
Node concordance: a local homophily
prediction task in graphs

Caio Lorenzetti Martinelli

Thesis presented to the
Institute of Mathematics and Statistics

of the University of São Paulo
in partial fulfillment
of the requirements
for the degree of
Master of Science

Program: Mestrado em Ciência da Computação
Advisor: Prof. Dr. Denis Deratani Mauá

São Paulo
July, 2023

Node concordance: a local homophily
prediction task in graphs

Caio Lorenzetti Martinelli

This version of the thesis includes the
corrections and modifications suggested

by the Examining Committee during the
defense of the original version of the

work, which took place on July 31, 2023.

A copy of the original version is available
at the Institute of Mathematics and

Statistics of the University of São Paulo.

Examining Committee:

Prof. Dr. Denis Deratani Mauá (Advisor) – IME-USP
Prof. Dr. Bruno Ribeiro – Purdue University
Prof. Dr. Fabricio Murai Ferreira – Worcester Polytechnic Institute

The content of this work is published under the CC BY 4.0
(Creative Commons Attribution 4.0 International License)

https://creativecommons.org/licenses/by/4.0/

Resumo

Martinelli, C. L. Concordância entre nós: uma tarefa de predição de homofilia local. Tese
(Mestrado em Ciências) - Instituto de Matemática e Estatística, Universidade de São Paulo, São
Paulo, 2023.
Homofilia é uma característica presente em muitos grafos do mundo real, esse trabalho propõe a
tarefa de prever o manifestação local dela, a concordância entre nós. A tarefa é explorada em con-
juntos de dados referência de predição de nós, usando os rótulos dos nós para criar o rótulo de con-
cordância, e dois frameworks, um posicional e um estrutural, para uma versão semi-supervisionada
da tarefa são propostos. Nesses conjuntos de dados, a tarefa pode ser vista como uma subtarefa da
classificação de nós, nós queremos prever se dois nós são de mesma classe, sem levar em conta a quais
classes eles pertencem. É mostrado que existe um vantangem de performance em atacar o problema
de concordância de nós diretamente nesse caso. Os frameworks consistem em utilizar Graph Neural
Networks (GNNs) e Node2Vec para gerar embeddings de nós que são informativos da concordância
entre nós. O framework posicional é treinado de maneira não-supervisionada, tendo como objetivo,
na verdade, a predição de arestas, usando apenas a topologia do grafo como recurso, e apresenta
poder preditivo para concordância entre nós – apesar de que a relação entre os poderes preditivos
para concordância entre nós e predição de arestas não é direta, como é mostrado nesse trabalho –.
Os embeddings estruturais são treinados diretamente para concordância entre nós, usando as var-
iáveis explicativas dos nós e mecanismos convolucionais das GNNs, e geralmente performam melhor
do que o framework posicional, mas são mais sensíveis ao número de arestas rotuladas. Também
é mostrado que os dois frameworks podem ser usados em combinação, uma vez que eles contém
informações complementares um ao outro. Essa tarefa pode ter como fim ela própria se alguém
quiser apurar exatamente a concordância entre nós de um grafo, ou pode servir como um passo de
pré-processamento, para atribuir pesos às arestas ou alterar e fazer projeções de um grafo. O código
desse trabalho é disponibilizado publicamente em https://github.com/caiolmart/node-concordance.
Palavras-chave: Graph Neural Networks, Tarefas em Grafos, Classificação de Nós, Predição de
Arestas, Topologia de Grafos, Graph Representation Learning, Homofilia.

i

https://github.com/caiolmart/node-concordance

ii

Abstract

Martinelli, C. L. Node concordance: a local homophily prediction task in graphs. Thesis
(MSc) - Institute of Mathematics and Statistics, University of São Paulo, São Paulo, 2023.

Homophily is a characteristic present in many real-world graphs, this work proposes a task to
predict the local manifestation of it, the node concordance. The task is explored in benchmark
datasets for node classification, using node labels to create the concordance label, and with two
frameworks, one positional and one structured, for a semi-supervised version of the task are pro-
posed. In those datasets, the task can be viewed as a subtask of the node classification, we want to
predict if two nodes are same-class nodes, not taking into account which classes the nodes belong
to. It is shown here that there is a performance advantage in tackling node concordance directly
in this case. The frameworks consist of utilizing Graph Neural Networks (GNNs) and Node2Vec to
generate node embeddings that are informative of the node concordance. The positional framework
is trained in an unsupervised manner, actually targeting link prediction, using the graph topology
as its only feature, and is shown to hold predictive power for node concordance – although the
relation between the link prediction and node concordance predictive powers is not direct, as is
shown in this work –. The structural embeddings are trained directly for node concordance, using
node features and GNNs convolutional mechanisms, and generally perform better than the posi-
tional framework, but are more sensitive to the number of labeled edges. It is also shown that the
two frameworks can be used in combination, in an ensemble, since they contain complementary
information to each other. This task can be an end in itself if one desires exactly to assess the
node concordance of the nodes, or can serve as a preprocessing step, to attribute edge weights or
rewire and make projections of the graph. The code of this work is made publicly available on
https://github.com/caiolmart/node-concordance.
Keywords: Graph Neural Networks, Tasks on Graphs, Node Classification, Link Prediction, Graph
Topology, Graph Representation Learning, Homophily.

iii

https://github.com/caiolmart/node-concordance

iv

Contents

List of Figures vii

List of Tables ix

1 Introduction 1

2 Concepts 5
2.1 Basic concepts . 5
2.2 Prediction Tasks . 5

2.2.1 Node Property Prediction . 5
2.2.2 Link Property Prediction . 6

2.3 Graph Neural Networks . 7
2.3.1 Graph Convolutional Networks . 8
2.3.2 GraphSAGE . 8
2.3.3 Graph Attention Networks . 9

2.4 Positional vs. Structural Embeddings . 9
2.5 Positional Embeddings in Graphs . 10

2.5.1 DeepWalk . 10
2.5.2 Node2Vec . 11
2.5.3 TransE . 11

2.6 Inductive and Transductive Learning . 12

3 Embeddings for Node Concordance 13
3.1 Structural Embeddings for Node Concordance Prediction 13

3.1.1 Target function . 13
3.1.2 Architecture . 13
3.1.3 Training . 14
3.1.4 Data Split . 14

3.2 Positional Embeddings for Node Concordance Prediction 14
3.2.1 Target function . 14
3.2.2 Architecture . 15
3.2.3 Training . 15
3.2.4 Data Split . 16

v

vi CONTENTS

4 Experimental Design 17
4.1 Datasets . 17

4.1.1 Description . 17
4.1.2 Node concordance label . 17
4.1.3 Data Splits . 18

4.2 Evaluation . 18

5 Results and Discussion 19
5.1 Do GNNs increase the predictive power of structural embeddings? 19
5.2 Can positional embeddings have node concordance predictive power? 21

5.2.1 Positional Embeddings - GNNs . 22
5.2.2 Positional Embeddings - Node2Vec . 22

5.3 Is there an advantage in tackling node concordance directly? 24
5.4 What are the strengths and weaknesses of each framework? 26

5.4.1 Is the positional approach less sensitive to the number of labeled nodes? . . . 27
5.4.2 Can positional and structural embeddings be used in combination? 28

6 Conclusions and Future Work 31

Bibliography 33

List of Figures

1.1 Example of the proposed task predictions in a homophilic and a heterophilic graph.
Node classes are represented by their colors. Nodes with known labels are displayed
as circles, while nodes with unknown labels are as diamonds. The task consists of
learning a function that generates concordance predictions for any pair of nodes, in
this case, the edges of the graph are the pairs predicted and the function should
return strong (high probability) predictions for the same-class edges, and weak (low
probability) predictions for the inter-class edges. 2

2.1 Example of a two-layer convolutional network calculation of the representation of a
node in a graph. 7

2.2 Example of an undirected graph with binary node features represented by the node
colors. 10

2.3 Illustration of a random walk generation procedure. 10

5.1 Average loss and ROC-AUC of the Ω3-MLP
s function for 30 runs along 5000 epochs.

Continuous lines connect the binary cross entropy data points and the dotted lines
connect ROC-AUC data points. The standard deviation of the metrics along the runs
is shown in the error bars. 20

5.2 Average validation ROC-AUC of the ΩMLP
s functions for 30 runs along 2000 epochs.

Each line contains the ROC-AUC data points for a layer number. The standard
deviation of the metric along the runs is shown in the error bars. 20

5.3 Average loss and ROC-AUC of the Ω2-GraphSage
s function for 30 runs along 5000

epochs. Continuous lines connect the binary cross entropy data points and the dotted
lines connect ROC-AUC data points. The standard deviation of the metrics along
the runs is shown in the error bars. 21

5.4 Average loss and ROC-AUC of the Ω1-GraphSage
p function for 30 runs along 200 epochs.

Continuous lines connect the link-prediction loss data points and the dotted lines
connect node concordance ROC-AUC data points. The standard deviation of the
metrics along the runs is shown in the error bars. Loss and ROC-AUC are computed
in different splits. 22

5.5 Average loss and ROC-AUC of the ΩN2V p=0.1, q=10
p function for 5 runs along 500

epochs. Continuous lines connect the link-prediction loss data points and the dotted
lines connect node concordance ROC-AUC data points. The standard deviation of the
metrics along the runs is shown in the error bars. Loss and ROC-AUC are computed
in different splits. 23

vii

viii LIST OF FIGURES

5.6 Best ROC-AUC metrics of the ΩN2V
p for validation and test sets of ogbn-arxiv. . 24

5.7 Node classification accuracy and node concordance ROC-AUC of a two-layer Graph-
Sage node classifier used to predict node concordance for 5 runs along 5000 epochs.
Continuous lines connect the node classification accuracy data points and the dotted
lines connect node concordance ROC-AUC data points. The standard deviation of
the metrics along the runs is shown in the error bars. 25

5.8 Boxplot comparing the test performance of ΩN -GraphSage
s and the GraphSage Node

Classifier for 1 to 3 convolutional layers. For each run, it is chosen the best model
epoch from the validation performance and displayed the performance on the test set. 25

5.9 Number of nodes and edges for each threshold year (t) in the train, validation, and
test sets for t ∈ [2009, 2019]. The number of nodes and edges are shown in a loga-
rithmic scale for visualization purposes. 27

5.10 ROC-AUC scores in the test set for various threshold years (t) of the Ω1−GraphSage
p –

positional – and the Ω1−GraphSage
s – structural – functions. 28

5.11 On the left, it is shown the correlation matrix (computed in the test set of edges) be-
tween the best model (selected by validation ROC-AUC) of each architecture/frame-
work. On the right, it is shown the test performance of a simple ensemble between
the ΩGraphSage

p and ΩGCN
s functions. 28

5.12 The test performance of a simple ensemble between the Ω1−GraphSage
p and Ω1−GraphSage

s

functions in the ogbn-arxiv dataset with threshold year t = 2015. 29

List of Tables

4.1 Descriptive statistics of the datasets used. Here are shown the dimension of the node
feature vectors (|Xi|), the number of classes (|{Y }|), the homophily (h), and the
number of nodes (|V |) and edges (|E|) of their data splits. 17

5.1 Summary of ROC-AUC metric for multiple runs across datasets. At each run are
chosen the models with the best evaluation metrics. The averages and standard
deviations are computed for each model and displayed in the table. 26

ix

x LIST OF TABLES

Chapter 1

Introduction

Graphs are flexible data representations that are formed by sets of nodes (or vertices) and links
(or edges, or arcs). The nodes are connected by those links, that can be directed or undirected. Both
nodes and edges can be associated with additional information such as costs, weights, feature vectors,
etc. They are vastly used to represent relational data, such as financial transactions ([XSS+21]),
social networks ([WLX+20]), citation networks ([WSH+20], [SNB+08]), and web pages and their
interlinked structure ([PBMW99]). Those are related to widespread aspects of nowadays society,
which makes them a topic of interest for both industry and academia.

Being present in many areas, one may want to extract or predict relevant information about
the graph or its components. Typical prediction tasks on graphs are categorized into node property
prediction – e.g. in a financial network, we may be interested in predicting whether a node (person)
is a fraudulent actor –, link property prediction – e.g. in a social network, we may be interested in
predicting whether there is a missing link (friendship) in the network to suggest creating such a link
–, and graph property prediction – e.g. in a graph representing a molecule, we may be interested
in predicting whether the molecule inhibits the replication of a virus or interacts with some other
molecule.

A property present in many graphs that is a key motivation to this work is homophily, the
principle that edges happen more frequently between nodes that are similar [MLJ01]. Another form
to view that is: nodes that are connected tend to share key properties. For example, people who
buy from the same stores may have similar incomes, friends on social networks may share political
views, and articles that cite each other may belong to the same subject.

This work proposes a novel task (and frameworks to tackle it), a link property prediction task
that is closely related to the node property prediction, as will be argued. Given a graph, we want
to predict whether two nodes belong to the same class, what we call here the concordance of nodes,
a local prediction of the homophily of the graph.

This task is a link property prediction since the concordance labels and predictions are computed
for node pairs, but is related to the node property prediction task because one could predict the
class of each node and compare the predictions to achieve a concordance prediction. Predicting
concordance directly is a more specific task than node classification – we cannot directly derive the
node classes from concordance predictions; we want to distinguish same-class pairs, from inter-class
pairs, not considering which class the nodes belong to. It is shown here that there is a gain in
performance in directly tackling this task, which is in line with Vapnik’s principle that if we have a
restricted amount of information to solve a problem, we should solve it directly, never solve a more
general problem as an intermediate step [Vap98].

A semi-supervised setting for this task is explored here. Given a graph with partially labeled
nodes – and consequently partially labeled edges –, we model a function that can predict if any pair
of nodes belong to the same class. Figure 1.1 exemplifies the task for two graphs, one homophilic
and another heterophilic, scoring all the edges in the graph.

Homophily is a characteristic of many real-world graphs, being an assumption of the most pop-
ular Graph Neural Networks (GNNs) architectures. Predicting node concordance can be a desired

1

2 INTRODUCTION 1.0

Figure 1.1: Example of the proposed task predictions in a homophilic and a heterophilic graph. Node classes
are represented by their colors. Nodes with known labels are displayed as circles, while nodes with unknown
labels are as diamonds. The task consists of learning a function that generates concordance predictions for
any pair of nodes, in this case, the edges of the graph are the pairs predicted and the function should return
strong (high probability) predictions for the same-class edges, and weak (low probability) predictions for the
inter-class edges.

application for many use cases. This concordance measure could be used as a predictor of network
dynamics - e.g. a user of a social network that is isolated, only having connections that are too
different from him may exit the social network. In a recommender system, it can be used to sug-
gest meaningful connections, or even balance the number of suggestions the recommender system
is making (it can be the case that it only recommends concordant connections, which may not
be of interest to a healthy network, encouraging polarization). Other questions may arise, and be
answered with the help of such predictors, such as: Are concordant connections more long-lasting
than discordant ones?

Since many GNN architectures assume homophily in their designs, it can also be the case that
exploring node concordance predictors may serve as inspiration for new GNN architectures. Graph
Attention Networks [VCC+17] have an approach to weighing neighbors in their convolutions. Could

1.0 3

a node concordance predictor be used to weigh edges? Or could it be used as a pre-processing of
the graph? For example, one could rewire the graph using the predictor, making the graph more
(or less) homophilic. Or could the concordance predictions be used in a neighborhood sampler of
some novel GNN architecture – similar to what is done in [LAQ+21] –. Those are some possible
applications that may be practically interesting, among others that the author cannot foresee.

Such as almost every machine learning problem in graphs, the node concordance prediction
problem is one that has a particular setup. In graphs, it is not trivial to separate the data in train,
validation, and test sets, since the samples are not independent and identically distributed (IID) in
their essence. Frameworks to train and predict node concordance are presented in this work, with
thorough discussions of their data splits, and their strengths and weaknesses.

Here are presented two frameworks, one using structural and the other using positional embed-
dings (see section 2.6). The two frameworks are trained in different manners, with different data
splits and loss functions. The structural embeddings used here are trained in a supervised manner,
directly targeting the node concordance, using edges that connect labeled nodes, while the posi-
tional embeddings are trained in an unsupervised manner, they are trained to predict the existence
of edges, which is shown to be a good predictor of node concordance, although the optimal link
predictor may not be the optimal concordance predictor, as will be discussed. The two frameworks
can be complementary, and they use GNNs and Node2Vec. Before diving into the frameworks we
quickly summarize these algorithms.

GNNs are special-purpose neural networks that can tackle the before-mentioned tasks in graphs,
in which they have played a central role. There are a vast number of techniques derived mainly
from Graph Convolutional Networks (GCNs) [KW17] and GraphSage [HYL17] - which can be seen
as generalizations of Convolutional Neural Networks (CNNs, [LBBH98]) -, that exploit the model
architecture, such as Graph Attention Networks (GATs) [VCC+17] – weighing the neighborhood of
the nodes –, simplified GCN [WZdS+19], and DeeperGCN [LXTG20], among others.

GNNs extract features from the graphs, that are informative for the task they are being trained
to solve. For each node, each of their layers contains a relatively low-dimensional array, an embed-
ding, that characterizes it. The node embeddings can be positional or structural (see section 2.4),
depending on the setting of the GNN, which is generally associated with the location or role of
the nodes, respectively. Other forms of extracting positional embeddings include the frameworks
DeepWalk ([PARS14]), Node2Vec ([GL16]), and TransE ([BUGD+13]).

These models are used here as building blocks of the two mentioned frameworks, one supervised
and another unsupervised.

The here proposed supervised framework relies on building structural embeddings from node
features, using GNNs. The GNNs are responsible for weighting and combining node features (from
each node of the pair that we want to assess the concordance), and the final prediction is given
by a comparison of the embeddings of the two nodes of interest. The training procedure directly
targets the concordance label. The basic idea is that we can extract from the GNNs embeddings
that when compared are informative of the equality of the node classes – or if we focus on single
nodes (without GNN aggregations), we can compare the features to predict if the nodes belong to
the same classes. This approach can be used in both transductive and inductive settings.

Whilst the unsupervised framework relies on utilizing positional embeddings to assess the node
concordance. The positional embeddings are obtained using solely the graph structure, with no node
features. For a typical positional embedding, it will explore the homophily of the graph to generate
concordance predictions, and this approach, therefore should only work on homophilic graphs. Take
figure 1.1 for example, the positions of the nodes in the plot can be seen as positional embeddings,
the approach consists in generating predictions from the comparison of two node embeddings:
close embeddings will generate high probabilities and distant embeddings, low probabilities. In a
homophilic graph, these predictions will be accurate to node concordance – in the figure, to answer
if two nodes are the same color –, but in heterophilic graphs, a typical positional embedding – one
that is related to the shortest path distance between nodes – will not work. Nevertheless, positional
embeddings can be informative of other aspects of the node, e.g. Node2Vec can capture node roles

4 INTRODUCTION 1.0

in the graph (see sections 2.5.2 and 5.2.2), and this framework could also work on heterophilic
graphs. This approach is, in essence, transductive, since for generating informative positional node
embeddings, we need to include test/validation nodes in the training procedure.

The approaches are compared in quantitative - what is the predictive power of each approach
and how are they correlated (in different datasets) - and qualitative - discussion of use cases, where
we could prefer one approach over the other - manners. We show that edge homophily predictive
power can be extracted from both approaches, that they can be used in a complementary manner,
and that the unsupervised approach may be preferable in settings with fewer labeled nodes, although
generally being outperformed by the supervised approach.

This work is organized as follows: The second chapter contains key concepts that are used
through the experiments. It contains an introduction to the prediction tasks on graphs, with a
deeper explanation of the tasks that will be used by the author. Then, it is given an introduction to
GNNs, their assumptions, usage, and architectures. We discuss the differences between structural
and positional embeddings and go through other approaches to generate positional embeddings in
graphs. And, finally, explain and discuss the differences between inductive and transductive learn-
ing. The third chapter describes the proposed frameworks, passing through their target function,
architecture, training procedure, and data splits. The fourth chapter describes the experimental de-
sign, it presents the datasets used and the evaluation format of the proposed frameworks. The fifth
chapter contains the results and discussion. It is separated into research questions, each one con-
taining the relevant results to answer them. And the sixth and final chapter contains the conclusions
and future work.

Chapter 2

Concepts

This chapter explains briefly the key concepts used in this research.

2.1 Basic concepts

A graph is a collection of nodes and edges that can have a series of attributes associated with
them. The information contained in a graph can be as simple as the existence of nodes and the edges
that connect them, and hence the existence of the graph, but it also can have intrinsic information:
The nodes and edges can have features, for example, in a social network a person (node) may have a
name, age, address, among other features, a friendship (edge) may store the number of interactions
in the social network, the age of the connection, the date of the last interaction, etc.

The graph can also have its properties. Considering various graphs, each representing a molecule,
where the atoms are the nodes and the chemical bonds are the edges. Each graph may have prop-
erties such as molecular mass, reactivity to a molecule, the ability to inhibit the replication of a
virus, and others.

More formally, a graph G is necessarily described by its nodes (V) and connections (E), which
are represented here using an adjacency matrix A : |V | × |V |, with |E| non-zero elements. If node
features are present, they are described by a matrix X : |V | × k where k is the number of features.
And finally, if edge features are present they can be described in several manners: if the features
are one-dimensional, such as edge weights, they can be stored directly in the adjacency matrix A,
whereas if there are more features to be stored (l features), there are some possibilities, such as
adding another dimension to the adjacency matrix Â : |V | × |V | × l, or creating a map that stores
the edge features using the position in the matrix as the map key.

2.2 Prediction Tasks

The prediction tasks in graphs typically try to infer one of the properties described in section
2.1. In the two subsections are explained the two tasks used in this work: node and link properties
prediction tasks.

2.2.1 Node Property Prediction

The node property prediction task consists of using the graph’s available information to infer
a property attributed to the node. For example, in a financial network, where nodes are people or
companies and edges are financial transactions, we may want to predict if a node is a fraudulent
actor.

If available, we may want to use the node features (X), such as age, income, past financial
activity, to classify it as a risky user. It also could be useful to use the same information of its
neighbors (nodes that are connected to it - nodes that transacted money with it), which we could
even weigh by the value of the using the value of the transactions (edge property). We could also

5

6 CONCEPTS 2.2

iterate over the neighborhood and get the neighbors of the neighbors, using possibly the information
of the whole graph to predict the label of a single node. So here is exemplified the usage of the node
and edge properties to make a node property prediction. We could use graph properties to make the
node prediction as well. For example, if the graph is disconnected, we could use the number of past
frauds that occurred in the connected component in which the node is, or even the number of past
frauds in the k-neighborhood, k being the maximum distance in financial transactions. Although,
in our case, this information may be redundant with the usage of the node and edge properties.

In other words, we want to learn a function f that approximates the desired property of the
node, Yi, receiving the graph G (with all the information of the nodes and edges) and the node i:

f(G, i) ≈ Yi. (2.1)

2.2.2 Link Property Prediction

The link property prediction task consists in using the available information of the graph G to
infer a property that is attributed to the node. For example, in a social network (as exemplified
at the beginning of the section), we may want to predict the number of interactions two users will
have in the next month. We can use the properties of the two users, such as past usage metrics of
the social network, and the properties of the edge, such as metrics related to common friends, such
as the Jaccard or Adamic Adar coefficients of the set of neighborhoods of the two nodes, or even a
past number of interactions between the two nodes.

In other words, we want to learn a function f that approximates the desired property of the
edge Yij , receiving the graph G (with all the information of the nodes and edges) and the two nodes
(i, j) that are connected by the edge:

f(G, i, j) ≈ Yij . (2.2)

The main difference in the modeling of this problem is in the task of predicting the existence of
future edges. In this task, we typically have a graph G0 in an initial state and must predict which
edges will be added in the future (when the graph will be Gt). Our target function then is

Yij =

{
1 if eij ∈ Gt,
0 if eij /∈ Gt.

(2.3)

So, we will try to approximate a function that can construct the future edges based on the initial
graph:

f(G0, i, j) ≈ Yij . (2.4)

Since graphs, especially large ones, are usually sparse, the probability of an edge between two
random nodes to exist is close to zero. What leads us to some particularities of this task:

• Evaluation metrics: Accuracy can mislead the performance of our functions since the domi-
nant class (non-existence of the edge) is very probable. Additionally, it gets computationally
expensive to calculate a metric such as accuracy over the whole graph. In a directed graph
with N nodes, there are N(N − 1) possible edges. Therefore, to compute a metric over the
whole graph, the computational cost grows with Θ(N2). The solution to this is typically
subsampling the negative class. Two metrics that are widely used are:

Hits@K: Which evaluates the percentage of positive edges in the test set T that are within
the top K predictions when compared to a large set of negative edges,

Hits@K =
1

|T |
∑
eij∈T

1 if rank(eij) ≤ K. (2.5)

2.3 GRAPH NEURAL NETWORKS 7

MRR: Mean Reciprocal Rank, which evaluates the rank of every positive edge in the test
set T compared to a large set of negative edges,

MRR =
1

|T |
∑
eij∈T

1

rank(eij)
. (2.6)

• Training: Similar to the metrics computation, it is very expensive to train our function over
all the negative edges. A widely used solution to this is to randomly sample negative edges
over training epochs.

2.3 Graph Neural Networks

As mentioned in the introduction, there is a vast number of techniques in Graph Neural Net-
works, derived mainly from Graph Convolutional Networks (GCNs) (Kipf & Welling, 2017 [KW17])
and GraphSAGE (Hamilton et al., 2017 [HYL17]). Both can be understood to make spatial-based
convolutions over nodes, and can be seen as generalizations of Convolutional Neural Networks
(CNNs) [LBBH98] that have for long been present in computer vision research.

The premises of such techniques are that the node features and labels vary smoothly over the
graph, and that there is a gain in predictive power in using not only the node features but also the
neighborhood features. The idea is to aggregate the information of the node with the information of
the neighbors, learning the influence the neighbors can exert over the node or link to be classified.

The convolutions are over the immediate neighborhood of the nodes, and each convolutional
layer can be understood to aggregate information of nodes that are more distant from the node
to be classified. Let us first consider the convolutions for node classification. Figure 2.1 exemplifies
the calculation of the final node representation in a 2-layer graph convolutional network. Here,
the layer (l) convolutions appear in the form of a function f (l) that receives as node states at the
previous layer (h(l−1)

(i)) of both the node itself as well as the representation of the neighbors. In the
node classification task, we typically have node features (Xi), and the first node representation is
defined to be the node features, h0i = Xi. Note that in a graph the neighborhood size is variable.
So our function must deal with any neighborhood size, there will be examples of such functions. As
mentioned, the more layers are added to the network, the more distant information can be used for
the node classification. In the example, we can see that the representation of the node 0 in the first
layer aggregates information of the immediate neighborhood and the representation of the node in
the second layer aggregate information of the whole graph.

0

1 2

3

Figure 2.1: Example of a two-layer convolutional network calculation of the representation of a node in a
graph.

These convolutions can be used also for link prediction tasks. The differences are that typically
the node features are not used, typically the first layer representation is an embedding of the
nodes, H0 = Z that are initialized randomly and learned through the training process, and the

8 CONCEPTS 2.3

training process uses the node representations at the last layer (L) and tries to learn a function
that approximates the target in equation 2.3. Our function (from equation 2.4), then, is

f(G0, i, j) = Λ(hLi , h
L
j) ≈

{
1 if eij ∈ Gt,
0 if eij /∈ Gt.

(2.7)

In the following subsections, we will understand better the two techniques the Graph Neural
Networks are mainly derived from.

2.3.1 Graph Convolutional Networks

The GCN algorithm adds self-loops to the graph G = (A,X): Ã = A + IN where A is the
adjacency matrix and IN the identity matrix, in a way that the following layer loop consider
features of the node, as well as the neighborhood features:

h
(l+1)
i = σ(b(l) +

∑
j∈N (i)

1

cji
h
(l)
j W (l)) (2.8)

Where σ is an activation function, b(l) is a bias term, cji is the product of the square root of
the node degrees (i.e., cji =

√
|N (j)|

√
|N (i)|), and W (l) is a weight matrix to be learned through

the training process.
We can understand this as a weighted average of the node representations in the previous

layer over the neighborhood, transformed linearly (added a bias term), and transformed by an
activation function such as RELU. Here we can note that this function can be applied to nodes
with neighborhoods of any size, a property we need to be satisfied.

2.3.2 GraphSAGE

The GraphSAGE algorithm treats separately the node’s representation and its neighborhood. It
learns weights that transform the node representation and the neighbors representations separately,
and its architecture enables it to use other forms of aggregation than the weighted average. The
layer loop is

h
(l+1)
N (i) ← aggregate({hlj , ∀j ∈ N (i)}),

h
(l+1)
i ← σ(W (l) · concat(hli, h

(l+1)
N (i))),

h
(l+1)
i ← norm(h

(l+1)
i). (2.9)

Here, the aggregation step consists in gathering information of the previous layer in the neigh-
borhood. This step must be able to deal with any neighborhood size. Plus, since in a graph nodes
have no natural ordering, the aggregator must operate over an unordered set of representations of
the previous layer, and ideally would be invariant to permutations of these representations.

The article presents three candidates:

• Mean aggregator: Takes the mean of the vector representations of the neighbors. It is the
aggregator that most resembles the GCN one. The main difference is that the mean is cal-
culated only over the neighbors, and then concatenated with the self-node representation in
the previous layer. For instance, if dl is the dimension of the representation in the layer l, the
concatenated vector, concat(hli, h

(l+1)
N (i))) would have dimension 2dl, and then, W would be of

dimension dl+1×2dl. The mean aggregator respects the invariance property and does not add
any learnable parameters to the process.

• Pooling aggregator: A trainable aggregator which allows nodes to contribute partially to the
h
(l+1)
N (i) vector:

aggregatepool
l = max({σ(W (l)

poolh
(l)
j + b(l)), ∀j ∈ N (i)}). (2.10)

2.5 POSITIONAL VS. STRUCTURAL EMBEDDINGS 9

Where max denotes the element-wise max operator, σ is an activation function and b(l) is a
bias term. Here, the vector h(l+1)

N (i) can take information from only one node up to the dimension
of the layer, dl, nodes. This aggregator has also the permutation invariance property.

• LSTM aggregator: A more complex aggregator, which satisfies our needed property of being
able to deal with any neighborhood size, and has greater expressive capability, but it is not
permutation invariant. Here is needed to apply the LSTM to a random permutation of the
neighbor node’s representations.

2.3.3 Graph Attention Networks

Graph attention networks [VCC+17] introduce a means of weighting the different neighbors of
a node, according to the importance of their representations to the new aggregated representation.

Each layer will compute a weighted mean of the linearly transformed - by the learnable W l

matrix - representations of the previous layer of the node and its neighbors:

h
(l+1)
i = σ(

∑
j∈N (i)

αijW
(l)h

(l)
j). (2.11)

The attention resides on the computation of the αij parameters, the neighbor weights. The
neural network architecture must be able to compute such parameters for any neighborhood size,
and also compute the self-importance, determined by the αii.

For that, the authors chose to use the same W (l) matrix that will eventually be used in equation
2.11 to pre-process the representation of the previous layer, concatenate these transformed repre-
sentations of nodes i and j, and calculate the importance signal (dij) using the attention vector a(l)

and a LeakyReLU:

dij = LeakyReLU(a(l)T concat(W (l)h
(l)
i ,W (l)h

(l)
j)). (2.12)

Note that if h(l)i ∈ RF (l) and h
(l+1)
i ∈ RF (l+1) , then W (l) ∈ RF (l+1)×F (l) and a(l) ∈ R2F (l+1) .

Finally, the neighbor weights can be calculated by a softmax using the importance signal:

αij = softmaxj(dij) =
exp(dij)∑

k∈N (i) exp(dik)
. (2.13)

2.4 Positional vs. Structural Embeddings

The typical views regarding positional and structural embeddings are the following: Positional
embeddings are associated with the notion of closeness, close nodes - nodes that are connected by
short paths - should have similar node embeddings. Whereas structural representations say more
about the role of the node in the graph - is it a node that connects two clusters (communities), is
it a central node, etc. Isomorphic nodes should always have the same structural embedding [SR20].

For example, in the graph in figure 2.2, nodes 1 and 7 should have different positional embed-
dings, but the same structural representation: They are far apart, but they are isomorphic - both
are green, are connected to two nodes (one yellow and one green), the green connection is connected
to another yellow node, and so on.

GNNs can generate both positional and structural embeddings. The most common case is when
they are used for node classification, where the node features are given, and it iterates over the
features of some neighborhood of the node of interest. This is an example of structural embedding:
if we have two similar nodes that are very far apart in the graph with similar neighborhoods, they
will have similar embeddings given by this common GNN. But, as mentioned in section 2.3, for any
graph we can initialize randomly the set of node embeddings (instead of using the node features),
and update them (together with the GNN weights) to predict closeness. And this will be a case of
positional embeddings generated by a GNN.

10 CONCEPTS 2.5

1

2

3

4

6

5

7

Figure 2.2: Example of an undirected graph with binary node features represented by the node colors.

2.5 Positional Embeddings in Graphs

Each hidden layer of a node in GNNs can be viewed as an embedding of that node. There are
other approaches that generate those embeddings, typically used for the link prediction task, that
have appeared before GNNs in the graph representation learning field.

In this section, I present three techniques regarding embedding generation in graphs, two that re-
semble word embedding used in language modeling: DeepWalk (Perozzi et. al., 2014 [PARS14]) and
Node2Vec (Grover et. al., 2016 [GL16]), and one that is native to graphs (particularly, Knowledge
Bases, which are essentially multi-graphs): TransE (Bordes et. al., 2013 [BUGD+13]).

2.5.1 DeepWalk

In language modeling, the required inputs are the vocabulary (V) and the corpus. Meanwhile,
DeepWalk considers the set of graph vertices its vocabulary (V = V) and the corpus is generated
by short truncated random walks.

The algorithm consists of a random walk generator (exemplified in figure 2.3) and an update
procedure for the representation matrix, Φ ∈ R|V |×d, which is initialized randomly. The nodes are
sampled uniformly, as the root of the walk, and the walks sample uniformly the neighbors of the
last node. The update procedure is the SkipGram (Mikolov et. al, 2013 [MCCD13]), a language
model that maximizes the co-occurrence probability of words within a window w in a sentence.

A

CB

E F

D

A D E B E

A C E D A

B E C F C

B E D A C

C A C E B

Random Walks

Figure 2.3: Illustration of a random walk generation procedure.

In the link prediction task, those learned representations are input to a model that returns a
score for the link between two nodes. This score can be as simple as the cosine similarity between
the representations of the two nodes (which can be scaled to satisfy the [0, 1] range), or it can be a
model with learnable parameters.

The DeepWalk algorithm appears at the Open Graph Benchmark (OGB - Hu et al., 2020
[HFZ+20], see section 4.1) link property prediction leaderboards. The code provided on OGB shows
that a typical usage is to train a Multi-Layer Perceptron (MLP) with the element-wise multiplication
(∗) of the representation of the nodes. What can be written as:

f(G0, i, j) = MLP(Φ(i) ∗ Φ(j)). (2.14)

2.5 POSITIONAL EMBEDDINGS IN GRAPHS 11

2.5.2 Node2Vec

Node2Vec (Grover et. al., 2016 [GL16]) is a very similar framework to DeepWalk (Perozzi et. al.,
2014 [PARS14]). It generates node embeddings through the SkipGram algorithm (Mikolov et. al.,
2013 [MCCD13]), where the vocabulary is the set of nodes and the corpus is generated by random
walks. The framework can be viewed as a generalization of the DeepWalk, as the latter poses as a
special case of the former.

The framework introduces biased random walks, with parameters to the walk generation that
can make the embeddings to be more representative of the local or global structure aspects of the
graph.

The probability of x be the next node in the walk, in which the last node is v is given by

P (ci = x|ci−1 = v) =

{
πvx
Z if (v, x) ∈ E,
0 otherwise. (2.15)

Where πvx is the transition probability between nodes v and x and Z is a normalizing factor.
The transition probability depends on the weight of the edge, wvx, and also on the node previous to
the last node in the walk, πvx = wvx ·αpq(t, x), i.e., if the walk is currently [. . . , t, v], the probability
of the next visited node to be x depends on both the weight of the edge that connects it to v and
a short term memory of the walked path, where αpq is the search bias, defined as

αpq(t, x) =


1
p if dtx = 0,

1 if dtx = 1,
1
q if dtx = 2.

(2.16)

Where p and q are parameters that introduce the bias to the walk, and dtx is the shortest path
distance from t to x. The parameter p influences the return probability to t, low p values increase
the chance of the walk to return to t, while high values diminish this chance. And q regulates the
"inward" versus "outward" nodes preference on the search, a high q increases the probability of
the walk to stay closer to the previous node t, or even form triangles during the walk, while a low
q introduces a bias that repels the walk from the previously visited nodes, exploring the graph
further away. Compared with the DeepWalk, presented in the previous subsection, the Node2Vec
generalizes its walk sampling strategy, and they become the same strategy for p = 1, q = 1.

2.5.3 TransE

TransE is a framework designed to deal with Knowledge Bases (KBs), introduced by Bordes
et. al., 2013 [BUGD+13]. Similar to the two previous frameworks, it learns low dimension repre-
sentations of nodes (or entities). The approach turns out to be different when it tries also to learn
the relationships (edges) as translations on the entities embedding space. While the two previous
frameworks do not discern between distinct types of edges - and there are many graphs with a
single type of edge -, this framework encodes different edge types and different translations in the
embedding space.

The framework has as input a set S of triplets (h, l, t) (head, label, tail) that represent the edges
of the graph, h and t are entities within the set of nodes, V , and l are the relationships, within
the set of edges, E. The node embeddings take values in Rk, k being the dimensionality of the
embedding, and the relationships are translations in this space, which can be viewed as an edge
embedding. The model tries to learn the node and edge embeddings such that h + l ≈ t, or in
more objective form, the distance d(h + l, t) must be smaller than the distance d(h + l, t′) if the
triplet (h, l, t′) does not exist, and the same holds for some inexisting triplet (h′, l, t), with distance
d(h′ + l, t).

To achieve that, the authors propose a learning method that consists on sampling the existing
triplets from S, negative sampling "corrupted triplets" for each sampled triplet:

S′
(h,l,t) = {(h

′, l, t)|h′ ∈ V } ∪ {(h, l, t′)|t′ ∈ V }. (2.17)

12 CONCEPTS 2.6

And updating the embeddings using the stochastic gradient descent according to the loss func-
tion

L =
∑

(h,l,t)∈S

∑
(h′,l,t′)∈S′

(h,l,t)

[γ + d(h+ l, t)− d(h′ + l, t′)]+, (2.18)

where [x]+ denotes the positive part of x and γ > 0 is a margin hyperparameter.

2.6 Inductive and Transductive Learning

In graphs, we often have a tradeoff between our learning methods. We want our models to
generalize to new observations, quickly classify them, and possibly be used in other graphs (inductive
learning features), but at the same time, we want also our models to reach better performance, what
can be obtained through transductive learning (Vapnik, 2013 [Vla13]).

There are approaches to gain performance that can be used only for the same graph that our
model is trained onto. These approaches are vastly used in the literature, from classical models
such as Label Propagation Algorithm ([Zhu05]), to more modern techniques that use those ideas
to enhance GNN performance ([WL20], [CXH+20]), or even that simply adapt the algorithm to
receive base probabilities and propagate them ([HHS+20]).

Consider we have a citation graph, where each node is a paper, with its text features, and each
edge is a citation, and we want to classify the category of each paper. If we have our test nodes
connected to our train nodes, we can use the labels of our train nodes to propagate the labels to
our test nodes. But, if we have a new set of nodes, disconnected from our train nodes (no paths
between train and test nodes), we are not able to make predictions using our train labels. The
Label Propagation Algorithm is an example of transductive learning. Although it may be useful
to classify our test nodes (if they are in the same graph as our train nodes), we are not able to
generalize to another graph, even if the nodes in the other graph have features that come from
the same distribution P (x) from the train nodes, and the graph has similar properties to the train
graph.

In other words, inductive learning will try to learn general rules from training cases, we must
be able to apply those rules to any node that has features and edges that come from the same or
similar distributions, whereas transductive learning will try to learn specific rules to the problem
using all the data presented to the model.

Chapter 3

Embeddings for Node Concordance

This chapter describes the framework to generate and use embedding for node concordance
prediction.

3.1 Structural Embeddings for Node Concordance Prediction

The structural embeddings in this work are trained directly to predict node concordance. All
the graphs studied here contain node features (X), and the edges have binary node concordance
labels, but no features.

3.1.1 Target function

To train our structural embedding we define our target in equation 3.1. The node concordance
Υ, is the link property we want to assess, a binary measure of similarity between the two nodes
it connects. In this framework, it is possible to use concordance directly as the target function for
training our structural embeddings (Θs):

Θs(i, j) = Υ(i, j). (3.1)

3.1.2 Architecture

The training process consists of learning a function (Ωs) that is informative of the concordance
of any pair of nodes. With some similarity to equation 2.7, our function is trained as

Ωs(i, j) = f(G, i, j) ≈ Θs(i, j). (3.2)

This function utilizes structural node embeddings (hL) of the pair of nodes to calculate its
predictions:

Ωs(i, j) = ρ(hLi , h
L
j). (3.3)

Here, it is particularly chosen to generate the predictions from the cosine similarity of the two
node embeddings:

ρ(hLi , h
L
j) = σ(a+ b cos(hLi , h

L
j)), (3.4)

where σ is the sigmoid function and a and b are two learnable parameters.
The node embeddings are calculated using standard GNNs (GraphSage, GCN, and GAT), where

the first layer embeddings are the node features (h0 = X).
This architecture is said structural because different (that can be distant) nodes of the graph

will have the exact same embedding if they are isomorphic, or even locally isomorphic - if they have
the same features, the same neighborhood structure (with the same neighborhood features), where
the neighborhood size depends on the depth of the GNN.

13

14 EMBEDDINGS FOR NODE CONCORDANCE 3.2

As a baseline model, it is trained an MLP using only the node features (h0 or X). Since com-
paring the features using solely the cosine similarity could be excessively simple, the node features
are combined using the element-wise multiplication (∗), and it is trained a concordance predictor
MLP:

Ωbaseline
s (i, j) = ρbaseline(h0i , h

0
j) = MLP(h0i ∗ h0j). (3.5)

3.1.3 Training

All the parameters of our Ωs function are trained together. The parameters of the GNN are
initialized randomly, according to the default implementation in Pytorch Geometric. As for the
embedding comparison, we hope that similar embeddings generate high concordance predictions -
the reason cosine similarity is used to compare them - what is further enforced in the initialization
of its parameters: a is initialized as 0 and b as 1.

The loss function considered is the binary cross entropy between the predictions and the target
Θs.

3.1.4 Data Split

The node concordance is a link property, but it is essentially a comparison metric between the
characteristics of two nodes. Therefore, is constructed an edge split (in train, validation, and test
sets) that is the result of a node split. That means that train edges connect two train nodes, test
edges have at least one end in a test node, and the rest of the edges are validation edges.

Since this approach is structural, it is easier to create an inductive setting, we can use only
train edges to train our embeddings and a test node that is isomorphic to a train node will have an
identical node embedding, and so a pair of train nodes that are isomorphic to a pair of test nodes
will have the same concordance prediction score. We can, therefore, use only train edges to create
our model, and this model should be able to predict the concordance of validation/test edges.

To make a perfect inductive setting, we should also split our graph into train, validation, and test
graphs, where the test graph would be the whole graph, the validation graph would exclude the test
edges/nodes and the train graph would exclude both validation and test edges/nodes. For simplicity
we do not make this separation, we follow the transductive setting, as do all the experiments in
OGB leaderboards whose code the author inspected, of considering the whole graph but evaluating
our losses and hence doing the backpropagation only on train edges. It is worth noting that in this
case the features of validation/test nodes will be used in the convolutions of the GNNs.

3.2 Positional Embeddings for Node Concordance Prediction

The positional embeddings in this work are trained for link prediction. The Ωp function that
utilizes it must also be able to receive any pair of nodes, and it is trained to predict the existence of
an edge between them. It is expected here that due to homophily, the link prediction is informative
of the concordance. But, as will be further discussed in the results chapter, the best predictor of
node concordance in this setting is not the best link predictor. The best link predictor would be
able to perfectly answer if a link exists or not, giving no additional information to the graph itself.
We, therefore, want an imperfect link predictor that maximizes the distinction between same-class
and inter-class connections.

This approach is unsupervised, it does not utilize the node concordance label during its training.
It also ignores the node features, using a randomly initialized embedding as its node’s first layer
representation.

3.2.1 Target function

To train our positional embeddings using GNNs, we use the target function that is implicitly
described in equation 2.7, but specified here as

3.2 POSITIONAL EMBEDDINGS FOR NODE CONCORDANCE PREDICTION 15

ΘGNN
p (i, j) =

{
1 if eij ∈ G,
0 if eij /∈ G.

(3.6)

The target function of the unsupervised approach is a simple link prediction target, and does
not directly optimize the node concordance prediction power.

It is specified that this target function serves our GNNs. Node2Vec is another framework for
generating positional embeddings used here, where the target function does not distinguish between
pairs that are or are not in the graph, but between pairs that are in the context window of the
random walk or are in the false random walk generated during the sampling. This target function
is particularly similar when we set the context size to 2, where all the positive optimizations will
regard edges, but it is not guaranteed that all the graph edges will be used, and graph edges may
be used at different proportions.

3.2.2 Architecture

The training process of our GNNs consists of learning a function (ΩGNN
p) that is informative of

the existence of edges between nodes. Our function is trained according to equation 2.7, but the
whole graph is used in the process, leaving us to

ΩGNN
p (i, j) = f(G, i, j) ≈ ΘGNN

p (i, j). (3.7)

This function utilizes positional node embeddings (hL) of the pair of nodes to calculate its
predictions:

ΩGNN
p (i, j) = ρ(hLi , h

L
j). (3.8)

Here is also chosen to generate the predictions from the cosine similarity of the two node
embeddings, according to equation 3.4.

The node embeddings are calculated using standard GNNs (GraphSage, GCN, and GAT), where
the first layer embeddings are the raw node embeddings (h0 = E).

This architecture is said positional because distant nodes of the graph will tend to have different
embeddings, regardless they are isomorphic, the optimization process will lead to embeddings that
are informative of the distance between nodes, not informative of their quality or role in their local
graphs.

The Node2Vec approach is very similar to the GNN approach, but the target function is proper
from the model, and its architecture does not include a link function (ρ in the GNN framework), that
will be used to compare node embeddings, only generating node embeddings (hNode2Vec). Therefore,
we must include a comparison between the node embeddings for this framework, which is chosen
to be a sigmoid applied to the cosine similarity measure between the embeddings, according to
equation 3.9.

ρNode2Vec(hNode2Vec
i , hNode2Vec

j) = σ(cos(hNode2Vec
i , hNode2Vec

j)) (3.9)

We remove the parameters a and b from the equation since the ρNode2Vec will not participate in
the optimization process, and hence the parameters cannot be optimized.

3.2.3 Training

All the parameters of our Ωp functions are trained together.
The embeddings of both GNN and Node2Vec approaches are initialized randomly, according to

the default implementation in Pytorch Geometric, i.e. normal distribution initialization. And in the
GNN case, also the layer parameters are initialized randomly, according to the default implemen-
tation in Pytorch Geometric, a is initialized as 0 and b as 1.

Each training epoch consists of a whole pass on the training edges, with a same-sized negative
sampling of edges, randomly extracted, in batches whose size (B) varies for each experiment.

16 EMBEDDINGS FOR NODE CONCORDANCE 3.2

The loss function (Lb) for each batch b of the GNNs, with its positive (Eb), and negative (Êb)
edges is described as

Lb =
1

B
(
∑

eij∈Eb

− log(ΩGNN
p (i, j)) +

∑
êij∈Êb

− log(1− ΩGNN
p (i, j))). (3.10)

3.2.4 Data Split

Similar to the structural embeddings, the framework will be evaluated by splitting the edges
from a node split. But since this approach is positional, our setting must be transductive, all
nodes must be contained in the training process, as the positional embeddings are calculated in the
training process. If the nodes do not participate in the training processes, they would only have
their randomly initialized embeddings as first-layer representations, which would not be informative
at all.

Therefore we randomly split the edges between train, validation, and test, in sizes that vary
according to each dataset. As the node labels (or even the features) are not used in this framework,
this data split poses only as a performance report, that will not be used in the evaluation of the
frameworks, which will be discussed in the results section.

Chapter 4

Experimental Design

This chapter presents the experimental design for evaluating the performance of the proposed
frameworks in the node concordance prediction task.

4.1 Datasets

4.1.1 Description

It is interesting to evaluate our framework performance on realistic datasets, which can be a
proxy for usability in real problems. In the absence of node concordance benchmark datasets, here
are used benchmark datasets for node label prediction, from which is created our node concordance
label.

The chosen datasets are the citation networks Cora, CiteSeer, and Pubmed from [SNB+08] and
ogbn-arxiv from the Open Graph Benchmark (OGB - [HFZ+20]). All those datasets are graphs
that contain node features (X) and labels (Y). The features are extracted from text, and the labels
are categories of the articles the node represents. In the case of ogbn-arxiv, the node features are
the average of the word embeddings in the title and abstract, and in the case of the Cora, CiteSeer,
and Pubmed datasets, bag-of-words representations of the documents.

Table 4.1 shows descriptive statistics of the datasets. There are shown the dimension of the node
feature vectors (|Xi|), the number of classes (|{Y }|), the homophily (h) – which is computed as the
proportion of concordant edges in the graph – and the number of nodes (|V |) and edges (|E|) of
their data splits.

4.1.2 Node concordance label

We extract our node concordance label (Υ) from the node labels. Edges that connect same-class
nodes are concordant edges and otherwise are discordant edges:

Υ(i, j) =

{
1 if Yi = Yj ,
0 if Yi ̸= Yj .

(4.1)

|V | |E|

Dataset |Xi| |{Y }| h Total Train Validation Test Total Train Validation Test

ogbn-arxiv 128 40 0.655 169,343 90,941 29,799 48,603 1,166,243 374,839 247,627 543,777
Cora 1433 7 0.810 2,708 1,208 500 1,000 10,556 2,308 2,130 6,118
Citeseer 3703 6 0.736 3,327 1,827 500 1,000 9,104 2,642 1,712 4,750
Pubmed 500 3 0.802 19,717 18,217 500 1,000 88,648 75,472 4,140 9,036

Table 4.1: Descriptive statistics of the datasets used. Here are shown the dimension of the node feature
vectors (|Xi|), the number of classes (|{Y }|), the homophily (h), and the number of nodes (|V |) and edges
(|E|) of their data splits.

17

18 EXPERIMENTAL DESIGN 4.2

It is worth noting that the labeling of the nodes in these datasets is manually made by either the
authors or moderators of these portals. It could be the case that a node concordance label would
be easier to achieve, or even more precise for some purposes. Categorizing papers can be rather
arbitrary, there is always the possibility of papers that encompass multiple categories, and within
a category, there can be papers that are rather distinct.

4.1.3 Data Splits

The Cora, CiteSeer, and Pubmed datasets have more than one data split proposed in the
literature. Here is used the node split proposed by [CMX18], one to align with its semi-supervised
learning scenario, that is shared here. The ogbn-arxiv dataset has one node split proposed, which
is based on the time of the paper publication: papers published until 2017 are training nodes, those
published in 2018 are validation nodes, and papers since 2019 are test nodes. This dataset provides
the publication year of each paper, from where we are able to create new node splits using the same
methodology.

Note that the proposed splits are based on nodes, not on edges, as we want - given concordance
is a link property. To solve this issue, we consider any edge that has at least one end in a test node
as a test edge, any edge that has an end in a validation node (but no test node) as a validation
edge, and the rest as train edges. This split will be used for the evaluation of the node concordance
prediction frameworks.

4.2 Evaluation

The evaluation of our node concordance predictor is done by comparing the predictions of our
learned functions Ω against the node concordance itself (Υ). We want that our predictor is able to
distinguish between same-class and inter-class edges, the same-class edges should have higher scores
than inter-class ones. It is also desired that the scores do not necessarily reflect probabilities, since
our unsupervised setup does not use the node concordance metric in the training process.

The ROC-AUC (Area Under the Receiver Operating Characteristic Curve) is the metric of
choice for the evaluation. It measures the capability of the predictions to order same-class vs. inter-
class edges. A perfect predictor (Ω∗) would be one where any inter-class edge would have a lower
score than any same-class edge: Ω∗(i, j) > Ω∗(k, l) if Υ(i, j) = 1 and Υ(k, l) = 0, with a ROC-AUC
of 1. A predictor that gives the same score for every pair would have a ROC-AUC of 0.5 - which
will be the approximate metric for a random predictor. And predictors that perform worse than
that would have ROC-AUCs between 0 and 0.5.

The ROC-AUC also permits us to compare the performance of the predictors across datasets,
since it is not sensitive to class imbalance, leaving us with the possibility of assessing the absolute
and comparative power of our predictors in different settings.

Chapter 5

Results and Discussion

In this chapter, are presented the results of the discussed experimental setup. The results are
presented to answer the following questions:

• Do GNNs increase the predictive power of structural embeddings?

• Can positional embeddings have node concordance predictive power?

• Is there an advantage in tackling node concordance directly?

• What are the strengths and weaknesses of each framework?

5.1 Do GNNs increase the predictive power of structural embed-
dings?

For this investigation, are shown in detail the results for one dataset, the ogbn-arxiv graph.
The structural embeddings have a natural baseline to the GNN approach, a model that considers

solely the features of each pair of nodes.
As mentioned in the experimental design, we train an MLP using the combined features of the

node pair (see equation 3.5) varying the number of layers from 1 to 5, with a fixed number of hidden
features in each layer, 128, the same as the number of input features - the dimension of the averaged
embedding of each word in the title and abstract of each node.

Figure 5.1 shows the evaluation metrics of the 3-layer MLP model along the training epochs.
The model is run 30 times along 5000 epochs, and the evaluation metrics are computed every 100
epochs. The figure shows the average and standard deviation of the metrics - loss (binary cross
entropy) and ROC-AUC - for each epoch of these runs.

We can see that the loss and ROC-AUC in the train set are monotonically decreasing and
increasing, respectively. The loss on the validation and test sets have minimums around epoch 1000
and sharply rise afterward. Although less clear, their ROC-AUCs have maximums around the same
period but decrease with much lower intensity. We can also see that the validation metrics are better
than the test metrics reflecting the nature of the dataset splits, the more recent edges in the test
set are more distinct from the train edges and, thus, are exposed to greater performance decay.

Figure 5.2 shows a comparison of the validation ROC-AUC - the metric in which we are most
interested - performance along epochs for the different numbers of MLP layers. For visualization
purposes, are only shown the first 2000 epochs.

We can see that the ROC-AUC increases faster as MLP layers are added, but the maximum
of the metric appears to be stable after the addition of the third layer, what secures us that a
sufficiently complex baseline will be used for comparison against the GNN functions.

To study the performance along epochs of the GNN functions, it is shown the metrics of a
2-layer GraphSage function (Ω2-GraphSage

s) during training in figure 5.3. The function consists of two

19

20 RESULTS AND DISCUSSION 5.1

0 1000 2000 3000 4000 5000
Epoch

0.50

0.55

0.60

0.65

0.70
Lo

ss
MLP Baseline Epoch Metrics - 3 Layers

Loss
Train
Validation
Test

0.50

0.55

0.60

0.65

0.70

0.75

0.80

RO
C

AU
CROC AUC

Train
Validation
Test

Figure 5.1: Average loss and ROC-AUC of the Ω3-MLP
s function for 30 runs along 5000 epochs. Continuous

lines connect the binary cross entropy data points and the dotted lines connect ROC-AUC data points. The
standard deviation of the metrics along the runs is shown in the error bars.

0 250 500 750 1000 1250 1500 1750 2000
Epoch

0.45

0.50

0.55

0.60

0.65

0.70

0.75

RO
C-

AU
C

Validation Epochs ROC-AUC - Structural MLP Baseline

1-MLP
2-MLP
3-MLP
4-MLP
5-MLP

Figure 5.2: Average validation ROC-AUC of the ΩMLP
s functions for 30 runs along 2000 epochs. Each line

contains the ROC-AUC data points for a layer number. The standard deviation of the metric along the runs
is shown in the error bars.

5.2 CAN POSITIONAL EMBEDDINGS HAVE NODE CONCORDANCE PREDICTIVE POWER? 21

0 1000 2000 3000 4000 5000
Epoch

0.40

0.45

0.50

0.55

0.60

0.65

Lo
ss

Structural GraphSage Epoch Metrics - 2 Layers

Loss
Train
Validation
Test

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

RO
C

AU
CROC AUC

Train
Validation
Test

Figure 5.3: Average loss and ROC-AUC of the Ω2-GraphSage
s function for 30 runs along 5000 epochs. Contin-

uous lines connect the binary cross entropy data points and the dotted lines connect ROC-AUC data points.
The standard deviation of the metrics along the runs is shown in the error bars.

consecutive GraphSage convolutional layers, each outputting 128 features, calculated for each node,
whose outputs are used to compute concordance predictions according to equation 3.4.

Similar behavior to the baseline model can be seen, with a less sharp rise in the BCE loss after
its minimum. What is most relevant, in the author’s view, is the difference between the maximum
(and the plateau) of the validation and test ROC-AUCs with those in the baseline model, showing
the performance gain in utilizing the neighbors (in the case, the 2-neighborhood) features to predict
node concordance.

5.2 Can positional embeddings have node concordance predictive
power?

The question for positional embeddings is introduced with more skepticism since the predictor
is trained without receiving the concordance label at any point. Furthermore, it does not receive
any of the node features, which is the main source of information to predict the class of the nodes
for the node classification task for what these datasets are typically used. The unsupervised design
and underutilization of available information justify this skepticism, which will be overcome with
the following results.

As discussed in the experimental design section, there are diverging data splits between training
and evaluation, as the raw node embeddings must be trained for every node (including the vali-
dation/test nodes given by the dataset data split). One percent of the graph edges are randomly
separated for validation and another one percent for the test, these separations are useful for mea-
suring the link predictive capacity of our function, rather than the node concordance predictive
power. We keep the same data split as for the structural embeddings for evaluating the latter.
Therefore, after each epoch, the loss in the random splits and the ROC-AUC in the evaluation edge
splits (which come from the datasets node splits) are measured.

22 RESULTS AND DISCUSSION 5.2

0 25 50 75 100 125 150 175 200
Epoch

0.4

0.6

0.8

1.0

1.2

1.4

1.6
Lo

ss

Positional GraphSage Epoch Metrics - 1 Layer

Loss
Train
Validation
Test

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

0.700

RO
C

AU
CROC AUC

Train
Validation
Test

Figure 5.4: Average loss and ROC-AUC of the Ω1-GraphSage
p function for 30 runs along 200 epochs. Con-

tinuous lines connect the link-prediction loss data points and the dotted lines connect node concordance
ROC-AUC data points. The standard deviation of the metrics along the runs is shown in the error bars.
Loss and ROC-AUC are computed in different splits.

5.2.1 Positional Embeddings - GNNs

Figure 5.4 shows the loss and ROC-AUC of the Ω1-GraphSage
p function for the respective data

splits. One GraphSage convolutional layer, with raw embeddings (E) of dimension 50, as input
generates each node embeddings, also of dimension 50, which are used to compute the edge existence
probability as described in equation 3.8, that is shown to be discriminant of node concordance.

It can be seen that while the performance for link prediction increases (the loss decreases)
monotonically during the trained epochs - even on the unseen validation and test edge sets -, while
the node concordance predictive power of the function peaks around epoch 50.

This result puts evidence to an obvious conclusion, that we may not benefit from the best link-
prediction function, but from the function that better learns the homophilic graph structure. It is
obvious because the best link predictive function would be able to predict exactly the graph edges,
and what we are trying to do here is to distinguish the obvious (homophilic) edges from the less
obvious (heterophilic) ones.

Here is further show the assumption of this approach: the homophily characteristic is a generative
factor of the graph, edges are created from this characteristic, but other factors also create edges. The
best link predictor would learn all the factors in the edge creation mechanism, but during training,
first are learned the predominant factors of edge generation, and if homophily is a major factor in
the graph generation, we can benefit from it using the link predictor. This result is illustrative of
the assumptions and also shows a limitation of this approach: if homophily does not play a (central)
role in the graph generation, this framework would not work.

5.2.2 Positional Embeddings - Node2Vec

There are, though, other ways to generate positional node embeddings, that instead of capturing
the edge creation mechanism, are able to capture node properties regarding the role of a node in

5.2 CAN POSITIONAL EMBEDDINGS HAVE NODE CONCORDANCE PREDICTIVE POWER? 23

the graph. Node2Vec is a framework that is able to construct embeddings that are informative of a
range of characteristics of the node role in the graph. With its biased random walk and context size
parameters, it is able to generate embeddings that can be used for identifying network communities
(what is similar to link prediction), but also for identifying structural roles in the graph. Both
embedding types can be predictive of node concordance but in a heterophilic graph it is expected
that only the latter would be predictive of this property.

Although Node2Vec embedding can be informative of structural roles, here the framework is
classified as positional because there is no guarantee that isomorphic nodes will have the same
embeddings. The biased random walks are generated from the node neighborhood and without
sufficiently large context windows, far-apart nodes should have distinct node embeddings.

Here, the Node2Vec embeddings are trained with fixed walk length (20), context size (10), and
embedding dimension (50). Each epoch generates one positive and one negative walk starting from
each node of the graph and updates the node embeddings from it. The parameters p and q from
equation 2.16 are varied in a log space from 0.1 to 10, with 5 samples, resulting in a total of 25
combinations. The data split is the same as for the positional embeddings using GNNs.

Figure 5.5 shows the loss and ROC-AUC of the ΩN2V p=0.1, q=10
p function for the respective data

splits along 500 epochs. Node2Vec embeddings (E) of dimension 50 are trained and compared as
described in equation 3.9. It is computed the same loss as in figure 5.4 for comparison purposes
- it could be shown the Node2Vec loss for the train set, which measures the predictive power for
the whole context window, instead of for the link prediction, which would result in a monotonic
decrease in the loss for the train set, but the loss for validation and test is not defined, and would
not be compared to the previous result.

It can be seen that the link prediction predictive power has a peak close to epoch 100, as
does the node concordance predictive power. The train loss increases afterward, showing evidence
that the Node2Vec is not optimizing the link prediction directly. This also puts evidence to the

0 100 200 300 400 500
Epoch

1.10

1.15

1.20

1.25

1.30

1.35

1.40

Lo
ss

Positional Node2Vec Epoch Metrics - q = 10.0, p = 0.1

Loss
Train
Validation
Test

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

RO
C

AU
CROC AUC

Train
Validation
Test

Figure 5.5: Average loss and ROC-AUC of the ΩN2V p=0.1, q=10
p function for 5 runs along 500 epochs.

Continuous lines connect the link-prediction loss data points and the dotted lines connect node concordance
ROC-AUC data points. The standard deviation of the metrics along the runs is shown in the error bars.
Loss and ROC-AUC are computed in different splits.

24 RESULTS AND DISCUSSION 5.3

0.1 0.32 1.0 3.16 10.0
q

0.
1

0.
32

1.
0

3.
16

10
.0

p

0.624 0.629 0.635 0.640 0.638

0.624 0.624 0.630 0.634 0.637

0.624 0.623 0.624 0.629 0.633

0.623 0.624 0.623 0.624 0.627

0.622 0.622 0.623 0.624 0.624

Validation

0.1 0.32 1.0 3.16 10.0
q

0.
1

0.
32

1.
0

3.
16

10
.0

p

0.623 0.626 0.632 0.636 0.634

0.622 0.622 0.626 0.631 0.634

0.621 0.621 0.622 0.627 0.628

0.622 0.623 0.622 0.621 0.624

0.621 0.622 0.621 0.622 0.621

Test

Node2Vec AUC Performance

Figure 5.6: Best ROC-AUC metrics of the ΩN2V
p for validation and test sets of ogbn-arxiv.

possibility that Node2Vec can optimize its expressive abilities to something that is not related to
link prediction, which is particularly interesting here, since the goal is to predict node concordance.
Nonetheless, for this graph, the GNN approach performs better than Node2Vec.

Figure 5.6 shows a heatmap of the concordance predictive power (measured in ROC-AUC)
varying the p and q parameters of the ΩN2V

p function. It can be seen that the function has a better
performance with a smaller return parameter (p) and a higher in-out parameter (q). A smaller
return parameter means a higher probability of immediately revisiting a node and a higher in-out
parameter means a higher probability of visiting a node that is a neighbor of the previous node in
the walk. Both of them mean a higher probability that the walk stays within a community, and
close nodes will have similar embeddings. Therefore, the Node2Vec that best predicts concordance,
in this case, is a Node2Vec that predicts communities well, what is intuitive in a homophilic graph.

5.3 Is there an advantage in tackling node concordance directly?

To investigate if there are performance gains in tackling node concordance directly, instead of
modeling node classifiers and comparing their predictions to compute node concordance predictions,
we use the ogbn-arxiv graph, and the GraphSage model.

The GraphSage model for node classification computes node embeddings in a very similar fashion
to the node embeddings computed in the ΩN -GraphSage

s functions, with the exception that the last
layer must output an array of dimension equal to the number of node classes – in this case 40 –.
In the optimization process is computed the negative log-likelihood of the predictions to the actual
node classes, which is used to update the model parameters – the weights of the GraphSage layers
–. The node concordance predictions are obtained by comparing the node classification predictions
of the two nodes of interest, similarly to the Node2Vec embeddings comparison in equation 3.9.

Figure 5.7 shows the node classification accuracy – the evaluation metric proposed by OGB
[HFZ+20] for the task in this dataset – and the node concordance ROC-AUC along training epochs.
The nodes validation set average accuracy peaks in epoch 3200, while the edges validation node
concordance ROC-AUC peaks in epoch 200, what puts evidence to the fact that these tasks are
quite different regarding optimal node embeddings.

The figure directly compares with the figure 5.3, but were also tested the models with 1 and 3
GraphSage layers. The result is shown in figure 5.8. It can be seen that the ΩN -GraphSage

s outperforms
the node classifier for every number of layers. There is an average gain of 0.087 ROC-AUC points,
a 12.5% increase.

This result puts evidence to the fact that it is suboptimal to train a more general model – a

5.4 WHAT ARE THE STRENGTHS AND WEAKNESSES OF EACH FRAMEWORK? 25

0 1000 2000 3000 4000 5000
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No
de

 C
la

ss
ifi

ca
tio

n
Ac

cu
ra

cy
Node Classifier GraphSage Epoch Metrics - 2 Layers

Accuracy
Train
Validation
Test

0.550

0.575

0.600

0.625

0.650

0.675

0.700

0.725

RO
C

AU
CROC AUC

Train
Validation
Test

Figure 5.7: Node classification accuracy and node concordance ROC-AUC of a two-layer GraphSage node
classifier used to predict node concordance for 5 runs along 5000 epochs. Continuous lines connect the node
classification accuracy data points and the dotted lines connect node concordance ROC-AUC data points.
The standard deviation of the metrics along the runs is shown in the error bars.

node classifier – to obtain node concordance predictions. what is in line with Vapnik’s principle
that if we have a restricted amount of information to solve a problem, we should solve it directly,
never solve a more general problem as an intermediate step [Vap98].

0.65 0.70 0.75 0.80
ROC-AUC - Test

1

2

3

La

ye
rs

Test Performance - Structural Omega vs. Node Classifier

Node Classifier - GraphSage
sGraphSage

Figure 5.8: Boxplot comparing the test performance of ΩN-GraphSage
s and the GraphSage Node Classifier for

1 to 3 convolutional layers. For each run, it is chosen the best model epoch from the validation performance
and displayed the performance on the test set.

26 RESULTS AND DISCUSSION 5.4

5.4 What are the strengths and weaknesses of each framework?

The previous sections show that there is a gain in predictive power from using GNNs in structural
embeddings, and that it is possible to extract features that are informative of node concordance
from positional embeddings.

Table 5.1 shows the performance of each Ω function at all the evaluated datasets. For each
model run it is chosen the epoch with the greatest validation performance, and with the best model
of each run is computed the mean and standard deviation of the ROC-AUC metric.

It is possible to see that:

• Structural embeddings generated by the GNNs outperform the baseline performance in all
cases.

• The GAT, GCN, and GraphSage GNNs have similar performance in general, with an exception
in the CiteSeer dataset, where GraphSage outperforms the other GNNs.

• The structural approach outperforms the positional in all cases.

• The positional framework only outperforms the structural baseline with ΩGraphSage
p function

in the Cora dataset.

ROC-AUC

Dataset Function Train Validation Test

ogbn-arxiv ΩGraphSage
p 0.675± 0.003 0.698± 0.004 0.690± 0.004

ΩNode2Vec
p 0.622± 0.000 0.638± 0.002 0.634± 0.001

ΩGAT
s 0.866± 0.002 0.849± 0.002 0.820± 0.003

ΩGCN
s 0.868± 0.002 0.847± 0.001 0.823± 0.002

ΩGraphSage
s 0.890± 0.002 0.849± 0.002 0.817± 0.001

ΩMLP
s 0.788± 0.004 0.736± 0.002 0.700± 0.002

CiteSeer ΩGraphSage
p 0.582± 0.017 0.627± 0.013 0.583± 0.013

ΩNode2Vec
p 0.477± 0.031 0.535± 0.017 0.483± 0.011

ΩGAT
s 0.924± 0.030 0.697± 0.010 0.631± 0.018

ΩGCN
s 0.917± 0.003 0.708± 0.002 0.683± 0.002

ΩGraphSage
s 1.000± 0.000 0.786± 0.002 0.751± 0.005

ΩMLP
s 0.989± 0.006 0.676± 0.002 0.663± 0.005

Cora ΩGraphSage
p 0.713± 0.008 0.791± 0.005 0.730± 0.005

ΩNode2Vec
p 0.617± 0.011 0.635± 0.012 0.596± 0.011

ΩGAT
s 0.945± 0.009 0.853± 0.012 0.789± 0.015

ΩGCN
s 0.995± 0.000 0.878± 0.002 0.819± 0.002

ΩGraphSage
s 1.000± 0.000 0.871± 0.003 0.822± 0.002

ΩMLP
s 0.926± 0.002 0.711± 0.001 0.685± 0.000

Pubmed ΩGraphSage
p 0.543± 0.018 0.535± 0.013 0.560± 0.025

ΩNode2Vec
p 0.514± 0.012 0.547± 0.025 0.526± 0.029

ΩGAT
s 0.971± 0.005 0.863± 0.013 0.852± 0.013

ΩGCN
s 0.983± 0.004 0.883± 0.011 0.874± 0.009

ΩGraphSage
s 0.999± 0.001 0.903± 0.010 0.881± 0.021

ΩMLP
s 0.870± 0.017 0.757± 0.004 0.754± 0.003

Table 5.1: Summary of ROC-AUC metric for multiple runs across datasets. At each run are chosen the
models with the best evaluation metrics. The averages and standard deviations are computed for each model
and displayed in the table.

5.4 WHAT ARE THE STRENGTHS AND WEAKNESSES OF EACH FRAMEWORK? 27

These results appear to disqualify the positional approach in comparison to the structural one.
But the positional approach has its strengths: Since it is an unsupervised approach, using the labels
only for model selection, it should have less performance decay in datasets with smaller propor-
tions of labeled train nodes. Also, since the approaches are significantly different - one utilizes node
features, the other only uses the graph structure, and the target functions are distinct (although cor-
related in homophilic graphs) - the two approaches could be complementary. Both these suspicions
are investigated in the following subsections.

5.4.1 Is the positional approach less sensitive to the number of labeled nodes?

To investigate if the performance decay of the structural approach is greater than the one of the
positional approach, we utilize the Ω1−GraphSage

p and the Ω1−GraphSage
s – the positional and structural

functions with one GraphSage convolutional layer – and the ogbn-arxiv dataset. The reason for
that is we want comparable models – and hence we use the same GNNs –, we want simpler models,
with less variance, and more probability of achieving generalization, since we will train some models
with few training edges – and hence we use only one convolutional layer – and we want to be able
to generate realistic data splits – and the ogbn-arxiv dataset provides this possibility, as will be
discussed next.

The ogbn-arxiv dataset provides the year of publication of each node (paper), and its node
set is split into train, validation, and test sets based on the year of publication: the train nodes are
the nodes published before the threshold year t, the validation nodes are the ones published in year
t, and the test nodes after the year t. In particular, the dataset uses t = 2018 for its proposed node
split. We can vary this year t, generating multiple node splits, with varying train, validation, and
test node sets size, and with these node splits, we can generate our edge splits, as we did before.
Figure 5.9 shows the sizes of the node and edge sets size for each threshold year (t). The number
of training edges (nodes) goes from 9,215 (6,911) for t = 2009, to 622,466 (120,740) for t = 2019.

The positional framework does not take into account the labels in its training process, only in
the model selection, therefore we run the model once, storing the predictions of each training epoch.
The union of train and validation edge sets for each threshold year (t) is used to choose the model,
based on the ROC-AUC computed for this union set, and the model is evaluated in the test set.
Meanwhile, the structural framework needs to be trained for each t, and the model epoch is chosen
using the ROC-AUC computed only in the validation set.

Figure 5.10 shows the test performance of the two functions. We can see that the Ω1−GraphSage
p

performance is almost constant along the various t, while the Ω1−GraphSage
s increases a lot as training

edges are added to the model. The positional function performs better for t ≤ 2015, which puts
evidence to the strength of the positional framework in settings with few labeled nodes.

2010 2012 2014 2016 2018
t

104

105

Nu
m

be
r o

f N
od

es

Train
Validation
Test

2010 2012 2014 2016 2018
t

104

105

106

Nu
m

be
r o

f E
dg

es

Train
Validation
Test

Number of Nodes and Edges per Threshold Year (t)

Figure 5.9: Number of nodes and edges for each threshold year (t) in the train, validation, and test sets for
t ∈ [2009, 2019]. The number of nodes and edges are shown in a logarithmic scale for visualization purposes.

28 RESULTS AND DISCUSSION 5.4

2010 2012 2014 2016 2018
t

0.625

0.650

0.675

0.700

0.725

0.750

0.775

RO
C-

AU
C

1 GraphSage
p
1 GraphSage
s

Test ROC-AUC Performance by Threshold Year (t)

Figure 5.10: ROC-AUC scores in the test set for various threshold years (t) of the Ω1−GraphSage
p – positional

– and the Ω1−GraphSage
s – structural – functions.

5.4.2 Can positional and structural embeddings be used in combination?

To investigate if positional and structural embeddings can be used in combination we need to
understand if one adds information to the other. Figure 5.11 shows the correlations between model
predictions and ensemble performance between ΩGraphSage

p and ΩGCN
s functions. The model with

the best validation ROC-AUC score (with the default 2018 threshold year) is selected, and the
predictions of this model for the test edges are computed, and finally are calculated the correlation
matrix and a simple ensemble (varying the weights of each model prediction) performance.

It can be seen that the two positional approaches have the lowest correlations with the ΩMLP
s

function predictions and that the GNN structural functions all have high (> 0.75) correlations
between them, and low (< 0.45) between them and the positional functions. This is expected
since the features and target function are different among the approaches. This indicates that
the positional approach can be complementary to the structural one, different node concordance
predictive factors possibly are being extracted from each approach. Another way to investigate if this
hypothesis is true is to check if we can enhance the predictive power of the structural approach by
creating a new Ω function that is an ensemble between a structural and a positional function. On the
right of figure 5.11, it shows the performance of a simple ensembled function, a weighted average

MLP
s

GraphSage
s

GCN
s

GAT
s

GraphSage
p

Node2Vec
p

MLP
s

GraphSage
s

GCN
s

GAT
s

GraphSage
p

Node2Vec
p

1.000 0.400 0.383 0.362 0.172 0.171

0.400 1.000 0.773 0.760 0.282 0.377

0.383 0.773 1.000 0.816 0.306 0.423

0.362 0.760 0.816 1.000 0.311 0.403

0.172 0.282 0.306 0.311 1.000 0.374

0.171 0.377 0.423 0.403 0.374 1.000

ogbn-arxiv - Correlations Between Model Predictions

0.0 0.1 0.2 0.3 0.4 0.5
p

0.8240

0.8245

0.8250

0.8255

0.8260

0.8265

RO
C-

AU
C

ogbn-arxiv - ROC-AUC of Ensemble: p GraphSage
p + (1 p) GCN

s

Figure 5.11: On the left, it is shown the correlation matrix (computed in the test set of edges) between the
best model (selected by validation ROC-AUC) of each architecture/framework. On the right, it is shown the
test performance of a simple ensemble between the ΩGraphSage

p and ΩGCN
s functions.

5.4 WHAT ARE THE STRENGTHS AND WEAKNESSES OF EACH FRAMEWORK? 29

0.0 0.2 0.4 0.6 0.8 1.0
p

0.685

0.690

0.695

0.700

0.705

0.710

0.715

0.720

RO
C-

AU
C

t = 2015 | ROC-AUC of ensemble: p 1 GraphSage
p + (1 p) 1 GraphSage

s

Ensemble AUC
Structural AUC
Positional AUC

Figure 5.12: The test performance of a simple ensemble between the Ω1−GraphSage
p and Ω1−GraphSage

s func-
tions in the ogbn-arxiv dataset with threshold year t = 2015.

between the predictions of the two functions. It can be seen that despite the great performance
difference between the structural and positional approaches - which have test ROC-AUC scores of
0.8263 and 0.6831, respectively - for weights p ∈ [0.02, 0.24], there is an enhancement in the node
concordance predictive power when compared to the plain ΩGCN

s predictions.
A more fair ensemble study can be done using structural and positional functions that have more

similar performance. The previous subsection (5.4.1), presents a good candidate for this study: The
dataset with threshold year t = 2015, the structural function Ω1−GraphSage

s , and the positional
function Ω1−GraphSage

p . The two functions generate predictions that have a low correlation of 0.317
in the test set – which is in line with the correlations found with the default threshold year t = 2018
and the best models selected across more options for the number of layers in figure 5.11 –, and have
very similar concordance predictive power, with a ROC-AUC of 0.683 for the structural, and 0.690
for the positional. The same simple ensemble methodology is displayed in figure 5.12.

We can see that the range of outperformance of the ensemble against the best model (in this
case the Ω1−GraphSage

p) is enlarged – the ensemble outperforms for p ∈ [0.24, 0.98] –, and the peak
enhancement is greater – 0.03 ROC-AUC points against 0.0005 of the previous study.

These results put evidence to the complementarity of the two approaches, which are learning
considerably distinct predictive factors from the graph.

30 RESULTS AND DISCUSSION 5.4

Chapter 6

Conclusions and Future Work

This work introduces a novel link property prediction task on graphs and explores predictors
to the local manifestation of homophily, the node concordance. Homophily is a widespread charac-
teristic of many real-world graphs and is a building block for many graph algorithms, from Label
Propagation (LPA) to Graph Neural Networks (GNNs). Predicting its local manifestation can be an
end in itself, in cases where we have only partially labeled edges (or nodes if construct edge labels
from the node ones) or can be a preprocessing step, in rewiring the graph or attributing weights to
its edges.

This task is related to node classification – when the nodes have labels, and the concordance
label is obtained from it – and can be seen as a more specific subtask of it, this work shows that
there is performance gain in tackling directly this task, i.e. using node classifications as a means to
predict node concordance leads to suboptimal performance. The node concordance labels can be
generated without the necessity of node labels and the results shown here encourage a reader that
may want to assess node concordance to tackle it directly, or if the reader needs to label a dataset
for this task, to label the edges, not the nodes, which may be easier in some cases, leaving out the
necessity of creating a taxonomy of node classes. This is the case, for example, in many clustering
tasks, where we want to know which nodes are of the same cluster, without necessarily knowing
what the clusters mean.

Here are explored two frameworks to predict node concordance, one structural and one posi-
tional. The structural and supervised framework generally performs better but is more dependent
on the number of training points. The positional and unsupervised framework can be used to extract
reasonable predictive power and is particularly recommended in cases in which node features are
not present or not informative of the node concordance, or cases in which the representativeness of
labeled nodes is rather small.

Further research on this topic includes testing the frameworks in other graph benchmarks in
general, and particularly in heterophilic ones, to assess the strengths of the various models tested
here in heterophilic settings, along with other GNNs designed to tackle this kind of graph. Also,
to explore direct applications of the node concordance predictions, such as its impact on network
dynamics and recommender systems, and indirect applications, such as a preprocessing step of
graphs for node or graph classification, weighing edges or rewiring the graph to become more (or
less) homophilic.

31

32 CONCLUSIONS AND FUTURE WORK

Bibliography

[BUGD+13] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Durán, Jason Weston and Oksana
Yakhnenko. Translating embeddings for modeling multi-relational data. In: Advances
in Neural Information Processing Systems, 2013. 3, 10, 11

[CMX18] Jie Chen, Tengfei Ma and Cao Xiao. Fastgcn: Fast learning with graph convolutional
networks via importance sampling. 1 2018. 18

[CXH+20] Hao Chen, Yue Xu, Feiran Huang, Zengde Deng, Wenbing Huang, Senzhang Wang,
Peng He and Zhoujun Li. Label-Aware Graph Convolutional Networks. International
Conference on Information and Knowledge Management, Proceedings, pages 1977–
1980, 2020. 12

[GL16] Aditya Grover and Jure Leskovec. Node2Vec. pages 855–864, 2016. 3, 10, 11

[HFZ+20] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu,
Michele Catasta and Jure Leskovec. Open graph benchmark: Datasets for ma-
chine learning on graphs. Advances in Neural Information Processing Systems, 2020-
December(NeurIPS):1–34, 2020. 10, 17, 24

[HHS+20] Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim and Austin R. Benson. Com-
bining Label Propagation and Simple Models Out-performs Graph Neural Networks.
(Figure 1), 2020. 12

[HYL17] William L. Hamilton, Rex Ying and Jure Leskovec. Inductive representation learn-
ing on large graphs. Advances in Neural Information Processing Systems, 2017-
Decem(Nips):1025–1035, 2017. 3, 7

[KW17] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convo-
lutional networks. 5th International Conference on Learning Representations, ICLR
2017 - Conference Track Proceedings, pages 1–14, 2017. 3, 7

[LAQ+21] Yang Liu, Xiang Ao, Zidi Qin, Jianfeng Chi, Jinghua Feng, Hao Yang and Qing He.
Pick and choose: A gnn-based imbalanced learning approach for fraud detection. pages
3168–3177. Association for Computing Machinery, Inc, 4 2021. 3

[LBBH98] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. 3, 7

[LXTG20] Guohao Li, Chenxin Xiong, Ali Thabet and Bernard Ghanem. DeeperGCN: All You
Need to Train Deeper GCNs. 2020. 3

[MCCD13] Tomas Mikolov, Kai Chen, Greg Corrado and Jeffrey Dean. Efficient estimation of
word representations in vector space. 1st International Conference on Learning Rep-
resentations, ICLR 2013 - Workshop Track Proceedings, pages 1–12, 2013. 10, 11

[MLJ01] McPherson Miller, Smith-Lovin Lynn and M Cook James. Birds of a feather: Ho-
mophily in social networks. Annual Review of Sociology, 27:415–444, 2001. 1

33

34 BIBLIOGRAPHY

[PARS14] Bryan Perozzi, Rami Al-Rfou and Steven Skiena. DeepWalk. pages 701–710, 2014. 3,
10, 11

[PBMW99] Lawrence Page, Sergey Brin, Rajeev Motwani and Terry Winograd. The pagerank
citation ranking: Bringing order to the web. Technical report, Stanford InfoLab, 1999.
1

[SNB+08] Prithviraj Sen, Galileo Mark Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher
and Tina Eliassi-Rad. Collective classification in network data. AI Magazine, 29:93–
106, 2008. 1, 17

[SR20] Balasubramaniam Srinivasan and Bruno Ribeiro. On the equivalence between posi-
tional node embeddings and structural graph representations. 2020. 9

[Vap98] Vladimir N. Vapnik. Statistical Learning Theory. Wiley-Interscience, 1998. 1, 25

[VCC+17] Petar Velicković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò
and Yoshua Bengio. Graph attention networks. arXiv, pages 1–12, 2017. 2, 3, 9

[Vla13] Vapnik Vladimir. Transductive Inference and Semi-Supervised Learning. Semi-
Supervised Learning, pages 452–472, 2013. 12

[WL20] Hongwei Wang and Jure Leskovec. Unifying Graph Convolutional Neural Networks
and Label Propagation. 2020. 12

[WLX+20] Yongji Wu, Defu Lian, Yiheng Xu, Le Wu and Enhong Chen. Graph convolutional
networks with markov random field reasoning for social spammer detection, 2020. 1

[WSH+20] Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh Han Wu, Yuxiao Dong and An-
shul Kanakia. Microsoft academic graph: When experts are not enough. Quantitative
Science Studies, 1:396–413, 2 2020. 1

[WZdS+19] Felix Wu, Tianyi Zhang, Amauri Holanda de Souza, Christopher Fifty, Tao Yu and
Kilian Q. Weinberger. Simplifying graph convolutional networks. 36th International
Conference on Machine Learning, ICML 2019, 2019-June:11884–11894, 2019. 3

[XSS+21] Bingbing Xu, Huawei Shen, Bingjie Sun, Rong An, Qi Cao and Xueqi Cheng. To-
wards consumer loan fraud detection: Graph neural networks with role-constrained
conditional random field, 2021. 1

[Zhu05] Xiaojin Jerry Zhu. Semi-supervised learning literature survey. 2005. 12

	List of Figures
	List of Tables
	Introduction
	Concepts
	Basic concepts
	Prediction Tasks
	Node Property Prediction
	Link Property Prediction

	Graph Neural Networks
	Graph Convolutional Networks
	GraphSAGE
	Graph Attention Networks

	Positional vs. Structural Embeddings
	Positional Embeddings in Graphs
	DeepWalk
	Node2Vec
	TransE

	Inductive and Transductive Learning

	Embeddings for Node Concordance
	Structural Embeddings for Node Concordance Prediction
	Target function
	Architecture
	Training
	Data Split

	Positional Embeddings for Node Concordance Prediction
	Target function
	Architecture
	Training
	Data Split

	Experimental Design
	Datasets
	Description
	Node concordance label
	Data Splits

	Evaluation

	Results and Discussion
	Do GNNs increase the predictive power of structural embeddings?
	Can positional embeddings have node concordance predictive power?
	Positional Embeddings - GNNs
	Positional Embeddings - Node2Vec

	Is there an advantage in tackling node concordance directly?
	What are the strengths and weaknesses of each framework?
	Is the positional approach less sensitive to the number of labeled nodes?
	Can positional and structural embeddings be used in combination?

	Conclusions and Future Work
	Bibliography

