• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
https://doi.org/10.11606/D.45.2022.tde-26012023-200820
Documento
Autor
Nombre completo
Robson Pereira Aleixo
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2022
Director
Tribunal
Camargo, Raphael Yokoingawa de (Presidente)
Júnior, Edson Amaro
Lorena, Ana Carolina
 
Título en portugués
Predição de surtos de dengue e diagnóstico de sífilis congênita utilizando aprendizado de máquina
Palabras clave en portugués
Aprendizado de máquina
Dengue
Inteligência artificial
Sífilis
Resumen en portugués
Duas doenças que preocupam diversos países atualmente são sífilis congênita e dengue. A sífilis é uma infecção sexualmente transmissível (IST) causada pela bactéria Treponema Pallidum. Ao ser transmitida em crianças durante o período da gestação, é chamada de sífilis congênita. Já a dengue é uma doença viral transmitida pelas espécies de mosquitos Aedes Aegypti e Aedes Albopictus. No Brasil, há uma preocupação constante com o aumento do número de casos. Utilizando o município do Rio de Janeiro como escopo de trabalho, propomos dois modelos de aprendizado de máquina. O primeiro deles estima a probabilidade da criança nascer com sífilis a partir de dados públicos do Sistema Único de Saúde (SUS). O segundo prevê casos de dengue para cada bairro da cidade, aplicando modelo de regressão. Neste caso, para o treinamento e teste do modelo, foram considerados dados sociodemográficos, climáticos, série histórica de casos da doença, quantidade de estabelecimentos de saúde, índice de mensuração da quantidade de mosquitos na região e série histórica de casos de zika e chikungunya. No caso da sífilis congênita, avaliamos os modelos pela métrica AUC (Area Under Curve) da curva ROC e o melhor resultado foi 68% para a predição de casos positivos, obtidos pelos modelos LightGBM e XGBoost. No que se refere à dengue, mensuramos o desempenho do modelo em diferentes métricas e cenários. O modelo que obteve os melhores resultados foi o Catboost, identificando 75% dos surtos em até três meses de previsão. Além disso, dedicamos parte significativa deste trabalho na explicabilidade das previsões de dengue. Para isso, utilizamos a ferramenta SHAP que proporciona diferentes visões que contemplam tanto a visão geral como a local de impacto das variáveis na previsão.
 
Título en inglés
Predicting dengue outbreaks and syphilis congenital diagnosis using machine learning
Palabras clave en inglés
Artificial intelligence
Dengue
Machine learning
Outbreak
Syphilis
Resumen en inglés
Two diseases that concern several countries today are congenital syphilis and dengue. Syphilis is a sexually transmitted infection (STI) caused by the bacterium Treponema Pallidum. When transmitted in children during pregnancy, it is called congenital syphilis. Dengue is a viral disease transmitted by the mosquito species Aedes Aegypti and Aedes Albopictus. In Brazil, there is a constant concern about the increase in the number of cases. Using the city of Rio de Janeiro as the scope of work, we propose two machine learning models. The first one estimates the probability of a child being born with syphilis based on public data from the Unified Health System (SUS). The second predicts dengue cases for each neighborhood in the city, applying a regression model. In this case, for the training and testing of the model, sociodemographic and climatic data, historical series of cases of the disease, number of health establishments, index of measurement of the number of mosquitoes in the region and historical series of cases of zika and chikungunya were considered. In the case of congenital syphilis, we evaluated the models by the AUC (Area Under Curve) metric of the ROC curve and the best result was 68% for the prediction of positive cases, obtained by the LightGBM and XGBoost models. With regard to dengue, we measured the performance of the model in different metrics and scenarios. The model that obtained the best results was Catboost, identifying 75% of outbreaks within three months of forecast. In addition, we dedicate a significant part of this work to the explainability of dengue predictions. For this, we use the SHAP tool that provides different views, including both the general and local, about the impact of the variables on the forecast.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2023-01-30
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores.
CeTI-SC/STI
© 2001-2024. Biblioteca Digital de Tesis y Disertaciones de la USP.