• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Dissertação de Mestrado
DOI
Documento
Autor
Nome completo
Mateus Riva
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2018
Orientador
Banca examinadora
Cesar Junior, Roberto Marcondes (Presidente)
Coelho, Regina Celia
Furuie, Sérgio Shiguemi
Título em inglês
A new calibration approach to graph-based semantic segmentation
Palavras-chave em inglês
Computer vision
Graph-based segmentation
Magnetic resonance imaging
Structural methods
Resumo em inglês
We introduce a calibration method for semantic segmentation of images utilizing statistical-relational graphs (SRGs), with a particular focus on pediatric Magnetic Resonance Imaging (MRI). The SRG provides a representation of a structured scene, describing both the attributes of each object of interest and the nature of their relationships, such as relative position in space. Each vertex in the graph represents an object of interest and each edge represents the relationship between two objects. Semantic segmentation can thus be performed by matching an SRG built from an observed image to a previously-built model SRG. We develop a calibration method for assessing the quality of SRG segmentation given a set of parameters, as well as an exploration of several sets of parameters applied to MRI. We present the validity and usefulness of the calibration technique, along with preliminary results on real MRI data segmentation. We additionally discuss future work on improving real data SRG-based segmentation.
Título em português
Uma nova técnica de calibração para segmentação semântica baseada em grafos
Palavras-chave em português
Imageamento de ressonância magnética
Métodos estruturais
Segmentação baseada em grafos
VIsão computacional
Resumo em português
Apresentamos um método de calibração da segmentação semântica de imagens baseada em Grafos Estatísticos-Relacionais (GERs), com um foco particular em Imagens de Ressonância Magnética (IRM) pediátricas. O GER provê uma representação de uma cena estruturada, descrevendo tanto os atributos de cada objeto de interesse quanto a natureza de seus relacionamentos, por exemplo a posição relativa no espaço. Cada vértice no grafo representa um objeto de interesse e cada aresta representa um relacionamento entre dois objetos. A segmentação semântica pode ser feita realizando um casamento entre um GER construído a partir de uma imagem observada com um GER modelo previamente construído. Nós desenvolvemos um método de calibração para verificar a qualidade da segmentação baseada em GER dado um conjunto de parâmetros, assim como uma exploração de diversos conjuntos de parâmetros aplicados à segmentação de IRM. Apresentamos a validade e utilidade da técnica de calibração, junto de resultados preliminares de segmentação de dados IRM reais. Adicionalmente, discutimos trabalhos futuros na melhoria de segmentação de dados reais utilizando GERs.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
Data de Publicação
2019-09-25
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores
CeTI-SC/STI
Biblioteca Digital de Teses e Dissertações da USP. Copyright © 2001-2019. Todos os direitos reservados.