• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Master's Dissertation
DOI
10.11606/D.45.2013.tde-23052013-234703
Document
Author
Full name
Thársis Tuani Pinto Souza
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2013
Supervisor
Committee
Mascarenhas, Walter Figueiredo (President)
Gubitoso, Marco Dimas
Kimura, Herbert
Title in Portuguese
Simulações Financeiras em GPU
Keywords in Portuguese
Computação Paralela
Finanças Quantitativas
GPGPU
GPU
Métodos Matemáticos em Finanças
Modelagem Matemática
Números Aleatórios
Precificação de Opções
Risco de Mercado
Simulação de Equações Diferencias Estocásticas
Simulação Estocástica
Stops
Value-at-Risk
VaR
Abstract in Portuguese
É muito comum modelar problemas em finanças com processos estocásticos, dada a incerteza de suas variáveis de análise. Além disso, problemas reais nesse domínio são, em geral, de grande custo computacional, o que sugere a utilização de plataformas de alto desempenho (HPC) em sua implementação. As novas gerações de arquitetura de hardware gráfico (GPU) possibilitam a programação de propósito geral enquanto mantêm alta banda de memória e grande poder computacional. Assim, esse tipo de arquitetura vem se mostrando como uma excelente alternativa em HPC. Com isso, a proposta principal desse trabalho é estudar o ferramental matemático e computacional necessário para modelagem estocástica em finanças com a utilização de GPUs como plataforma de aceleração. Para isso, apresentamos a GPU como uma plataforma de computação de propósito geral. Em seguida, analisamos uma variedade de geradores de números aleatórios, tanto em arquitetura sequencial quanto paralela. Além disso, apresentamos os conceitos fundamentais de Cálculo Estocástico e de método de Monte Carlo para simulação estocástica em finanças. Ao final, apresentamos dois estudos de casos de problemas em finanças: "Stops Ótimos" e "Cálculo de Risco de Mercado". No primeiro caso, resolvemos o problema de otimização de obtenção do ganho ótimo em uma estratégia de negociação de ações de "Stop Gain". A solução proposta é escalável e de paralelização inerente em GPU. Para o segundo caso, propomos um algoritmo paralelo para cálculo de risco de mercado, bem como técnicas para melhorar a solução obtida. Nos nossos experimentos, houve uma melhora de 4 vezes na qualidade da simulação estocástica e uma aceleração de mais de 50 vezes.
Title in English
Finance and Stochastic Simulation on GPU
Keywords in English
GPGPU
GPU
Market Risk
Mathematical Methods in Finance
Mathematical Modeling
Options Pricing
Parallel Computing
Quantitative Finance
Random Numbers
Simulation of Stochastic Differential Equations
Stochastic Simulation
Stops
Value-at-Risk
VaR
Abstract in English
Given the uncertainty of their variables, it is common to model financial problems with stochastic processes. Furthermore, real problems in this area have a high computational cost. This suggests the use of High Performance Computing (HPC) to handle them. New generations of graphics hardware (GPU) enable general purpose computing while maintaining high memory bandwidth and large computing power. Therefore, this type of architecture is an excellent alternative in HPC and comptutational finance. The main purpose of this work is to study the computational and mathematical tools needed for stochastic modeling in finance using GPUs. We present GPUs as a platform for general purpose computing. We then analyze a variety of random number generators, both in sequential and parallel architectures, and introduce the fundamental mathematical tools for Stochastic Calculus and Monte Carlo simulation. With this background, we present two case studies in finance: ``Optimal Trading Stops'' and ``Market Risk Management''. In the first case, we solve the problem of obtaining the optimal gain on a stock trading strategy of ``Stop Gain''. The proposed solution is scalable and with inherent parallelism on GPU. For the second case, we propose a parallel algorithm to compute market risk, as well as techniques for improving the quality of the solutions. In our experiments, there was a 4 times improvement in the quality of stochastic simulation and an acceleration of over 50 times.
 
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
mestrado.pdf (3.80 Mbytes)
Publishing Date
2013-05-29
 
WARNING: Learn what derived works are clicking here.
All rights of the thesis/dissertation are from the authors
Centro de Informática de São Carlos
Digital Library of Theses and Dissertations of USP. Copyright © 2001-2022. All rights reserved.