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Resumo

Julissa Giuliana Villanueva Llerena. Análise de Sensibilidade Global e Qualitativa
para Circuitos Probabilísticos. Tese (Doutorado). Instituto de Matemática e Estatís-

tica, Universidade de São Paulo, São Paulo, 2023.

Um Circuito Probabilístico (CP) é um modelo generativo expressivo que codifica uma distribuição de

probabilidade através de uma estrutura de somas ponderadas, produtos e distribuições univariadas ou mul-

tivariadas. Sujeitos a algumas restrições, os CPs são tratáveis para varias classes de consultas. Os exemplos

mais populares de CPs são Redes de Soma-Produto, Diagramas de Decisão Sentenciais Probabilísticos e

Florestas Aleatórias Gerativas. Esses modelos têm mostrado desempenho competitivo em diversas tarefas

de aprendizado de máquina. Apesar do relativo sucesso dos CPs, vários problemas podem afetar a quali-

dade de suas previsões. Neste trabalho, nos concentramos em duas questões relevantes. (i) CPs com um

alto número de parâmetros e dados escassos podem produzir inferências não confiáveis e com excesso de

confiança. (ii) Abordagens típicas tratam dados faltantes por marginalização ou heuristicamente, assumindo

que o processo de falta é ignorável ou não informativo; no entanto, os dados geralmente estão ausentes de

maneira não ignorável, o que introduz viés na previsão se não for tratado adequadamente. Para resolver

essas questões, desenvolvemos dois algoritmos baseados em Circuitos Probabilísticos Credais, que são con-

juntos de CPs obtidos pela perturbação simultânea de todos os parâmetros do modelo (com a estrutura

do modelo fixa). Nosso primeiro algoritmo realiza uma análise de sensibilidade global qualitativa nos pa-

râmetros do modelo, medindo a variabilidade das previsões para perturbações dos pesos do modelo. Para

mitigar o segundo problema, propomos um procedimento para realizar inferência preditiva tratável sob

dados ausentes não ignoráveis. Avaliamos nossos algoritmos em tarefas desafiadoras, como compleção de

imagem, classificação multirótulo e classificação multiclasse.

Palavras-chave: Circuitos Probabilisticos. Circuitos Probabilisticos Credais. Análise de Sensibilidade. Da-

dos Faltantes não Ignoráveis.





Abstract

Julissa Giuliana Villanueva Llerena. Qualitative Global Sensitivity Analysis for
Probabilistic Circuits. Thesis (Doctorate). Institute of Mathematics and Statistics, Uni-

versity of São Paulo, São Paulo, 2023.

A Probabilistic Circuit (PC) is an expressive generative model that encodes a probability distribution

through an structure of weighted sums, products and univariate or multivariate distributions. Subject to

some restrictions, PCs are tractable for large classes of queries. The most popular examples of PCs are

Sum-Product Networks, Probabilistic Sentential Decision Diagrams, and Generative Random Forests. These

models have shown competitive performance in several machine learning tasks. Despite the relative success

of PCs, several issues can affect the quality of their predictions. In this work, we focus on two relevant issues.

(i) PCs with a high number of parameters and scarce data can produce unreliable and overconfident infer-

ences. (ii) Typical approaches treat missing data either by marginalization or heuristically, assuming that the

missingness process is ignorable or uninformative; however, data is often missing in a non-ignorable way,

which introduces bias into the prediction if not handled properly. To address these issues, we developed

two algorithms based on Credal Probabilistic Circuits, which are sets of PCs obtained by a simultaneously

perturbing of all model parameters (with the model structure fixed). Our first algorithm performs a qual-

itative global sensitivity analysis on the model parameters, measuring the variability of the predictions

to perturbations of the model weights. To mitigate the second issue, we propose a procedure to perform

tractable predictive inference under non-ignorable missing data. We evaluate our algorithms on challenging

tasks such as image completion, multi-label classification, and multi-class classification.

Keywords: Probabilistic Circuits. Credal Probabilistic Circuits. Sensitivity Analysis . Non-ignorable Miss-

ing Data.
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Chapter 1

Introduction

By modeling a joint probability distribution, one can perform a variety of probability

inferences such as computing marginal probabilities and finding maximum-a-posteriori

(MAP) configurations (Koller and Friedman, 2009). Those inferences are particularly

useful for classification tasks. For example, marginal inference can be used to perform

multiclass classification by assigning objects to the most probable class label. MAP con-

figurations can be used instead to associate objects to several relevant labels, performing

multilabel classification.

Traditional probabilistic graphical models such as Bayesian Networks and Markov

networks allow for the compact specification of high dimensional joint probability distribu-

tions (Koller and Friedman, 2009). Despite their intuitive graphical semantics, computing

typical inferences with such models is NP-hard. Probabilistic Circuits (PC) are a more

recently proposed class of graph-based probabilistic models (Poon and Domingos, 2011).

Unlike traditional probabilistic graphical models, PCs allow several tractable inferences

depending on which structural constraints are imposed. Sum-Product Networks (SPNs)

(Poon and Domingos, 2011), Probabilistic Sentential Decision Diagrams (PSDDs) (Kisa

et al., 2014) and Generative Random Forests (GeFs) (Correia et al., 2020) are notable

examples of PCs.

PCs have obtained notable results in several supervised learning tasks, due to their abil-

ity to compactly represent multidimensional distributions and efficiently produce reliable

inference (Poon and Domingos, 2011; Cheng et al., 2014; Amer and Todorovic, 2016;

Villanueva Llerena and Mauá, 2017; Shen et al., 2017; Zheng et al., 2018; Pronobis

and Rao, 2017; Shao et al., 2020; Peharz, Vergari, et al., 2020).

Despite their relative success in supervised learning tasks, like many other machine

learning models, PCs generalize poorly in regions of insufficient statistical support and/or

in the presence of missing data, resulting in overconfident, unreliable predictions. Over-

confident and incorrect predictions can be harmful, especially for critical applications such

as autonomous vehicles or healthcare (Lambrou et al., 2010).

These concerns can be mitigated by performing a Sensitivity Analysis (SA) of the model

predictions to small changes in the parameters (Berger, 1985). SA can be performed locally

or globally. The former considers the effect of perturbing a single parameter or a small
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group of related parameters (Chan and Darwiche, 2002; Laskey, 1995). The latter is

concerned with more general perturbations that may affect all parameters of the model

simultaneously (Castillo et al., 1997; Chan and Darwiche, 2004; Kjærulff and Gaag,

2000).

SA can also be performed in a quantitative or qualitative way. Quantitative SA measures

the effect of perturbing the model parameters on the value of a particular prediction. A

typical example is assessing the change in marginal posterior probabilities of a single

variable when parameters are varied (Jiang et al., 2018; Sensoy et al., 2018; Malinin and

Gales, 2018; Castillo et al., 1997; Chan and Darwiche, 2004; Laskey, 1995; Kjærulff

and Gaag, 2000; Chan and Darwiche, 2002). Unfortunately, computing the posterior

for PCs is intractable (Rashwan et al., 2016). Although, there are several algorithms to

approximate Bayesian inference for SPNs (Rashwan et al., 2016; Zhao et al., 2016; Vergari,

Molina, et al., 2019), these techniques are very inefficient compared to the computational

cost of a marginal inference in SPNs. In contrast, qualitative SA assesses whether decisions

induced by inferences change as parameters are perturbed (Chan and Darwiche, 2006;

Renooij and Van Der Gaag, 2008).

Credal Sum-Product Networks (CSPNs) are sets of SPNs obtained by simultaneous

perturbation of model parameters (with the network structure fixed) (Mauá, Conaty,

et al., 2018). Thus, CSPNs are naturally used to perform SA in SPNs. Mauá et al. (2018)

developed efficient algorithms to obtain upper and lower bounds of marginal inferences

for a given CSPN. Those algorithms were then used to perform quantitative global SA in

SPNs in classification tasks.

In this research, we develop new algorithms for qualitative global sensitivity analysis

for PCs based on CSPNs. To meet the needs of many applications, we focus on analyses that

can be obtained in a time comparable to the computation of the corresponding prediction

(often linear in the size of the model).

Our first contribution was motivated by the difficulty of most classification models

to identify overconfident MAP inferences in regions with insufficient or conflicting data.

We developed a qualitative global sensitivity analysis algorithm for MAP inference in

selective SPNs, i.e., PCs that compute MAP in linear time in the number of parameters.

In particular, we devised a quadratic runtime procedure to decide whether a given MAP

configuration remains optimal when the model parameters are subjected to small changes

(Villanueva Llerena and Mauá, 2020; Mattei et al., 2020).Our proposed algorithms

have been evaluated by their performance on real-world tasks such as data imputation and

multi-label classification. We empirically compared our qualitative SA for MAP inference

algorithm with a standard baseline in discriminating robust from non-robust instances.

The results show that the learned SPNs are often robust to small global perturbations in

the parameters, and that quantitative global SA is at least as good as the baseline approach

in distinguishing non-robust classifications.

Another challenge for machine learning models is coping with the presence of missing

values. The standard approach to dealing with such data is to either impute or marginalize

out the missing values. That approach is theoretically supported by a missing at random

(MAR) assumption, which roughly states that the probability of the missing values does

not depend on the variables with missing values themselves (Azur et al., 2011; Khosravi,
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Y. Choi, et al., 2019; Rubin, 1976). While MAR is popular, it is often violated in practical

scenarios when the probability of not observing a variable depends on other variables

including its own value, a situation called non-ignorable missing data or missing not at

random (MNAR). In such cases marginalization can still be used as a heuristic, at the risk

of introducing excessive bias (Manski, 2005).

As a second contribution, we developed exact quadratic-time methods for the conser-

vative treatment of non-ignorable missing data in Decision-Tree classifiers (Villanueva

Llerena, Mauá, and Antonucci, 2021). By making use of GeFs (Correia et al., 2020),

which extend Decision-Trees to PCs, we are able to model the uncertainty introduced

by the presence of MNAR data at prediction time and avoid making an unjustified MAR

hypothesis. We develop two variants that differ in the assumptions about the response

model and the level of informativeness of the analyses. A response model is a representation

of the conditional probabilities of missing values, where the presence/absence of each

variable is associated with a binary variable called the response, and then encodes the

conditional dependence of each response given the respective variable values (Rubin,

1976).

The first algorithm we develop makes no assumption about the response model. It

thus produces overly cautious non-informative predictions (e.g., the set of all classes). To

make inferences more informative (and less conservative), we also propose an alternative

algorithm that assumes the availability of a partially specified response model in the form of

probability intervals of the probability of observing/measuring a variable conditional on its

value. Such intervals can often be obtained from expert domain knowledge, or derived from

specially curated training data (e.g., a small sample survey of users of a recommendation

system). Either variant can be used to perform a qualitative SA of classifications of a target

variable w.r.t. to the (full, unknown) specification of the response model (Villanueva

Llerena and Mauá, 2022). We compare both approaches with respect to the accuracy of

classifications made by marginalizing unobserved variables according. The results show

that either approach is able to distinguish between instances where assuming MAR is

harmful from those where is less harmful; also, the two variants exhibit a trade-off between

informativess and accuracy.

1.1 Publications
We presented our algorithm for robust analysis of MAP inference at the 20th Interna-

tional Symposium on Imprecise Probabilities: Theories and Applications (ISIPTA 2019)

(Villanueva Llerena and Mauá, 2019); an extended version of that work apepeared in the

International Journal of Approximate Reasoning (Villanueva Llerena and Mauá, 2020).

The robustness algorithms for PSDDs were first independently developed and presented at

ISIPTA 2019 by Antonucci et al. (Antonucci, Facchini, et al., 2019). We have collaborated

on an extended version of that work that contains a deeper empirical analysis and also

algorithms for MAP analysis (missing from the previous work) (Mattei et al., 2020).

The conservative algorithm to quantify the effect of different imputations of the

missing values of features in the classification using GeFs of a target discrete variable

at prediction time was presented at the 16th European Conference on Symbolic and
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Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2021) (Villanueva

Llerena, Mauá, and Antonucci, 2021). Our last contribution, the tractable algorithm to

perform exact inference at prediction time in the presence of non-ignorable missing data

represented using a response model with GeFs was presented in the 10th Symposium on

Knowledge Discovery, Mining and Learning (KDMiLe 2022) (Villanueva Llerena and

Mauá, 2022).

1.2 Organization
The rest of the manuscript is organized as follows. In Chapter 2, we introduce some

basic knowledge about PCs, we focus in SPNs, PSDDs and GeFs. In Chapter 3 we introduce

concepts of credal Probabilistic Circuits and the algorithms to compute upper and lower

probabilities, as well as credal classification. Chapter 4 presents our first contribution, an

approach for qualitative sensitivity analysis for MAP inference using Credal PCs, we also

describe the experiments and show the experimental results of this proposed procedure. In

chapter 5 we introduce basic concepts about missing data and present our two algorithms

for conservative prediction in the presence of non-ignorable missing data in GeFs, with

the corresponding experimental results and a comparison between these two approaches.

Finally, we conclude the work and discuss possible improvements in Chapter 6.



5

Chapter 2

Probabilistic Circuits

Inspired by the need to better handle and study the complexity of inference in classical

probabilistic graphical models (Darwiche, 2003; Chavira and Darwiche, 2005; Huang

et al., 2006; Lowd and Domingos, 2008), a rooted directed-acyclic graph architecture called

Sum-Product Networks (SPNs) emerged at the expense of loss of interpretability (Poon and

Domingos, 2011). Poon and Domingos noticed that SPNs and arithmetic circuits can be

translated into each other, and thus have the same expressiveness (Poon and Domingos,

2011). Initial experiments with images suggested the capability of SPNs for machine

learning tasks, which have been shown to match and often exceed the performance of

probabilistic graphical models (e.g. Bayesian networks) (Poon and Domingos, 2011; Amer

and Todorovic, 2016; Zheng et al., 2018; Pronobis, Riccio, et al., 2017; Pronobis and

Rao, 2017; Cheng et al., 2014).

SPNs have been a relevant starting point for several tractable models, that have im-

proved the expressiveness and efficiency of some types of inference, that more recently

called Probabilistic Circuits. Sum-Product Networks (SPNs) (Poon and Domingos, 2011),

Probabilistic Sentential Decision Diagrams (PSDDs) (Kisa et al., 2014), and Generative

Random Forests (GeFs) (Correia et al., 2020) are all special cases of Probabilistic Circuits.

This chapter presents some relevant definitions and properties of Probabilistic Circuits:

SPNs, PSDDs and GeFs; as well as inference and learning algorithms.

Notation
We write integers in lower case (e.g., 𝑖, 𝑗), sets of integers using capital calligraphic

letters (e.g., ) and random variables in capital letters (e.g., 𝑋𝑖). A collection of random

variables {𝑋𝑖 , 𝑖 ∈ } is written as X , or simply as X when the index set is not important.

The set of values that a random variable 𝑋𝑖 assumes is denoted as 𝑣𝑎𝑙(𝑋𝑖) and the set of

all realizations of a collection of random variables X is denoted as 𝑣𝑎𝑙(X) = ×𝑁𝑖=1𝑣𝑎𝑙(𝑋𝑖),
where × denotes the Cartesian product.

In this work, we assume that random variables take on a finite number of values.

We write x to denote an element of 𝑣𝑎𝑙(X), therefore we can associate to every random

variable 𝑋𝑖 a set of indicator functions {[[𝑋𝑖 = 𝑥𝑖]] ∶ 𝑥𝑖 ∈ 𝑣𝑎𝑙(𝑋𝑖)}, where the notation
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[[𝑋𝑖 = 𝑥𝑖]] describes the function that returns 1 if 𝑋𝑖 takes value 𝑥𝑖 and 0 otherwise.

2.1 Probabilistic Circuits
A probabilistic circuit (PC) is a probabilistic model encoding a possibly unnormalized

probability distribution. A PC S over random variables 𝐗 is a rooted weighted acyclic

directed graph whose internal nodes are associated to either sum or product operations,

that we graphically represent by
+

and
×

respectively, and leaves associated to tractable

distributions over 𝐗. In this disertation, we consider discrete random variables using

indicator functions as leaves, where each indicator appears in at least one leaf, for example

leaf node
[[𝑋𝑖 = 𝑥𝑖]] is associated with indicator function of variable 𝑋𝑖 and value 𝑥𝑖 .

The weights associated with arcs emanating from a sum node 𝑖 are represented by

𝐰𝑖 and the multiset of all weights of the network is denoted as w, each arcs 𝑖 → 𝑗 of the

cirucit is associated with weights 𝑤𝑖𝑗 , such that arcs leaving product nodes are assigned

weight one. When we want make explicit the dependence of a circuit S on the weights w,

we write Sw.

[[𝑋 = 1]] [[𝑋 = 0]]

[[𝑋 = 1]]

[[𝑌 = 1]] [[𝑌 = 0]]

[[𝑌 = 1]]+ +

× ×

+
0.2 -0.5

1 6 5 1

Figure 2.1: Probabilistic Circuit over two binary variables.

The scope of a PC is the set of random variables that appear at its indicator nodes (leaf

nodes), is denoted as 𝑠𝑐(S). Figure 2.1 shows a PC whose scope is {𝑋 , 𝑌}.

If 𝑖 is a node in S we write S𝑖 to denote the sub-PC rooted at 𝑖. The children of a node 𝑖
(the nodes to which there is an arc from 𝑖) are denoted by ch(𝑖).

The evaluation of an PC, S, at a complete instantiation of its scope, x, produces a

real-value, written S(𝐱), defined inductively at each node 𝑖 as:

S𝑖(𝐱) =

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

1, if 𝑖 is a leaf node consistent with 𝐱,

0, if 𝑖 is a leaf node inconsistent with 𝐱,
∏

𝑗∈ch(𝑖)
S𝑗(𝐱), if 𝑖 is a product node,

∑
𝑗∈ch(𝑖)

𝑤𝑖𝑗S𝑗(𝐱), if 𝑖 is a sum node.

(2.1)

In Equation 2.1, we say that a leaf node 𝑖 is consistent with a instantiation 𝐱 if S𝑖 is the

indicator function [[𝑋𝑗 = 𝑘]] and 𝑥𝑗 = 𝑘 in 𝐱, or if 𝑋𝑗 is not in the scope of S𝑖 , otherwise the

node is said to be inconsistent. The evaluation of 𝐱 is given by the value computed at the
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circuit root, S(𝐱) = S𝑟 (𝐱), where 𝑟 is the circuit root, which can be computed in linear time

by traversing the PC from the leaves towards the root, caching values if needed to avoid

redundant computation.

Example 2.1.1. Consider the PC in Figure 2.1, we want to evaluate this PC at the complete

instantiation 𝐱 = {𝑋 = 1, 𝑌 = 1}. The following figure shows node values at the evalu-

ation of 𝐱 applying the procedure defined in Equation 2.1, the final result corresponds to

the root value that is 0.5.

1 0

1

1 0

11 5

5 1

0.5

0.2 -0.5

1 6 5 1

2.2 Sum-Product Networks
A Sum-Product network is a PC whose weights are nonnegative and where the set

of all nodes in the network satisfies the following properties to ensure that the network

allows to compute marginal inference in linear time (we describe marginal inference for

SPNs latter in the chapter):

Completeness: Any two children of a sum node have identical scope;

Decomposition: Any two children of a product node have disjoint scopes;

Additionally, we can say that a SPN is normalized if the sum of the weights of arcs leaving

each sum node is one.

Sum-Product Trees are SPNs where each internal node has at most one parent. This

property was defined in SPNs with categorical distributions as leaves (and not indicator

variables) . If we consider SPNs with indicators as leaves, as we do in this work, then

the indicators with multiple parents can be duplicated without changing the distribution

represented. Note that in this type of structure, we can equate sum-product trees with

tree-shaped SPNs. For example, Figure 2.2 shows a Sum-Product Tree with scope {𝑋 , 𝑌}
that is complete, decomposable, and normalized.

[[𝑋 = 1]] [[𝑋 = 0]] [[𝑋 = 1]] [[𝑋 = 0]][[𝑌 = 1]] [[𝑌 = 0]] [[𝑌 = 1]] [[𝑌 = 0]]

+ ++ +

× ×

+
.4 .6

.7 .3 .2 .8.6 .4 .9.1

Figure 2.2: Sum-Product Network over two binary variables.
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2.2.1 Probability of Evidence
Since, a decomposable and complete SPN defines a probability distribution ℙS(𝐱), it is

possible to perform probabilistic queries, such as the probability of the evidence, also known

as marginal inference, which computes the probability of a partial observation.

Consider a partition into two subsets of 𝑠𝑐(S): 𝐗obs, 𝐗miss ∈ 𝐗 where 𝐗obs ∩ 𝐗miss = ∅,

𝐱obs ∈ 𝑣𝑎𝑙(𝐗obs) is a partial instantiation of the scope of S called evidence and 𝐱miss ∈
𝑣𝑎𝑙(𝐗miss) represent an instantiation of the unobserved portion of variables. The respective

marginal inference is:

ℙS(𝐱obs) = ∑
𝐱miss∈𝑣𝑎𝑙(𝐗miss)

ℙS(𝐱obs, 𝐱miss) = S(𝐱obs). (2.2)

We can calculate Equation 2.2 by extending the procedure in Equation 2.1 with the

following case:

S𝑖(𝐱obs) =
{
1, if 𝑖 is an indicator node whose scope 𝐗𝑖 is in 𝐗miss. (2.3)

Given 𝐗a, 𝐗b ∈ 𝐗obs
, conditional marginal probabilities ℙS(𝐱a|𝐱b) can also be com-

puted efficiently by computing numerator (i.e., ℙS(𝐱a)) and denominator (i.e., ℙS(𝐱b)) then

outputting their ratio.

In (non-normalized) SPNs we can compute the normalization constant by setting

S(𝐱) = 1 for any leave, and then propagating values as Equation 2.1. Thus, linear time

marginal inference is accomplished even without normalization, albeit with a constant

increase in time complexity.

Completeness, Decomposability and tractable distributions as leaves guarantee the

tractable computation of any marginal query (Y. Choi et al., 2020). It is also possible to

compute marginal queries in complete and non decomposable PCs by relaxing decompos-

ability property (Peharz, Tschiatschek, et al., 2015; Correia et al., 2020), e.g. Generative

Randon Forest, that we will review in section 2.3.3.

Example 2.2.1. Consider the SPN in Figure 2.2, we want to evaluate this network at the

evidence 𝐞 = {𝑋 = 1}. The following figure shows node values at the evaluation of 𝐱obs

applying the procedure defined in Equation 2.1, the final result corresponds to the root

value that is 0.4.

1 0 1 01 1 1 1

.7 .21 1

.7 .2

.4
.4 .6

.7 .3 .2 .8.6 .4 .9.1
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2.2.2 LearnSPN
LearnSPN is a popular algorithm for learning the structure and parameters of complete

and decomposable Sum-Product Networks from data. It is a top-down, greedy algorithm

that partitions the training data recursively (Gens and Domingos, 2013).

Algorithm 1 presents LearnSPN, where the variables 𝐼 and 𝐶 are parameters that

limit the number of partitions in variable and instance sets, respectively, where 𝑁𝑘 is

the number of instances where variable 𝑋 takes value 𝑘 from the dataset, 𝑁𝑗 is the total

number of occurrences of variable 𝑋 , and |𝑣𝑎𝑙𝑠(𝑋 )| is the number of values that variable

𝑋 can take.

Given a dataset 𝐝 of i.i.d. instances x ∈ 𝑣𝑎𝑙(X), LearnSPN learns a tree-shaped SPN

starting at the root and recursively partitioning the dataset to generate products and sum

nodes. LearnSPN first attempts to partition the variables into independent subsets to learn

a product node (see line 8 of Algorithm 1). A statistical test for independence can be

performed on each pair of variables to generate approximately independent subsets, e.g.

G-test . If this fails, then the instances are divided into similar subsets to learn a sum node,

which can be achieved by a clustering algorithm. The weights associated with the arcs

leaving a sum node represent the proportions of instances falling into the computed clusters

(see line 12 of Algorithm 1). LearnSPN then proceeds with the recursive partitioning. The

recursion stops when the processed data contains a single variable, then a sum node

and the corresponding indicator nodes are introduced as children of the SPN and the

corresponding weights are estimated from the data entries by counting the occurrences of

their values while applying Laplace smoothing.

Vergari et al. (Vergari, DiMauro, et al., 2015) proposed some modifications to improve

the structure of the SPNs obtained by LearnSPN algorithm. The first improvement consists

in limiting the number of node children when performing the instance and variable

splitting. In addition to an early stopping criterion when the number of instances falls

below a given threshold, the data is modelled in a substructure as leaves, which in the

simplest case can be a naive factorisation, introducing a product node with each variable

distribution substructure as a child, i.e. a sum node with indicator nodes whose weights are

estimated from the data. Another alternative is to model the data at the leaves as tractable

models, such as Chow-Liu trees (Chow and Liu, 1968).

2.3 Selective Sum-Product Networks

Selective Sum-Product Networks (SSPNs) are a variant of Sum-Product Networks that

have one more restriction than SPNs called selectivity (also known as determinism). This

additional restriction allows linear computation of maximum a posteriori inference, and

maximum-likelihood parameter learning (Peharz, Gens, and Domingos, 2014).

Before formally defining selectivity, we start by defining the support of a distribution

and active nodes. The support of a distribution ℙ is the set of instantiations 𝐱 for which

ℙ(𝐱) > 0. Given an instantiation 𝐱, we say that a node 𝑖 of an SPN S is active if S𝑖(x) >
0.
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Algorithm 1: 𝐿𝑒𝑎𝑟𝑛𝑆𝑃𝑁 (𝐝,𝑚, 𝛼)
input :dataset: 𝐝, minimum number of instances: 𝑚, laplace smooth parameter:

𝛼
output :An SPN S(𝐗) learned from 𝐝

1 𝐗 ← set variables of 𝐝
2 𝑛 ← number of instances in 𝐝
3 if |𝐗| = 1 then
4 S ← ∑𝑘

𝑁𝑘+𝛼
𝑁𝑗+𝛼|vals(𝑋 )|[[𝑋 = 𝑘]]

5 else if 𝑛 < 𝑚 then
6 S ← 𝑡𝑟𝑎𝑐𝑡𝑎𝑏𝑙𝑒𝑀𝑜𝑑𝑒𝑙(𝐝)
7 else
8 partition 𝐗 into 𝐼 approximately independent subsets of variables 𝐗𝑗
9 if success then

10 S ← ∏𝐼
𝑗=1 𝐿𝑒𝑎𝑟𝑛𝑆𝑃𝑁 (𝐝𝑗 , 𝑚)

11 else
12 partition 𝐝 into 𝐶 subsets of similar examples 𝐝𝑖
13 S ← ∑𝐶

𝑖=1
|𝐝𝑖 |
|𝐝| 𝐿𝑒𝑎𝑟𝑛𝑆𝑃𝑁 (𝐝𝑖 , 𝑚)

14 end
15 end
16 return S

Selectivity requires that the supports of the distributions induced by the children of

any sum node are disjoint. This implies for any instantiation x and sum node 𝑖 that

S𝑖(x) = 𝑤𝑖𝑗S𝑗(x) for some 𝑗 ∈ ch(𝑖). If the SPN is selective then at most one child of each

sum node is active for any instantiarion of the scope of the network. For example, Figure

2.3 shows a selective SPN with scope {𝑋 , 𝑌 , 𝑍}.

We say that a SPN is structural selective if the selectivity holds even if all the weights

in the model are strictly positive, i.e., the structure of the SPN is selective regardless of

the weights (Peharz, Gens, and Domingos, 2014). Since in this dissertation we consider

the weights of an SPN to be greater than zero, selectivity and structural selectivity are

equivalent. Figure 2.3 shows a structural selective SPN.

[[𝑋 = 1]] [[𝑋 = 0]]

[[𝑌 = 1]] [[𝑌 = 0]] [[𝑌 = 1]] [[𝑌 = 0]][[𝑍 = 1]] [[𝑍 = 0]] [[𝑍 = 1]] [[𝑍 = 0]]

+ ++ +

× ×

+
.4 .6

.7 .3 .2 .8.6 .4 .9.1

Figure 2.3: Selective Sum-Product Network

The calculation tree TS(x) of an selective SPN S is the subnetwork induced by the

sequence of active nodes for the evaluation of instantiation x begining at the root of S. Due
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to the decomposition and selectivity properties, the calculation tree of a SSPN is a tree,

hence justifying its name (Peharz, Gens, and Domingos, 2014, Lemma 1). We have from

Equation 2.1 that:

TS(x) = ∏
𝑖→𝑗∈TS(x)

𝑤𝑖𝑗 . (2.4)

Example 2.3.1. Consider the Selective SPN in Figure 2.3, we want to obtain the Calcula-

tion Tree induced by the realization 𝐱 = {𝑋 = 0, 𝑌 = 1, 𝑍 = 0}, for that we use equation

2.1. In the figure below, the arcs associated with the calculation tree are highlighted in red.

1

1 1

.2 .9

.18

.108
.4 .6

.7 .3 .2 .8.6 .4 .9.1

2.3.1 Maximum-A-Posteriori Inference

Recall that an SPN S induces a probability distribution ℙS over its scope. This allows the

model to provide maximum-a-posteriori (MAP) inference , which consists of finding the

most probable instantiation given some evidence, MAP has applications such as multi-label

classification, which aims to find the most probable configuration of labels given the object

features.

Given an SPN S with scope {𝐗obs, 𝐗miss} = 𝐗 and evidence 𝐱obs ∈ 𝑣𝑎𝑙(𝐗obs), we define

the set of MAP instantiations as:

x∗ ∈ arg max
𝐱miss∈𝑣𝑎𝑙(𝐗miss)

ℙS(𝐱miss|𝐱obs) = arg max
𝐱miss∈𝑣𝑎𝑙(𝐗miss)

S(𝐱miss, 𝐱obs) . (2.5)

Although MAP inference is NP-hard in SPNs even when restricted to binary variables

and height-two networks (Conaty et al., 2017; Mei et al., 2017; Peharz, Gens, Pernkopf,

et al., 2017), MAP inference for selective SPNs is tractable in linear time in network size by

the simple Max-Product algorithm (Peharz, Gens, and Domingos, 2014; Peharz, Gens,

Pernkopf, et al., 2017).

The Max-Product algorithm consists of replacing the sum operations in the calculation

of the case of sum nodes in Equation 2.1 by maximizing on the values of the children,
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caching values to achieve linear time. Then is described by the following recursion:

𝑀𝐴𝑃 𝑖(𝐱obs) =

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

1, if 𝑖 is a consistent leaf node,

0, if 𝑖 is an inconsistent leaf node,
∏

𝑗∈ch(𝑖)
𝑀𝐴𝑃 𝑗(𝐱obs), if 𝑖 is a product node,

max
𝑗∈ch(𝑖)

𝑤𝑖𝑗𝑀𝐴𝑃 𝑗(𝐱obs), if 𝑖 is a sum node.

(2.6)

We say that a leaf node is consistent (w.r.t. a MAP inference) if its scope is in 𝐗miss
, or if it

is consistent by the definition used in 2.1.

The corresponding MAP instantiation is obtained by backtracking the solutions of the

maximizations from the root toward the leaves.

Note that the Max Product algorithm maximizes over the children of the sum nodes,

it actually maximizes over the SPN calculation trees; as we discussed in Section 2.3, for

selective SPNs only one child is active, demonstrating the correctness of Max Product for

selective SPNs.

Example 2.3.2. Consider the SPN in Figure 2.3. We want to obtain MAP instantiation

given evidence 𝐱obs = {𝑌 = 1}, for that we use Equation 2.6.

1 1

1 0 1 01 1 1 1

.7 .6 .2 .9

.42 .18

.168
.4 .6

.7 .3 .2 .8.6 .4 .9.1

The result of Max-Product when backtracking from the root (i.e., it contains the arguments

of the maximizations at sum nodes),is the MAP instantiation {𝑋 = 1, 𝑍 = 1} given the

evidence 𝑌 = 1.

2.3.2 Learning Selective Sum-Product Networks
One benefit of selectivity is that it allows us to learn the maximum-likelihood weights

of a fixed-structure SSPN S given a dataset 𝐝 of i.i.d. realizations x ∈ 𝑣𝑎𝑙(X) in closed-form

as:

𝑤𝑖𝑗 =
𝑁𝑗

𝑁𝑖
, (2.7)

where 𝑁𝑘 = |𝐱 ∈ 𝐝 ∶ 𝑘 ∈ TS(x)| is the number of calculation trees containing node 𝑘. In

order to obtain more robust estimators, it is possible to smooth out the counts above, for

example, by using the Multinomial-Dirichlet estimator 𝑤𝑖𝑗 = (𝑁𝑗 + 𝑠𝑗)/(𝑁𝑖 + 𝑠) for 𝑠 = ∑𝑗 𝑠𝑗 .
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A common choice is Laplace smoothing, which uses 𝑠𝑗 = 1. Note that this is similar to

obtain Bayesian MAP estimators assuming independent Dirichlet priors on the weights

associated with a sum node.

Since the evaluation of the likelihood for a structure of an SSPN is tractable, it is

possible to use it as a global scoring function to guide a structure search (Peharz, Gens,

and Domingos, 2014). The LearnSelectiveSPN algorithm starts with an initial network,

then performs a greedy hill-climbing search in the space of structures, applying at each

step operations of splitting or merging substructures, selecting the structure that improves

the score, until no score improvement is made. The split operation extends the structure

by processing a product node 𝑖 and two of its children, 𝑙 and 𝑚, where the network rooted

at 𝑙 contains the indicator [[𝑋𝑘 = 𝑥𝑘]]. This operation consists in replacing the arcs from 𝑖 to

𝑙 and 𝑚 by a single arc connecting to a substructure representing possible independencies

among the distributions encoded in the subnetworks rooted at 𝑙 and 𝑚. This structure

is rooted by a sum node with two product children, each of these product nodes has as

a child a copy of the subnetwork rooted at 𝑚 and differs in the other child, for the first

product node is a copy of the subnetwork rooted at 𝑙 dismissing the arcs connecting with

indicator [[𝑋𝑘 = 𝑥𝑘]] and for the second product is a copy of the subnetwork rooted at 𝑙
connecting only with indicator [[𝑋𝑘 = 𝑥𝑘]]. The split operation can create chains of sum or

product nodes that are collapsed into a single node. The merge operation can be seen as

the reverse of the split operation.

2.3.3 Generative Random Forests
A Generative Random Forest (GeF) is an aggregation of Generative Decision Trees,

so called because they are generative probabilistic models obtained from a Decision Tree

Classifier.

Decision Trees (DTs) are popular models that can perform classification and regression

tasks. In this work, we focus on DTs for classification. A DT classifier is a discriminative

model that encodes a conditional probability distribution, ℙ(𝑦|𝐱), that is used to predict the

value 𝑦 ∈ 𝑣𝑎𝑙(𝑌 ) of a target variable 𝑌 depending on the feature variables 𝐗. A DT is

a tree whose internal nodes are associated with feature space partitions and leaves are

associated with probabilities ℙ(𝑦|𝐱𝜌), where 𝐱𝜌 is the subset of variables in the partition.

Most commonly, partitions are represented by univariate decisions annotated on edges,

such as, for example, 𝑋 ≤ 2 and 𝑋 > 2.

A decision tree is built by recursively partitioning the feature space to learn decision

nodes, in such a way that it optimizes the quality of the partition, by maximizing class

impurity measures such as information gain. This partitioning is performed until a stopping

condition is reached and then it learns one leaf per sub-region, where each leaf estimates

ℙ(𝑦|𝐱𝜌) from the instances in the partition. The stopping condition could be the maximum

depth or a minimum number of samples. Figure 2.5 shows a decision tree over a dataset

with two feature variables {𝑋 , 𝑍} and a target 𝑌 . The numbers inside each node in the

decision tree indicate the percentage of instances that fall in the corresponding partition

out of those instances that are in the partition defined by the parent node.The edge labels

represent the univariate decision for feature space partitions.
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[[𝑋 = 0]]

[[𝑌 = 1]] [[𝑌 = 0]][[𝑍 = 1]] [[𝑍 = 0]] [[𝑍 = 1]] [[𝑍 = 0]]

+

×

[[𝑋 = 1]] +

[[𝑌 = 0]]

×

[[𝑋 = 1]] +

[[𝑌 = 1]]

++ +

× ×

+
.4 .6

.2 .8.6 .4 .9.1

(a)

[[𝑋 = 0]]

[[𝑌 = 1]] [[𝑌 = 0]][[𝑍 = 1]] [[𝑍 = 0]] [[𝑍 = 1]] [[𝑍 = 0]]

+

×

[[𝑋 = 1]] [[𝑌 = 0]]

×

[[𝑋 = 1]] [[𝑌 = 1]]

++ +

× ×

+
.4 .6

.2 .8.6 .4 .9.1

(b)

Figure 2.4: Figure 2.4a shows split operation for the most left product node of SSPN showed in Figure

2.3, the children to split are [[𝑋 = 1]] and the left most sum child, the spliting occurs over the indicator

[[𝑌 = 1]]. Figure 2.4b shows the collapsed nodes for the SSPN in Figure 2.4a

Generative classifiers as Probabilistic Circuits have a significant advantage to deal with

missing at random features when compared to discriminative classifiers, that consist in

marginalizing over the unobserved features. Correia et al. proposed to build a Genera-

tive Decision Tree from a DT and data (Correia et al., 2020). Their algorithm starts by

converting each decision node of the DT classifier into a sum node and each leaf into a

sub-PC whose support is the sub-region induced by the corresponding path of the DT. The

weights associated with each outgoing arc in the GeDT are obtained from the percentages

(transformed into probabilities) of training instances in the respective sub-region, for

example the values at each decision node in Figure 2.5. Algorithm 2 presents the procedure

for compiling a DT classifier into a GDT, whose inputs are the root of the DT, a DT classifier

and the dataset used to learn the classifier.

In order to speed up computations in GDTs, we can pull up indicator nodes and

add product nodes to connect them to the structure. Although this procedure violates

decomposability, GeDTs still allow for linear time marginal inference in much the same

way as decomposable PCs, due to the selectivity of the indicators. The sub-PCs at the leaves
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𝑋 > 2𝑋 ≤ 2

𝑍 = 1𝑍 = 0

Figure 2.5: A Decision Tree to classifying 𝑌 based on the values of𝑋 and𝑍 , nodes show the percentage

of instances in each sub-region.

Algorithm 2: 𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝐷𝑇 𝑖𝑛𝑡𝑜𝐺𝐷𝑇(𝑖, D, 𝐝)
input :node of the DT: 𝑖, Decision Tree classifier: D, dataset with instantiation

of variables {𝐗, 𝑌}: 𝐝
output :An SPN S(𝐗, 𝐘) compiled from D using 𝐝

1 if 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝑁𝑜𝑑𝑒(𝑖, D) then
2 𝐝𝑗 ← partition of 𝐝 for child node 𝑗
3 S ← ∑𝑐ℎ(𝑖)

𝑗=1
|𝐝𝑗 |
|𝐝| 𝐶𝑜𝑛𝑣𝑒𝑟𝑡𝐷𝑇 𝑖𝑛𝑡𝑜𝐺𝐷𝑇(𝑗, D, 𝐝

𝑗)
4 else
5 S ← 𝑡𝑟𝑎𝑐𝑡𝑎𝑏𝑙𝑒𝑀𝑜𝑑𝑒𝑙(𝐝)
6 end
7 return S

can be learned with any structure learning algorithm for PCs or take simple forms such as

fully factorized distributions. A particularly convenient form for the sub-PCs is to encode a

distribution that factorizes as ℙ(𝐗|𝐱𝜌1)ℙ(𝑌 |𝐱𝜌2), where 𝜌1 and 𝜌2 denote the corresponding

partition of the feature space. Such class-factorized GeDTs produce the same classifications

under complete data as the original DT (Correia et al., 2020). Figure 2.6 shows the GeDT

extension of the DT shown in Figure 2.5, note the intentional correspondence between

these proportions and the weights of the GeDT.

A GeDT is selective as long as its sub-PCs, i.e. the PCs representing the leaves of the

DT, are also selective. Given a selective SPN S, whose scope is defined by sc(S) = {𝑌 , 𝐗},

we say that S is strong-selective w.r.t. 𝑌 , if for all sum nodes 𝑖 in S whose scope is not

a singleton and 𝑌 ∈ sc(S𝑖), there exists a single child of i, 𝑗 ∈ ch(𝑖), which satisfies

S𝑗(𝐱, 𝑦𝑐) > 0, for all 𝑦𝑐 ∈ val(𝑌 ). Strong selectivity is trivial for nodes that do not contain

𝑌 in their scope and also for the singleton scope, which contains only 𝑌 . This condition

implies that the PC remains selective even when 𝑌 is marginalized. Figure 2.6 shows an

SPN that is strong selective w.r.t. 𝑌 .

Class factorized GeDTs with strictly positive weights imply strong-selectivity w.r.t. the

target variable, which will be crucial to ensure the exactness of some of our proposed

algorithms.
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+
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+
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Figure 2.6: Figure 2.6a shows the Generative Decision Tree with scope 𝑋.𝑌 .𝑍 compiled from the the

DT in Figure 2.5, which is strong-selective w.r.t. 𝑌 . Figure 2.6b shows a GeDT after pulling up indicators

[[𝑋 = 3]] and [[𝑋 = 4]] of the GDTs showed in 2.6a .
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2.3.4 Probabilistic Sentential Decision Diagrams
Probabilistic Sentential Decision Diagrams (PSDDs) are PCs over binary variables,

whose support can be read from the graph structure by reinterpreting nodes as logic gates,

thus their structure can be seen as a logical circuit encoding a Boolean formula. Kisa et.

al. introduce PSDD as a probabilistic extension of sentential decision diagrams, a class of

logical circuits (Kisa et al., 2014).

To represent a certain knowledge, a PSDD is defined as follows

- Constant i.e. {⊥, ⊤} and literals e.g. {𝑋 , ¬𝑋} are leaf nodes.

- The internal nodes are either OR or AND gates, analogous to sum and product nodes

in SPNs.

- The AND (product) node 𝑖 has exactly two children, called prime and sub, denoted

as 𝑖 = (𝑝, 𝑠), encoding ⟨𝑝⟩ ∧ ⟨𝑠⟩.

- The OR (sum) node 𝑖, denoted as {(𝑝𝑘 , 𝑠𝑘)}𝑘∈ch(𝑖), encodes ⋁𝑘=ch(𝑖)⟨𝑘⟩, which is an

exclusive disjunction.

Given a PSDD S, each sub-PSDD S𝑖 rooted at node 𝑖 also encodes a Boolean formula

that is denoted by ⟨𝑖⟩.

PSDDs are selective, complete and structured decomposable PCs. We say that a PSDD

S is structured decomposable if it is decomposable and any pair of its product nodes 𝑖 and 𝑗
with the same scope are decomposed in the same way, that is:

(𝑠𝑐(S𝑖) = 𝑠𝑐(S𝑗)) → ∀𝑛 ∈ 𝑐ℎ(𝑖) ∶ ∃!𝑚 ∈ 𝑐ℎ(𝑗)/𝑠𝑐(S𝑛) = 𝑠𝑐(S𝑚)

for some ordering of the scope of S. Structural decomposability arises from the construction

of the circuit where the scopes of product children are given by a vtree in learning time.

Figure 2.7 shows a PSDD representing the formula 𝜙 = (𝑋 ∧ 𝑌 ∧ 𝑍) ∨ (¬𝑋 ∧ 𝑌 ∧ ¬𝑍).

Let {𝐗, 𝐙} be the scope of S, where 𝐗 are its left variables and 𝐙 are its right variables.

For each sum node 𝑖, and each instantiation 𝐱𝐳 there is at most one prime 𝑝𝑘 such that

S𝑝𝑘 (𝐱𝐲) > 0, this property is called strong determinism.

There are several algorithms to learn PCs using different approaches as divide-and-

conquer and incremental methods. For example, in this chapter we focused in some of the

most popular algorithms to learn SPNs, Selective SPNs and GeDts.

In contrast, the structure of a PSDD is determined by a vtree, which is a complete binary

tree with leaves corresponding to the domain variables, where each variable occurs exactly

once in a vtree leaf node (Darwiche, 2003). The choice of a particular structure can then

be thought of as the choice of a particular vtree. Liang et al. developed the LearnPSDD

algorithm (A. Choi and Darwiche, 2013; Liang et al., 2017), whose strategy is similar to

that of the LearnSSPN algorithm, that performs local modifications to the structure that

improve the penalized log-likelihood while maintaining vtree constraints on the order for

variables to encode independecies. The ensemble approach to learning PSDDs showed

state-of-the-art performance in terms of test-set likelihood in the benchmarks (Liang
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.8 .2

[[𝑋 = 1]] [[𝑋 = 0]]

.7 .3 .6 .4

[[𝑌 = 1]] [[𝑍 = 1]] [[𝑌 = 0]] ⊥ [[𝑌 = 1]] [[𝑍 = 0]] [[𝑌 = 0]] ⊥

𝑋

𝑌 𝑍

Figure 2.7: A Probabilistic sentetial decision diagram representing the formula (𝑋 ∧ 𝑌 ∧ 𝑍) ∨ (¬𝑋 ∧
𝑌 ∧ ¬𝑍)(right) and its corresponding vtree (left).

et al., 2017; Geh and Mauá, 2021). Note, however, that the use of ensembles makes MAP

inference NP-hard (Conaty et al., 2017).

Example 2.3.3. Consider a simple machine learning task involving logical constraints

over the model variables. The problem consists in the identification of the digit depicted

by a seven-segment display (see following Figure), whose segments might occasionally

fail to turn on. More specifically, given an input digit to be displayed, the control unit

activates the corresponding set of segments in the display; each segment can however fail

to be switched on independently with an identical probability.

This setup can be described by fourteen Boolean variables: say that 𝑿 ∶= (𝑋1, … , 𝑋7)
and 𝑶 ∶= (𝑂1, … , 𝑂7), where the former refer to the states of the segments as decided by

the control unit, and the latter are the real states of the segments as depicted in the display.

Let us also assume that the true state of these Boolean variables corresponds to the segment

on. Given digit, the corresponding configuration of 𝑿 is provided by the formula 𝛿𝑗(𝑿) in

the following Table.
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𝑑𝑖𝑔𝑖𝑡 𝛿𝑗(𝑿)
0 𝑋1 ∧ 𝑋2 ∧ 𝑋3 ∧ 𝑋4 ∧ 𝑋5 ∧ 𝑋6 ∧ ¬𝑋7
1 ¬𝑋1 ∧ 𝑋2 ∧ 𝑋3 ∧ ¬𝑋4 ∧ ¬𝑋5 ∧ ¬𝑋6 ∧ ¬𝑋7
2 𝑋1 ∧ 𝑋2 ∧ ¬𝑋3 ∧ 𝑋4 ∧ 𝑋5 ∧ ¬𝑋6 ∧ 𝑋7
3 𝑋1 ∧ 𝑋2 ∧ 𝑋3 ∧ 𝑋4 ∧ ¬𝑋5 ∧ ¬𝑋6 ∧ 𝑋7
4 ¬𝑋1 ∧ 𝑋2 ∧ 𝑋3 ∧ ¬𝑋4 ∧ ¬𝑋5 ∧ 𝑋6 ∧ 𝑋7
5 𝑋1 ∧ ¬𝑋2 ∧ 𝑋3 ∧ 𝑋4 ∧ ¬𝑋5 ∧ 𝑋6 ∧ 𝑋7
6 𝑋1 ∧ ¬𝑋2 ∧ 𝑋3 ∧ 𝑋4 ∧ 𝑋5 ∧ 𝑋6 ∧ 𝑋7
7 𝑋1 ∧ 𝑋2 ∧ 𝑋3 ∧ ¬𝑋4 ∧ ¬𝑋5 ∧ ¬𝑋6 ∧ ¬𝑋7
8 𝑋1 ∧ 𝑋2 ∧ 𝑋3 ∧ 𝑋4 ∧ 𝑋5 ∧ 𝑋6 ∧ 𝑋7
9 𝑋1 ∧ 𝑋2 ∧ 𝑋3 ∧ ¬𝑋4 ∧ ¬𝑋5 ∧ 𝑋6 ∧ 𝑋7

Then, for each 𝑖 = 1, … , 7, if 𝑋𝑖 is false, we also set 𝑂𝑖 false, while if 𝑋𝑖 is true, 𝑂𝑖 might

be false with a given failure probability 𝑝𝑓 . Such mechanism obeys the formula:

𝜙 ∶= ∧7𝑖=1(𝑂𝑖 → 𝑋𝑖) ∧ (∨9𝑗=0𝛿𝑗(𝑋1, … , 𝑋7)) .

We note that this scenario can be extended to more complex and realistic scenarios involv-

ing a large number of components/devices, whose interdependence is described as a logical

function, and whose probability of failures are interconnected in a complicated way.

Since, this type of scenario involves modeling a joint probability distribution and logi-

cal constraints can be encoded by a PSDD, specifically in the case of the segment task can

be modeled as a classification problem, given an observation 𝑶 we want to predict the

more likely status for each segment, 𝑿𝒊, independently (Mattei et al., 2020).
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Chapter 3

Credal Sum-Product Networks

In inductive learning, we can distinguish two essential phases: training and prediction.

Training, also known as the learning phase, consists of adjusting the predictor on the

basis of the training data. In the case of SPNs, we learn the parameters and structure

that maximize the likelihood of the training data. Once the model is trained, it can then

determine the labels associated with new instances comprised in a test set, which is called

the prediction phase.

PCs have obtained impressive results in many machine learning tasks due to their ability

to represent complicated multidimensional distributions (Poon andDomingos, 2011; Amer

and Todorovic, 2016; Zheng et al., 2018; Pronobis, Riccio, et al., 2017; Pronobis and

Rao, 2017; Cheng et al., 2014; Geh and Mauá, 2019; Peharz, Vergari, et al., 2020).

Despite the impressive results of several machine learning models on classification

benchmarks, most of them, including PCs, can produce unreliable, overconfident pre-

dictions in the presence of conflicting data or in regions of insufficient statistical sup-

port. Overconfident, incorrect predictions can be harmful in critical applications such as

medicine (Lambrou et al., 2010).

A naive approach to identifying reliable predictions is to set a threshold in prediction

scores. This approach may fail to identify overconfident incorrect predictions even in

accurate models.

Credal Sum-Product Networks (CSPNs) are a set of SPNs that share the same structure,

was proposed to perform global sensivity analyis of predictions (Mauá, Conaty, et al.,

2018). Performing a global qualitative sensitivity analysis allow the model distinguishes

between robust and non-robust instances. Given an SPN, sensitivity analysis consists of

comparing its prediction against similar inferences produced by the models built “around”

the model by “perturbing” the parameters by adding small noisy constants that vary within

a set (Mauá, Conaty, et al., 2018).

In this chapter, we formally define Credal Sum-product networks, explaining their

construction as well as some tractable inferences, that are the bases for our contribu-

tions.
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3.1 Credal Sum-Product Networks
A Credal Sum-Product Network (CSPN) is a set of normalized SPNs encoding probability

distributions where all of them share the same structure (Mauá, Conaty, et al., 2018). A

CSPN induces a set over the weights associated with outgoing edges of each sum node,

where each parametrization represents a particular SPN encoding a probability distribution,

that is, a set of probability distributions.

We denote a CSPN as {S𝐰∗ ∶ 𝐰∗ ∈ }, where  is a subset of the configurations of

weights (i.e., parametrizations) in S. The set  is the Cartesian product of sets 𝑖 , one for

each sum node 𝑖 in the network. In this work we consider only local 𝑖 defined by intervals,

that is, of the form:

𝑖 =
{
𝑤 𝑖𝑗 ≤ 𝑤𝑖𝑗 ≤ 𝑤 𝑖𝑗 , ∑

𝑗∈ch(𝑖)
𝑤𝑖𝑗 = 1

}
, (3.1)

where 0 ≤ 𝑤 𝑖𝑗 ≤ 𝑤 𝑖𝑗 ≤ 1 are interval bounds specified by the user. For convenience, we

assume that the intervals are reachable. This means that for each sum node 𝑖 and child 𝑗,
we have:

𝑤 𝑖𝑗 ≤ 1 −∑
𝑗′≠𝑗

𝑤 𝑖𝑗 and 𝑤 𝑖𝑗 ≥ 1 −∑
𝑗′≠𝑗

𝑤 𝑖𝑗 .

We asume reachability to enforce that there exists mass function 𝑤𝑖𝑗 attained at the bounds

(Campos et al., 1994).

A natural method to obtain a CSPN “around” an SPN S𝐰∗ consists in applying

𝜖-contamination, where every sum node 𝑖 from S structure satisfies the following condi-

tion:

𝑖 =
{
(1 − 𝜖𝑖)𝑤∗

𝑖𝑗 ≤ 𝑤𝑖𝑗 ≤ (1 − 𝜖𝑖)𝑤∗
𝑖𝑗 + 𝜖𝑖 , ∑

𝑗∈ch(𝑖)
𝑤𝑖𝑗 = 1

}
, (3.2)

where 𝜖𝑖 ∈ (0, 1).

Example 3.1.1. Consider a sum node 𝑖 with three childs 𝑗,𝑘,𝑙 where the correspondent

weights are: 𝑤𝑖𝑗 = 0.3 𝑤𝑖𝑘 = 0.2 and 𝑤𝑖𝑙 = 0.5 and 𝑤𝑖𝑗 + 𝑤𝑖𝑘 + 𝑤𝑖𝑙 = 1 Applying Equation

3.2 with 0.4-contamination we obtain:

𝑖 =

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

0.18 ≤ 𝑤𝑖𝑗 ≤ 0.58,
0.12 ≤ 𝑤𝑖𝑘 ≤ 0.52,
0.3 ≤ 𝑤𝑖𝑙 ≤ 0.7
s.t. 𝑤𝑖𝑗 + 𝑤𝑖𝑘 + 𝑤𝑖𝑙 = 1.

⎫⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎭

The follow figure shows the geometrical representation of the intervals over the weights

associated with arcs emanate from 𝑖 by 0.4-contamination.
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(0.58, 0.12, 0.3)

(0.18, 0.52, 0.3)

(0.18, 0.12, 0.7)

We say that a CSPN is selective if for any choice of weights 𝐰∗
the corresponding

SPN S𝐰 is selective. Figure 3.1 shows an example of a selective CSPN over three random

variables, obtained by 0.01 − contamination of an SPN with weights {𝑤1 = 0.4, 𝑤2 =
0.6, 𝑤3 = 0.7, 𝑤4 = 0.3, 𝑤5 = 0.6, 𝑤6 = 0.4, 𝑤7 = 0.2, , 𝑤8 = 0.8, 𝑤9 = 0.1, 𝑤10 = 0.9}.

0.36 ≤ 𝑤1 ≤ 0.46 𝑤1 + 𝑤2 = 1
0.63 ≤ 𝑤3 ≤ 0.73 𝑤3 + 𝑤4 = 1
0.54 ≤ 𝑤5 ≤ 0.64 𝑤5 + 𝑤6 = 1
0.18 ≤ 𝑤7 ≤ 0.28 𝑤7 + 𝑤8 = 1
0.09 ≤ 𝑤9 ≤ 0.19 𝑤9 + 𝑤10 = 1

[[𝑋 = 1]] [[𝑋 = 0]]

[[𝑌 = 1]] [[𝑌 = 0]] [[𝑌 = 1]] [[𝑌 = 0]][[𝑍 = 1]] [[𝑍 = 0]] [[𝑍 = 1]] [[𝑍 = 0]]

+ ++ +

× ×

+𝑤1 𝑤2

𝑤3 𝑤4 𝑤7 𝑤8𝑤5 𝑤6 𝑤10𝑤9

Figure 3.1: Selective Credal Sum-Product Network obtained by 0.1-contamination of the SPN in Fig-

ure 2.3

In Equation 3.2 each weight is perturbed by an 𝜖𝑖 regardless of its depth; however, if

the (precise) SSPN weights was learned using (smoothed) maximum likelihood estimation,

so that deeper nodes are learned from smaller datasets. Thus, we can vary the imprecision

by the amount of data used to learn a weight 𝑤𝑖𝑗 by setting 𝜖𝑖 = 𝑠/(𝑁𝑖 + 𝑠), where 𝑁𝑖 denotes

the number of calculation trees containing node 𝑖 when the model evaluates the training

set instances, and 𝑠 > 0 determines the amount of imprecision. This results in a CSPN

where every sum node 𝑖 satisfy:

𝑖 =
{

𝑁𝑗

𝑁𝑖 + 𝑠
≤ 𝑤𝑖𝑗 ≤

𝑁𝑗 + 𝑠
𝑁𝑖 + 𝑠

, ∑
𝑗∈ch(𝑖)

𝑤𝑖𝑗 = 1
}
, (3.3)

The equation above coincides with the Imprecise Dirichlet Model for a (latent) random

variable representing the sum node 𝑖, whose value “selects” which edge is active. It also co-

incides with assuming a Multinomial-Dirichlet estimate of weights with the concentration

parameters of the Dirichlet prior varying inside a probability simplex.
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Analogous to SPN, a PSDD can be converted into a Credal Sentential Decision Diagram

(CSDDs), Mattei et al. generated CSDDs whose set values parameters are obtained using

imprecise dirichlet model. Similar to PSDDs, the intervals of a CSDD have a probabilistic

interpretation as a set of conditional probabilities (Mattei et al., 2020). The algorithms

presented in this chapter and next ones for CSPNs are applicable also to CSDDs due to the

structural equivalence between SPNs and PSDDs.

3.2 Probability of Evidence

Mauá et al. developed efficient algorithms for producing upper and lower bounds on the

probability of the evidence. The computation of upper and lower probability of evidence

can be performed in much the same way as the computation of marginal probabilities

in SPNs, with a small overhead for solving local optimizations over the interval weights

(Mauá, Conaty, et al., 2018).

Given a CSPN {S𝐰 ∶ 𝐰 ∈ }, we are particularly interested in the algorithm to compute

the upper joint probability ℙS(𝐱obs) = max𝐰 S𝐰(𝐱obs) of a given an evidence 𝐱obs
. The

algorithm visits nodes in topological reverse order (i.e., from the bottom up), evaluating

the following expression at each node 𝑖:

S𝑖(𝐱obs) =

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

1, if 𝑖 is a leaf node consistent with 𝐱obs
,

0, if 𝑖 is a leaf node inconsistent with 𝐱obs
,

∏
𝑗

S𝑗(𝐱obs), if 𝑖 is a product node,

max
𝐰𝑖∈𝑖

∑𝑗∈ch(𝑖) 𝑤𝑖𝑗S𝑗(𝐱obs), if 𝑖 is a sum node.

(3.4)

The desired value is obtained at the root 𝑟 of the network, that is, S𝑟 (𝐱obs) = max𝐰 S𝐰(𝐱obs).
Note that for selective credal SPNs and a complete instantiation, the sum in the last

equation has at most one positive term, and hence reduces to:

S𝑖(𝐱obs) =

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

1, if 𝑖 is a leaf node consistent with 𝐱obs
,

0, if 𝑖 is a leaf node inconsistent with 𝐱obs
,

∏
𝑗

S𝑗(𝐱obs), if 𝑖 is a product node,

𝑤𝑖𝑗S𝑗(𝐱obs), if 𝑖 is a sum node and 𝑗 its active child.

(3.5)

where the definition of active child is extended to S𝑗(𝐱obs) > 0.

The computation of the lower probability of evidence is made analogously:

S𝑖(𝐱obs) =

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

1, if 𝑖 is a leaf node consistent with 𝐱obs
,

0, if 𝑖 is a leaf node inconsistent with 𝐱obs
,

∏
𝑗

S𝑗(𝐱obs), if 𝑖 is a product node,

min
𝐰𝑖∈𝑖

∑𝑗∈ch(𝑖) 𝑤𝑖𝑗S𝑗(𝐱obs), if 𝑖 is a sum node.

(3.6)
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Example 3.2.1. Consider the CSPN in Figure 3.1 and the evidence 𝐱obs = {𝑌 = 1}, to

obtain the lower probability we compute Equation 3.6 at each node of the circuit as follows.

.009

.23 .02

1 .63 .36

1 0 1 1

.18 0.09

1 0 1 1

1

As result of the computation, we obtain ℙS(𝑌 = 1) = 0.009

3.3 Credal Classification

One of the most popular tasks that PCs perform is probabilistic classification, which

consists in obtaining the most probable class associated with a given observation using the

circuit. Since CSPNs define more than a single model, there are several possible maximizers

(Troffaes, 2007). A very popular criterion for decision-making with imprecise probability

models is Credal Classification based on the maximality principle (Zaffalon, 2002).

Given a class variable 𝑌 , an observation or evidence 𝐗obs = 𝐱obs
, and a CSPN S𝐰 with

scope 𝐗obs, 𝑌 , we say that an assignment 𝑦′
for 𝑌 credally dominates another assignment

𝑦′′
if:

𝛿(𝑦′, 𝑦′′) = min
𝐰∈

[S𝐰(𝑦′, 𝐱obs) − S𝐰(𝑦′′, 𝐱obs)] > 0. (3.7)

Credal classification consists in computing the set of non-dominated classes for variable

class 𝑌 , this procedure can be computed in polynomial time in CSPNs when each internal

node has at most one parent, a number of classes is bounded (Mauá, Conaty, et al., 2018).

Their algorithm computes dominance as showed in equation 3.7 and can be described

straightforwardly by a collection of equations depending on the type of node at which it

operates as follows:

Sum nodes. If 𝑖 is a sum node then the algorithm computes:

𝛿𝑖(𝑦′, 𝑦′′) = min
𝐰𝑖∈𝑖

∑
𝑗=ch(𝑖)

𝛿𝑗(𝑦′, 𝑦′′). (3.8)

Product nodes. If instead 𝑖 is a product node, such that 𝑌 is in the scope of S𝑘 (and no

other), where 𝑘 ∈ ch(𝑖), then the algorithm computes:

𝛿𝑖(𝑦′, 𝑦′′) = 𝛿𝑘(𝑦′, 𝑦′′)
𝑛

∏
𝑗=ch(𝑖),𝑗≠𝑘

opt S𝑗(𝐱obs

𝑗 ) , (3.9)
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where 𝐱obs

𝑗 denotes the projection of 𝐱obs
into the scope of S𝑗 , and

opt =

{
max if 𝛿𝑘(𝑦′, 𝑦′′) > 0 ,
min if 𝛿𝑘(𝑦′, 𝑦′′) ≤ 0 .

The first term denotes the recursive computation on the sub-SPN S𝑘 .

Leaves. Finally, if 𝑖 is a leaf node representing an indicator variable then the algorithm

computes:

𝛿𝑖(𝑦′, 𝑦′′) =

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

−1, if S𝑖 is [[𝑌 = 𝑦′′]],
1, if S𝑖 is [[𝑌 = 𝑦′]],
1, if S𝑖 is consistent with 𝐱obs

and 𝑌 is not in its scope,

0, otherwise.

(3.10)

Example 3.3.1. Consider the CSPN in Figure 3.1 and the evidence 𝐱obs = {𝑋 = 1, 𝑍 = 1},

we want credally classify the target variable 𝑌 . Firstly we show the computations using

Equation 3.7 to assess dominance of 1 over 0 as follows.

-.11

-.23 0

1 -.36 .64

-1 1 1 0

.44 .09

-1 1 1 0

0

From the algorithm we obtain that 𝛿(𝑌 = 0, 𝑌 = 1) = −0.11 < 0 indicating that 0 not

dominates class 1. Then we also want to determine if class 0 domains class 1 in the circuit.

.05

.14 0

1 .26 .54

1 -1 1 0

-.64 .19

1 -1 1 0

0

As the computation of 𝛿(𝑌 = 1, 𝑌 = 0) = 0.05, we know that class 1 domains 0, the

credal prediction for class 𝑌 is the set of non dominate classes, that in this case have a

unique , 𝑌 = {1}.

We consider such an inference robust if it remains the single maximizer under small

perturbations of the model parameters, additionally the instances associated with robust
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predictions are considered as easy-to-classify. CSPNs can then support global sensitivity

analysis by evaluating the robustness of predictions. In general, credal classifiers are able

to distinguish between robust and non-robust instances; this separation corresponds to

the difference between the instances for which the output of the classifier is a single or

a set of predictions, respectively (Mauá, Conaty, et al., 2018; Villanueva Llerena and

Mauá, 2020; Mattei et al., 2020).

Credal classifiers can be used as reject option classifiers, which suspend prediction

when the available information is insufficient to make a final (single) decision.

Example 3.3.2. Consider the seven-segment problem, presented in Example 2.3.3 in

Chapter 2. Given an input digit to display, the control unit activates the corresponding

set of segments on the display. However, each segment may fail to switch independently

with equal probability. The task was to predict the more likely status for each segment, 𝑿𝒊,

given an observation in the seven-segment display, 𝑶. As we showed, this task was solved

by learning PSDDs.

Now we also want to identify robust predictions. To do this, we can perform a quali-

tative sensitivity analysis based on CSDDs obtained using Equation 3.3 with 𝑠 = 1. The

following figures show that CSDDs are able to discriminate robust inferences using differ-

ent training sizes, d, and failure probabilities, 𝑝𝑓 . Robust inferences maintain high accu-

racy (close to one) even with high perturbation levels, where the perturbation only affects

the percentage of robust instances. The experiments used artificially generated data of

segments (Mattei et al., 2020).
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Chapter 4

Tractable Global Qualitative
Sensitivity Analysis for Maximun
A Posteriori Inference

The previous chapter reviewed concepts of CSPN that can be used for qualitative

global sensitivity analysis for binary and multiclass classification. However, many tasks

are more effectively solved by finding a maximal probability joint configuration of the

variables that is consistent with a given evidence, a problem known as MAP inference,

such as image completion and multi-label classification tasks (Poon and Domingos, 2011;

Villanueva Llerena and Mauá, 2017), where each instance can be associated with one or

more labels, Figure 4.1 shows examples of multiclass and multi-label classification.

Countryside

0.9

City

0.05

Coast

0.05

Tree

0.9

Sea

0.1

Plantation

0.9

Figure 4.1: Example of multiclass (left) and multi-label classification (right)

In this chapter, we present our first contribution: an algorithm that performs a global

qualitative sensitivity analysis of Maximum-A-Posteriori (MAP) inference for selective

SPNs, by identifying robust inferences to global perturbations of the parameters. We

present efficient algorithms and an empirical analysis on realistic problems involving

missing data completion and multi-label classification. This chapter is organized as follows:

First, we discuss qualitative global sensitivity analysis in SPNs, where we show that it is

NP-hard in non-selective SPNs. Then we present optimistic MAP inference in selective

CSPNs, which will be necessary for the procedure of our main contribution, then we

present our approach to evaluate the robustness of MAP inferences in selective SPNs,
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we describe our experiments concerning qualitative robustness analysis in missing data

completion and multi-label classification.

4.1 Qualitative Global Sensitivity Analisys of MAP
inferences in SPNs

Our proposed approach classifies the sensitivity of Maximum-A-Posteriori inference

obtained from a Selective SPN to global perturbations of its parameters. We consider an

instance x∗ ∈ 𝑣𝑎𝑙(𝐗miss) as robust with respect to a credal sum-product network {S𝐰 ∶ 𝐰 ∈
} and evidence 𝐱obs

if 𝐱∗ ∈ 𝐗miss
is the single maximizer of each SPN S𝐰 (Villanueva

Llerena and Mauá, 2019), that is, if:

max
xmiss≠x∗

max
𝐰∈ (

S𝐰(𝐱miss, 𝐱obs)
S𝐰(𝐱∗, 𝐱obs) ) < 1 .

Note that for SPNs (i.e., when  is a singleton) the problem reduces to deciding if there

not exists an instantiation 𝐱miss ≠ 𝐱∗ such that S(𝐱miss, 𝐱obs) ≥ S(𝐱∗, 𝐱obs). Bodlaender et al.

(Bodlaender et al., 2002) showed that the complementary problem (i.e., deciding if there

is such an instatiantion) is NP-hard for Bayesian networks; one can adapt their proof using

ideas from (Conaty et al., 2017) to show that deciding if an arbitrary instance 𝐱∗ is robust

is coNP-hard. The following theorem strengthens that result for the case when 𝐱∗ is a MAP

configuration (and also provides a direct proof):

Theorem 4.1.1. Deciding if an instance 𝐱∗ is robust w.r.t. a CSPN {S𝐰 ∶ 𝐰 ∈ } is coNP-

complete, even if 𝐱∗ is a maximum probability configuration and  is a singleton.

Proof. Membership is trivial: an instance 𝐱miss
and a configuration 𝐰 for which

S𝐰(𝐱miss, 𝐱obs) ≥ S𝐰(𝐱∗, 𝐱obs) is a certificate that the problem instance is not in the

language.

+

×

[[𝑋 = 0]] [[𝑌 = 0]] [[𝑍 = 1]]

×

[[𝑋 = 1]] [[𝑌 = 1]] [[𝑍 = 1]]

×

[[𝑋 = 1]] [[𝑌 = 0]] [[𝑍 = 0]]

×

[[𝑋 = 0]] [[𝑌 = 1]] [[𝑍 = 1]]

×

[[𝑋 = 0]] [[𝑌 = 1]] [[𝑍 = 1]]

×

[[𝑋 = 1]] [[𝑌 = 1]] [[𝑍 = 0]]

×

[[𝑋 = 0]] [[𝑌 = 1]] [[𝑍 = 0]]

Figure 4.2: An SPN encoding the satisfying assignments of the Boolean formula ¬𝑋 ∨ 𝑌 ∨ ¬𝑍 .

We show hardness by reducing a NP-hard problem to the complementary problem:

deciding if an instantiation is not robust. Thus consider the NP-complete problem of

deciding whether a 3-CNF Boolean formula 𝜙 over variables𝑋1, … , 𝑋𝑛 is satisfiable. Without

loss of generality, assume that 𝜙 has at least one positive literal and one negative literal

(otherwise the formula is trivially satisfiable). Construct an assignment 𝑥 ∗1, … , 𝑥 ∗𝑛 that does

not satisfy 𝜙; such an assignment can be obtained by taking any clause, negating its

literals (so as to not satisfy it) and then extending it with any assignment to the remaining

variables.
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Assemble an SPN as follows. For each clause 𝜓 in 𝜙, construct a subnetwork S𝜓
that encodes each of the 7 satisfying assignments of that clause as a product of indicator

variables, and such that S𝜓 is selective and evaluates to 1/7 iff the corresponding assignment

satisfies the clause. Figure 4.2 shows an example of such a network.

To extend the scope of the subnetwork to all the variables, create a network S′
𝜓 , that

is the product of S𝜓 with a uniform distribution over the variables that do not appear

in 𝜓 . We thus have that S′
𝜓 (𝐱miss) = 1

7
1

2𝑛−3 if and only if 𝐱miss
satisfies 𝜓 . Now connect all

subnetworks S′
𝜓 via a sum node with edge weights 1/𝑚 where 𝑚 is the number of clauses.

Call this network S𝜙 . It follows that S𝜙(𝐱miss) = 1
7

1
2𝑛−3 iff 𝜙 is satisfied by the corresponding

assignment 𝐱miss
and S𝜙(𝐱miss) ≤ 1

7
1

2𝑛−3
𝑚−1
𝑚 iff 𝜙 is not satisfied by 𝐱miss

.

Now build a network S with a sum node that has S𝜙 as one child, with an edge

weight 𝑤, and subnetwork S∗ that encodes the assignment 𝑥 ∗1, … , 𝑥 ∗𝑛 as the other child

(with edge weight 1 − 𝑤); the latter subnetwork is simply a product node connected to

indicator variables [[𝑋 ∗
𝑖 = 𝑥 ∗𝑖 ]] . First note that S(𝐱∗) = 𝑘𝑤

7𝑚2𝑛−3 + (1 − 𝑤): as S𝜙(𝐱∗) = 𝑘
7𝑚2𝑛−3

and 𝑘 = |𝜓 ∶ 𝐱∗ satisfies 𝜓 | i.e. the number of clauses that 𝐱∗ satisfies. Choose 𝑤 to make

S(𝐱∗) = S(𝐱) such that 𝐱 satisfies 𝜙, then 𝑤 = 7𝑚2𝑛−3
𝑚+7𝑚2𝑛−3−𝑘 , and that can be computed in

polynomial time on the size of the input. Thus, the instatiantion 𝐱∗ is not robust (i.e., it

is not the unique maximizer of S) iff 𝜙 is satisfiable. This proves that deciding if a (MAP)

instantiation is robust is coNP-hard.

4.2 Optimistic Maximum A Posteriori inference in
Credal Selective Sum-Product Networks

Recall that although MAP inference is NP-hard in SPNs even when restricted to binary

variables and height-two networks (Conaty et al., 2017; Mei et al., 2017; Peharz, Gens,

Pernkopf, et al., 2017), the problem is solvable in linear time in the size of the network for

Selective SPNs by the simple Max-Product algorithm as we reviewed in Chapter 2.

Before formulating an algorithm for deciding robustness of MAP inference in selective

SPNs, let us consider the simpler problem of computing the MAP instantiation with

maximum joint probability over the set of selective SPNs in a selective CSPN. This will

be used as a subroutine to classify robustness later. Thus consider a selective CSPN

{S𝐰 ∶ 𝐰 ∈ } where  is given by the Cartesian product of sets 𝑖 for each sum node 𝑖,
whose scope is 𝐗 = {𝐗miss, 𝐗obs} and 𝐗miss ∩ 𝐗obs = ∅. Given an evidence 𝐱obs ∈ 𝑣𝑎𝑙(𝐗obs),
we are interested in computing the value of MAP instantiation 𝐱∗ ∈ 𝐗miss

of the upper

bound of the joint probability:

max
xmiss

max
𝐰∈

S𝐰(xmiss,xobs) . (4.1)

We propose an algorithm that computes the above quantity by traversing the network in
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reverse topological order, calculating at each node 𝑖 the following:

𝑀 𝑖 =

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

1, if 𝑖 is a consistent leaf node,

0, if 𝑖 is an inconsistent leaf node,

∏
𝑗∈ch(𝑖)

𝑀 𝑗 , if 𝑖 is a product node,

max
𝑗∈ch(𝑖)

𝑤𝑖𝑗𝑀 𝑗 , if 𝑖 is a sum node.

(4.2)

The definition of consistent and inconsistent nodes is identical to the one used to define

the Max-Product algorithm. The soundness and complexity of the algorithm are given by

the following result.

Theorem 4.2.1. Consider a selective CSPN {S𝐰 ∶ 𝐰 ∈ } with root 𝑟 , where  is the Carte-

sian product of finitely-generated polytopes 𝑖 , one for each sum node 𝑖. Then 𝑀 𝑟
computes

max
𝐱miss

max
𝐰

S𝐰(𝐱miss, 𝐱obs) in 𝑂(|S|) time, where |S| is the number of nodes and arcs in the model

(assuming the local optimizations over the weights in 𝑀 𝑖
take linear time).

Proof. We prove correctness by induction in the height ℎ of S. The base case for h=0

is immediate, as it consists of a leaf node which is maximized by setting the associated

indicator to one, for the case of MAP leaves, or simply evaluated at the evidence. Assume

that the inductive hypothesis is valid for networks of height ℎ ≥ 0 or smaller, and consider

a network of height ℎ + 1 whose root is 𝑖. Recall that in a selective SPN, at most one child 𝑗
of a sum node satisfies S𝑗(𝐱miss, 𝐱obs) > 0 for each instantiation 𝐱miss

. Let 𝑗 denote the set

of instantiations 𝐱miss ∈ 𝑣𝑎𝑙(𝐗) for which S𝑗(𝐱miss, 𝐱obs) > 0. Then

max
𝐱miss∈𝑣𝑎𝑙(𝐱miss)

max
𝐰

S𝑖𝐰(𝐱
miss, 𝐱obs) = max

𝑗∈ch(𝑖)
max
𝐱miss∈𝑗

max
𝐰

𝑤𝑖𝑗S𝑗𝐰𝑗
(𝐱miss, 𝐱obs) .

Thus, if 𝑖 is a sum node, it follows that

max
𝐱miss

max
𝐰

S𝑖𝐰(𝐱
miss, 𝐱obs) = max

𝑗∈ch(𝑖)
max
𝐰𝑖𝑗∈𝑖𝑗

𝑤𝑖𝑗 max
𝐱miss

max
𝐰𝑗

S𝑗𝐰𝑗
(𝐱miss, 𝐱obs)

= max
𝑗∈ch(𝑖)

max
𝐰𝑖𝑗∈𝑖𝑗

𝑤𝑖𝑗𝑀 𝑗 = 𝑀 𝑖 .

If 𝑖 is a product node, we have that

max
𝐱miss

max
𝐰

∏
𝑗∈ch(𝑖)

S𝑗𝐰𝑗
(𝐱miss) = ∏

𝑗∈ch(𝑖)
max
𝐱miss

max
𝐰𝑗

S𝑗𝐰𝑗
(𝐱miss, 𝐱obs)

= ∏
𝑗∈ch(𝑖)

𝑀 𝑗 = 𝑀 𝑖 .

The weights 𝐰𝑗 in the first equation can be optimized independently for each 𝑗 ∈ ch(𝑖), and

the disjointedness of scopes for product nodes ensures that no weight is shared among

the child sub-networks.

If we memorize the values computed, then each node computes one value 𝑀 𝑖
in poly-

nomial time in the number of edges of the network, considering that the local optimization

over weights 𝑤𝑖𝑗 is polynomial (which is the case for most sensible credal SPNs). Therefore



4.3 | ROBUSTNESS OF MAXIMUM-A-POSTERIORI INFERENCES IN SELECTIVE SUM-PRODUCT NETWORKS

33

the total cost of this computation is 𝑂(|S|).

Theorems 4.1.1 and 4.2.1 justify our focus on selective SPNs, where deciding if an MAP

instantiation is robust is tractable.

Example 4.2.1. Consider the CSPN in Figure 3.1. We want to compute Equation 4.1 for

maximazing variables 𝐱miss = {𝑋 , 𝑍} and evidence 𝐱obs = {𝑌 = 1}, using the algorithm

in Equation 4.2

.215

.47 .26

1 .73 .64

1 0 1 1

.28 .91

1 0 1 1

1

As the result of the algorithm, we obtain the upper probability of MAP instantiation at

the root, that is 0.215.

4.3 Robustness of Maximum-A-Posteriori Inferences
in Selective Sum-Product Networks

The following algorithm decides if a MAP instantiation, 𝐱∗, is robust, by traversing the

network from the leaves to the root, computing, for each node 𝑖:

𝑉 𝑖 =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎩

1, if 𝑖 is a consistent leaf node,

0, if 𝑖 is an inconsistent leaf node,

∏
𝑗
𝑉 𝑗 , if 𝑖 is a product node,

max
{

max
𝑗∈ch(𝑖),𝑗≠𝑘

𝑈 𝑗 , 𝑉 𝑘

}
, if 𝑖 is a sum node,

(4.3)

where 𝑘 is the maximizing child of node 𝑖 when MAP instantiation x∗,xobs
was computed

in S and:

𝑈 𝑗 = max
𝐰𝑖∈𝑖

𝑤𝑖𝑗𝑀 𝑗

𝑤𝑖𝑘𝐿𝑘(x∗,xobs)
.

The values 𝑀 𝑗
and 𝐿𝑘 are computed, respectively, using the algorithm previously described,

and the algorithm for computing lower evidence probability.

The following result states the soundness and complexity of the algorithm for tree-

shaped networks.



34

4 | TRACTABLE GLOBAL QUALITATIVE SENSITIVITY ANALYSIS FOR MAXIMUN A POSTERIORI INFERENCE

Theorem 4.3.1. Consider a tree-shaped selective CSPN {S𝐰 ∶ 𝐰 ∈ } with root 𝑟 , where 
is the Cartesian product of finitely-generated polytopes 𝑖 , one for each sum node 𝑖. Then 𝑉 𝑟

computes

max
𝐱miss

max
𝐰∈ (

S𝐰(𝐱miss, 𝐱obs)
S𝐰(𝐱∗, 𝐱obs) )

in 𝑂(|S|) time, where |S| is the number of nodes and arcs in the model (assuming the opti-

mizations over 𝐰𝑖 in 𝑈𝑗 can be performed in linear time).

Proof. We prove that the algorithm is correct by induction in the height ℎ of S. The base

case for h=0 is immediate. So assume that the inductive hypotheses is valid for networks

of height ℎ ≥ 0 or smaller, and consider a network of height ℎ + 1 whose root is 𝑖. Assume

that 𝑖 is a sum node. The tree shape of the network implies that the weights 𝐰𝑗 that appear

in a sub-network S𝑗 , 𝑗 ∈ ch(𝑖), do not appear in any other sub-network S𝑗′ , 𝑗′ ∈ ch(𝑖), 𝑗′ ≠ 𝑗.
Denote by 𝑗 the subset of 𝑣𝑎𝑙(𝐱miss) for which S𝑗(𝐱miss, 𝐱obs) > 0. We have that

max
𝐱

max
𝐰

S𝐰(𝐱miss, 𝐱obs)
S𝐰(x∗, 𝐱obs)

= max
𝑗∈ch(𝑖)

max
𝐰

𝑤𝑖𝑗 max𝐱miss∈𝑗 S
𝑗
𝐰𝑗
(𝐱miss, 𝐱obs)

𝑤𝑖𝑘S𝑘𝐰𝑘
(x∗, 𝐱obs)

,

where 𝑘 is the child of 𝑖 for which S𝑘(x∗, 𝐱obs) > 0. For 𝑗 = 𝑘 it follows that

max
𝐰

𝑤𝑖𝑗 max𝐱miss∈𝑗 S
𝑗
𝐰𝑗
(𝐱miss, 𝐱obs)

𝑤𝑖𝑘S𝑘𝐰𝑘
(x∗, 𝐱obs)

= max
𝐱miss

max
𝐰𝑘

S𝑘𝐰𝑗
(𝐱miss, 𝐱obs)

S𝑘𝐰𝑘
(x∗, 𝐱obs)

= 𝑉 𝑘 .

For 𝑗 ≠ 𝑘, 𝐰𝑗 and 𝐰𝑘 can be optimized independently, as the network is tree-shaped. Hence,

max
𝐰

𝑤𝑖𝑗 max𝐱miss∈𝑗 S
𝑗
𝐰𝑗
(𝐱miss, 𝐱obs)

𝑤𝑖𝑘S𝑘𝐰𝑘
(x∗, 𝐱obs)

= max
𝐰𝑖∈𝑖

𝑤𝑖𝑗 max
𝐱miss

max
𝐰𝑗

S𝑗𝐰𝑗
(𝐱miss, 𝐱obs)

𝑤𝑖𝑘 min
𝐰𝑘

S𝑘𝐰𝑘
(x∗, 𝐱obs)

= max
𝐰𝑖∈𝑖

𝑤𝑖𝑗𝑀 𝑗

𝑤𝑖𝑘𝐿𝑘(x∗, 𝐱obs)
= 𝑈 𝑗 .

If 𝑖 is a product node then

max
𝐱miss

max
𝐰 (

∏𝑗 S𝑗𝐰𝑗
(𝐱miss)

∏𝑗 S
𝑗
𝐰𝑗 (x∗) )

= max
𝐱miss

max
𝐰

∏
𝑗∈ch(𝑖)

S𝑗𝐰𝑗
(𝐱miss, 𝐱obs)

S𝑗𝐰𝑗 (x∗, 𝐱obs)

= ∏
𝑗
max
𝐱miss

max
𝐰𝑗

S𝑗𝐰𝑗
(𝐱miss, 𝐱obs)

S𝑗𝐰𝑗 (x∗, 𝐱obs)

= ∏
𝑗
𝑉 𝑗 = 𝑉 𝑖 .

Computing 𝑉 𝑖
for a node 𝑖 with the values of the children pre-computed and stored takes

at most linear time in the number of children. Hence, the total cost of the computation is

𝑂(|S𝑘 |).

Note that the complexity of verifying robustness in tree-shaped selective CSPNs is
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in the same order as the complexity of computing MAP inference in selective SPNs, so

that the additional robustness check can be included in any application using SPNs to

produce MAP inference with little overhead. The complexity of deciding robustness for

multiply-connected selective CSPNs remains an open question.

Example 4.3.1. Consider the CSPN in Figure 3.1 and the evidence 𝐱obs = {𝑌 = 1}, we

want to perform robustness analysis of the MAP configuration x∗ = {𝑋 = 1, 𝑍 = 1}. The

nodes are assigned the values 𝑉 𝑖
when they are computed. The highlighted edges represent

the active nodes of the precise (original) selective SPN (i.e., the ones in TS(𝐱∗, 𝐱obs)).

1.34

1 1

1 1 1

1 0 1 0

1 1

1 0 1 0

0

The figure displays the values of 𝑉 𝑖
for the corresponding nodes computed using Equa-

tion 4.3 (note that 𝑉 𝑖
is computed only for nodes in the circuit tree of 𝐱∗, 𝐱obs

). The MAP

instance is considered not robust because 𝑉 𝑟 = 𝑈 𝑟
, where 𝑈 𝑟 = 𝑤 𝑖𝑗𝑀 𝑗

𝑤 𝑖𝑘𝐿𝑘 (x∗,𝐱obs) as computed in

examples 4.2.1 and 3.2.1 respectively, 𝑈 𝑟 = (0.64 ∗ 0.26)/0.122 ≈ 1.34 > 1.

4.4 Experiments
We perform experiments on real-world datasets to show that our algorithm for global

qualitative sensitivity analysis of MAP inferences in selective SPNs can discriminate

between easy- and hard-to-classify instances, often more accurately than criteria based on

(precise) probabilities induced by the model. We present experiments first with selective

CSPNs and then with CSDDs, exploring the logical representation provided by such

models.

4.4.1 Estimating MAP Robustness in Selective Sum-Product
Networks

We evaluate the ability of our proposed method to distinguish between robust and

and non-robust MAP inferences in two different tasks. The first task consists in learning a

probabilistic model from complete data and then using that model to complete the missing

values in the test data by maximizing the joint probability value of each instance (this

is known as data imputation in the literature). We let 𝐗miss
be the missing part and 𝐱obs

the non-missing part. The second task considers multilabel classification, which extends

standard classification by allowing each object be assigned multiple labels. This task can

be solved by representing the presence/absence of labels as a binary vector 𝐱∗, which can

be predicted by a probabilistic model given a realization of features 𝐱obs
.
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Experimental Set-Up

For both tasks, we learn selective SPNs using the algorithm by Peharz et al. (Peharz,

Gens, and Domingos, 2014). We then obtain CSPNs using the two methods described in

Chapter 2, either by a non-local perturbation, where all the parameters are perturbed by

the same value, using non-local perturbation as presented in Equation(3.2), or by local

perturbation, which varies the imprecision by the amount of data used to learn each

parameter using Equation(3.3), setting the level of imprecision to 𝜖 or 𝑠, respectively

(more on this later). We use the CSPNs to classify each MAP inference drawn with the

(precise) SPN as either robust or non-robust, and compare the performance of the robust

and non-robust classifications.

We expect that the performance (e.g., accuracy) of instances classified as robust will

be higher than that of instances classified as non-robust, indicating that our approach

provides useful information about the robustness of MAP inferences. We also compare

our methods against a baseline robust analysis that computes the difference between

the probability of the MAP instantiation and the second-best MAP instantiation (i.e., the

second most likely configuration consistent with the evidence). An instance is considered

robust in this scheme if this difference is greater than a given threshold, we call this crieria

as probability difference.

Completion

We start with the completion task. For this purpose, we learned selective SPNs from

four well-known density estimation datasets(Davis and Domingos, 2010), available at

https://github.com/arranger1044/DEBD. The selected datasets and their characteristics

are listed in Table 4.1. These datasets are complete (i.e., have no missing values), are divided

into training, validation and test parts, and had the variables been binarized. We build

completion tasks using the test examples by running MAP inference on the first 50% of

the variables (as they appear in the file), with the remaining variables given as evidence.

We use the available training/validation/test partition in the datasets to respectively learn,

select hyperparameters, and evaluate the methods, respectively.

Dataset Training Examples Test Examples Evidence Vars. Query Vars.

Jester 9000 4116 50 50

NLTCS 16181 3236 8 8

MSNBC 291326 58265 9 8

Table 4.1: Characteristics of datasets used in completion tasks.

We measure the performance of the completions either by Hamming Score (HS) or

by the Exact Match (EM) metric. The Hamming score measures the percentage of correct

value completions:

𝐻𝑆 =
1
𝑁𝐿

𝑁

∑
𝑖=1

𝐿

∑
𝑗=1

𝕀(𝑥 ∗𝑖,𝑗 = 𝑥̂𝑖,𝑗) ,

where 𝐱∗𝑖 is the ith MAP instantiation, x̂𝑖 is the ith true completion, 𝑥 ∗𝑖,𝑗 and 𝑥̂𝑖,𝑗 are single

values of the MAP and the true completion, respectively; 𝑁 is the number of instances

https://github.com/arranger1044/DEBD
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and 𝐿 is the number of missing values (50% of the number of variables in this case) or

labels. This metric can be misleadingly high if one value (say, 0) is much more frequent

than the other values across a large number of variables (so simply predicting that value is

accurate); it is also maximized by selecting for each variable, independently, the value that

maximizes the conditional marginal probability given the evidence. Exact match addresses

some of these issues, by calculating the percentage of perfect completions:

𝐸𝑀 =
1
𝑁

𝑁

∑
𝑖=1

𝕀(x∗
𝑖 = x̂𝑖) .

Exact match is often too strict, as a completion that misassigns the value of a single variable

and one that misassigns values for all variables are scored equally. This leads to a high

variance estimator, especially for small datasets. In combination, the two metrics help to

evaluate completions from different perspectives.

Table 4.2 contains the performance metrics of the completions performed with (precise)

SPN model. Note that the Exact Match value is very low for the Jester dataset; Hamming

score on the hand is relatively high for all datasets, especially NLTCS.

Dataset Exact Match Hamming Score

Jester 0.003 0.69

NLTCS 0.37 0.81

MSNBC 0.25 0.78

Table 4.2: Performance of completions with the (precise) SPN.

We first perform experiments in which we select the values of 𝜖, 𝑠 and 𝑝 for local, non

local methods to obtain a CSPN and the probability difference threshold so that at least

half of the instances in the test set are classified as robust (as a small increase of any of

these parameters can “turn” the classification of several instances, we cannot adjust for

a equal split of the instances). This scenario corresponds to a moderately conservative

approach.

The performance of the completions (made with the precise SPN) in the robust and

in the non-robust parts of the set are show in Table 4.3; 𝜖, 𝑠 and 𝑝 stand, respectively, for

local, non-local perturbations and the probability difference criteria. The best performing

method for each dataset and partition (robust/non-robust) appears in bold.

Considering the Jester dataset, the instances deemed robust by the CSPN-based analyses

had a much higher exact match than the instances deemed non-robust (which had zero

score). The probability difference criterion on the other hand considered all instances as

robust.

Regarding Hamming score, the set of deemed robust instances obtained with non-local

perturbation scored lower than the set of deemed non-robust instances, although this

difference was very small. The classifications with the local perturbation models faired

much better; robust instances achieved 0.02 points higher score than non-robust instances.

One possible explanation for the behavior of the methods is that, despite the fact that this

dataset has less data compared to its dimension, most completions are relatively robust
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Dataset

Exact Match Hamming Score

Method %𝐼 𝑅𝑜𝑏𝑢𝑠𝑡 ¬𝑅𝑜𝑏𝑢𝑠𝑡 Δ𝐸𝑀 𝑅𝑜𝑏𝑢𝑠𝑡 ¬𝑅𝑜𝑏𝑢𝑠𝑡 Δ𝐻𝑆

Jester

𝜖 = 0.01 50.02 0.004 0.001 0.003 0.67 0.71 -0.04

𝑠 = 5 76.17 0.005 0.001 0.004 0.71 0.63 0.02
𝑝 = 0 100 0.003 – – 0.69 – –

NLTCS

𝜖 = 0.07 54.36 0.52 0.19 0.33 0.86 0.75 0.11

𝑠 = 50 48.2 0.56 0.2 0.36 0.88 0.75 0.13

𝑝 = 0.17 55.96 0.54 0.16 0.38 0.87 0.73 0.14

MSNBC

𝜖 = 0.025 51.04 0.35 0.14 0.21 0.84 0.72 0.12
𝑠 = 700 62.21 0.26 0.22 0.04 0.78 0.79 -0.01

𝑝 = 0.13 91.69 0.25 0.17 0.08 0.78 0.77 0.01

Table 4.3: Performance of completions when roughy 50% of instances are deemed robust; the symbol

– is used to indicate that all instances have been deemed robust by the corresponding criterion.

(to perturbations), and assuming that about half of the instances are non-robust is too

conservative.

Considering the NLTCS dataset, all three methods performed similarly, with the accu-

racy of instances deemed robust w.r.t. CSPNs obtained by the local perturbation slightly

outperforming the other methods in terms of both Hamming Score and Exact Match; and

with probability difference slightly outperforming the other criteria in terms of difference

between scores in robust/non-robust instances. We can explain the result as stating that

most of the lack of robustness in completions is due to the existence of multiple high

probability instantiations (these produce lower probability difference scores but are also

most likely considered non-robust w.r.t. CSPNs).

For the MSBNC dataset, the CSPN-based approach using non-local perturbation is

the better at discriminating accurate and inaccurate completions: the robust instances

have higher scores, and the difference is also greater. Local perturbation based inferences

show a small difference (with non-robust instances obtaining very slightly higher score)

and do probability difference inferences (with robust instances have very slightly higher

score).

We also performed a more conservative scenario where the values of 𝜖, 𝑠 and the

probability difference threshold are set so that about 10% of the instances in the test set

are deemed robust. The results are in Table 4.4.

The results are qualitatively similar to the previous scenario. In the Jester dataset, the

criteria based on CSPNs do distinguish instances with higher Exact Match, although the

increase is small with respect to the score of instances deemed non-robust. In the NLTCS

dataset, all results obtain identical performance. In the MSNBC, probability difference

discriminates better robust (accurate) and non-robust (inaccurate) instances.

To have a more complete picture of the ability that each method provides for discrimi-

nating robust and non-robust instances, we computed, for each instances the maximum

value of imprecision (𝜖 or 𝑠) such that the instance is considered robust. Call such value

the robustness of that instance. Figure 4.3 shows the test-set performance versus the

robustness of instances (solid lines) for both Exact Match and Hamming Score. We also
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Dataset

Exact Match Hamming Score

Method %𝐼 𝑅𝑜𝑏𝑢𝑠𝑡 ¬𝑅𝑜𝑏𝑢𝑠𝑡 Δ𝐸𝑀 𝑅𝑜𝑏𝑢𝑠𝑡 ¬𝑅𝑜𝑏𝑢𝑠𝑡 Δ𝐻𝑆

Jester

𝜖 = 0.035 12.17 0.018 0.001 0.017 0.71 0.69 0.02

𝑠 = 25 10.84 0.018 0.001 0.017 0.71 0.69 0.02

𝑝 = 1.18𝑒 − 6 10.67 0.005 0.002 0.003 0.81 0.68 0.13

NLTCS

𝜖 = 0.15 25.06 0.74 0.25 0.49 0.93 0.77 0.16

𝑠 = 200 25.06 0.74 0.25 0.49 0.93 0.77 0.16

𝑝 = 0.6 25.06 0.74 0.25 0.49 0.93 0.77 0.16

MSNBC

𝜖 = 0.085 9.49 0.35 0.23 0.12 0.84 0.77 0.07

𝑠 = 2100 8.94 0.39 0.23 0.16 0.85 0.78 0.07

𝑝 = 0.31 16.08 0.46 0.2 0.26 0.88 0.77 0.11

Table 4.4: Performance of completions when roughly 10% of instances are considered robust (for

each method); the symbol – is used to indicate that all instances have been deemed robust by the

corresponding criterion.

plot the percentage of instances that have robustness value no less than that amount

(dashed lines). For comparison, we plot in the last column the performance against the

probability difference for each possible threshold (e.g. for a threshold of zero all instances

are robust, and for a threshold of 1 no instance is robust).

We see that for all three approaches the performance increases monotonically with

the robustness value, except when the the number of instances is very small (say, < 1% of

the testset). Interestingly, the correlation between robustness and performance is positive

when using non-local perturbation even for these extreme scenarios.

Although some results suggest a slight advantage of CSPN-based robustness analysis

these results are still inconclusive; we conjecture that this can be explained by these

datasets not being complex enough to verify a lack of robustness in the (smoothed) MLE

estimates of weights

Multilabel Classification

We also performed a robustness analysis of multilabel classification on 9 benchmark

datasets. These datasets have been widely used in Multilabel task using Probabilistic

Circuits (Di Mauro et al., 2016; Villanueva Llerena and Mauá, 2017) and are available

at https://github.com/nicoladimauro/dcsn and http://meka.sourceforge.net.

Table 4.5 shows general characteristics of the datasets used: number of training in-

stances, number of test instances (𝑁 ), number of evidence variables (𝑀), number of labels

𝐿, label cardinality 𝐿𝐶 = 1
𝑁 ∑𝑁

𝑖=1∑
𝐿
𝑗=1 𝑥 ∗𝑖𝑗 𝑥̂𝑖𝑗 and label density 𝐿𝐷 = 1

𝑁 ∑𝑁
𝑖=1

∑𝐿
𝑗=1 𝑥 ∗𝑖𝑗 𝑥̂𝑖𝑗
𝑅 .

In addition to Exact Match, we also evaluate multilabel classifications by a metric com-

monly used in the multilabel classification literature (Dembczyński et al., 2012; Di Mauro

et al., 2016), which rewards correctly predicted labels while discounting for incorrectly

predicted ones. We name this metric Accuracy (Acc for short), and compute it as:

https://github.com/nicoladimauro/dcsn
http://meka.sourceforge.net
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Non-local Method Local Method Prob. Diff.
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Figure 4.3: Test-set performance vs. robustness vs. proportion of instances for completion tasks. Each

two rows display results for a dataset. The curves in blue show results for Exact Match score, while

the curves in green show results for the Hamming score, dashed curves show instance percentage.
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Dataset #Training #Test Evidence Vars L LC LD

Arts 5389 1496 500 26 1.65 0.06

Business 8073 2244 500 30 1.6 0.05

Emotions 426 119 72 6 1.87 0.31

Flags 140 38 19 7 3.39 0.48

Health 6626 1842 500 32 1.64 0.05

Human 2235 622 440 14 1.19 0.08

Plant 703 196 440 12 1.08 0.09

Scene 1734 480 294 6 1.07 0.18

Yeast 1739 484 103 14 4.24 0.30

Table 4.5: Multi-Label Datasets, number of training instances, number of test instances (𝑁 ), number

of evidence variables (𝑀), number of labels 𝐿, label cardinality (𝐿𝐶) and label density (LD).

𝐴𝑐𝑐 =
1
𝑁

𝑁

∑
𝑖=1

∑𝐿
𝑗=1 𝑥 ∗𝑖𝑗 𝑥̂𝑖𝑗

∑𝐿
𝑗=1(𝑥 ∗𝑖𝑗 + 𝑥̂𝑖𝑗 − 𝑥 ∗𝑖𝑗 𝑥̂𝑖𝑗)

,

where again 𝑁 is the test dataset size, x∗
is the MAP inference and x̂ the true labels. We do

not use Hamming Score, as it does not distinguish between correct prediction of presence

and absence of labels, and can lead to overoptimistic measures when the number of labels

is high and label density is low.

Similar to the previous task, we select values for 𝜖, 𝑠 and 𝑝 so that roughly either 10%

or 50% of instances are robust. The results for when about 50% of instances are robust are

summarized in Table 4.6.

The results show that all three methods perform, on average, very similarly. Some

notable exceptions appear for the Emotions, Flags and Health datasets. In the Emotions,

Flags and Health datasets, robust instances according to the CSPN-based approach have

signficantly higher accuracy that the robust instances according to probability difference,

while only slightly higher exact match values. Probability difference outperforms the

other methods with respect to accuracy on the Arts dataset, although the three methods

fail to distinguish robust inferences. CSPN-based approaches perform at least as well

as Probability Difference for almost all of the datasets, with the exception of the Arts

dataset.

The results for about 10% of robust instances are shown in Table 4.7. The results are

qualitatively the same, although CSPN-based approaches outperform probability difference

on most datasets, in some cases with a very significant difference, such as Flags, Health

and Scene datasets. CSPNs obtained by non-local perturbation now achieve the best

performance on the Arts dataset, while CSPNs obtained by local perturbation still perform

poorly, it is important to note that the percentage of instances considered by the former is

smaller than by the latter.

Overall, our results suggest that a CSPN-based robustness analysis can be carried out

efficiently, and provide useful information for the analyst. It very often improves on the

ability to detect the most accurate instances, occasionally much more effectively than

using the probability estimates of the model.
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Dataset

Accuracy Exact Match

Method %𝐼 𝑅𝑜𝑏𝑢𝑠𝑡 ¬𝑅𝑜𝑏𝑢𝑠𝑡 Δ𝐴𝑐𝑐 𝑅𝑜𝑏𝑢𝑠𝑡 ¬𝑅𝑜𝑏𝑢𝑠𝑡 Δ𝐸𝑀

Arts

𝜖 = 0.045 51.1 0.1 0.31 -0.21 0.07 0.23 -0.16

𝑠 = 20 56 0.1 0.34 -0.24 0.08 0.24 -0.16

𝑝 = 0.19 53.8 0.17 0.24 -0.07 0.15 0.16 -0.01

Business

𝜖 = 0.13 63.5 0.76 0.6 0.16 0.62 0.43 0.19

𝑠 = 240 56.6 0.78 0.61 0.17 0.64 0.42 0.22
𝑝 = 0.39 57.5 0.77 0.62 0.15 0.63 0.43 0.2

Emotions

𝜖 = 0.08 49.6 0.54 0.35 0.19 0.24 0.12 0.12
𝑠 = 8 56.3 0.51 0.35 0.16 0.22 0.12 0.1

𝑝 = 0.042 66.4 0.44 0.45 -0.01 0.15 0.23 -0.08

Flags

𝜖 = 0.03 48.7 0.64 0.4 0.24 0.22 0.1 0.12

𝑠 = 1 48.7 0.64 0.41 0.23 0.22 0.1 0.12

𝑝 = 0.29 46 0.58 0.47 0.11 0.22 0.1 0.12

Health

𝜖 = 0.045 50.8 0.65 0.46 0.15 0.54 0.29 0.25
𝑠 = 40 53.2 0.61 0.49 0.12 0.51 0.31 0.2

𝑝 = 0.32 52.9 0.62 0.48 0.14 0.52 0.3 0.22

Human

𝜖 = 0.04 92.8 0.22 0.06 0.16 0.15 0.04 0.11
𝑠 = 35 92.8 0.22 0.06 0.16 0.15 0.04 0.11
𝑝 = 0.1 83.1 0.22 0.11 0.11 0.16 0.08 0.08

Plant

𝜖 = 0.05 58.2 0.36 0.12 0.24 0.35 0.12 0.23

𝑠 = 20 55.6 0.37 0.13 0.24 0.36 0.13 0.23

𝑝 = 0.3 55.6 0.37 0.13 0.24 0.37 0.13 0.24

Scene

𝜖 = 0.2 61.9 0.2 0.5 -0.3 0.2 0.35 -0.15

𝑠 = 45 52.3 0.25 0.38 -0.13 0.22 0.28 -0.06
𝑝 = 0.23 55.6 0.21 0.44 -0.13 0.21 0.31 -0.1

Yeast

𝜖 = 0.007 96.7 0.43 0.18 0.25 0.1 0 0.1

𝑠 = 1 97.7 0.43 0.19 0.24 0.1 0 0.1

𝑝 = 0.08 97.3 0.43 0.2 0.23 0.1 0 0.1

Table 4.6: Performance of multilabel classifications when about 50% of instances are robust.
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Dataset

Accuracy Exact Match

Method %𝐼 𝑅𝑜𝑏𝑢𝑠𝑡 ¬𝑅𝑜𝑏𝑢𝑠𝑡 Δ𝐴𝑐𝑐 𝑅𝑜𝑏𝑢𝑠𝑡 ¬𝑅𝑜𝑏𝑢𝑠𝑡 Δ𝐸𝑀

Arts

𝜖 = 0.057 1.3 0.89 0.2 0.69 0.84 0.14 0.7
𝑠 = 210 24.9 0 0.27 -0.27 0 0.2 -0.2

𝑝 = 0.23 10.2 0.74 0.14 0.6 0.66 0.09 0.57

Business

𝜖 = 0.13 63.5 0.76 0.6 0.16 0.62 0.43 0.19
𝑠 = 520 43.2 0.78 0.65 0.13 0.64 0.48 0.16

𝑝 = 0.41 46.6 0.77 0.65 0.12 0.63 0.47 0.16

Emotions

𝜖 = 0.13 16 0.64 0.41 0.23 0.26 0.16 0.1

𝑠 = 30 10.9 0.69 0.41 0.28 0.31 0.16 0.15
𝑝 = 0.27 22.7 0.6 0.4 0.2 0.19 0.17 0.02

Flags

𝜖 = 0.06 10.5 0.92 0.47 0.45 0.5 0.12 0.38
𝑠 = 1 10.5 0.92 0.47 0.45 0.5 0.12 0.38
𝑝 = 0.51 15.8 0.72 0.48 0.24 0.33 0.13 0.2

Health

𝜖 = 0.05 6.2 0.73 0.55 0.18 0.56 0.41 0.15

𝑠 = 160 38 0.66 0.5 0.11 0.56 0.33 0.23
𝑝 = 0.34 48.1 0.64 0.48 0.16 0.53 0.31 0.22

Human

𝜖 = 0.04 92.8 0.22 0.06 0.16 0.15 0.04 0.11

𝑠 = 35 92.8 0.22 0.06 0.16 0.15 0.04 0.11

𝑝 = 0.11 42.6 0.21 0.2 0.01 0.16 0.14 0.02

Plant

𝜖 = 0.1 25 0.24 0.27 -0.03 0.22 0.27 -0.05

𝑠 = 36 23.5 0.25 0.26 -0.01 0.24 0.26 -0.02

𝑝 = 0.55 23.5 0.25 0.26 -0.01 0.24 0.26 -0.02

Scene

𝜖 = 0.3 10 0.75 0.26 0.49 0.75 0.19 0.56
𝑠 = 150 13.3 0.2 0.33 -0.13 0.2 0.26 -0.06

𝑝 = 0.35 24.2 0.3 0.3 0 0.3 0.23 0.07

Yeast

𝜖 = 0.11 5.8 0.44 0.42 0.02 0.07 0.1 -0.03

𝑠 = 5 6.2 0.42 0.42 0 0.07 0.1 -0.03

𝑝0.085 1.1 0.37 0.42 -0.05 0.2 0.1 0.1

Table 4.7: Performance of multilabel classifications when about 10% of instances are robust.

4.4.2 Estimating prediction robustness on Credal Sentential
Decision Diagrams

As an application for MAP robustness on CSDDs, we consider the simple task of

identification of digits depicted by a seven-segment display, whose segments might fail to

turn on given a failure probability 𝑝𝑓 described in Example 2.3.3 in Chapter 3. Our problem

is modeled by fourteen Boolean variables: 𝑿 = (𝑋1, … , 𝑋7) and 𝑶 = (𝑂1, … , 𝑂7), where the

former refer to the states of the segments as decided by the control unit, and the latter are

the real states of the segments as depicted in the display. The true state of these Boolean

variables corresponds to the segment on, digits configuration 𝑿 is provided by disjunctive

formula

We use the algorithm proposed in (A. Choi and Darwiche, 2013) to build an SDD 𝛼
normalized for a vtree such that, for each 𝑖 = 1, … , 7, the pair (𝑋𝑖 , 𝑂𝑖) corresponds to a pair

of leaves with the same parent and with a so-called balanced shape. The resulting SDD
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has a multiply connected structure, 128 nodes (82 of them decision nodes) and maximum

number of elements for decision node equal to eight.

Given a training data set 𝐝 of size 𝑁 , generated according to the above described

procedure, we can obtain from 𝛼 a PSDD or a CSDD. In the second case, we use non-local

perturbation method with the sample size 𝑠 = 1 to learn the CSDD.

We pWe compare the performance of robust and non-robust MAP instances. In practice,

we compute the MAP configuration of 𝑿 = 𝒙 ∗
given 𝒐 in the PSDD and use Algorithm

4.3 to check whether or not the configuration was robust. The corresponding accuracies

of robust and non robust intances are reported in Figure 4.4 only for 𝑁 ≥ 20 as for lower

training set size the amount of detected digits is very low in both cases. As expected, the

CSDD is properly able to distinguish these two sets and keeps a level of accuracy very

close to one even for high perturbation levels (the value of 𝑝𝑓 only affects the percentage

of robust instances).
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Figure 4.4: PSDD robust vs. non-robust MAP instantions accuracies
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Chapter 5

Tractable Qualititative Sensitivity
Analysis of Inference under
Missing Not At Random Data

This chapter concerns prediction of data when some of the values are not observed. For

example, respondents in a household survey may refuse to report income; in an industrial

experiment some measures for sensors are missing because of mechanical breakdowns

unrelated to the experiment. Commonly, the lack of response is essentially an additional

point in the sample space of the variable being measured. An interesting example of data

where the missing data mechanism is relevant is recommender systems. Recommender

systems play an essential role in such highly rated sites as Amazon.com, YouTube and

Netflix, most part of these platforms allow users to rate the items at their discretion, thus if

a user does not rate a particular item, it also provides some relevant information about the

user preferences. The data used to build recommendation systems is often a matrix with

one row per user and one column per item, Figure 5.1 shows a toy example of a tabular

dataset of user preferences for books with some missing preferences. Collaborative filtering

methods use probabilistic models to predict the unseen ratings using the collaborations of

user ratings, and then recommend items with the higher predicted ratings (Murphy, 2020;

Marlin, Zemel, Sam, et al., 2007).

Figure 5.1: User preferences for books, an example of tabular data with missing values
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5.1 Missing Data

We formalize the problem of missing data as follows. Let 𝐱 be a dataset with missing

and observable values 𝐱 = {𝐱obs, 𝐱miss}, where 𝑥 𝑖𝑗 represents the value of variable 𝑋𝑗 in the

instance 𝑖, and 𝑥𝑗,𝑣 is an indicator variable that represents that 𝑋𝑗 takes on value 𝑣. Let 𝐫
be a matrix of response-data indicators where 𝑟 𝑖𝑗 = 1 if 𝑥 𝑖𝑗 is observed and 0 otherwise. The

joint distribution over the data and response indicators is given by:

ℙ(X, 𝐑) = ℙ𝜃 (𝐗)ℙ𝜇(𝐑|𝐗) , (5.1)

where ℙ𝜃 (𝐗) is the data model (or sampling model), ℙ𝜇(𝐑|𝐗) is the selection model or

response model, and 𝜃 and 𝜇 are parameters that specify the models.

Data is missing completely at random (MCAR) when the missing-data mechanism does

not depend on any variable. In the case of missingness obtained at random (MAR), the

missing data mechanism depend only on the observed values (Rubin, 1976), that is,

ℙ𝜇(𝐫|𝐱) = ℙ𝜇(𝐫|𝐱obs). (5.2)

We say that data is missing not at-random (MNAR) if the distribution of missing data

mechanism does depend on observed and missing values, also called non-ignorable missing

data (Rubin, 1976), that is, if:

ℙ𝜇(𝐫|𝐱) ≠ ℙ𝜇(𝐫|𝐱obs, 𝐱′), for any 𝐗′ ⊊ 𝐗miss. (5.3)

where 𝐗′ ⊊ 𝐗miss
represent a subset of the missing variables.

Several methods have been proposed to deal with missing data most of then supported

by the MAR assumption, such value imputation and marginalization (Azur et al., 2011;

Correia et al., 2020). A notable approach to dealing with MAR missing data for Decision

Trees at learning and prediction time is to compute expected predictions using PCs, taking

advantage of the tractable computation of marginals (Khosravi, Vergari, et al., 2020). In

some realistic applications, such as recommender systems, the MAR hypothesis is violated.

Therefore, using imputation or marginalization can lead to unreliable predictions.

In the rest of this chapter, we propose efficient methods for qualitative sensitivity

analysis of inference under missing not at random data. If the MNAR mechanism is known

at both training and prediction time, we can learn a single probabilistic circuit to represent

both the model and the response model. In real-world problems, we rarely have access to

the missingness mechanism. If the MNAR data is only available at prediction time, we can

quantify the effect of different imputations of the missing values to decide which values

are the most likely classification under some imputation. Alternatively, we could use a

curated (but very small) dataset to estimate an imprecise response model, or rely on expert

knowledge.
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5.2 Prediction in the Presence of Missing Data

Suppose we are interested in using a probabilistic circuit, learned from complete

training data (i.e., with no missing values), to predict the most likely value of a target

variable 𝑌 ∈ 𝐗miss
given a configuration 𝐱obs

of some of the other variables. Assuming the

unobserved values (including 𝑌 ) are missing at random (MAR) we have:

argmax
𝑦

ℙ(𝑦|𝐱obs, 𝐫) = argmax
𝑦

∑
𝐱miss

ℙ𝜃 (𝑦, 𝐱obs, 𝐱miss)ℙ𝜇(𝐫|𝐱obs𝐱miss, 𝑦) (5.4)

= argmax
𝑦

ℙ𝜇(𝐫|𝐱obs)∑
𝐱miss

ℙ𝜃 (𝑦, 𝐱obs, 𝐱miss) (5.5)

= argmax
𝑦

∑
𝐱miss

ℙ𝜃 (𝑦, 𝐱obs, 𝐱miss). (5.6)

The last equation specifies a univariate MAP inference computation in a PC S that specifies

the data model:

argmax
𝑦

ℙ𝜃 (𝑦|𝐱obs) = argmax
𝑦

S(𝑦, 𝐱obs) (5.7)

where S(𝑦, 𝐱obs) = ∑𝐱miss S(𝑦, 𝐱obs, 𝐱miss) is the marginal value of the circuit at 𝑦 and 𝐱obs
,

which can be obtained in linear time as discussed.

When the missingness is not ignorable (MNAR) the inference in (5.7) can lead to

erroneous and unreliable conclusions. For example, asssume that ℙ𝜇(𝐫|𝐱) = ∏ℙ𝜇(𝐫𝑖 |𝐱𝑖).
Then:

argmax
𝑦

ℙ(𝑦|𝐱obs, 𝐫) = argmax
𝑦

ℙ𝜃 (𝑦|𝐱obs)ℙ𝜇(𝐫|𝐱obs, 𝑦) (5.8)

= argmax
𝑦

ℙ𝜃 (𝑦|𝐱obs)∑
𝐱miss

ℙ𝜇(𝐫|𝐱obs, 𝐱miss, 𝑦)ℙ𝜃 (𝐱miss|𝐱obs, 𝑦) (5.9)

= argmax
𝑦

ℙ𝜃 (𝑦|𝐱obs)ℙ𝜇(𝐫obs|𝐱obs)∑
𝐱miss

ℙ𝜇(𝐫miss|𝐱miss)ℙ𝜃 (𝐱miss|𝐱obs, 𝑦)

(5.10)

= argmax
𝑦

ℙ𝜃 (𝑦|𝐱obs)∑
𝐱miss

ℙ𝜇(𝐫miss|𝐱miss)ℙ𝜃 (𝐱miss|𝐱obs, 𝑦) (5.11)

= argmax
𝑦

ℙ𝜃 (𝑦|𝐱obs)ℙ(𝐫miss|𝐱obs, 𝑦). (5.12)

where the sums are over the configurations 𝐱miss
that are consistent with 𝑦 .

The difference between Equation 5.12 and 5.7 is the bias introduced by treating MNAR

data as MAR.

5.3 Augmented Network with Response Model

As we discussed before, to perform inference with non-ignorable missing data, in

addition to learn the data model to represent the relations between variables, it is important

to determinate the response model to represent the missingness mechanism. The response

model estimates the model over response indicators R, which refers to each indicator
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variable (Little and Rubin, 2014).

To perform prediction in the presence of MNAR data, we propose encoding the response

model into the structure of a PC learned from complete training data. This training data

must have the same distribution as the non-ignorable missing data. For example, popular

sources of complete data for recommendation systems are user surveys.

Furthermore, we assume that the absence of a variable depends exclusively on its

own value, ℙ𝜇(𝐫|𝐱) = ∏𝑖 ℙ𝜇𝑖 (𝑟𝑖 |𝑥𝑖). Note that this is true for MCAR data, as in the case

ℙ(𝑟 𝑖 |𝑥 𝑖) = ℙ(𝑟 𝑖).

Starting with a fixed PC structure and parameters learned from complete data, we then

incorporate sub-structures (PCs) to represent the response model. Replacing each leave

indicator node [[𝑋𝑗 = 𝑣]] by a circuit rooted with a product node with two children, the

first one is the original indicator [[𝑋𝑗 = 𝑣]] and the last one is a sum node with response

indicators [[𝑅𝑗,𝑣 = 0]] and [[𝑅𝑗,𝑣 = 1]] as children, which weights 𝜇𝑗,𝑣 and 1 − 𝜇𝑗,𝑣 . Figure 5.2b

shows the augmentation of the data model structure, shown in Figre 5.2a, by the response

model of variable 𝑋 .

Suppose we have available both a large MNAR sample ℙMNAR
and a small MAR sample

ℙMAR
, from which we want to estimate:

𝜇𝑗,𝑣ℙ𝜇𝑗 (𝑅𝑗,𝑣 = 1|𝑋𝑗 = 𝑣) =
ℙMNAR(𝑋𝑗 = 𝑣, 𝑅𝑗,𝑣 = 1)

ℙMAR(𝑋𝑗 = 𝑣)
. (5.13)

The probabilities in the numerator can be estimated from the MNAR sample as relative

frequencies as they mention only observable quantities, that is, ℙ(𝑋𝑗 = 𝑣, 𝑅𝑗,𝑣 = 1) =
ℙMNAR(𝑋𝑗 = 𝑣, 𝑅𝑗,𝑣 = 1). The denominator however includes cases where the value of 𝑋𝑗 is

missing not at random (i.e., 𝑅𝑗,𝑣 = 0) and thus a relative frequency estimator is biased and

inconsistent. We can however compute it from the MAR sample (MCAR):

ℙ(𝑋𝑗 = 𝑣) = ℙMAR(𝑋𝑗 = 𝑣) = ℙMAR(𝑋𝑗 = 𝑣|𝑅𝑗,𝑣 = 1) ,

We can perform inference in the augmented model by marginalizing missing variables

at data indicators and setting the corresponding values in response indicators to deal with

the missing process, the indicator [[𝑅𝑗,𝑣 = 1]] propagates 1 if 𝑋𝑗 = 𝑣 is observable and takes

value 𝑣, and [[𝑅𝑗,𝑣 = 0]] for all 𝑣 ∈ 𝑣𝑎𝑙(𝑋𝑗) propagates 1 if the value of 𝑋𝑗 is missing.

Example 5.3.1. Consider the model in Figure 5.2a as a PC learned from complete user

ratings for three items. We want to predict the rating item 𝑌 , that can take two posible

values, say we observe 𝑍 = 0 and𝑋 is missing due to the following MNAR process: ℙ(𝑅𝑥,0 =
1|𝑋 = 1) = 0.1, ℙ(𝑅𝑥,1 = 1|𝑋 = 1) = 0.3, ℙ(𝑅𝑥,2 = 1|𝑋 = 2) = 0.5, ℙ(𝑅𝑥,3 = 1|𝑋 = 3) = 0.8
and ℙ(𝑅𝑥,4 = 1|𝑋 = 4) = 0.9. We then encode the MNAR process using an augmented

model, as shown in Figure 5.2b. We use this model to evaluate the two values of 𝑌 and

classify the most likely one. Figure 5.3a shows the evaluation of the evidence 𝑍 = 0 for the

evaluation 𝑌 = 0, that is 0.232, while if we evaluate the model for 𝑌 = 1 the value of the

root is 0.0587, then the prediction obtained by our model is 𝑌 = 0.
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Figure 5.2: Augmentation of the SPN in Figure 5.2a with response model discussed in the text (pink

nodes). Figure 5.2b show augmentation for Response model representing the missing process of variable

X. In this example the values for 𝑌 and 𝑍 can be complete or missing according to MCAR mechanisms.
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Now consider another possible scenario where X is generated by an MCAR mechanism

instead of an MNAR mechanism, then we know that the missingness is completely at

random and the each parameter for the response model for𝑋 takes the value 0.5, 𝜇𝑥,𝑣 = 0.5.

Figure 5.3b shows the evaluation of the evidence, 𝑍 = 0, and the possible prediction 𝑌 = 0,

which is 0.216; while the same procedure for 𝑌 = 1 gives 0.034, then the prediction obtained

by this model is also 𝑌 = 0.

Although the two augmented models give the same prediction for the rating of item 𝑌 ,

the values obtained from the respective evaluations are different and can produce different

predictions due to the response model, as we described in the earlier discussion in section

5.1. Note that using the augmented model for an MCAR missingness mechanism yields

the same result as not augmenting the model with the response model.

5.3.1 Tractable Conservative Inference
Tractable Conservative Inference (TCI) is based on conservative inference rule (CIR)

proposes avoiding that potential bias by considering completions incomparable, leading

to set-valued inferences (Zaffalon and Miranda, 2009). It is an abstract rule to update

beliefs with non-ignorable missing data that can be applied in any situation or domain

drawing reliable (but less informative) conclusions. CIR has been applied to traditional

probabilistic models such as Bayesian networks (Antonucci and Piatti, 2009), where it

suffers from intractability of inference. In fact, CIR inference in Bayesian networks has

been proved to be equivalent to marginal inference in credal networks (Antonucci and

Zaffalon, 2008), a task whose theoretical and practical complexity far exceeds that of

marginal inference in Bayesian networks (Mauá, De Campos, et al., 2014).

In this section, we analyze the reliable criteria of TCI and the tractable benefits of

probabilistic circuits at prediction time, and GeFs in particular. To avoid erroneous assump-

tions, instead of computing marginal inference, Equation (5.7), we propose to estimate the

robustness of a classification 𝑌 = 𝑦′
under non-ignorable missing data with respect to an

alternative classification 𝑌 = 𝑦′′
by

min
𝜇
[ℙ(𝑦′, 𝐱obs, 𝐫) − ℙ(𝑦′′, 𝐱obs, 𝐫)] = min

𝜇
∑
𝐱miss

[ℙ(𝑦′, 𝐱obs, 𝐱miss)ℙ𝜇(𝐫|𝐱obs𝐱miss, 𝑦′)−

ℙ(𝑦′′, 𝐱obs, 𝐱miss)ℙ𝜇(𝐫|𝐱obs𝐱miss, 𝑦′′)]
(5.14)

= min
𝜇

∑
𝐱miss

[ℙ(𝑦′, 𝐱obs, 𝐱miss)ℙ𝜇(𝑟𝑦
′
|𝑦′)−

ℙ(𝑦′′, 𝐱obs, 𝐱miss)ℙ𝜇(𝑟𝑦
′′
|𝑦′′)]

ℙ𝜇(𝐫miss|𝐱miss)

(5.15)

When we assume a vacuous response model, the previous equation reduces as fol-

lows:

min
𝜇
[ℙ(𝑦′, 𝐱obs, 𝐫) − ℙ(𝑦′′, 𝐱obs, 𝐫)] = min

𝐱miss

[ℙ(𝑦′, 𝐱obs, 𝐱miss) − ℙ(𝑦′′, 𝐱obs, 𝐱miss)] (5.16)

= 𝛿S,𝐱obs(𝑦′, 𝑦′′) (5.17)
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Figure 5.3: Two examples of evaluation of two Augmented models, Figure 5.3a given a MNAR missing

mechanism with parameters: 𝜇𝑥,0 = 0.1, 𝜇𝑥,1 = 0.3, 𝜇𝑥,2 = 0.6, 𝜇𝑥,3 = 0.8 and 𝜇𝑥,4 = 0.9, Figure 5.3b for

a MCAR missing mechanism, that is 𝜇𝑥,𝑣 = 0.5.
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A decision analyst might want to suspend the classification on the basis of the value

in (5.16), thus producing more conservative conclusions.

For example, if 𝛿S,𝐱obs(𝑦′, 𝑦′′) > 0, then any imputation of the values of 𝐱miss
still leads

to a classification 𝑦′
that is more probable (as far as the model estimates) than 𝑦′′

; we thus

say that 𝑦′
dominates 𝑦′′

.

The conservative inference rule prescribes that the only conclusion supported by

non-ignorable missing data is to return the set of non-dominated values (Zaffalon and

Miranda, 2009): {
𝑦 ∶ max

𝑦′
𝛿S,𝐱obs(𝑦′, 𝑦) ≤ 0

}
. (5.18)

This is akin to classification with a rejection option, but possibly more informative (and

arguably more principled).

Even though evaluation takes linear time in PCs, a brute-force approach to computing

Equation (5.16) requires evaluating S(𝑦, 𝐱obs, 𝐱miss) for each 𝐱miss
. This is unfeasible when

the number of possible completions is high. The next result shows that computing such

a value is coNP-hard even in selective PCs, ruling out the existence of an efficient exact

procedure (under common assumptions of complexity theory).

Theorem 5.3.1. Given a smooth, decomposable and selective PC S over random variables 𝑌 ,

𝐗obs
and 𝐗miss

, target values 𝑦′
and 𝑦′′

, a partial observation 𝐱obs
, and a (rational) threshold

𝜌, deciding if 𝛿S,𝐱obs(𝑦′, 𝑦′′) > 𝜌 is coNP-complete.

Proof. Membership in coNP is trivial: given a configuration 𝐱miss
we can compute

S(𝑦′, 𝐱obs, 𝐱miss) and S(𝑦′′, 𝐱obs, 𝐱miss) in linear time and decide the sign of its difference

in constant time. Hence we have a polynomial certificate that the problem is not in the

language.

We show hardness by reduction from the subset sum problem: Given positive integers

𝑧1, … , 𝑧𝑛, decide:

∃𝑢 ∈ {0, 1}𝑛 ∶ ∑
𝑖∈[𝑛]

𝑣𝑖𝑢𝑖 = 1 , where 𝑣𝑖 =
2𝑧𝑖

∑𝑖∈[𝑛] 𝑧𝑖
. (5.19)

To solve that problem, build a tree-shaped selective PC as shown in Figure 5.4. Note that

the PC is not strong selective w.r.t. 𝑌 , where 𝑈𝑖 are binary variables, 𝑃1(𝑢) = 𝑒−2∑𝑖 𝑣𝑖𝑢𝑖
∏𝑖 (1+𝑒−2𝑣𝑖 )

and 𝑃2(𝑢) = 𝑒−∑𝑖 𝑣𝑖𝑢𝑖
∏𝑖 (1+𝑒−𝑣𝑖 )

.

+

× ×

[[𝑌 = 𝑦′]] 𝑃1(𝑢) 𝑃2(𝑢) [[𝑌 = 𝑦′′]]

𝑎 1 − 𝑎

Figure 5.4: Sketch of the PC gadget used to prove coNP-hardness of dominance.



5.3 | AUGMENTED NETWORK WITH RESPONSE MODEL

53

Use the PC to compute:

𝛿(𝑦′, 𝑦′′) = min
𝑢 [

𝑎
𝑡1
exp

(
−2∑

𝑖
𝑣𝑖𝑢𝑖)

−
(1 − 𝑎)
𝑡2

exp
(
−∑

𝑖
𝑣𝑖𝑢𝑖)]

.

where 𝑡1 = ∏𝑖(1 + exp(−2𝑣𝑖)) and 𝑡2 = ∏𝑖(1 + exp(−𝑣𝑖)).

If we call 𝑥 ∶= exp(−∑𝑖 𝑣𝑖𝑢𝑖), the above expression is the minimum for positive 𝑥
of 𝑓 (𝑥) ∶= 𝑎𝑥2

𝑡1
− (1−𝑎)𝑥

𝑡2
. Function 𝑓 is a strictly convex function minimized at 𝑥 = 𝑡1(1−𝑎)

𝑡22𝑎
.

Selecting 𝑎 such that 𝑡1(1 − 𝑎)/(2𝑎𝑡2) = 𝑒−1 makes the minimum occur at ∑𝑖 𝑣𝑖𝑢𝑖 = 1. Thus,

there is a solution to (5.19) if and only if 𝛿(𝑦′, 𝑦′′) ≤ 𝑒−2
2𝑡2𝑒−2+𝑡1

. This proof is not quite valid

because the distributions 𝑃1(𝑢) and 𝑃2(𝑢) use non-rational numbers. However, we can use

the same strategy as used to prove Theorem 5 in (Mauá, Conaty, et al., 2018) and exploit

the rational gap between yes and no instances of the original problem to encode a rational

approximation of 𝑃1 and 𝑃2 of polynomial size.

We now provide a linear-time algorithm for computing 𝛿 𝑟 (𝑦′, 𝑦′′) in tree-shaped strong

selective PCs, which include class-factorized GeDTs. For the sake of readability, we drop

the dependence on 𝐱obs
in the following. The algorithm can be described straightforwardly

by a collection of recursive equations depending on the type of node at which it oper-

ates. The recursive formulation also provides a proof of its correctness under the above

assumptions.

If node 𝑖 is a sum node , then the algorithm computes:

𝛿 𝑖(𝑦′, 𝑦′′) = min
𝑗∈ch(𝑖)

𝑤𝑖𝑗 min
𝐱miss

[S𝑗(𝑦′, 𝐱obs, 𝐱miss) − S𝑗(𝑦′′, 𝐱obs, 𝐱miss)] = min
𝑗∈ch(𝑖)

𝑤𝑖𝑗𝛿 𝑗(𝑦′, 𝑦′′) . (5.20)

The correctness of the operation follows from the strong-selectivity of the circuit. This

property ensures that for any realization (𝑦, 𝐱) at most one sub-PC S𝑗 evaluates to a

nonnegative value S𝑗(𝑦, 𝐱) > 0, and also ensures that either S encodes a distribution over

𝑌 (i.e., its scope is the singleton {𝑌}) or the nonnegative child for S𝑗(𝑦′, 𝐱) and S𝑗(𝑦′′, 𝐱) is

the same. Note that the above expression is negative whenever there is a child network S𝑗
with S𝑗(𝑦′, 𝐱obs, 𝐱miss) = 0 and S𝑗(𝑦′′, 𝐱obs, 𝐱miss) > 0 for some 𝐱miss

.

If instead 𝑖 is a product node such that 𝑌 is in the scope of S𝑘 child (and no other),

then the algorithm computes:

𝛿 𝑖(𝑦′, 𝑦′′) = 𝛿𝑘(𝑦′, 𝑦′′) ∏
𝑗∈ch(𝑖),𝑗≠𝑘

opt𝐱miss

𝑗
S𝑗(𝐱obs

𝑗 , 𝐱miss

𝑗 ) , (5.21)

where 𝐱obs

𝑗 (resp., 𝐱miss

𝑗 ) denotes the projection of 𝐱obs
(resp., 𝐱miss

) into the scope of S𝑗 ,
and

opt =

{
max if 𝛿(𝑦′, 𝑦′′) > 0 ,
min if 𝛿(𝑦′, 𝑦′′) ≤ 0 .

The first term denotes the recursive computation on the sub-PC S𝑘 . The remaining terms

opt𝐱miss

𝑗
S𝑗(𝐱obs

𝑗 , 𝐱miss

𝑗 ) define an optimization of the configurations 𝐱miss

𝑗 for the sub-PC S𝑗 ;
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this can be performed in linear time in selective PCs by bottom-up traversal, replacing

sums with maximizations/minimizations (Peharz, Gens, and Domingos, 2014; Peharz,

Gens, Pernkopf, et al., 2017).

Finally, if 𝑖 is a leaf node representing an indicator variable then the algorithm com-

putes:

𝛿 𝑖(𝑦′, 𝑦′′) =

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎩

1 if 𝑖 is [[𝑌 = 𝑦′]],
−1 if 𝑖 is [[𝑌 = 𝑦′′]],
1 if 𝑖 is consistent with 𝐱obs

or 𝐱miss,
0 otherwise.

(5.22)

We thus obtain the following result.

Theorem 5.3.2. The algorithm obtained by Equations (5.20), (5.21) and (5.22) computes

𝛿S,𝐱obs(𝑦′, 𝑦′′) in strong selective tree-shaped PCs in linear time.

For non-strong-selective networks, the equation for sum nodes is no longer valid, as

in such circuits

min
𝐱miss

∑
𝑗∈ch(𝑖)

𝑤𝑖𝑗[S𝑗(𝑦′, 𝐱obs, 𝐱miss)−S𝑗(𝑦′′, 𝐱obs, 𝐱miss)] ≠ min
𝐱miss

𝑤𝑖𝑗 min
𝑗∈ch(𝑖)

[S𝑗(𝑦′, 𝐱obs, 𝐱miss)−S𝑗(𝑦′′, 𝐱obs, 𝐱miss)] .

The equations for products and leaves remain valid for non-selective circuits. Thus, we

can use our algorithm as an effective heuristic for non-selective PCs or that violate strong-

selectivity. This is the case for instance when we have a partially ignorable missingness

process and we marginalize part of the missing variables by judging their missingness to

satisfy MAR. Then, even for selective PCs, the algorithm described is not guaranteed to

provide the correct outcome if some variables are marginalized. Yet our experiments show

that it provides an effective heuristic, supporting the reasoning above.

Example 5.3.2. Consider the model in Figure 5.2a, which is strongly selective with respect

of 𝑌 . Given the observation 𝑍 = 0 and a missing value for 𝑋 generated by an unknown

MNAR process. We want to predict the value of 𝑌 , for that we can use TCI to obtain the

set of non-dominated classes. As the result of the TCI algorithm we can predict 𝑌 = {0},

since class 0 is the single non-dominated value, the next figure shows the evaluation of

𝛿S(1, 0) = −0.128 < 0, similarly we also can obtain 𝛿S(0, 1) = 0.0216 > 0 .
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5.4 Credal Response Model

Consider a PC S(𝐗, 𝑌 ), possibly learned from some (complete or MAR incomplete)

dataset of realizations of variables 𝐗, 𝑌 , and representing our data model. Suppose we

are interested in using our model to predict the value of a target variable 𝑌 given a

configuration 𝐱 of the variables such that some of its values are missing, and we do not

want to assume MAR. Suppose further that we do not have access to the missingness

mechanism. We can then augment our PC with the response model described and use it to

draw inferences about 𝑌 . The only impediment is the the estimation of the parameters

𝜇𝑗,𝑣 in Equation 5.13, as it relies on unseen and unavailable data. Very often, however, we

can rely on expert domain knowledge to provide rough estimates for those parameters.

Being only approximate, we are better subscribing for a partial specification in the form of

probability intervals as described in Chapter 3.

If we have access to an MNAR sample of data (say, at prediction time), we can instead

derive such bounds from Equation 5.13, by considering all possible values for 𝑃(𝑋𝑗 = 𝑣|𝑅𝑗 =
1):

𝜇𝑗,𝑣 ∈ [
𝑁𝑗,𝑣

𝑁𝑗,𝑣 + 𝑁miss

, 1] (5.23)

where 𝑁𝑗,𝑣 denotes the number of occurrences of 𝑋𝑗 = 𝑣 in the MNAR dataset of size 𝑁
with 𝑁miss missing values for 𝑋𝑗 .

In either case, the result is an augmented Credal Probabilistic Circuit, that we name

CReM, where imprecision occurs only at edges connected to input indicator nodes (viz.

those edges associated with response indicators). As the respective network structure is

not tree-shaped, we cannot in principle use the algorithm of Credal Classification described

in Chapter 3 to compute the dominance criterion.

Theorem 5.4.1. Consider a complete, decomposable and strong selective w.r.t 𝑌 PC used to

obtain a Partial Credal PC {S{𝐰,𝜇} ∶ 𝜇 ∈ } representing our credal response model CReM

with 𝑠𝑐(S) = {𝑌 , 𝐗obs, 𝐗miss} and root 𝑟 where  is the Cartesian product of finitely-generated
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polytopes 𝑖 , one for each sum node i. Then our proposed algorithm computes:

𝛿S𝑟 ,𝐱obs(𝑦′, 𝑦′′) = min
𝜇∈

[ℙ{𝐰,𝜇}(𝑦′, 𝐱obs, 𝐱miss) − ℙ{𝐰,𝜇}(𝑦′′, 𝐱obs, 𝐱miss)] (5.24)

in 𝑂(|S|) time, where |S| is the number of nodes and arcs in the model (assuming the opti-

mizations over 𝜇𝑖 can be performed in linear time).

Proof. We now provide a linear-time algorithm for computing 𝛿S𝑟 ,𝐱obs(𝑦′, 𝑦′′) in a Credal

PC obtained from a complete, decomposable and strong selective w.r.t 𝑌 PC. The algorithm

can be described straightforwardly by a collection of recursive equations depending on

the type of node at which it operates. The recursive formulation also provides a proof of

its correctness under the above assumptions.

If node 𝑗 is a sum node of data model S , the algorithm computes:

𝛿S𝑗 (𝑦
′, 𝑦′′) = ∑

𝑖∈𝑐ℎ(𝑗)
𝑤𝑖[S𝑖(𝑦′, 𝐱obs) − S𝑖(𝑦′′, 𝐱obs)] = ∑

𝑖∈𝑐ℎ(𝑗)
𝑤𝑖𝛿S𝑖 (𝑦

′, 𝑦′′) . (5.25)

The correctness of this operation follows from the strong selectivity, which allows us to

optimize the weights of each subPC child independently by ensuring that there exists a

unique active child (i.e. propagating a value other than 0) or that the scope of S is 𝑌 .

If 𝑗 is a credal sum node of response model S with two children [[𝑅𝑋𝑗 ,𝑣 = 1]] and

[[𝑅𝑋𝑗 ,𝑣 = 0]] and local weights 𝜇𝑖 , the algorithm computes:

𝛿S𝑗 (𝑦
′, 𝑦′′) = min

𝜇∈
∑
𝑖∈𝑐ℎ(𝑗)

𝜇𝑖[S𝑖(𝑦′, 𝐱obs) − S𝑖(𝑦′′, 𝐱obs)] = ∑
𝑖∈𝑐ℎ(𝑗)

min
𝜇𝑖∈𝑖

𝜇𝑖𝛿S𝑖 (𝑦
′, 𝑦′′) . (5.26)

where min𝜇𝑖∈𝑖 𝜇𝑖 can be 𝜇𝑗,𝑣 or 1 − 𝜇𝑗,𝑣 depending on the value propagated by the leaves

nodes [[𝑅𝑋𝑗 ,𝑣 = 1]] and [[𝑅𝑋𝑗 ,𝑣 = 0]] in the recursive call 𝛿S𝑖 (𝑦′, 𝑦′′).

If 𝑗 is a product node S such that 𝑌 is in the scope of S𝑘 , 𝑘 ∈ 𝑐ℎ(𝑗), (and no other by

Decomposability property), the algorithm computes:

𝛿S𝑗 (𝑦
′, 𝑦′′) = min

w∈
[S𝑘(𝑦′, 𝐱obs

𝑘 ) − S𝑘(𝑦′′, 𝐱obs

𝑘 )] = 𝛿S𝑘 (𝑦
′, 𝑦′′) ∏

𝑖∈𝑐ℎ(𝑗),𝑖≠𝑘
opt S𝑖(𝐱obs

𝑖 ) , (5.27)

where 𝐱obs

𝑖 denotes the projection of 𝐱obs
into the scope of S𝑖 , and opt = max if 𝛿S𝑘 (𝑦′, 𝑦′′) < 0

and opt = min if 𝛿S𝑘 (𝑦′, 𝑦′′) ≥ 0. The first term in Eq. 5.27 denotes the recursive computation

on the sub-PC S𝑘 .

If 𝑗 is a leaf node representing an indicator variable or indicator response then the

algorithm computes:

𝛿S𝑗 (𝑦
′, 𝑦′′) =

⎧⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎩

−1 if S𝑗 is [[𝑌 = 𝑦′′]],
1 if S𝑗 is [[𝑌 = 𝑦′]], or is consistent with 𝐱obs,
1 if S𝑗 is [[𝑅𝑋𝑖 ,𝑣 = 0]] and 𝑋𝑖 is missing ,
1 if S𝑗 is [[𝑅𝑋𝑖 ,𝑣 = 1]] and 𝑋𝑖 is observed at 𝑣 value ,
0 otherwise.

(5.28)
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Example 5.4.1. Consider the Augmented model of Figure 5.2b, which is strongly selective

with respect of 𝑌 . Given the observation 𝑍 = 1 and and a missing value for 𝑋 gener-

ated by an unknown MNAR process, suppose we obtain specialist information that can

be encoded as intervals for response parameters as follows: 𝜇𝑥,0 ∈ [0, 0.3], 𝜇𝑥,1 ∈ [0.1, 0.4],
𝜇𝑥,2 ∈ [0.6, 0.7], 𝜇𝑥,3 ∈ [0.7, 0.8], 𝜇𝑥,4 ∈ [0.7, 0.9]. We can model that information into the

response model of the augmented circuit and then credally classify 𝑌 . Figure 5.5 shows the

evaluation of credal dominance over the credal augmented model (that contains intervals

only in the response model portions).

As the result in the PC root of Figure 5.5 we obtain the value 𝛿0,1 = 0.164 and 𝛿1,0 =
−0.208, thus the credal prediction is {0}
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Figure 5.5: Example of credal classification using intervals in the Response model

5.5 Experiments
We empirically evaluate the ability of our proposed methods in assessing the ro-

bustness of classifications to non-ignorable missing feature values using the tractable

conservative inference and Credal Response Model. To this end, we learn class-factorized

GeFs from some well-known complete datasets for density estimation and classification
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(Davis and Domingos, 2010; Goldberg et al., 2001), using the algorithm in (Correia et al.,

2020).

5.5.1 Tractable Conservative Inference
The characteristics of the datasets are in Table 5.1. Missing test values are artificially

simulated using a mix of MAR, MCAR and MNAR mechanisms. We consider a disjoint set of

selected variables for each missing mechanism, and the MNAR mechanism is conditioned

at most by two variables. The average number of (MAR, MCAR and MNAR) missing values

per instance is denoted as AvM, and the average number of MNAR values per instance is

denoted as AvMNAR.

Dataset # Test

AvM AvMNAR

# Train Model

Variables Instances Instances Size

Audio 100 3,000 4.1 1.9 15,000 3,858

Dna 180 1,186 5.5 2.2 1,600 1,038

Netflix 100 3,000 6.7 3.0 15,000 3,524

Nltcs 16 3,236 1.4 0.4 16,181 568

Table 5.1: Datasets characteristics.

In Table 5.2 we report relevant performance metrics of our TCI predictions. The last

column (𝐴𝑐𝑐) shows the accuracy of classifications made by marginalizing all missing test

values. Columns 𝑅𝐴𝑐𝑐 and ¬𝑅𝐴𝑐𝑐 report the classification accuracy on the portions of

instances that are robust and non-robust, respectively. A test instance is robust if the TCI

inference (Eq. 5.18) returns only one non-dominated class value. For the rows tagged “marg”,

we marginalize MAR variables and optimize over the MNAR variables. For the other rows,

we optimize over all missing values. Column 𝐷𝑅 shows the percentage of robust instances.

By comparing 𝑅𝐴𝑐𝑐, 𝐴𝑐𝑐 and ¬𝑅𝐴𝑐𝑐, we observe the ability of TCI in discriminating

between the easy-to-classify instances, corresponding to the robust ones, and the harder

ones (non-robust instances), for which a set of classes is returned. Similar conclusions can

be reached by inspecting the 𝑆𝐴𝑐𝑐 (Set Accuracy) column, which measures the percentage

of (set-valued) classifications that contain the true class. Finally, the informative character

of marginal classifications are captured by the discounted accuracy (𝐷𝐴𝑐𝑐), which penalizes

“imprecise” classifications by weighting correct set-valued classifications by the reciprocal

of their size (see (Zaffalon, Corani, et al., 2012) for more details and motivation about

the metric). A 𝐷𝐴𝑐𝑐 value higher than the corresponding 𝐴𝑐𝑐 denotes that the classifier

issues predictions that are on average more accurate than random classifications, hence

being informative despite the false MAR assumption.

To analyze the approach on a more realistic missingness scenario, we learn GeFs from a

binarized version of the complete version of the Jester dataset.
1

This is a complete dataset of

user ratings on 10 items (variables), divided into 17,467 training instances (users) and 7,486

test instances. We build a binary classification task by predicting, for each user/instance,

the rating of a distinguished item given the other items ratings. We fabricate MNAR values

in both training and test sets by independently omitting a positive rating with either low

1 http://eigentaste.berkeley.edu/dataset

http://eigentaste.berkeley.edu/dataset
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Dataset

TCI Marginalization

𝑆𝐴𝑐𝑐 𝐷𝐴𝑐𝑐 𝐷𝑅 𝑅𝐴𝑐𝑐 ¬𝑅𝐴𝑐𝑐 𝐴𝑐𝑐
Audio 0.879 0.707 65.6 0.807 0.679

0.763

Audio (marg) 0.863 0.708 69.1 0.798 0.686

Dna 0.899 0.799 80.0 0.880 0.511

0.806

Dna (marg) 0.858 0.801 88.6 0.846 0.496

Netflix 0.894 0.662 53.6 0.771 0.652

0.716

Netflix (marg) 0.873 0.665 58.3 0.760 0.655

Nltcs 0.980 0.912 86.4 0.977 0.856

0.961

Nltcs (marg) 0.975 0.906 86.2 0.972 0.888

Table 5.2: Set Accuracy (𝑆𝐴𝑐𝑐), Discounted Accuracy (𝐷𝐴𝑐𝑐), percentage of robust instances (𝐷𝑅),

and classification accuracy on robust (𝑅𝐴𝑐𝑐), non-robust (¬𝑅𝐴𝑐𝑐) and overall (𝐴𝑐𝑐) instances when

marginalizing missing values at prediction time.

probability (𝑝 = 0.05) or high probability (𝑝 = 0.5). This simulates observed behaviour

of users providing ratings in such systems (Marlin, Zemel, Roweis, et al., 2011). Table

5.3 shows that learning an imprecise model results in better accuracy than the precise

version that ignore missing values. Note that when learning a credal PC, we might produce

set-valued classifications even when we marginalize (MAR) the missing test values. Figure

5.6 shows that for both missingness levels the measure in (5.16) can be used to detect

easy-to-classify instances for the precise classifier that assumes MAR. Similar patterns are

achieved in terms of (modified) discounted accuracy in Figure 5.7, where this approach is

combined with a rejection option.

Model Inference p

Model + Inference Precise + MAR

𝑆𝐴𝑐𝑐 𝐷𝐴𝑐𝑐 𝐷𝑅 𝑅𝐴𝑐𝑐 ¬𝑅𝐴𝑐𝑐 𝐴𝑐𝑐

Imprecise

MAR

0.05

0.689 0.664 95.1 0.596 0.540

0.593

TCI

0.716 0.661 88.9 0.600 0.540

Precise 0.644 0.602 91.5 0.598 0.536

Imprecise

MAR

0.5

0.753 0.597 68.7 0.639 0.435

0.575

TCI

0.847 0.597 50.0 0.693 0.457

Precise 0.827 0.578 50.3 0.657 0.493

Table 5.3: Performance of models learned from Jester with two different missingness proportions 𝑝 in

the training and test set. Imprecise models are obtained as in Chapter 3, precise models are obtained

after removal of instances with missing values.

5.5.2 Credal Response Model
Now, we empirically compare Credal Response Model against Tractable Conservative

Inference and marginalization of missing values. To this end, we learn class-factorized

GeFs from some well-known complete datasets for density estimation and classification

(Davis and Domingos, 2010; Goldberg et al., 2001), using the algorithm in (Correia

et al., 2020). The characteristics of the datasets appear in Table 5.4. Missing test values

are simulated using a MNAR mechanism, for each instance 𝑖 and variable 𝑋𝑗 we have
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Figure 5.6: Robust accuracy (𝑅𝐴𝑐𝑐) of the precise classifier (MAR) for the Jester dataset with low

(𝑝 = 0.05, left) and high (𝑝 = 0.5, right) missingness levels. Condition 𝛿M,𝐨(𝑦, ¬𝑦) > 𝜖, where 𝛿M,𝐨 is

defined as in Eq. (5.16) and 𝑦 is the class returned by the classifier, is used to decide robustness. We

also display %𝑅 by threshold 𝜖.
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Figure 5.7: Modified discounted accuracy of the (imprecise) classifier for the Jester dataset with low

(𝑝 = 0.05, left) and high (𝑝 = 0.5, right) missingness levels. Robustness is decided as in Figure 5.6

for different values of the threshold 𝜖. A value 𝜌 is used instead of 0.5 to score imprecise classifica-

tions, which regulates preference for model uncertainty against aleatory uncertainty (see (Zaffalon,

Corani, et al., 2012)).

ℙ(𝑅𝑖𝑗 = 0|𝑋 𝑖
𝑗 = 1) = 0.2 and ℙ(𝑅𝑖𝑗 = 0|𝑋 𝑖

𝑗 = 0) = 0, wher 𝑋𝑗 ≠ 𝑌 . The average number of

missing values per instance is denoted as AvM, and 𝑌 as number of classes.

Dataset # Test

AvM

# Train

# Y

Variables Instances Instances

Dna 180 1,186 24.545 1,600 2

Jester 10 7,486 3.564 17,467 5

Insurance 27 2,400 1.303 5,600 3

Nltcs 16 3,236 1.077 16,181 2

Table 5.4: Characteristics of the datasets

In Table 5.5 we report relevant performance metrics of our Credal Response Model

(CReM) predictions vs the Tractable Conservative Inference (TCI) proposed in (Villanueva

Llerena, Mauá, and Antonucci, 2021), as well as the accuracy of the precise classifier
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that marginalizes missing data. As in the previous section, set Accuracy (𝑆𝐴𝑐𝑐) measures

the percentage of (indeterminate/non-robust or determinate/robust) classifications that

contains the true class, Discounted Accuracy (𝐷𝐴𝑐𝑐) measures the percentage of (deter-

minate or indeterminate) of classifications that contain the true class, weighted by the

reciprocal of set size, 𝐷𝑅 shows the percentage of determinate classifications (the ones

with a single maximal class) and Precise Accuracy (𝑅𝐴𝑐𝑐) measures accuracy among

determinate classifications.

Dataset Marg. TCI CReM

Acc 𝑆𝐴𝑐𝑐 𝐷𝐴𝑐𝑐 𝐷𝑅 𝑅𝐴𝑐𝑐 𝑆𝐴𝑐𝑐 𝐷𝐴𝑐𝑐 𝐷𝑅 𝑅𝐴𝑐𝑐
Dna 79.1 92.3 76.9 69.1 88.9 84.4 80.2 91.7 83

Jester 36.4 96.4 21.3 2.7 41.5 59.6 31.7 36.6 37.9

Insurance 78.2 85.2 77.4 84.1 84.5 79.9 78 95.7 84.3

Nltcs 93.9 98.0 90.9 85.7 97.7 95.1 93.3 96.4 94.9

Table 5.5: Performance of TCI vs Credal Response Model vs Marginalization of missing values in

terms of the metrics: accuracy (𝐴𝑐𝑐), Set Accuracy (𝑆𝐴𝑐𝑐), Discounted Accuracy (𝐷𝐴𝑐𝑐), Determinacy

Rate (𝐷𝑅), and accuracy of determinate classifications (𝑅𝐴𝑐𝑐). See text for explanation..

According to the results, in comparison to TCI, CReM obtains smaller set and precise

accuracies with a significantly higher determinacy rate, leading to an overall improved

discounted accuracy.

The effect of such a trade-off is also shown in the left plot in Figure 5.8, which displays

precise accuracy of classifications made either by CReM or TCI selecting the class with

the highest value of 𝛿 , and sorted by that same value for dataset Nltcs (left) and Dna

(rigth). We see here that CReM is less adequate than TCI at judging robustness of such

instances.
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Figure 5.8: Accuracy vs percentage (%𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠) of the dominant instances for TCI vs Credal Re-

sponse model using Nltcs(left) and Dna (right) datsets, where robustness satisfy 𝛿M(𝑦′, 𝑦′′) > 𝛿 , 𝛿M is

defined as in Eq. (3.7), and 𝑦′ is the class with higher 𝛿 .
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Chapter 6

Conclusions and Future Work

Probabilistic circuits are probabilistic models that have shown very promising results

in several tasks. Sum-Product Networks (SPNs), Selective Sum-Product Networks (SSPNs),

Probabilistic Sentential Decision Diagrams (PSDDs) and Generative Random Forest (GeFS)

are relevant examples of PCs.

Credal SPNs are sets of SPNs obtained by a simultaneous small perturbation of all

model parameters, where all members share the same network structure.

In this work, we developed polynomial-time algorithms for qualitative global sensitivity

analysis of inferences made by PCs using Credal PCs, Experimental evaluation showed

that these algorithms outperform the baseline approaches in distinguishing robust (correct)

and non-robust instances.

Our first contribution is a tractable procedure for classifying robust and non-robust

MAP inferences in tree-shaped selective SPNs. We showed that performing the same task

in non-selective SPNs is coNP-hard, further justifying our requirement of selectivity. We

evaluated our algorithms on two different tasks: missing value completion and performing

multi-label classification. Our results show that the proposed algorithms are often better

at separating robust from non-robust inferences than the standard approach based on

the difference of probabilities, especially when data is scarce. We left as future work to

perform experiments with other decision making criteria to decide dominance, such as

maximality and interval dominance. Although we have carried extensive experimentation

for qualitative SA of MAP inferences, our empirical analysis is somewhat preliminary,

and even more experiments are needed in the future to better identify cases where our

approaches excel. We also left open the complexity of robustness analysis in multiply-

connected SPNs.

As our second contribution, we developed two exact polynomial-time methods for han-

dling non-ignorable missing data using probabilistic circuits. We show that our algorithms

are exact if the model satisfies certain constraints, which is the case for GeFs. First, we

develop an efficient cautious algorithm to identify robust classifications made by PCs for

imputations of the non-ignorable portion of missing data at prediction time. Experiments

on realistic data show that the approaches are effective in discriminating instances that

are sensitive to the missingness process from those that are not. Finally, we developed a
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tractable method for performing predictive inference under non-ignorable missing data

with a partially specified response model of missingness. Experiments on realistic data

showed that our method delivers less biased (probabilistic) classifications than approaches

that assume missing at random and are more determinate than our previously proposed

overcautious approach. We left as future work the treatment of other types of missing

data (e.g., coarse and unreliable observations). The treatment of non-ignorable missing

data at training time remains open.
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Appendix A

Approximate Tractable
Conservative Inference for
Selective SPNs

As we reviewed in Chapter 5, the TCI is performed exactly in strong selective SPNs.

In this chapter we present the results of TCI as an approximation for classisification in

the presence of MNAR data in selective SPNs We learned selective SPNs from five well-

known datasets for density estimation. The selected datasets and their characteristics

appear in Table A.1, where the test sets are simulated using MAR, MCAR and MNAR

mechanisms.

Dataset Vars Test Avg.M |𝑌 | Train Model

Audio 100 3000 4.1 2 15000 3858

Dna 180 1186 5.5 2 1600 1038

Jester 100 4116 6 2 9000 3170

Netflix 100 3000 6.7 2 15000 3524

Nltcs 16 3236 1.4 2 16181 568

Table A.1: Datasets characteristics to perform TCI in Selective SPNs, we use artificial generation of

missing values using MAR, MCAR and MNAR.

Table A.2 shows the results of the application of our tractable conservative approach

both the training and the test set. When comparing the accuracies of Marginalization on

the robust and non-robust instances (𝑅𝐴𝑐𝑐 and ¬𝑅𝐴𝑐𝑐), most of the times we observe

more accurate predictions for the robust instances. This representing the ability of TCI

in discriminating between the easy-to-classify instances, corresponding to the robust

ones, and the hard ones for which the robustness of the TCI allows to return a set of

classes, mostly including the true one, this corresponding to the high values for the Set

Accuracy.
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APPENDIX A

Dataset TCI Marginalization

𝑆𝐴𝑐𝑐 𝐷𝐴𝑐𝑐 𝐴𝑣𝑔𝑆𝑒𝑡 𝐷𝑅 𝑅𝐴𝑐𝑐 ¬𝑅𝐴𝑐𝑐 𝐴𝑐𝑐
Audio 0.99 0.5 2 1.8 0.69 0.74

0.74

Audio Marg. 0.95 0.56 1.8 21.9 0.76 0.74

Dna 0.99 0.5 2 0.59 0.86 0.77

0.77

Dna Marg. 0.98 0.54 1.9 10.9 0.84 0.76

Jester 0.99 0.5 2 0.12 0.6 0.75

0.74

Jester Marg. 0.97 0.52 1.9 9.6 0.72 0.74

Netflix 0.99 0.5 2 0.27 0.88 0.67

0.67

Netflix Marg. 0.98 0.51 1.9 5.3 0.69 0.67

Nltcs 0.98 0.63 1.7 29.4 0.94 0.93

0.94

Nltcs Marg. 0.97 0.73 1.5 51.3 0.95 0.92

Table A.2: Performance of TCI versus Marginalization.
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