• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.45.2012.tde-23052013-104248
Documento
Autor
Nombre completo
Wesley Seidel Carvalho
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2012
Director
Tribunal
Finger, Marcelo (Presidente)
Kepler, Fábio Natanael
Lago, Alair Pereira do
Título en portugués
Reconhecimento de entidades mencionadas em português utilizando aprendizado de máquina
Palabras clave en portugués
Aprendizado de Máquina
Máxima Entropia
PLN
Processamento de Linguagem Natural
Reconhecimento de Entidades Mencionadas
Reconhecimento de Entidades Nomeadas
REM
Resumen en portugués
O Reconhecimento de Entidades Mencionadas (REM) é uma subtarefa da extração de informações e tem como objetivo localizar e classificar elementos do texto em categorias pré-definidas tais como nome de pessoas, organizações, lugares, datas e outras classes de interesse. Esse conhecimento obtido possibilita a execução de outras tarefas mais avançadas. O REM pode ser considerado um dos primeiros passos para a análise semântica de textos, além de ser uma subtarefa crucial para sistemas de gerenciamento de documentos, mineração de textos, extração da informação, entre outros. Neste trabalho, estudamos alguns métodos de Aprendizado de Máquina aplicados na tarefa de REM que estão relacionados ao atual estado da arte, dentre eles, dois métodos aplicados na tarefa de REM para a língua portuguesa. Apresentamos três diferentes formas de avaliação destes tipos de sistemas presentes na literatura da área. Além disso, desenvolvemos um sistema de REM para língua portuguesa utilizando Aprendizado de Máquina, mais especificamente, o arcabouço de máxima entropia. Os resultados obtidos com o nosso sistema alcançaram resultados equiparáveis aos melhores sistemas de REM para a língua portuguesa desenvolvidos utilizando outras abordagens de aprendizado de máquina.
Título en inglés
Portuguese named entity recognition using machine learning
Palabras clave en inglés
Information Extraction
Machine Learning
Maximum Entropy Framework
Named Entity Recognition
Natural Language Processing.
Resumen en inglés
Named Entity Recognition (NER), a task related to information extraction, aims to classify textual elements according to predefined categories such as names, places, dates etc. This enables the execution of more advanced tasks. NER is a first step towards semantic textual analysis and is also a crucial task for systems of information extraction and other types of systems. In this thesis, I analyze some Machine Learning methods applied to NER tasks, including two methods applied to Portuguese language. I present three ways of evaluating these types of systems found in the literature. I also develop an NER system for the Portuguese language utilizing Machine Learning that entails working with a maximum entropy framework. The results are comparable to the best NER systems for the Portuguese language developed with other Machine Learning alternatives.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2013-05-23
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
Centro de Informática de São Carlos
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2021. Todos los derechos reservados.