5 5 Academic Yes

P3 Architect and
developer 72 30 Academic and

industrial No

P4 Architect and
developer 48 30 Academic and

industrial No

P5 Architect 48 24 Academic No

P6 Consultant and
developer 84 12 Academic and

industrial Yes

P7 External
contributor 5 5 Academic Yes

P8 External
contributor 30 30 Academic and

industrial No

P9 Consultant 84 18 Academic and
industrial Yes

P10 External
contributor 384 36 Academic and

industrial Yes

P11 External
contributor 24 18 Academic and

industrial Yes

Table 4.1: Participants pro�le – InterSCity case study.

Evaluation of the CharM

We invited the interviewees to evaluate the CharM. Some aspects investigated at this
stage were usefulness, ease of understanding, and coherence. In the following sections, we
describe the results of this evaluation.

The Uses of the CharM

Regarding usefulness, we asked the participants how much our model helped them
understand the platform’s architecture. The average score was 4.2, on a scale from 1
(Useless) to 5 (Very useful). As detailed in Figure 4.10a, nine respondents indicated that
the CharM is very useful (four – P1, P2, P9, and P11) or useful (�ve – P3, P5, P6, P7, and
10) for understanding the system architecture. Only the interviewees P4 and P8 indicated
that the model’s usefulness is intermediate.

Respondents P4 and P8 argued that for someone already familiar with the InterSCity
Platform, the CharM is not so useful for understanding its architecture. However, when
considering new members, these interviewees indicated that our model could be advanta-
geous and help them understand the system’s architecture. Interviewee P4 considers that
the CharM helps identify elements that compose the architecture that require attention
and possibly need maintenance. P4 also explained that our model could be adopted to
guide architectural evolution (at a high level of abstraction). Because they believe that
with the CharM, it is possible to discover di�erences between the services of architecture,
as well as identify services that could be divided. Nevertheless, they pondered that our
model does not help discover elements missing in the architecture.



4.1 | INTERSCITY CASE STUDY

47

0

0

2

5

4

Useless

Not very useful

Intermediary

Useful

Very useful

(a) Usefulness for understanding the
architecture.

1

0

0

4

6

Very difficult

Difficult

Intermediary

Easy

Very easy

(b) Ease of understanding the results.

0

0

0

4

7

Totally incoherent

Incoherent

Partially coherent

Coherent

Totally coherent

(c) Coherence of the architectural charac-
terization.

Figure 4.10: Evaluation of the CharM’s usefulness, ease of understanding, and coherence –

InterSCity case study.

From the point of view of interviewee P8, the CharM helps understand the relationship
between architecture elements, as well as identify couplings. Furthermore, P8 agrees with
P4 that our model can guide the process of architectural evolution and maintenance, and
facilitate the identi�cation of services that can be divided. P8 further stated that the CharM
was useful to con�rm previous intuitive knowledge that they already had.

During the interviews, we asked participants to indicate aspects in which the CharM
could be useful. In all, respondents indicated 18 uses for our model. We detailed this
result in Figure 4.11. Nine of the 11 participants responded that the CharM could help
“understand the architecture” (P1, P2, P3, P5, P6, P7, P9, P10, and P11) and to “guide the

architectural evolution in a high level of abstraction” (P1, P3, P4, P6, P7, P8, P9, P10, and
P11). It is worth mentioning that the interview protocol had questions directly related to
our model’s usefulness for the architecture’s evolution and understanding. Since we were
interested in investigating these two key uses in this case study.

We also asked participants if the CharM helped discover new information about the
architecture. Six participants con�rmed this use (P2, P4, P5, P7, P10, and P11). Nevertheless,
we veri�ed that the other �ve participants (P1, P3, P6, P8, and P9) indicated that the model
did not help discover new information. Among these interviewees, P1 and P8 explained that
despite this, the CharM was useful to con�rm their intuitive knowledge about the platform
architecture. Participants P3, P6, and P9 reported that they already had a deep knowledge
of the architecture, so they considered that the model did not add new information.



48

4 | MULTIPLE CASE STUDIES

#
 c

ita
tio

ns

Uses

7 citations
Identify maintenance points
(P1, P2, P3, P4, P6, P8, and

P9)

8 citations

4 citations

2 citations

3 citations
Ajudar novatos a compreender

a arquitetura
(P4, P7 e P8)

Explain the architecture
(P1, P3, and P6)

Ajudar novatos a compreender
a arquitetura
(P4, P7 e P8)

Discover patterns
(P11)

Identify things that
should be divided
(P4, P5, and P8)

Confirm intuitive knowledge
(P1 and P8)

Identify the importance
of each service

(P7 and P9)

Remember the architecture
(P3 and P5)

Ajudar novatos a compreender
a arquitetura
(P4, P7 e P8)

Help novices understand
the architecture
(P4, P7, and P8)

Discover differences
between the services

(P4, P5, and P9)

5 citations Identify couplings
(P2, P8, P9, P10, and P11)

Identify services size
(P2, P5, P7, P9, and P10)

6 citations Discover new information
(P2, P4, P5, P7, P10, and P11)

Understand relationships
(P2, P7, P8, P9, P10, and P11)

9 citations

Guide architectural evolution
(high level of abstraction)

(P1, P3, P4, P6, P7, P8, P9,
P10, and P11)

Understand the architecture
(P1, P2, P3, P5, P6, P7, P9,

P10, and P11)

1 citation
Discover information
about data storage

(P10)

Identify legacy
elements or connections

(P5)

Understand the architecture
organization (expert)

(P5)

Figure 4.11: Uses of the CharM – InterSCity case study.

Other uses of the CharM mentioned by more than half of the interviewees were: the
possibility of identifying maintenance points (seven - P1, P2, P3, P4, P6, P8, and P9); and
understanding relationships (six - P2, P7, P8, P9, P10, and P11). Participant P3 stated that,
although they consider that our model helps to understand the architecture and identify
points of evolution and maintenance, they believe that since the CharM adopts static
metrics, it would only be used sporadically.

We hierarchically organized the uses of the CharM mentioned during the interviews. It



4.1 | INTERSCITY CASE STUDY

49

is worth noting that during this case study, we investigated three key uses for our model:
understanding the architecture, discovering new information, and guiding architectural
evolution. From this, we identi�ed the secondary uses related to these key uses. The result
is illustrated in Figure 4.12.

Discover differences
between the services

Discover information
about data storage

Identify things that
should be divided

Identify the importance
of each service

Remember the architecture

Confirm intuitive 
knowledge

Explain the architecture

Identify services size

Identify couplings

Discover new 
information

Understand relationships

Guide architectural
evolution 

Understand the
architecture

Understand the architecture
organization (expert)

Identify legacy
elements or connections

Help novices understand 
the architecture

Discover patterns

Legend

Secondary useKey use

Identify maintenance 
points

Figure 4.12: Hierarchical organization of the uses of the CharM – InterSCity case study.



50

4 | MULTIPLE CASE STUDIES

Ease of Understanding the Results of the CharM

We also asked respondents about the ease of understanding the result generated by
the CharM. The average score given by participants was 4.3, on a scale from 1 (Very
di�cult) to 5 (Very easy). As detailed in Figure 4.10b, six respondents indicated that the
result generated by the CharM is very easy to understand (P1, P5, P6, P7, P8, and P9) and
four consider it easy (P2, P3, P4, and P10). Only interviewee P11 claimed that the result
generated by our model is di�cult to understand. However, P11 explained that we �rst
need to understand the microservice architectural style, which is complex. In order to,
then, we can be able to understand the data presented by the CharM. This is evidenced
in the following excerpt from the interview: “You must have a background in architecture

focused on microservices to understand the model, and even then, doubts can still arise”.

When evaluating the ease of the model, interviewees P8 and P9 highlighted that the
graphic elements of the CharM contributed a lot to the metrics’ understanding. This
opinion is evidenced in the following excerpts: P8: “[. . . ] the graphs presented are very

simple to understand”. P9: “[. . . ] the graphs you created were very easy to understand and

compare”.

Coherence of the Architectural Characterization

Participants were also invited to assess the coherence of the architectural characteriza-
tion obtained from the CharM. On a scale from 1 (Totally Incoherent) to 5 (Totally coherent),
the average score was 4.6. As detailed in Figure 4.10c, seven interviewees considered the
architectural characterization “totally coherent” with the reality they knew (P1, P2, P5, P7,
P9, P10, and P11). The other interviewees (P3, P4, P6, and P8) evaluated the characterization
as “coherent”.

Although the model result was evaluated as coherent, when considering the archi-
tectural elements, participant P6 indicated that they believe it is essential to add the
representation of the API Gateway and the Broker in the characterization. Participant P8
stated that they were surprised by the characterization coherence. P8 explained that they
did not believe the adopted metrics could generate such a precise result. The remaining
participants did not add comments on the characterization coherence.

Improvement Suggestions

During the interview, we asked participants to suggest improvements to our model.
Altogether, respondents presented 18 types of suggestions for improvement, which we
organized into four groups, illustrated in Figure 4.13.

Seven di�erent participants suggested presenting additional information in the model.
The improvement suggestion most cited by the interviewees (four - P1, P3, P4, and P5)
was to present more details about the services since it would complement the context
and contribute to the architectural understanding. Some of the additional information
cited were: the responsibility of the service, the role played (e.g., aggregator), and the
functional and non-functional requirements. Respondents also suggested providing more
details about the type of DBMS (Database Management Systems) (four - P4, P6, and P8)
used in the system, as well as the connections between services (two - P3 and P9).



4.1 | INTERSCITY CASE STUDY

51

Metrics collection

Classes and methods 
(P6 and P9)

Dynamics 
(P8, P9, and P10)

External dependency 
(P1, P5, and P10)

Help signal whether the
services are macro or micro 

(P9)

Lines of code 
(P6, P7, and P9)

Service cohesion 
(P3)

Additional information

About the connection 
between the services 

(P3 and P9)

About the services 
(P1, P3, P4, and P5)

About the type of DBMS 
(P4, P6, and P8)

Tests 
(P1 and P9)

Model explanation

Adjust the explanation 
of the coupling metric 

(P3 and P7)

Better explain the data 
source coupling dimension 

of the model 
(P3)

Better explain the size
dimension of the model 

(P3 and P6)

Define what is an operation 
(P3)

Define what is synchronous
and asynchronous 

(P2)

Add other architectural
elements 

(P6 and P9)

Visualization
Present complex elements 

in a larger size 
(P6)

Use colors to signal 
attention points 

(P6)

Figure 4.13: Improvement suggestions to the CharM – InterSCity case study.

Respondents also suggested collecting some metrics that they considered interesting
for the model. Respondents P8, P9, and P10 believe that the collection of dynamic metrics
can o�er a more comprehensive and accurate view of the system architecture, favoring
the identi�cation of attention points. Participants P1, P5, and P10 recommended collecting
metrics from external dependencies to obtain a more complete view of the coupling of
services. Respondents P6, P7, and P9 believe collecting line-of-code metrics could be
interesting. Other proposed metrics are related to classes, methods, and tests, as well as
cohesion and metrics for classifying a service into macro or micro.

Participants also suggested improvements to the architecture visualization. Respon-



52

4 | MULTIPLE CASE STUDIES

dents P6 and P9 indicated that it would be interesting to add the representation of elements,
such as Brokers and Gateways to the diagrams. Interviewee P6 also recommended di�er-
entiating more complex elements by size and using colors to signal attention points in the
architecture.

Furthermore, during the interviews, we mapped points that were confused during
the model explanation. We noticed that there was some di�culty in understanding the
coupling metrics. It was also necessary to resolve some doubts related to the size dimension,
as well as the dimension of data sources coupling. An explanation of the concept adopted
for operation and synchronous and asynchronous communication in the context of the
model was also requested.

Based on the suggestions received, we created a new version of the CharM that
incorporated some of the improvements indicated by the interviewees. We added new
information related to services and their couplings. We also made improvements to the
metrics collected, and we welcome the suggestion to add the external coupling metric.
Nonetheless, we did not add other suggested metrics, such as dynamics, tests, and lines-of-
code, since we consider these outside the scope of this research. Furthermore, we accepted
all suggestions for improvements regarding the explanation of the model and some related
to the results visualization.

4.1.4 Threats to Validity
This section addresses the main threats to the validity of this case study.

Internal: There may have been failures in interpreting the documents or communi-
cating with respondents. Besides that, the documentation analyzed to characterize the
architecture of the InterSCity Platform may be out of date. To mitigate the possible problem
of documentation inconsistency, we analyzed the platform source code, the documentation
available in the repository, and related scienti�c work. During the interviews, the develop-
ers were asked about the coherence of the characterization. To mitigate communication
and interpretation failures, part of the data collection was carried out and discussed with
the help of another researcher in the software architecture area. Furthermore, we sought
to con�rm with the interviewees the interpretation of what was said. Another adopted
strategy was that after preliminary analyses, the results were discussed with the advisor
and co-advisor of this thesis.

External: The pro�le of the interviewees can interfere with the evaluation results
since professionals with more experience have a more profound knowledge of software
architecture. However, the heterogeneity of pro�les is desired because it is possible to
verify the model’s usefulness for di�erent professionals. That is, from professionals with
detailed architecture knowledge to beginners in the project. Thus, we could replicate
this study with development teams from other service-based systems. Another relevant
point is that the InterSCity Platform is microservices-based. The trade-o�s related to
this architectural style are still being investigated and are therefore not fully or widely
known. Thus, we believe that this fact can in�uence the interviewees’ perception of the
architectural decisions discussed.

Construct: We discussed the best way to formulate the interview questions to reduce



4.2 | INDUSTRY CASE STUDY

53

possible biases. Furthermore, we carried out a pilot test with a �rst interview. Based on
this test, we reviewed the questions and made some adjustments. An important issue to
highlight is that, during the interviews, the interviewer could explain and resolve any
doubts if the interviewee did not correctly understand the main meaning of any question.
Another limitation is that the scope of this case study is academic. Until now, the InterSCity
Platform has not been deployed in a production environment. Thus, the InterSCity was just
used in simulation and restricted academic/scienti�c scenarios. Despite these limitations,
we consider the studied system appropriate for conducting a �rst case study and collecting
relevant insights.

4.2 Industry Case Study

We carried out the second case study in Company A (�ctitious name for con�dentiality
reasons). Company A is an online handicraft marketplace founded in 2008. In 2009, it
reached the mark of 100,000 products sold and 10,000 active sellers. As of 2022, it has over
7 million products announced, produced by over 100,000 active sellers.

According to the software engineers team, some of the most relevant quality re-
quirements for Organization A’s systems are scalability, maintainability, usability (UX),
security, availability, resilience to failures, testability, and continuous delivery. In 2018, the
Information Technology (IT) team began a process of migrating the software architecture
from a monolithic to a service-based style. One of the main motivations for starting such
migration was the di�culty of working (maintaining and evolving) with the monolith.
Furthermore, it was necessary to increase system performance and team productivity.
Thus, we chose Company A’s marketplace for this case study because it is in the process
of architectural style migration (monolith to service-based). Besides that, the IT team was
willing to collaborate with this study.

4.2.1 Research Design
To achieve the objective of this thesis and answer the RQs 1, 2, and 3, during the

industry case study, we followed the eight steps presented in Figure 4.14. This case study
ran from December 2020 to July 2021.

Before starting this case study, we met with the CTO (Chief Technology O�cer) and
a software engineer from Company A. During this meeting, we presented the research
objectives, the planned investigation roadmap, and the expected results. In the end, we
obtained authorization to start our case study and de�ned the list of employees who would
be interviewed during the �rst step.

The �rst step goal was to obtain an overview of Company A’s systems and identify
the main contexts. Thus, between December 2020 to February 2021, we interviewed 12
team leaders (11 men and 1 woman) previously indicated by the CTO. The interviews
were conducted via Google Meet. On average, each interview lasted 1 hour. In all, the 12
interviews lasted 12 hours and 10 minutes.

We started the interviews by brie�y explaining the research objectives and the in-
terview script. The interview protocol (Appendix D.3) was composed of three sets of



54

4 | MULTIPLE CASE STUDIES

Data collection: 
Semi-structured interviews -
System architecture overview

Data collection: 
Semi-structured interviews - 

Metric collection

Data analysis: 
Architecture characterization

based on the CharM

Data collection: 
Semi-structured interviews - 

CharM's evaluation

Data analysis: 
Open and axial coding - 

CharM's evaluation

Data analysis: 
System view containing the 

main contexts

Data collection: 
Semi-structured interviews - 

Sub-system architecture overview

Data analysis: 
Sub-system view containing the

main components

Alignment meeting

Alignment meeting

Alignment meeting

Alignment meeting

Figure 4.14: Industry case study steps.

questions related to (i) respondent’s experience, (ii) respondent’s perception of the com-
pany’s systems architecture, and (iii) respondent’s perception of the architectural migration
process. With Company A and the interviewees’ consent, all interviews were recorded.
Besides the interviews, we also analyzed a series of architecture documents shared by the
company.

Following, we analyzed the data collected during the �rst step and discussed the
preliminary results with the software engineer, the same one who participated in the �rst
meeting. With this, we improved the generated artifacts and obtained an overview of
Company A’s systems architecture. Furthermore, we de�ned the context in which the
CharM would be applied to do its evaluation. We present the obtained results of this step
in Section 4.2.2.

Besides obtaining an overview of the system architecture and mapping its main con-
texts, the previous step allowed us to identify that the architectural migration process
started on the Search System. Therefore, we delimited this case study to such a system
since, among the analyzed contexts, we considered it the most suitable to apply the CharM
due to the variety of services, providing a wider adoption of our model.

Thus, in the third step of this case study, we interviewed three experienced members
(all male) of the team of Search System. The objective was to obtain an overview of such
a system and identify its main components. The interviews took place in February 2021.
As in the �rst step, the interviews were conducted via Google Meet. On average, these
interviews lasted 1 hour and 18 minutes. In all, the three interviews lasted 3 hours and 54
minutes. In this step, the interview protocol (Appendix D.4) was composed of two sets of
questions related to (i) the respondent’s experience and (ii) the respondent’s perception of



4.2 | INDUSTRY CASE STUDY

55

the Search System architecture. All interviews were also recorded after Company A’s and
interviewees’ consent.

In the fourth step, we analyzed the data collected from the previous interviews. This
data revealed the components and the structure of the Search System. Fundamental in-
formation for planning and executing the next step, where the CharM metrics were
collected.

In April 2021, we presented the obtained results to the CTO, the product manager, the
tech lead of information retrieval, and a software engineer of Company A. During this
meeting, we discussed the results and their relevance to the company, as well as aligned
the next steps of the case study.

One of the goals of the �fth step was to collect the CharM metrics manually. For
this, during May 2021, we interviewed six members (all male) of the Search System team.
Di�erent from previous steps, in this one, the professionals were interviewed in pairs. Only
one of the interviews was individual. This strategy was adopted to reduce the risk of failures
in the metrics collection process. Thus, in all, the six professionals were interviewed, in a
total of four sections (three sections with two professionals and a single one with only
one professional). As in the previous steps, the interviews took place via Google Meet. On
average, each interview section lasted 1 hour and 6 minutes. In all, the four interviews
sections lasted 3 hours and 39 minutes. The interviews of this step were also recorded
after obtaining the consent of Company A and the interviewees.

The questions asked during the interviews are directly related to the CharM metrics.
To answer each question of the interview protocol (Appendix D.5), team members accessed
the necessary architectural documents, source code, and system con�guration �les. The
author of this thesis followed and discussed the entire process of looking for and verifying
the requested data. After the six interviews, we held a moment to discuss and resolve
doubts with a member appointed by the team.

In the next step, based on the data collected and following the dimensions and metrics
of the CharM, we characterized the architecture of the Search System. The result of this
characterization is detailed in Section 4.2.3.

In June 2021, we held a new meeting to share and discuss the obtained results with the
company. The CTO, the chief architect, the product manager, the tech lead of information
retrieval, and a software engineer from Company A participated in this meeting. During
this meeting, we also aligned the last steps of the case study, which focused on evaluating
the CharM.

After completing the characterization of the Search System architecture, we collected
data to evaluate the CharM. For this, we conducted semi-structured interviews. We invited
six members (5 men and 1 woman), with di�erent experience levels, of the Search System

team to evaluate the result generated by the CharM. These members were indicated by the
participants of the last results-sharing meeting. Each interviewee received the interview
protocol (Appendix D.6) and a video explaining the CharM and the characterization of the
Search System architecture.

We started the interviews by brie�y explaining the research objectives and guidelines.



56

4 | MULTIPLE CASE STUDIES

The interview script was composed of three sets of questions: (i) the respondent’s experi-
ence, (ii) evaluation of the CharM and the architectural characterization generated from
it, and (iii) possibilities of architectural evolution based on the result generated by the
CharM.

The six interviews took place in July 2021 and were conducted and recorded remotely
via Google Meet after Company A and respondents consented. On average, the interviews
lasted 38 minutes. In all, the six interviews lasted 3 hours and 51 minutes.

As in the InterSCity case study, here we analyzed the data collected from the six
interviews using open and axial coding procedures (Corbin and A. Strauss, 2015; Stol
et al., 2016). We started by applying the open coding procedure, from which we mapped
some use categories of the CharM. For this, we performed an iterative process of inductively
coding the transcription of one interview at a time. Following, we did the axial coding,
where we further analyzed and reviewed the interviews to identify relationships between
the categories that emerged from the open coding analysis. The author of this thesis
conducted the preliminary analyses and multiple meetings with two other experienced
researchers (advisor and co-advisor of this thesis) to discuss and increase the results’
reliability and mitigate bias (Patton, 2014). Furthermore, throughout the coding process,
we adopted the constant comparison method (Glaser and A. L. Strauss, 2017), whereby
we continuously compare the results of an interview with those obtained in the previous
ones.

Due to con�dentiality reasons, we do not share the interviews’ transcription. However,
we made it publicly the code book available (Appendix D.7).

In December 2021, we presented the �nal results of the case study to Company A’s
software engineering team. At the time, more than 60 members participated. The goal of this
meeting was to share the main results found. In the end, we received interesting feedback,
such as that the characterization generated from the CharM fostered discussions about
software architecture and motivated the investigation of attention points and architectural
evolutions in the Search System.

During the seven months of this case study, we conducted 26 interviews, in which
we spoke with 18 di�erent people 5 (16 men and 2 women). In all, were 23 hours and 35
minutes of interviews. In addition, we shared the research progress through four alignment
meetings with managers, leaders, and other company employees.

The sample of participants in this case study is non-probabilistic and combines conve-
nience, purposive, and referral-chain types (Baltes and Ralph, 2020). Furthermore, our
sample size is aligned with evidence from the anthropology �eld, which indicates that
10-20 knowledgeable people are su�cient to uncover and understand the core categories
in any study of lived experience (Bernard, 2011).

5Detailed list of interviewees is available at:
https://docs.google.com/spreadsheets/d/1hKq71rmWQknrrLJsqkcM9F3xfJdrrAH1q59uFeftLy0/edit?usp=sharing

https://docs.google.com/spreadsheets/d/1hKq71rmWQknrrLJsqkcM9F3xfJdrrAH1q59uFeftLy0/edit?usp=sharing


4.2 | INDUSTRY CASE STUDY

57

4.2.2 Overview of the Company A’s Systems

As already mentioned, Company A is an online handicraft marketplace. Based on the
interviews with the 12 team leaders, we mapped that for such a business to work well,
there is a set of eight fundamental systems. According to the interviewees, one of these
eight systems is considered a monolith and the others follow a service-based approach.
This scenario exists because the systems are going through an architectural migration
(from the monolithic to the service-based style). One of the primary motivations for this
migration was the di�culty of working with the Monolith.

Although there has been a reduction in the development �ow in Monolith, the main
business rules are still within it. This system is the main integration point among the other
seven systems. In addition, it has a robust relational database, which is also manipulated
by the other seven systems and is used as a query source for the data enrichment system.
The Monolith is also the only one that interacts directly with the old front-end rendering
system.

Each of the other seven systems corresponds to speci�c contexts: Search, Recommen-

dation, Categories, Payment, Shipping, Collection, and Marketing. During the interviews,
we noticed that the Search, Recommendation, and Categories systems are considered more
mature in service-based development. These three systems are also di�erent from the
others since they interact with a set of machine learning models. Search System stands
out the most among the seven service-based systems since it was the �rst context to be
separated from the Monolith and is currently formed by a larger set of heterogeneous
services. For this reason, the Search System is the only one among the service-based systems
that interacts directly with the new front-end services and the API gateway.

Communication between the eight systems and other components occurs asyn-
chronously using the Message Broker, synchronously, and through a data source. Message
Broker is an essential technological component that enables the communication between
the systems and from the systems with external services, data lake, data warehouse, and
data enrichment system. Another crucial technological component is the API gateway,
created as soon as the architectural migration process started, aiming to help in the
Monolith strangulation process, being the front door to interact with Company A’s systems.
Figure 4.15 shows an architecture overview of Company A’s systems.

After understanding Company A’s main systems, we delimited our case study to the
Search System. This system is one of the service-based systems with greater maturity and
a greater number of heterogeneous services. Therefore, it is suitable for the application
and evaluation of the CharM. Thus, in the next section, we present the characterization of
the architecture of Company A’s Search System based on the CharM.

4.2.3 Characterization of the Architecture of the Search
System

To characterize the architecture of the Search System, we analyzed some documents
provided by Company A and carried out a guided exploration of the source code of the
eight services through interviews with the team members. As in the InterSCity case study,



58

4 | MULTIPLE CASE STUDIES

Legend

Synchronous interaction

Message 
 

broker

Web application

Buyer 
Android application

Seller 
iOS application

Asynchronous interation

Technological component

API 
 

gateway

Data read

Data write

Service-based back-end system

Monolithic system

 
Monolith

Data source

Shipping 
system 
(SBS) 

Data lake

Data lake

Data warehouse

Seller 
Android application

Buyer 
iOS application

Monolith's 
relational
database

Data warehouse

Bots web crawlers

Machine
learning 
models

Set of machine learning models

Service-based front-end system

Front-end 
native apps - BFF 

(new) 

Front-end 
web 

(new) 

Web front-end
renderer 

(old) 

Search 
system 
(SBS) 

 

Recommendation
system 
(SBS) 

Categories 
system 
(SBS) 

Payment 
system 
(SBS) 

Collections 
system 
(SBS) 

Marketing 
system 

Data
enrichment 

system

External 
services 

Set of external services

Figure 4.15: Overview of Company A’s systems architecture.

the metrics collected were arranged in rulers to illustrate the service’s pro�le in each of
the CharM dimensions. The scales used in the rulers of each dimension take data from the
Search System itself as a reference.

The ruler of the size dimension ranges from 0 to 26 (maximum number identi�ed of
services operations). The scale used in the data source, synchronous, and asynchronous
coupling dimensions varies according to the analyzed perspective. Considering the internal
perspective, the scale ranges from 0 to 8 (number of internal services on the Search System).
The ruler of the external perspective ranges from 0 to 4 (number of external identi�ed
components). Withal, the values of the total perspective ruler vary from 0 to 12 (sum of
the number of internal services and external components). It is important to note that
the ruler for each perspective is exhibited only if there are values and components for
analysis. Based on the 5Cℎ version of the CharM, in this section, we �rst present the services’
characterization, then the Search System’s characterization.



4.2 | INDUSTRY CASE STUDY

59

Characterization of the Service A: It has a single responsibility. It is one of the
services that does not expose operations. This service does not access any data sources
and has no synchronous coupling. It is the only service with asynchronous importance
and dependency, publishing 1 topic to the message queue, which is consumed by the
Service B. And consuming 1 topic from the message queue, published by the technology
component Debezium (Change Data Capture Platform). Figure 4.16 illustrates the Service
A characterization.

Internal perspective

Size: 
   0 operations

Data source coupling:  
   0 Data sources 

   Internal 
      0 exclusive DS 
      0 shared DS 
      0 write-only operation 
      0 read-only operation 
      0 read and write operations 

Synchronous coupling: 

   Internal 
      Importance degree: 0 
      Dependence degree: 0 

   External 
      Importance degree: 0 
      Dependence degree: 0 

   Total 
      Importance degree: 0 
      Dependence degree: 0 

Asynchronous coupling:   

   Internal 
      Importance degree: 1 
      Dependence degree: 1 

   External 
      Importance degree: 0 
      Dependence degree: 0 

   Total 
      Importance degree: 1 
      Dependence degree: 1 

260

Operations: 0

80

Internal dependence degree: 1

80

Internal importance degree: 1

Total perspective

Total importance degree: 0

120

Total dependence degree: 0

120

Figure 4.16: Service A characterization.



60

4 | MULTIPLE CASE STUDIES

Characterization of the Service B: It has a single responsibility. It is one of the
services that does not expose operations. Access 1 data source, performing write-only
action. However, it shares access to this data source with 4 other services (Service C, Service
F, Service G, and Service H). It has no synchronous coupling. It is one of the few services
that performs asynchronous interactions, consuming 1 topic from the message queue,
published by the Service A. Figure 4.17 illustrates the Service B characterization.

Internal perspective

Size: 
   0 operations

Data source coupling:  
   1 Data source 

   Internal 
      0 exclusive DS 
      1 shared DS 
      1 write-only operation 
      0 read-only operation 
      0 read and write operations 

Synchronous coupling: 

   Internal 
      Importance degree: 0 
      Dependence degree: 0 

   External 
      Importance degree: 0 
      Dependence degree: 0 

   Total 
      Importance degree: 0 
      Dependence degree: 0 

Asynchronous coupling:   

   Internal 
      Importance degree: 0 
      Dependence degree: 1 

   External 
      Importance degree: 0 
      Dependence degree: 0 

   Total 
      Importance degree: 0 
      Dependence degree: 1 

260

Operations: 0

Share this DS with other: 4 services
Data source: datasourse-bcfgh 

80

W-O

Total perspective

Total importance degree: 0

120

Total dependence degree: 0

120

Internal perspective

Internal importance degree: 0

80

80

Internal dependence degree: 1

Figure 4.17: Service B characterization.



4.2 | INDUSTRY CASE STUDY

61

Characterization of the Service C: It has a single responsibility. It is one of the
services that does not expose operations. Access 1 data source, performing write-only
action. However, it shares access to this data source with 4 other services (Service B, Service
F, Service G, and Service H). It has no synchronous coupling. It is one of the few services
that performs asynchronous interactions, consuming 1 topic from the message queue,
which is published by the Debezium technological component. Figure 4.18 illustrates the
Service C characterization.

Internal perspective

Internal perspective

Size: 
   0 operations

Data source coupling:  
   1 Data source 

   Internal 
      0 exclusive DS 
      1 shared DS 
      1 write-only operation 
      0 read-only operation 
      0 read and write operations 

Synchronous coupling: 

   Internal 
      Importance degree: 0 
      Dependence degree: 0 

   External 
      Importance degree: 0 
      Dependence degree: 0 

   Total 
      Importance degree: 0 
      Dependence degree: 0 

Asynchronous coupling:   

   Internal 
      Importance degree: 0 
      Dependence degree: 1 

   External 
      Importance degree: 0 
      Dependence degree: 0 

   Total 
      Importance degree: 0 
      Dependence degree: 1 

260

Operations: 0

Share this DS with other: 4 services
Data source: datasourse-bcfgh 

80

Internal importance degree: 0

80

80

Internal dependence degree: 1

W-O

Total perspective

Total importance degree: 0

120

Total dependence degree: 0

120

Figure 4.18: Service C characterization.

Characterization of the Service D: It has a single responsibility. It is one of the
services with only 1 operation. Access 8 data sources. 7 of which are exclusive, and 1 is
shared with the Service H. It performs read and write actions in 1 data source and performs
read-only action on the other 7 data sources. It has no synchronous coupling. It is one of
the few services with asynchronous coupling, consuming 1 topic from the message queue,
published by the Service H. Figure 4.19 illustrates the Service D characterization.



62

4 | MULTIPLE CASE STUDIES

Internal perspective

Internal perspective

Size: 
   1 operation

Data source coupling:  
   8 Data sources 

   Internal 
      7 exclusive DS 
      1 shared DS 
      0 write-only operation 
      7 read-only operation 
      1 read and write operations 

Asynchronous coupling:   

   Internal 
      Importance degree: 0 
      Dependence degree: 1 

   External 
      Importance degree: 0 
      Dependence degree: 0 

   Total 
      Importance degree: 0 
      Dependence degree: 1 

80

Share this DS with other: 0 services
Data source: datasourse-d7 

Synchronous coupling: 

   Internal 
      Importance degree: 0 
      Dependence degree: 0 

   External 
      Importance degree: 0 
      Dependence degree: 0 

   Total 
      Importance degree: 0 
      Dependence degree: 0 

Share this DS with other: 1 service
Data source: datasourse-dh 

80

Share this DS with other: 0 services
Data source: datasourse-d6 

80

Share this DS with other: 0 services
Data source: datasourse-d5 

80

Share this DS with other: 0 services
Data source: datasourse-d4 

80

Share this DS with other: 0 services
Data source: datasourse-d3 

80

Share this DS with other: 0 services
Data source: datasourse-d2 

80

Share this DS with other: 0 services
Data source: datasourse-d1 

80

R-O

R-O

R-O

R-O

R-O

R-O

R-O

R-W

Total perspective

Total importance degree: 0

120

Total dependence degree: 0

120

260

Operations: 1

Internal importance degree: 0

80

80

Internal dependence degree: 1

Figure 4.19: Service D characterization.



4.2 | INDUSTRY CASE STUDY

63

Characterization of the Service E: It has a single responsibility. It is one of the
services with only 1 operation. Access 2 exclusive data sources, performing read-only
action. It has synchronous coupling only with the Monolith. It has no asynchronous
coupling. Figure 4.20 illustrates the Service E characterization.

Internal perspective

Size: 
   1 operation

Data source coupling:  
   2 Data sources 

   Internal 
      2 exclusive DS 
      0 shared DS 
      0 write-only operation 
      2 read-only operation 
      0 read and write operations 

Operations: 1

260

Synchronous coupling: 

   Internal 
      Importance degree: 0 
      Dependence degree: 0 

   External 
      Importance degree: 1 
      Dependence degree: 0 

   Total 
      Importance degree: 1 
      Dependence degree: 0 

Asynchronous coupling:   

   Internal 
      Importance degree: 0 
      Dependence degree: 0 

   External 
      Importance degree: 0 
      Dependence degree: 0 

   Total 
      Importance degree: 0 
      Dependence degree: 0 

Share this DS with other: 0 services
Data source: datasourse-e2 

80

Share this DS with other: 0 services
Data source: datasourse-e1 

80

R-O

R-O

Total perspective

120

Total importance degree: 0

120

Total dependence degree: 0

External perspective

External importance degree: 1

40

External dependence degree: 0

40

Figure 4.20: Service E characterization.

Characterization of the Service F: It has a single responsibility. It is one of the
services with only 1 operation. Access 3 data sources, 2 exclusive and 1 shared with 4
other services (Service B, Service C, Service G, and Service H). It has no synchronous
dependence. However, its operation is invoked by the Service G and the Service H. It has
no asynchronous coupling. Figure 4.21 illustrates the Service F characterization.



64

4 | MULTIPLE CASE STUDIES

Internal perspective

Size: 
   1 operation

Data source coupling:  
   3 Data sources 

   Internal 
      2 exclusive DS 
      1 shared DS 
      0 write-only operation 
      2 read-only operation 
      1 read and write operations 

Operations: 1

260

Synchronous coupling: 

   Internal 
      Importance degree: 2 
      Dependence degree: 0 

   External 
      Importance degree: 0 
      Dependence degree: 0 

   Total 
      Importance degree: 2 
      Dependence degree: 0 

Share this DS with other: 4 services
Data source: datasourse-bcfgh 

80

Share this DS with other: 0 services
Data source: datasourse-f2 

80

Share this DS with other: 0 services
Data source: datasourse-f1 

80

R-W

Internal perspective

R-O

R-O

Internal importance degree: 2

80

Internal dependence degree: 0

80

Asynchronous coupling:   

   Internal 
      Importance degree: 0 
      Dependence degree: 0 

   External 
      Importance degree: 0 
      Dependence degree: 0 

   Total 
      Importance degree: 0 
      Dependence degree: 0 

Total perspective

120

Total importance degree: 0

120

Total dependence degree: 0

Figure 4.21: Service F characterization.

Characterization of the Service G: It has a single responsibility. It is the second-
biggest service but has only 2 operations. Access 1 data source, performing read-only
action. However, it shares access to this data source with 4 other services (Service B,
Service C, Service F, and Service H). Considering the synchronous coupling, internally, it
depends on the Service F. And externally, the Monolith invokes it. It has no asynchronous
coupling. Figure 4.22 illustrates the Service G characterization.



4.2 | INDUSTRY CASE STUDY

65

Internal perspective

Size: 
   2 operations

Data source coupling:  
   1 Data source 

   Internal 
      0 exclusive DS 
      1 shared DS 
      0 write-only operation 
      1 read-only operation 
      0 read and write operations 

Synchronous coupling: 

   Internal 
      Importance degree: 0 
      Dependence degree: 1 

   External 
      Importance degree: 1 
      Dependence degree: 0 

   Total 
      Importance degree: 1 
      Dependence degree: 1 

260

Operations: 2

Share this DS with other: 4 services
Data source: datasourse-bcfgh 

80

Internal dependence degree: 1

80

External perspective

External importance degree: 1

40

External dependence degree: 0

40

Total perspective

R-O

80

Internal importance degree: 0

120

Total importance degree: 1

120

Total dependence degree: 1

Asynchronous coupling:   

   Internal 
      Importance degree: 0 
      Dependence degree: 0 

   External 
      Importance degree: 0 
      Dependence degree: 0 

   Total 
      Importance degree: 0 
      Dependence degree: 0 

Total perspective

120

Total importance degree: 0

120

Total dependence degree: 0

Internal perspective

Figure 4.22: Service G characterization.



66

4 | MULTIPLE CASE STUDIES

Characterization of the ServiceH: It has 16 responsibilities and is the biggest service
in the system, with 26 operations. Access 7 data sources by performing read-only action. 5
data sources are exclusive, but it shares the other 2. One of these data sources is shared
with 4 di�erent services (Service B, Service C, Service F, and Service G) and another with 1
service (Service D). Regarding synchronous coupling, it is the service with the highest total
(internal and external) dependence and importance. Furthermore, it has a high coupling
(external) with the Monolith since 23 of its operations are invoked by this system. It is
one of the few services that performs asynchronous interactions, publishing 1 topic to the
message queue, which is consumed by the Service D. Figure 4.23 illustrates the Service H
characterization.



4.2 | INDUSTRY CASE STUDY

67

Data source coupling:  
   7 Data sources 

   Internal 
      5 exclusive DS 
      2 shared DS 
      0 write-only operation 
      7 read-only operation 
      0 read and write operations 

Share this DS with other: 4 services
Data source: datasourse-bcfgh 

80

Share this DS with other: 1 service
Data source: datasourse-dh 

80

Share this DS with other: 0 services
Data source: datasourse-h2 

80

Share this DS with other: 0 services
Data source: datasourse-h4 

80

Share this DS with other: 0 services
Data source: datasourse-h5 

80

Share this DS with other: 0 services
Data source: datasourse-h1 

80

Share this DS with other: 0 services
Data source: datasourse-h3 

80

R-O

R-O

R-O

R-O

R-O

R-O

R-O

Size: 
   26 operations

Operations: 26

260

Asynchronous coupling:   

   Internal 
      Importance degree: 1 
      Dependence degree: 0 

   External 
      Importance degree: 0 
      Dependence degree: 0 

   Total 
      Importance degree: 1 
      Dependence degree: 0 

Internal perspective

Internal dependence degree: 0

80

Internal importance degree: 1

80

Synchronous coupling: 

   Internal 
      Importance degree: 0 
      Dependence degree: 1 

   External 
      Importance degree: 3 
      Dependence degree: 1 

   Total 
      Importance degree: 3 
      Dependence degree: 2 

Internal perspective

Internal importance degree: 0

80

Internal dependence degree: 1

80

External perspective

External importance degree: 3

40

External dependence degree: 1

40

Total perspective

Total importance degree: 3

120

Total dependence degree: 2

120

Internal perspective

Figure 4.23: Service H characterization.



68

4 | MULTIPLE CASE STUDIES

After mapping and understanding the pro�le of each eight services, we could char-
acterize the architecture of the Search System. As in the services’ characterization, we
arranged the collected metrics in rules. The rules of the size and data source dimensions
have a scale ranging from 0 to 8 (number of system services). The scale used in the rules of
the synchronous and asynchronous coupling dimensions ranges from 0 to 100 to represent
the percentage of each type of communication.

Characterization of the Search System: When considering the number of services
per module, it can be considered a small service-oriented system since each module is com-
posed of a single service. When analyzing the number of operations, the biggest service is
the Service H, with 26 exposed operations, while the second-biggest service (Service G) has
only 2 operations. The system has 18 data sources, 2 of which are shared between di�erent
internal services. One of these data sources is shared by 5 services. Approximately 66.6%
of interactions between the services are synchronous. On the other hand, approximately
33.3% of interactions between the services are asynchronous. Figure 4.24 illustrates the
characterization of the architecture of the Search System, based on the CharM dimensions.
Figure 4.25 presents an overview of the system architecture, containing the main structural
elements analyzed with the CharM.

80

Service per module: 1

Data source coupling:  
   18 data sources 

   Internal 
      16 exclusive DS 
      2 shared DS 

Services that share the DS datasourse-bcfgh: 5

80

80

Services that share the DS datasourse-dh: 2

Size: 
   8 modules 
   8 services 
   1 services per module 

Synchronous coupling: 

   Internal 
      Interactions: 2 

   External 
      Interactions: 6 

   Total 
      Interactions: 8 

1000

% async interactions: 33.3Asynchronous coupling:   

   Internal 
      Interactions: 4 

   External 
      Interactions: 0 

   Total 
      Interactions: 4 

1000

% sync interactions:66.6

Figure 4.24: Search System characterization.

Appendix F complements the characterization of the Company A’ Search System and
its services through visualizations that consider the di�erent CharM dimensions, present
di�erent perspectives, and facilitate comparisons.



4.2 | INDUSTRY CASE STUDY

69

Other contexts 

    Search system (Production environment)   

Service H

Service E

Service G

Service F

Service AService B

Service C

Service D

Change data
capture
platform 

(Debezium)

Search engine (Solr) 
 

datasource-h1

datasourse-bcfgh 

datasource-h5

datasource-h4

datasource-h3

datasource-h2

datasourse-f1 

datasourse-f2 
datasourse-e2 

datasourse-e1 

datasourse-dh

datasourse-d1 

datasourse-d2 

datasourse-d3 

datasourse-d4 

datasourse-d5 

datasourse-d6 

datasourse-d7 

1

1

1

1

1

1

Monolith

23

2

1

Service J

3

Service I

1

Service K

1

Data processing
pipeline 

   

Datalake processing

   

Data import 

Data lake
Job of 

ML Model

Legend

Technological component Service Data source Synchronous interaction 
(sender -> receiver)

Asynchronous interaction 
(publisher -> subscriber)

Data read Data writeModule

Figure 4.25: Overview of the Search System architecture (notation inspired by Merson and Jospeh

Yoder (2019)).



70

4 | MULTIPLE CASE STUDIES

4.2.4 Evaluation Results

Participants Pro�le

Six Company A employees evaluated the CharM. The time of experience (self-declared)
in the IT area of the interviewees varies from 3 to 19 years (10 years on average). When
asked about their degree of experience with software architecture 6, one considered them
self an advanced beginner, two declared themselves competent, two others as pro�cient,
and one as an expert. Their self-declared time of experience with service-based architecture
ranges from 2 to 6 years (4 years on average). Related to their performed role, one declared
to be a chief architect, four software engineers, and one group leader. Respondents were
also asked how much they knew about the architecture of the Search System

7. On a �ve-
point scale ranging from very low to very high, three considered that they have median
knowledge, two reported that they have a high degree of knowledge of the architecture
of this system, and two others stated that they have a very high degree of knowledge.
Table 4.2 details the pro�le of professionals who evaluated the CharM.

Participant ID Role Experience in IT
area (years)

Experience with
Software Archtecture

Experience with
SBA (years)

Knowledge about the Search
System architecture

P3 Software engineer 18 Competent 6 Very high
P12 Group leader 8 Proficient 3 Median
P13 Software engineer 13 Proficient 6 Very high
P15 Software engineer 3 Competent 2 High
P17 Software engineer 4 Advanced beginner 2 Median
P18 Chief architect 19 Expert 6 Median

Table 4.2: Participants pro�le – Industry case study.

Evaluation of the CharM

As in the �rst case study, we asked respondents to evaluate the CharM’s usefulness,
its ease of understanding, and the coherence of its result. However, unlike the InterSCity
case study, we asked participants to evaluate separately the ease of understanding the
dimensions and the result generated by the model. In the following sections, we describe
the results of this assessment.

6We adopted the �ve stages of skill acquisition proposed by Dreyfus et al. (1986). Thus, in the interviews
we de�ned this �ves stages as follows: novice - I understand the concept of software architecture, but I
have never made architectural decisions in real environments; advanced beginner - I have experience in real
scenarios and have already contributed to some architectural decision-making, but without much con�dence;
competent - I have already contributed to some architectural decision-making in di�erent contexts and real
scenarios, but I still have some di�culties; pro�cient - daily I make decisions related to software architecture
consciously and with a good degree of con�dence; and expert - I deal with di�erent computer systems with
di�erent architectures, and I can make decisions con�dently and without signi�cant di�culties.

7We adopted the following �ve-point Likert scale for the interviewees to indicate their level of knowledge
about architecture: very low - I understand the purpose of this system, but I do not know its architecture;
low - I know a little about the architecture of this system (I know about the existence of some services), but I
have not had the opportunity to work in practice yet; average - I know the architecture of this system (not
in detail) and I have already had the opportunity to work on some services; high - I know the architecture of
this system and I have had the opportunity to work on most of its services; and very high - I work with this
system daily and am very familiar with the architecture and services that comprise it.



4.2 | INDUSTRY CASE STUDY

71

The Uses of the CharM

Using a scale from 1 (useless) to 5 (very useful), we asked participants how much our
model helped them understand the architecture of the Search System. The average score
obtained was 4.5. As detailed in Figure 4.26a, �ve respondents indicated that the CharM
was very useful (four – P3, P12, P15, and 17) or useful (one – P18) for understanding
the system architecture. Only interviewee P13 considered the usefulness of the model
intermediary for this task.

0

0

1

1

4

Useless

Not very useful

Intermediary

Useful

Very useful

(a) Usefulness for understanding the
architecture.

0

0

0

1

5

Very difficult

Difficult

Intermediary

Easy

Very easy

(b) Ease of understanding the dimensions.

0

0

0

3

3

Very difficult

Difficult

Intermediary

Easy

Very easy

(c) Ease of understanding the results.

0

0

1

0

5

Totally incoherent

Incoherent

Partially coherent

Coherent

Totally coherent

(d) Coherence of the architectural charac-
terization.

Figure 4.26: Evaluation of the CharM’s usefulness, ease of understanding the dimensions, ease of

understanding the results, and coherence – Industry case study.

P13 argued that they were thoughtful when they noticed that, in the characterization
generated by the CharM, three services (A, B, and C) of the Search System did not have any
operations. They commented that they understand that the metric “number of operations”

of the Size dimension of the model only considers exposed endpoints. However, they believe
that it would be valuable to expand the concept of “operation” used in the context of the
CharM, embracing other types. Despite this re�ection, P13 considered that our model
was very useful for understanding the architecture in a macro way and could support the
onboarding process of new team members.

We then asked the interviewees, in a broader way, what could the usefulness of the
CharM be. As illustrated in Figure 4.27, in all, 24 uses were indicated by them. Among
these, 14 were also mentioned in the �rst case study. The most cited uses of the CharM
in this second case study were “understanding architecture” and “guiding architectural

evolution at a high level of abstraction”, mentioned by all six interviewees. Considering



72

4 | MULTIPLE CASE STUDIES

these uses, it is worth highlighting some excerpts from the interviews. P3 stated the
following “In systems like this, where there are several components, several services, and

interactions between them[. . . ] The model presents a very nice view of things that I, really,

didn’t pay attention to before”. P18 said that the CharM “serves as a kick-start to identify the

priorities to analyze in an architectural evolution. It makes it very explicit where the biggest

problems are. And from there, you can make the necessary plan”.

#
 c

ita
tio

ns

Uses

1 citation

2 citations

3 citations

4 citations

5 citations

6 citations

Guide evolution 
at a high level  
of abstraction 

(P3, P12, P13, P15,
P17, and P18)

Understand the
architecture 

(P3, P12, P13, P15,
P17, and P18)

Help novices
understand 
the system
architecture 

(P3, P13, P15, P17,
and P18)

Identify points 
that need

maintenance 
(P3, P12, P13, P17,

and P18)

Discover new
information 

(P3, P15, P17,  
and P18)

Confirm intuitive
knowledge 

(P3, P12, P13,  
and P17)

Identify if the 
things should be
divided or joined 
(P3, P12, P13,  

and P17)

Identify size 
(P3, P13, P17,  

and P18)

Remember the
architecture 

(P3, P13, P15,  
and P17)

Identify coupling 
(P12, P17,  
and P18)

Understand
relationships 
(P3, P12,  
and P17)

Explain the
architecture 
(P13, P17,  
and P18)

Discover
information about

data storage
(P17 and P18)

Discover the
number of data

sources of 
 each service 
(P3 and P17)

Highlight
differences 

between services 
(P13 and P18)

Identify
components  
with many

responsibilities 
(P3 and P13)

Identify the degree
of importance  
or dependence  

of a service 
(P3 and P12)

Summarize
architectural
information 

(P3 and P13)

Support
architectural
discussions 

(P12 and P13)

Discover the
number of

operations in  
each relationship 

(P3)

Different
stakeholders  

share the same
architectural vision 

(P3)

Document the
architecture 

(P3)

Help an expert to
understand the
organization of  
the architecture 

(P18)

Identify legacy
components 

(P18)

Figure 4.27: Uses of the CharM – Industry case study.

The other two most cited uses were “identify points that need maintenance” (�ve - P3,
P12, P13, P17, and P18) and “help novices understand the system architecture” (�ve - P3, P13,
P15, P17, and P18). Regarding identifying maintenance points, P3 stated the following “I

think the work you’ve done makes it very clear to see the yellow (or redder) �ags for us to

act on”. About the CharM helping novices to understand the architecture, P17 explained
the following “When I joined the team, it was all very confusing for me, because the system

is very big and complex. I think with this model, I was able to understand much better who

depends on whom, and who is important to whom. So, I think it was really helpful for me[. . . ]

thus, I think this model may be very useful in onboarding new members”.



4.2 | INDUSTRY CASE STUDY

73

Discover new 
information

Guide architectural
evolution 

Understand the
architecture

Legend

Secondary useKey use

Identify coupling

Discover the number of
operations in each 

relationship

Discover information about
data storage

Discover the number of data
sources of each service

Highlight differences
between servicesUnderstand relationships

Explain the architecture

Help novices understand the
system architecture

Identify points that need
maintenance

Guide evolution at a high 
level of abstraction

Different stakeholders 
share the same 

architectural vision

Document the architecture

Help an expert to 
understand the organization 

of the architecture

Identify legacy components

Identify the degree of
importance or dependence of

a service

Summarize architectural
information

Support architectural
discussions

Identify if the things should 
be divided or joined

Identify size

Remember the architecture

Identify components with
many responsibilities

Confirm intuitive 
knowledge

Figure 4.28: Hierarchical organization of the uses of the CharM – Industry case study.

It is worth mentioning that, as in the previous case study, the interview protocol had
questions directly related to the usefulness of our model for architectural understanding
and evolution. Besides that, we asked if the CharM would be useful for discovering
something new about architecture. In this case study, four participants (P3, P15, P17, and
P18) indicated that the CharM was useful for discovering new things, such as the services’



74

4 | MULTIPLE CASE STUDIES

size and coupling. Figure 4.28 illustrates the hierarchical organization of the CharM’s uses
mentioned in this case study.

After identifying the uses cited in this case study and the previous one, we performed
a new analysis. From this, we reorganized, relabel, and grouped such uses into three
main categories: understanding a service-based architecture, service-based architecture main-

tenance, and communicating a service-based architecture to stakeholders. We carried out
this process in three rounds of discussions with the support of a specialist researcher in
software architecture. The result of this categorization is shown in Figure 4.29.

Communicating a SBA to stakeholders

- Different stakeholders share the same architectural vision
- Documenting the architecture of a system
- Explaining the architecture of a system for novices
- Explaining the architecture of a system for technical stakeholders
- Obtaining different views (local and global) of the architecture of
a system
- Summarizing architectural information
- Supporting architectural discussions
- Supporting the architecture communication

SBA maintenance

- Identifying structural characteristics that can be adjusted
- Supporting system quality assessment
- Supporting the architectural maintenance process
- Supporting the process of architectural evolution

Understanding a SBA

- Confirming intuitive knowledge about the architecture of a system
- Discovering new information about the architecture of a system
- Evaluating the architecture of a system that is being designed
- Identifying adopted architectural patterns
- Identifying different characteristics between services of a system
- Identifying the size of services of a system
- Mapping the architecture of a system that alread exists
- Remembering the architecture of a system
- Understanding the architecture of a system
- Understanding the asynchronous coupling between services of a
system
- Understanding the data sharing strategy adopted
- Understanding the synchronous coupling between services of a
system

Figure 4.29: CharM’s main categories of uses.

Ease of Understanding the CharM

In this case study, we investigated the ease of understanding CharM’s dimensions
as well as its result generated. This investigation indicates that the respondents tend to
consider that it is very easy to understand the dimensions of the CharM since the average
score assigned was 4.8 (Figure 4.26b) on a scale from 1 (Very di�cult) to 5 (Very easy). Of
six participants, �ve (P3, P12, P13, P15, and P18) considered it very easy to understand
the dimensions of our model and one (P17) considered it easy. P17 explained that when
watching the video that explains the model, they took some time to assimilate all the
information. However, when they saw the application of the CharM to characterize the
Search System’s architecture, they understood all the dimensions well.



4.2 | INDUSTRY CASE STUDY

75

Concerning the ease of understanding of the result generated by the CharM, the
average score was 4.5 (we used the same scale from 1 to 5). As illustrated in Figure 4.26c,
three participants (P3, P12, and P13) considered it very easy to understand the result
generated by our model and three others (P15, P17, and P18) rated this same aspect as
easy. Participants who rated it as easy argued that some elements of the presentation of
results could be improved. We are going to explore such elements in the last subsection of
Section 4.2.4.

Coherence of the Architectural Characterization

When evaluating the coherence of the Search System’s architectural characterization,
the average score attributed by the participants was 4.6 on a scale from 1 (Totally incoher-
ent) to 5 (Totally coherent). Figure 4.26d illustrates that �ve respondents (P3, P12, P15, P17,
and P18) considered the characterization “totally coherent” with the reality they knew.
Only P13 evaluated the characterization as “partially coherent”.

We asked P13 what led them to this perception. They explained that they considered
the size characteristic of services A, B, and C inconsistent with the reality they knew. They
presented the same justi�cation we explored earlier when we presented the uses of the
CharM related to the “number of operations” metric of the Size dimension.

Improvement Suggestions

Visualization Adopt the stacked bar chart 
(P18)

Model explanation

Better define the meaning of
module 
(P17)

Define what is/is not a 
service in the CharM context 

(P12)

Differ what/which are  
internal and external

components of the model 
(P17)

Review the quality attributes
adopted in the explanation 

of the rules 
(P18)

Metrics

Collect business metrics 
(P13)

Collect dynamic metrics 
(P3)

Indicate the number of data
sources per module 

(P18)

Make the concept of 
operation more generic 

(P12 and P13)

Present the criticality level 
of a coupling 

(P17)

Figure 4.30: Improvement suggestions to the CharM – Industry case study.

In order to upgrade the CharM, we asked interviewees for suggestions for improvement.
As illustrated in Figure 4.30, we received ten suggestions, which we organized into three



76

4 | MULTIPLE CASE STUDIES

groups. Participant P18 suggested adopting the stacked bar graph to illustrate the size
ratio of the components in the system as a whole, thus improving the visualization of the
generated result. We have already performed some tests considering this suggestion but
have not yet incorporated it into the CharM.

Participants P12, P17, and P18 made four suggestions related to explaining the model.
Three of these suggestions were related to the module and service de�nition, and the other
one was to the quality attributes adopted to explain the Synchronous coupling dimension.
We have already incorporated all these suggestions for improvement.

Most of the suggestions we received were related to metrics. P12 and P13 suggested
making the operation concept more generic in the CharM, not limited to just exposed
endpoints. We are investigating this suggestion further to verify how we can incorporate
it into the CharM. The suggestions for collecting dynamic and business metrics presented,
respectively, by P3 and P13, are outside the context of the CharM, but it is a research front
included as future work. The other suggestions have not yet been incorporated into the
CharM. When comparing with the �rst case study, the only suggestion for improvement
that was repeated was to incorporate dynamic metrics.

4.2.5 Threats to Validity

In this section, we present the main threats to the validity of this case study.

Internal: The author of this thesis carried out all stages of data collection and analysis.
Therefore, it is possible that, at some point, there may have been failures in the documents’
interpretation or in the communication with the interviewees. This scenario may have
a�ected the architectural characterization and the CharM evaluation result. To mitigate the
risk of generating an inconsistent characterization, we reviewed the collected metrics data
as well as questioned respondents about the coherence of the result generated from the
CharM. As for possible failures in communication, we seek to con�rm with the interviewees
the interpretation of what was said. Furthermore, after preliminary analyses, the results
were discussed with the advisor and co-advisor of this thesis.

External: The participants’ backgrounds and experiences may in�uence our model’s
evaluation result. However, we consider that having heterogeneity of pro�les is favorable
for the CharM assessment process. This situation allows us to verify its usefulness for
novices to experts, as well as for professionals with di�erent levels (from low to high) of
knowledge of the architecture of the studied system.

Construct: The scripts of the interviews were developed based on the evolution of
the script adopted in the �rst case study. Furthermore, the scripts were discussed and
reviewed by the advisor and co-advisor of this thesis and by professionals from Company

A. This review process, combined with pilot tests, was useful in �nding a better way to
formulate the questions and reducing possible biases. Besides that, during the interviews,
the interviewer could explain and resolve any doubts in case the interviewee had di�culties
interpreting any questions.



4.3 | MULTIPLE CASE STUDY DISCUSSION

77

4.3 Multiple Case Study Discussion

By adopting multiple case studies as a research strategy, we could deeply evaluate
di�erent aspects of the CharM. From this, we obtained valuable answers to the three
research questions posed at the beginning of this chapter.

RQ1:What uses of the CharM are perceived by participants? Considering the two
case studies in all, respondents perceived 28 uses for our model. Between these uses, we
mapped six that were most frequently cited, (i) guide evolution at a high level of abstraction

and (ii) understand the architecture, both with 15 citations, (iii) identify points that need

maintenance with 12 citations, (iv) discover new information with 10 citations, and (v)

identify size and (vi) understand relationships, both with 9 citations. From a re�ned analysis,
we merged the CharM’s uses into 24 and grouped them into three categories that emerged:
understanding a service-based architecture, service-based architecture maintenance, and
communicating a service-based architecture to stakeholders. The categories of uses that we
mapped indicate that the CharM, similar to approaches, such as MicroART (Granchelli
et al., 2017a), MAAT (Engel et al., 2018), MiSAR (Alshuqayran, Ali, et al., 2018), and
MM4S (Bogner, Wagner, et al., 2017b), somehow contributes to professionals (with
di�erent levels of experience) understanding and maintaining the architecture of a service-
based system. Such approaches are going to be explored in Chapter 6.

Furthermore, we obtained evidence that our model can support discussions and re�ec-
tions and, consequently, help for more grounded and mature architectural decision-making,
especially those related to size and coupling attributes. Aligned with this reasoning, accord-
ing to Perepletchikov et al. (2007) and Bogner, Wagner, et al. (2017a), knowing structural
characteristics may help maintain and improve the quality of a system. Additionally, one
of the studies by Bogner, Wagner, et al. (2017a) points out that the structural attributes
of size and coupling are among the most commonly found characteristics in the literature
on service-based systems’ maintainability.

RQ2:What is the participants’ perception of the architectural characterization
generated from the CharM? Interviewers in the two case studies tended to consider that
it was easy to understand the result generated by the CharM. Despite this, it is essential
to consider that, to interpret the generated characterization correctly, the professional
must �rst know and understand our model’s dimensions and metrics and have basic
knowledge of service-based architecture. Thus, evaluating the ease of understanding the
model’s structure and the result generated by the CharM is relevant because this aspect
can in�uence its acceptance (Davis, 1989). Furthermore, this evaluation may help us
identify points that should be simpli�ed or better explained in the CharM. It can also
reveal professionals’ pro�les for whom the CharM may be more appropriate.

Another perception of the participants is that the characterization generated by the
CharM was coherent with the reality they knew. This is evidence that the metrics adopted in
each dimension of the CharM are appropriate to characterize the architecture, considering
the attributes of size and coupling. However, this does not mean that the set of dimensions
and metrics adopted is the only suitable one.

Developing an approach that is easy to understand and generates coherent results is
critical to making it more useful and fostering its adoption.



78

4 | MULTIPLE CASE STUDIES

RQ3: What aspects of the CharM can be improved? In both case studies, we re-
ceived suggestions for metrics to be added to the CharM, as well as to improve the
explanation of some aspects of the model and the presentation of results. Besides that, in
the �rst case study, the interviewees suggested that we should add some information they
considered missing and would be adding value to the CharM.

The suggestions for improvements helped us enhance our model from the �rst to the
second case study and made us re�ect on di�erent aspects, such as scope delimitation,
target audience, data collection, and presentation strategy.

From a practical point of view, given the di�culty in understanding and characterizing
the architecture of service-based systems, perceived in reports, such as those made by
Amazon (Kolny, 2023), Mendonça et al. (2021), Segment (InfoQ, 2020), and Uber (High-
scalability, 2020), the results obtained from the two case studies indicate that the CharM
may contribute to face the challenges related to this nebulous context. However, it is still
relevant to evolve this model, apply it in other real environments and carry out broader
studies to evaluate it such as a survey.

From a research perspective, adopting the multiple case studies method allowed us to
identify and discuss the usefulness of the CharM and to comprehend and re�ect on other
important aspects, such as ease of understanding and coherence of the generated results.
During the research, we also noticed that the CharM helped us to identify and understand
some challenges related to the service-based systems’ metrics collection process.

4.4 Chapter Summary

This chapter described how we conducted case studies in two service-based systems,
one developed in an academic environment and the other in an industrial environment.
During such case studies, we applied the CharM to characterize the architecture of the two
studied systems and discussed the generated results. From this, we investigated deeply and
found 24 uses for our model, and also identi�ed that professionals with di�erent pro�les
tend to consider that CharM’s structure and generated results are easy to understand. We
also identi�ed limitations and mapped and implemented suggestions for improvement in
the CharM. At the end of this chapter, we answered research questions RQ1, RQ2, and
RQ3.



79

Chapter 5

Survey

In this chapter, we present the results of the third and �nal evaluation carried out
through a survey. Based on this, we de�ned the following research questions (RQs):

• RQ4: To which extent does the CharM support understanding a service-based
architecture? — Considerations: we are interested in verifying the usefulness of
the CharM for di�erent aspects of understanding the architecture. From identifying
and knowing its elements, interactions, and characteristics to the adopted patterns
and the related trade-o�s.

• RQ5: To which extent does the CharM support a service-based architecture
maintenance? — Considerations: we want to analyze the usefulness of the CharM
for corrective, evolutionary, and preventive maintenance. Thus, some of the consid-
ered points are the identi�cation of adjustments and the quality assessment of the
architecture.

• RQ6: To which extent does the CharM support communicating a service-
based architecture to stakeholders? — Considerations: we are keen to validate
the usefulness of the CharM in disseminating architectural information, helping
tasks, such as study, explanation, documentation, summarization, and discussion
about the architecture.

• RQ7: How easy is it to understand the CharM? — Considerations: we are inter-
ested in �nding out the level of ease of understanding of the CharM, considering its
dimensions and metrics and the results it generates.

• RQ8: Does the participants’ experience influences the perceived usefulness
and ease of understanding of the CharM? — Considerations: We want to verify
if the time of experience with service-based architecture and the level of experience
with microservices a�ect the participants’ perception of the di�erent uses of the
CharM and the ease of understanding of this model.

In this chapter, we describe the methodological aspects of the survey and present and
discuss the generated results.



80

5 | SURVEY

5.1 Methodology

We used an online survey targeting professionals working with the architecture of
service-based systems. Furthermore, the collected data were analyzed quantitatively and
qualitatively. Figure 5.1 shows an overview of the research design employed in the sur-
vey.

Research
group

discussions

Data analysis

Quantitative
analyses

Preliminary
analyses

Qualitative
analyses

Survey publication

Recruiting Monitoring

Survey preparation

Target
audience

Sampling
type

Research
variables

Questions
(amount and position)

Support
material

Roadmap Pilot test

Refinement
of goals

Previous evaluations

Academic case study Industry case study

Figure 5.1: Overview of the research design of the survey.

As already described (Section 3.1), before the survey, we carried out previous eval-
uations of the CharM based on a case study in an academic context and another in the
industry (Chapter 4). The obtained results in these two case studies were used as input to
structure the survey.

During the preparation phase, we used materials (Callegaro et al., 2015; Baltes and
Ralph, 2020) that enable us to plan and develop a survey with appropriate strategies that
was, at the same time, complete, simple and objective. The main tasks performed at this
phase were related to the discussions and re�nement of goals, delimitation of the target
audience that would respond to the questionnaire, and choosing the most appropriate
strategy for selecting the population sample (Section 5.2). We also discussed and delimited
the independent and dependent variables of the study (Section 5.3), developed the support



5.2 | SAMPLING

81

material (videos and descriptive documents), and de�ned the questions and roadmap for
the survey presentation (Section 5.5). In the end, we carried out a pilot test round with
three professionals and adjusted the survey based on their feedback.

The next phase was the survey publication, which was available for four months. The
main activities carried out were recruitment, which involved disseminating the survey to
professionals working with the architecture of service-based systems, and the constant
monitoring of the responses received.

As we received answers, we performed some preliminary analyses to identify relevant
initial insights and evidence of a state of saturation. After four months, the number of
responses stabilized in 58, even with divulgation e�orts. Therefore, we move on to the
data analysis phase using both a quantitative and a qualitative approach. More details
about data analysis are presented in Sections 5.4 and 5.7.

5.2 Sampling

The sample of participants in this study is non-probabilistic and combines convenience
and referral-chain types (Baltes and Ralph, 2020). We adopted the open invitation strat-
egy (Wagner et al., 2020). Thus, the survey was sent out via email to professional contacts
in the software development area and working in industry or academia. Furthermore, we
shared it on social networks, forums, and discussion lists related to software development
and architecture. Recipients were invited to answer the survey and forward it to their
peers. In an attempt to obtain the participation of professionals with the desired pro�le, we
present a brief description of the pro�le of the target population in the research invitation.
We adopted these strategies to have a quick send-out and obtain a diverse set of participants.
The survey was viewed 446 times (unique clicks) in 29 countries 1.

All countries Without the 2 most cited countries Just the 2 most cited countries

5

4

3

2

1
RQ1 RQ2 RQ3 RQ4

Figure 5.2: Relationship between participants’ resident country and CharM’s evaluation.

1These data was extracted from Rebrandly. List of countries where the survey was viewed: Australia,
Brazil, Canada, Chile, Colombia, France, Germany, Ghana, Hong Kong, Hungary, India, Italy, Kenya, Mexico,
Nepal, Netherlands, Pakistan, Portugal, Romania, Russian Federation, Slovakia, South Korea, Spain, Sweden,
Switzerland, United Arab Emirates, United Kingdom, United States of America, and Viet Nam.



82

5 | SURVEY

In the end, we received 58 valid answers from participants across ten countries. We
found that 77% (45) of respondents are concentrated in two countries. Concerned with
verifying whether the language background and the questionnaire distribution would
a�ect the survey results, we grouped the evaluation results, considering only these two
countries with the highest number of participants (both with the same native language
but from di�erent continents). As Figure 5.2 illustrates, by ignoring the most frequent
countries (grey box), we notice that the data distribution has not changed drastically,
maintaining the trend of positive evaluation of the di�erent aspects of the CharM.

5.3 Research Variables

Since we want to evaluate the proposed characterization model, we present a list of
uses and ask the participants to which extent they consider the CharM to be useful for
achieving each one. Furthermore, we wondered how easy it is to understand the model’s
dimensions, metrics, and results. Therefore, the dependent variables of this study are the
uses and ease of understanding of the CharM. The independent variables are related to
the participants’ pro�le, considering the self-declared time of experience with service-based

architecture and the self-declared level of experience with microservices.

The possible uses of the CharM were identi�ed in the two preliminary case studies.
The �rst case study was in an academic environment and the second was in the industry
environment. In each case study, we applied the CharM to characterize the architecture of
a service-based system. Then, the professionals who worked with the selected systems
were invited to analyze the generated results and evaluate the usefulness and ease of
understanding of the CharM. In the end, we identi�ed 24 uses for the CharM (Figure 4.29).
From this set, we included 21 uses in the survey 2 and organized them into three groups:
(i) understanding of a service-based architecture, (ii) maintenance of a service-based architec-

ture, and (iii) communication of a service-based architecture to stakeholders. From this, we
extracted the dependent variables of this study.

We suppose that the usefulness and ease of understanding of the CharM could vary
according to the user’s experience. Therefore, we mapped the respondents’ self-declared
experience in two aspects. The �rst independent variable concerns the time of self-declared
experience with service-based architecture. In this aspect, we do not use any speci�c
reference or scale. So, we decided to use the following range: (a) Less than 1 year, (b) 1
to 3 years, (c) 4 to 6 years, (d) 7 to 9 years, (e) 10 to 12 years, (f) 13 to 15 years, and (g) 15
years or more. The other aspect analyzed was the self-declared level of experience with
Microservices. For this, we adopted the �ve stages of skill acquisition proposed by Dreyfus
et al. (1986): novice, advanced beginner, competent, pro�cient, and expert. Based on this,
each level was de�ned as follows: novice - knows the microservice style’s theory and
principles and applies it in simple contexts; advanced beginner - has practical experience
of adopting microservice style in real scenarios; competent - has experience of adopting

2We did not include three previously mapped uses for the CharM in the survey. We believe that to obtain
a higher quality assessment of these uses, the respondents should have known and worked with the analyzed
system before evaluating the CharM. Uses not included were: con�rming intuitive knowledge about the
architecture of a system; discovering new information about the architecture of a system; e remembering
the architecture of a system.



5.4 | DATA ANALYSIS

83

microservice style in di�erent real contexts and scenarios; pro�cient - deals with di�erent
microservice-based systems and can make decisions in a conscious manner and with a
high degree of assertiveness; and expert - deals with di�erent microservice-based systems
and can make decisions in an assertive way and without signi�cant di�culties. Figure 5.3
illustrates the dependent and independent variables of this study.

Independent variables

Self-declared time of experience with SBA
Less than 1 year
1 to 3 years
4 to 6 years
7 to 9 years
10 to 12 years
13 to 15 years
15 years or more

Self-declared  level of experience with MS
Novice
Advanced beginner
Competent
Proficient
Expert

Dependent variables

Uses of CharM
Understanding of a SBA 
Maintenance of a SBA
Communication of a SBA to stakeholders

Ease of understanding of CharM
Dimensions
Metrics
Results

Figure 5.3: Research variables.

5.4 Data Analysis

At �rst, we analyzed the participants’ pro�le (Section 5.7.1) to identify whether we
obtained a varied sample. Next, we quantitatively and qualitatively analyzed participants’
responses for each of the three CharM use groups (Section 5.7.2). At that moment, we
also tried to identify if any pro�le was predominant, which, in some way, in�uenced the
evaluation of the use groups. Finally, we also quantitatively and qualitatively analyzed the
participants’ responses regarding the ease of understanding of the CharM (Section 5.7.3).
Once again, we veri�ed if any pro�le of participants tended to consider the CharM either
easier or more di�cult to understand. Quantitative analyses were based on descriptive
statistical techniques such as percentages. During the qualitative analyses, we examined
the answers to the open questions. As we analyzed these answers, we organized the data
into categories and checked for crossovers and associations. The objective was to identify
insights that complement and help us explain the quantitative data. In the �nal analysis,
answers marked as “I have no opinion about this point” were discarded since they did not
reveal a positive or negative perception of using the CharM.

5.5 Execution and Replication

During this research, a semi-open questionnaire was developed, in which most ques-
tions were close-ended. We designed this questionnaire to be complete, simple, and ob-
jective. During its elaboration, there were constant discussions between the author of



84

5 | SURVEY

this thesis, the advisor, the co-advisor, and an experienced researcher in service-based
architecture, to re�ne and optimize di�erent aspects of the questionnaire. Furthermore,
we submitted it to a test phase to validate, when three professionals with the appropriate
pro�le were invited to answer and evaluate the survey and then present their impressions
and suggestions for improvement. The questionnaire was built using Google Forms and
was available to the public from 2021-08-14 to 2021-11-30, during which time we received
58 valid responses.

The questionnaire was organized into seven sections. We provided a CharM presenta-
tion video 3 explaining its dimensions and metrics in the �rst section. In the second section,
we presented a video 4 that demonstrated the result of the application of the CharM in a
�ctitious system. In the third section, we collected participants’ demographic data. The
focus of the fourth section was to collect information on the respondents’ professional
pro�le related to academic background, professional performance, and experience with
service-based architecture and microservices. Next, we asked about the participants’ archi-
tectural interests. In the sixth section, we presented a list of 21 uses and asked participants
to signalize to which extent the CharM would be useful in each one. In this same section,
we asked about the ease of understanding of the CharM’s dimensions, metrics, and results.
In the last section, the participants could present suggestions for improving the CharM
and register general comments.

A replication package is openly available in our Zenodo repository 5, including the
questionnaire, the dataset with the valid answers, and the quantitative analysis script.

5.6 Limitations and Threats to Validity

Internal: By adopting a survey as the CharM evaluation methodology, we limit our-
selves to obtaining answers that reveal only the respondents’ perceptions, which may not
represent the opinion of the total population of professionals who work with service-based
architecture. Therefore, to mitigate this threat, we developed a survey based on results
that we collected in two previous case studies. This strategy contributed to directing the
construction of the survey with really relevant information. Another possible threat is
related to the quality of the received answers since participants could need additional
explanations to interpret and answer the survey questions adequately. To minimize this
risk, we submitted the survey to pilot tests to assess the ease of interpretation of the
questions. Furthermore, we presented didactic videos explaining and applying the CharM
to contribute to a better understanding of the model and related questions.

External: Considering that the survey was publicly available, using the open invitation
strategy, no previous mechanisms were adopted to validate the participants’ identities.
Thus, we risk obtaining answers from professionals who do not have the pro�le and
knowledge necessary to respond to the questions. To mitigate this threat, we brie�y
described the target population pro�le in the survey invitation and collected demographic
information to identify if the participants’ pro�le was adequate to answer the survey.

3https://youtu.be/VQRqG9hLBSQ
4https://youtu.be/bK9Yg9jmQXY
5https://doi.org/10.5281/zenodo.6590692



5.7 | EVALUATION RESULTS

85

Construct: We adopted protocols for design, execution, and quantitative analysis to
facilitate the survey replication. However, the open questions were analyzed qualitatively,
which allows for subjective interpretations of some results and discussions.

5.7 Evaluation Results

In this section, we describe the results of the evaluation of the CharM, obtained through
a survey. The main points that we explore are participants’ pro�le and the uses of the
CharM and its ease of understanding.

5.7.1 Participants Pro�le
Most participants identi�ed themselves as male (86%), despite the low female par-

ticipation rate, the numbers are aligned with a recent global census, which evidences
that most software development professionals are males (Statista, 2022). We received
responses from participants located in di�erent world regions, but most live in Latin
America (62%) or Europe (31%). Regarding education level, most participants claimed to
have a master’s degree (55%) or an undergraduate degree (29%). The participants general
pro�le is presented in Figure 5.4.

Education level

Master's degree 55%Undergraduate degree 29%Ph.D. 9%

Participant location

Latin American 62%Europe 31%5%2%

Gender identity

Man 86%Woman 10%3%

Prefer no to say

North America

Asia

7%

Others

Figure 5.4: Summary of participants general pro�le, according to gender, location, and education

level. From top to bottom, we present the (a) gender identify, (b) participant location, and (c)

highest completed education level. All percentages were rounded based on simple rules of rounding

numbers.

As illustrated in Figure 5.5, most respondents worked in the industry (79%) in the last
two years, which is relevant for this research since we can obtain an assessment from a
more practical point of view. Related to the role they perform, most declared to work as a
developer (59%) or an architect (45%). The main sectors where survey respondents work
are Financial (24%), Corporate (22%), Research (22%), Education (21%), and E-commerce
(17%), which demonstrate a good range of sectors, which is also desirable for this research.
Participants work in di�erent technological layers, most focusing on the back-end (86%),
infrastructure (53%), and web front-end (50%) layers. It is worth mentioning that in these
questions, the participants could select multiple answers.

Regarding the self-declared experience with service-based architecture, we received
a mixed set of responses from participants with di�erent times of actuation, from less
than 1 year to more than 15 years of experience. Respondents also have experience with



86

5 | SURVEY

W
or

k 
fie

ld

26%
14%

79% Industry
Academy

Government

Pr
of

es
si

on
al

 ro
le

59%
45%

29%

19%
19%

Developer
Architect

Researcher
Consultant
Others

W
or

k 
se

ct
or

24%
22%

17%

22%
21%

43% Others
Financial

Corporate
Research

Education
E-commerce

Te
ch

no
lo

gi
ca

l l
ay

er

86%
53%

50%

7%
17%
Others or unspecified layer

Mobile front-end

Infrastructure
Back-end

Web front-end

0% 100%50%

Figure 5.5: Summary of participants professional actuation pro�le. (a) work �eld in the past 2

years, (b) professional role in the past 2 years, (c) work sector in the past 2 years, and (d) techno-

logical layer in the past 2 years. The sum of percentages exceeds 100% as participants could select

multiple answers. All percentages were rounded based on simple rules of rounding numbers.

Time of experience with SBA

7%7%Less than 1 12% 10 to 12 10%7 to 9 16%4 to 6 28%1 to 3 21%

13 to 15 More than 15

Experience level with microservices

Expert 19%Proficient 17%Novice 28% Competent 19%Adv. beginner 17%

0% 100%50%

Ex
pe

rie
nc

e 
w

ith
se

rv
ic

e-
ba

se
d

st
yl

es

67%
64%

3%

36%
31%

79% Microservices
Back and Front-end Service Communication

SOA
Service-Based Systems Integration

Self-Contained systems
Others

Figure 5.6: Summary of participants self-declared experience with service-based architecture. (a)

range of time of experience with service-based architecture, (b) experience with di�erent service-

based architectural styles - it was possible to select multiple layers, and (c) experience level with

Microservice-Based Architectural Style. All percentages were rounded based on simple rules of

rounding numbers.



5.7 | EVALUATION RESULTS

87

di�erent service-based architectural styles, where the main are microservices (79%), back-
end and front-end service communication (67%), and SOA (64%). In this question, the
participants also could select multiple answers. We also obtained a relatively balanced
number of respondents with di�erent self-declared experience levels with the Microservices
Architectural Style, since 28% declared themselves as a novice, 17% an advanced beginner,
19% a competent, 17% a pro�cient, and 19% an expert. Therefore, considering the variety
of pro�les and the number of survey participants, we have a good sample to evaluate
the CharM. Figure 5.6 summarizes the self-declared experience of the participants with
service-based architecture.

5.7.2 The Uses of the CharM

We presented a list of 21 possible uses for our model and asked participants which ones
the CharM would be useful for. Based on previous investigation (described in the Chapter 4),
these uses were organized into three groups: (i) understanding of a service-based archi-
tecture; (ii) maintenance of a service-based architecture; and (iii) communication
of a service-based architecture to stakeholders.

Strongly disagree Disagree Neutral Agree Strongly agree

U9G1 - Understanding the synchronous coupling between services of a system

42%51%7%

U8G1 - Understanding the data sharing strategy adopted

35%53%11%2%

U7G1 - Understanding the asynchronous coupling between services of a system

44%47%7%2%

U6G1 - Understanding the architecture of a system

36%43%14%7%

U5G1 - Mapping the architecture of a system that already exists

39%41%14%5%

U4G1 - Identifying the size of services of a system

30%43%18%7%2%

U3G1 - Identifying different characteristics between services of a system

40%47%9%4%

U2G1 - Identifying adopted architectural patterns

30%42%17%11%

U1G1 - Evaluating the architecture of a system that is being designed

55%36%9%

Figure 5.7: Participants’ perspective to which extent the CharM supports understanding a service-

based architecture. All percentages were rounded based on simple rules of rounding numbers.



88

5 | SURVEY

As illustrated in Figure 5.7, most of the participants who gave their opinion6 “agree” or
“strongly agree” that CharM is useful for understanding the architecture of a service-
based system. Using it for understanding the asynchronous/synchronous coupling (U7G1
and U9G1) and for evaluating the architecture of a system that is being designed (U1G1)
stand out, since over 90% of the participants consider that the CharM helps achieve these
goals. In the case of uses U1G1 and U9G1, no participant disagreed that the CharM helps
achieve them. On the other hand, using the CharM for identifying adopted architectural
patterns (U2G1) and identifying the size of services of a system (U4G1) had the lowest levels
of agreement since just over 70% of the participants claimed that the CharM helps achieve
these goals. These last two uses also stood out, since ≈10% of the participants believe that
the CharM is not useful to achieve these goals.

Based on the respondents’ pro�le and answers to open questions, we tried to understand
what caused this scenario. However, after analyzing the data, no predominant pro�le
was identi�ed. Furthermore, when analyzing the answers to open questions, we did not
identify points that could explain why the participants considered the CharM less useful
for achieving U2G1 and U4G1 than they did for the other goals.

Analyzing Figure 5.8, we can verify that at least 60% of the participants, who expressed
their opinion, “agree” or “strongly agree” that CharM can help in some aspects related to
architectural maintenance. Its use for identifying structural characteristics that can be

adjusted (U1G2) stood out in this group, since 84% of participants claimed that the CharM
helps achieve this goal. In contrast, at least 11% of respondents disagreed that the CharM is
useful for supporting system quality assessment (U2G2) and the architectural maintenance
process (U3G2). As in the previous uses group, after analyzing the participants’ pro�le
and the open responses, we did not identify evidence that helped understand why a few
participants considered the CharM not useful for achieving the goals U2G2 and U3G2.

37%

U1G2 - Identifying structural characteristics that can be adjusted

U2G2 - Supporting system quality assessment

U3G2 - Supporting the architectural maintenance process

U4G2 - Supporting the process of architectural evolution

30%47%21%2%

21%46%21%11%

21%40%28%9%

2%

2%

47%12%4%

Strongly disagree Disagree Neutral Agree Strongly agree

Figure 5.8: Participants’ perspective to which extent the CharM supports the maintenance of

a service-based architecture. All percentages were rounded based on simple rules of rounding

numbers.

As presented in Figure 5.9, most of participants, who gave their opinion, “agree” or
“strongly agree” that the CharM is useful for communicating a service-based architec-

6Participants could choose the option "I have no opinion about this point".



5.7 | EVALUATION RESULTS

89

ture to stakeholders. It is important to highlight that more than 90% of the participants
think that the CharM can supporting architectural discussions (U7G3). Furthermore, at least
84% of respondents point out that the CharM is useful for documenting the architecture of a

system (U2G3) and supporting architectural communication (U8G3). It is worth mentioning
that in the case of uses U4G3, U7G3, and U8G3, no participant disagreed that the CharM
helps achieve them. On the other hand, almost 20% of participants “disagree” or “strongly
disagree” that the CharM can support di�erent stakeholders to share the same architectural

vision (U1G3). Furthermore, 15% of respondents believe that the CharM is not useful for
obtaining di�erent views (local and global) of the architecture of a system (U5G3).

23%

U1G3 - Different stakeholders share the same architectural vision

42%17%

U2G3 - Documenting the architecture of a system

41%43%9%7%

U3G3 - Explaining the architecture of a system for novices

29%38%26%7%

U4G3 - Explaining the architecture of a system to technical stakeholders

28%49%23%

U5G3 - Obtaining different views (local and global) of the architecture of a system

22%49%15%15%

U6G3 - Summarizing architectural information

34%39%25%2%

U7G3 - Supporting architectural discussions

41%50%9%

U8G3 - Supporting the architecture communication

21%55%23%

15%4%

Strongly disagree Disagree Neutral Agree Strongly agree

Figure 5.9: Participants’ perspective to which extent the CharM supports the communication of a

service-based architecture to stakeholders. All percentages were rounded based on simple rules of

rounding numbers.

Considering the three analyzed groups, the uses U1G3 and U5G3 stood out with the
highest rates of participants who disagreed that the CharM can help achieve these goals.
Once again, we tried to understand what caused this rate of discordant participants. After
analyzing these data, no predominant pro�le was identi�ed. Furthermore, from the open
responses, we did not identify evidence that could indicate why the participants considered
the CharM not useful for achieving the objectives U1G3 and U5G3.

During the CharM uses assessment stage, we asked the participants if they identi�ed
any new uses, not previously listed in the survey. Four participants contributed, indicating
new uses. P9 stated that the CharM is useful for “supporting the architectural process

de�nition at the project’s beginning”. P11 indicated that the CharM helps “modernize and



90

5 | SURVEY

migrate strategies for pre-existing workloads”. P21 reported that the proposed model might
be useful in “decision make before migrating”. P49 indicated that the CharM might help
“spotting risks related to coupling, performance, and availability”. Faced with the new uses
identi�ed by the participants, we believe that, probably, the CharM can be useful in other
scenarios that adopt the same information already explored in the model.

5.7.3 The Ease of Understanding of the CharM
After identifying the uses, we asked participants how easy it is to understand the

CharM’s dimensions and metrics and its results. As illustrated in Figure 5.10, 91% of the
participants considered it easy to understand the CharM’s dimensions, with no participants
stating that it is di�cult to understand them. When asked about the CharM’s metrics, most
respondents (86%) also reported that they are easy to understand. Only one participant7

believed that the CharM’s metrics are di�cult to understand. Regarding the understanding
of the results generated by the CharM, 77% of the participants “agree” or “strongly agree”
that they are easy to understand, with only 12% disagreeing.

Strongly disagree Disagree Neutral Agree Strongly agree

40%

Ease of understanding the CharM's dimensions

51%9%

Ease of understanding the CharM's metrics

40%46%12%2%

Ease of understanding the CharM's result

29%48%11%12%

Figure 5.10: Participants’ perspective on how easy it is to understand the CharM. All percentages

were rounded based on simple rules of rounding numbers.

Some participants presented suggestions for improvements that may contribute to
understanding the result generated by the model. Respondent P19 suggested presenting a
diagnosis of the result, “[. . . ] saying whether the architecture is good or not [. . . ]”. Participant
P24 stated that it would be interesting and informative to execute “[. . . ] the software during
the presentation” of the model. P48 claimed that “[. . . ] it would be great to have a “cheat sheet”
or any other material with the summary of the CharM”. P42 believes that “[. . . ] it might

be helpful to have a kind of guideline that supports the interpretation of results” generated
by the CharM. P30 indicated that it is interesting to clarify “in which scenarios, it is worth

using the CharM”.

5.7.4 The Use and Ease of Understanding of the CharM
According to Professional Experience

In order to obtain other perspectives for the CharM evaluation, we explored the results
considering the participants’ self-declared experience with service-based architecture and

7P22 claimed that he has less than 1 year of experience with service-based architecture and that he is a
novice in the microservice architectural style.



5.7 | EVALUATION RESULTS

91

with microservices. Participants with 10 to 12 years of experience with service-based
architecture tend to agree that the CharM is both useful for understanding the architec-
ture of a service-based system (Figure 5.11a) and that it can support the maintenance
process (Figure 5.11b) and architectural communication with stakeholders (Figure 5.11c).
Furthermore, this same tendency can be veri�ed regarding the proposed model’s ease of
understanding (Figure 5.11d).

St
ro

ng
ly

 d
isa

gr
ee

Di
sa

gr
ee

Ne
ut

ra
l

Ag
re

e

St
ro

ng
ly

 a
gr

ee

15 years or more

13 to 15 years

10 to 12 years

7 to 9 years

4 to 6 years

1 to 3 years

Less than 1 year

0% 0% 6% 55% 39%

0% 0% 11% 43% 46%

0% 13% 9% 63% 15%

1% 10% 8% 50% 31%

0% 1% 15% 42% 42%

0% 5% 8% 41% 46%

0% 0% 20% 33% 48%
0

20

40

60

80

100

(a) Supports understanding a service-based
architecture.

St
ro

ng
ly

 d
isa

gr
ee

Di
sa

gr
ee

Ne
ut

ra
l

Ag
re

e

St
ro

ng
ly

 a
gr

ee

15 years or more

13 to 15 years

10 to 12 years

7 to 9 years

4 to 6 years

1 to 3 years

Less than 1 year

0% 0% 13% 47% 40%

0% 0% 31% 50% 19%

0% 4% 21% 67% 8%

0% 11% 14% 47% 28%

0% 10% 24% 44% 22%

7% 2% 24% 30% 37%

0% 4% 14% 46% 36%
0

20

40

60

80

100

(b) Supports maintenance of a service-based

architecture.

St
ro

ng
ly

 d
isa

gr
ee

Di
sa

gr
ee

Ne
ut

ra
l

Ag
re

e

St
ro

ng
ly

 a
gr

ee

15 years or more

13 to 15 years

10 to 12 years

7 to 9 years

4 to 6 years

1 to 3 years

Less than 1 year

0% 7% 14% 59% 21%

0% 3% 19% 38% 41%

2% 11% 15% 64% 9%

0% 9% 20% 40% 31%

0% 6% 22% 41% 30%

1% 2% 11% 47% 38%

0% 2% 25% 43% 30%
0

20

40

60

80

100

(c) Supports communication of a service-based

architecture to stakeholders.

St
ro

ng
ly

 d
isa

gr
ee

Di
sa

gr
ee

Ne
ut

ra
l

Ag
re

e

St
ro

ng
ly

 a
gr

ee

15 years or more

13 to 15 years

10 to 12 years

7 to 9 years

4 to 6 years

1 to 3 years

Less than 1 year

0% 9% 9% 27% 55%

0% 0% 17% 67% 17%

0% 6% 0% 72% 22%

0% 11% 7% 33% 48%

0% 0% 18% 33% 49%

0% 3% 11% 56% 31%

0% 10% 5% 67% 19%
0

20

40

60

80

100

(d) The ease of understanding.

Figure 5.11: The CharM’s evaluation according to participants’ self-declared years of experience

with service-based architecture. All percentages were rounded based on simple rules of rounding

numbers.

Analyzing the level of experience with microservices, we can verify that the CharM can
be very useful and easily understood by advanced beginners. Participants with this degree
of experience with microservices tend to strongly agree that the CharM is easy to under-
stand (Figure 5.12d) and useful for understanding (Figure 5.12a), maintaining (Figure 5.12b),
and communicating (Figure 5.12c) the architecture of service-based systems.

Given the results presented in Figures 5.11 and 5.12, we believe it is relevant to in-
vestigate further the perception of the CharM by professionals with di�erent pro�les.
Furthermore, we are curious to �nd out whether or not there is some correlation between
the independent variables self-declared time of experience with service-based architecture

and self-declared level of experience with microservices.



92

5 | SURVEY

St
ro

ng
ly

 d
isa

gr
ee

Di
sa

gr
ee

Ne
ut

ra
l

Ag
re

e

St
ro

ng
ly

 a
gr

ee

Expert 

Proficient 

Competent 

Advanced beginner 

Novice 

1% 4% 9% 49% 37%

0% 8% 16% 47% 30%

0% 0% 16% 57% 27%

0% 4% 1% 32% 64%

0% 5% 14% 40% 41%
0

20

40

60

80

100

(a) Supports understanding a service-based
architecture.

St
ro

ng
ly

 d
isa

gr
ee

Di
sa

gr
ee

Ne
ut

ra
l

Ag
re

e

St
ro

ng
ly

 a
gr

ee

Expert 

Proficient 

Competent 

Advanced beginner 

Novice 

0% 14% 28% 35% 23%

0% 12% 18% 52% 18%

0% 0% 20% 57% 23%

8% 0% 15% 33% 44%

0% 3% 21% 47% 29%
0

20

40

60

80

100

(b) Supports maintenance of a service-based

architecture.

St
ro

ng
ly

 d
isa

gr
ee

Di
sa

gr
ee

Ne
ut

ra
l

Ag
re

e

St
ro

ng
ly

 a
gr

ee
Expert 

Proficient 

Competent 

Advanced beginner 

Novice 

1% 7% 17% 53% 21%

0% 11% 21% 51% 17%

0% 1% 24% 48% 26%

0% 4% 9% 35% 53%

1% 6% 19% 42% 32%
0

20

40

60

80

100

(c) Supports communication of a service-based

architecture to stakeholders.

St
ro

ng
ly

 d
isa

gr
ee

Di
sa

gr
ee

Ne
ut

ra
l

Ag
re

e

St
ro

ng
ly

 a
gr

ee

Expert 

Proficient 

Competent 

Advanced beginner 

Novice 

0% 3% 6% 38% 53%

0% 7% 17% 50% 27%

0% 6% 18% 55% 21%

0% 0% 4% 33% 63%

0% 6% 8% 58% 27%

0

20

40

60

80

100

(d) The ease of understanding.

Figure 5.12: The CharM’s evaluation according to participants’ self-declared level of experience

with microservices. All percentages were rounded based on simple rules of rounding numbers.

Therefore, considering the survey data, we found that regardless of the experience
of the participants, the evaluation of the CharM’s usefulness and ease of understanding
tends to be positive. That is, the CharM tends to be useful and easy to understand by
professionals with di�erent times and levels of experience.

5.8 Discussion

There are approaches focused on the analysis, recovery, and understanding of the
architecture of service-based systems (Granchelli et al., 2017a; Engel et al., 2018; Mayer
and Weinreich, 2018; Alshuqayran, 2020), others are more focused on the evaluation
of quality attributes (Cardarelli et al., 2019; Bogner, Wagner, et al., 2017b) and to
the analysis of conformance to architectural patterns (Zdun et al., 2017), and there are
others that support the architectural migration process (Auer et al., 2021). Despite this,
experience reports from companies, such as Amazon (Kolny, 2023), Istio (Mendonça et al.,
2021), Segment (InfoQ, 2020), and Uber (Highscalability, 2020) evidence the di�culty in
characterizing and de�ning which architectural structure is the most suitable for a given
system. Furthermore, based on the work by Nadareishvili et al. (2016) and Newman (2021)



5.8 | DISCUSSION

93

and the variety of terms, such as nanoservice, microservice, and macroservice, we can
notice that there is a fuzzy limit when trying to classify and characterize the architecture of
service-based systems. Such a scenario is an indication that it is still necessary to invest in
the development of approaches for evaluating, characterizing, and guiding the architecture
of service-based systems.

That said, the CharM is being developed to help identify structural characteristics (size
and coupling), which allows us to describe and understand the architecture of service-
based systems, as well as their components. It is important to clarify that, di�erent from
approaches, such as MicroART (Granchelli et al., 2017a), MAAT (Engel et al., 2018),
MicroQuality (Cardarelli et al., 2019), MiSAR (Alshuqayran, 2020), RAMA (Bogner,
Wagner, et al., 2020), Prophet and Microvision (Cerny, Amr S. Abdelfattah, et al., 2022)
the CharM is not a tool-based approach but a theoretical and conceptual model designed to
be applied at di�erent software life cycle stages. Hence, the CharM combines a part of the
advantages of some approaches (explored in the Chapter 6) for architectural evaluation,
recovery, and evolution. In addition, one of the di�erentials of this study (compared to
the studies presented in the Chapter 6) is that we evaluated to which extent our approach
(CharM) is useful for di�erent purposes and is easy to understand.

Besides that, it is worth mentioning that we selected the microservices guidelines that
underlie CharM through ad-hoc bibliographic research. Therefore, we did not adopt a
strict protocol for mapping the microservices de�nitions and characteristics. Despite this,
the entire process of designing the CharM was grounded on the seven Design Science
Research guidelines. We also clarify that adopting the current version of the CharM in
large-scale projects is unfeasible since the metrics are collected manually. Cardarelli
et al. (2019) and Ntentos, Zdun, Plakidas, and Geiger (2021a) highlighted this same
challenge of evaluating their approaches in large-scale systems.

Considering this scenario and from the analysis of survey results (Section 5.7), we
could answer the �ve research questions speci�ed at the beginning of this chapter.

RQ4: To which extent does the CharM support understanding a service-based
architecture? Granchelli et al. (2017b) claim it is challenging to have a clear architectural
overview of a microservice-based system. However, Mayer and Weinreich (2018) argue
that it is essential to understand how a system is divided into components and how they
interact. In addition, Bass et al. (2012) explain that by understanding the architecture
of a system, it is also possible to understand the ability of its architecture to meet the
quality attributes. Faced with this importance and challenge, the CharM was assessed as
an approach that contributes to understanding the architecture of a service-based system,
as well as the approaches proposed by Mayer and Weinreich (2018), Cardarelli et al.
(2019), and Alshuqayran (2020). Especially, the survey participants believe that the CharM
supports understanding the synchronous and asynchronous couplings between services,
as well as is useful for evaluating the architecture of a system that is still being designed.
This participants’ perception is in line with some of the CharM objectives. Nevertheless,
although there is a dimension of the CharM focused on the structural attribute of size, the
survey respondents did not indicate the identi�cation of the size of the components as
one of the main uses of the CharM. This result may be related to the discussion of the
subjectivity of de�ning the service’s size, as explored by Newman (2021).



94

5 | SURVEY

RQ5: To which extent does the CharM support a service-based architecture
maintenance? Bogner, Wagner, et al. (2017b) explain that the maintainability, that is,
the degree of e�ectiveness and e�ciency in modifying, correcting, improving, extending,
or adapting software is fundamental for organizations. Based on the survey participants’
answers, the CharM can contribute to the architectural evolution of service-based systems,
especially to identify structural characteristics that can be adjusted. But, di�erent from the
approach MM4S (Bogner, Wagner, et al., 2017b), system quality assessment is not among
the main uses of the CharM (even with a positive acceptance). A possible explanation for
this perception from some participants is that the results generated from the CharM do
not show an explicit relationship with the non-functional requirements nor improvement
suggestions, as in the approach proposed by Ntentos, Zdun, Plakidas, and Geiger
(2021b). This interpretation is reinforced by the following comment from participant
P54, who suggested “modeling the data collected by the CharM to recommend architectural

improvements according to the context and objective of each service-based system”.

RQ6: To which extent does the CharM support communicating a service-based
architecture to stakeholders? For Bass et al. (2012), the architecture of a system must
be communicated clearly and unambiguously to all stakeholders. Considering this, the
survey participants believe that the CharM can support the process of communicating
service-based architecture to stakeholders, especially in architectural discussions and
documentation. This participants’ perception demonstrates that the CharM ful�lls the
objective of facilitating the analysis of the architecture of a service-based system, similar to
the MicroART approach (Granchelli et al., 2017a). Although the CharM allows choosing
the system’s components and perspectives that will be analyzed, a small index (15%) of
survey participants did not perceive the model’s utility for obtaining di�erent views of
the architecture of a system. Therefore, we believe this may be a CharM use that can be
better explored and explained in future versions.

RQ7: How easy is it to understand the CharM? The ease of understanding is an
important aspect to be evaluated in new artifacts, as it helps determine their ease of
use (Lederer et al., 2000) and can in�uence their perceived usefulness (Davis, 1989). In
general, the survey participants indicated that the CharM is easy to understand. However,
considering the analyzed aspects (dimensions, metrics, and results), the respondents
indicated that they faced some di�culty understanding the generated results. We believe
this di�culty is justi�ed by the volume of data presented and the need to understand the
analyzed system and relate all the metrics and perspectives presented.

RQ8: Does the participants’ experience influences the perceived usefulness and
ease of understanding of the CharM? We hypothesized that participants with di�erent
pro�les would have di�erent use perceptions of the CharM and that participants with less
time and a low level of experience would tend to have more di�culty understanding the
model. However, we found that the participants’ pro�le did not signi�cantly in�uence
(negatively) their perception of usefulness and ease of understanding of the CharM. Despite
this, we believe it is relevant to investigate further the perception of the CharM according to
professional experience since this type of analysis can help better understand the results of
the CharM’s uses and identify improvements to be implemented. Some approaches, such as
those proposed by Mayer and Weinreich (2018) and Auer et al. (2021), were also evaluated
through a survey. However, the authors did not investigate whether the perception of



5.9 | CHAPTER SUMMARY

95

their approaches varied according to the participants’ pro�les. Auer et al. (2021)’s study
only accepted experienced respondents without an academic background.

Given the positive evaluation of the CharM obtained from the survey, we strengthen the
evidence that this model is useful to characterize the architecture of service-based systems,
regardless of time and level of professional experience. Despite this, there are aspects of
the CharM to be explored and improved. These aspects are mainly related to dimensions
and metrics (type and collection type), presentation and explanation strategy, and the
possibility of the model integration with existing technologies. To implement some of
these improvements, we are studying strategies for collecting and analyzing metrics semi-
automatically, as in the Mayer and Weinreich (2018), Cardarelli et al. (2019), Bogner,
A. Zimmermann, et al. (2020), and Alshuqayran (2020) studies. In addition, we are also
working on optimizing the generation of the views (rulers, graphs, and diagrams) of the
CharM metrics (E. Santana et al., 2021).

5.9 Chapter Summary

This chapter presented the evaluation results of the CharM by a wider audience.
Thus, we described the process of elaboration and application of a survey answered by
58 professionals who work with the architecture of service-based systems. In the end,
we identi�ed that survey participants consider the CharM useful for understanding a
service-based architecture, maintaining a service-based architecture, and communicating a
service-based architecture to stakeholders. Furthermore, in general, respondents indicated
that the CharM is easy to understand. We also identi�ed evidence that our model could be
useful for professionals with di�erent pro�les (from novices to experts). At the end of this
chapter, we answered the research questions RQ4, RQ5, RQ6, RQ7, and RQ8.





97

Chapter 6

Related Research

This chapter presents an overview of scienti�c studies that propose di�erent approaches
which, in some way, support assessing and characterizing the architecture of service-based
systems. In the end, we compare these approaches and highlight the main di�erences
between them and our study. We organize the related work into three groups: architectural
recovery, architectural evaluation, and architectural migration. We adopted the main
purpose identi�ed for the research as a grouping criterion. We describe the study group
focused on architectural recovery in the next section.

6.1 Architectural Recovery

The �rst two studies in the series published by Granchelli et al. (2017a) and
Granchelli et al. (2017b) present an approach (MicroART) to assist in recovering and un-
derstanding the complexity of microservice-based systems architecture. The last one (Car-
darelli et al., 2019) proposes an approach (MicroQuality) for speci�cation, aggregation,
and evaluation of quality attributes for the architecture of microservice-based systems.
Such approaches are based on Model-Driven Engineering principles. To validate the
proposed approaches, the authors carried out experiments with one open-source system
and collected static and dynamic metrics in a semi-automatic way. Some �ndings of
these studies are that the proposed approaches are useful for architectural understanding,
documenting, and analyzing, unveiling dependencies between microservices from the
development perspective, automatically recovering and measuring architectural models,
and continuously assessing the quality of microservices.

Alshuqayran published two studies related to this research. The focus of the �rst
study (Alshuqayran, Ali, et al., 2018) is to present an approach (MiSAR - Micro Service
Architecture Recovery) based on Model-Driven Engineering (MDE) to recover the archi-
tecture of microservice-based systems. This approach was evaluated through empirical
studies that analyzed eight microservice open-source projects. In the second publica-
tion (Alshuqayran, 2020), the author explains that the objective of the proposed approach
is to comprehend the complexities of microservices by developing a bottom-up reverse
engineering process. The evaluation of the approach proposed in the �rst study was
complemented with an empirical study on nine open-source microservice-based projects



98

6 | RELATED RESEARCH

and a case study with a large open-source microservice-based system. Some of the listed
uses for the approach are: to create architectural documentation, obtain performance
diagnostics at the container level, identify several concepts and support the de�nition of
the underlying features and behavior of microservice-based systems, and help identify
and build the relations between services.

The studies by Bushong, Das, et al. (2022) and Cerny, Amr S. Abdelfattah, et al.
(2022) present a technique for software architecture reconstruction based on static code
analysis, which generates an architectural visualization in augmented reality. Cerny, Amr S.
Abdelfattah, et al. (2022) developed two prototype tools. Prophet performs the static code
analysis and Microvision generates the architectural visualization in augmented reality.
The authors used a proof of concept and conducted case studies to evaluate the proposed
approach. Some uses cited for this approach are extracting a view of the architecture
before the system is deployed and detecting deviations in the planned architecture.

In the next section, we present a group of studies in which the main focus we identi�ed
is architectural evaluation.

6.2 Architectural Evaluation

The study conducted by Engel et al. (2018) presents an approach (MAAT - Microservice
Architecture Analysis Tool) to evaluate microservice architectures based on principles,
such as small size and loose coupling of the services and domain-driven design. To develop
the proposed approach, the authors adopted the design of microservice architectures
principles extracted from literature review, structured interviews with experts, and the
GQM (Goal Question Metric) (Basili and Rombach, 1988) technique to derive the proposed
approach’s metrics. During the research, a case study was carried out with a project with 50
microservices, in which metrics were collected automatically through a dynamic analysis.
Furthermore, discussions were held with project team members. In the end, some identi�ed
uses for the approach were to support the identi�cation of hot spots in the architecture of
a system, support the design and development of systems, and con�rm perceptions of the
system’s team.

Another series of four scienti�c studies, led by Bogner, is also related to our work. The
�rst study (Bogner, Wagner, et al., 2017b) proposes a practical maintainability quality
model for services- and microservices-based system, named MM4S (Maintainability Model
for Services). The study objective is to obtain a simple and practical tool for basic maintain-
ability estimation, control, and speci�cation in the context of services- and microservice-
based systems. The authors performed an intra-company focus group combined with a
literature review yielding the �rst requirements for the desired quality model. The second
published study (Bogner, Schlinger, et al., 2019) in the series aims to calculate service-
based maintainability metrics from the runtime data of microservice-based systems. To
achieve this goal, they carried out an exploratory study with an example system which
was used by six people. The focus of the third study (Bogner, Wagner, et al., 2020)
is to calculate maintainability metrics from machine-readable interface descriptions of
RESTful services using the approach RAMA (RESTful API Metric Analyzer). An evaluation
was performed based on threshold benchmarking with 1,737 public RESTful APIs. In



6.2 | ARCHITECTURAL EVALUATION

99

the last study (Bogner, A. Zimmermann, et al., 2020), the authors present a continuous
assurance method to support the identi�cation and remediation of evolvability-related
issues in service-based systems. For the �nal evaluation of this method, they plan to
combine industry case studies with action research. Considering the aforementioned
studies, some of the utilities mapped are: maintenance support of service-based systems,
evaluation of maintainability of RESTful services, hot spot identi�cation, and early quality
evaluation.

The �rst study (Zdun et al., 2017) of another series, proposes a minimal set of constraints
and metrics necessary to evaluate the conformance of an architecture to microservice
patterns. To achieve this goal, the authors cataloged an initial set of constraints and metrics.
Then, to identify the most signi�cant ones, this initial set was used to manually evaluate
13 architecture models (extracted from the literature). The focus of the second study in the
series (Ntentos, Zdun, Plakidas, and Geiger, 2021a) is a method for the semi-automatic
detection and resolution of microservice patterns conformance violations. The authors
tested this method on a set of 24 models of various degrees of pattern violations and
architecture complexity. The last study of the series (Ntentos, Zdun, Plakidas, and
Geiger, 2021b) aims to provide foundations for an automated approach for architectural
reconstruction, assessing conformance to patterns and practices speci�c to microservice
architectures, and detecting possible violations. To achieve this goal, the authors carried
out experiments with a set of 27 models of microservice-based systems from third-party
practitioners. Some of the uses of the approach, pointed out by the authors of this series
of studies, are: to compare architecture conformance of the current design and possible
refactorings, �nd the root cause of a violation of microservices patterns, measure the quality
of microservice decomposition in software architecture models, and suggest possible
improvements related to microservice coupling.

The research conducted by Mayer and Weinreich (2018) presented an approach that
aims to extract and analyze the architecture of a microservice-based system based on
a combination of static service information with infrastructure-related and aggregated
runtime information. Such an approach is based on three levels in a microservice-based
system: service, infrastructure, and interaction. The proposed approach was evaluated
through a survey and interview study with 15 architects, developers, and operations
experts. In the end, some of the uses identi�ed for the approach were to provide a high-
level overview of the system, analyze architecture evolution, provide an overview of a
service’s functionality, obtain automatic documentation of a microservice, and determine
which microservices and their functions will be a�ected by changes.

Peng et al. (2022) proposed a trace analysis-based microservice architecture measure-
ment approach. This approach was evaluated through three case studies. In the paper, the
authors mentioned that the proposed approach is useful in characterizing the independence
and complexity of the invocation chain of microservice architectures. Another cited utility
was that the approach could help to identify microservice architecture issues caused by
improper service decomposition and architectural degradation.

In the next section, we describe an identi�ed research focused on architectural migra-
tion.



100

6 | RELATED RESEARCH

6.3 Architectural Migration

The work by Auer et al. (2021) presents a framework for supporting companies in
discussing and analyzing the potential bene�ts and drawbacks of the migration and re-
architecting process. During the study, a survey was carried out in the form of interviews
with 52 professionals. The main use of the framework, pointed out by the authors, is
to help companies avoid architectural to microservices migration if it is not necessary,
especially when they might get better results by refactoring their monolithic system or
re-structuring their internal organization.

After describing the identi�ed related work, we compare such studies to ours in the
next section and highlight the main di�erences.

6.4 Comparison of Related Research

In all, we identi�ed and analyzed 19 related scienti�c work, organized into nine series
of studies. Figure 6.1 compares our study with the related papers described in previous
sections. From the investigation carried out to date, we have not identi�ed approaches with
the same objective as the CharM. That is, to characterize the architecture of service-based
systems based on microservices guidelines and static metrics of the structural attributes of
size and coupling.

Group Study Support
understanding a SBA

Support the
maintenance of a SBA

Support the
communica�on of a
SBA to stakeholders

Independent of code
or infrastructure?

Architectural
characteriza�on This study

Architectural
recovery

Granchelli et al. (2017a,b);
 Cardarelli et al. (2019)

Alshuqayran et al. (2018);
Alshuqayran (2020)

Bushong et al. (2022);
Cerny et al. (2022)

Architectural
evalua�on

Engel et al. (2018)
Bogner et al. (2017, 2019, 2020a,b)

Zdun et al. (2017);
Ntentos et al. (2021a,b)

Mayer and Weinreich (2018)
Peng et al. (2022)

Architectural
migra�on Auer et al. (2021)

Yes Yes Yes No

Yes Yes Yes No

Yes Yes Yes No

Yes Yes Yes No
Yes Yes No No

Yes Yes No Yes

Yes Yes Yes No
Yes Yes Yes No

No Yes Yes Yes

Yes Yes Yes Yes

Figure 6.1: Comparison of related research.

Although the analyzed approaches do not have the same objective as the CharM, they
have some uses in common. Therefore, they can support the maintenance, understanding,
or communication of the architecture of service-based systems. Thus, when analyzing
the related studies 1, we can observe that all the other presented approaches, in some
way, support the maintenance of the architecture of service-based systems. Nevertheless,
we did not clearly identify that the approach proposed by Auer et al. (2021) supports
understanding a service-based architecture and that the approaches presented in the

1The summary of the related studies analysis is available at:
https://drive.google.com/�le/d/1YutSuItDv6uhTtEGSwodbJclxaU3fao9/view?usp=sharing.

https://drive.google.com/file/d/1YutSuItDv6uhTtEGSwodbJclxaU3fao9/view?usp=sharing


6.5 | CHAPTER SUMMARY

101

series of studies conducted by Bogner, Wagner, et al. (2017a) and Zdun et al. (2017)
and Ntentos, Zdun, Plakidas, and Geiger (2021a) support the communication of a
service-based architecture to stakeholders.

Another feature we observed when comparing our research with the others was
whether the proposed approach’s analysis depends on the software source code or in-
frastructure. We found that only our model and the approaches proposed by Zdun et al.
(2017) and Ntentos, Zdun, Plakidas, and Geiger (2021a) and Auer et al. (2021) have this
independence. This feature means that the CharM could be used at di�erent software life
cycle stages.

Another interesting point to note is that the CharM also explores di�erent and didactic
ways for architectural visualization of services and systems. When examining the analyzed
studies, this aspect was considered in only seven (Engel et al., 2018; Mayer and Weinre-
ich, 2018; Alshuqayran, 2020; Bogner, A. Zimmermann, et al., 2020; Ntentos, Zdun,
Plakidas, and Geiger, 2021b; Bushong, Das, et al., 2022; Cerny, Amr S. Abdelfattah,
et al., 2022) of the 19.

Furthermore, although the proposed approaches were evaluated empirically, we found
that the use and ease of understanding aspects were not the focus of most related work.
The only exception is Cerny, Amr S. Abdelfattah, et al. (2022)’s study, which sought
to understand the usefulness of Microvision and whether its use was intuitive. That is,
none of the other studies we analyzed have deeply investigated how useful the proposed
approaches are for certain tasks or how easy these approaches are to understand. In
contrast, one of the focuses of our work is to empirically evaluate the uses of the CharM
and its ease of understanding.

6.5 Chapter Summary

In this chapter, we reviewed and compared solutions with similar goals to the CharM.
However, after analyzing 19 scienti�c studies, we did not identify solutions whose main
goal is to characterize the architecture of service-based systems. We also noticed that
the mapped solutions aim at architectural recovery, evaluation, or migration. Most of
these solutions depend on source code or infrastructure to achieve these goals. Therefore,
considering this scenario, the CharM proved to be a valuable solution that may help
professionals to characterize the architecture of service-based systems, being useful to
understand, document, and maintain the architecture without depending on source code
or infrastructure.





103

Chapter 7

Conclusion

This chapter concludes this thesis by reviewing the research questions and CharM’s
evaluation results. Furthermore, we point out the main contributions of this thesis and
suggestions for future work.

Faced with the challenge of characterizing the architecture of service-based systems,
we sought a way to mitigate this problem and, at the same time, support the architectural
decision-making process. Therefore, the main objective of this thesis was to develop a
model to characterize the architecture of service-based systems, adopting microservices
guidelines. We called this model CharM.

To achieve this goal, we followed the seven Design Science Research guidelines, which
allowed us to build and evaluate the CharM iteratively and incrementally, based on ad-hoc

literature reviews, discussions with software architecture experts, multiple case studies,
and a survey. Thus, this thesis de�ned the CharM and described its dimensions and metrics.
In addition, we presented the result of this model’s empirical evaluation through two case
studies (the �rst in an academical and the second in an industrial environment) and a
survey.

Based on the analysis and re�nement of the CharM’s application and evaluation results
in the two case studies (Chapter 4), we mapped 24 possible uses for our characterization
model. From this, we grouped them into the following three categories of uses (i) under-
standing a service-based architecture, (ii) maintaining a service-based architecture, and (iii)
communicating a service-based architecture to stakeholders (RQ1). We also investigated
the professionals’ perceptions regarding the characterization generated by the CharM. We
found that, in general, respondents considered easy to understand the result generated
by our model. Besides that, respondents considered that the architectural characteriza-
tion generated from the CharM is coherent with the reality they knew of the studied
systems (RQ2). During the case studies, we also mapped aspects where the CharM could
be improved. Thus, we received suggestions to add new metrics and other architectural
information, as well as recommendations to improve the results presentation and the
explanation of some aspects of the model (RQ3). The CharM was evaluated by 17 di�erent
professionals through the two case studies. The analyses and discussions that took place
during these studies allowed us to evaluate di�erent aspects of the CharM deeply.



104

7 | CONCLUSION

Then, to evaluate the CharM from the perspective of a wider audience, we designed a
survey (Chapter 5). This survey was answered by 58 professionals who work with service-
based systems architecture. The results of this survey evidenced that our model is useful
for understanding the synchronous and asynchronous couplings between services and
evaluating a service-based system’s architecture at design time (RQ4). Furthermore, another
use of the CharM that stood out was the possibility of identifying structural characteristics,
which can be adjusted (RQ5). The characterization generated by the CharM was also
highlighted as useful to support discussions and compose architectural documentation
(RQ6). It is also worth mentioning that the CharM had a mostly positive evaluation since
it was considered useful for the 21 uses presented in the survey.

The survey results also reinforced that the CharM is easy to understand (RQ7). Further-
more, during the evaluation stages, we identi�ed more evidence that the characterization
generated by the CharM is useful for professionals with di�erent pro�les (RQ8), helping
them to understand the architecture of a service-based system and in the process of
architectural maintenance and communication.

Thus, we believe that the results presented in this thesis demonstrate that the CharM
is a useful model to characterize the architecture of service-based systems and that it
supports architectural decision making.

7.1 Contributions

The main contribution of this work is the CharM, which is a valuable resource that
helps professionals with di�erent pro�les to understand, document, and maintain the
service-based systems’ architecture. Despite the positive result of the model evaluation,
some improvements can be implemented, such as the following: not limiting the CharM
dimensions to the structural attributes of size and coupling, exploring other types of
metrics (static and dynamic), adopting strategies for semi-automatic collection of metrics
as well as the automatic generation of views, and presenting results that relate explicitly
to the in�uence of the architecture characteristics on the quality attributes.

A secondary contribution of this research was the developed systematic method for
trade-o� analysis of architectural patterns. Such a method may help in decision-making by
signaling the adoption e�ects of certain architectural patterns on relevant quality attributes
in a speci�c context. Despite the initial results being interesting, we believe it is relevant
to conduct further investigations and submit our method to new validation steps.

Other relevant contributions directly or indirectly related to this thesis are:

• [Scienti�c] The literature review on software architecture, where we explored
monolithic and service-based architectural styles and highlighted the characteristics,
advantages, and challenges of microservices. In addition to the ad-hoc review about
metrics of size, data source coupling, and synchronous and asynchronous coupling;

• [Scienti�c] The results of this thesis contributed to the development of an under-
graduate research project and two master’s degree dissertations. The undergraduate
research project was funded by FAPESP (São Paulo Research Foundation) and aimed
to develop the Sorting Hat tool to automate some tasks to assist in architectural



7.2 | SCIENTIFIC PUBLICATIONS

105

characterization with the CharM. One of the dissertations was developed in the
graduate program in Computer Science at IME/USP, whose objective was automati-
cally detecting patterns in microservices-based architectures. The other dissertation
is being developed in the graduate program in Applied Computing at the Institute
for Technological Research at the University of São Paulo (IPT/USP). In such work,
the CharM is being adopted to characterize the architecture of a �nancial market
system;

• [Scienti�c and Technical] Development of didactic videos to explain the CharM’s
structure and demonstrate its application’s result. Such videos are useful for under-
standing and using our model;

• [Technical] The results generated from the CharM instigated and supported dis-
cussions by the Organization A team to adjust the Search System’s architecture (one
of the study objects in this thesis);

• [Educational] The studies carried out in this thesis were the basis for the planning
and execution of two extension courses 1, where the author of this thesis acted as
one of the teachers. One of the courses was named Complex Systems Development
and lasted 60 hours (2019/1 and 2019/2 o�ers). The other course was named Agile
Software Architecture, was o�ered in 2021/1, and lasted 30 hours. Both courses were
o�ered in the summer course program at the University of São Paulo (USP);

• [Educational] The studies carried out in this thesis contributed to the creation of
the course Laboratory of Complex Computational Systems 2 for the undergraduate
in Computer Science at the Institute of Mathematics and Statistics of the University
of São Paulo (IME/USP). The author of this thesis acted as a student monitor in the
2020/1 and 2021/1 course editions.

7.2 Scienti�c Publications

We generated a series of scienti�c papers at di�erent steps of this research. Some
of these papers are directly related to this thesis and correspond to results, which, in
some way, are described throughout this document. Others are the unfolding steps of
this research, developed in collaboration with other researchers. It is worth noting that
some of these papers have already been published or submitted, and others are still in
development.

7.2.1 Published or Submitted Papers
Paper 1. ROSA, Thatiane de Oliveira; GOLDMAN, Alfredo; GUERRA, Eduardo Mar-

tins. How ‘micro’ are your services? In: IEEE International Conference on Software
Architecture Companion (ICSA-C 2020). 2020.

1Extension courses program: https://drive.google.com/�le/d/1onrw4-
YOxyPX4FEMuIu8jrreNZwb9TIV/view?usp=sharing

2Undergraduate course program: https://bcc.ime.usp.br/principal/catalogo2017/disciplinas/MAC0475.html

https://drive.google.com/file/d/1onrw4-YOxyPX4FEMuIu8jrreNZwb9TIV/view?usp=sharing
https://drive.google.com/file/d/1onrw4-YOxyPX4FEMuIu8jrreNZwb9TIV/view?usp=sharing
https://bcc.ime.usp.br/principal/catalogo2017/disciplinas/MAC0475.html


106

7 | CONCLUSION

We published this paper on the New and Emerging Ideas track of the ICSA. Our goal
was to present the �rst version of our characterization model, developed from exploratory
and descriptive research.

Paper 2. ROSA, Thatiane de Oliveira Rosa; DANIEL, João Francisco Lino; GUERRA,
Eduardo Martins; GOLDMAN, Alfredo. A Method for Architectural Trade-o� Analysis

Based on Patterns: Evaluating Microservices Structural Attributes. In: Proceedings of the
European Conference on Pattern Languages of Programs. 2020.

This paper presented a method for systematic trade-o� analysis of architectural pat-
terns. In such a study, we identi�ed how di�erent microservice patterns in�uence the
structural attributes of size, coupling, and sharing data sources.

Paper 3. ROSA, Thatiane de Oliveira; GOLDMAN, Alfredo; GUERRA, Eduardo Martins.
Characterization and Evolution Model of Service-based Architecture Systems (in Portuguese).
In: Workshop on Theses and Dissertations (WTDSOFT) - Brazilian Conference on
Software: Theory and Practice (CBSOFT). 2020.

We presented in this paper the second version of our characterization model. We
incorporated improvements from investigating metrics and architectural patterns in such
a version.

Paper 4. SANTANA, Erick Rodrigues de; ROSA, Thatiane de Oliveira; DANIEL, João
Francisco Lino; GOLDMAN, Alfredo. Desenvolvendo o Sorting Hat: uma Ferramenta para

Caracterização de Arquitetura Baseada em Serviços (in Portuguese). In: Undergraduate Re-
search on Software Engineering Competition (CTIC-ES) - Brazilian Conference
on Software: Theory and Practice (CBSOFT). 2021.

This paper is an o�shoot of this thesis. The main objective of this paper is to present
the Sorting Hat, a tool that helps in the process of characterizing the architecture of
service-based systems. We present the advances in the process of automatically generating
visualizations of the metrics of our characterization model. Furthermore, we describe a
preview version of the automated data collector prototype.

Paper 5. VALE, Guilherme; CORREIA, Filipe Figueiredo; GUERRA, Eduardo Martins;
ROSA, Thatiane de Oliveira; FRITZSCH, Jonas; BOGNER, Justus. Designing Microservice

Systems Using Patterns: An Empirical Study on Quality Trade-O�s. In: IEEE International
Conference on Software Architecture (ICSA-2022). 2022.

This paper is an o�shoot of the microservice patterns trade-o� analysis step carried out
in this thesis. It was developed with researchers from the University of Porto in Portugal
and the University of Stuttgart in Germany. This paper presents an empirical study in
the industry, aiming to identify and understand the relationships between microservices
design patterns and the quality attributes they can support or hinder.

Paper 6. ROSA, Thatiane de Oliveira; GUERRA, Eduardo Martins; CORREIA, Fil-
ipe Figueiredo; GOLDMAN, Alfredo. CharM — evaluating a model for characterizing

service-based architectures. In: Journal of Systems and Software, Volume 206, December
2023.

This paper presents the �fth version of our characterization model, named CharM, as



7.3 | FUTURE WORK

107

well as the results of its evaluation through a survey.

Paper 7. DANIEL, João Francisco Lino; ROSA, Thatiane de Oliveira Rosa; GOLDMAN,
Alfredo; GUERRA, Eduardo Martins. Towards the Detection of Microservice Patterns Based on

Metrics. Accepted to be presented at the Euromicro Conference Series on Software
Engineering and Advanced Applications - SEAA 2023.

This paper is also an unfolding of the studies initiated in this thesis. Following a metric-
based approach, we present an automatic detection tool for microservices patterns. The
objective is to increase awareness of such patterns and help developers better understand
a microservices-based architecture. At this moment, our tool works with the detection of
�ve patterns. We evaluated this tool through two case studies.

7.2.2 Papers in Progress
We are currently working on developing three other papers:

• Paper 8: the main objective is to present the result of the evaluation of the CharM
through the two case studies described in this thesis;

• Paper 9: aims to present the improvements implemented in the Sorting Hat tool
(presented in Paper 4), considering both the automatic generation of visualizations
and the automation of data and CharM’s metrics collection;

• Paper 10: this paper aims to describe the results of applying the CharM to char-
acterize the architecture of a �nancial market system. We intend to explore and
evaluate suggestions for architectural evolutions from such characterization.

7.3 Future Work

Throughout the development of this research, we identi�ed some gaps and opportuni-
ties for further research. Below we describe each of them:

• Develop automation tools related to collecting metrics from the model, generating
views (rulers, graphs, and diagrams) of the characterization of the architecture of
the analyzed system, and identifying architectural patterns from the metrics of the
model. These activities are in progress and we have already obtained preliminary
results. The �rst results were published in the paper of the E. Santana et al. (2021).
We are currently working on the development of two other papers, in which we
describe new advances;

• Evolve the model incorporating new dimensions related to di�erent attributes,
test the resource of analysis pro�les, and submit it to new evaluation iterations (in
new real environments and/or through a survey with more participants). During
this process, we also plan to monitor the behavior and evolution of our model, as
well as evaluate its continued use. Currently, we are adopting the �fth version of
the CharM to characterize a part of a �nancial market system. This task consists of
a master’s thesis being developed within the Institute for Technological Research at
the University of São Paulo (IPT/USP);



108

7 | CONCLUSION

• Incorporate dynamic metrics into the CharM, which, combined with static
metrics, may generate a richer and more consistent architectural characterization,
making it possible to explore and understand a more extensive set of architectural
characteristics of the system to be analyzed;

• Develop a catalog of evolutions, which, combined with the CharM, serve as a
guide to adjust the architecture according to the desired architectural approach;

• Evaluate the adoption of the CharM as one of the steps of an architectural
migration process, to help professionals analyze and understand how much the
new architectural design meets the desirable quality requirements of a given system;

• Evaluate and compare the architectural visualization generated from the
CharM with those generated from other studies to identify positive points and
opportunities for improvements.



109

Appendix A

Ad-hoc Review of Metrics

Perepletchikov et al. (2007) explain that metrics can serve as early indicators of
software quality characteristics, enabling the identi�cation of potential problems from the
early stages of the software life cycle. Thus, we performed an ad-hoc bibliographic research
about metrics during the second iteration of the CharM design process. The objective
of this research was to identify candidate metrics to be used in each dimension of our
characterization model. Therefore, considering that we adopted microservices guidelines
in the CharM, we directed our search toward metrics applicable to this architectural
style.

During this investigation, we found over 50 metrics directly related to microservices.
This set of metrics was varied, containing di�erent types (static and dynamic), covering
di�erent scopes (element, service, operation, and system), applicable to di�erent structural
attributes (size, complexity, cohesion, and coupling), as well as dependent and independent
of technology, source code, and infrastructure. During this investigation, we consulted
the following academic materials and patterns documentation: Rud et al. (2006), Pere-
pletchikov et al. (2007), H. Hofmeister and Wirtz (2008), Shim et al. (2008), Hirzalla
et al. (2009), Zhang and Xinke (2009), Bogner, Wagner, et al. (2017a), Bogner, Wagner,
et al. (2017b), Hutapea et al. (2018), Engel et al. (2018), Ntentos, Zdun, Plakidas,
Meixner, et al. (2020), and Richardson (2020).

We de�ned the following criteria to select metrics: being related to the structural
attributes of size and coupling, consequently with the dimensions of our model, as well
as being independent of technology, source code, and infrastructure. Other aspects that
we considered were simplicity and that the metrics should be useful in facilitating the
interpretation of the service-based system’s architecture. In Table A.1 we present the
insight sources to the set of metrics incorporated into the second version of the CharM,
which we described in paper Rosa et al. (2020).



110

APPENDIX A

CharM dimension Candidate metrics’ insight sources
Size

• Number of Services (NS) (H. Hofmeister and
Wirtz, 2008)

• Number of Operations (SIM NO) and System Size
in Number of Services (SM SSNS) (Shim et al., 2008;
Bogner, Wagner, et al., 2017a)

• Number of Services (NOS) and Weighted Service
Interface Count (WSIC) (Hirzalla et al., 2009;
Bogner, Wagner, et al., 2017a; Bogner, Wagner,
et al., 2017b)

• Number of Services (NS)
• Number of synchronous and asynchronous inter-

faces (Engel et al., 2018)

Data Source Coupling
• Service Interconnections with SharedDB (Ntentos,

Zdun, Plakidas, Meixner, et al., 2020)
• Pattern Shared database and Pattern Database per

service (Richardson, 2020)

Synchronous Coupling
and Asynchronous
Coupling

• Absolute Importance of the Service (AIS) and
Absolute Dependence of the Service (ADS) (Rud
et al., 2006; Bogner, Wagner, et al., 2017a; Bogner,
Wagner, et al., 2017b)

• Weighted Extra-Service Incoming Coupling of
an Element (WESICE) and Weighted Extra-
Service Outgoing Coupling of an Element (WE-
SOCE) (Perepletchikov et al., 2007; Bogner,
Wagner, et al., 2017a)

• Service Consumers (SC), Service Providers (SP),
Coupling of Service (cos), and System’s Service
Coupling (SSC) (H. Hofmeister and Wirtz, 2008;
Bogner, Wagner, et al., 2017a)

• Coupling of Service (CS) and Importance of Service
(IS) (Zhang and Xinke, 2009)

• Number of synchronous and asynchronous depen-
dencies (Engel et al., 2018)

Table A.1: Candidate metrics - Second version of the CharM

Inspired by Table A.1, we selected the following initial set of metrics to compose the
second version of our architectural characterization model:

• Size: number of services per module and number of operations per service;



A | AD-HOC REVIEW OF METRICS

111

• Data Source Coupling: number of databases per module and number of modules
that share the same database;

• Synchronous Coupling: number of client services that invoke the operations of a
given service and number of services that a given service is dependent on;

• Asynchronous Coupling: number of di�erent types of messages published by
a given service and number of di�erent types of messages consumed by a given
service.

We detailed the results of evaluating the second version of our model with this set of
metrics in Section 4.1.





113

Appendix B

Method for Architectural
Trade-o� Analysis

Faced with the di�culty of selecting the most appropriate architectural patterns, which
guide the software architecture in the desired direction, we present in this appendix, a
reproducible and systematic technique that aims to mitigate this problem. The focus of
the proposed technique is to identify architectural patterns that a�ect a set of prede�ned
quality attributes.

We present below a brief description of the step-by-step technique. Ideally, two re-
searchers/professionals should perform the technique in order to minimize bias and provide
more reliable �ndings. Thus, pattern selection (step 4) and trade-o� analysis (step 5) must
occur autonomously. Then, con�icting decisions must be discussed until a consensus is
reached.

1. De�ne the analysis objective: Delimit the investigation scope, making clear the
architectural style(s) that will be studied and what kind of trade-o� we want to
analyze. This will make it easier to perform steps 2 and 3;

2. Select pattern collections sources related to the type of architecture inves-
tigated: De�ne a search strategy. Choose keywords, types of materials (such as
web pages and papers), consult documents and studies that investigate architectural
patterns related to the desired scope;

3. Choose quality attributes for trade-o� analysis: Based on researches and
speci�cs of the software project, de�ne the quality attributes that will be considered
in the trade-o� analysis. We imagine it is viable to perform this analysis considering
up to 4 attributes, more than that would make the selection process very di�cult;

4. Select the patterns applicable to selected quality attributes: Read the context,
problem, and solution of each pattern. If more information is needed, read the
positive and negative consequences of the pattern. Furthermore, check for duplicate
patterns with di�erent names. If existing, to avoid redundancy, only one of the
patterns should be considered in the analysis. At �rst, each researcher must carry
out the selection of patterns independently. Then, the obtained results must be



114

APPENDIX B

compared and con�ict points resolved;

5. For each selected pattern, check the trade-o�s: Based on the description of each
pattern, analyze and record the impact generated by each structural attribute. In
order to carry out this analysis, it is important to de�ne parameters to classify the
impact. Furthermore, as in the previous step, each researcher must carry out this
analysis independently. Then, the obtained results must be compared, and con�ict
points resolved.

We hope that these steps help software architects obtain insights and evidence about
the impact of architectural patterns on certain investigated quality attributes.

B.1 Demonstration – Architectural Trade-o� Analysis
with Microservices Structural Attributes

In this section, we demonstrate the process of applying our method for architectural
trade-o� analysis. To carry out this demonstration, we are going to analyze the trade-o�s
of adopting patterns on structural attributes of the microservices architectural style. The
execution of each methods step is described below.

Analysis objective: Identify the in�uence that architectural patterns have on the
structural attributes of microservices.

Patterns collections sources: We search for pattern collections on Google engine
using the combination of the keywords microservice* and “architectural pattern*” (The
symbol * allows capturing possible variations in search terms such as plural). Furthermore,
we analyzed selected materials in systematic reviews that investigate microservices pat-
terns. The criterion used to select the patterns collections was the description quality. To
perform this trade-o� analysis, we selected four microservices patterns collections:

• Microservice Architecture - A Pattern Language for Microservices, by Richardson
(2020)

• Design Patterns for Microservices, by Wasson (2017);

• Implementation Patterns for Microservices Architectures, by Brown and Woolf
(2016);

• Microservices Migration Patterns, by Balalaie, Heydarnoori, Jamshidi, et al.
(2018).

After analyzing the selected collections, we identi�ed 81 microservices patterns (con-
sidering repetitions).

Quality attributes: During this analysis, we are considering the following microser-
vices structural attributes:

• Module/service size: We are going to analyze aspects related to services’ and
modules’ size. For this, we are going to consider information, such as services’ and
modules’ scope, number of service functions, and the number of services per module.



B.1 | DEMONSTRATION – ARCHITECTURAL TRADE-OFF ANALYSIS WITH MICROSERVICES STRUCTURAL ATTRIBUTES

115

Therefore, the objective is to analyze if each pattern has an in�uence on the increase
or decrease in the services’ and modules’ size;

• Database sharing between modules/services: We are going to consider infor-
mation about the database architecture, especially about the number of databases
shared between modules/services. Therefore, the objective is to analyze if each
pattern in�uences the increase or decrease number of shared databases between
modules/services;

• Service coupling level: We are going to analyze the degree of dependency/number
of connections between services. Therefore, the objective is to analyze if each pattern
in�uences the increase or decrease in the coupling level between services.

We selected these structural attributes based on researches related to microservices
challenges. These researches indicate that these structural attributes have a relationship
with the di�erentials and main characteristics of microservice architectural style.

Selected patterns: After reading the context, problem, and solution of each pattern
and eliminating repetitions, we selected 24 patterns for trade-o� analysis. The selection
was carried out by two researchers to reduce bias.

Figure B.1 presents these patterns and illustrates the grouping (according to the kind
of problem it solve) and relationship between them. To illustrate the relationship between
the patterns, we follow the three forms of representation adopted by Richardson (2020):
a successor pattern that solves problems identi�ed in the application of a predecessor
pattern; patterns that present alternative solutions to the same problem; and patterns that
solve problems in the same area, which can be grouped.

Adapter
Microservice

Application
Metrics

Business
Microservice

Change	Code
Dependency	to
Service	Call

CQRS

Database	per
Service

Decompose	by
Business	Capability

Decompose	by
Subdomain

Domain	Event

Event	Sourcing

Gateway
Aggregation

Introduce	Edge
Server

Log	Aggregation

Messaging

Saga

Scalable	Store

Self-contained
Service

Service	Registry

Shared	Database

Sidecar

Decompose	the
Monolith	Based	on
Data	Ownership

Predecessor Sucessor

Solution	A Solution	B

Legend:
Database Architecture

Data

Querying

Maintenance of Data Consistency

Deployment

Decomposition

Communication

Observability

	API	Composition

AmbassadorTransactional
Outbox

Figure B.1: Pattern diagram of the selected patterns (inspired by Richardson (2020))

Trade-o� analysis:As previously de�ned, the objective of this analysis was to identify
the in�uence those previously listed patterns have on module/service size, database



116

APPENDIX B

sharing between modules/services, and coupling level. To identify this in�uence, we
read the description of each selected pattern. From this, we analyzed if the adoption of a
particular pattern increased, decreased, or remained neutral on each structural attribute.
It is noteworthy that, as in the previous step, to reduce bias, the trade-o� analysis was per-
formed independently by two researchers, then compared and discussed until consent was
reached. Despite this, it is important to note that the results are limited to the researchers’
knowledge and interpretation.

To illustrate the results of this analysis, we developed the trade-o�s diagram (Figure B.2),
which is an original contribution of this research. The trade-o�s diagram must be created
considering the relationship between the investigated quality attributes and their possible
impacts in the architecture. Thus, the analyzed attributes represent the diagram dimensions,
and the set of trade-o�s must be arranged in these dimensions. Note that this diagram
version can only represent three dimensions. This diagram aims to put together in one
place all trade-o�s of the analyzed attributes, facilitating the interpretation of results. The
result of the trade-o� analysis for each pattern is detailed below:

- Pa�ern that decreases the module/service size, number of database sharing
between modules/services, and service coupling level:

• Business Microservice: For each business function (some routine process or activity

of an organization), an exclusive microservice is implemented, which encapsulates the

business logic and makes it composable. Since the aim is to de�ne the service’s scope,
the tendency is to reduce its size. Furthermore, as the isolation of databases is done
following the services’ scope, this contributes to independent evolution, decreasing
the number of shared databases and the level of coupling between services (Brown
and Woolf, 2016).

- Pa�erns that decrease the module/service size and service coupling level, but
maintain neutral the number of database sharing betweenmodules/services:

• Decompose by Business Capability: Each microservice represents a business

capability. Delimit the microservices scope according to business capability, makes
them cohesive. Furthermore, it contributes to microservices isolation and coupling
decrease. Nevertheless, identifying business capability is a subjective and challenging
task (Richardson, 2020);

• Decompose by Subdomain: Each microservice represents a Domain-Driven Design

(DDD) subdomain. Delimit the microservices scope according to the project domains,
makes them cohesive. Furthermore, it contributes to microservices isolation and
coupling decrease. Nevertheless, identifying project domains is a subjective and
challenging task (Richardson, 2020) (a.k.a. Decompose the Monolith (Balalaie,
Heydarnoori, Jamshidi, et al., 2018));

• Decompose the Monolith Based on Data Ownership: Decompose a monolithic

system according to the ownership of a cohesive set of data. The monolith decomposi-
tion occurs around data ownership, which reduces the level of coupling because it
reduces the intense exchange of data between microservices. However, this pattern
is impractical in complex domain systems (Balalaie, Heydarnoori, Jamshidi, et al.,
2018).



B.1 | DEMONSTRATION – ARCHITECTURAL TRADE-OFF ANALYSIS WITH MICROSERVICES STRUCTURAL ATTRIBUTES

117

M
od
ul
e/
Se
rv
ic
e	
Si
ze

Number	of	database	sharing	between	services/modules

Decreases Neutral Increases

D
ec
re
as
es

N
eu
tr
al

In
cr
ea
se
s

	API	Composition

Ambassador

Application	metrics

Change	Cod.	Depend.
to	Serv.	Call

Sidecar	

Adapter	Microservice

Introduce	Edge	Server

Log	Aggregation

Business	Microservice

Increases	-	Service	coupling	level Neutral	-	Service	coupling	level Decreases	-	Service	coupling	level

CQRS

Database	per	Service

Messaging

Saga

Decompose	by
Business	Capability

Decompose	by
Subdomain

Decompose	the	Monolith
Based	on	Data	Ownership

Domain	Event

Event	Sourcing

				Gateway	Aggregation			

Scalable	Store
Self-contained	Service

Service	Registry

Shared	Database

Transactional	Outbox

Legend:

Figure B.2: Trade-o�s diagram

- Pa�erns that maintain neutral the module/service size, but decrease the num-
ber of database sharing between modules/services and service coupling level:

• Database per Service: Each microservice has its own private database, accessible

only through its API. The trend is to reduce the number of databases shared between
microservices. Furthermore, it reduces the coupling between services and provides
greater �exibility in the adoption of databases (each one can be di�erent from
the other). However, it is complex to guarantee transactions between di�erent
microservices (Richardson, 2020);

• Event Sourcing: To reliably and atomically update the database, the state of a business

entity is persisted as a sequence of events. By persisting the status of an entity as a
sequence of events, the need to share databases between microservices decreased.



118

APPENDIX B

Furthermore, it dramatically decreases the coupling between microservices. On the
other hand, it is di�cult to learn and implement, as well as creating eventual data
consistency (Richardson, 2020);

• Messaging: To implement inter-service communication, use asynchronous messaging.
By storing messages exchanged in a bu�er, there is less need to share databases.
Furthermore, it reduces the coupling between microservices, since it decouples the
message senders from the recipients. Despite these advantages, it depends a lot on a
message broker (which must be very resilient) (Richardson, 2020);

• Saga: To maintain data consistency across services, business transactions that span

multiple services are implemented as a sequence of local transactions. Through the
sequence of local transactions, it contributes to the reduction of the number of
databases shared by di�erent microservices. Furthermore, it provides a way to deal
with data consistency between microservices, addressing the transaction problem,
while increasing the complexity of communication (Richardson, 2020).

- Pa�ern that maintains neutral the module/service size and service cou-
pling level, but decreases the number of database sharing between modules/ser-
vices:

• Domain Event: Organize the business logic of a microservice as a collection of DDD

aggregates that publish an event whenever data changes. The use of domain events
and DDD terminology allows decoupling the connection between microservices
based on the domain. Furthermore, when creating a collection of aggregated data,
the tendency is to decrease the need to share databases between di�erent microser-
vices (Richardson, 2020).

- Pa�erns that maintain neutral the module/service size, decreases the number
of database sharing between modules/ services, and increases the service coupling
level:

• Transactional Outbox: To maintain data consistency across services, messages are

inserted into an outbox table as part of a local transaction, and a separate process

publishes such messages to a message broker. A message outbox is injected into the
persistence command, based on the atomicity of the database command. The outbox
is then read through a separate process to publish to a broker. This strategy provides
greater �exibility and resilience to the event bus. However, the development process
becomes more complicated (Richardson, 2020).

- Pa�erns that maintain neutral the module/service size and number of
database sharing between modules/services, but decreases the service coupling
level:

• Self-contained Service: To handling with synchronous requests, design services

that do not wait for the response from any other service. By de�nition, it is a service
that depends little on others, which reduces coupling but increases the microservices
internal complexity (Richardson, 2020).

- Pa�erns that maintain neutral the module/service size and number of
database sharing between modules/services, bat increase the service coupling



B.1 | DEMONSTRATION – ARCHITECTURAL TRADE-OFF ANALYSIS WITH MICROSERVICES STRUCTURAL ATTRIBUTES

119

level:

• API Composition: Implement queries invoking themicroservices that own the data and

executing an in-memory join. When the data is separated into di�erent microservices,
it provides a way of uni�ed consultation. On the other hand, it creates a service that
is tightly coupled with others (Richardson, 2020);

• Introduce Edge Server: Create a layer of indirection in the system, which can do

dynamic routing based on a prede�ned con�guration. This layer is useful for hiding

internal complexity from end-users and monitoring overall services usage. Adds an
abstraction layer to the outside, which facilitates access for clients external, but
concentrates much processing in a single point, which is tightly coupled to the
others (Balalaie, Heydarnoori, Jamshidi, et al., 2018);

• Log Aggregation: To understand the behavior of the application, use a centralized log-
ging service that aggregates logs from each service instance. Since it is a mechanism that
centralizes logs, it is necessary to connect to all microservices, thus increasing the
coupling level at a single point (Richardson, 2020) (a.k.a. Log Aggregator (Brown
and Woolf, 2016)).

- Pa�erns that maintain neutral the module/service size and service cou-
pling level, but increases the number of database sharing between modules/ser-
vices:

• Scalable Store: The proposal is to have a distributed, scalable and resilient database.
To achieve this, all states are placed in a Scalable Storage, being made available and

shared by any number of application runtimes. A distributed database is adopted,
shared between instances of the same microservice, which, despite this, provides
greater internal/implicit data consistency (Brown and Woolf, 2016).

- Pa�erns that maintain neutral the module/service size, but increase the num-
ber of database sharing between modules/services and service coupling level:

• Service Registry: For the client, �nd the available instances of a service, implement

a database with the service instance locations. The creation of a database that stores
the microservices locations instances facilitates the discovery of such instances.
On the other hand, a service (Registry) dependency is created, increasing the cou-
pling. Furthermore, in the case of Registry failure, the problem of (eventual) data
consistency arises (Richardson, 2020) (a.k.a. Introduce Service Registry (Brown
and Woolf, 2016) or Introduce Service Registry Client (Balalaie, Heydarnoori,
Jamshidi, et al., 2018));

• Shared Database: Multiple microservices share a single database. Provides ACID
(Atomicity, Consistency, Isolation, and Durability) transactions and strengthens data
consistency. However, considerably increases the coupling and database sharing
between microservices (Richardson, 2020).

- Pa�erns that increase the module/service size and service coupling level, but
maintain neutral the number of database sharing betweenmodules/services:

• Adapter Microservice: Builds a simple adapter microservice that converts an API



120

APPENDIX B

outside the microservice format to an API that the microservice client will expect. A
new microservice – highly – coupled with a legacy service is added. On the other
hand, a new communication interface with the rest of the system is gained, which is
more �exible and consistent with the microservices architectural style (Brown and
Woolf, 2016);

• Ambassador: Acts as a proxy between the application and external services, aiming to

make tasks, such as monitoring, logging, routing, and security, in an independent way.
Peripheral functionalities are removed from the business logic process, which in-
creases the dependency between microservices. On the other hand, the development
process is favored since a microservice is created to act as a Proxy. This pattern can
be considered to be a superset of the sidecar, the di�erence of which is that it does
not necessarily follow the life cycle of the main application (Wasson, 2017);

• Application Metrics: Creates a service to gather statistics about individual op-

erations, in either passive or active way. Aggregates metrics into a single service,
slightly increasing the number of microservices. Furthermore, to perform the metrics
monitoring action, the level of coupling between microservices increases and is
created a single point of failure (Richardson, 2020);

• Change Code Dependency to Service Call: The strategy is to create services to re-
duce code dependency and facilitate independent scalability. It transforms reused code
into a requested service. This strategy can increase the number of microservices and
the coupling between microservices and creates a single point of failure (Balalaie,
Heydarnoori, Jamshidi, et al., 2018);

• Sidecar: Processes or support services that are deployed with the main application,

but provide isolation and encapsulation. It is a subset of the ambassador pattern, the
di�erence of which is that the sidecar necessarily follows the life cycle of the main
application. Therefore, peripheral functionalities are removed from the business
logic process, which increases the dependency between microservices. On the other
hand, the development process is favored since a microservice is created to act as a
Proxy (Wasson, 2017).

- Pa�erns that increases themodule/service size, maintains neutral the number
of database sharing between modules/services, and decreases the service coupling
level:

• Gateway Aggregation: Reduces communication between consumers and services. For

this, requests from multiple microservices are aggregated into a single request. It avoids
a high rate of exchange of requests between client and server, adding several services
in one, which deals with sub-requests. However, it creates a microservice that acts
as a Gateway, which becomes a single point of failure (Wasson, 2017);

- Pa�erns that increases the module/service size and number of database shar-
ing between modules/services, but decreases the service coupling level:

• Command Query Responsibility Segregation (CQRS): Creates a read-only copy

of a database (constantly updated), where queries can be e�ciently performed. Increases
scalability and decreases the coupling between microservices. However, it creates



B.2 | DISCUSSIONS

121

a new service responsible for the management of the historical database, which
is shared with all microservices with "interest" in the domain, and which o�ers
eventual consistency (since the Event Sourcing pattern is generally adopted in its
implementation) (Richardson, 2020);

When analyzing the results more broadly, we realize that 11 out of 24 patterns increases
the level of coupling between services. This point deserves attention, as this structural
attribute is related to the loose coupling characteristic of the microservice architectural
style.

We identi�ed seven patterns that, when adopted, can increase the module/service size.
These patterns typically perform monitoring activities, such as Ambassador and
Application Metrics. When we analyzed the in�uence of patterns on databases, we
found out that four patterns increase the number of databases shared between modules.
Similar to the previous case, these patterns have a contrary e�ect on the independence
proposed in the microservices de�nition.

We observe that patterns that reduce the shared use of databases (�ve out of seven)
are mostly related to communication between services. Furthermore, four among these
�ve are about exchanging asynchronous messages and being event-driven. From that, it
is safe to assert the adoption of asynchronous event-based communication reduces the
shared use of databases.

We con�rmed that following a pattern to decompose the parts of the system into
microservices leads to decoupled, smaller and more cohesive microservices. On the other
hand, we could verify it does not directly a�ect database sharing.

The combination of patterns associated with asynchronous messaging – Event
Sourcing, Messaging, Saga, and Domain Event – with patterns of decomposition and
isolation – Self-contained Service, Database per Service, Decompose by Business
Capability, Decompose by Subdomain, and Decompose the
Monolith Based on Data Ownership – creates a powerful pattern set. The adoption of
this set of patterns improves the analyzed attributes in this work. However, it is essential
to note that a more careful study on their actual application is needed.

B.2 Discussions

After applying the proposed method and analyzing the results generated, we believe
that we have obtained interesting insights, which can guide software architects to identify
the most appropriate architectural patterns for a given context. However, since this is the
�rst experiment using this method, we believe that the steps can be re�ned to improve the
execution dynamics and the quality of the results.

Furthermore, we consider the proposed method drove the discussion to take pragmatic
decisions about the analyzed patterns. That means the method conducted the discussion
highlighting the trade-o�s of each pattern and ending up in di�erent outputs. Broadly, we
realized that there are cases when the discussion brought by the method are enough to
discard the hypothesis of adopting that pattern; there are cases when the method guides
to the adoption of the analyzed pattern; and there are cases when neither is possible



122

APPENDIX B

and so further investigation is needed, such as an experiment or prototype. Either way,
the application of the method conducts enlightening discussions around its purpose, the
trade-o�s of patterns.

It is important to note that during the method application, some di�culties were
faced, the main one being related to the information subjectivity. Therefore, one of the
important criteria for selecting patterns collections sources is the patterns description
quality. Another important aspect is that the patterns selection and trade-o� analysis are
made by at least two people. This is important not only to reduce bias but to stimulate
re�ection and increase the analysis quality.



123

Appendix C

Roadmap for the Manual
Collection of a Service’s Metrics

Service name:

1. What are the responsibilities of this service?

2. What is the name of each operation (endpoint) exposed by this service?

3. What is the name of the services that invoke each operation of this service?

4. What is the protocol (REST, gRPC) used in each synchronous connection of invoca-
tion of this service?

5. What is the label of each topic published by this service in a message queue?

6. What is the label of each topic consumed by this service from a message queue?

7. What is the name of the source services that publish the topics consumed by this
service?

8. What is the identi�er of each data source accessed by this service?

9. What is the type (relational database, NoSQL, search engine, spreadsheet, text �le,
etc) of each data source accessed by this service?

10. What role (principal, cache) does each data source play in this service?

11. What type of action (read, write, or both) does this service perform on each data
source it accesses?

12. What are the main technologies (programming language, IDE, etc) adopted to develop
this service?

13. Must this service be deployed together with other services (i.e. is this service has
deployment dependency)?

• If so, what is the name of the other services that must be deployed together
with it?





125

Appendix D

Supplementary Material for the
Case Studies

This appendix presents complementary material to replicate the case studies.

D.1 InterSCity Case Study - Interview Script - CharM
Evaluation

Authors: Thatiane de Oliveira Rosa, Eduardo Martins Guerra, and Alfredo Gold-
man

Starting the interview

• Remembering the terms of the consent form

• Explaining research objectives

• Explaining the research protocol

• Ask if you have any questions about the videos

• Asking permission to record

Part 1 - Interviewee experience

1. How long have you been working with systems with a service-based architecture?

2. Describe, in general terms, your trajectory with service-based systems, citing your
main experiences.

3. How long have you been working/have worked with the InterSCity Platform?

4. What role(s) do you/did you play in the InterSCity Platform project?

Part 2 - General questions about the InterSCity Platform

1. Do you consider that the platform’s current architecture is the most suitable for the
purposes for which it is used? Justify your answer.



126

APPENDIX D

2. In your opinion, what are the strengths of the InterSCity Platform architecture?

3. In your opinion, what are the weaknesses of the InterSCity Platform architecture?

4. In your opinion, what quality requirements are desirable for the InterSCity Platform?

5. In your opinion, what quality requirements does the InterSCity Platform currently
meet?

6. In your opinion, which architectural patterns are present in the InterSCity Platform?

Part 3 - Evaluation of the CharM and the architectural characterization

1. How do you assess the characterization of the platform architecture generated from
our model?

• From 1 (useless) to 5 (very useful), how useful is our model for understanding
the architecture of the InterSCity Platform?

– If it is useless, do you have any suggestions for improvement to make the
characterization more useful?

• From 1 (very di�cult) to 5 (very easy), what is the degree of ease of under-
standing the result of the architectural characterization of the platform?

– If it is very di�cult or di�cult, what point do you think got confused in
the characterization?

• From 1 (Totally incoherent) to 5 (Totally coherent), how coherent is the charac-
terization result with the reality you know?

– If it is totally incoherent or incoherent, which point is dissonant from
reality?

2. Based on the characterization presented, do you believe that it was possible to:

• Better understand the architecture of the platform or was the information
indi�erent?

• Discover something new that you did not know about before or no new in-
formation was presented? If you discovered something new, could you tell us
what it was?

• Do you consider that the data presented can be used as a guide for the evolution
of the platform architecture or are they insu�cient to support decision-making?

3. Considering the structural attributes of size and coupling used as the basis of our
research, do you have any suggestions for improving the characterization model
presented? For example, analysis of other dimensions and/or metrics that you believe
could be more useful for understanding the architecture and guiding its evolution.

Part 4 - Evolution of the InterSCity platform architecture

1. Considering the metrics presented and analyzing each service, is there any aspect
(size, data source sharing, synchronous or asynchronous coupling) that you believe
could be changed to improve the architecture of the platform?



D.2 | INTERVIEW CODE BOOK OF THE INTERSCITY CASE STUDY

127

• (if yes) What do you think can be changed?

• (if yes) Do you have any ideas or suggestions on how this change could be
made?

2. Considering the metrics presented and analyzing the whole platform, is there any
aspect that you believe can be changed to improve the architecture of the platform?
For example, increase/decrease the number of services or change the data source
sharing scheme.

• (if yes) What do you think can be changed?

• (if yes) Do you have any ideas or suggestions on how this change could be
made?

Closing

1. Do you have any questions for me or �nal comments?

2. Can you suggest other people who can be interviewed and contribute to our research?

D.2 Interview Code Book of the InterSCity Case
Study

This appendix presents the code book generated from the qualitative analysis of the
interviews carried out during the InterSCity case study. This material serves to understand
the codes and categories identi�ed during the qualitative analysis. As well as obtain details
of which participants cited each code, the number of citations of each code, and examples
of excerpts from the interviews from which each code emerged.



Code category Category description Code # of participants who cited the 
code

Participants id who cited the 
code # code citations Code example

Uses of the model Tasks or situations in which the model can be 
useful for professionals who work with SBA

Helps an expert to understand the organization of 
the architecture 1 P5 1 I think it is quite useful to understand how the architecture is organized, but if it is seen by someone who already 

knows the platform well. [P5]

To understand relationships 6 P2, P7, P8, P9, P10, and P11 7 I actually got to know more about how my microservices relate. I think this was a new thing for me, I had no idea 
about the dependencies... about the communications between the microservices. [P10]

To confirm intuitive knowledge 2 P1 and P8 3

I believe that this vision seems to have reinforced the idea I already had of the platform. For me, the 
visualizations generated by the model confirmed that the platform is like that. Because it was a third party stating 
things I knew intuitively. It showed me through metrics that what I perceived was really true. Because until then, 
what I saw was code, not values. [P8]

To discover patterns 1 P11 1 From the characterization, I could understand that one of the architecture patterns is the database per service. 
[P11]

To discover differences between services 3 P4, P5, and P9 3
The idea of comparing, I had never thought of… when you are implementing you have an idea of which is the 
biggest or which is the smallest service. But I consider it is cool that you can make a ranking with this 
information. You can have an ideia of what is bigger and what is smaller, so I think that is cool. [P5]

To discover information about data storage 1 P10 1 In fact, I ended up getting to know more about how my microservices are related... and also about the database, 
where they store the information. [P10]

To discover new information 6 P2, P4, P5, P7, P10, and P11 6 I didn't know which was the biggest or the smallest service. I belive this was a new thing for me. [P2]

To understand the architecture 9 P1, P2, P3, P5, P6, P7, P9, P10, 
and P11 20

I consider this type of architecture study very important, because when we begin to work, even though we've had 
some contact with it (kind of architecture)... To do a project within the platform, you have to understand 
everything at once, it's quite complex... pretty hard. So I think this kind of analysis can be useful. I don't know 
what kind of documentation you could generate with your research, but I think it could be very useful if you had 
some kind of report that could help a person, for example, who will have contact with InterSCity or another 
platform, could help us, right away, to understand what is happening there, more or less. [P7]

To explain the architecture 3 P1, P3, and P6 3 If I need to present the InterScity architecture to someone, I would definitely like to have this kind of information. 
[P1]

To guide evolution at a high level of abstraction 9 P1, P3, P4, P6, P7, P8, P9, P10, 
and P11 10 Of course, there is a limit to this, but I think it is possible to look at this model and say, let's try to work in this 

sense, to reduce the synchronous and increase the asynchronous, when necessary. [P1]
To identify the importance of the services 2 P7 and P9 2 There are some services that I didn't know, that were just as important, such as the Resource Catalog. [P7]

To identify coupling 5 P2, P8, P9, P10, and P11 6 I could see better how everything was related and how they worked. How big were they or how much 
communication did they have with each other. I considered it very interesting. [P2]

To identify legacy things 1 P5 1 One thing that I think can also help is in identifying legacy stuff. For example, I have a service that I know no 
longer does something it did one day, and then I see it still has asynchronous communication. [P5]

To identify things should be divided 3 P4, P5, and P8 4 Maybe it can be easy to identify services that are very big, that access many things, that are very complex. [P5]
To identify points that need maintenance 7 P1, P2, P3, P4, P6, P8, and P9 11 With this model, we can identify some things that can be improved, and some others that are going well. [P1]

To identify size 5 P2, P5, P7, P9, and P10 6 I had never counted how many operations each microservice makes available. I consider this interesting 
information. [P5]

To help novices understand the system 
architecture 3 P4, P7, and P8 3 I believe that for those who do not know the platform, the presented characterization would give to them a better 

understanding of the platform. [P8]

To remember the architecture 2 P3 and P5 3 As it had been a while since I worked with the platform, there were things I didn't remember. So, it was good that 
I could remember. [P5]

Aspects in which the model is not useful Tasks or situations where the characterization 
generated from the model is not useful

The presented information rarely will be accessed 1 P3 2 The model gives us a very static view of a given moment, and then you wouldn't use that information as much 
anymore, just from time to time. [P3]

Did not add new information 5 P1, P3, P6, P8, and P9 7 Considering that I already knew the architecture, it was a good visual presentation, but it didn't bring me any new 
information. [P6]

Not helpful for understanding the architecture (for 
someone who already knows) 1 P4 2

So, related to the understanding, I think it doesn't help much. If you don't know anything, I think it helps, but for 
those who already know the architecture, I don't think it helps much. Because I consider that it is missing 
detailing of the architectural elements. [P4]

Not helpful to find things that are missing 1 P4 1 I think the model doesn't help to find out what's missing in the architecture. [P4]

Model improvements suggestions Aspects that can be improved in the model to 
make it more useful and easier to understand

Complementary information - to present 
complementary information about the service 4 P1, P3, P4, and P5 12

Maybe, with more complementary information from each service, it becomes very useful for a project. Because I 
imagine viewing this on an interactive website. For example, you have the synchronous coupling here, then I 
click there and see what these couplings are, what these calls are, or the line of code that makes this call, 
something like that. Or, asynchronous coupling, I click there and see the events it depends on, for example. I find 
this super helpful. [P3]

Complementary information - to present 
relationship information 2 P3 and P9 4

It would be interesting if there were more details in the diagram, saying what the communications are. Because 
there are some that have both synchronous and asynchronous communication... Besides having an arrow, 
saying that this system communicates with this one, also saying which is, for example, the endpoint that this 
service is calling from the other. This would give to us a good overview. [P9]

Complementary information - to present 
information about the type of DBMS 3 P4, P6, and P8 4

Another suggestion, in the database part, where you define whether each service has an individual database or 
not. I think it makes sense to say which type of database (relational database, NoSQL). It is a new level of detail, 
but if you look at the platform proposal, it is a level of detail that is interesting because it makes a difference 
whether you use one database and not another. [P4]

Improve the explanation - to adjust the 
presentation of coupling metrics 2 P3 and P7 2 Maybe being a little more visual on the “who depends more on whom” part can make it a little easier. [P7]

Improve the explanation - to define the meaning of 
operation 1 P3 1 The size of the service, for me, was confusing. What would an operation be? It got a little confusing for me. And 

many times I couldn't map very well...I didn't know how to map very well what an operation would be. [P3]
Improve the explanation - to define the meaning of 
synchronous and asynchronous 1 P2 1 The only thing you can present in more detail is explaining what is synchronous and asynchronous. Because I 

was a little confused about what was each one. [P2]

Improve the explanation - better explain the first 
dimension 2 P3 and P6 3

I had one doubt at the end of the video, when you explained that you compared the characterization of each 
service with themselves. In the beginning, you were saying that the Resource Adapter is smaller, compared to 
the Resource Catalog. You were following the line of reasoning in this sense... For example, the Actuator 
Controller has two operations, and you said that it is smaller because compared to the Resource Catalog it had 
far fewer operations, it was too far to the left on the ruler. But at the end of the video, when you give the overview 
of the architecture, you suggest that the platform is small, but I couldn't understand when compared to what? [P6]

Improve the explanation - better explain the 
second dimension 1 P3 1

Actually, I have some suggestions. I think there are things that are very important, for example, sharing 
databases, it tends to be an anti-pattern... it's an anti-pattern... So the tendency would be for you not to do that. 
So, maybe, sharing databases gain a very big dimension here. Because my point is, isn't it as important as any 
other anti-pattern? [P3]

Metrics - to adopt some responsibility (cohesion) 
metric 1 P3 1

I don't know if the operation is a good metric for the size of the service. I don't know if it's so relevant. For 
example, sometimes I may have forty operations, but the responsibility of the service is only one. I know it seems 
a bit contradictory, but perhaps evaluating responsibility, in my opinion, is more important than evaluating the 
number of operations... Sometimes I have a service that has two operations, but one operation has nothing to do 
with the other, so this means lower cohesion... I think there are other more interesting metrics for the size of the 
service. In my opinion, it should be the size of the responsibility of the service or the weight of the service or of 
the responsibility. [P3]

Metrics - to present information related to tests 2 P1 and P9 3 I think if you added some information, such as if there are test classes or if there are integration tests between 
these microservices, I think it would be cool. [P1]

Metrics - to present metrics related to classes and 
methods 2 P6 and P9 3

I thought that maybe it would be possible to calculate some simpler metrics. Such as lines of code, number of 
classes, number of methods per class, and other cohesion and coupling metrics of classes and methods. And try 
to create some formula that would be possible to infer the module drawing size.[P6]

Metrics - to present line of code metrics 3 P6, P7, and P9 3 What comes to me instantly in my mind, is something like lines of code. I don't know if it can be useful or if it can 
be a fake thing. [P7]

Metrics - to present some metric that signals 
whether the service is micro or not 1 P9 1

Another thing I was thinking... I don't know if it's a question that can be answered by your model. But, a question 
that I would find very interesting would be if there was a way for the model to answer me, if these microservices 
make sense, or if they are too micro. A way to calibrate thinking based on these metrics that you collected. It 
would provide a basis for making a decision about the size of each service. [P9]

Metrics - to collect dynamic metrics 3 P8, P9 and P10 5
Maybe another dimension that might be interesting is knowing how scalable each of the services is. Because if I 
have a bottleneck in the Data Collector, I can just upload more Data Collector instances, or I have to look 
elsewhere. But, I don't know if this is too out of your research scope. [P9]

Metrics - to map external dependencies 3 P1, P5, and P10 4

A point that I think is a little complex, but that would help a lot, would be to start an analysis of the dependencies 
of each of these microservices with external APIs. Not all, since I think they can be in the number of gigantic 
granularity. But, at least the main ones. So, it would be good for this model to indicate the amount or what these 
external dependencies are. The APIs that are used by the microservices. I think this would help a lot, especially 
for those who think about adopting the platform or not.[P1]

Visualization - to present complex things in a 
larger size 1 P6 2 For example, if the Resource Catalog has many more lines of code than the Data Collector, then it would be 

presented in a larger size than the Data Collector. [P6]

Visualization - to present more elements that 
compose the architecture 2 P6 and P9 3

I don't know if it's the goal, but there's a lack of information on how messages are exchanged. Not in the sense 
that they are synchronous or asynchronous. But, for example, there is a message broker, and the database is 
Mongo. I don't know if it makes sense to talk about tools in this characterization. But, I think that, to really 
understand how the system is working, some more details are important. I think the gateway was also missing, 
which would be important to understand. [P6]

Visualization - use colors to warn attention points 1 P6 1 I also think you could use some colors. I don't know if you thought about it too. For example, something that 
appears to be very large and complex can get bigger and redder in the sense of alert. [P6]

Architectural evolution

Aspects in the InterSCity architecture that the 
interviewees perceived should evolve, after 
analyzing the characterization generated from the 
model

To adjust coupling 4 P1, P6, P8, and P9 4 It certainly can be used as a reference to try to reduce synchronous couplings and increase, a little, the 
asynchronous ones. [P1]

To divide the Resource Catalog service 2 P3 and P4 2

For me, the clearest thing is to separate the Catalog into more things. This service does a lot of things. I don't 
remember 100%, but I remember that one thing it did more was: both to register resources, and to check which 
resource does such a thing. It kind of has a piece of the Resource Discovery inside it, and I think that's very 
wrong. [P4]

To review the database sharing strategy 2 P1 and P11 4
I can say that the fact that it uses an exclusive database for each of the microservices, for me, is a problem. This 
should be changed. Since we are in the smart cities context, the system must be very dynamic and large. So 
having a database available and consistent is one of the main factors. [P11]

To change the architectural style to the monolithic 1 P6 1

I consider, in fact, it could be just one service. Although the services make sense and are logically divided, they 
are not complex services. So, you end up uploading different applications, which are not complex, but which add 
a lot of complexity to the architecture and to the understanding of the platform. In a monolithic system, in this 
case, I think you would probably have no performance losses and it would have a lot of gains. Such as ease of 
securing the platform and also introducing new people to work on the platform. [P6]



D.3 | INDUSTRY CASE STUDY - INTERVIEW SCRIPT - SYSTEM ARCHITECTURE OVERVIEW

129

D.3 Industry Case Study - Interview Script - System
Architecture Overview

Authors: Thatiane de Oliveira Rosa, Eduardo Martins Guerra, and Alfredo Gold-
man

Starting the interview

• Remembering the terms of the consent form

• Explaining research objectives

• Explaining the research protocol

• Asking permission to record

Part 1 - Interviewee experience

1. How long have you been working with systems with a service-based architecture?

2. Describe, in general terms, your trajectory with service-based systems, citing your
main experiences.

3. How long have you been working/have worked in Company A?

4. What role(s) do you/did you perform in Company A?

Part 2 - General questions about the Company A systems

1. In your opinion, what are the main objectives of the systems developed by Company
A?

2. What are the main technical challenges related to these systems?

3. Could you list the main features of these systems?

4. What are the desirable quality requirements for Company A’s systems?

5. Among the mentioned quality requirements, which are currently met?

6. Among the mentioned quality requirements, which are not currently met?

7. What are the strategies (organizational and technical – practices, methods, patterns)
adopted to develop Company A’s systems?

8. From your point of view, give me a high-level explanation of the current architectural
solution (if you prefer, you can draw or show me diagrams that already exist). Please,
in this explanation, point out the main structural elements (and their objectives)
(services, APIs, modules, databases, and relationships).

• Considering this solution, could you tell me which is the most present archi-
tectural style? (layered, hexagonal, service-based, microservices, mixed).

9. In your opinion, what are the strengths of the current architecture of Company A’s
systems?



130

APPENDIX D

10. In your opinion, what are the weaknesses of the current architecture of Company
A’s systems?

11. From your point of view, give me a high-level explanation of the idealized archi-
tectural solution (if you prefer, you can draw or show me diagrams that already
exist). Could you tell me the main points that will be changed/a�ected? Please, in
this explanation, point out the new elements (and their objectives) and elements that
will be excluded (reason) (services, APIs, modules, databases, and relationships).

• Considering this new solution, could you tell me which is the most present
architectural style? (layered, hexagonal, service-based, microservices, mixed).

12. In your opinion, what are the strengths of the idealized architecture for Company
A’s systems?

13. In your opinion, what are the weaknesses of the idealized architecture for Company
A’s systems?

Part 3 - Architectural migration process

1. In your opinion, what motivated the architectural style migration?

2. In your opinion, was this migration process a good decision?

3. Besides the service-based approach, were other alternatives considered?

4. Could you describe, in general terms, the steps of this migration process?

• Please, cite the steps completed, the steps that are being executed now, and
those that are yet to be executed.

5. What bene�ts did you perceive, until this moment, from the architectural migration?

6. In your opinion, what are the main challenges you have faced from architectural
migration?

Closing

1. Do you have any questions for me or �nal comments?

2. Can you suggest other people who can be interviewed and contribute to our research?

D.4 Industry Case Study - Interview Script -
Sub-system Architecture Overview

Authors: Thatiane de Oliveira Rosa, Eduardo Martins Guerra, and Alfredo Gold-
man

Starting the interview

• Remembering the terms of the consent form

• Explaining research objectives



D.4 | INDUSTRY CASE STUDY - INTERVIEW SCRIPT - SUB-SYSTEM ARCHITECTURE OVERVIEW

131

• Explaining the research protocol

• Asking permission to record

Part 1 - Interviewee experience (just for new participants)

1. How long have you been working with systems with a service-based architecture?

2. Describe, in general terms, your trajectory with service-based systems, citing your
main experiences.

3. How long have you been working/have worked in Company A?

4. What role(s) do you/did you perform in Company A?

Part 2 - Questions about the architecture of the Search System

1. In your opinion, what are the main technical challenges faced by your team to
develop the system/services that your team is responsible for?

2. Considering the diagram below, available in the team’s repository, could you brie�y
explain its elements and the interaction between them?

Monolith

Service E Service G Service H

Service F

Service L Service K

Service B

Service C

Service A

Hive S3

MySQL
airflow jobsSolr

Kafka
Debezium

Fuzeki

Figure D.1: This diagram is a simpli�ed and anonymized replica of the diagram available in the

company repository.

3. Still considering the diagram, which of the illustrated elements do you identify as a
service that composes the search context?



132

APPENDIX D

4. Is there any other service that was not illustrated in this diagram but is your team’s
responsibility?

5. Is there a document where I can obtain a description of the responsibilities of each
service that you mentioned?

• If not, could you suggest someone who can give me this answer (the services’
responsibilities)?

6. Which data sources are accessed by the services that you previously mentioned/i-
denti�ed?

7. Do any of the services you previously mentioned/identi�ed access any data sources
outside the search context?

• If yes, what are these services?

8. Are there external elements (services from other contexts, third-party services,
databases, ML models) that interact with the services of the search context?

• If yes, could you indicate which services of the search context that have external
interaction?

Closing

1. Do you have any questions for me or �nal comments?

D.5 Industry Case Study - Interview Script - Metric
Collection

Authors: Thatiane de Oliveira Rosa, Eduardo Martins Guerra, and Alfredo Gold-
man

Starting the interview

• Remembering the terms of the consent form

• Explaining research objectives

• Explaining the research protocol

• Asking permission to record

For each previously identi�ed service, ask the following questions

1. What are the responsibilities of this service?

2. What is the name of each operation (endpoint) exposed by this service?

3. What is the name of the services that invoke each operation of this service?

4. What is the protocol (REST, gRPC) used in each synchronous connection of invoca-
tion of this service?

5. What is the label of each topic published by this service in a message queue?



D.6 | INDUSTRY CASE STUDY - INTERVIEW SCRIPT - CHARM’S EVALUATION

133

6. What is the label of each topic consumed by this service from a message queue?

7. What is the name of the source services that publish the topics consumed by this
service?

8. What is the identi�er of each data source accessed by this service?

9. What is the type (relational database, NoSQL, search engine, spreadsheet, text �le,
etc) of each data source accessed by this service?

10. What role (principal, cache) does each data source play in this service?

11. What type of action (read, write, or both) does this service perform on each data
source it accesses?

12. What are the main technologies (programming language, IDE, etc) adopted to develop
this service?

13. Must this service be deployed together with other services (i.e. is this service has
deployment dependency)?

• If so, what is the name of the other services that must be deployed together
with it?

14. Do you have any other comments about an important service characteristic we did
not address in the previous questions?

D.6 Industry Case Study - Interview Script - CharM’s
Evaluation

Authors: Thatiane de Oliveira Rosa, Eduardo Martins Guerra, and Alfredo Gold-
man

Starting the interview

• Remembering the terms of the consent form

• Explaining research objectives

• Explaining the research protocol

• Ask if you have any questions about the videos

• Asking permission to record

Part 1 - Interviewee experience

1. What role(s) do you/did you perform in Company A?

2. How long have you been working in IT area?

3. How long have you been working with systems with a service-based architecture?

4. How experienced do you consider yourself in the software architecture area?



134

APPENDIX D

• Novice – I understand the concept of software architecture, but I have never
made architectural decisions in real environments

• Advanced beginner – I have experience in real scenarios and have already con-
tributed to some architectural decision-making, but without much con�dence

• Competent – I have already contributed to some architectural decision-making
in di�erent contexts and real scenarios, but I still have some di�culties

• Pro�cient – daily I make decisions related to software architecture consciously
and with a good degree of con�dence

• Expert – I deal with di�erent computer systems with di�erent architectures,
and I can make decisions con�dently and without signi�cant di�culties

5. What is your knowledge level of the Search System architecture?

• Very low – I understand the purpose of this system, but I don’t know its
architecture

• Low – I know a little about the architecture of this system (I know some
services), but I haven’t had the opportunity to work in practice yet

• Moderate – I know the architecture of this system (not in detail) and I’ve had
the opportunity to work on some services

• High – I know the architecture of this system and have had the opportunity to
work on most of its services

• Very high – I work daily with this system and I know very well the architecture
and services that compose it

Part 2 - Evaluation of the CharM and the architectural characterization

1. From 1 (very di�cult) to 5 (very easy), what is the degree of ease of understanding
the dimensions of the model?

• Did any part of the explanation get confused?

2. From 1 (very di�cult) to 5 (very easy), what is the degree of ease of understanding the
characterization of the Search System architecture (result generated by the model)?

• Did any of the presented results get confused?

3. From 1 (useless) to 5 (very useful), what is the degree of usefulness of the model for
understanding the architecture of the Search System?

• Do you have any suggestions for improvement to make the characterization
more useful?

4. From 1 (Totally incoherent) to 5 (Totally coherent), what is the degree of coherence
of the characterization with the reality you know?

• If there is any incoherence, which point is dissonant from reality?



D.6 | INDUSTRY CASE STUDY - INTERVIEW SCRIPT - CHARM’S EVALUATION

135

5. In your opinion, based on the characterization presented, what is the use of the
proposed model for Company A?

6. Based on the characterization presented, do you believe that it was possible to better
understand the architecture of the Search System or was the information indi�erent?

7. Based on the characterization presented, do you believe that it was possible to
discover something new that you did not know before or that no new information
was presented?

• If you discovered something new, tell us what it was.

• If nothing new was discovered, was the characterization helpful in con�rming
intuitive knowledge or remembering the architecture?

8. Do you consider that the data presented can be used as a guide for the evolution of
the Search System architecture or are they insu�cient to support decision-making?

9. Considering that we are performing a static analysis based on the structural attributes
of size and coupling, do you have any suggestions for improving the characterization
model presented? For example, analysis of other dimensions and/or metrics that
you believe could be more useful for understanding the architecture and guiding its
evolution.

Part 3 - Evolution of the Search System architecture

1. When analyzing the characterization of each service, is there any aspect (size, data
source sharing, synchronous or asynchronous coupling) that you believe could be
changed to improve the architecture of the Search System?

• (if yes) What do you think can be changed?

• (if yes) Do you have any ideas or suggestions on how this change could be
made?

2. When analyzing the characterization of the search system as a whole, is there
any aspect that you believe can be changed to improve the architecture of the
Search System? For example, increase/decrease the number of services, change the
sharing scheme of the data sources, and review the percentage of synchronous and
asynchronous couplings among other things.

• (if yes) What do you think can be changed?

• (if yes) Do you have any ideas or suggestions on how this change could be
made?

Closing

1. Would you like to add any remarks that were not possible to cite before or present a
�nal comment?



136

APPENDIX D

D.7 Interview Code Book of the Company A Case
Study

This appendix presents the code book generated from the qualitative analysis of the
interviews carried out during the Company A case study. This material serves to understand
the codes and categories identi�ed during the qualitative analysis. As well as obtain details
of which participants cited each code, the number of citations of each code, and examples
of excerpts from the interviews from which each code emerged.



Code category Category description Code # of participants who cited the
code

Participants id who cited the
code # code citations Code example

Uses of the model Tasks or situations in which the model can be
useful for professionals who work with SBA

To help novices understand the system
architecture 5 P3, P13, P15, P17, and P18 5

I think this model may be very useful in onboarding new members. While watching the video (about the
characterization of the architecture), I thought “Wow, P13 could use this a lot to show the architecture to the
new members that will join our team”. [P17]

To help an expert to understand the organization
of the architecture 1 P18 1 I think that this model is very useful for anyone who has some experience in software development but doesn't

know the systems, since it gives this high-level view. [P18]

To understand relationships 3 P3, P12, and P17 6 I think that this model gives us a very interesting view of how the relationship between services is. And it is
very cool. [P3]

To confirm intuitive knowledge 4 P3, P12, P13, and P17 4

I didn't know all the components that well. So, the model presented to me some new information, even in
points in which I had some intuition. For example, I already had an intuition that the system is strongly
dependent on Solr. So that was, for me, pretty cool. Since there (in the characterization) we clearly see this
dependence. [P3]

To discover information about data storage 2 P17 and P18 2

With the model, I realized that some data source couplings had a consumer-producer characteristic since
some services have data source coupling. I think Service D and Service H are examples of this. Both have a
coupling to the same data source. Service D writes and Service H reads. I realized that they couple by data
source into a consumer-producer model. This brought me some insights. To mainly observe this relationship
between data sources: who is producing, who is consuming, who is reading and writing from the same data
source... [P18]

To discover new information 4 P3, P15, P17, and P18 5
Something new that the model brought to me... I didn't know the number of things that Service H does.
Knowing the exact number gave a lot of strength for this to be well-concretized. Of course, there's a bad smell
here. [P3]

To discover the number of data sources of each
service 2 P3 and P17 2 I realized that Service H communicates with seven data sources and that's a lot. [P17]

To discover the number of operations in each
relationship 1 P3 1 One thing I found interesting was knowing the exact number of operations in each service interaction... [P3]

To highlight differences between services 2 P13 and P18 2

I was aware that Service H was the biggest service. I just didn't know it was so much bigger than the other
services. I don't know if it was because I believed that the other search services were bigger or if I really had
no idea of the size of Service H. Seeing the result generated by the model, I think that the size of Service H is
totally disproportionate compared to others. [P18]

To different stakeholders share the same
architectural vision 1 P3 2 I think the model is a great starting point for everyone to share the same vision of the system architecture. [P3]

To document the architecture 1 P3 1
In the company, we have lean teams with high turnover. So, there are a lot of things that we depend on senior
members to do. So, when we have this kind of documentation (generated by the model) I think it helps the
team to share the same view of the architecture and reduces the worries of senior people. [P3]

To support architectural discussions 2 P12 and P13 3

The result of the model matches a lot with a discussion that we had with the team. And it kind of shows what
we discussed, but in another way. So it corroborates what we have been discussing. It is a view from outside,
related to the things that we have been discussing to say “Look, we have discussed and there is another
metric here that also says that this makes sense” [P13]

To understand the architecture 6 P3, P12, P13, P15, P17, and
P18 7

I think that the model is useful to understand the architecture of a system. Because one thing that I think is
very difficult, personally... In systems like this, where there are several components, several services, and
interactions between them... is how these interactions are and etc. The model presents a very nice view of
things that I, really, didn't pay attention to before. [P12]

To explain the architecture 3 P13, P17, and P18 3 The model can be used to explain the architecture during onboarding, but only to show the design and
complexities and other things related... [P13]

To guide evolution at a high level of abstraction 6 P3, P12, P13, P15, P17, and
P18 15

I will go back several times in the same spots that I think it is very interesting. Service H with the highest score
shows that it is the most complex. And this evidences that it could be done differently and that it is necessary
to improve a lot of the things at this point. And the opposite too, that there are some services that are so
small... and maybe it could make them healthier. So, in that sense, I found it quite useful in order to guide an
architectural evolution. [P13]

To identify coupling 3 P12, P17, and P18 5

When I joined the team, it was all very confusing for me, because the system is very big and complex. I think
with this model, I was able to understand much better who depends on whom, and who is important to whom.
So, I think it was really helpful for me. The model helps me to be able to see the whole case and where all
these services fit in, and who they talk to. [P17]

To identify if the things should be divided or
joined 4 P3, P12, P13, and P17 5 Considering the size dimension, you can see, for example, that Service H is a candidate for us to refactor. We

can extract other services from it. [P12]

To identify components with many responsibilities 2 P3 and P13 3 I didn't know the number of things that Service H does. Knowing the exact number gave a lot of strength for
this to be well-concretized. Of course, there's a bad smell here. [P3]

To identify legacy components 1 P18 2

Looking at the relationship between Services H and D, I saw that between them there are two types of
coupling... If Service D writes to a source and Service H reads from the same source, there may be some part
of Service H that is in the scope of Service D. But the code is inside Service H, because it wasn't migrated or
because of some mess... So, the model helped me to see some of those bounded contexts inside the Search
System. The smaller contexts have a certain mixture... It looks like some extraction was started, but not
ended. [P18]

To identify the degree of importance or
dependence of a service 2 P3 and P12 2

Based on the model, I was able to observe the services' dependencies. If many services depend on another
service, this shows some architecture fragility that also leads to an evolution of the team going to a more
autonomous side. Instead of having authority. [P12]

To identify points that need maintenance 5 P3, P12, P13, P17, and P18 14

I think the work you've done makes it very clear to see the yellow (or redder) flags for us to act on. The
difference was very clear, looking at all the services. Service H is the microliter.... and this is within a context of
a lean system, which is the Search... Another point that became clear... this pain or discomfort is the issue of
database coupling. .. I think it was very clear that we have a serious problem with database coupling. [P3]

To identify size 4 P3, P13, P17, and P18 4 With the model, I discovered the real amount of Service H operation... I was a little shocked by the number of
operations of Service H. [P17]

To remember the architecture 4 P3, P13, P15, and P17 4 As we often do not work with all of these services all the time, we may forget some of them... So, it (the model)
was very useful for me to remember and see where they (the services) were properly fitted. [P17]

To summarize architectural information 2 P3 and P13 2
I think it was really nice to see everything in one place. It was very good to have this information centralized.
Because it is difficult to have a total understanding of all these services. I think the gain of this analysis is like,
“Presto, it's on the screen”... as a whole thing. So, at this point, I think it (the model) is a great tool. [P3]

Model improvements suggestions Aspects that can be improved in the CharM to
make it more useful and easier to understand

Improve the explanation - better define the
mening of module 1 P17 1

There are two points where I ended up getting a little lost... one of them is the part where you explain about
the service per module. We have eight services, one service per module... I ended up getting a little lost here.
[P17]

Improve the explanation - to differ what are and
which are the internal and the external
components

1 P17 1

I don't know if you talked about the difference between internal and external services. There is a part in the
video where you talked a lot about internal and external services, and I didn't really know how to differentiate
which they were. I could only understanded, when you showed the results in the table. So, I don't know if it
was a little lacking in the intro or if I ended up not paying enough attention. [P17]

Improve the explanation - what is and what is not
a service in the context of the CharM 1 P12 2

About the service definition. When I started watching the videos, I was looking at everything as a service,
every component of the architecture. For example, for me, Data import would also be a service. After your
explanation, I understood that in your service definition the Data import does not fit in it. But perhaps it is
important to make this clearer in your explanation. [P12]

Improve the explanation - to review the quality
attributes adopted in the explanation of the rules 1 P18 1

At the time when you explain synchronous coupling. In your ruler, there was a relationship between (if I'm not
mistaken) reuse and I don't remember which was the second one... In my understanding, I don't think that the
fact of it being a synchronous or asynchronous coupling is a thing that will impact the reuse. For example, for
me, I believe that... the synchronous and asynchronous complement are measurements that make a lot of
sense to me, but I think the word “reuse” in the ruler took my attention a little bit. Because, in my
understanding, I think that, for example, the granularity of one of the services has a much greater impact on
reuse than whether it is synchronous or asynchronous... So, I didn't feel that the fact of being synchronous or
asynchronous would impact the reuse metric. [P18]

Metrics - to present the criticality level of a
coupling 1 P17 1

The only improvement I could think of was the issue of dependency on one service on another. That is if a
given dependency causes instability or unavailability of the dependent service. Because sometimes something
depends on Service H, but if Service H doesn't respond, that's fine. Thus, this thing is not so dependent... For
example, if Service F doesn't respond, Service H shouldn't cause an unavailability problem. Service H
shouldn't be left out just because Service F couldn't fix that. So, I think that presenting the criticality of this
coupling between services would be interesting. [P17]

Metrics - to collect business metrics 1 P13 1

One thing that the model does very well is to look a lot at the metrics of what would be the tech part
(technology in fact). You look at the number of connections (synchronous, asynchronous, and others). Maybe,
one point could be added to the model... The product team helps us a lot in how we will architect the business.
So, I think it would be very interesting to have something more in the model in terms of metrics, which could
also help people in the business area. With a slightly higher level of abstraction, not just so technical as it is
today. [P13]

Metrics - to collect dynamic metrics 1 P3 1
I thought like this: how much is each of these services accessed? Because we understand here how they
relate. But, suddenly, knowing which services are most accessed, within the chain... maybe it gives a sign of
importance... I don't know if this is another type of analysis, more related to performance. [P3]

Metrics - to indicate the number of data sources
per module 1 P18 2

During the analysis, you talked a lot about data sources and how many of those services share a given set of
data sources. But, having prior knowledge, I know that those data sources are all on the same database
server. It's like having multiple schemas within the same database server... I know there are four services
attached to a given data source. And it tells me here I have a problem, I have to break this. But if I look at the
module level, I'll notice that out of the 18 data sources, I believe about 10 are in the same module. That is, 10
of them are in the same Solr. This could help me to identify that there is a module that is very critical, there.
Because if it goes down, I would lose 10 data sources at once. So even if I didn't have sharing between these
data sources (which is not the case), if they each had a data source, but they're all on the same server, I have
a single point of failure. I think that's the only point that wasn't clear in the analysis and it was in the diagram.
When you show the diagram, this is explicit, but in the model description, I don't remember you mentioning
this explicitly. I think for some scenarios, maybe the data sources would have to have the same “treatment” as
the services, as in… there is a coupling, but this coupling exists between the data sources, but the module
also has a certain level of importance because it helps me identify single points of failure in the architecture.
[P18]

Metrics - to make the concept of operation more
generic 2 P12 and P13 5

I was a little confused because there were some services in which the number of operations was equal to
zero. This situation left me confused and thoughtful about what operations are. Basically, you defined it as
endpoints, right? This, for me, raised some doubts. That's because the REST endpoint, which is what we
have, is one way, but not the only one. Because, for example, if it was a gRPC call... it's another way of
communication, but, in a generic way, I would consider it an operation. But, in the case of these services, it
was zero... I think it was because you didn't consider another way of communication, which is via event. In that
context, for me, it's the same thing. That is, the endpoint, gRPC or event. [P13]

Visualization - to adopt the stacked bar chart to
illustrate the size ratio of the components in the
whole system

1 P18 1

One thing that I think would help me... There was a moment in the presentation when you showed a bar graph
that had Service G, all the services, and the big Service H bar. In my way of analyzing, instead of being a bar
chart with each service with its bar... if you were shown the same information in a stacked chart, would be
better. It would be Service H and just above Service G... and on top of Service G another one... Then I could
look and say “Ok, I can see the height of the Search System bar”. So, “The Search System bar has 30
operations”, then I look and Service H has 26 out of 30. Wow! This is a problem. 26 out of 100 is different from
26 out of 30. Its representation and how bad this level is... If I compare it to the second... The first thing you
did already gave me that impression right away. Which was: the first is Service H, the second is Service G.
And then you look and say “Wow, it really is much bigger than the other”, right? But, in the total universe, how
much does it represent? I missed that a little bit during this characterization presentation. [P18]

Architectural evolution

Aspects in the Search System (of Company A)
architecture that the interviewees perceived
should evolve, after analyzing the
characterization generated from the CharM

To rethink the data source coupling of Service H 1 P17 1 I believe that Service H's database sharing can be changed. [P17]

To rethink the data source coupling between
multiple services and the Solr 2 P3 and P13 2

We actually have a lot of coupling with Solr. So Solr is our big point of failure. If Solr falls, everyone falls with it.
So, cool that the end result of your analysis clearly showed this. It's the very turning point. So, one thing that I
think contributes to what we want to do in the team is to have more autonomy. So, having a Solr for each of
the services… This is something that P2 has always defended a lot. And I share this idea because it makes
sense. Even more so in a system like Search, which is super important. [P3]

To rethink the couplings of Service F 1 P17 1

I think a bit of Service F could be changed. Service F is responsible for correcting the terms of a search. But it
will only return the correction of that term the next time a new search is attempted... I think that two services
share this with Service F, which is Service H and Service G, so I think there may be a way for both of them to
obtain the same results. I don't know what to do about it... I have no idea how to try to solve this, but I think it's
an interesting thing to think about. [P17]

To rethink Service H synchronous couplings 1 P17 1 I believe that another thing that can also be changed is the synchronous coupling of Service H. [P17]

To rethink the contexts stored in the
datasourse-bcfgh 3 P12, P13, and P18 4

I think these are the two points that we should attack in order to change right away. Which is to reduce the
size of Service H, dividing it into more services. But doing this will theoretically increase the number of
services coupling to dataourse-bcfgh... So solving Service H will move to the next level. I also need to resolve
the dataourse-bcfgh. So… it would have to be one thing being done at the same time. Not only breaking
Service H, but also breaking dataourse-bcfgh eventually. So, those two things, I think I could see it very clearly
in the model. [P18]

To rethink Service H contexts and responsibilities 5 P12, P13, P15, P17, and P18 7

I would improve Service H. Service H is a small microlith and the model showed this and confirmed what we
had already been discussing. It has several architectural problems. For example, poorly defined responsibility
and consequently have several contexts... It ends up increasing the load of the service itself to the detriment
of that. So, we can improve a lot on that. Strangling the Service H. [P15]

To rethink Service G contexts and responsibilities 1 P17 1
There is an overlap between what Service G does and what Service H does. The team doesn't know if certain
actions should be in Service G or Service H. So, I think it is necessary to rethink the context of Service G to
not have this overlap. [P17]

To review couplings (increase the proportion of
asynchronous interactions) 2 P12 and P18 2

I think that one thing that can be changed is related to coupling. I believe that the ideal would be to increase
the amount of couplings that are asynchronous. Instead of synchronous couplings. I see there are a lot of
things that are synchronous because... it's the pattern way of doing things that aren't necessarily supposed to
be that way. Because I believe that this is a way for us to increase the resilience, for example, of the services,
because they are coupled... Disregarding Service H, to make it simpler, I believe that reducing the couplings
that are synchronous and increasing couplings that are asynchronous would be a feature that would be more
interesting. Because I believe that everything related to services that are external to the search, theoretically,
will have to be asynchronous. Everything external will have to be asynchronous. Within the Search System,
there are a few things that I believe have to be synchronous. And, today, I think they are still... There are a lot
of synchronous things that should be asynchronous. [P18]





139

Appendix E

Complementary Visualizations of
the Characterization of the
InterSCity Architecture

In addition to the rulers, the CharM is composed of a set of other artifacts that help
visualize the architectural characteristics of the systems and services analyzed. This
appendix presents the architectural visualization artifacts generated from the InterSCity
case study. Such artifacts are organized based on the four CharM dimensions.



140

APPENDIX E

Size Dimension

Resource Catalog: 12 operations

Resource Adaptor: 8 operations

Data Collector: 4 operations

Actuator Controller: 2 operations

Resource Discovery: 1 operation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Number of operations

S
e

rv
ic

e
s

Figure E.1: Number of operations of each InterSCity service.



E | COMPLEMENTARY VISUALIZATIONS OF THE CHARACTERIZATION OF THE INTERSCITY ARCHITECTURE

141

Data Source Coupling

Services

D
at

a 
so

ur
ce

s

Number of services
that share the same

data source
Actuator

Controller Data Collector Resource
Adaptor

Resource
Catalog

Resource
Discovery

actuator-controller-mongo

data-collector-mongo

data-collector-mongo-cache

resource-adaptor-pg

resource-adaptor-redis

resource-cataloguer-pg

resource-cataloguer-redis

resource-discoverer-redis

Read-Write 1

Read-Write 1

Read-Write 1

Read-Write 1

Read-Write 1

Read-Write 1

Read-Write 1

Read-Write 1

1 2 2 2 1Number of data
sources per service

Figure E.2: Relationship between services and data sources of the InterSCity.



142

APPENDIX E

Synchronous Coupling

Service Importance Dependence

Actuator Controller

Data Collector

Resource Adaptor

Resource Catalog

Resource Discovery

0 0

1 0

0 1

2 0

0 2

Figure E.3: Degree of the synchronous importance and synchronous dependence of each service of

the InterSCity.

Request receiver

R
eq

ue
st

 s
en

de
r

Actuator
Controller

Data
Collector

Resource
Adaptor

Resource
Catalog

Resource
Discovery

Actuator Controller

Data Collector

Resource Adaptor

Resource Catalog

Resource Discovery

2
operations 0 0 0 0

0 4
operations 0 0 0

0 0 8
operations 3 0

0 0 0 12
operations 0

0 1 0 1 1
operation

Figure E.4: Relationship between services requesting operations and services receiving requests in

the InterSCity Platform.



E | COMPLEMENTARY VISUALIZATIONS OF THE CHARACTERIZATION OF THE INTERSCITY ARCHITECTURE

143

Resource Catalog importance: 2

Data Collector importance: 1

Actuator Controller importance: 0

Resource Adaptor importance: 0

Resource Discovery importance: 0

0 1 2 3
Importance degree

S
er

vi
ce

s

Figure E.5: Synchronous importance degree of each InterSCity service.

Resource Discovery dependence: 2

Resource Adaptor dependence: 1

Actuator Controller dependence: 0

Data Collector dependence: 0

Resource Catalog dependence: 0

0 1 2 3
Dependence degree

S
er

vi
ce

s

Figure E.6: Synchronous dependence degree of each InterSCity service.



144

APPENDIX E

Asynchronous Coupling

Service Importance Dependence

Actuator Controller

Data Collector

Resource Adaptor

Resource Catalog

Resource Discovery

1 2

0 2

3 1

2 1

0 0

Figure E.7: Degree of the asynchronous importance and asynchronous dependence of each service

of the InterSCity.

Subscriber

Pu
bl

is
he

r

Actuator
Controller

Data
Collector

Resource
Adaptor

Resource
Catalog

Resource
Discovery

Actuator Controller

Data Collector

Resource Adaptor

Resource Catalog

Resource Discovery

1
topics 0 1 0 0

0 0
topics 0 0 0

1 1 2
topics 1 0

2 2 0 2
topics 0

0 0 0 0 0
topics

Figure E.8: Relationship between services that publish on a message queue and services that are

subscribed to receive messages from a queue in the InterSCity Platform.



E | COMPLEMENTARY VISUALIZATIONS OF THE CHARACTERIZATION OF THE INTERSCITY ARCHITECTURE

145

Resource Adaptor importance: 3

Resource Catalog importance: 2

Actuator Controller importance: 1

Data Collector importance 0

Resource Discovery importance: 0

0 1 2 3 4 5
Importance degree

S
e

rv
ic

e
s

Figure E.9: Asynchronous importance degree of each InterSCity service.

Actuator Controller dependence: 2

Data Collector dependence: 2

Resource Adaptor dependence: 1

Resource Catalog dependence: 1

Resource Discovery dependence: 0

0 1 2 3
Dependence degree

S
e

rv
ic

e
s

Figure E.10: Asynchronous dependence degree of each InterSCity service.



146

APPENDIX E

InterSCity Platform

Legend

Technological component Service Data source Synchronous interaction 
(sender -> receiver)

Asynchronous interaction 
(publisher -> subscriber)

publish

publish

publish

Development tool

Mobile application

Web application

IoT Gateway

API 
 

gateway

Resource
Discovery

Data
Collector

Resource
Catalog

Actuator
Controller

Resource
Adaptor

subscribe

subscribe

subscribe

subscribe

subscribe

Message 
 

queue

subscribe

Figure E.11: Main structural elements of the InterSCity architecture.



E | COMPLEMENTARY VISUALIZATIONS OF THE CHARACTERIZATION OF THE INTERSCITY ARCHITECTURE

147

Resource
Discovery

Resource
Catalog

Data
Collector

Actuator
Controller

R

Resource
Adaptor

R R

E

E

E

EEE

Legend

Technological component Service Asynchronous interaction 
(publisher -> subscriber)

ESynchronous interaction - REST 
(sender -> receiver)R

Figure E.12: Interactions between the InterSCity services (inspired by Richardson, 2018).





149

Appendix F

Complementary Visualizations of
the Characterization of the Search
System

In addition to the rulers, the CharM is composed of a set of other artifacts that help
visualize the architectural characteristics of the systems and services analyzed. This
appendix presents the architectural visualization artifacts generated from the Company A
case study. Such artifacts are organized based on the four CharM dimensions.



150

APPENDIX F

Size Dimension

Service H: 26
operations

Service G: 2 operations

Service F: 1 operation

Service E: 1 operation

Service D: 1 operation

Service C: 0 operations

Service B: 0 operations

Service A: 0 operations

0 5 10 15 20 25 30
Number of operations

S
e

rv
ic

e
s

Figure F.1: Number of operations of each Search System service.



F | COMPLEMENTARY VISUALIZATIONS OF THE CHARACTERIZATION OF THE SEARCH SYSTEM

151

Data Source Coupling

Services

D
at

a 
so

ur
ce

s

Number of services
that share the same

data sourceService A Service B Service C Service D Service E Serivice F Service G Service H

sourse-bcfgh

datasourse-d1

datasourse-d2

datasourse-d3

datasourse-d4

datasourse-d5

datasourse-d6

datasourse-d7

atasourse-dh

datasourse-e1

datasourse-e2

datasourse-f1

datasourse-f2

datasourse-h1

datasourse-h2

datasourse-h3

datasourse-h4

datasourse-h5

Write-only Write-only Read-only Read-only Read-only 5

Read-only 1

Read-only 1

Read-only 1

Read-only 1

Read-only 1

Read-only 1

Read-only 1

Read-Write Read-only 2

Read-only 1

Read-only 1

Read-Write 1

Read-only 1

Read-only 1

Read-only 1

Read-only 1

Read-only 1

Read-only 1

0 1 1 8 2 3 1 7Number of data
sources by service

Figure F.2: Relationship between services and data sources of the Search System.



152

APPENDIX F

Synchronous Coupling

Service
Internal External Total

Importance Dependence Importance Dependence Importance Dependence

Service A

Service B

Service C

Service D

Service E

Service F

Service G

Service H

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 1 0

2 0 0 0 2 0

0 1 1 0 1 1

0 1 3 1 3 2

Figure F.3: Degree of the synchronous importance and synchronous dependence of each service of

the Search System.



F | COMPLEMENTARY VISUALIZATIONS OF THE CHARACTERIZATION OF THE SEARCH SYSTEM

153

R
eq

ue
st

 re
ce

iv
er

Request sender
In

te
rn

al
 s

er
vi

ce
s

Ex
te

rn
al

 s
er

vi
ce

s 
an

d 
sy

st
em

s
Se

rv
ic

e 
A

Se
rv

ic
e 

B
Se

rv
ic

e 
C

Se
rv

ic
e 

D
Se

rv
ic

e 
E

Se
rv

ic
e 

F
Se

rv
ic

e 
G

Se
rv

ic
e 

H
Se

rv
ic

e 
I

Se
rv

ic
e 

J
Se

rv
ic

e 
K

M
on

ol
ith

Se
rv

ic
e 

A

Se
rv

ic
e 

B

Se
rv

ic
e 

C

Se
rv

ic
e 

D

Se
rv

ic
e 

E

Se
rv

ic
e 

F

Se
rv

ic
e 

G

Se
rv

ic
e 

H

Se
rv

ic
e 

I

Se
rv

ic
e 

J

Se
rv

ic
e 

K

M
on

ol
ith

Internal services External services and systems

0
op

er
at
io
ns

0
0

0
0

0
0

0
0

0
0

0

0
0

op
er
at
io
ns

0
0

0
0

0
0

0
0

0
0

0
0

0
op

er
at
io
ns

0
0

0
0

0
0

0
0

0

0
0

0
1

op
er
at
io
n

0
0

0
0

0
0

0
0

0
0

0
0

1
op

er
at
io
n

0
0

0
0

0
0

0

0
0

0
0

0
1

op
er
at
io
n

0
0

0
0

0
0

0
0

0
0

0
1

2
op

er
at
io
ns

0
0

0
0

0

0
0

0
0

0
1

0
26

op
er
at
io
ns

0
0

1
0

0
0

0
0

0
0

0
-

-
-

-

0
0

0
0

0
0

0
-

-
-

-

0
0

0
0

0
0

0
0

-
-

-
-

0
0

0
0

1
0

2
23

-
-

-
-

1 3

Figure F.4: Relationship between services requesting operations and services receiving requests in

the Search System.



154

APPENDIX F

Service H importance: 3

Service F importance: 2

Service E importance: 1

Service G importance: 1

Service A importance: 0

Service D importance: 0

Service C importance: 0

Service B importance: 0

0 1 2 3 4

Importance degree

S
e

rv
ic

e
s

Figure F.5: Synchronous importance degree of each Search System service.

Service H dependence: 2

Service G dependence: 1

Service F dependence: 0

Service A dependence: 0

Service E dependence: 0

Service D dependence: 0

Service C dependence: 0

Service B dependence: 0

0 1 2 3 4

Dependence degree

S
e

rv
ic

e
s

Figure F.6: Synchronous dependence degree of each Search System service.



F | COMPLEMENTARY VISUALIZATIONS OF THE CHARACTERIZATION OF THE SEARCH SYSTEM

155

Asynchronous Coupling

Service or
Technological

component

Internal External Total

Importance Dependence Importance Dependence Importance Dependence

Debezium

Service A

Service B

Service C

Service D

Service E

Service F

Service G

Service H

2 0 0 0 2 0

1 1 0 0 1 1

0 1 0 0 0 1

0 1 0 0 0 1

0 1 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 1 0

Figure F.7: Degree of the asynchronous importance and asynchronous dependence of each service

of the Search System.



156

APPENDIX F

Su
bs

cr
ib

er

Publisher

D
eb

ez
iu

m
Se

rv
ic

e 
A

Se
rv

ic
e 

B
Se

rv
ic

e 
C

Se
rv

ic
e 

D
Se

rv
ic

e 
E

Se
rv

ic
e 

F
Se

rv
ic

e 
G

Se
rv

ic
e 

H

D
eb

ez
iu

m

Se
rv

ic
e 

A

Se
rv

ic
e 

B

Se
rv

ic
e 

C

Se
rv

ic
e 

D

Se
rv

ic
e 

E

Se
rv

ic
e 

F

Se
rv

ic
e 

G

Se
rv

ic
e 

H

2
to
pi
cs

1
0

1
0

0
0

0
0

0
1

to
pi
c

1
0

0
0

0
0

0

0
0

0
to
pi
cs

0
0

0
0

0
0

0
0

0
0

to
pi
cs

0
0

0
0

0

0
0

0
0

0
to
pi
cs

0
0

0
0

0
0

0
0

0
0

to
pi
cs

0
0

0

0
0

0
0

0
0

0
to
pi
cs

0
0

0
0

0
0

0
0

0
0

to
pi
cs

0

0
0

0
0

1
0

0
0

1
to
pi
cs

Figure F.8: Relationship between services that publish on a message queue and services that are

subscribed to receive messages from a queue in the Search System.



F | COMPLEMENTARY VISUALIZATIONS OF THE CHARACTERIZATION OF THE SEARCH SYSTEM

157

Debezium importance: 2

Service H importance 1

Service A importance: 1

Service G importance: 0

Service F importance: 0

Service E importance: 0

Service D importance: 0

Service C importance: 0

Service B importance: 0

0 1 2 3

Importance degree

S
e

rv
ic

e
s

Figure F.9: Asynchronous importance degree of each Search System service.

Service D dependence: 1

Service A dependence 1

Service C dependence: 1

Service B dependence: 1

Service F dependence: 0

Debezium dependence: 0

Service E dependence: 0

Service H dependence: 0

Service G dependence: 0

0 1 2 3

Dependence degree

S
e

rv
ic

e
s

Figure F.10: Asynchronous dependence degree of each Search System service.



158

APPENDIX F

Company A’s Search System

Legend

Technological component Service Asynchronous interaction 
(publisher -> subscriber)

Search system 

Service H

Service E

Service G

Service F

Service A Service B

Service C

Service D

Message 
 

queue

Change
data

capture
platform 

(Debezium)

Figure F.11: Interactions between the services and the message queue.



F | COMPLEMENTARY VISUALIZATIONS OF THE CHARACTERIZATION OF THE SEARCH SYSTEM

159

Service H

Service E

Service G

Service F

Service A Service B

Service C

Service D

Change
data

capture
platform 

(Debezium)

g

g

E

E

E

E

Legend

Technological component Service Asynchronous interaction 
(publisher -> subscriber)

ESynchronous interaction - gRPC 
(sender -> receiver)g

Figure F.12: Interactions between the services of the Company A’s Search System (inspired by

Richardson, 2018).





161

References

[Alshuqayran, Ali, et al. 2016] Nuha Alshuqayran, Nour Ali, and Roger Evans. “A
Systematic Mapping Study in Microservice Architecture”. In: 2016 IEEE 9th Inter-

national Conference on Service-Oriented Computing and Applications (SOCA). 2016,
pp. 44–51. doi: 10.1109/SOCA.2016.15 (cit. on pp. 13–16).

[Alshuqayran, Ali, et al. 2018] Nuha Alshuqayran, Nour Ali, and Roger Evans. “To-
wards Micro Service Architecture Recovery: An Empirical Study”. In: 2018 IEEE
International Conference on Software Architecture (ICSA). 2018, pp. 47–4709. doi:
10.1109/ICSA.2018.00014 (cit. on pp. 77, 97).

[Acevedo et al. 2017] Cesar Augusto Jaramillo Acevedo, Juan Pablo Gomez y Jorge,
and Ivan Rios Patino. “Methodology to transform a monolithic software into
a microservice architecture”. In: 2017 6th International Conference on Software

Process Improvement (CIMPS). 2017, pp. 1–6. doi: 10.1109/CIMPS.2017.8169955
(cit. on p. 10).

[Alshuqayran 2020] Nuha Alshuqayran. “Static Microservice Architecture Recovery
Using Model-driven Engineering”. PhD thesis. University of Brighton, 2020 (cit. on
pp. 5, 92, 93, 95, 97, 101).

[Auer et al. 2021] Florian Auer, Valentina Lenarduzzi, Michael Felderer, and Davide
Taibi. “From monolithic systems to Microservices: An assessment framework”.
In: Information and Software Technology 137 (2021), p. 106600. doi: h�ps://doi.org/
10.1016/j.infsof.2021.106600 (cit. on pp. 5, 92, 94, 95, 100, 101).

[Balalaie, Heydarnoori, Jamshidi, et al. 2018] Armin Balalaie, Abbas Hey-
darnoori, Pooyan Jamshidi, Damian A. Tamburri, and Theo Lynn. “Microser-
vices migration patterns”. In: Software: Practice and Experience 48.11 (2018),
pp. 2019–2042. doi: 10.1002/spe.2608 (cit. on pp. 114, 116, 119, 120).

[Batista et al. 2016] Daniel Macêdo Batista et al. “InterSCity: Addressing Future In-
ternet research challenges for Smart Cities”. In: 2016 7th International Conference

on the Network of the Future (NOF). 2016, pp. 1–6. doi: 10.1109/NOF.2016.7810114
(cit. on p. 36).

[Bass et al. 2012] Len Bass, Paul Clements, and Rick Kazman. Software Architecture
in Practice. Third. Addison-Wesley Professional, 2012, p. 1169 (cit. on pp. 93, 94).

https://doi.org/10.1109/SOCA.2016.15
https://doi.org/10.1109/ICSA.2018.00014
https://doi.org/10.1109/CIMPS.2017.8169955
https://doi.org/https://doi.org/10.1016/j.infsof.2021.106600
https://doi.org/https://doi.org/10.1016/j.infsof.2021.106600
https://doi.org/10.1002/spe.2608
https://doi.org/10.1109/NOF.2016.7810114


162

REFERENCES

[Bushong, Das, et al. 2022] Vincent Bushong, Dipta Das, and Tomas Cerny. “Recon-
structing the Holistic Architecture of Microservice Systems using Static Analysis.”
In: CLOSER 2022 - Proceedings of the 12th International Conference on Cloud Com-

puting and Services Science. 2022, pp. 149–157. doi: 10.5220/0011032100003200
(cit. on pp. 98, 101).

[Bernard 2011] Harvey Russell Bernard. Research Methods in Anthropology: Qualita-

tive and Quantitative Approaches. Fifth. AltaMira Press, 2011, p. 680 (cit. on pp. 38,
56).

[Baresi and Garriga 2020] Luciano Baresi and Martin Garriga. “Microservices: The
Evolution and Extinction of Web Services?” In: Microservices: Science and Engineer-

ing. Springer International Publishing, 2020, pp. 3–28. isbn: 978-3-030-31646-4.
doi: 10.1007/978-3-030-31646-4_1 (cit. on p. 12).

[Balalaie, Heydarnoori, and Jamshidi 2016] Armin Balalaie, Abbas Heydarnoori,
and Pooyan Jamshidi. “Microservices Architecture Enables DevOps: Migration
to a Cloud-Native Architecture”. In: IEEE Software 33.3 (2016), pp. 42–52. doi:
10.1109/MS.2016.64 (cit. on pp. 13–16).

[Bianco et al. 2007] Phil Bianco, Rick Kotermanski, and Paulo Merson. Evaluating a
Service-Oriented Architecture. Tech. rep. Carnegie Mellon University, 2007 (cit. on
p. 11).

[Bogner, Schlinger, et al. 2019] Justus Bogner, Ste�en Schlinger, Stefan Wagner,
and Alfred Zimmermann. “A Modular Approach to Calculate Service-Based Main-
tainability Metrics from Runtime Data of Microservices”. In: Product-Focused
Software Process Improvement. 2019, pp. 489–496. doi: 10.1007/978-3-030-35333-
9_34 (cit. on p. 98).

[Bonér 2016] Jonas Bonér. Reactive Microservices Architecture: Design Principles for

Distributed Systems. O’Reilly, 2016, p. 54 (cit. on pp. 10, 12, 15, 16, 22).

[Baltes and Ralph 2020] Sebastian Baltes and Paul Ralph. “Sampling in Software
Engineering Research: A Critical Review and Guidelines”. In: Empirical Software

Engineering 27 (2020). url: h�ps://arxiv.org/abs/2002.07764 (cit. on pp. 4, 38, 56,
80, 81).

[Basili and Rombach 1988] Victor R. Basili and H. Dieter Rombach. “The TAME
project: towards improvement-oriented software environments”. In: IEEE Trans-

actions on Software Engineering 14.6 (1988), pp. 758–773. doi: 10.1109/32.6156
(cit. on p. 98).

[Bushong, Amr S Abdelfattah, et al. 2021] Vincent Bushong, Amr S Abdelfattah,
et al. “On Microservice Analysis and Architecture Evolution: A Systematic Map-
ping Study”. In: Applied Sciences 11.17 (2021). doi: 10.3390/app11177856 (cit. on
p. 21).

https://doi.org/10.5220/0011032100003200
https://doi.org/10.1007/978-3-030-31646-4_1
https://doi.org/10.1109/MS.2016.64
https://doi.org/10.1007/978-3-030-35333-9_34
https://doi.org/10.1007/978-3-030-35333-9_34
https://arxiv.org/abs/2002.07764
https://doi.org/10.1109/32.6156
https://doi.org/10.3390/app11177856


REFERENCES

163

[Brown and Woolf 2016] Kyle Brown and Bobby Woolf. “Implementation patterns
for microservices architectures”. In: Proceedings of the 23rd Conference on Pattern

Languages of Programs (PLoP). 2016, pp. 1–35. doi: 10.5555/3158161.3158170
(cit. on pp. 114, 116, 119, 120).

[Bogner, Wagner, et al. 2017a] Justus Bogner, Stefan Wagner, and Alfred Zimmer-
mann. “Automatically measuring the maintainability of service- and microservice-
based systems”. In: Proceedings of the 27th International Workshop on Software

Measurement and 12th International Conference on Software Process and Product

Measurement on - IWSM Mensura ’17. 2017, pp. 107–115. doi: 10.1145/3143434.
3143443 (cit. on pp. 1, 11, 22, 77, 101, 109, 110).

[Bogner, Wagner, et al. 2017b] Justus Bogner, Stefan Wagner, and Alfred Zimmer-
mann. “Towards a practical maintainability quality model for service and
microservice-based systems”. In: 11th European Conference on Software Archi-

tecture (ECSA 2017). 2017, pp. 195–198. doi: 10.1145/3129790.3129816 (cit. on
pp. 77, 92, 94, 98, 109, 110).

[Bogner, Wagner, et al. 2020] Justus Bogner, Stefan Wagner, and Alfred Zimmer-
mann. “Collecting Service-Based Maintainability Metrics from RESTful API De-
scriptions: Static Analysis and Threshold Derivation”. In: Software Architecture.
2020, pp. 215–227. doi: 10.1007/978-3-030-59155-7_16 (cit. on pp. 93, 98).

[Bogner, A. Zimmermann, et al. 2020] Justus Bogner, Alfred Zimmermann, and Ste-
fan Wagner. “Towards an Evolvability Assurance Method for Service-Based
Systems”. In: Advances in Service-Oriented and Cloud Computing. 2020, pp. 131–
139. doi: 10.1007/978-3-030-63161-1_10 (cit. on pp. 95, 99, 101).

[Cardarelli et al. 2019] Mario Cardarelli et al. “An Extensible Data-Driven Ap-
proach for Evaluating the Quality of Microservice Architectures”. In: Proceedings
of the 34th ACM/SIGAPP Symposium on Applied Computing. 2019, pp. 1225–1234.
doi: 10.1145/3297280.3297400 (cit. on pp. 5, 92, 93, 95, 97).

[Cerny, Donahoo, and Pechanec 2017] Tomas Cerny, Michael J. Donahoo, and Jiri
Pechanec. “Disambiguation and Comparison of SOA, Microservices and Self-
Contained Systems”. In: Proceedings of the International Conference on Research in

Adaptive and Convergent Systems. 2017, pp. 228–235. doi: 10.1145/3129676.3129682
(cit. on p. 12).

[Cerny, Donahoo, and Trnka 2018] Tomas Cerny, Michael J. Donahoo, and Michal
Trnka. “Contextual Understanding of Microservice Architecture: Current and
Future Directions”. In: SIGAPP Appl. Comput. Rev. 17.4 (2018), pp. 29–45. doi:
10.1145/3183628.3183631 (cit. on p. 12).

[Cerny, Amr S. Abdelfattah, et al. 2022] Tomas Cerny, Amr S. Abdelfattah, Vin-
cent Bushong, Abdullah Al Maruf, and Davide Taibi. “Microvision: Static
analysis-based approach to visualizing microservices in augmented reality”. In:

https://doi.org/10.5555/3158161.3158170
https://doi.org/10.1145/3143434.3143443
https://doi.org/10.1145/3143434.3143443
https://doi.org/10.1145/3129790.3129816
https://doi.org/10.1007/978-3-030-59155-7_16
https://doi.org/10.1007/978-3-030-63161-1_10
https://doi.org/10.1145/3297280.3297400
https://doi.org/10.1145/3129676.3129682
https://doi.org/10.1145/3183628.3183631


164

REFERENCES

2022 IEEE International Conference on Service-Oriented System Engineering (SOSE).
2022, pp. 49–58. doi: 10.1109/SOSE55356.2022.00012 (cit. on pp. 5, 93, 98, 101).

[Cervantes and Kazman 2016] Humberto Cervantes and Rick Kazman. Designing
Software Architectures: A practical Approach. Addison-Wesley, 2016 (cit. on pp. 7,
8).

[Clements, Kazman, et al. 2002] Paul Clements, Rick Kazman, and Mark Klein. Eval-
uating Software Architectures: Methods and Case Studies. Addison-Wesley, 2002
(cit. on p. 7).

[Clements, Bachmann, et al. 2002] Paul Clements, Felix Bachmann, et al. Document-

ing Software Architectures: Views and Beyond. First. Addison-Wesley, 2002 (cit. on
pp. 8, 9).

[Callegaro et al. 2015] Mario Callegaro, Katja Lozar Manfreda, and Vasja Vehovar.
Web survey methodology. SAGE Publications, 2015 (cit. on pp. 4, 80).

[Corbin and A. Strauss 2015] Juliet Corbin and Anselm Strauss. Basics of Qualitative
Research: Techniques and Procedures for Developing Grounded Theory. Fourth. SAGE
Publications, 2015, p. 456 (cit. on pp. 5, 38, 56).

[Davis 1989] Fred D. Davis. “Perceived Usefulness, Perceived Ease of Use, and User
Acceptance of Information Technology”. In: MIS Quarterly 13.3 (1989), pp. 319–340.
doi: h�ps://doi.org/10.2307/249008 (cit. on pp. 77, 94).

[Dreyfus et al. 1986] Hubert L. Dreyfus, Stuart E. Dreyfus, and Tom Athanasiou.
Mind over Machine: The Power of Human Intuition and Expertise in the Era of the

Computer. The Free Press, 1986 (cit. on pp. 70, 82).

[Dragoni et al. 2017] Nicola Dragoni et al. “Microservices: Yesterday, today, and to-
morrow”. In: Present and Ulterior Software Engineering. Springer International
Publishing, 2017, pp. 195–216. doi: 10 .1007 /978- 3 - 319- 67425- 4_12 (cit. on
pp. 12–14, 16).

[Easterbrook et al. 2008] Steve Easterbrook, Janice Singer, Margaret-Anne Storey,
and Daniela Damian. “Selecting Empirical Methods for Software Engineering
Research”. In: Guide to Advanced Empirical Software Engineering. Springer London,
2008, pp. 285–311. doi: 10.1007/978-1-84800-044-5_11 (cit. on p. 35).

[Engel et al. 2018] Thomas Engel, Melanie Langermeier, Bernhard Bauer, and
Alexander Hofmann. “Evaluation of microservice architectures: A metric and
tool-based approach”. In: Information Systems in the Big Data Era. 2018, pp. 74–89.
doi: 10.1007/978-3-319-92901-9_8 (cit. on pp. 5, 77, 92, 93, 98, 101, 109, 110).

[Engström et al. 2020] Emelie Engström, Margaret-Anne Storey, Per Runeson, Mar-
tin Höst, and Maria Teresa Baldassarre. “How software engineering research

https://doi.org/10.1109/SOSE55356.2022.00012
https://doi.org/https://doi.org/10.2307/249008
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-1-84800-044-5_11
https://doi.org/10.1007/978-3-319-92901-9_8


REFERENCES

165

aligns with design science: a review”. In: Empirical Software Engineering 25 (2020),
pp. 2630–2660. doi: 10.1007/s10664-020-09818-7 (cit. on p. 19).

[Esposte 2018] Arthur De Moura del Esposte. “A Scalable Microservice-based Open
Source Platform for Smart Cities”. MA thesis. University of São Paulo, 2018 (cit. on
pp. 4, 20, 36, 37).

[Francesco et al. 2017] Paolo Di Francesco, Ivano Malavolta, and Patricia Lago.
“Research on Architecting Microservices: Trends, Focus, and Potential for Indus-
trial Adoption”. In: 2017 IEEE International Conference on Software Architecture

(ICSA). 2017, pp. 21–30. doi: 10.1109/ICSA.2017.24 (cit. on p. 21).

[Ford 2018] Neal Ford. The State of Microservices Maturity – Survey Results. O’Reilly
Media, 2018 (cit. on p. 1).

[M. Fowler 2002] Martin Fowler. Patterns of enterprise application architecture. First.
Addison-Wesley Professional, 2002, p. 560 (cit. on p. 7).

[M. Fowler 2015] Martin Fowler. MonolithFirst. 2015. url: h�ps://martinfowler.com/
bliki/MonolithFirst.html (cit. on p. 10).

[S. J. Fowler 2016] Susan J. Fowler. Production-Ready Microservices: Building Stan-

darized Systems Across an Engineering Organization. O’Reilly Media, 2016 (cit. on
pp. 13–16).

[Foote and Joseph Yoder 1997] Brian Foote and Joseph Yoder. “Big Ball of Mud”. In:
Pattern languages of program design 4 (1997), pp. 654–692. url: h�p://www.laputan.
org/mud/mud.html8/28/01h�p://www.laputan.org/mud/mud.html8/28/01 (cit. on
p. 9).

[Garland and Anthony 2003] Je� Garland and Richard Anthony. Large-Scale Soft-
ware Architecture: A Practical Guide Using UML. John Wiley and Sons, Ltd, 2003,
p. 260 (cit. on pp. 7, 8).

[Garlan 2014] David Garlan. “Software architecture: a travelogue”. In: Proceedings of
the on Future of Software Engineering - FOSE 2014. 2014, pp. 29–39. doi: 10.1145/
2593882.2593886 (cit. on pp. 7–9).

[Granchelli et al. 2017a] Giona Granchelli et al. “MicroART: A Software Architec-
ture Recovery Tool for Maintaining Microservice-Based Systems”. In: IEEE In-

ternational Conference on Software Architecture Workshops (ICSAW 2017). 2017,
pp. 298–302. doi: 10.1109/ICSAW.2017.9 (cit. on pp. 5, 77, 92–94, 97).

[Granchelli et al. 2017b] Giona Granchelli et al. “Towards recovering the software
architecture of microservice-based systems”. In: IEEE International Conference

on Software Architecture Workshops (ICSAW 2017). 2017, pp. 46–53. doi: 10.1109/
ICSAW.2017.48 (cit. on pp. 93, 97).

https://doi.org/10.1007/s10664-020-09818-7
https://doi.org/10.1109/ICSA.2017.24
https://martinfowler.com/bliki/MonolithFirst.html
https://martinfowler.com/bliki/MonolithFirst.html
http://www.laputan.org/mud/mud.html8/28/01http://www.laputan.org/mud/mud.html8/28/01
http://www.laputan.org/mud/mud.html8/28/01http://www.laputan.org/mud/mud.html8/28/01
https://doi.org/10.1145/2593882.2593886
https://doi.org/10.1145/2593882.2593886
https://doi.org/10.1109/ICSAW.2017.9
https://doi.org/10.1109/ICSAW.2017.48
https://doi.org/10.1109/ICSAW.2017.48


166

REFERENCES

[Glaser and A. L. Strauss 2017] Barney G Glaser and Anselm L Strauss. Discovery
of Grounded Theory: Strategies for Qualitative Research. Routledge, 2017 (cit. on
pp. 38, 56).

[Guo et al. 2016] Dong Guo, Wei Wang, Guosun Zeng, and Zerong Wei. “Microservices
Architecture Based Cloudware Deployment Platform for Service Computing”.
In: 2016 IEEE Symposium on Service-Oriented System Engineering (SOSE). 2016,
pp. 358–363. doi: 10.1109/SOSE.2016.22 (cit. on p. 13).

[Hassan and Bahsoon 2016] Sara Hassan and Rami Bahsoon. “Microservices and
their design trade-o�s: A self-adaptive roadmap”. In: 2016 IEEE International

Conference on Services Computing (SCC 2016). 2016, pp. 813–818. doi: 10.1109/SCC.
2016.113 (cit. on pp. 13–15, 22).

[Hirzalla et al. 2009] Mamoun Hirzalla, Jane Cleland-Huang, and Ali Arsanjani.
“A Metrics Suite for Evaluating Flexibility and Complexity in Service-Oriented
Architectures”. In: Service-Oriented Computing – ICSOC 2008 Workshops. 2009,
pp. 41–52. doi: 10.1007/978-3-642-01247-1_5 (cit. on pp. 109, 110).

[Hevner et al. 2004] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha
Ram. “Design Science in Information Systems Research”. In: MIS Quarterly 28.1
(2004), pp. 75–105. doi: 10.2307/25148625 (cit. on pp. 3, 19, 21).

[Highscalability 2020] Highscalability. One Team At Uber Is Moving From Microser-

vices To Macroservices. 2020. url: h�p://highscalability.com/blog/2020/4/8/one-
team-at-uber-is-moving-from-microservices-to-macroservic.html (cit. on pp. 1, 2,
78, 92).

[C. Hofmeister et al. 1999] Christine Hofmeister, Robert Nord, and Dilip Soni. Ap-
plied Software Architecture. Reading, MA: Addison-Wesley, 1999 (cit. on p. 7).

[H. Hofmeister and Wirtz 2008] Helge Hofmeister and Guido Wirtz. “Supporting
Service-Oriented Design with Metrics”. In: 2008 12th International IEEE Enterprise

Distributed Object Computing Conference. 2008, pp. 191–200. doi: 10.1109/EDOC.
2008.13 (cit. on pp. 109, 110).

[Hutapea et al. 2018] Renny C. Amantha Hutapea, Adnan Puji Wahyudi, and
Suhardi. “Design Quality Measurement for Service-Oriented Software on Service
Computing System: a Systematic Literature Review”. In: 2018 International

Conference on Information Technology Systems and Innovation (ICITSI). 2018,
pp. 375–380. doi: 10.1109/ICITSI.2018.8696092 (cit. on p. 109).

[InfoQ 2020] InfoQ. To Microservices and Back Again. 2020. url: www.infoq.com/
news/2020/04/microservices-back-again/ (cit. on pp. 1, 2, 78, 92).

[innoQ 2015] innoQ. Self-Contained Systems: Assembling Software From Independent

Systems. 2015. url: scs-architecture.org/index.html (cit. on pp. 1, 11).

https://doi.org/10.1109/SOSE.2016.22
https://doi.org/10.1109/SCC.2016.113
https://doi.org/10.1109/SCC.2016.113
https://doi.org/10.1007/978-3-642-01247-1_5
https://doi.org/10.2307/25148625
http://highscalability.com/blog/2020/4/8/one-team-at-uber-is-moving-from-microservices-to-macroservic.html
http://highscalability.com/blog/2020/4/8/one-team-at-uber-is-moving-from-microservices-to-macroservic.html
https://doi.org/10.1109/EDOC.2008.13
https://doi.org/10.1109/EDOC.2008.13
https://doi.org/10.1109/ICITSI.2018.8696092
www.infoq.com/news/2020/04/microservices-back-again/
www.infoq.com/news/2020/04/microservices-back-again/
scs-architecture.org/index.html


REFERENCES

167

[ISO/IEC/IEEE42010 2022] ISO/IEC/IEEE42010. ISO/IEC/IEEE International Standard –

Software, systems and enterprise -— Architecture description. en. Standard. Interna-
tional Organization for Standardization, 2022 (cit. on p. 8).

[Jaramillo et al. 2016] David Jaramillo, Duy V Nguyen, and Robert Smart. “Lever-
aging microservices architecture by using Docker technology”. In: SoutheastCon
2016. 2016, pp. 1–5. doi: 10.1109/SECON.2016.7506647 (cit. on pp. 12–16).

[Kalske 2017] Miika Kalske. “Transforming monolithic architecture towards microser-
vice architecture”. MA thesis. University of Helsinki, 2017 (cit. on p. 10).

[Krafzig et al. 2005] Dirk Krafzig, Karl Banke, and Dirk Slama. Enterprise SOA:

Service-oriented Architecture Best Practices. Pearson Education, 2005 (cit. on p. 11).

[Killalea 2016] Tom Killalea. “The Hidden Dividends of Microservices: Microser-
vices Aren’t for Every Company, and the Journey Isn’t Easy.” In: Queue 14.3 (2016),
pp. 25–34. doi: 10.1145/2956641.2956643 (cit. on pp. 13, 14, 16).

[Krylovskiy et al. 2015] Alexandr Krylovskiy, Marco Jahn, and Edoardo Patti. “De-
signing a Smart City Internet of Things Platform with Microservice Architecture”.
In: 2015 3rd International Conference on Future Internet of Things and Cloud. 2015,
pp. 25–30. doi: 10.1109/FiCloud.2015.55 (cit. on pp. 13–16).

[Kolny 2023] Marcin Kolny. Scaling up the Prime Video audio/video monitoring service

and reducing costs by 90%. 2023. url: www.primevideotech.com/video-streaming/
scaling-up-the-prime-video-audio-video-monitoring-service-and-reducing-
costs-by-90 (cit. on pp. 1, 78, 92).

[Le et al. 2015] Vinh D. Le et al. “Microservice-based architecture for the NRDC”. In:
2015 IEEE 13th International Conference on Industrial Informatics (INDIN). 2015,
pp. 1659–1664. doi: 10.1109/INDIN.2015.7281983 (cit. on pp. 13, 14).

[Lederer et al. 2000] Albert L. Lederer, Donna J. Maupin, Mark P. Sena, and Youlong
Zhuang. “The technology acceptance model and the World Wide Web”. In: Deci-
sion Support Systems 29.3 (2000), pp. 269–282. doi: h�ps://doi.org/10.1016/S0167-
9236(00)00076-2 (cit. on p. 94).

[Lewis and M. Fowler 2014] James Lewis and Martin Fowler. Microservices. 2014.
url: h�ps://martinfowler.com/articles/microservices.html (cit. on pp. 1, 10–16,
22).

[Mahmood 2007] Zaigham Mahmood. “The promise and limitations of service-
oriented architecture”. In: International Journal of Computers 1.3 (2007), pp. 74–78
(cit. on pp. 1, 22).

[Martin 2018] Robert C. Martin. Clean Architecture: A Craftsmans Guide to Software

Structure and Design. Prentice Hall, 2018, p. 409 (cit. on pp. 8, 23).

https://doi.org/10.1109/SECON.2016.7506647
https://doi.org/10.1145/2956641.2956643
https://doi.org/10.1109/FiCloud.2015.55
www.primevideotech.com/video-streaming/scaling-up-the-prime-video-audio-video-monitoring-service-and-reducing-costs-by-90
www.primevideotech.com/video-streaming/scaling-up-the-prime-video-audio-video-monitoring-service-and-reducing-costs-by-90
www.primevideotech.com/video-streaming/scaling-up-the-prime-video-audio-video-monitoring-service-and-reducing-costs-by-90
https://doi.org/10.1109/INDIN.2015.7281983
https://doi.org/https://doi.org/10.1016/S0167-9236(00)00076-2
https://doi.org/https://doi.org/10.1016/S0167-9236(00)00076-2
https://martinfowler.com/articles/microservices.html


168

REFERENCES

[Mendonça et al. 2021] Nabor C. Mendonça, Craig Box, Costin Manolache, and
Louis Ryan. “The Monolith Strikes Back: Why Istio Migrated From Microservices
to a Monolithic Architecture”. In: IEEE Software 38.5 (2021), pp. 17–22. doi: 10.
1109/MS.2021.3080335 (cit. on pp. 1, 2, 78, 92).

[Mayer and Weinreich 2018] Benjamin Mayer and Rainer Weinreich. “An Approach
to Extract the Architecture of Microservice-Based Software Systems”. In: 2018
IEEE Symposium on Service-Oriented System Engineering (SOSE). 2018, pp. 21–30.
doi: 10.1109/SOSE.2018.00012 (cit. on pp. 5, 92–95, 99, 101).

[Merson and Jospeh Yoder 2019] Paulo Merson and Jospeh Yoder. SATURN 2019 Talk:

Modeling Microservices with DDD. Software Engineering Institute - Carnegie
Mellon University. 2019. url: h�ps://youtu.be/FOiiWgv81S0 (cit. on pp. 28, 45,
69).

[Nadareishvili et al. 2016] Irakli Nadareishvili, Ronnie Mitra, Matt McLarty, and
Mike Amundsen. Microservice Architecture: Aligning principles, practices, and

culture. O’Reilly Media, 2016 (cit. on pp. 2, 12–14, 16, 92).

[Newman 2015] Sam Newman. Building Microservices: Designing Fine-Grained Systems.
First. O’Reilly Media, 2015, p. 259 (cit. on pp. 11–16).

[Newman 2019] Sam Newman. Monolith to Microservices: Evolutionary Patterns to

Transform your Monolith. First. O’Reilly Media, 2019, p. 272 (cit. on pp. 9, 10).

[Newman 2021] Sam Newman. Building Microservices: Designing Fine-Grained Systems.
Second. O’Reilly Media, 2021, p. 616 (cit. on pp. 1, 2, 10, 12, 22, 92, 93).

[Nitto and Rosenblum 1999] Elisabetta Di Nitto and David Rosenblum. “Exploiting
ADLs to specify architectural styles induced by middleware infrastructures”. In:
Proceedings of the 21st international conference on Software engineering - ICSE ’99.
1999, pp. 13–22. doi: 10.1145/302405.302406 (cit. on p. 9).

[Natis and Schulte 2003] Ye�m Natis and Roy Schulte. Introduction to Service-

Oriented Architecture. Tech. rep. Gartner Group, 2003 (cit. on pp. 1, 11).

[Ntentos, Zdun, Plakidas, Meixner, et al. 2020] Evangelos Ntentos, Uwe Zdun,
Konstantinos Plakidas, Sebastian Meixner, and Sebastian Geiger. “Metrics for
Assessing Architecture Conformance to Microservice Architecture Patterns and
Practices”. In: Service-Oriented Computing. 2020, pp. 580–596. doi: 10.1007/978-3-
030-65310-1_42 (cit. on pp. 109, 110).

[Ntentos, Zdun, Plakidas, and Geiger 2021a] Evangelos Ntentos, Uwe Zdun, Kon-
stantinos Plakidas, and Sebastian Geiger. “Evaluating and Improving Microser-
vice Architecture Conformance to Architectural Design Decisions”. In: Service-
Oriented Computing. 2021, pp. 188–203. doi: 10.1007/978-3-030-91431-8_12 (cit. on
pp. 93, 99, 101).

https://doi.org/10.1109/MS.2021.3080335
https://doi.org/10.1109/MS.2021.3080335
https://doi.org/10.1109/SOSE.2018.00012
https://youtu.be/FOiiWgv81S0
https://doi.org/10.1145/302405.302406
https://doi.org/10.1007/978-3-030-65310-1_42
https://doi.org/10.1007/978-3-030-65310-1_42
https://doi.org/10.1007/978-3-030-91431-8_12


REFERENCES

169

[Ntentos, Zdun, Plakidas, and Geiger 2021b] Evangelos Ntentos, Uwe Zdun, Kon-
stantinos Plakidas, and Sebastian Geiger. “Semi-automatic Feedback for Improv-
ing Architecture Conformance to Microservice Patterns and Practices”. In: 2021
IEEE 18th International Conference on Software Architecture (ICSA). 2021, pp. 36–46.
doi: 10.1109/ICSA51549.2021.00012 (cit. on pp. 94, 99, 101).

[Oliveira Rosa, Goldman, et al. 2020] Thatiane de Oliveira Rosa, Alfredo Goldman,
and Eduardo Martins Guerra. “How ’micro’ are your services?” In: IEEE Interna-

tional Conference on Software Architecture Companion (ICSA-C 2020). 2020, pp. 75–
78 (cit. on pp. 19, 21).

[Oliveira Rosa, Daniel, et al. 2020] Thatiane de Oliveira Rosa, João Francisco Lino
Daniel, Eduardo Martins Guerra, and Alfredo Goldman. “A Method for Archi-
tectural Trade-o� Analysis Based on Patterns: Evaluating Microservices Structural
Attributes”. In: Proceedings of the European Conference on Pattern Languages of

Programs 2020. 2020, p. 8. doi: 10.1145/3424771.3424809 (cit. on pp. 6, 20–22).

[Papazoglou 2003] Mike P. Papazoglou. “Service-oriented computing: concepts, char-
acteristics and directions”. In: Proceedings of the Fourth International Conference

on Web Information Systems Engineering, 2003. WISE 2003. 2003, pp. 3–12. doi:
10.1109/WISE.2003.1254461 (cit. on p. 11).

[Patton 2014] Michael Quinn Patton. Qualitative research and evaluation methods:

Integrating theory and practice. Fourth. SAGE Publications, 2014, p. 832 (cit. on
pp. 38, 56).

[Parnas et al. 1985] Lorge David Parnas, Paul C. Clements, and David M. Weiss.
“The Modular Structure of Complex Systems”. In: IEEE Transactions on Software

Engineering SE-11.3 (1985), pp. 259–266. doi: 10.1109/TSE.1985.232209 (cit. on
p. 11).

[Peng et al. 2022] Xin Peng et al. “Trace Analysis Based Microservice Architecture
Measurement”. In: Proceedings of the 30th ACM Joint European Software Engineer-

ing Conference and Symposium on the Foundations of Software Engineering. 2022,
pp. 1589–1599. doi: 10.1145/3540250.3558951 (cit. on pp. 5, 99).

[Perepletchikov et al. 2007] Mikhail Perepletchikov, Caspar Ryan, Keith Framp-
ton, and Zahir Tari. “Coupling metrics for predicting maintainability in service-
oriented designs”. In: Australian Software Engineering Conference (ASWEC’07).
2007, pp. 329–338 (cit. on pp. 22, 77, 109, 110).

[Pahl and Jamshidi 2016] Claus Pahl and Pooyan Jamshidi. “Microservices: A sys-
tematic mapping study”. In: Proceedings of the 6th International Conference on

Cloud Computing and Services Science. Vol. 1. 2016, pp. 137–146. doi: 10.5220/
0005785501370146 (cit. on pp. 13, 14).

[Pressman 2001] Roger S. Pressman. Software Engineering : A Practitioner’s Approach.
Fifth. McGraw-Hill, 2001 (cit. on p. 8).

https://doi.org/10.1109/ICSA51549.2021.00012
https://doi.org/10.1145/3424771.3424809
https://doi.org/10.1109/WISE.2003.1254461
https://doi.org/10.1109/TSE.1985.232209
https://doi.org/10.1145/3540250.3558951
https://doi.org/10.5220/0005785501370146
https://doi.org/10.5220/0005785501370146


170

REFERENCES

[C. U. Press 2019] Cambridge University Press. Meaning of monolithic in English. 2019.
url: h�ps://dictionary.cambridge.org/us/dictionary/english/monolithic (cit. on
p. 9).

[C. U. Press 2022] Cambridge University Press. Meaning of characterization in English.
2022. url: h�ps://dictionary.cambridge.org/dictionary/english/characterization
(cit. on p. 21).

[O. U. Press 2022] Oxford University Press. De�nition of model noun from the Oxford

Advanced Learner’s Dictionar. 2022. url: h�ps://www.oxfordlearnersdictionaries.
com/definition/english/model_1?q=model (cit. on p. 21).

[Perry and Wolf 1992] Dewayne E Perry and Alexander L Wolf. “Foundations for
the study of software architecture”. In: ACM SIGSOFT Software Engineering Notes

17.4 (Oct. 1992), pp. 40–52 (cit. on p. 7).

[Ren et al. 2018] Zhongshan Ren et al. “Migrating web applications from monolithic
structure to microservices architecture”. In: Proceedings of the 10th Asia-Paci�c

Symposium on Internetware. 2018. doi: 10.1145/3275219.3275230 (cit. on p. 10).

[Richards and Ford 2020] Mark Richards and Neal Ford. Fundamentals of Software

Architecture: An Engineering Approach. O’Reilly Media, 2020 (cit. on p. 8).

[Rosa et al. 2020] Thatiane Rosa, Alfredo Goldman, and Eduardo Guerra. “Modelo
para Caracterização e Evolução de Sistemas com Arquitetura Baseada em Serviços”.
In: Anais Estendidos do XI Congresso Brasileiro de Software: Teoria e Prática. 2020,
pp. 38–46. doi: 10.5753/cbso�_estendido.2020.14607 (cit. on pp. 20, 21, 109).

[Richards 2015] Mark Richards. Software Architecture Patterns. O’Reilly Media, 2015
(cit. on pp. 1, 9, 11, 13–16).

[Richards 2016] Mark Richards. Microservices vs. Service-Oriented Architecture.
O’Reilly Media, 2016, p. 44 (cit. on p. 11).

[Richardson 2018] Chris Richardson. Microservices Patterns. Manning Publicatins
Co., 2018, p. 489 (cit. on pp. 1, 9, 10, 12–16, 23, 25, 26, 147, 159).

[Richardson 2020] Chris Richardson. Microservice Architecture - A pattern language

for microservices. 2020. url: microservices.io/pa�erns/index.html (cit. on pp. 109,
110, 114–121).

[Richardson and Smith 2016] Chris Richardson and Floyd Smith.Microservices From

Design to Deployment. NGINX, 2016, p. 74 (cit. on pp. 10, 12–16).

[Raj and Sadam 2021] Vinay Raj and Ravichandra Sadam. “Performance and Complex-
ity Comparison of Service-Oriented Architecture and Microservices Architecture”.
In: International Journal of Communication Networks and Distributed Systems 27.1
(2021), pp. 100–117. doi: 10.1504/ijcnds.2021.116463 (cit. on p. 12).

https://dictionary.cambridge.org/us/dictionary/english/monolithic
https://dictionary.cambridge.org/dictionary/english/characterization
https://www.oxfordlearnersdictionaries.com/definition/english/model_1?q=model
https://www.oxfordlearnersdictionaries.com/definition/english/model_1?q=model
https://doi.org/10.1145/3275219.3275230
https://doi.org/10.5753/cbsoft_estendido.2020.14607
microservices.io/patterns/index.html
https://doi.org/10.1504/ijcnds.2021.116463


REFERENCES

171

[Rud et al. 2006] Dmytro Rud, Andreas Schmietendorf, and Reiner R. Dumke. “Prod-
uct Metrics for Service-Oriented Infrastructures”. In: International Workshop on

Software Measurement - IWSM/MetriKon. 2006 (cit. on pp. 109, 110).

[Rademacher et al. 2017] Florian Rademacher, Sabine Sachweh, and Albert Zun-
dorf. “Di�erences between Model-Driven Development of Service-Oriented and
Microservice Architecture”. In: 2017 IEEE International Conference on Software

Architecture Workshops (ICSAW). 2017, pp. 38–45. doi: 10.1109/ICSAW.2017.32
(cit. on p. 12).

[Runeson et al. 2012] Per Runeson, Martin Host, Austen Rainer, and Bjorn Regnell.
Case study research in software engineering: Guidelines and examples. John Wiley
& Sons, 2012, p. 237 (cit. on p. 4).

[Salah et al. 2016] Tasneem Salah, M. Jamal Zemerly, Yeob Yeun Chan, Mahmoud
Al-�tayri, and Yousof Al-Hammadi. “The evolution of distributed systems
towards microservices architecture”. In: 2016 11th International Conference for

Internet Technology and Secured Transactions (ICITST). 2016, pp. 318–325. doi:
10.1109/ICITST.2016.7856721 (cit. on p. 12).

[E. F. Z. Santana et al. 2017] Eduardo Felipe Zambom Santana, Ana Paula Chaves,
Marco Aurelio Gerosa, Fabio Kon, and Dejan S. Milojicic. “Software Platforms
for Smart Cities: Concepts, Requirements, Challenges, and a Uni�ed Reference
Architecture”. In: ACM Comput. Surv. 50.6 (2017). doi: 10.1145/3124391 (cit. on
p. 37).

[E. Santana et al. 2021] Erick Santana, Thatiane Rosa, João Daniel, and Alfredo
Goldman. “Desenvolvendo o Sorting Hat: uma Ferramenta para Caracterização de
Arquitetura Baseada em Serviços”. In: Anais Estendidos do XII Congresso Brasileiro
de Software: Teoria e Prática. 2021, pp. 127–136. doi: 10.5753/cbso�_estendido.
2021.17298 (cit. on pp. 95, 107).

[Shaw and Garlan 1996] Mary Shaw and David Garlan. Software architecture: per-
spective on an emerging discipline. Prentice Hall, 1996, p. 242 (cit. on pp. 8, 9).

[Shim et al. 2008] Bingu Shim, Siho Choue, Suntae Kim, and Sooyong Park. “A Design
Quality Model for Service-Oriented Architecture”. In: 15th Asia-Paci�c Software

Engineering Conference. 2008, pp. 403–410. doi: 10.1109/APSEC.2008.32 (cit. on
pp. 24, 109, 110).

[Singleton 2016] Andy Singleton. “The Economics of Microservices”. In: IEEE Cloud

Computing 3.5 (2016), pp. 16–20. doi: 10.1109/MCC.2016.109 (cit. on pp. 13–16).

[Sneed 2006] Harry M. Sneed. “Integrating legacy software into a service-oriented
architecture”. In: Conference on Software Maintenance and Reengineering (CSMR’06).
2006, 11 pp.–14. doi: 10.1109/CSMR.2006.28 (cit. on p. 22).

https://doi.org/10.1109/ICSAW.2017.32
https://doi.org/10.1109/ICITST.2016.7856721
https://doi.org/10.1145/3124391
https://doi.org/10.5753/cbsoft_estendido.2021.17298
https://doi.org/10.5753/cbsoft_estendido.2021.17298
https://doi.org/10.1109/APSEC.2008.32
https://doi.org/10.1109/MCC.2016.109
https://doi.org/10.1109/CSMR.2006.28


172

REFERENCES

[Sun et al. 2016] Yuqiong Sun, Susanta Nanda, and Trent Jaeger. “Security-as-a-
Service for Microservices-Based Cloud Applications”. In: 2015 IEEE 7th Inter-

national Conference on Cloud Computing Technology and Science (CloudCom). 2016,
pp. 50–57. doi: 10.1109/CloudCom.2015.93 (cit. on pp. 15, 16).

[Sommerville 2011] Ian Sommerville. Engenharia de Software. 9th. Pearson Prentice
Hall, 2011 (cit. on p. 9).

[Stol et al. 2016] Klaas-Jan Stol, Paul Ralph, and Brian Fitzgerald. “Grounded The-
ory in Software Engineering Research: A Critical Review and Guidelines”. In:
Proceedings of the 38th International Conference on Software Engineering. 2016,
pp. 120–131. doi: 10.1145/2884781.2884833 (cit. on pp. 5, 38, 56).

[Shadija et al. 2017] Dharmendra Shadija, Mo Rezai, and Richard Hill. “Towards
an Understanding of Microservices”. In: 2017 23rd International Conference on

Automation and Computing (ICAC). 2017, pp. 1–6. doi: 10.23919/IConAC.2017.
8082018 (cit. on p. 12).

[Savchenko et al. 2015] D. I. Savchenko, G. I. Radchenko, and O. Taipale. “Microser-
vices validation: Mjolnirr platform case study”. In: 2015 38th International Conven-

tion on Information and Communication Technology, Electronics andMicroelectronics

(MIPRO). 2015, pp. 235–240. doi: 10.1109/MIPRO.2015.7160271 (cit. on pp. 15, 16).

[Statista 2022] Statista. Software developer gender distribution worldwide as of 2021.
2022. url: h�ps://www.statista.com/statistics/1126823/worldwide-developer-
gender/ (cit. on p. 85).

[Soldani et al. 2018] Jacopo Soldani, Damian Andrew Tamburri, and Willem-Jan
Van Den Heuvel. “The pains and gains of microservices: A systematic grey
literature review”. In: Journal of Systems and Software 146 (2018), pp. 215–232. doi:
h�ps://doi.org/10.1016/j.jss.2018.09.082 (cit. on pp. 1, 13–16, 22).

[Thönes 2015] Johannes Thönes. “Microservices”. In: IEEE Software 32.1 (2015),
pp. 116–116. doi: 10.1109/MS.2015.11 (cit. on p. 12).

[Taibi et al. 2018] Davide Taibi, Valentina Lenarduzzi, and Claus Pahl. “Architec-
tural patterns for microservices: A systematic mapping study”. In: CLOSER 2018 -

Proceedings of the 8th International Conference on Cloud Computing and Services

Science. 2018, pp. 221–232. doi: 10.5220/0006798302210232 (cit. on pp. 13, 14, 16).

[Taylor et al. 2009] Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy.
Software Architecture: Foundations, Theory, and Practice. Wiley Publishing, 2009
(cit. on p. 9).

[Vera-Rivera et al. 2021] Fredy H Vera-Rivera, Carlos Gaona, and Hernán
Astudillo. “De�ning and measuring microservice granularity—a literature
overview”. In: PeerJ Computer Science 7 (2021). doi: 10.7717/peerj-cs.695 (cit. on
p. 21).

https://doi.org/10.1109/CloudCom.2015.93
https://doi.org/10.1145/2884781.2884833
https://doi.org/10.23919/IConAC.2017.8082018
https://doi.org/10.23919/IConAC.2017.8082018
https://doi.org/10.1109/MIPRO.2015.7160271
https://www.statista.com/statistics/1126823/worldwide-developer-gender/
https://www.statista.com/statistics/1126823/worldwide-developer-gender/
https://doi.org/https://doi.org/10.1016/j.jss.2018.09.082
https://doi.org/10.1109/MS.2015.11
https://doi.org/10.5220/0006798302210232
https://doi.org/10.7717/peerj-cs.695


REFERENCES

173

[Villamizar et al. 2015] Mario Villamizar et al. “Evaluating the monolithic and the
microservice architecture pattern to deploy web applications in the cloud”. In:
2015 10th Computing Colombian Conference (10CCC). 2015, pp. 583–590. doi: 10.
1109/ColumbianCC.2015.7333476 (cit. on pp. 10, 13, 14, 16).

[Vural et al. 2017] Hulya Vural, Murat Koyuncu, and Sinem Guney. “A Systematic
Literature Review on Microservices”. In: Computational Science and Its Applications

– ICCSA 2017. 2017, pp. 203–217. doi: 10.1007/978-3-319-62407-5_14 (cit. on pp. 13,
14).

[Wagner et al. 2020] Stefan Wagner, Daniel Mendez, Michael Felderer, Daniel Grazi-
otin, and Marcos Kalinowski. “Challenges in Survey Research”. In:Contemporary

Empirical Methods in Software Engineering. Springer International Publishing, 2020,
pp. 93–125. doi: 10.1007/978-3-030-32489-6_4 (cit. on p. 81).

[Wasson 2017] Mike Wasson. Design patterns for microservices. 2017. url: azure .
microso�.com/pt-br/blog/design-pa�erns-for-microservices/ (cit. on pp. 114,
120).

[Wolff 2016a] Eberhard Wolff. Self-contained Systems: A Di�erent Approach to Mi-

croservices. 2016. url: h�ps://www.innoq.com/en/articles/2016/11/self-contained-
systems-di�erent-microservices/#self-containedsystems (cit. on p. 12).

[Wolff 2016b] Eberhard Wolff. Services: SOA, Microservices und Self-contained Systems.
2016. url: h�ps://www.innoq.com/en/articles/2016/11/services-soa-microservices-
scs/#fazit (cit. on p. 12).

[Zhou et al. 2023] Xin Zhou et al. “Revisiting the practices and pains of microservice
architecture in reality: An industrial inquiry”. In: Journal of Systems and Software

195 (2023), p. 111521. doi: h�ps://doi.org/10.1016/j.jss.2022.111521 (cit. on p. 2).

[O. Zimmermann 2017] Olaf Zimmermann. “Microservices tenets: Agile approach to
service development and deployment”. In: Computer Science-Research and De-

velopment 32.3 (2017), pp. 301–310. doi: 10.1007/s00450- 016- 0337- 0 (cit. on
p. 21).

[Zdun et al. 2017] Uwe Zdun, Elena Navarro, and Frank Leymann. “Ensuring and
Assessing Architecture Conformance to Microservice Decomposition Patterns”. In:
Service-Oriented Computing. 2017, pp. 411–429. doi: 10.1007/978-3-319-69035-3_29
(cit. on pp. 5, 92, 99, 101).

[Zhang and Xinke 2009] Qingqing Zhang and Li Xinke. “Complexity Metrics for
Service-Oriented Systems”. In: 2009 Second International Symposium on Knowledge

Acquisition and Modeling. Vol. 3. 2009, pp. 375–378. doi: 10.1109/KAM.2009.90
(cit. on pp. 109, 110).

https://doi.org/10.1109/ColumbianCC.2015.7333476
https://doi.org/10.1109/ColumbianCC.2015.7333476
https://doi.org/10.1007/978-3-319-62407-5_14
https://doi.org/10.1007/978-3-030-32489-6_4
azure.microsoft.com/pt-br/blog/design-patterns-for-microservices/
azure.microsoft.com/pt-br/blog/design-patterns-for-microservices/
https://www.innoq.com/en/articles/2016/11/self-contained-systems-different-microservices/#self-containedsystems
https://www.innoq.com/en/articles/2016/11/self-contained-systems-different-microservices/#self-containedsystems
https://www.innoq.com/en/articles/2016/11/services-soa-microservices-scs/#fazit
https://www.innoq.com/en/articles/2016/11/services-soa-microservices-scs/#fazit
https://doi.org/https://doi.org/10.1016/j.jss.2022.111521
https://doi.org/10.1007/s00450-016-0337-0
https://doi.org/10.1007/978-3-319-69035-3_29
https://doi.org/10.1109/KAM.2009.90

	Introduction
	Research Objective
	Research Design
	Originality
	Relevance
	Main Contributions
	Thesis Structure

	Background
	Software Architecture
	Monolithic Architectural Style
	Service-Based Architectural Styles
	Microservices Architectural Style

	Chapter Summary

	The CharM – Characterization Model
	Design Process
	Definition
	Dimensions
	Fictional Scenario to Demonstrate the CharM Application
	Chapter Summary

	Multiple Case Studies
	InterSCity Case Study
	Research Design
	Characterization of the Architecture of the InterSCity Platform
	Evaluation Results
	Threats to Validity

	Industry Case Study
	Research Design
	Overview of the Company A's Systems
	Characterization of the Architecture of the Search System
	Evaluation Results
	Threats to Validity

	Multiple Case Study Discussion
	Chapter Summary

	Survey
	Methodology
	Sampling
	Research Variables
	Data Analysis
	Execution and Replication
	Limitations and Threats to Validity
	Evaluation Results
	Participants Profile
	The Uses of the CharM
	The Ease of Understanding of the CharM
	The Use and Ease of Understanding of the CharM According to Professional Experience

	Discussion
	Chapter Summary

	Related Research
	Architectural Recovery
	Architectural Evaluation
	Architectural Migration
	Comparison of Related Research
	Chapter Summary

	Conclusion
	Contributions
	Scientific Publications
	Published or Submitted Papers
	Papers in Progress

	Future Work

	Ad-hoc Review of Metrics
	Method for Architectural Trade-off Analysis
	Demonstration – Architectural Trade-off Analysis with Microservices Structural Attributes
	Discussions

	Roadmap for the Manual Collection of a Service's Metrics
	Supplementary Material for the Case Studies
	InterSCity Case Study - Interview Script - CharM Evaluation
	Interview Code Book of the InterSCity Case Study
	Industry Case Study - Interview Script - System Architecture Overview
	Industry Case Study - Interview Script - Sub-system Architecture Overview
	Industry Case Study - Interview Script - Metric Collection
	Industry Case Study - Interview Script - CharM's Evaluation
	Interview Code Book of the Company A Case Study

	Complementary Visualizations of the Characterization of the InterSCity Architecture
	Complementary Visualizations of the Characterization of the Search System
	References

