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Resumo

Artur André Almeida de Macedo Oliveira. Superando imagens urbanas desafiantes:
métodos de aprendizagem profunda e integração de dados para deteção de emara-
nhamentos entre árvores e fios elétricos. Tese (Doutorado). Instituto de Matemática e

Estatística, Universidade de São Paulo, São Paulo, 2023.

A classificação de imagens urbanas em nível de rua apresenta desafios devido à presença de diversos

elementos, aparências variadas e poses complexas. Fatores como oclusão, confusão de fundo, condições

climáticas e pontos de vista da câmera complicam ainda mais o processo de classificação. Neste estudo,

aproveitamos as capacidades de redes de aprendizado profundo recentes, incluindo MobileNets, ResNets,

DenseNets e EfficientNets, para enfrentar esses desafios. Nosso objetivo é avaliar o desempenho dessas redes,

identificar limitações e propor novas técnicas para superá-las.

Nossa pesquisa se concentra na tarefa específica de classificar imagens urbanas com ou sem árvores pró-

ximas à rede elétrica. Através de uma exploração extensiva, fornecemos métodos e insights úteis não só para

esse problema de classificação, mas também aplicáveis a tarefas de classificação em outros domínios.

Duas contribuições principais são introduzidas em nosso trabalho. Em primeiro lugar, ampliamos a

plataforma INvestigate and Analyze a CITY (INACITY) integrando um banco de dados orientado a grafos,

melhorando o desempenho e a cobertura da coleta de imagens urbanas com o Google Street View. Em

segundo lugar, desenvolvemos a ferramenta Street-Level Image Labeler (SLIL), que reduz eficientemente

o ônus de rotular imagens manualmente, facilitando a criação de conjuntos de dados. Com a ajuda do

INACITY e do SLIL, criamos um conjunto de dados abrangente com 8.800 imagens urbanas em nível de

rua rotuladas bináriamente como contendo árvores próximas à rede elétrica (i.e. classe positiva) ou não (i.e.

classe negativa).

A avaliação humana do conjunto de dados revela a presença de imagens desafiadoras que confundem

até mesmo classificadores experientes. Por exemplo, distinguir se fios de poste cruzam ou passam por trás

das copas das árvores pode ser difícil, dependendo do ponto de vista da câmera.

A comparação de redes neurais profundas recentes nesse conjunto de dados revela que a maior precisão

alcançada por redes comuns é de 74,6%. No entanto, ao introduzir uma nova classe distinta da positiva ou

negativa, a classe desafiadora, e empregar o protocolo de treinamento Noisy Student e a função de custo

Focal Loss, melhoramos efetivamente as taxas de revocação para as classe positiva de 66,5% para 83,7% e para

a classe negativa de 63,7% para 78,8%. Essa abordagem nos permite identificar e classificar melhor imagens

que anteriormente eram propensas a classificações incorretas.

Palavras-chave: Imagens urbanas. Visão Computacional. Aprendizagem Profunda. Dificuldade de Instân-

cia.





Abstract

Artur André Almeida de Macedo Oliveira. Overcoming Challenging Urban Images:
Deep Learning and Data Integration Methods for Detecting Trees Entangled with
Power Lines. Thesis (Doctorate). Institute of Mathematics and Statistics, University of

São Paulo, São Paulo, 2023.

Urban image classification at the street-level poses significant challenges due to the presence of diverse

elements, varying appearances, and complex poses. Factors such as occlusion, background clutter, environ-

mental conditions, and camera viewpoints further complicate the classification process. In this study, we

leverage the capabilities of state-of-the-art Deep Learning Networks (DLNs), including MobileNets, ResNets,

DenseNets, and EfficientNets, to tackle these challenges head-on. We aim to evaluate the performance of

these DLNs, identify limitations, and propose innovative techniques for overcoming them.

Our research focuses on the specific task of classifying urban images with or without trees near overhead

powerlines. Through an extensive exploration, we provide methods and insights that not only address this

classification problem but also offer generalizable solutions applicable to a range of classification tasks.

Two major contributions are introduced in our work. Firstly, we extend the INvestigate and Analyze

a CITY (INACITY) platform by integrating a graph-oriented database, improving the performance and

coverage of urban image collection from Google Street View. Secondly, we develop the Street-Level Image

Labeler (SLIL) tool, which efficiently mitigates the manual labeling burden, facilitating dataset creation.

With the help of INACITY and SLIL, we curate a comprehensive labeled dataset comprising 8,800 street-level

urban images.

Human evaluation of the dataset reveals the presence of challenging images that perplex even experi-

enced classifiers. For example, distinguishing whether powerlines intersect or pass behind tree canopies can

be difficult depending on the perspective. The comparison of state-of-the-art DLNs on this dataset reveals

that the highest accuracy achieved by plain DLNs is 74.6%. However, by introducing a new class challenging
distinct from positive or negative, and employing the noisy student training protocol and focal loss, we

effectively enhance the recall rates for positive and negative classes respectively from 66.5% and 63.7% to

83.7% and 78.8%. This approach enables us to better identify and classify images that were previously prone

to misclassification.

Keywords: Urban images. Computer Vision. Deep Learning. Instance Hardness.
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Chapter 1

Introduction

Nowadays, we have access to an extensive collection of urban images from all around
the world, thanks to advancements in technology [8, 3]. We can extract from these images
valuable insights about our urban landscapes [68]. However, the complexity and diversity
of urban images pose significant challenges to their automatic processing and analysis.
Despite the remarkable progress of Deep Learning Networks (DLNs) [169, 66], they can
still struggle with simple images that humans can easily recognize [66, 69]. For example,
Figs. 1.1 and 1.2 show an urban image of a busy street and the output of a trained DLN
YoloV51 [84] detector, respectively. Figure 1.3a shows a single detection for two distinct
individuals, and Fig. 1.3b a food truck undetected because the network training data did not
include such vehicles. Surprisingly, DLNs overlook objects in urban scenes that humans
can easily spot. Understanding the limits and weaknesses of DLNs is essential for deploying
them safely and effectively in real-world applications [127].

We can harness Computer Vision (CV) with DLNs to detect and classify Urban Micro
Events [186] related to urban trees, which play a vital role in shaping our cityscapes. The
distribution and abundance of trees in cities can vary significantly due to differences in
urban planning and green space allocation [113]. Monitoring these variations becomes
crucial to address any negative impacts that trees may have on city structures. An example
of a significant concern is the interaction between trees and the electrical grid. Such
interactions can result in severe incidents, including fires [171, 207], disruptions in power
distribution [24, 82], and even fatalities due to electrical shocks [144, 82]. In early August
2023, on the island of Maui, Hawaii, an incident occurred where the proximity of a tree to
a section of the electrical distribution network initiated a fire that quickly spread across
the entire island [171]. This devastating fire endured for four days [132] and tragically
claimed the lives of 115 individuals. But such incidents are not isolated to distant locations.
Also in early August, on Afrânio Peixoto Avenue in São Paulo (just outside the University
of São Paulo), an alarming incident unfolded as a palm tree came into contact with the
electrical wires, resulting in a brief fire outbreak2 (illustrated in Fig. 1.4).

Effectively analyzing tree images using CV methods presents several challenges. The

1 Available at https://pytorch.org/hub/ultralytics_yolov5/
2 A short video recorded by Roberto Hirata can be seen at https://arturao.org/tree_igniting.mp4

https://pytorch.org/hub/ultralytics_yolov5/
https://arturao.org/tree_igniting.mp4
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Figure 1.1: Typical urban picture from Google Street View at the Rua Bresser in São Paulo, SP, Brazil.
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Figure 1.2: The output of a YoloV5 detection DLN. Notice that YoloV5 ignores trees, electric wires,
building façades, poles, store signs, windows, and other elements despite being extremely common in
urban scenes.
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(a) (b)

Figure 1.3: Details of the output of the YoloV5 for the image from the Rua Bresser. In (a) we see two
persons detected as a single one, possibly due to occlusion. In (b) the YoloV5 failed to detect the food
truck despite being in plain sight because there were no food trucks in its training dataset.

Figure 1.4: Electric arc formed by the contact of electrical wires with a tree.
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appearance of trees can undergo drastic changes based on factors such as species, seasonal
variations, pruning practices, occlusion, and even the camera perspective. Consequently,
performing CV classification on tree images becomes inherently challenging. In this
context, we use the term challenging to refer to specific classification tasks or images
that pose difficulties. In the subsequent sections of this Introduction, we will present
the advances we have made to understand the limitations of DLNs and enhance their
performance on datasets containing such challenging images.

(a) (b)

(c) (d)

Figure 1.5: The appearance of the same tree can change drastically between pictures, and sometimes
grown bushes look like small trees (d). (a) a tree pruned due to its closeness to overhead powerlines. (b)
the same tree before pruning does not fit the image. (c) by getting a picture from a further location the
top and bottom of the tree can be seen, but with fewer details. (d) a bush that looks like a tree.
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1.1 Research questions

Detecting and classifying urban micro-events with trees pose significant challenges.
The ambiguity in tree appearance and environmental factors like sun glare, shadows,
and camera perspective, can make automatic detection difficult. Figures. 1.5a, 1.5b, 1.5c
exemplify how drastically the appearance of a tree can change, and Fig. 1.5d shows a
grown bush that looks like small trees such variability and ambiguity can make the
automatic tree detection and classification difficult. Furthermore, a problem like spotting
trees near overhead powerlines can be even more challenging due to sun glare (see Fig. 1.6a),
shadows (see Fig. 1.6c), point-of-view of the camera (see Fig. 1.6e) and even the distance
between the camera and the trees (see Fig. 1.6g).

In summary, we seek answers to the following research questions:

1. How good are state-of-the-art deep learning networks for detecting urban micro-
events such as trees and their interactions with overhead powerlines in street-level
urban images?

2. Can challenging images (e.g. with degradation and or a bad point-of-view) be auto-
matically detected?

3. How do challenging images impact the generalization performance?

4. How can we deal with challenging images?

To answer the first question, we propose a dataset of street-level urban images considered
easy or challenging by humans that classified them as having or not trees entangled with
powerlines. We train several state-of-the-art deep learning networks with this dataset,
multiple strategies, and hyperparameters. We found that while current models are good
baselines, challenging images have a negative impact on their generalization perfor-
mance.

To answer the second question, we marked challenging images and assessed the
confidence of the output of DLNs for them. We found that training networks with the
Focal-Loss cost function make the gap between the confidence (i.e. maximum value in the
output vector of the model) of easy and challenging images larger than training them with
the vanilla Cross-Entropy cost function.

To answer the third question, we compared the test accuracy of networks trained with
and without challenging images. We found that removing them from the training dataset
improves the test accuracy.

Finally, we consider the fourth question under the observations obtained while search-
ing for answers to the previous questions. Challenging images may behave as noisy
samples when used for training; removing them can improve generalization performance.
Alternatively, one could collect other images for the same urban feature (e.g. tree) from a
distinct point-of-view depending on their availability.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 1.6: Different sources of hardness, the left column shows the images, and the right column
the corresponding GradCAM++ activation maps. Regions in red are the most relevant (according to
GradCAM++) for classifying each image. (a) sun glare obfuscates a portion of the wires; (c) shadows
degrade the visibility of the wires crossing tree branches; (e) occlusion of the wires by tree branches; (g)
trees are far away from the wires, but in the image plane, they intersect. (b,d,f,h) The activation maps
show that the most relevant regions are those where the wires can be more easily observed and are
close to the tree branches.
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1.2 Structure of the thesis

Chapter 2 presents preliminaries, concepts, and definitions used throughout this text.
Chapter 3 presents related works to give context and show current research on relevant
topics to this text. Chapters 4, 5 and 6 present a detailed description of our contribu-
tions:

• Chapter 4, partially based on the paper: INACITY - INvestigate and Analyze a CITY
- Artur André Almeida de Macedo Oliveira and Roberto Hirata. In: SoftwareX 15
(2021), p. 100777. ISSN: 2352-7110. DOI: https://doi.org/10.1016/j.softx.2021.100777
Short abstract: INACITY is a platform to integrate geographical data, geolocalized
imagery, and computer vision methods. During the elaboration of this thesis, we
extended the INACITY platform by incorporating it with a graph-oriented database,
performed analyses on its enhanced performance, and created a detailed software
description of INACITY itself. We used the extended INACITY platform to compose
all the datasets we created during this Ph.D.

• Chapter 5, partially based on the paper: Detecting tree and wire entanglements
with deep learning - Artur André Oliveira, Marcos S Buckeridge, and Roberto Hirata
Jr. In: Trees (2022), pp. 1-13
Short abstract: We collected 11 thousand street-level urban images from the cities
of São Paulo (SP) and Porto Alegre (POA) in Brazil to develop a method to automat-
ically detect trees close to overhead powerlines. We labeled the images using the
Street-Level-Image-Labeler (SLIL) software, which we developed and describe in
Appendix A. We trained Deep Learning Networks (DLN) to develop our method and
we provide a comparison of the performance of multiple DLN architectures trained
on a subset of the collected images and tested on a disjoint subset of the images. Our
results show that detecting trees close to overhead powerlines is feasible with DLN,
but there is still room for improvement as urban scenes are very complex and some
images are ambiguous even for humans labeling them. Figure 1.6 shows several
examples of ambiguous images and their GradCAM++ [177] maps.

• Chapter 6, partially based on the paper: Locating Urban Trees near Electric Wires
using Google Street View Photos: A New Dataset and A Semi-Supervised Learning
Approach in the Wild - Artur André AM Oliveira, Zhangyang Wang, and Roberto
Hirata. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2022, pp. 4286-4294
Short abstract: Locating trees close to electrical wires can be very challenging
in street-level urban images for several reasons such as image degradation (e.g.
sun-glare), scene complexity (e.g. background/foreground occlusion), or even due
to the lack of depth information. We train teachers and students EfficientNetB0
networks with a combination of 11 thousand labeled images, and 40 thousand
unlabeled images using a combination of semi-supervised learning through the
Noisy Student learning protocol [211], the cost function Focal Loss [106] and a new
label to characterize challenging images distinct from positive or negative. We show
that with our approach we could improve previous results based only on labeled
images and vanilla Cross-Entropy cost function.

https://doi.org/10.1016/j.softx.2021.100777
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In Chapter 7 we discuss our proposed methods and results in comparison with other re-
lated works. We show advantages, limitations, possibilities for improvements, conclusions
on the classification of street-level urban images, and challenging images, and provide
interesting research directions.

In the appendix, we present the following works we developed during this Ph.D.
indirectly related to the main body of this thesis.

• – Appendix A, SLIL: Street-Level Image Labeler - We developed the SLIL tool
to mitigate the burden of annotating images for classification. It is easier
than other similar tools and specialized for images collected via the INACITY
platform. It allows one to directly visit the location where that image was taken
in the Google Street View platform. SLIL can be used for annotating images
from other domains as well.

– Appendix B, Assessing the effects of ambiguous images on training -
Our study demonstrates that Deep Learning Networks trained on chal-
lenging urban images may exhibit poorer generalization performance com-
pared to networks trained without such challenging images. To investigate
this phenomenon, we conducted experiments utilizing the network archi-
tectures VGG16, ResNet50, ResNet152, MobileNetV3 Large, EfficientNetB0,
DenseNet161, and DenseNet121. Interestingly, with the exception of VGG16,
all networks demonstrated improved test accuracy when trained without chal-
lenging images.

Furthermore, we explored the labeling of challenging images as positive or
negative cases. We observed that, in general, assigning them to the negative
class yielded superior results compared to assigning them to the positive class.
However, the most favorable outcomes are achieved by removing challenging
images from the training dataset.

– Appendix C, Improving Self-supervised Dimensionality Reduction: Exploring
Hyperparameters and Pseudo-Labeling Strategies - Artur André AM Oliveira,
Mateus Espadoto, Roberto Hirata Jr, Nina ST Hirata, and Alexandru C Telea. In:
Computer Vision, Imaging and Computer Graphics Theory and Applications:
16th International Joint Conference, VISIGRAPP 2021, Virtual Event, February
8–10, 2021, Revised Selected Papers. Springer. 2023, pp. 135-161
Short abstract: Dimensionality reduction (DR) is an essential tool for the
visualization of high-dimensional data. The recently proposed Self-Supervised
Network Projection (SSNP) method addresses DR with a number of attractive
features, such as high computational scalability, genericity, stability and out-
of-sample support, computation of an inverse mapping, and the ability of
data clustering. Yet, SSNP has an involved computational pipeline using self-
supervision based on labels produced by clustering methods and two separate
deep learning networks with multiple hyperparameters. In this paper, we
explore the SSNP method in detail by studying its hyperparameter space and
pseudo-labeling strategies. We show how these affect SSNP’s quality and how
to set them to optimal values based on extensive evaluations involving multiple
datasets, DR methods, and clustering algorithms.
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– Appendix D, Stability Analysis of Supervised Decision Boundary Maps - Artur
AAM Oliveira, Mateus Espadoto, Roberto Hirata Jr, and Alexandru C Telea. In:
SN Computer Science 4.3 (2023), p. 226
Short abstract: Understanding how a machine learning classifier works is an
important task in machine learning engineering. However, doing this is for any
classifier in general difficult. We propose to leverage visualization methods for
this task. For this, we extend a recent technique called Decision Boundary Map
(DBM) which graphically depicts how a classifier partitions its input data space
into decision zones separated by decision boundaries. We use a supervised,
GPU-accelerated technique that computes bidirectional mappings between
the data and projection spaces to solve several shortcomings of DBM, such
as accuracy and speed. We present several experiments that show that SDBM
generates results that are easier to interpret, far less prone to noise, and compute
significantly faster than DBM while maintaining the genericity and ease of use
of DBM for any type of single-output classifier. We also show, in addition to
earlier work, that SDBM is stable with respect to various types and amounts
of changes in the training set used to construct the visualized classifiers. This
property was, to our knowledge, not investigated for any comparable method
for visualizing classifier decision maps, and is essential for the deployment of
such visualization methods in analyzing real-world classification models.

– Appendix E, SDBM: Supervised Decision Boundary Maps for Machine Learn-
ing Classifiers - Artur AM Oliveira, Mateus Espadoto, Roberto Hirata Jr, and
Alexandru C Telea. In: VISIGRAPP (3: IVAPP). 2022, pp. 77-87
Short abstract: Understanding the decision boundaries of a machine learn-
ing classifier is key to gaining insight into how classifiers work. Recently, a
technique called Decision Boundary Map (DBM) was developed to enable the
visualization of such boundaries by leveraging direct and inverse projections.
However, DBM has scalability issues for creating fine-grained maps and can
generate results that are hard to interpret when the classification problem has
many classes. In this paper, we propose a new technique called Supervised
Decision Boundary Maps (SDBM), which uses a supervised, GPU-accelerated
projection technique that solves the original DBM shortcomings. We show
through several experiments that SDBM generates results that are much easier
to interpret when compared to DBM, and is faster and easier to use, while still
being generic enough to be used with any type of single-output classifier.
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Chapter 2

Preliminaries

In this chapter, we will describe relevant topics for the work, namely, Geographical Image
Databases (GID), fundamentals on Deep Learning Networks (DLN), specific DLN architec-
tures, the semi-supervised learning paradigm with a focus on the Noisy Student training
protocol [211].

Geographical Image Databases A Geographical Image Database is a system that
provides images with geolocated positions. Google Street View (GSV) is an example of
a GID that provides ground-level images from most countries on every continent. In
the GSV system, a Panorama refers to the metadata of an image and any geographic
location containing images. The metadata in a Panorama contains the location of images,
a timestamp, and references for other Panoramas that share its location and different
timestamps or are nearby. Figure 2.1 shows a Neo4j graph with Panoramas spatiotemporally
related, that is, nodes in the graph connected by ‘link’ labeled edges relate spatially nearby
Panoramas, while ‘time’ edges relate Panoramas from the same location with pictures taken
in different moments, ‘view’ edges connect Panoramas with ‘View’ nodes representing
collected images.

Code 2.1 shows the data of a Panorama, which corresponds to metadata for images
taken from a particular location containing the properties:

• ‘description’ with the address of the Panorama,

• a global identifier property named ‘pano’,

• the horizontal angle corresponding to the frontal direction of the vehicle at property
‘centerHeading’ under the ‘tiles’ property, and

• other spatially nearby Panoramas in the array under the property ‘links’.

Figure 2.2 shows one of the images taken from the Panorama exemplified in Code 2.1. We
refer the interested reader to the official GSV documentation for more on how to collect
Panoramas1.

1 Google Street View official documentation: https://developers.google.com/maps/documentation/javascript/
streetview#StreetViewService

https://developers.google.com/maps/documentation/javascript/streetview#StreetViewService
https://developers.google.com/maps/documentation/javascript/streetview#StreetViewService
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Figure 2.1: Example of Panoramas (bottom five nodes) related spatially (by edges labeled as ‘link’)
and temporally (by edges labeled ‘time’). Each Panorama represents a location where images were
collected. The two top nodes are Views representing images collected and are connected to a Panorama
indicating the location of this image.

1 {
2 "location": {
3 "lon": -46.733551036950125,
4 "lat": -23.55726557534755,
5 "shortDescription": "1400 Av. Prof. Luciano Gualberto",
6 "description": "1400 Av. Prof. Luciano Gualberto, São Paulo, State of São

Paulo", // Associated real address
7 "pano": "N3vCnOJILasEoIco3awrBA" // Panorama identifier
8 },
9 "copyright": "2023 Google",

10 "links": [ // Each "link" item in "links" denotes a nearby Panorama
11 {
12 "description": "Av. Prof. Luciano Gualberto",
13 "heading": 297.59244,
14 "pano": "hOKEvXLBn1K4sCdYCcbTbQ"
15 }, ....
16 ],
17 "tiles": {
18 "centerHeading": 297.91968, // Angular horizontal direction pointing

towards the front of the vehicle (with respect to the true North).
19 "originHeading": 297.91968,
20 "originPitch": 0.017264999999994757, //Angular vertical direction,

ranging from -90 (downright) to +90 (upright).
21 "tileSize": {
22 "b": "px",
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23 "f": "px",
24 "height": 512,
25 "width": 512
26 },
27 "worldSize": {
28 "b": "px",
29 "f": "px",
30 "height": 6656,
31 "width": 13312
32 }
33 },
34 "time": [ // Each item in time denotes a Panorama at the same location, but

with a different timestamp, which is denoted by the property ’
imageDate’.

35 {
36 "pano": "D83V1MpQNV3dHBawKAm8gQ"
37 }, ...
38 ],
39 "imageDate": "2017-07" //The timestamp of this Panorama.
40 }

Program 2.1: Example Panorama in JSON notation. Ellipsis denote more items with the same structure
as the one preceding them.

Deep Learning Networks (DLN) The Multi-Layer Perceptron (MLP) is an example
of a DLN, a feedforward network composed of stacked layers of units [166] also called
neurons [62]. Each layer in an MLP performs a linear transformation of its input [166],
followed by a (non-)linear transformation, also called activation function [62], such as
sigmoid, Rectified Linear Unit (ReLU), or other [4]. An MLP is a function that maps a
vector from an input 𝑑-dimensional space, in which each dimension may correspond to a
feature from some observed data such as height, width, weight, and other, to an output
𝑛-dimensional space in which each dimension has a different interpretation depending
on the context like the probability of the input belonging to a class in a classification
problem, or a quantity in a regression problem. Formally, a MLP with 𝑘 hidden layers
ℎ𝑖 activation functions Θ𝑖 for 𝑖 ∈ {1,… , 𝑘}, and output 𝑓 (𝑥) for a given input 𝑥 ∈ ℝ𝑑 is a
function 𝑓 ∶ ℝ𝑑 → ℝ𝑛 defined as:

𝑓 (𝑥) = Θ𝑘(ℎ𝑘(Θ𝑘−1(…Θ1(ℎ1(𝑥)))))

Another family of DLNs known as Convolutional Neural Networks (CNN) uses convo-
lutional layers, which perform a ‘convolution’ rather than a linear transformation [62]. A
CNN can deal with grid-like topology data, such as images, text, temporal series, or others,
more naturally than MLPs [62]. Formally, a convolutional layer 𝑠 with a two-dimensional
kernel 𝐾 , which can be seen as a 𝑘 × 𝑙 real matrix, cross-correlated with a two-dimensional
image 𝐼 performs the operation:

𝑠(𝑖, 𝑗) = (𝐾 ∗ 𝐼 )(𝑖, 𝑗) =
𝑘

∑
𝑚

𝑙

∑
𝑛
𝐼 (𝑖 + 𝑚, 𝑗 + 𝑛)𝐾(𝑚, 𝑛)

where 𝐼 (𝑖, 𝑗) denote the 𝑖-th row and 𝑗-th column from image 𝐼 and 𝐾(𝑚, 𝑛) the 𝑚 − 𝑡ℎ
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Figure 2.2: Image pointing forward (with respect to the GSV car) from the Panorama exemplified in
Program 2.1
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row and 𝑛-th column from kernel 𝐾 [62]. CNNs can be a stacked mixture of linear layers,
convolutional layers, and non-linear activations.

A large number of different CNNs have been proposed in the last decade. Here we
briefly describe the ones most relevant for this work:

• VGGs [182], a simple baseline with several convolutional layers without residual
connections;

• ResNet [65]is a family of architectures with a varying (and large) number of stacked
convolutional layers with residual connections between them to mitigate exploding
and vanishing gradient issues;

• DenseNets [77] explore the residual connections not only between subsequent layers
but also between layers inside the same resolution block of convolutional layers;

• in MobileNetV2 [174] residual connections are used between bottleneck layers to
decrease the memory footprint of models;

• MobileNetV3 [73] is a model found with a Network Architectural Search (NAS)
approach optimized to be efficient on mobile devices; and

• EfficientNet [187] is a family of networks found with NAS and re-scaled depending
on layer width, depth, and input resolution.

Each family of architectures differs in the number and type of layers, the layout of the
connections between layers, and the activation functions they use.

Frameworks consolidated by the community like PyTorch [146] and TensorFlow [121]
provide implementations of these models, which facilitate the comparison of results
reported in different works using the same architectures. We experimented with these
DLN architectures with different pretrained weights, classification heads, activation func-
tions, training, cost functions, and learning rates. We also experimented with the training
protocol Noisy Student [211], and the technique called temperature scaling to deal with
overconfident trained models (c.f. [71] for details on temperature scaling).

Learning a Classification Model We based part of this paragraph on the book Deep
Learning [62].

There are many hyperparameters and training strategies to choose from when training
DLNs. Here we present the relevant cost functions, optimizers, the early stop strategy, and
the Noisy Student learning protocol.

The ultimate goal of a classifier is to maximize the accuracy, or some other metric
based on the proportion of correct/incorrect classifications [62]. However, optimizing a
DLN over these performance metrics is difficult because they are not differentiable [62].
Thus a surrogate cost function is optimized, which usually has the advantage of being
differentiable and can better exploit the training data [62].

Based on the Shannon entropy [179] one can derive the Cross-Entropy cost function,
which is a way to measure the difference between probabilities distributions [62]. Consider
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the binary classification problem with two probability distributions 𝑃 and 𝑄 over a random
variable 𝑋 . The Cross-Entropy 𝐻 (𝑃, 𝑄) between 𝑃 and 𝑄 is [62]:

−𝔼𝑋∼𝑃 log𝑄(𝑥). (2.1)

We are interested in assessing the performance of a DLN model 𝑓 parameterized by 𝜃,
denoted 𝑓𝜃. Given a dataset 𝐷, let (𝑥, 𝑦) ∼ 𝐷 be a sample 𝑥 ∈ ℝ𝑑 with correct label 𝑦 ∈ {0, 1}
draw from 𝐷. We can assess the cost 𝐽 (𝜃) of a model 𝑓𝜃 as:

𝐽 (𝜃) = − ∑
(𝑥,𝑦)∼𝐷

𝑦 log 𝑓𝜃(𝑥), (2.2)

which is a direct application of Equation 2.1 where 𝑦, and 𝑓 (𝑥) are the target and model
distributions, respectively [62]. Notice that a model 𝑓𝜃 that minimizes 𝐽 (𝜃) maximizes its
accuracy.

The Focal loss [106] is a modified version of the Cross-Entropy cost function designed
for datasets with class imbalance issues [106]. Focal loss deals with the difficulty of learning
the minority classes by assigning an exponential weight for misclassified samples, which
ultimately implies a dynamic weighting for each sample [106]. Formally, the Focal loss
cost function is defined as shown below:

𝐹𝐿(𝜃) = − ∑
(𝑥,𝑦)∼𝐷

𝑦𝛾 log(𝑓𝜃(𝑥)).

where 𝛾 is the focusing parameter, 𝑦, and 𝑓𝜃(𝑥) are the true and predicted label, respectively.
Larger 𝛾 values make (in)correctly classified samples have (higher)lower impacts on the
cost function.

Another relevant aspect while learning a classifier is the optimizer. Models optimized
through gradient-based methods require computing the cost of all samples and the gradient
of the aggregated cost with respect to the model parameters. However, for large datasets,
this procedure can be computationally intensive [62]. Stochastic Gradient Descent (SGD)
aims to mitigate this by estimating the gradient using a small random batch, also known as
minibatch, with 𝑚′ samples [62]. Formally, the estimate of the gradient with SGD is:

𝑔 =
1
𝑚′

𝑚′

∑
𝑖=1

∇𝜃𝐿(𝑥(𝑖), 𝑦(𝑖), 𝜃)

where 𝐿 is some cost function for a model parameterized by 𝜃, ∇𝜃 denotes the gradient of 𝐿
with respect to 𝜃, 𝑥(𝑖) and 𝑦(𝑖) denote the 𝑖-th minibatch sample and label, respectively.

The Early Stop regularization technique is a stopping criterion for training a DLN [62].
It involves evaluating the DLN with a validation dataset at each training iteration, stopping
the training when the validation error does not decrease by a given margin for a fixed
number of iterations, and choosing the DLN model with the best validation error as the
final model [62].
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Semi-supervised learning and Noisy Student Semi-supervised learning involves
learning a model from labeled and unlabeled data to improve performance beyond super-
vised models trained on labeled data only [213]. The Noisy Student training protocol [211]
is a semi-supervised approach created to leverage large amounts of unlabeled data. A
teacher neural network model is trained with labeled data and generates pseudo-labels
for unlabeled data. The labeled and pseudo-labeled data compose the training dataset
of a student network model. The student network learns from images augmented with
RandAugment [37], and the student model itself is augmented with Stochastic Depth [75]
and Dropout [185]. Figure 2.3 illustrates the Noisy Student protocol. The (re)training cycle

Figure 2.3: The Noise Student training protocol. Image from [211].

continues until convergence.
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Chapter 3

Related Works

We review in this chapter the relevant literature for collecting and analyzing urban
images, emphasizing greenery, trees, and powerlines. As previously mentioned, urban
environments pose unique challenges, and we examine them from the perspective of
instance hardness. Additionally, we discuss related research on ambiguity in natural
images, which can also be viewed as a difficult visual search task.

Collecting and Analyzing Urban Images Geo-located Imagery Databases (GIDs) like
Google Street View [8] are reliable sources for studying cities [168, 208]. Platforms like
KartaView [3] and Mappilary Vistas [128] mitigate the data collecting burden by making it
a distributed crowd-sourced task done by citizens, which is cheap, accessible, and aligned
with citizen science efforts [41, 16]. Motivated by the abundance of public geolocalized
images, [205] proposes a Convolutional Neural Network (CNN) [102] architecture to detect
and classify urban objects using aerial and street-level imagery from Google Street View
(GSV), showing that combining data from both modalities is better than just using only
one. Greenery [18], tree cover [22], shade provision [103], and even abstract concepts
as graffiti [193] can be automatically assessed through images using heuristics [18] and
DLNs [22, 103, 193].

Assessing Urban Trees Trees entangled with power lines conduct energy to the ground,
causing electrical shock accidents and energy leakages, which can heat the wood, causing
wildfires [114, 31], blackouts [5, 156] and partial discharges [144]. Suddenly pruning
the trees can have negative consequences, such as spreading diseases and decreasing
their shade provision, which is more likely to be criticized by citizens [53]. Managing
and monitoring urban forests and their interaction with power lines require multiple
indicators, as suggested by various studies [91, 143, 29, 87]. However, this process is costly,
time-consuming, and potentially dangerous [87].

Ma et al. [114] use a machine learning approach for time series from electrical currents
measured on branches of different species of trees connecting simulated powerlines. By
identifying a high risk of ignition, they can prevent bushfires at their initial stages. On the
other hand, Kobayashi et al. [93] used satellite images to detect tall vegetation close to
power lines. The benefits of using satellite images include broad geographical extents and
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the easy inspection of otherwise difficult-to-access areas. By using multi-spectral images,
they can spot healthy vegetation, and by using stereoscopic techniques, they can compute
the height of the vegetation close to power lines and transmission towers, allowing one to
distinguish between harmless understory vegetation in the ground as bushes and grass
from tall trees that can come into contact with the power lines.

Jwa et al. [87] propose to use airborne LiDAR data to detect and perform 3D reconstruc-
tion of powerlines and transmission towers without prior knowledge of tower position
or the number of lines. This method has a better resolution compared with satellite data
due to the low altitude in airborne imagery data and the LiDAR structured laser pattern,
making it easier to spot issues arising from faulty tall vegetation. Wanik et al. [203] propose
a LIDAR-based approach to directly assess the risk of an outage during a storm in locations
where tall vegetation and overhead power lines are close. Other authors have proposed
using ground Mobile Laser Scanner [214] or even airborne laser scanners and LiDAR
data [32] to map vegetation and other urban objects along roads, providing both a high
coverage area and accuracy. However, these data modalities are less available than simple
RGB street-level images.

Street-level images allow for the visualization of tree entanglements with power lines
from multiple points of view, leading to better results than aerial and satellite images in
urban areas, especially in places where trees can be taller than pylons and cover the wires.
Furthermore, ground-level imagery allows the analysis of various aspects from the urban
environment [8, 16, 68], for instance, urban vegetation distribution [22], or the relationship
between the environment (e.g., greenery, littering) and health or safety outcomes [129, 95].
Berland et al. [15] study the applicability of the GSV as a tool for auditing trees through a
virtual tour, showing that GSV is more cost-effective and less labor-intensive than field
audits. Cai et al. [22] propose a method to directly estimate the Green View Index (i.e.
the amount of greenery perceived by pedestrians) from GSV images using a CNN. They
compare three CNN-based methods: supervised/unsupervised semantic segmentation, and
regression, showing that regression outperformed the other two. To assess the main input
image features responsible for the Green View Index estimation qualitatively, they explore
the gradient-weighted Class Activation Map (Grad-CAM++) [26] visualization method
qualitatively.

A recent study by Liu et al. [107] assessed the urban tree inventory across five districts
spanning 258.27 km2 in Jinan, China. In their pipeline, they collect street-level images
from Baidu [12] and Google Street View [81]. They annotated the images with bounding
boxes encapsulating each tree, with the added task of assigning a tree species to each
bounding box. The species classification encompassed eight distinct tree species and a
category for ‘other’. The bounding boxes encompassed completely the annotated trees.
In addition to species classification, they also estimate the heights of the trees with a
Monodepth2 [61] network trained on the KITTI stereo dataset [59] and validated using
depth maps collected from the Google Street View API. Their findings demonstrate that
detecting and classifying the species of the trees are challenging tasks because of the high
variability in the appearance of the trees.

Ambiguity in the wild Challenging urban images have several natural sources of
difficulty, including weather degradation such as haze, low light, and rain [212]; scene
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complexity with cluttered backgrounds [108], occlusion [108]; and even the camera distance
to objects of interest may be a source of difficulty [52]. A common characteristic of
challenging images is that the visual search task for humans seems harder on them as
evidenced by [52, 16, 124].

Detecting hard instances There are detection and quantification approaches for esti-
mating Instance Hardness (IH). The former deals with out-of-distribution (OOD) detection
during test time, while the latter assigns a score to each instance, allowing a classifier to
learn sequentially from easier to harder instances [221], or data-pruning [147], for instance.
In OOD detection methods and should be avoided during test-time [127]. Uncertainty
estimation methods characterize hard instances as inputs with a label set disjoint from the
training label set, with predictions for such instances having low confidences and/or high
entropies [100]. Hendrycks et al. [69] propose two datasets of natural adversarial examples:
ImageNetA and ImageNetO, with images similar, and from the ImageNet dataset [169],
respectively. They use adversarial filtration to compose them, a technique where a trained
model is used to sample instances misclassified with high confidence. ImageNetA contains
new images with the same labels used to train the filtering model, but are not part of the
training dataset. ImageNetO is constructed by removing ImageNet-1K images from the
ImageNet-22K dataset. The remaining samples have a label set disjoint from the ImageNet-
1K one, i.e. they are OOD samples with respect to the ImageNet-1K dataset; next, the
filtering model trained only with ImageNet-1K predicts labels for the remaining images.
Only those with a high confidence prediction are kept. Russakovsky et al. [169] show that
natural adversarial samples are hard to other networks, that is, their ‘hardness’ generalizes,
thus other models are also more likely to misclassify them.

Instance Hardness and Viewing Times Instance Hardness (IH) and Hardness Mea-
sures (HM) are measures to quantify how difficult it is to correctly classify an instance [183].
However, IH is relative to the choice of learning algorithm used [183], while HM assesses in-
dividual components contributing to the IH of an instance, providing insight into why some
instances are harder than others, regardless of the learning algorithm used. Understanding
why instances are difficult is important because models trained only on easy images often
fail to recognize objects in ‘hard’ images [212]. Moreover, such an understanding helps to
design specialized approaches. For example, dataset imbalance and noisy labels are both
issues that can decrease the performance of a classifier. While the former can be mitigated
by instance re-weighting strategies [96, 106], other methods are better suited for noisy
labels [78].

Mayo al. [124] explore the time one takes to label an instance, known as viewing
time, as a proxy for HM, showing that images with longer viewing times are more likely
to be misclassified by humans and are correlated with C-scores, Prediction Depths, and
Adversarial Robustness [63]. Beidi et al. [27] propose the Angular Visual Hardness (AVH),
which is the angle formed between a vector embedding of an instance and the weights
associated with a class in the final layer of a classifier. They propose the Human Selection
Frequency (HSF) as a measure of human visual hardness. HSF is the fraction of human
annotators that assign the correct label to a given instance. They show that AVH and
HSF are strongly correlated. Thus AVH can be used as a proxy to assess human visual
hardness.
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Several works use statistics from trained Deep Learning Neural Networks (DLNN) as
proxies to quantify instance hardness [63, 83, 13, 147]. Paul et al. [147] propose the GraNd
and EL2N scores, which depend on the cost and on the error vector of an instance. GraNd
depends on the gradient norm of the cost function, while EL2N depends on the expected L2
norm of the error vector. They show that instances with the lowest scores are redundant
and can be removed from the training dataset, while instances with the highest scores
are usually outliers or have noisy labels. Jiang et al. [83] propose the consistency score of
instances (c-score for short). Given a trained DLN 𝑓 that correctly classifies an unseen
instance 𝑥 , the c-score of this instance 𝐶(𝑥) is proportional to the size of the training
dataset required to train 𝑓 . C-score is a proxy for sample complexity as models require
smaller/larger training datasets to correctly classify easier/harder samples with low/high c-
scores. Baldock et al. [13] explore the relationship between intermediate features of a deep
learning network and instance hardness. They compare the outputs of k-NN classifiers
on intermediate features of a trained deep learning network (DLN) for a single instance.
They propose the measure Prediction Depth defined as the number of subsequent k-NN
classifiers (starting from the last one) that agree on a label for an input instance. They show
that the Prediction Depth (PD) is correlated with how likely an input instance is correctly
classified by the DLN, which implies that PD is inversely proportional to IH.
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Chapter 4

INACITY
INvestigate and Analyze a CITY

This chapter is partially based on the paper of the same name [6].

In this chapter, we present several improvements to the INACITY platform. One of the
main problems of the first implementation of the platform was that queries usually had a
large number of inner joins, and we wanted to implement a more natural way to traverse
a sequence as if we were capturing a video from inside a car.

We integrated INACITY with Neo4j graph-oriented database to improve its perfor-
mance and to retrieve sequences of images in the same order as they are collected. We
present how to collect and store geographical data from/into multiple databases, including
the graph-oriented Database Management System Neo4j [2].

Our main contributions here are twofold:

• A deep analysis and thorough description of INACITY components and behavior;

• An extension for graph-oriented databases, with time analyses for some queries.

4.1 Software description
INACITY, like any other software, is an evolving piece of software and was nearly

completely rewritten during this Ph.D. project, and this section presents the software
architecture, components, and classes.

INACITY is modular, and components responsible for collecting data in the back-
end have an interface in common, whose implementation is the only requirement when
implementing new ones.

4.1.1 Software Architecture and Functionalities
We based INACITY in the client-server model [162] and implemented a back-end (data

access layer) and a front-end (presentation layer) component. We made INACITY available



24
4 | INACITY

INVESTIGATE AND ANALYZE A CITY

as a web application rather than having a client application for each major OS (e.g., Linux,
macOS, and Windows) to maximize its accessibility, as most web browsers (e.g., Chrome,
Firefox, Microsoft Edge) can access it. We made available Docker containers [1] to ease
the deployment and make the platform even more accessible.

We developed the back-end with Python 3 because it is friendly for newcomers, has
a rich set of libraries and packages publicly available, and a considerably large body of
scientific work produced with it (e.g., the Scikit libraries family [151]) and web-development
frameworks (e.g., Django and Flask), which are tuned to deal with database modeling even
with geographical data.

We have chosen Django framework [55] as the core technology for the front-end and
back-end because it provides all the machinery for handling web-based requests (i.e., REST-
based requests), database access and modeling, user authentication and authorization,
real-time communication (with the extension Django-channels), and has a stable and large
community. We designed the front-end as a visualization tool that consumes data from the
back-end, using Django template language (based on HTML) and Javascript to develop
the front-end, and a user can create an account, log in, and manage work sessions in the
front-end.

In the back-end, we define three main tasks, Geographical Information Systems (GIS)
and Geographical Image Databased (GID) integration and image processing with Computer
Vision (CV). We implement a Manager class for each main task using the design pattern
known as Strategy [200]. Each Manager delegates requests to specialized classes that
share an interface in common. Note that our Manager classes are unrelated to the Django
Manager class [56]. The flow of a request to the back-end is as follows:

1. Django infrastructure delegates this request to the Manager Component (MC).

2. The MC delegates it to the class responsible for collecting/generating data for the
request.

3. The data collecting/generating class returns data to the MC.

4. The MC formats the data received (if needed) and returns it to the infrastructure,
which returns it to the caller that originated the request.

It is worth noting that the communication with the back-end has a REST API. Any
client application can request to the back-end, not only the front-end developed in the
INACITY platform. Figure 4.1 shows a diagram describing the back-end components with
some comments about their functions and the relationship between Managers, abstract
classes, and derived counterparts. The abstract classes MapMinerManager, ImageProvi-
derManager, and ImageFilterManager define an interface for Manager classes, which
delegate requests from a front-end client to specialized associated classes. The URLs
component defines end-points that external clients can call; those end-points define the
REST API functions of the back-end.

Figure 4.2 shows a class diagram describing the Manager classes, arranged according
to the Strategy design pattern. For example, the class OSMMiner is a subclass derived from
MapMinerManager, and it provides a unified way to collect data from the OpenStreetMap
GIS [142] implementing functions with interfaces defined in its base class, which allow
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Figure 4.1: back-end overview

the MapMinerManager class to collect data from the OpenStreetMap GIS independently
from the data model or the connection details. The OSMMiner class translates requests
from the MapMinerManager to queries for the OpenStreetMap, and the response from
the latter to a format in common (i.e., GeoJSON [21]) that can be transmitted back to
the front-end client. Concerning the detection of urban features, one possibility would
be to implement deep learning neural networks to detect traffic signs [10] in images
collected from a crowdsourced imagery platform such as KartaView (previously known
as OpenStreetCam) [3]. By subclassing the abstract base classes ImageProvider and
ImageFilter, one can integrate KartaView (to collect the images) to INACITY to process
the collected images and detect the traffic signs or other urban elements.

Figure 4.3 shows the front-end, a website for an end-user. Its main components are its
pages and communication classes the former render updated information and allow the
end-user to interact with the website, while the latter communicates with the back-end.
The communication components are responsible for encapsulating requests for the back-
end and, at the current version, for Google Street View (GSV) servers. The GSVService
component, responsible for communication with GSV servers, is implemented at the
front-end due to restrictions on GSV, but we store the signing key and implement the GSV
request algorithms at the back-end. We use the Google Street View [81] as the standard GID
because of its worldwide coverage and because it is a platform commonly used in several
works analyzing the urban environment with street-level urban imagery [17].
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Figure 4.2: INACITY back-end class diagram.

4.2 Extending the platform
Integrating a new component to extend the platform requires the user to implement

them directly in the source code. There are three main ways to extend the platform, new ge-
ographical databases, new imagery platforms, and new Computer Vision algorithms.

We extend the platform by implementing subclasses of specific base classes, which
define interfaces for corresponding Manager Components. We describe how to extend the
platform in the following sections.

4.2.1 GeoImage
To facilitate the integration between imagery data and geographical data, one can use

the GeoImage object. Figure 4.5 shows a class diagram describing the GeoImage component
based on GeoJSON. The implementation of this object is similar to the GeoJSON object to
achieve better interoperability. As specified by RFC 7946 [21], the GeoJSON object has its
fields well defined with a proper semantic, except for the properties field of the Feature
object. This field can contain any JSON (JavaScript Object Notation) object. Therefore, we
keep the imagery data related to the coordinates of a Feature object inside the properties
field under the key geoimages. Every GeoJSON object is either a FeatureCollection, a
Feature, or one of seven kinds of geometries [21]. We consider each geographical entity
as a FeatureCollection, usually containing only a single Feature.

We treat every geographical entity as a FeatureCollection, possibly containing
just a single Feature. Requests to ImageProvider contain a FeatureCollection, an
array of Features, with the coordinates of the images retrieved by the ImageProvider.
Figure 4.4 shows a diagram of the GeoJSON as an abstract class with nine possible subclasses
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Figure 4.3: front-end diagram

(considering that the Geometry class could be one of six distinct types).

The GeoImage object keeps metadata and data extracted, using some CV algorithm,
from images collected from a GID. We keep data extracted in a separate object called
ProcessedImageData. Notice that the same GeoImage can hold a reference to multiple
ProcessedImageData because each image can be processed by different Computer Vision
algorithms, yielding multiple distinct extracted data.

We add a new entry with the key geoimages into the JSON field properties of
the Feature object to keep the same indexes between the coordinates of the geometry
property. That is an easy way to access the GeoImage related to a particular coordinate.
The geoimages entry may have the same structure (i.e., nesting indexes) of the coordinates
in the geometry property of the Feature. When an image is unavailable for a particular
coordinate, an error string will fulfill that particular index position in the geoimages
entry.

4.2.2 Image filter module

Figure 4.6 illustrates how to include a new Image Filter in the platform. Image Fil-
ter subclasses extract data from images. We use rectangles highlighted in yellow to
denote components under development. The Trees & Powerlines component (based
on Chapters 5 and 6) represents a detector of overhead powerlines that intersect trees.
The Scene Captioning class provides a textual description of the scene. Similarly, the
Pavement quality class could provide a score for road damage. All these components
inherit from the abstract class ImageFilter, which provides an interface in common to
process images.
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Figure 4.4: GeoJSON class diagram.

4.2.3 Image Provider modules

Accessing and retrieving geolocated images from a GID is a task for an Image Provider
module. They are used to integrate new image sources into INACITY. Since each one of
these sources supports different image modalities, like frontal views, panoramic images,
RGB-D, and sometimes a combination of them, each Image Provide module performs
requests with parameters expected by the external system integrated with INACITY.
For example, the GSV API allows one to query for the Panorama closest to some given
coordinate and to select the vertical and horizontal angles, the field-of-view, image resolu-
tion, and other image parameters. Figure 4.7 presents an overview of the Image Provider
modules.

A subclass, derived from the Image Provider abstract class, must be created to ex-
tend the Image Provide module. In Fig. 4.7, the subclasses Mappilary[120], Baidu Total
View [12] and Crowdsource are highlighted in yellow because they are under development.
The Crowdsource subclass allows users to send and retrieve images. An Image Provider
module returns a GeoImage object to the ImageProviderManager class.
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Figure 4.5: GeoImage class diagram. We use the base64 serialization of an image for simplicity.

Figure 4.6: Image Filtering module. All the subclasses of the Image Filter class have an interface in
common used by the ImageFilterManager class during a request. The subclasses highlighted in yellow
are under development in the current version of the INACITY platform, the one highlighted in green is
under integration with the platform, and the rest is already available.

4.2.4 Map Miner module

The Map Miner module integrates GISes to INACITY. Figure 4.8 presents the Map Miner
module and its connections with some GIS databases. The GeoSampa component collects
data from the internal PostgreSQL database of bus stops from São Paulo. We inserted an
extract from the GeoSampa [175] into the INACITY database to mitigate the number of
external queries.

The OSMMiner class defines how to collect street geometry from the Open-
StreetMap[142] platform, which uses the GeoJSON specification [21] and represent
streets as a collection of interconnected LineString objects. We use a sequence of
collected LineString objects (each with geographical coordinates) to get geolocalized
images from a GID. The PanoramaMiner class performs queries over a Neo4j database
instance, a graph-oriented Database Management System (DBMS) [2]. The Neo4j instance
is hosted together with the Django server in the same Docker container in the current
version and is responsible for relating physical entities (e.g., objects from some GIS), their



30
4 | INACITY

INVESTIGATE AND ANALYZE A CITY

Figure 4.7: Image Provider module. A Manager component (e.g., ImageProviderManager) receives
each user request and routes it to the ImageProvider subclass specified in the request. These subclasses
have an interface in common to collect images from a given external image provider (e.g., GSV), thus
abstracting the particularities of the API and rules (e.g., the minimum time between requests) of each
external image provider.

images (sampled from some Image Provider system), and even data extracted from those
images (using some Image Filter component).

Figure 4.9 shows an example of the graph representation we use to store metadata
from Google Street View images and data extracted from them. Panorama nodes (i.e.,
orange nodes) store the address, heading, and pitch angles of the front of the vehicle,
timestamp, and other information shared by several images. The View nodes (i.e., blue
nodes) store image heading and pitch angles. A FilterResult node (i.e., gray nodes) stores
image-extracted data associated with its connected View node.

4.3 Illustrative Examples

In this section, we present two use-case examples of the platform.

4.3.1 Neighborhood visual inspection
The most simple use case of the platform involves selecting a region of interest and

fetching images from that region for auditing neighborhoods [168]. In the INACITY
platform, the pictures from each street in the selected region sequentially as taken by the
vehicle traversing it. We provide a short video showing this use case [138].

A person selects a region, OpenStreetMap as GIS, and Google Street View as GID
in the front-end and presses the ‘Get Images’ button, which triggers a request from the
front-end class UIModel to the back-end containing the selections, collecting streets inside
the selected region from the selected GIS, and images for them from the selected GID.
Figure 4.10 shows a diagram of the process that follows the UIModel request. Since this
is a request for images from a geographical entity, the MapMinerManager component
receives the request and delegates it to the MapMiner subclass OSMMiner, which parses
the request with the Overpass Query Language [141] and sends it to the OpenStreetMap
platform.
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Figure 4.8: Map Miner module. We deploy the Neo4j and the PostgreSQL databases (cylinder icons)
locally, while the components depicted with a cloud icon denote external systems accessed through the
subclasses of the Map Miner class. As with the other modules, user requests are routed by a Manager
component (omitted in this figure; see Figs. 4.7 and 4.6 for examples) to the Map Miner subclass
specified in the request. This subclass must translate the user request into a request to the target GIS
(e.g., OpenStreetMap) or local database (e.g., Neo4j), which contains geographical data (e.g., the location
of GSV panoramas or even bus stops imported from GeoSampa into the local PostgreSQL database).
We use the Django ORM to interact with the PostgreSQL and packages provided by Neo4j to interact
with the graph database via the bolt protocol.

After the OpenStreetMap returns the query results, the OSMMiner subclass will format
the response, streets geometry, using the GeoJSON [21] specification and return it to
the MapMinerManager, which will return it to the front-end as blue lines on the digital
map.

Next, the UIModel class sends a second request containing the geographical entities
collected in the first step and the selected GID. This request follows a similar flow as the
one used to collect street geographical data, except that this time ImageProviderManager
receives the request. As the user selected Google Street View as GID, the ImageProvider-
Manager will delegate the request to the GoogleStreetViewImageProvider subclass of
the ImageProvider component.

4.3.2 Urban feature visualization (greenery)
Visualizing the distribution of urban features, like greenery, is another use case of the

INACITY platform in a given geographical region. The pipeline starts as before (i.e., a
user selects a region of interest) and then triggers a request for processing the images
collected during a neighborhood audition. In the video accompanying this paper, we show
a filter called Greenery filter to estimate the Green View Index by segmenting which
image parts correspond to green vegetation. The density property of a ProcessedImage-
Data object associated with the GeoImage stores the image proportion marked as green
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Figure 4.9: Nodes stored in the local Neo4j instance. Panorama nodes in orange represent locations
(i.e., latitude and longitude) of images. Views (in blue) represent images and encapsulate the horizontal
(heading) and vertical (pitch) angles of the camera from the front of the vehicle to the magnetic North
and flat ground, respectively, at the moment of the shot. Filter results (nodes in gray) maintain data
extracted from a view by some ImageFilter subclass (Fig. 4.6).

vegetation. When the FeatureCollection is returned to the front-end, its features and
corresponding GeoImages (if available) will have an associated ProcessedImageData,
which can have extracted data as the density of Green View Index displayed as in Fig. 4.11,
for example.

Besides the heat map, INACITY can present some urban features overlayed on the
original images. Figure 4.12b shows an example of a processed image. Greenery and
non-greenery regions, detected by the back-end, are highlighted in green and in blue,
respectively, and overlayed with the processed image, allowing the inspection of the
greenery filter module, which we implemented with the Python packages numpy [133]
and scikit-image [202].

4.4 Demo Site, Impact, and Limitations

A non-specialist user can use the public instance to select a region, query images,
and extract features from them. Available geographical features include street network
locations from OpenStreetMap [142] and Bus Stops from GeoSampa [175], and Google
Street View [81] is the only implemented imagery source. Additional capabilities can be
implemented by developers and researchers in the future, possibly in locally deployed
instances of the INACITY platform.

INACITY can be part of a more extensive pipeline of research. For instance, in [137],
we collect images from some locations in the cities of Porto Alegre (BR) and São Paulo to
build a machine-learning model to detect entanglements between electric wires and tree
branches, which can be coupled into INACITY by subclassing the ImageFilter class, thus
enabling the platform to help city managers to detect tree and wire entanglements and
prevent accidents.
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Figure 4.10: Flow diagram for street collection.

4.4.1 Quota module
The quota module keeps track of how many calls a user performs. We host a public

instance of INACITY is available at http://inacity.org, and due to GSV costs, a user-level
quota system is necessary to allow more users to try the platform, but users can provide
their own GSV credentials and avoid the quota limits. The class QuotaManager is responsi-
ble for registering a new entry in the database and keeping track of the available quota of a
user. Figure 4.13 show the main components of the quota subsystem. We use the decorator
factory quota_request_decorator_factory to track the usage of a function. The parame-
ters of the decorator factory are default_user_quota, default_anonymous_quota and
skip_condition. The first two specify how many calls will be available for a registered
and an anonymous user, respectively, and the last parameter is a Boolean function used to
disable the quota manager when the user provides GSV credentials.

4.4.2 Performance tests
We created a benchmark test to assess the effect of multiple simultaneous requests

to the back-end. The tests consist of collecting streets and images for two disjoint urban
regions. Each region has a different size and number of streets and images. Table 4.1
presents the results and information details of both areas used in the benchmark. Rows in
the table represent the total area (in squared meters), number of streets, and number of

http://inacity.org
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Figure 4.11: Greenery heat-map (lighter colors for higher values) for a region selected (i.e., the red
square).

(a) Unfiltered image (b) Filtered (greenery) image

Figure 4.12: (a) An example image from Google Street View. (b) Image shown in (a) after being filtered
by the ‘Greenery density’ subclass. We highlight greenery regions in green and other regions in blue.

images collected, and several statistics for time elapsed to collect streets geometry (i.e.,
points) and imagery and to process images. We split the minimum, maximum, average,
and standard deviation times between collecting streets in each region and collecting the
images for the corresponding streets collected. Finally, the time spent processing all the
collected images using the currently implemented Greenery image filter. We performed
100 requests to collect the response times, 50 for area 1 and 50 for area 2. We performed
ten concurrent requests at all times, interspersing requests for area 1 with requests for
area 2. We used an Intel Xeon E5420 2.5 GHz with eight cores to perform the benchmark
tests.
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Figure 4.13: Quota system overview.

Both areas Area 1 Area 2
Area 348906 𝑚2 20931 𝑚2 327975 𝑚2

Num. Streets 27 2 25
Num. Images 429 71 358
Min Time (Streets) 7.78 s 7.78 s 7.89 s
Avg. Time (Streets) 9.14 s 9.36 s 8.91 s
Std. Time (Streets) 2.2 s 2.34 s 2.05 s
Max Time (Streets) 16.76 s 16.68 s 16.76 s
Min Time (Images) 8.57 s 8.57 s 108.36 s
Avg. Time (Images) 84.55 s 18.79 s 152.04 s
Std. Time (Images) 68.79 s 9.52 s 19.81 s
Max Time (Images) 194.92 s 50.13 s 194.92 s
Min Time (Greenery filter) 153.70 s 153.70 s 812.96 s
Avg. Time (Greenery filter) 494.61 s 170.53 s 843.63 s
Std. Time (Greenery filter) 342.97 s 10.97 s 15.32 s
Max Time (Greenery filter) 867.48 s 187.24 s 867.47 s

Table 4.1: Multiple statistics taken upon the execution times and request sizes (in terms of streets and
images collected) for two distinct regions.

4.5 Discussions and Conclusion
We created the INACITY platform to facilitate collecting and integrating geographical

data, images, and computer vision algorithms. Each module base class allows the indepen-
dent implementation of new Geographical Imagery Databases, Geographical Information
Systems, and Computer Vision algorithms. The front-end is simple and allows end-users
(e.g., citizens, developers, researchers, or government administration agents) to use the
platform to gather data for future use and, because it is open-source, further improve the
platform by modifying it to their needs.

We can present images as a video because they appear in the graph-oriented database
as a sequence of connected nodes. Retrieving geographical data and data extracted from
images is easier and faster since Panorama and View nodes in the graph represent them,
respectively, so traversing from a View node to its connected Panorama node allows one
to collect data stored at both nodes. A future application for INACITY and our proposed
extension is integrating multi-modal geographical data, similar to [186], to detect irregular
waste disposal or even to track localized complaints reported by citizens.
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Chapter 5

Detecting tree and wire
entanglements with deep
learning

This chapter is partially based on the paper of the same name [137].

In this chapter, we propose a method to classify images with trees entangled or not
with power lines1, and a new dataset with images labeled using an in-house developed
application crafted to ease the annotation process.

We fine-tune a pretrained Convolutional Neural Network (CNN), named Mo-
bileNetV2 [174], with the annotated images to detect entanglements between power lines
and trees. The network achieves over 74% of test accuracy on a test set of 1001 images
from two Brazilian cities.

The main contributions of this research are:

1. An approach to detect tree and wire entanglements in street-level imagery based on
deep learning;

2. An annotated dataset of tree entanglements with power lines;

3. An open-source software for annotating street-level images.

5.1 Method
This section presents our solution to locate tree entanglements with power lines. We

first present a dataset of more than six thousand images collected from São Paulo and
Porto Alegre, two cities in the Southeast and South of Brazil, respectively, using Google
Street View. We then present the strategy to annotate the images, and we finish the
section presenting the strategy to tune a Convolutional Neural Network using transfer
learning.

1 Our code is available at https://github.com/arturandre/tree-wires.

https://github.com/arturandre/tree-wires
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5.1.1 Image dataset
We start collecting geographical position data of 2981 trees from an open government

public database called GeoSampa [175], with data for SP and 3111 positions of power poles
on POA from the energy company CEEE’s website [23].

To collect an image using INACITY, we first sample the nearest GSV panorama from a
given location 𝐿 of the desired target object (i.e., trees from GeoSampa or power poles from
CEEE’s dataset). After finding the nearest Panorama 𝑃 from 𝐿, we extract an image from 𝑃
such that the camera will point from 𝑃 to 𝐿, making the target object appear approximately
at the (horizontal) center of the image. Notice that there might be inaccuracies in the
positions of 𝑃 and 𝐿, making the target object further from the image center, or eventually,
the time when the image was taken and the position 𝐿 was recorded are too far apart, thus
the target object could have been removed. Figure 5.1 shows four examples of images from
São Paulo city and four examples of images from Porto Alegre city. Notice that sometimes
the target objects may not be visible due to occlusion, or they may not be there when the
picture was taken.

Figure 5.1: Sample images from (top row) São Paulo and from (bottom row) Porto Alegre.

5.1.2 Dataset labeling
We label each image as a vector of three binary values, trees, power lines, and en-

tanglements. For example, if an image contains a tree, overhead power lines, and no
entanglements, the binary vector associated with this image will be (1, 1, 0). We used the
SLIL application (presented in Appendix A) to label the GSV images. Figure 5.2 shows a
screenshot from SLIL. The image being labeled has trees, overhead power lines, and an
entanglement between them.

Some images can be challenging to label for reasons like the camera perspective. In
Fig. 5.3, it is hard to decide whether the tree is touching or not the power lines because the
wires and the trees seem entangled at the top. However, they seem far from each other at
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Figure 5.2: Screenshot of the ’Street Level Imagery Labeler (SLIL)’ application, used to annotate the
GSV images in the dataset.

the bottom, leading to the opposite conclusion. Figure 5.4 shows another example where
the camera is pointing in a direction parallel to the power lines, and a tree below the power
lines is very far from the camera. Notice that the power lines are no longer visible when
they intersect distant trees. Figure 6.1b shows a challenging image due to Sun glare.

Figure 5.5 shows the distribution of labels for São Paulo city (left) and Porto Alegre
city (right) in the test dataset. The labels 1 and 0 indicate the presence or absence of the
objects: ’Tree,’ ’Electric wire’ and ’Entanglement’. To compute the histograms (Fig. 5.5), we
consider how many images are labeled with each of the classes present in the test dataset
(i.e., Tree, Electric wire, and Entanglement) from each city separately. If an image is labeled
with a given class, it counts as one positive case of that class in the histogram. There is an
unbalance between the number of labels with ’Tree’ in São Paulo city and ’Electric wire’
in Porto Alegre city because we used the positions of trees and poles for collecting images
in SP and POA, respectively.

5.1.3 Training the model
We perform transfer learning using a model pretrained on the ImageNet dataset [169].

Pan and Yang [145] show that transfer learning is an efficient way to take advantage
of a much larger dataset, reducing the required size of the dataset for fine-tuning and
the number of training iterations. We used the MobileNetV2 architecture [174, 189], a
Convolution Neural Network model for object classification, detection, and semantic



40

5 | DETECTING TREE AND WIRE ENTANGLEMENTS WITH DEEP LEARNING

Figure 5.3: Power lines in front of tree tops

segmentation. MobileNetV2, based on MobileNet [74], is a simplified model adapted to
mobile devices with several hardware constraints as smartphones. We have chosen this
architecture to employ our method in embedded applications. Figure 5.6 shows a diagram
of the MobileNetV2 architecture used in this work. The final blocks MobileNetV2, which
we call collectively as classification head, are a Global Average Pooling (GAP) [105], and a
dense layer with 1000 neurons.

Although our dataset has labels for trees and wires, we only use the entanglement labels
for simplicity. Therefore, we replace the classification head with a new GAP and three
dense layers, each with 1080, 540, and one neuron, respectively, with sigmoid activations.
We fine-tune only the new classification head for 1000 epochs with our proposed dataset.
To avoid overfitting, we use the model with the highest validation accuracy as the final
one. Figure 5.7 shows our classification head, and Fig. 5.8 shows an overview of our
modifications to MobileNetV2.

We used 5091 labeled images to train the model, 2484 and 2607 images from the cities
of São Paulo and Porto Alegre (POA), respectively, as explained in Section 5.1. The training
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Figure 5.4: Power lines possibly intersecting with trees in the distance.

(a) (b)

Figure 5.5: Histogram of with the distribution of different classes for each test dataset in the images
(a) from SP and (b) from POA.
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Figure 5.6: MobileNetV2 architecture. The network has as output a vector representing the probability
distribution over the 1000 classes from the ImageNet used to pretrain the network.

Figure 5.7: New proposed classification head used on top of the MobileNetV2 backbone. We use two
fully connected layers whose neurons have the sigmoid function as activation and a final layer with a
single neuron and sigmoid activation function.
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Figure 5.8: MobileNetV2 architecture adaption. The network is adapted to output a single value instead
of a probability distribution over the 1000 classes from the ImageNet used to pretrain the network.

process uses 80% of the training set effectively for training and 20% to validate and control
the whole process, which took 340 epochs to converge.

5.1.4 Interpreting Network Results
Interpreting the results of a network is an essential topic of research, and there are

several methods proposed in the literature [218] to help with that. We use a generalization
of the Gradient-weighted Class Activation Map (Grad-CAM++) [26], an improved modifica-
tion of Grad-CAM [178], to interpret and qualitatively assess the results. The Grad-CAM++
intuition is to build an image with a weighted sum of the positive partial derivatives of
the output (just before the last sigmoid activation) with respect to the last convolutional
layer feature maps (activation map) to show which pixels are relevant to classify the
image according to a specific target label defined by the user or by the assessment. The
images generated by this method, or saliency maps, are color mapped from blue to red,
indicating regions that are less to more relevant to the classification output. Fig. 5.9a shows
an entanglement, and Fig. 5.9b its corresponding Grad-CAM++.

The network correctly classified the image as positive, and the Grad-CAM++ shows
the entanglement region as relevant for this prediction. Figures 5.9c and 5.9d show another
example with no tree entanglement and its corresponding Grad-CAM++ output, respec-
tively. The model has misclassified it as a negative case, but its Grad-CAM++ correctly
highlighted relevant regions for the classification, namely the image regions with wires
and tree canopies. To assess the results qualitatively, one can visually inspect the Grad-
CAM++ output for a test image and check whether the highlighted visual clues are the
ones expected.

5.2 Quantitative results
The final validation accuracy was 81.94% (on the 20% of the training set), and the

training accuracy was 96.64% (on the 80% of the training set). Table 5.1 presents a confusion
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(a) (b)

(c) (d)

Figure 5.9: (a): An entanglement between a tree and some overhead wires. (b): The Grad-CAM++
image with the dark reddish regions indicates the places relevant for the classification (positive) in
this case. (c): An image without entanglements. (d): The corresponding Grad-CAM++ shows that the
regions with trees and wires are relevant, even though they do not intersect with each other.
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(a) (b)

Figure 5.10: (a): Image classified as a true positive. (b): The corresponding Grad-CAM++ image,
showing that the wires passing through the canopy of the tree was identified and relevant for the
classification.

matrix with the number of correctly and incorrectly classified images. When the class
assigned by the classifier (rows) agrees with the ground truth (columns), we say the
classification is correct (top-left position of the table, or true positive; or bottom right
corner of the table, or true negative). When the class assigned by the classifier disagrees
with the ground truth, we say the classification is incorrect (top-right position of the table,
or false positive; or bottom-left corner of the table, or false negative). A row (column) with
1 represents images classified (manually annotated) as positive cases. A row (column) with
0 represents images classified (manually annotated) as negative cases.

GT (Train)
1 0

O
ur

s

1 1127 137
0 0 2808

GT (Validation)
1 0

O
ur

s

1 238 122
0 62 597

Table 5.1: The confusion matrix shows the distribution of the predictions for the training (with 4072
images) and validation datasets (with 1019 images). In the top left corner are the number of true
positives; in the top right the number of false positives; in the bottom left the number of false negatives;
and at the bottom right the number of true negatives.

From the 6092 images collected (see Sec. 5.1.1), 1001 images compose the test dataset.
There are 504 images from Porto Alegre city and 497 from São Paulo city. The test dataset
contains no images used in the training process, and we use it to assess the generalization
capability of the network. Table 5.2 shows three confusion matrices for the overall test set,
the São Paulo test set, and the Porto Alegre test set, respectively, from left to right. We
obtained an overall test accuracy of 74.63%. For São Paulo the test accuracy was 73.64%
and for Porto Alegre city, it was 75.60%.
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GT (Test all)
1 0

O
ur

s
1 373 86
0 166 376

GT (Test SP)
1 0

O
ur

s

1 143 20
0 109 225

GT (Test POA)
1 0

O
ur

s

1 230 66
0 57 151

Table 5.2: The confusion matrices showing the distribution of the predictions for the test dataset (1001)
composed of 497 images from São Paulo (SP) and 504 from Porto Alegre (POA).

5.2.1 Qualitative analyses of the errors
This section presents a qualitative analysis based on misclassified images using Grad-

CAM++ (Sec. 5.1.4). Through these analyses, we empirically found directions to improve
the classification results. Figures 5.10a and 5.10b show a salience map for a positive case.
Figure 5.10a is a true positive. The region containing wires crossing through the canopy
of a tree is the most relevant for the model prediction according to Grad-CAM++. This is

(a) (b)

Figure 5.11: (a): An image misclassified as having an entanglement between a tree and electric wires.
The camera is just below the foliage, and it seems there is an entanglement, but from another point of
view, it is clear that is not the case. (b): The salience map generated with the Grad-CAM++ method
reveals that the relevant regions observed by the network are the branches and the wires in the image.

empirical evidence that the network can correctly detect entanglements because it is tuned
to detect the relevant image features that characterize an entanglement. Furthermore, the
visual inspection of several misclassified images and their corresponding salience maps
shows that some errors are caused by:

• the viewpoint of the camera (see Figs. 5.11a and 5.11b);

• wires that seem to meet with trees far away from the camera (see Figs. 5.12a and
5.12b); and

• bad lighting conditions (e.g. poor contrast) as exemplified in Figs. 5.13a, 5.13b, 5.14a
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and 5.14b)

(a) (b)

Figure 5.12: (a): input image misclassified as a false positive. (b): Saliency map showing relevant
regions with the foliage of trees and overhead wires (in red). The wires do cross the branches of the trees
on the image plane, but one can see that they are indeed apart from each other. The depth information
is not available for the network during training so this kind of image is ’hard’ to classify correctly.

5.3 Discussion and Conclusions
We discuss in this section our approach to detecting trees entangled with power lines

and our proposed dataset. We observed that several images are challenging to classify due
to the perspective and lack of depth information and are confusing for human annotators,
which usually take longer and may assign incorrect labels for them, harming the accuracy
of the models. To mitigate issues related to challenging images, a user can use SLIL to
navigate directly to GSV to look at the same tree from alternative perspectives.

Furthermore, we employed state-of-the-art deep learning networks, and our results
show that although they achieve good results, there is plenty of room for improvement.
While other urban imagery datasets, such as Cityscapes [34], contain rich semantic annota-
tions for vegetation and poles, they lack annotations for powerlines, and it is not clear how
to assess the interaction between two distinct entities based on a 2D semantic map (e.g.,
how close they are). We use the location of trees and pylons to collect our images, which
almost always contain at least one of them. However, we balanced it for entanglements to
make it suitable for training a convolutional neural network on the entanglement detection
task. We aim to balance it for trees and powerlines by including more images, as we believe
that more semantic diversity can help the network to generalize better, and training with
multiple classes simultaneously could benefit interpretability with Grad-CAM++ as one
can inspect each one separately. Furthermore, we conjecture that masking the bottom of
the images could improve the results, as entanglements only occur in the top half of them,
and we will try this idea in future experiments.
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(a) (b)

Figure 5.13: (a): Input image with Sun glare misclassified as a false negative. (b): The salience map
shows that entanglement regions are relevant, but the final classification was negative, possibly because
of the low contrast between the wires and the trees just behind them due to sun glare.

(a) (b)

Figure 5.14: (a): Input image misclassified with an entanglement of wires passing just under the
shadow provided by the canopy. (b): The saliency map shows that the entanglement regions were
relevant, but similarly to the effect of the Sun glare, one can notice the low contrast caused by the
canopy shadow over the wires.
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Finally, one can extend our method with methods for detecting entanglements in above-
ground images (i.e., satellite and airborne [93, 87]). The above-ground point-of-view could
help in ambiguous cases, and ground-level images usually have a better resolution, which
can provide information about entanglements occluded below canopies in above-ground
imagery.

Our method reached 74, 6% accuracy in detecting entanglements between trees and
wiring, and together with the platform INACITY, can be a valuable tool for better manage-
ment of vegetation, preventing accidents, and reducing the diseases risk and insects in
trees by prompting early pruning when necessary.

The results show that the adapted MobileNetV2 generalizes to new images in cities
which similar visual characteristics as those composing our test dataset. Nevertheless,
our approach is general enough, and one can fine-tune a classifier in datasets containing
vegetation with different visual characteristics.

Our qualitative analyses based on Grad-CAM++ reveal that the most relevant regions
of the images for the network are regions predominated by vegetation and power lines. It
is also worth noting that the relevant parts contain trees and power lines, according to the
Grad-CAM++ heat map, even in images misclassified due to the lack of depth information
or poor weather.
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Chapter 6

Locating Urban Trees near Electric
Wires using Google Street View
Photos: A New Dataset and A
Semi-Supervised Learning
Approach in the Wild

This chapter is partially based on the paper of the same name [139].

In this chapter, we improve the robustness of our first solution for the classification of
trees and wires entanglements by adding the Focal Loss (FL) [106] technique and comparing
it with the vanilla Cross Entropy (CE). Our findings suggest that FL can naturally account
for ambiguous images. Furthermore, we also study applying the semi-supervised Noisy
Student training protocol [211] with thousands of unlabeled images, which improved the
accuracy of the model up to 6%. We collected 48,800 urban ground-level images to build a
dataset for training, testing, and validating our method, the first dataset of its kind. Our
experiments show that our proposed method of training with FL and Noisy Student can
improve the recall rates of the positive and negative classes respectively from 66.5% and
63.7% to 83.7% and 78.8%.

Our contributions are three-fold:

• A public dataset with 48k8 urban images, of which 8k8 were manually annotated
for trees, electrical wires, and intersections.

• A classification approach to distinguish between ambiguous and easy cases based
on Focal Loss and the Noisy Student training protocol.

• An experimental comparison between FL and the vanilla Cross-Entropy loss (CE)
cost functions for this classification problem.
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(a) (b)

Figure 6.1: Images from Google Street View. (a) Trees are in contact with electrical wires. (b) Bad
visibility due to sun glare.

6.1 Method

For convenience here we briefly recap the Noisy Student method and Focal Loss,
presented in Chapter 3, before presenting our approach to classify trees and wires intersec-
tion. The Noisy Student training protocol [211] is a semi-supervised approach created to
leverage large amounts of not annotated data. A teacher neural network model is trained
with labeled data. Then it generates pseudo-labels for unlabeled data, and the set of labeled
and pseudo-labeled data is used to train a student network model.

The Focal Loss cost function is a generalization of the vanilla Cross-Entropy loss to
deal with the class imbalance in object detection due to a significantly large number of
easy negative cases in comparison with positive cases. Defined as:

𝐹𝐿(𝜃) = − ∑
(𝑥,𝑦)∼𝐷

𝑦𝛾 log(𝑓𝜃(𝑥)).

where 𝜃 are the parameters of a DLN 𝑓 denoted as 𝑓𝜃, and 𝛾 is the focusing parameter. By
increasing the focusing parameter of FL, 𝛾 , samples correctly classified will have a smaller
impact on the cost function while samples misclassified (e.g. harder instances) will have a
larger impact.

We partially used the Noisy Student protocol, i.e., we trained a teacher model using only
the labeled images, then we used the first-generation teacher to generate pseudo-labels for
all the unlabeled images. Then we trained a noisy student model using both labeled and
unlabeled images with pseudo-labels generated by the first-generation teacher. After that,
we used the noisy student model to generate a new set of pseudo-labels, replacing the
pseudo-labels generated by the previous generation teacher. Thus effectively, the noisy
student model becomes a second-generation teacher model (Figure 2.3 depicts the training
procedure with Noisy Student). We kept training new student models until accuracy in
the validation dataset stopped increasing. Furthermore, we use Early Stopping as our
convergence criteria while training each model. To avoid overfitting we use only the
EfficientNetB0, the EfficientNet with the least number of parameters, across generations.
Due to the size of our dataset, we did not use any form of model noise (e.g. stochastic
depth [76]).

Algorithm 1 describes formally the procedure used to train a student. 𝐷𝑡 and 𝐷𝑣
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correspond to the training and validation datasets, respectively. 𝑋𝑡 , 𝑋𝑣 and 𝑋𝑢 are sets of
images for the training, validation, and unlabeled datasets. 𝑋𝑡 and 𝑋𝑣 have corresponding
label sets 𝑌𝑡 and 𝑌𝑣. Unlabeled images from 𝑋𝑢 have pseudo-labels 𝑌𝑢 generated by a trained
network 𝜙𝑡 , the teacher model. We use early stop with the patience of ten epochs (i.e.
hyper-parameter 𝑚𝑎𝑥𝑃𝑎𝑡𝑖𝑒𝑛𝑐𝑒 at Algorithm 2 and 1, lines four and five, respectively),
that is, the model trains for other ten epochs after achieving the highest accuracy in the
validation dataset. The first teacher network 𝜙𝑡 is trained using the same procedure as
the student (see Algorithm 2), but using only the training and validation datasets 𝐷𝑡 and
𝐷𝑣.

Algorithm 1: The student training procedure
Input: 𝐷𝑡 = {𝑋𝑡 , 𝑌𝑡}, 𝐷𝑣 = {𝑋𝑣, 𝑌𝑣}, 𝑋𝑢, 𝜙𝑡
Output: 𝜙𝑠
𝑌𝑢 = 𝜙𝑡(𝑋𝑢);
𝐷𝑢 = {𝑋𝑢, 𝑌𝑢};
𝑃𝑎𝑡𝑖𝑒𝑛𝑐𝑒 = 𝑚𝑎𝑥𝑃𝑎𝑡𝑖𝑒𝑛𝑐𝑒;
𝐷 = 𝐷𝑡 ⋃𝐷𝑢;
Let 𝑙𝑎𝑠𝑡𝐴𝑐𝑐 be the accuracy of 𝜙𝑠 over 𝐷𝑣;
while 𝑃𝑎𝑡𝑖𝑒𝑛𝑐𝑒 > 0 do

Optimize 𝜙𝑠 using 𝐷;
Let 𝑛𝑒𝑤𝐴𝑐𝑐 be the accuracy of 𝜙𝑠 over 𝐷𝑣;
if 𝑙𝑎𝑠𝑡𝐴𝑐𝑐 < 𝑛𝑒𝑤𝐴𝑐𝑐 then

𝑙𝑎𝑠𝑡𝐴𝑐𝑐 = 𝑛𝑒𝑤𝐴𝑐𝑐;
𝑃𝑎𝑡𝑖𝑒𝑛𝑐𝑒 = 𝑚𝑎𝑥𝑃𝑎𝑡𝑖𝑒𝑛𝑐𝑒;

else
𝑃𝑎𝑡𝑖𝑒𝑛𝑐𝑒 = 𝑃𝑎𝑡𝑖𝑒𝑛𝑐𝑒 − 1;

end
end

6.2 Experiments
The proposed dataset has 48k8 images, each with a resolution of 640𝑥640 pixels, and we

labeled 8k8 of them following a simple label protocol described in Chapter 2. We collected
images (with INACITY) corresponding to four directions for each Panorama: the vehicle’s
forward, backward, left, and right. We split the 8k8 labeled images into training, validation,
and test datasets, each with 5k, 3k, and 800 images, respectively.

Labeling strategy for challenging images Urban scenery images can be complex,
and one of the difficulties is the depth of information lost in 2D images. In our particular
case, some intersection instances may be ambiguous to determine if wires appear before
or contact the branches of a tree.

Due to this complexity, different human annotators may judge the same picture as
having distinct classification labels. To capture possible ambiguities, we propose a new
label for challenging images, so an annotator may either consider an image as a positive
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Figure 6.2: Challenging samples may be confusing (to a human annotator) to determine if there are
intersections between trees and wires or not. Images from GSV.
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Algorithm 2: The first teacher training procedure
Input: 𝐷𝑡 = {𝑋𝑡 , 𝑌𝑡}, 𝐷𝑣 = {𝑋𝑣, 𝑌𝑣}
Output: 𝜙𝑡
Initialize 𝜙𝑡 ;
𝑃𝑎𝑡𝑖𝑒𝑛𝑐𝑒 = 𝑚𝑎𝑥𝑃𝑎𝑡𝑖𝑒𝑛𝑐𝑒;
𝐷 = 𝐷𝑡 ;
Let 𝑙𝑎𝑠𝑡𝐴𝑐𝑐 be the accuracy of 𝜙𝑡 over 𝐷𝑣;
while 𝑃𝑎𝑡𝑖𝑒𝑛𝑐𝑒 > 0 do

Optimize 𝜙𝑡 using 𝐷;
Let 𝑛𝑒𝑤𝐴𝑐𝑐 be the accuracy of 𝜙𝑡 over 𝐷𝑣;
if 𝑙𝑎𝑠𝑡𝐴𝑐𝑐 < 𝑛𝑒𝑤𝐴𝑐𝑐 then

𝑙𝑎𝑠𝑡𝐴𝑐𝑐 = 𝑛𝑒𝑤𝐴𝑐𝑐;
𝑃𝑎𝑡𝑖𝑒𝑛𝑐𝑒 = 𝑚𝑎𝑥𝑃𝑎𝑡𝑖𝑒𝑛𝑐𝑒;

else
𝑃𝑎𝑡𝑖𝑒𝑛𝑐𝑒 = 𝑃𝑎𝑡𝑖𝑒𝑛𝑐𝑒 − 1;

end
end

(an intersection is present), negative (no intersection), challenging (an intersection may be
present, or not), or having no trees. Formally we define four possible labels for an image,
these are:

• Trees with intersection (Trees w/ int.): Trees with an intersection- the images in
this class have one or more trees, and the intersection between the branches and
the wires is visible;

• Trees maybe with intersection (Trees maybe w/ int.): In this case, both the trees and
the wires are visible, but it is challenging to tell if they are in contact or not;

• Trees without intersection (Trees w/o int.): Images in this class have trees but no
visible wires;

• No trees: There are no visible trees in this class.

6.2.1 The neural network model

In our experiments, we used the network architecture MobileNetV3 [73] pretrained with
the ImageNet dataset [97] both for teacher and student networks. We also experimented
with all the family of EfficientNet networks (i.e. B0 to B7) as proposed in [211], both
using the same architecture across all generations of teachers and student networks and
also using for each new generation an architecture that has the same number or a bigger
number of parameters. Surprisingly, the best results in terms of test accuracy were obtained
by using the MobileNetV3 in all generations. Furthermore, we also experimented using
random initialization for the network weights and observed that for every tried architecture
using weights pretrained with the ImageNet dataset provided better results.
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6.2.2 Overconfident uncalibrated teachers

We observed that each teacher model tends to be overconfident even on wrong pre-
dictions lowering the quality of the pseudo-labels generated. We estimate the confidence
of the network over its predictions as the maximum value out of the vector obtained
by computing the softmax of the output of the network. Unfortunately, this approach
leads to uncalibrated networks that are overconfident in their predictions. We observed
that a student network trained with uncalibrated low-quality pseudo-labels overfits the
training data and the pseudo-labels. To mitigate this issue, we apply the temperature
scaling strategy proposed in [64]. Using this strategy we want to find new confidence
values for the predictions of the network such that samples correctly classified have a
higher confidence value, and samples misclassified have a smaller confidence value.

For completeness, we briefly describe here the strategy to find the optimal temperature
scale factor 𝑇 to calibrate the predictions of a trained network. Let 𝑥 ∈ 𝑋𝑣 be a sample
from the validation dataset. In this section we consider the true label 𝑦𝑥 ∈ 𝑌𝑣 of sample 𝑥
to be a one-hot encoded vector and the prediction �̂�𝑥 a probability vector, computed as the
softmax 𝜎(.) of the output logits 𝑧𝑥 of a trained network 𝜙, that is

�̂�𝑥 = 𝜎(𝑧𝑥) = 𝜎(𝜙(𝑥))

Let the confidence of the network for this prediction be

𝑞𝑥 = max
𝑘

�̂�(𝑘)
𝑥 ,

that is, the confidence is the maximum value in the predicted vector �̂�𝑥 . Notice that (𝑘),
for 𝑘 ∈ 𝐾 = [0, 1, 2, 3], in the exponent indicates a position in the prediction vector
corresponding to the predicted class for sample 𝑥 . Dividing 𝑧𝑥 by a temperature scale
factor 𝑇 and then taking its softmax value produces a scaled prediction vector �̂�′

𝑥 = 𝜎(𝑧𝑥/𝑇 ).
When 𝑇 → ∞ the values of the vector �̂�′

𝑥 approach 1
|𝐾 | , that is, every class will have nearly

the same probability, thus the confidence of the network for this prediction is the nearly
same for every class. In the opposite case, when 𝑇 → 0, �̂�𝑥 will approach a vector where
every value is zero, except for �̂�(𝑘)

𝑥 which will be one, that is, the confidence of the network
for this prediction will be 1. Since the temperature scale factor is applied over the logits,
before taking the softmax, the final prediction is kept unchanged, thus the temperature
scaling doesn’t change the accuracy of the network.

The optimal temperature scale 𝑇𝑜𝑝𝑡 to calibrate the predictions of the network as
proposed by [64] is obtained by minimizing the Cross-Entropy loss between the scaled
predictions vector 𝑦′

𝑥 and the corresponding true label 𝑦𝑥 for sample 𝑥 from the validation
dataset, formally:

𝑇𝑜𝑝𝑡 = min
𝑇

𝔼[
𝐾

∑
𝑘

𝑦(𝑘)
𝑥 𝑙𝑜𝑔(�̂�′(𝑘)

𝑖 )]

= min
𝑇

𝔼[
𝐾

∑
𝑘

𝑦(𝑘)
𝑥 𝑙𝑜𝑔(𝜎(𝑧𝑥/𝑇 )(𝑘)])
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finally the new calibrated confidence 𝑞′𝑥 is defined as:

𝑞′𝑥 = max
𝑘

𝜎(𝑧𝑥/𝑇𝑜𝑝𝑡)(𝑘)

In our experiments, we compute 𝑇𝑜𝑝𝑡 only after the training of a network is done. Then
we use this trained network as a teacher to compute pseudo-labels (using the unlabeled
dataset) for a new student. These pseudo-labels are then calibrated with 𝑇𝑜𝑝𝑡 and only
then they are used to train the next student network generation together with the labeled
training dataset.

We performed experiments by training a sequence of teachers/student networks using
either Cross-Entropy or Focal loss as cost functions. We experimented with different
values for the hyperparameters 𝛾 and 𝛼 of the FL (the weighting vector and the focusing
parameter, respectively). We report the results for 𝛾 = 2 and 𝛼 = [0.5, 0.1, 0.2, 0.2].
Note that the weights vector 𝛼 has an assigned weight for each of the classes described in
Section 6.2.

6.3 Results

Cost Function
Test Accuracy

1st gen. 2nd. gen. 3rd gen. 4th gen.
Focal Loss 49.37% 53.50% 55.37% 52.12%
Cross Entropy 60.87% 61.75% 60.12% 62.12%

Table 6.1: Comparison of the accuracy for each teacher-student generation and different cost functions.

Here we analyze the trade-off between accuracy and confidence levels for FL and CE
cost functions. The horizontal axis of our graphs displays bins with the confidence of
predictions. Each bin represents samples predicted with confidence higher or equal to the
value of the previous bin and strictly smaller than the current bin. In the vertical axis, we
plot (in log scale) two mirrored stacked bars graph, one above and one below a dashed
line. The stacked bars above the dashed line are correct predictions, and the ones below
are incorrect predictions. Each one of the Figures 6.3a to 6.3g has two graphs, the one on
the right has results obtained from networks trained with the Cross-Entropy cost function,
and the graph on the left are results obtained by training the networks with the Focal Loss
cost function.

Figures 6.4a and 6.4b present the confusion matrices for the classification results of
the networks trained with the Cross-Entropy and with the FL cost functions, respectively.
These matrices contain the classifications for the test dataset, and the labels are (0) Trees
with an Intersection, (1) Trees maybe with intersection, (2) Trees without intersection, and
(3) No trees. Table 6.3 shows the recall rates, over the test dataset, for the network trained
with the Cross-Entropy (CE) and Focal Loss (FL) cost functions. The last row in Table 6.3
(2+3) is the union of these classes, i.e. images without intersections independent of the
presence of trees. We further compare the FL and CL trained networks in Figs. ??, ?? and ??,
show their precision-recall curves for the Challenging, Positive and Negative classes,
respectively.
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(a) Results for the training partition with CE. (b) Results for the training partition with FL.

(c) Legend for the colors in the
graphs.

(d) Results for the validation partition with
CE.

(e) Results for the validation partition with
FL.

(f) Results for the test partition with CE. (g) Results for the test partition with FL.

Figure 6.3: Comparisons of networks trained with Cross-Entropy and Focal Loss at the training,
validation, and test sets.



6.4 | DISCUSSION

59

- Recall CE Recall FL
(0) 66.5% 83.7%
(1) 64.1% 28.3%
(2) 58.0% 71.6%
(3) 22.7% 22.7%

(2+3) 63.7% 78.8%

(a) (b)

Figure 6.4: (a) Confusion matrix for training with FL over the test dataset. (b) Confusion matrix for
training with CE over the test dataset.

6.4 Discussion

Figures 6.3a to 6.3g show that networks trained with CE classify images with all
possible confidence levels, even challenging ones, labeled "Trees maybe with intersection",
which are supposed to have lower classification confidence. On the other hand, training
with FL provides an upper bound of 55% for challenging images. Furthermore, most
misclassifications with FL also have a low confidence score, implying that these models are
more calibrated. The precision-recall curve in Fig. ?? shows that the CL trained network
(orange curve) has a performance equal or better than the FL trained network (blue curve),
however, Figs. ?? and ?? show that the exact opposite is true for the Positive and Negative
classes, which suggests that using the former to detect Challenging images, and the latter
to classify non-Challenging images could potentially improve the overall accuracy.

For practical applications like detecting trees entangled with wires, the higher the
recall rate for positive cases the better because a human agent can easily discard false
positives. Networks trained with FL achieved a recall of 83.7% for positive cases, against
66.5% for those trained with CE. We conjecture that the high recall for the other classes
obtained by vanilla CE was due to equal weights assigned to each class.

The problem of classifying intersections between trees-and-wires from 2D images is
ill-posed due to the lack of depth information, thus in future works, we will explore Multi-
View-Classification to combine the predictions for multiple viewpoints on challenging
entanglements to improve the final prediction. Furthermore, another interesting research
direction is the use of automatic active learning based on the detection of Challenging
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(a) (b)

(c)

Figure 6.5: Images from Google Street View. (a) Image misclassified by both networks as ’Trees w/o
int’. The confidence for prediction dropped from 59% with CE to 49% with FL. (b) Image misclassified
with CE as ’maybe with intersection’ and correctly classified with FL as ‘without intersection’. (c)
Image misclassified with FL as ’without intersection’ but with a low confidence of 40%.

images, more specifically, when an image is classified as Challenging then other viewpoints
are collected automatically and used together to in the final prediction.
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Chapter 7

Conclusion

In this chapter, we discuss the works presented previously in the light of alternative
approaches and show the advantages of our proposed methods, their limitations, and some
possibilities for improving them.

We extended INACITY by integrating it with the Neo4j graph-based database. We
proposed a graph-based data model to merge geographical features from multiple Geo-
graphical Information Systems (GIS) with Google Street View (GSV) imagery. The graph
representing the relationship between images and geographical features can facilitate the
creation of datasets. One example of use is acquiring images from multiple points of view
of the same tree; we use the location of trees from the GeoSampa [175] GIS to collect the
nearest Panoramas and images of trees, then we can collect alternative images for the same
tree using the adjacent Panoramas in the graph, but from distinct points-of-view.

There are cases where the GIS locations may be incorrect because locations for trees
were recorded in GeoSampa in 2010, while some of their corresponding images in Google
Street View were taken (several) years later, and sometimes the trees are no longer
there.

A second benefit of extending INACITY is its performance improvement and coverage
of Geographic Imagery Databases (GID). We store a sequence of connected Panoramas
in the graph database, which matches the order of images taken sequentially on a road.
This is possible because the metadata for images from a GID like KartaView and Google
Street View induces a spatial relationship for them, which usually is based on a sequence
of images taken from a moving car along a road. Sampling GIDs using INACITY is more
efficient than grid-search approaches (e.g. [193]) because INACITY will avoid checking
for images in unusual locations like water bodies and inside buildings. Furthermore, after
collecting image metadata, we use its references to nearby images to retrieve more images
available in GSV. Thus INACITY is guaranteed to obtain every available image in a region
and has better coverage than sampling methods based on points along a road registered in
some GIS (e.g. [22]). Another limitation of our method arises when the sampled GIS data
does not include the address of interest (e.g. OpenStreetMap [142]). Our approach cannot
directly sample GSV panoramas for those addresses. However, if the missing address is
connected to addresses in the sampled GIS data, INACITY can still collect relevant imagery
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using metadata from GSV, which provides connected panoramas for connected addresses.
A limitation intrinsic to using external Application Programming Interfaces (APIs) is due
to the integration with GSV and, in general, with any external GID. GSV has an API that
facilitates its integration with other softwares, but since the development of the INACITY
platform in 2016, and even before considering the project from our group [104], the GSV
API changed multiple times. Some of these updates are not compatible with previous
versions, and GSV only allows the usage of the most updated version of its API, thus
the integration of INACITY with GSV had to be fixed multiple times. To our knowledge,
INACITY is the only platform with such data acquisition capabilities.

Next, to mitigate the image labeling burden, we developed the SLIL (Appendix A),
which has two advantages over the existing labeling tools: it runs independently from a
self-contained web server as labelMe [170], imglab [80], and VoTT [201]; and we adapted
it to work with INACITY collected imagery, such that one can directly visit the panorama
(i.e. geographical location) where the image was taken in GSV by clicking at the buttons
named Pano or Coordinates (see Fig. 5.2 at Chapter 5 for a screenshot of SLIL).

Regarding the practical problem of detecting trees near powerlines, which we call the
entanglements detection problem, we show in Chapter 5 that it is a challenging problem
due to the presence of training images that can worse the test performance of the models,
and removing them improves the test performance. Furthermore, the appearance of trees
varies a lot, and sometimes an image includes only a partial view of the tree due to its size.
Different from other approaches based on aerial images and LiDAR data, we used only
street-level imagery (created in Chapter 5 and extended in Chapter 6).

In Chapter 5, we trained a MobileNetV2 [174] for the entanglements detection prob-
lem, achieving an accuracy of 74.6%. We performed a qualitative analysis using Grad-
CAM++ [177] to explain the results. The Grad-CAM++ shows that the relevant regions
in some challenging incorrectly classified images had sun-glare, low contrast due to
shadows, or even a point-of-view that made it hard to check if some distant powerlines
were intersecting or ahead of the trees. Those are valuable insights because these images
are difficult for humans, reinforcing our hypothesis that challenging images for humans
are also challenging for Deep Learning Networks.

In Chapter 6, we try to automatically detect challenging images in the entanglements
detection problem using the third label ‘Unknown’. Instead of labeling a challenging
image as positive or negative, we labeled it as ‘Unknown’. We trained networks using
the popular vanilla Cross-Entropy (CE) cost function and found that both test accuracy
and recall rates for each class (i.e. positive, negative, and ‘Unknown’) are low. Based on
the previous observations that most of the incorrect predictions occurred for challenging
images we experimented with training the same networks with the Focal Loss (FL) cost
function, designed to deal with unbalanced datasets with more easy samples and few
harder ones [106] by exponentially weighting misclassified instances. The recall rates for
the positive and negative classes of the networks trained with FL improved with a low
decrease in the overall accuracy and recall rate for the ‘Unknown’ class. However, we
observed that the confidence of the predictions of networks trained with FL for challenging
images was at most 55%.

We have experimented recently different ways to detect challenging images and also to
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assess their impact on the training dataset. We found that a set of binary classifiers disagree
more on challenging images than on non-challenging ones, which is similar to previous
evidence that internal classifiers, in a single deep learning model, tends to disagree on
uncommon complex inputs [89]. Figures 7.1a and 7.1b show histograms of disagreements
of eight DLN classifiers (with distinct architectures) respectively for challenging and
non-challenging images from the Trees and Wires test set presented in Chapter 6.

(a) (b)

Figure 7.1: Disagreement Level for images from the Trees and Wires test dataset. (a) Clean (positive
and negative) images. (b) ‘Unknown’ images.

We believe a heuristic based on the predicted probabilities and confidences can improve
the performance. For instance, assigning the ‘Unknown’ label to samples with confidence
below a certain threshold creates a trade-off between precision and recall. Alternatively,
we can use the location of images predicted as challenging to collect more images for the
same geographical feature from other nearby Panoramas and use a combination of the
predictions for all the images as the final prediction. However, such an approach depends
on the granularity of the GID used. We have observed cases where the challenging images
and images from the nearest Panoramas were all challenging. It usually happens when the
nearest Panoramas to an object of interest (e.g., a tree that seems entangled with overhead
powerlines) are all too far from it and distant from each other.

We show in Appendix B that, in general, removing challenging images from our
training dataset improves the generalization performance of the networks.

While we have made some progress in answering the initial research questions, more
research is necessary. The dataset we have created is challenging, even for state-of-the-art
deep learning networks and methods, and ambiguity in the images makes them less reliable.
Our findings not only contribute to the field of computer vision but also have practical
implications for urban planning and infrastructure management. With our proposed
solutions, we can develop more accurate and efficient methods to detect and classify
objects in urban environments.

We plan to combine the lessons learned with our experiments in an active learning
paradigm. Once we have identified a challenging image, we will collect more images for
the same feature from multiple nearby places, and use a combination of the predictions to
make the final classification.
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We will also work on other urban problems such as mapping removed or planted trees
using images from the same feature taken at different moments, which are available in
GIDs like Google Street View and KartaView; detecting people in vulnerable situations (e.g.
laying down or sleeping in the sidewalk); detecting urban micro-events such as irregular
waste disposal, street lamps lit during the daytime and so on. Using the graph database to
relate all the detected urban features with their corresponding View and Panoramas nodes
allows one to investigate aspects of the urban scene, such as how concentrated urban
issues are in a given region and the relationships between different urban features.
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Appendix: SLIL: Street-Level Image
Labeler

(Semi-)Supervised deep learning methods for classification problems require both
instances and their corresponding labels. Some simple ways to assign labels to instances
include using part of the instance name as its label and grouping instances using distinct
folders for each class. These methods can be cumbersome and tedious when the number
of instances or classes is large, hard to maintain as new instances become available, and
may be unfeasible when classes are non-exclusive or have non-binary labels like the
"Unknown" label for the trees and wires problem discussed in Chapter 6. To make this
process less time-consuming and error-prone, we propose the Street-Level Image Labeler
(SLIL)1, a tool to traverse, visualize and label images. Similar labeling tools: labelMe [170],
imglab [80], and VoTT [201] run over a web server, which is more cumbersome and difficult
to install and maintain for final users than a local application. We developed SLIL using
pySimpleGUI [157], a Python framework for developing desktop Python applications with
a Graphical User Interface (GUI). Users can define the available classes in SLIL to assign to
an instance through a configuration file. Below we show an example of three user-defined
classes (Tree, Pole w/ wire, and Intersection) in a configuration file:

labels = ’Tree,Pole w/ wire,Intersection’

Figure A.1 shows the SLIL Graphical User Interface with the user-defined classes as a
matrix of buttons in its top-right corner. Each row corresponds to a class, and the columns
"-1", "0", and "1" correspond to a negative, neutral, or positive assignment for a class,
respectively. We created the neutral assignment to account for the user uncertainty when
labeling challenging instances.

The SLIL software is open-source and in constant development. Since its creation,
motivated by the work presented in Chapter 5, we enhanced it with the option for neutral
labels and quality-of-life features to allow users to quickly label an instance and move to
the next one using only keyboard shortcuts without pressing GUI buttons with the mouse.
Lucas and Hirata [215] used SLIL to create a dataset for Human Action Recognition in
images with 15 classes denoting actions.

1 available at https://github.com/arturandre/SLIL

https://github.com/arturandre/SLIL
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Figure A.1: The current SLIL Graphical User Interface (compared with the previous version) includes
a neutral assignment for defined classes (top-right) and allows the user to copy to the clipboard the
filename of the current image.

In the future, we will enhance SLIL with tools for drawing boxes around the objects
of interest and features we believe to be useful for research of challenging urban images
like how long it takes for a user to label each instance, zooming and a flag indicating if
zooming was used, and considering sequential urban pictures, taken along a street, we
will include a flag to represent when a user used two or more images of the same urban
feature (e.g., tree) to make a decision.
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Appendix: Assessing the effects of
ambiguous images on training

This appendix is part of a paper to be submitted soon where we explore the hypothesis
that challenging images behave as noise when used as training data, i.e., training a model
with them reduces its performance on a test dataset. To test this hypothesis we first
create a dataset with two parts, one containing ambiguous and another containing non-
ambiguous images. A human labeler assigns a specific label for an ambiguous image when
indecisive about its correct class. We train Deep Learning Networks (DLNs) using only
non-ambiguous images or all available images, and then we compare their performances
on a test dataset.

The Trees and Wires dataset contains a training set with 5760 images, 3361 of which
are non-ambiguous and 2399 labeled as ‘Unknown’. The test set includes 1440 images, but
we only use non-ambiguous ones (i.e., 838) to report our results.

We used a variety of DLN architectures including VGG16 [182], ResNet50 and
ResNet152 [65], DenseNet121 and DenseNet161 [77], and EfficientNetB0 [187]. All the
networks were pretrained on the ImageNet [169] dataset. We removed their final classifi-
cation head with 1000 nodes and inserted a new one with only one node to perform binary
classification of images with trees entangled or not with powerlines. We fine-tuned the
networks using the Adadelta optimizer [216] with an initial learning rate of 1.0, a step
learning rate decay of 0.7, a batch size of 80, and 20 epochs. We selected the final model for
each architecture based on the training epoch with the highest validation accuracy.

We explored three strategies for dealing with the ‘Unknown’ images removing, labeling
them as positive instances, and labeling them as negative instances. The underlying
rationale for these strategies stems from the notion that despite the uncertainty of the
human labeler in an ‘Unknown’ image, one of two possibilities must hold. Thus, we
simulate both scenarios by assigning positive and negative labels to these ’Unknown’
images. Figure B.1 shows the test accuracy for three groups of models trained with each
strategy.

Six of the eight tested architectures performed better with the negative label, and the
other two had opposite results. Removing ‘Unknown’ images from the training dataset
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Figure B.1: Test accuracy for networks trained without ‘Unknown’ images, or assigning positive/neg-
ative labels to them.

yields a better test accuracy than labeling them as positive or negative, except for the
VGG16, which we believe has worse results because its performance is significantly smaller
than the other architectures.

In conclusion, our study investigates the impact of challenging images on the perfor-
mance of Deep Learning Networks (DLNs) when used for training. We create a dataset com-
prising ambiguous and non-ambiguous images to test our hypothesis. The non-ambiguous
images serve as the training data, while the ambiguous images are excluded or labeled as
positive/negative. We compare the DLNs’ performances on a separate test dataset.

Using various DLN architectures, including VGG16, ResNet50, ResNet152, DenseNet121,
DenseNet161, and EfficientNetB0, pretrained on ImageNet, we fine-tune them for binary
classification of images with or without trees entangled with powerlines. Among the strate-
gies for dealing with ambiguous images, most architectures achieved better results with
negative labels, while a couple had the opposite outcome. However, removing ambiguous
images from the training dataset generally yielded the highest test accuracy, except for
VGG16, which exhibited inferior performance compared to other architectures.
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Appendix: Improving
Self-supervised Dimensionality
Reduction: Exploring
Hyperparameters and
Pseudo-Labeling Strategies

This chapter is partially based on the paper of the same name [140].

C.1 Introduction
Visualization of high-dimensional data to find patterns and trends, and overall understand
the data structure has become an essential ingredient of the data scientist’s toolkit [90,
109]. Within the palette of such visualization methods, dimensionality reduction (DR)
techniques, also called projections, have gained an established position due to their high
scalability both in the number of samples and number of dimensions thereof. In the last
decades, tens of DR techniques have emerged [131, 50], with PCA [86], t-SNE [118], and
UMAP [125] having become particularly popular.

Neural-network-based techniques have been used to support DR, early examples of
such approaches being self-organizing maps [94] and autoencoders [70]. More recently,
the NNP technique [47] was proposed to mimic any DR technique. In parallel, the ReNDA
method [14] was proposed to improve the projection quality offered by autoencoders.

Deep learning-based DR methods are very fast, simple to implement, generically work
for any type of quantitative high-dimensional data, are parametric, thus stable to small-scale
data variations and offering out-of-sample capability, and – in the case of autoencoders
– also provide the inverse mapping from the low-dimensional projection space to the
high-dimensional data space. However, such methods also have some limitations. Such
methods cannot typically offer the same projection quality, measured e.g. in terms of
neighborhood preservation or cluster delineation, as classical methods like t-SNE and



70

APPENDIX C

UMAP [47, 126, 43]. Inverse projection typically requires training a separate network [49].
NNP-class methods offer a higher quality than autoencoders but require supervision in
terms of using a classical DR method to project a subset of the data [47].

Recently, the Self-Supervised Neural Projection (SSNP [45]) method was proposed
to alleviate the above limitations of deep learned projections. SSNP uses a single neural
network trained with two objectives – reconstructing the projected data (as an autoen-
coder does) and classifying the same data (based on pseudo-labels created by a clustering
algorithm). In more detail, SSNP aims to provide the following characteristics:

Quality (C1): Better cluster separation than standard autoencoders, and close to state-of-
the-art DR methods, measured by well-known metrics in DR literature;

Scalability (C2): Linear complexity in the number of samples and dimensions, allowing
the projection of datasets of a million samples and hundreds of dimensions in a few seconds
on consumer-grade GPU platforms;

Ease of use (C3): Minimal or no hyperparameter tuning required;

Genericity (C4): Projects any dataset whose samples are real-valued vectors;

Stability and out-of-sample support (C5): The trained SSNP model can project new
samples along existing ones in a parametric fashion;

Inverse mapping (C6): Ability to infer the high-dimensional point corresponding to a
low-dimensional point in the projection space;

Clustering (C7): Ability to label (cluster) unseen data. This feature of SSNP also supports
requirement C1: Intuitively, clustering aggregates low-level distance information between
sample points to a higher level, telling how groups of samples relate to each other. Next,
this information is used by SSNP to produce projections that preserve such data clusters
well in the low dimensional space.

In [45], it is shown that SSNP achieves the above requirements by evaluating it on
four synthetic and four real-world datasets, using two clustering algorithms to produce
pseudo-labels and compare its results with four existing DR techniques. However, this
leaves the ‘design space’ of SSNP insufficiently explored. Similarly to [43], where the
authors explored in detail the design space of NNP [47], in this paper we aim to provide
more insights on how SSNP’s results depend on its technical components and their hyper-
parameter settings. For this, we extend the evaluation in [45] by considering two additional
projection techniques (MDS and Isomap) and four additional clustering algorithms (affinity
propagation, DBSCAN, Gaussian mixture models, and spectral clustering). Separately, we
study how SSNP’s performance is influenced by the setting of the hyperparameters of
both the clustering algorithms and the underlying neural network. All in all, our extended
evaluation proves that SSNP indeed complies well with requirements C1-C7, being a
serious contender in the class of deep-learning-based DR techniques.

We structure this chapter as follows: Section E.2 introduces notations and discusses
related work. Section C.3 details the SSNP method. Section C.4 describes our experimental
setup. Section C.5 presents the results of SSNP, including the additional experiments
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outlined above. Section C.6 discusses the obtained findings. Section C.7 concludes the
paper.

C.2 Background

Notations: Let 𝐱 = (𝑥1,… , 𝑥𝑛), 𝑥 𝑖 ∈ ℝ, 1 ≤ 𝑖 ≤ 𝑛 be a 𝑛-dimensional (𝑛D) sample (also
called a data point or observation). Let 𝐷 = {𝐱𝑖}, 1 ≤ 𝑖 ≤ 𝑁 be a dataset of 𝑁 such samples,
e.g., a table with 𝑁 rows (samples) and 𝑛 columns (dimensions). All datasets 𝐷 used in this
paper have class labels. Let 𝐶 be the number of classes (or labels) in a dataset 𝐷. A DR, or
projection, technique is a function

𝑃 ∶ ℝ𝑛 → ℝ𝑞 , (C.1)

where 𝑞 ≪ 𝑛, and typically 𝑞 = 2. The projection 𝐩 = 𝑃(𝐱) of a sample 𝐱 ∈ 𝐷
is a point 𝐩 ∈ ℝ𝑞 . Projecting an entire dataset 𝐷 yields a 𝑞-dimensional scatterplot,
denoted next as 𝑃(𝐷). The inverse of 𝑃 , denoted 𝐱 = 𝑃−1(𝐩), maps a 𝑞-dimensional point 𝐩
to the high-dimensional space ℝ𝑛, so that, ideally, 𝑃(𝐱) = 𝐩, or in practice, 𝑃(𝐱) is close to 𝐩.

Dimensionality reduction: Many DR methods have been proposed in the last decades [72,
119, 42, 184, 109, 38, 210, 131, 50]. We next outline how a few representative ones comply
with the requirements mentioned in Sec. C.1, supporting our point that no DR method
fully covers all those requirements. For further evidence for this statement, we refer to the
above-mentioned surveys.

Principal Component Analysis [86] (PCA) is very popular due to its simplicity, speed
(C2), stability and out-of-sample (OOS) support (C5), and ease of use (C3) and interpretation.
PCA is also used as a pre-processing step for other DR techniques that require not-too-
high-dimensional data [131]. Yet, due to its linear and global nature, PCA lacks quality
(C1), especially for data of high intrinsic dimensionality.

Methods of the Manifold Learning family (MDS [194], Isomap [188], and LLE [167] and
its variations [40, 220, 219]) aim to map to 2D the high-dimensional manifold on which
data lives. Such methods generally yield higher quality (C1) than PCA. Yet, such methods
can be hard to tune (C3), do not have OOS capability (C5), do not work well for data that
is not restricted to a 2D manifold, and generally scale poorly (C2) with dataset size.

Force-directed methods (LAMP [85] and LSP [150]) can yield reasonably high visual
quality (C1), good scalability (C2), and are simple to use (C3). However, they generally
cannot do OOS (C5). For LAMP, a related inverse projection (C6) technique iLAMP [7]
exists. Yet, LAMP and iLAMP are two different algorithms. Clustering-based methods,
such as PBC [148], share many characteristics of force-directed methods, such as good
quality (C1) and lack of OOS (C5).

SNE (Stochastic Neighborhood Embedding) methods, of which t-SNE [118] is the most
popular, have the key ability to visually segregate similar samples, thus being very good
for cluster analysis. While having high visual quality (C1), t-SNE has a high complexity
of 𝑂(𝑁 2) in sample count (C2), is very sensitive to small data changes (C5), is hard to
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tune (C3) [204], and has no OOS capability (C5). Tree-accelerated t-SNE [115], hierarchical
SNE [154], approximated t-SNE [153], and various GPU accelerations of t-SNE [155, 25]
improve computation time (C2). Yet, these methods require quite complex algorithms,
and still largely suffer from the aforementioned sensitivity, tuning, and OOS issues.
Uniform Manifold Approximation and Projection (UMAP) [125] generates projections
with comparable quality to t-SNE (C1) but is faster (C2) and has OOS (C5). Yet, UMAP
shares some disadvantages with t-SNE, namely the sensitivity to small data changes (C5)
and parameter tuning difficulty (C3).

Deep learning: Autoencoders (AE) [70, 92] create a low-dimensional data representation
in their bottleneck layers by training a neural network to reproduce its high-dimensional
inputs on its outputs. They produce results of comparable quality (C1) to PCA. However,
they are easy to set up, train, and use (C3), are easily parallelizable (C2), and have OOS
(C5) and inverse mapping (C6) abilities.

ReNDA [14] is a deep learning approach that uses two neural networks, improving on
earlier work from the same authors. One network implements a nonlinear generalization
of Fisher’s Linear Discriminant Analysis [54]; the other network is an autoencoder used as
a regularizer. ReNDA scores well on quality (C1) and has OOS (C5). However, it requires
pretraining of each network and has low scalability (C2).

Neural Network Projections (NNP) [47] select a training subset 𝐷𝑠 ⊂ 𝐷 to project by
any user-chosen DR method to create a so-called training projection 𝑃(𝐷𝑠) ⊂ ℝ2. Next, a
neural network is trained to approximate 𝑃(𝐷𝑠) having 𝐷𝑠 as input. The trained network
then projects unseen data using 2-dimensional non-linear regression. NNP is very fast
(C2), simple to use (C3), stable, and has OOS ability (C5). However, the projection quality
(C1) is lower than the learned projection. The NNInv technique [49], proposed by the same
authors as NNP, adds inverse projection ability (C6). However, this requires setting up,
training, and using a separate network.

Table C.1 summarizes how the above DR techniques fare concerning each characteristic
of interest. The last row highlights SSNP which we describe separately in Sec. C.3.

Characteristic
Technique Quality Scalability Ease of use Genericity Out-of-sample Inverse mapping Clustering

PCA low high high high yes yes no
MDS mid low low low no no no

Isomap mid low low low no no no
LLE mid low low low no no no

LAMP mid mid mid high no no no
LSP mid mid mid high no no no

t-SNE high low low high no no no
UMAP high high low high yes no no

Autoencoder low high high low yes yes no
ReNDA mid low low mid yes no no

NNP high high high high yes no no
SSNP high high high high yes yes yes

Table C.1: Summary of DR techniques and their characteristics. Names in italic are techniques we
compare with SSNP.
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Clustering: As for DR, clustering is a field that goes back decades, with many techniques
proposed over the years. Despite using different approaches, all techniques use some
form of similarity measure to determine whether a sample belongs to a cluster or not.
Centroid-based techniques, such as K-means [111], compute cluster centers and assign
cluster membership based on closeness to a center. Connectivity-based techniques, such
as Agglomerative clustering [88], group samples based on their relative distances rather
than distances to cluster centers. Distribution-based techniques, such as Gaussian Mixture
Models [39], fit Gaussian distributions to the dataset and then assign samples to each
distribution. Density-based techniques, such as DBSCAN [51], define clusters as dense
areas in the data space. More recent techniques use more specialized approaches, such
as Affinity Propagation [57], which uses message passing between samples, and Spectral
Clustering [181], which uses the eigenvalues of the data similarity matrix to reduce the
dimensionality of the data to be clustered.

C.3 SSNP Technique

As stated in Sec. E.2, autoencoders have desirable DR properties (simplicity, speed, OOS,
and inverse mapping abilities), but create projections of lower quality than, e.g., t-SNE, and
UMAP. A likely cause for this is that autoencoders do not use neighborhood information
during training, while t-SNE and UMAP (obviously) do that. Hence, we propose to create an
autoencoder architecture with a dual optimization target that explicitly uses neighborhood
information. First, we have a reconstruction target, as in standard autoencoders; next, we
use a classification target based on labels associated with the samples. These can be “true”
ground-truth labels if available for a given dataset. If not, these are pseudo-labels created
by running a clustering algorithm on the input dataset. The key idea behind this is that
(pseudo)labels are a compact and high-level way to encode neighborhood information,
i.e., same-label data are more similar than different-label data. Since classifiers learn a
representation that separates input data based on labels, adding an extra classifier target
to an autoencoder learns how to project data with better cluster separation than standard
autoencoders. We call our technique Self-Supervised Neural Projection (SSNP).

SSNP first takes a training set 𝐷𝑡𝑟 ⊂ 𝐷 and assigns to it pseudo-labels 𝑌𝑡𝑟 ∈ ℕ by using
some clustering technique. We then take samples (𝐱 ∈ 𝐷𝑡𝑟 , 𝑦 ∈ 𝑌𝑡𝑟) to train a neural network
with a reconstruction and a classification function, added to form a joint loss. This network
(Fig. C.1a) contains a two-unit bottleneck layer like an autoencoder, used to generate the
2D projection when in inference mode. After training, we ‘split’ the layers of the network
to create three new networks for inference (Fig. C.1b): a projector 𝑁𝑃(𝐱), an inverse projector
𝑁𝐼 (𝐩), and a classifier 𝑁𝐶(𝐱), which mimics the clustering algorithm used to create 𝑌𝑡𝑟 . The
entire SSNP training-and-inference pipeline is summarized in Figure C.2.

C.4 Experimental Setup

In this section, we detail the experimental setup we used to evaluate SSNP’s perfor-
mance. The obtained results are discussed next in Sec. C.5.
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Encoder layers

Activation: ReLU
Init: Glorot Uniform
Bias: constant 0.0001

Embedding layer
Activation: Linear
Init: Glorot Uniform
Bias: constant 0.0001
L2: 0.5
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Bias: constant 0.0001
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Figure C.1: SSNP network architectures used during training (a) and inference (b).
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Figure C.2: SSNP training-and-inference pipeline.



C.4 | EXPERIMENTAL SETUP

75

C.4.1 Datasets
We first evaluate SSNP on synthetic datasets consisting of blobs sampled from a

Gaussian distribution of different dimensionalities (100 and 700), number of clusters (5 and
10), and standard deviation 𝜎, yielding datasets with cluster separation varying from very
sharp to fuzzy clusters. All synthetic datasets have 5K samples. Next, we evaluate SSNP
on four public real-world datasets that are high-dimensional, reasonably large (thousands
of samples), and have a non-trivial data structure (same datasets as used in the original
SSNP paper [45]):

MNIST [101]: 70K samples of handwritten digits from 0 to 9, rendered as 28x28-pixel
grayscale images, flattened to 784-element vectors;

Fashion MNIST [209]: 70K samples of 10 types of pieces of clothing, rendered as 28x28-
pixel grayscale images, flattened to 784-element vectors;

Human Activity Recognition (HAR) [9]: 10299 samples from 30 subjects performing
activities of daily living used for human activity recognition grouped in 6 classes and
described with 561 dimensions.

Reuters Newswire Dataset [191]: 8432 samples of news report documents, from which
5000 attributes are extracted using TF-IDF [173], a standard method in text process-
ing.

All datasets had their attributes rescaled to the range [0, 1], to conform with the sigmoid
activation function used by the reconstruction layer (see Fig. C.1a).

C.4.2 Projection Quality Metrics
We measure projection quality by four metrics widely used in the projection literature

(see Tab. C.2 for their definitions). All metrics range in [0, 1] with 0 indicating the poorest,
and 1 indicating the best, values:

Metric Definition
Trustworthiness (𝑇 ) 1 − 2

𝑁𝐾(2𝑛−3𝐾−1) ∑
𝑁
𝑖=1∑𝑗∈𝑈 (𝐾)

𝑖
(𝑟(𝑖, 𝑗) − 𝐾)

Continuity (𝐶) 1 − 2
𝑁𝐾(2𝑛−3𝐾−1) ∑

𝑁
𝑖=1 ∑𝑗∈𝑉 (𝐾)

𝑖
(𝑟(𝑖, 𝑗) − 𝐾)

Neighborhood hit (𝑁𝐻 ) 1
𝑁 ∑𝐲∈𝑃(𝐷)

𝐲𝑙𝑘
𝐲𝑘

Shepard diagram correlation (𝑅) Spearman’s 𝜌 of (‖𝐱𝑖 − 𝐱𝑗 ‖, ‖𝑃(𝐱𝑖) − 𝑃(𝐱𝑗)‖), 1 ≤ 𝑖 ≤ 𝑁 , 𝑖 ≠ 𝑗

Table C.2: Projection quality metrics used in evaluating SSNP

Trustworthiness 𝑇 [196] is the fraction of close points in 𝐷 that are also close in 𝑃(𝐷). 𝑇
tells how much one can trust that local patterns in a projection, e.g. clusters, represent
actual data patterns. In the definition (Tab. C.2), 𝑈 (𝐾)

𝑖 is the set of points that are among the
𝐾 nearest neighbors of point 𝑖 in the 2D space but not among the 𝐾 nearest neighbors of
point 𝑖 in ℝ𝑛; and 𝑟(𝑖, 𝑗) is the rank of the 2D point 𝑗 in the ordered-set of nearest neighbors
of 𝑖 in 2D. We choose 𝐾 = 7 following [119, 123];

Continuity 𝐶 [196] is the fraction of close points in 𝑃(𝐷) that are also close in 𝐷. In the
definition (Tab. C.2), 𝑉 (𝐾)

𝑖 is the set of points that are among the 𝐾 nearest neighbors of
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point 𝑖 in ℝ𝑛 but not among the 𝐾 nearest neighbors in 2D; and 𝑟(𝑖, 𝑗) is the rank of the ℝ𝑛

point 𝑗 in the ordered set of nearest neighbors of 𝑖 in ℝ𝑛. As for 𝑇 , we use 𝐾 = 7;

Neighborhood hit 𝑁𝐻 [150] measures how well-separable labeled data is in a projection
𝑃(𝐷), in a rotation-invariant fashion, from perfect separation (𝑁𝐻 = 1) to no separation
(𝑁𝐻 = 0). 𝑁𝐻 is the number 𝐲𝑙𝐾 of the 𝐾 nearest neighbors of a point 𝐲 ∈ 𝑃(𝐷), denoted
by 𝐲𝐾 , that have the same label as 𝐲, averaged over 𝑃(𝐷). In this paper, we use 𝐾 = 3;

Shepard diagram correlation𝑅 [85]: The Shepard diagram is a scatter plot of the pairwise
distances between all points in 𝑃(𝐷) vs the corresponding distances in 𝐷. The closer
the plot is to the main diagonal, the better overall distance preservation is. Plot areas
below, respectively above, the diagonal show distance ranges for which false neighbors,
respectively missing neighbors, occur. We measure how close a Shepard diagram is to
the diagonal by computing its Spearman rank correlation 𝑅. A value of 𝑅 = 1 indicates a
perfect (positive) correlation of distances.

C.4.3 Dimensionality Reduction Techniques Compared
Against

We compared SSNP against six DR techniques, namely t-SNE, UMAP, MDS, Isomap,
autoencoders (AE), and NNP (see also Tab. C.1). We selected these techniques based
on popularity (t-SNE, UMAP, MDS, Isomap) or for having similar operations (AE and
NNP are also deep learning based, like SSNP) and also on having desirable properties
to compare against. For instance, t-SNE and UMAP are known to produce strong visual
cluster separation by evaluating local neighborhoods. MDS, on the other hand, tries to
preserve global distances between samples. Isomap can be seen as an extension of MDS
that uses local neighborhood information to infer geodesic distances. AE produces results
similar to PCA, which preserves global distances. Finally, NNP does not have specific
built-in heuristics but rather aims to mimic and accelerate other DR techniques. For all
these DR techniques, we used default values for their hyperparameters.

C.4.4 Clustering Techniques for Pseudo-labeling
In addition to using ground-truth labels in SSNP, we also used six clustering algorithms

to generate the pseudo-labels for SSNP training (Sec. C.3). Table C.3 lists all clustering
algorithms used, as well as the hyperparameters used in all experiments, except when
noted otherwise. Hyperparameters not listed in Tab. C.3 used default values. We used
these algorithms since they employ quite different approaches to clustering, which could
produce different results for SSNP.

We selected two of these clustering algorithms alongside two datasets — K-means and
DBSCAN, HAR, and MNIST — to further explore the effect of their main hyperparameters
on the quality of the SSNP projection. For K-means, we studied the 𝑛_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 parameter
by choosing values well below and above the known number of clusters 𝐶 in the data —
𝑛_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 = {5, 10, 15, 20, 30} for MNIST (𝐶 = 10), 𝑛_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 = {3, 6, 9, 12, 18} for HAR (𝐶 =
6). For DBSCAN, we explored the 𝑒𝑝𝑠 parameter, which determines the maximum distance
between samples for them to be considered neighbors. We used 𝑒𝑝𝑠 = {6.1, 6.3, ..., 6.9} for
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MNIST and 𝑒𝑝𝑠 = {1.9, 2.1, ..., 2.7} for HAR.

Algorithm Acronym Hyperparameters
Ground Truth Labels SSNP(GT) none
Affinity Propagation SSNP(AP) none
Agglomerative Clustering SSNP(Agg) 𝑛_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 = 2 × 𝐶
DBSCAN SSNP(DB) 𝑒𝑝𝑠 = 5
Gaussian Mixture Model SSNP(GMM) 𝑛_𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠 = 2 × 𝐶
K-means SSNP(Km) 𝑛_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 = 2 × 𝐶
Spectral Clustering SSNP(SC) 𝑛_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 = 2 × 𝐶

Table C.3: Clustering algorithms used for pseudo-label creation and their hyperparameters used
during testing. Ground truth is listed here as another labeling strategy.

C.4.5 Neural Network Hyperparameter Settings
We further evaluated SSNP by using several hyperparameter settings for its neural

network. To avoid a huge hyperparameter space, for each parameter explored, we kept the
other parameters set to their defaults, similarly to the strategy used to explore NNP [43].
The explored hyperparameters are described next (see also Tab. C.4).

L2 regularization [98] decreases layer weights to small but non-null values, leading to
every weight only slightly contributing to the model. It works by adding a penalization
term 𝜆‖𝐰‖2 to the cost function, where 𝐰 are the weights of a selected network layer. The
parameter 𝜆 ∈ [0, 1] controls the amount of regularization;

Embedding layer activation: The embedding (bottleneck) layer creates the 2D projection
after training (Fig. C.1). Changing the activation function of this layer affects the projec-
tion’s overall shape. We used four activation functions for this layer (see Tab. C.4);

Weight initialization: A neural network has thousands of parameters whose initialization
can affect the training outcome. We used three common initialization types: random
uniformly distributed in the range [−0.05, 0.05], Glorot uniform [60] with the range [−𝑏, 𝑏]
for 𝑏 =

√
6/(𝑙𝑖𝑛 + 𝑙𝑜𝑢𝑡), where 𝑙𝑖𝑛 and 𝑙𝑜𝑢𝑡 are the number of input and output units in the

layer, and He uniform [67], which uses the range [−𝑏, 𝑏] with 𝑏 =
√
6/𝑙𝑖𝑛;

Training epochs: We explored SSNP’s performance for different numbers of epochs 𝜂
ranging from 1 to 20.

Dimension Values
L2 regularization 𝜆 = {0, 0.1, 0.5, 1.0}
Embedding layer activation 𝛼 = { ReLU, sigmoid, tanh, Leaky RELU }
Weight initialization 𝜙 = {Glorot uniform, He uniform, Random uniform }
Training Epochs 𝜂 = {1, 2, 3, 5, 10, 20}

Table C.4: SSNP neural network parameters explored with default values in bold.

C.5 Results
We next present the results for all experiments conducted to demonstrate SSNP’s

quality and robustness to hyperparameter selection.
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C.5.1 Quality On Synthetic Datasets
Figure C.3 shows the SSNP projection of the synthetic blob datasets with SSNP(Km)

with K-means set to use the correct (ground-truth) number of clusters alongside AE, t-
SNE, and UMAP. In most cases SSNP(Km) shows better visual cluster separation than
autoencoders. The t-SNE and UMAP projections look almost the same regardless of the
standard deviation 𝜎 of the blobs, while SSNP(Km) shows more spread clusters for larger 𝜎,
which is the desired effect. We omit the plots and measurements for NNP for space reasons
and since these are very close to the ones created by the learned technique [47].

Table C.5 shows the quality metrics for this experiment for datasets using 5 and 10
clusters. For all configurations, SSNP performs very similarly quality-wise to AE, t-SNE,
and UMAP. Section C.5.2, which studies more challenging, real-world, datasets will bring
more insight into this comparison.

100 dimensions 700 dimensions
5 clusters 10 clusters 5 clusters 10 clusters

Projection 𝜎 𝑇 ↑ 𝐶 ↑ 𝑅 ↑ 𝑁𝐻 ↑ 𝑇 ↑ 𝐶 ↑ 𝑅 ↑ 𝑁𝐻 ↑ 𝜎 𝑇 ↑ 𝐶 ↑ 𝑅 ↑ 𝑁𝐻 ↑ 𝑇 ↑ 𝐶 ↑ 𝑅 ↑ 𝑁𝐻 ↑
AE

1.3

0.923 0.938 0.547 1.000 0.958 0.963 0.692 1.000

1.6

0.909 0.914 0.739 1.000 0.953 0.955 0.254 1.000
t-SNE 0.937 0.955 0.818 1.000 0.967 0.977 0.192 1.000 0.917 0.951 0.362 1.000 0.960 0.976 0.346 1.000
UMAP 0.921 0.949 0.868 1.000 0.957 0.970 0.721 1.000 0.906 0.933 0.878 1.000 0.954 0.965 0.471 1.000

SSNP(Km) 0.910 0.919 0.687 1.000 0.956 0.959 0.602 1.000 0.904 0.908 0.568 1.000 0.953 0.955 0.399 1.000
AE

3.9

0.919 0.926 0.750 1.000 0.959 0.963 0.484 1.000

4.8

0.910 0.914 0.615 1.000 0.953 0.954 0.354 1.000
t-SNE 0.931 0.953 0.707 1.000 0.966 0.978 0.227 1.000 0.914 0.950 0.608 1.000 0.960 0.977 0.331 1.000
UMAP 0.911 0.940 0.741 1.000 0.956 0.969 0.537 1.000 0.906 0.931 0.697 1.000 0.954 0.965 0.390 1.000

SSNP(Km) 0.910 0.918 0.622 1.000 0.955 0.958 0.549 1.000 0.905 0.907 0.612 1.000 0.953 0.954 0.296 1.000
AE

9.1

0.905 0.901 0.569 1.000 0.938 0.945 0.328 0.999

11.2

0.911 0.906 0.600 1.000 0.955 0.954 0.382 1.000
t-SNE 0.913 0.951 0.533 1.000 0.948 0.974 0.254 1.000 0.914 0.950 0.492 1.000 0.959 0.977 0.296 1.000
UMAP 0.888 0.939 0.535 1.000 0.929 0.966 0.342 1.000 0.905 0.931 0.557 1.000 0.953 0.965 0.336 1.000

SSNP(Km) 0.888 0.917 0.595 0.998 0.927 0.952 0.437 0.995 0.904 0.906 0.557 1.000 0.950 0.945 0.314 0.998

Table C.5: Quality metrics, synthetic blobs experiment with 100 and 700 dimensions, 5 and 10 clusters,
and 𝜎 ∈ [1.3, 11.2].

C.5.2 Quality On Real-World Datasets
Figure C.4 shows the projections of real-world datasets by SSNP with ground-truth

labels (SSNP(GT)), SSNP with pseudo-labels created by the six clustering algorithms in
Tab. C.3, and projections created by AE, t-SNE, UMAP, MDS, and Isomap. We omit again
the results for NNP since they are very close to the ones created by t-SNE and UMAP. SSNP
and AE were trained for 10 epochs in all cases. SSNP used twice the number of classes as
the target number of clusters for the clustering algorithms used for pseudo-labeling.

SSNP with pseudo-labels shows better cluster separation than AE but slightly worse
than SSNP(GT). For the more challenging HAR and Reuters datasets, SSNP(GT) looks
better than t-SNE and UMAP. In almost all cases, SSNP yields a better visual cluster
separation than MDS and Isomap. We see also that, for almost all clustering algorithm-
dataset combinations, SSNP creates elongated clusters in a star-like pattern. We believe
this is so since one of the network’s targets is a classifier (Sec. C.3) which is trained to
partition the space based on the data. This results in placing samples that are near a
decision boundary between classes closer to the center of the star; samples that are far
away from a decision boundary are placed near the tips of the star, according to their
classes.

Table C.6 shows the four quality metrics (Sec. C.4.2) for this experiment. SSNP with
pseudo-labels consistently shows better cluster separation (higher 𝑁𝐻 ) than AE as well as
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Figure C.3: Projection of synthetic blobs datasets with SSNP(Km) and other techniques, with a different
number of dimensions and clusters. In each quadrant, rows show datasets having increasing standard
deviation 𝜎.

better distance preservation (higher 𝑅). For the harder HAR and Reuters datasets, SSNP(GT)
shows 𝑁𝐻 results that are similar to and even higher than those for t-SNE and UMAP.
Also, SSNP(GT) scores consistently higher than MDS and Isomap on all quality metrics,
which correlates with these two projection techniques having been found as of moderate
quality in earlier studies [50]. For the 𝑇 and 𝐶 metrics, SSNP(GT) outperforms again AE in
most cases; for FashionMNIST and HAR, SSNP yields 𝑇 and 𝐶 values close to the ones for
NNP, t-SNE, and UMAP. Separately, we see that the clustering algorithm choice influences
the four quality metrics in several ways. DBSCAN (DB) yields in nearly all cases the lowest
quality values while K-means (Km) and Agglomerative (AG) yield overall the best quality
values. Spectral clustering (SC) is also a quite good option if one is mainly interested
in cluster separation (high 𝑁𝐻 values). Finally, Affinity Propagation (AP) and Gaussian
Mixture Models (GMM) score in between Km and AG (best overall) and DB (worst overall).
From the above, we conclude that Km and AG are good default clustering methods that
SSNP can use in practice.



80

APPENDIX C

  SSNP (Km)         SSNP (Agg)          Autoencoder                t-SNE                     UMAP               SSNP (GT)
R

eu
te

rs
  

  
  

  
  

  
 H

A
R

  
  

  
  

F
a

sh
io

nM
N

IS
T

  
  

  
  

  
 M

N
IS

T

  SSNP (AP)           SSNP (DB)           SSNP(GMM)             SSNP(SC)                  MDS                  Isomap

R
eu

te
rs

  
  

  
  

  
  

 H
A

R
  

  
  

  
F

a
sh

io
nM

N
IS

T
  

  
  

  
  

 M
N

IS
T

Figure C.4: Projection of real-world datasets with SSNP (ground-truth labels and pseudo-labels
computed by six clustering methods) compared to Autoencoders, t-SNE, UMAP, MDS, and Isomap.

C.5.3 Quality vs Clustering Hyperparameters
Figure C.5 shows projections of the HAR and MNIST datasets created by SSNP with

pseudo-labels assigned by DBSCAN and K-means and using the various clustering hyper-
parameter settings described in Sec. C.4.4.

For DBSCAN, we see that as the value of 𝑒𝑝𝑠 increases, the SSNP projection seems
to vary between global- and local-distance preservation. This effect is more pronounced
for the HAR dataset, where we see the number of clusters in the data varying from two
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Dataset Method 𝑇 𝐶 𝑅 𝑁𝐻 Method 𝑇 𝐶 𝑅 𝑁𝐻

MNIST

SSNP(Km) 0.882 0.903 0.264 0.767 SSNP(AP) 0.827 0.940 0.094 0.729
SSNP(AG) 0.859 0.925 0.262 0.800 SSNP(DB) 0.689 0.802 0.032 0.588

AE 0.887 0.920 0.009 0.726 SSNP(GMM) 0.880 0.895 0.257 0.755
SSNP(GT) 0.774 0.920 0.398 0.986 SSNP(SC) 0.849 0.925 0.164 0.831

NNP 0.948 0.969 0.397 0.891 MDS 0.754 0.862 0.618 0.580
TSNE 0.985 0.972 0.412 0.944 Isomap 0.759 0.958 0.528 0.618
UMAP 0.958 0.974 0.389 0.913

FashionMNIST

SSNP(Km) 0.958 0.982 0.757 0.739 SSNP(AP) 0.947 0.986 0.750 0.728
SSNP(AG) 0.950 0.978 0.707 0.753 SSNP(DB) 0.890 0.921 0.431 0.665

AE 0.961 0.977 0.538 0.725 SSNP(GMM) 0.952 0.982 0.689 0.737
SSNP(GT) 0.863 0.944 0.466 0.884 SSNP(SC) 0.957 0.981 0.706 0.756

NNP 0.963 0.986 0.679 0.765 MDS 0.923 0.957 0.903 0.652
TSNE 0.990 0.987 0.664 0.843 Isomap 0.920 0.976 0.749 0.685
UMAP 0.982 0.988 0.633 0.805

HAR

SSNP(Km) 0.932 0.969 0.761 0.811 SSNP(AP) 0.929 0.972 0.736 0.787
SSNP(AG) 0.926 0.964 0.724 0.846 SSNP(DB) 0.852 0.909 0.759 0.690

AE 0.937 0.970 0.805 0.786 SSNP(GMM) 0.924 0.966 0.768 0.796
SSNP(GT) 0.876 0.946 0.746 0.985 SSNP(SC) 0.893 0.952 0.811 0.805

NNP 0.961 0.984 0.592 0.903 MDS 0.911 0.890 0.941 0.765
TSNE 0.992 0.985 0.578 0.969 Isomap 0.925 0.971 0.896 0.861
UMAP 0.980 0.989 0.737 0.933

Reuters

SSNP(Km) 0.794 0.859 0.605 0.738 SSNP(AP) 0.631 0.768 0.039 0.742
SSNP(AG) 0.771 0.824 0.507 0.736 SSNP(DB) 0.574 0.650 0.360 0.705

AE 0.747 0.731 0.420 0.685 SSNP(GMM) 0.622 0.788 0.460 0.793
SSNP(GT) 0.720 0.810 0.426 0.977 SSNP(SC) 0.607 0.758 0.027 0.730

NNP 0.904 0.957 0.594 0.860 MDS 0.575 0.757 0.551 0.699
TSNE 0.955 0.959 0.588 0.887 Isomap 0.634 0.785 0.150 0.765
UMAP 0.930 0.963 0.674 0.884

Table C.6: Quality measurements for the real-world datasets (Sec. C.5.2).

Dataset Technique Parameter 𝑇 𝐶 𝑅 𝑁𝐻

MNIST

DBSCAN

eps=6.1 0.685 0.821 0.097 0.555
eps=6.3 0.679 0.798 0.012 0.570
eps=6.5 0.722 0.812 0.044 0.614
eps=6.7 0.698 0.801 0.022 0.576
eps=6.9 0.729 0.825 0.011 0.605

K-means

n_clusters=5 0.782 0.905 0.408 0.641
n_clusters=10 0.834 0.916 0.379 0.697
n_clusters=15 0.867 0.927 0.410 0.760
n_clusters=20 0.880 0.909 0.047 0.755
n_clusters=30 0.899 0.932 0.358 0.790

HAR

DBSCAN

eps=1.9 0.854 0.928 0.917 0.696
eps=2.1 0.848 0.920 0.841 0.650
eps=2.3 0.875 0.914 0.717 0.685
eps=2.5 0.896 0.924 0.844 0.725
eps=2.7 0.898 0.933 0.887 0.749

K-means

n_clusters=3 0.887 0.939 0.932 0.693
n_clusters=6 0.921 0.959 0.749 0.767
n_clusters=9 0.920 0.965 0.877 0.812
n_clusters=12 0.930 0.968 0.854 0.815
n_clusters=18 0.937 0.972 0.840 0.812

Table C.7: Quality measurements for the cluster hyperparameter experiment (Sec . C.5.3).

(𝑒𝑝𝑠 = 1.9) and three (𝑒𝑝𝑠 = 2.7). For the MNIST dataset, the increase in 𝑒𝑝𝑠 only makes the
entire projection take a sharper shape, with no improvement in cluster separation. Overall,
SSNP with DBSCAN having low 𝑒𝑝𝑠 values produces results similar to an autoencoder,
which defeats the purpose of using SSNP. This correlates to the earlier findings in Sec. C.5.2
that showed that DBSCAN is not a good clustering companion for SSNP. The quality metrics
in Tab. C.7 strengthen this hypothesis – we do not see any clear trend of these metrics
being improved by varying 𝑒𝑝𝑠 in a specific direction.

For K-means, we see that the value of 𝑛_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 has a great effect on the overall shape
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of the SSNP projection. Particularly, when 𝑛_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 is higher than the true number of
classes in the data (10 for MNIST, 6 for HAR), we see that the cluster separation gets
sharper. This suggests that, when the true number of clusters is not known, starting with
a reasonably high number of clusters will produce better results for SSNP with K-means.
This is confirmed by the quality metrics in Tab. C.7 which show higher values for higher
𝑛_𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠 settings.

DBSCAN

DBSCAN

K-means

K-means

eps=6.1                      eps=6.3                 eps=6.5                      eps=6.7                   eps=6.9

eps=1.9                      eps=2.1                 eps=2.3                      eps=2.5                   eps=2.7

n_clusters=5         n_clusters=10             n_ clusters=15       n_clusters=20       n_clusters=30

n_clusters=3         n_clusters=6              n_ clusters=9         n_clusters=12          n_clusters=18
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Figure C.5: Projections of MNIST and HAR datasets using different hyperparameters for the DBSCAN
and K-means clustering methods (see Sec. C.5.3 and Tab. C.7).

C.5.4 Quality vs Neural Network Settings
We next show how the different neural network hyperparameter settings affect the

SSNP results following the sampling of these parameters discussed in Sec. C.4.5. We also
use this analysis to derive good default values for these parameters.

L2 regularization: Figure C.6 shows projections created with different amounts of L2
regularization during SSNP’s training. We see that regularization has a detrimental effect
on the visual quality of the projection. For values of 𝜆 ≥ 0.5, the projection points collapse
to a single point, marked by the red circles in the figure. Table C.8 shows the metric values
for this experiment confirming that all quality values decrease with 𝜆. We conclude that
SSNP obtains optimal results without regularization.

Activation functions: Figure C.7 shows the effect of using different activation functions
𝛼 in the embedding layer. We see that the ReLU and LeakyReLU activations produce
similarly good results. Both produce visual cluster separation comparable to t-SNE and
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Method Parameter Value 𝑇 𝐶 𝑅 𝑁𝐻

SSNP(GT)

𝛼

LeakyReLU 0.780 0.930 0.429 0.971
ReLU 0.789 0.921 0.402 0.983

sigmoid 0.703 0.891 0.088 0.746
tanh 0.784 0.929 0.190 0.983

𝜂

2 0.781 0.924 0.428 0.903
3 0.787 0.926 0.428 0.940
5 0.786 0.925 0.419 0.966
10 0.789 0.921 0.402 0.983
20 0.797 0.920 0.391 0.989

𝜙
Glorot 0.789 0.921 0.402 0.983

He 0.789 0.928 0.328 0.982
Random 0.758 0.905 0.071 0.927

𝜆

0 0.789 0.921 0.402 0.983
0.1 0.757 0.909 0.360 0.870
0.5 0.538 0.502 NA 0.101
1 0.538 0.502 NA 0.101

SSNP(Km)

𝛼

LeakyReLU 0.863 0.919 0.177 0.748
ReLU 0.888 0.916 0.119 0.768

sigmoid 0.678 0.872 0.196 0.568
tanh 0.884 0.928 0.265 0.774

𝜂

2 0.847 0.927 0.267 0.726
3 0.827 0.926 0.244 0.714
5 0.854 0.915 0.323 0.775
10 0.881 0.908 0.188 0.770
20 0.886 0.911 0.128 0.766

𝜙
Glorot 0.884 0.915 0.333 0.784

He 0.874 0.903 0.267 0.753
Random 0.741 0.869 0.115 0.640

𝜆

0 0.888 0.924 0.351 0.763
0.1 0.872 0.910 0.352 0.753
0.5 0.538 0.502 NA 0.101
1 0.538 0.502 NA 0.101

Table C.8: Quality measurements for SSNP for different training hyperparameters. NA indicates that
the measurement failed for the respective experiment (Sec. C.5.4).
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Figure C.6: Projections created with SSNP(GT) and SSNP(Km) for the MNIST dataset varying the
amount of L2 regularization 𝜆 (Sec. C.5.4).

UMAP (see Fig. C.4), albeit with a distinct star or radial shape. The sigmoid activation
collapses all data points into a single diagonal, making it a poor choice for the embedding
layer. Finally, the tanh activation produced the best cluster separation of all, with results
that look very close to the ones by t-SNE and UMAP for this dataset (see again Fig. C.4).
We conclude that the tanh activation function is the best option for SSNP.

Initialization: Figure C.8 shows how weight initialization affects projection quality. We
see that both Glorot and He uniform initializations produce good and comparable results,
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Figure C.7: Projections of the MNIST dataset using SSNP(GT) and SSNP(Km) varying the activation
function 𝛼 (Sec. C.5.4).

whereas random initialization yields very poor results. We opt for using He uniform as the
default initialization, which correlates with the same choice (obtained by an independent
investigation) for NNP [43].
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Figure C.8: Projections of the MNIST dataset using SSNP(GT) and SSNP(Km) varying the weight
initialization strategy 𝜙 (Sec. C.5.4).

Training epochs: Finally, Figure C.9 shows projections created with SSNP trained for
different numbers 𝜂 of epochs. With as little as 𝜂 = 3 training epochs, SSNP already
produces good cluster separation. As 𝜂 increases, the created visual clusters become
sharper. However, there seems to be little improvement when going from 𝜂 = 10 to
𝜂 = 20. As such, we conclude that a good default is 𝜂 = 10 training epochs. Interestingly,
this is significantly less than the 50 epochs needed by NNP to achieve good projection
quality [43], especially if we consider that SSNP has to train a more complex, dual-objective,
network.

C.5.5 Computational Scalability
Using SSNP means (a) training the network and next (b) using the trained network in

inference mode (see also Fig. C.1). We analyze these two times next.
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Figure C.9: Projections of MNIST dataset using SSNP(GT) and SSNP(Km) varying the number of
training epochs 𝜂 (Sec. C.5.4).

Setup time: Table C.9 shows the time needed to set up SSNP and three other projection
techniques. For SSNP, NP, and AE, this is the training time of the respective neural networks
using ten training epochs. Note that we used 10K training samples, but in practice, SSNP
obtains good results (quality-wise) with as few as 1K samples. For UMAP and t-SNE, this
is the time needed to project the data since these techniques do not have a training phase.
We see that the SSNP variants using clustering take about the same time as t-SNE and
UMAP and less time than NNP. SSNP(GT), which does not need clustering, is far faster
than these competitors, except for AE, which is about twice faster. This is explainable
since SSNP uses a dual-objective network (Sec. C.3), one of these being essentially the
same as AE.

Method Setup time (s)
SSNP(GT) 6.029
SSNP(Km) 20.478
SSNP(Agg) 31.954

AE 3.734
UMAP 25.143
t-SNE 33.620

NNP(t-SNE) 51.181

Table C.9: Setup time for different projection methods for 10K training samples, MNIST dataset.

Inference time: Figure C.10 shows the time needed to project up to 1M samples using
SSNP and the other compared projection techniques. For SSNP, AE, and NNP, this is the
inference time using the respective trained networks. For t-SNE and UMAP, this is the
actual projection time, as described earlier in this section. Being GPU-accelerated neural
networks, SSNP, AE, and NNP perform very fast, all being able to project up to 1M samples
in a few seconds – an order of magnitude faster than UMAP, and over three orders of
magnitude faster than t-SNE. We also see that SSNP, AE, and NNP have practically the
same speed. This is expected since they have comparably large and similar-architecture
neural networks which, after training, take the same time to execute their inference.

C.5.6 Inverse Projection
Recalling from Sec. E.2, an inverse projection 𝑃−1(𝐩) aims to create a data point 𝐱 so

that its projection 𝑃(𝐱) is as close as possible to 𝐩. Hence, we can test how well a method
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Figure C.10: Inference time for SSNP and other techniques (log scale). Techniques using training use
10K samples from the MNIST dataset. Inference is done on MNIST upsampled up to 1M samples.

computes 𝑃−1 for a given direct projection function 𝑃 by evaluating how close 𝑃−1(𝑃(𝐱))
is to the data point 𝐱 itself. To test this, we consider points 𝐱 being images in the MNIST
dataset and 𝑃 and 𝑃−1 being computed by SSNP as described in Sec. C.3).

Figure C.11 shows a set of digits from the MNIST dataset – both the actual images
𝐱 and the ones obtained by 𝑃−1(𝑃(𝐱)). We see that SSNP(Km) yields results very similar
to AE, both of these being visually quite close images to the actual images 𝐱, modulo a
limited amount of fuzziness. Hence, SSNP’s dual-optimization target succeeds in learning
a good inverse mapping based on the direct mapping given by the pseudo-labels (Sec. C.3).
Table C.10 strengthens this insight by showing the values of the Mean Squared Error
(MSE) between the original and inversely-projected images 1

|𝐷| ∑𝐱∈𝐷 ‖𝐱 − 𝑃−1(𝑃(𝐱))‖2 for
SSNP(Km) and AE for both the training and test sets. These errors, again, are very similar.
Furthermore, the SSNP MSE errors are of the same order of magnitude – that is, very small
– as those obtained by the recent NNInv technique [49] and the older iLAMP [7] technique
that also computes inverse projections – compare Tab. C.10 with Fig. 2 in [49] (not included
here for space reasons). Summarizing the above, we conclude that SSNP achieves a quality
of inverse projections on par with existing state-of-the-art techniques.

SSNP(Km) Autoencoder
Dataset Train Test Train Test
MNIST 0.0474 0.0480 0.0424 0.0440

FashionMNIST 0.0309 0.0326 0.0291 0.0305
HAR 0.0072 0.0074 0.0066 0.0067

Reuters 0.0002 0.0002 0.0002 0.0002

Table C.10: Inverse projection Mean Square Error (MSE) for SSNP(Km) and AE, trained with 5K
samples and tested with 1K samples, different datasets.

C.5.7 Data clustering
Table C.11 shows how SSNP performs when doing classification or clustering, which

corresponds respectively to its usage of pseudo-labels or ground-truth labels. We see that
SSNP generates good results in both cases when compared to the ground-truth (GT) labels
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Figure C.11: Sample images from MNIST inversely projected by SSNP and AE, both trained with
10 epochs and 5K samples, MNIST dataset. Bright images show the original images that the inverse
projection should be able to reproduce.

and, respectively, the underlying clustering algorithm K-means (Km), which emerged as
one of the best clustering companions for SSNP (Sec. C.5.2). However, we should stress
that classification or clustering is only a side result of SSNP, needed for computing the
dual-objective cost that the network uses (Sec. C.3). While one gets this by-product for
free, SSNP only mimics the underlying clustering algorithm that it learns, rather than
doing data clustering from scratch. As such, we do not advocate using SSNP as a potential
replacement for clustering algorithms.

SSNP(GT) SSNP(Km)
Dataset Train Test Train Test
MNIST 0.984 0.942 0.947 0.817

FashionMNIST 0.866 0.815 0.902 0.831
HAR 0.974 0.974 0.931 0.919

Reuters 0.974 0.837 0.998 0.948

Table C.11: Classification/clustering accuracy of SSNP when compared to ground truth (GT) and
clustering labels (Km), trained with 5K samples, tested with 1K samples.

C.5.8 Implementation details
All experiments discussed in this section were run on a 4-core Intel Xeon E3-1240 v6

at 3.7 GHz with 64 GB RAM and an NVidia GeForce GTX 1070 GPU with 8 GB VRAM.
Table C.12 lists all open-source software libraries used to build SSNP and the other tested
techniques. Our neural network implementations leverage the GPU power by using the
TensorFlow Keras framework. The t-SNE implementation used is a parallel version of
Barnes-Hut t-SNE [195, 116], run on all four available CPU cores for all tests. The UMAP
reference implementation is not parallel but is quite fast (compared to t-SNE) and well-
optimized. The implementation of MDS, Isomap, and all clustering techniques comes from
Scikit-Learn [152]. Our implementation, plus all code used in this experiment, is publicly
available at https://github.com/mespadoto/ssnp.

C.6 Discussion
We discuss next how the available hyperparameter settings influence the performance

of SSNP concerning the seven criteria laid out in Sec. C.1.

https://github.com/mespadoto/ssnp
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Technique Software used publicly available at
SSNP (our technique) keras.io (TensorFlow backend)

Autoencoders
t-SNE github.com/DmitryUlyanov/Multicore-t-SNE
UMAP github.com/lmcinnes/umap

Affinity Propagation scikit-learn.org
Agglomerative Clustering

DBSCAN
Gaussian Mixture Model

K-means
Spectral Clustering

Table C.12: Software used for the SSNP implementation and evaluation.

Quality (C1): As shown in Figures C.3 and C.4, SSNP provides better cluster separation
than Autoencoders, MDS, and Isomap, and comparable quality to t-SNE and UMAP,
as measured by the selected metrics (Tables C.5 and C.6). Interestingly, using ground-
truth labels (SSNP(GT)) does not always yield the highest quality metrics as compared
to using pseudo-labels produced by clustering. Related to the latter, K-means (Km) and
Agglomerative clustering (AG) yield, overall, higher quality metrics for most tested datasets
as compared to DBSCAN, Gaussian mixture models, Spectral clustering, and Affinity
propagation. When we consider the neighborhood hit (𝑁𝐻 ) metric - which models the
closest from all studied metrics - the ability of a projection to segregate similar samples
into visually distinct clusters, SSNP(GT) performs better than all tested methods, including
t-SNE and UMAP. Importantly, note that SSNP uses labels only during training and not
during inference, so it can be fairly compared with other projection methods.

Scalability (C2): SSNP(GT) is roughly half the speed of Autoencoders during training
which is expected given its dual-optimization target. Training SSNP with pseudo-labels
is slower, roughly the speed of t-SNE or UMAP, which is explained by the time taken
by the underlying clustering algorithm which dominates the actual training time. In our
experiments, K-means seems to be faster than Agglomerative clustering, being thus more
suitable when training SSNP with very large datasets. Inference time for SSNP is practically
identical to Autoencoders and NNP, and one order of magnitude faster than UMAP and
three orders faster than t-SNE, being also linear in the sample and dimension counts. This
shows SSNP suitability to situations where one needs to project large amounts of data,
such as streaming applications;

Ease of use (C3): SSNP yielded good projection results with little training (10 epochs),
little training data (5K samples), and a simple heuristic of setting the number of clusters
for the clustering step to twice the number of expected clusters in the data. Furthermore,
we examined several hyperparameters of SSNP and found good default values (in terms of
obtaining high-quality metrics) as follows: no L2 regularization, tanh activation function
for the embedding layer, and He uniform weight initialization. The clustering algorithm
default is K-means or Agglomerative, with K-means slightly preferred for speed reasons.
As such, SSNP can be used with no parameter tweaking efforts needed.

Genericity (C4): We show results for SSNP with different types of high-dimensional
data, namely tabular (HAR), images (MNIST, FashionMNIST), and text (Reuters). As these
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datasets come from quite different sources and as the SSNP method itself does not assume
anything about the nature or structure of the data, we believe that SSNP is generically
applicable to any high-dimensional real-valued dataset.

Stability and out-of-sample support (C5): All measurements we show for SSNP are
based on inference, i.e., we pass the data through the trained network to compute them. This
is evidence of the out-of-sample capability, which allows one to project new data without
recomputing the projection, in contrast to t-SNE and other non-parametric methods.

Inverse mapping (C6): SSNP shows inverse mapping results which are, quality-wise,
very close to results from Autoencoders, NNInv, and iLAMP, these being state-of-the-art
methods for computing inverse projections. Additionally, SSNP computes the inverse
projection at no extra cost or need for a separate implementation, in contrast to NNInv
and iLAMP.

Clustering (C7): SSNP can mimic the behavior of the clustering algorithm used as its input,
as a byproduct of its training with labeled data. We show that SSNP produces competitive
results when compared to pseudo- or ground truth labels. Although SSNP is not a clustering
algorithm, it provides this for free (with no additional execution cost), which can be useful
in cases where one wants to do both clustering and DR. However, we stress that SSNP
should not be considered as a replacement for state-of-the-art clustering algorithms, since
it only learns to mimic the actual clustering. This is similar to the distinction between a
classifier and an actual clustering technique.

In addition to the good performance shown for the aforementioned criteria, a key
strength of SSNP is its ability to perform all its operations after a single training phase. This
saves effort and time in cases where all or a subset of those results (e.g., direct projection,
inverse projection, clustering) are needed.

Limitations: While scoring high on several criteria, SSNP also has several limitations.
Quality-wise, its operation in pseudo-labeling mode cannot reach the high-quality values
for all metrics that are delivered by t-SNE or UMAP for challenging datasets (Tab. C.6).
We believe that this is affected by the number of clusters used during training, which is
related to the neighborhood size that t-SNE and UMAP use. More involved strategies in
setting this number of clusters can be explored to further increase SSNP’s quality. Visually,
while we argue for the reason for the star-shaped cluster structures produced by SSNP
(Sec. C.5.2), such patterns can be less suitable for visual exploration than the blob-like
patterns produced typically by t-SNE. Using a tanh activation function partially alleviates
this issue (Sec. C.5.4). However, more studies are needed to explore other activation
functions that allow even better control of the visual cluster shapes. Most importantly,
however, SSNP is a learning method. As with any such method, its quality will decrease
when inferring on (that is, projecting) datasets that are too far away from the ones used
during training, an issue also present for NNP and autoencoders. In contrast, methods
that do not use training can obtain similar quality for any input dataset. Yet, the price to
pay for such methods is that they cannot guarantee stability and out-of-sample behavior,
which come with SSNP by default.
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C.7 Conclusion
We presented an in-depth analysis of a dimensionality reduction (DR) method called

Self-Supervised Neural Projection (SSNP) recently proposed by us. SSNP uses a neural
network with a dual objective – reconstruction of the high-dimensional input data and
classification of the data – to achieve several desirable characteristics of a general-purpose
DR method. SSNP is, to our knowledge, the only technique that jointly addresses all
characteristics listed in Section 1 of this paper, namely producing projections that exhibit
a good visual separation of similar samples, handling datasets of millions of elements
in seconds, being easy to use (no complex parameters to set), handling generically any
type of high-dimensional data, providing out-of-sample support, and providing an inverse
projection function.

Our evaluation added two additional dimensionality reduction methods, and four
clustering algorithms, and also explored the hyperparameter space of both the clustering
algorithms and neural network training to gauge SSNP’s behavior. The evaluation results
led to establishing default values for all these hyperparameters which obtain high quality
values and also turn SSNP into a parameter-free method. Additionally, the obtained results
show that SSNP with ground-truth labels yields higher quality in terms of visual cluster
separation than all tested projections including the state-of-the-art t-SNE and UMAP
methods. When pseudo-labels are used due to the lack of true labels, SSNP achieves lower
but still competitive results with t-SNE and UMAP, slightly to significantly higher quality
than autoencoders, and significantly higher quality than MDS and Isomap.

In future work, we consider studying better heuristics for controlling the clustering
process, which we believe are low-hanging fruits towards improving SSNP. Another
interesting direction is to explore other activation function designs that can offer control to
the end users on the shape of the visual clusters that the projection creates, which would
be, to our knowledge, a unique feature in the family of projection techniques. A more
ambitious, but realizable, goal is to have SSNP learn its pseudo-labeling during training
and therefore remove the need for using a separate clustering algorithm.
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Appendix: Stability Analysis of
Supervised Decision Boundary
Maps

This chapter is partially based on the paper of the same name [135].

D.1 Introduction
As Machine Learning (ML) techniques develop and address increasingly many appli-

cation domains, so does their complexity and difficulty in understanding their working.
This poses problems for their adoption in contexts where transparency and accountability
of inference are required [163]. Such issues are especially important for Deep Learning
(DL) models which handle very high dimensional datasets and operate essentially as black
boxes having millions of hidden parameters [58].

To explain ML classifier models, several approaches have been proposed, using variable
importance [112], locally interpretable models [163], and surrogate models [130]. Visual-
ization techniques complement such approaches by mapping the model’s predictions or
internal states to various visual representations [160, 161]. A recent survey of visualization
techniques for the explanation of DL models was proposed by Garcia et al. [58].

In the above family, Decision Boundary Maps (DBMs) [164] are a particular visualization
technique for ML classifiers. Given a multidimensional projection [131] that shows how a
classifier handles some input dataset, DBMs fill the whitespace with classification results
(color-mapped labels) for data points that would project at those locations. The result is
a dense image that shows how the visual projection space is partitioned into per-class
decision zones. Decision zone boundaries – where two or more label colors adjoin – depict
locations where the classifier changes its output. DBMs offer a simple to interpret and
visually scalable way to depict the working of any classification model.

In recent work [134], we proposed Supervised Decision Boundary Maps (SDBM), which
extends the DBM method [164] to address several of the latter method’s shortcomings, as
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follows:

Quality (C1): SDBM produces decision maps that create a clearer, and far less noise-prone,
visual separation of a higher number of decision zones from real-world, complex, datasets,
than DBM;

Scalability (C2): SDBM has linear complexity in the number of samples and dimensions
and runs on the GPU; this allows creating megapixel maps in a few seconds on commodity
hardware in contrast to the minutes needed by DBM;

Ease of use (C3): SDBM produces good results with minimal or no parameter tuning;

Genericity (C4): Like DBM, SDBM can construct decision boundaries for any single-value
classifier.

Despite these attractive points, the interpretation of the maps produced by both DBM
and SDBM relies fundamentally on a stability assumption: Indeed, users examine such
maps to determine, for instance, the size and adjacency of decision zones, to e.g. decide
whether a classifier is well trained and/or where to add more training samples to improve
it [164]. If the maps – and in particular, the borders where decision zones meet – are
unstable to small changes in the training data, their interpretation can easily go wrong.
Such effects were already found in earlier work on DBMs [165, 48] in terms of noise-like
‘islands’ that appear in DBMs constructed for complex classifier models. SDBM successfully
removes such small-scale artifacts. Yet, it is still unknown how stable, thus trustworthy, are
the large scale patterns (decision zones, decision boundaries) that SDBM creates. If these
patterns are not stable, then the overall interpretation of the SDBM maps is of limited
value.

In this work, we address the above open question by performing a multi-faceted stability
analysis on SDBM. For this, we train three classifiers on several perturbed versions of
three real-world datasets and compute and visualize the resulting decision maps as well
as their changes. We also propose two novel visualizations to summarize the stability of
SDBMs in the presence of several training-set changes. Our analysis shows that SDBM
has an additional desirable property, namely

Stability (C5): SDBM constructs decision maps that are stable to changes. The amount of
visual change – in terms of positions and sizes of the decision zones – is following the
amount of change present in the input data. In particular, small data changes only yield
small visual changes which do not adversely affect the interpretation of the computed
decision maps.

We structure this paper as follows: Section D.2 discusses related work on visual expla-
nation of classification models. Section D.3 details the SDBM method. Section D.4 presents
results that support our contributions C1-C4 outlined above, as well as our new stability
analysis and novel visualizations designed to explore it (C5). Section D.5 discusses SDBM.
Finally, Section D.6 concludes the paper.
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D.2 Background

We next introduce the notations used in further this paper. Let 𝐱 = (𝑥1,… , 𝑥𝑛), 𝑥 𝑖 ∈
ℝ, 1 ≤ 𝑖 ≤ 𝑛 be an 𝑛-dimensional (𝑛D) real-valued sample. Let 𝐷 = {𝐱𝑗 }, 1 ≤ 𝑗 ≤ 𝑁 be a
dataset of 𝑁 such samples, e.g., a table with 𝑁 rows (samples) and 𝑛 columns (dimensions).
As we focus on classification models, we assume 𝐷 is labeled by 𝐾 label values in 𝐶 = {𝑐𝑘},
1 ≤ 𝑘 ≤ 𝐾 . Specifically, let 𝐲 = {𝑦𝑗 |𝑦𝑗 ∈ 𝐶}, 1 ≤ 𝑗 ≤ 𝑁 be the labels of 𝐷 where sample 𝐱𝑗
has label 𝑦𝑗 . A classification model is a function

𝑓 ∶ ℝ𝑛 → 𝐶 (D.1)

that maps between data samples and label values. The model 𝑓 is typically obtained by
using a training algorithm over the dataset 𝐷, such as Logistic Regression [36], SVM [35],
Random Forests [20], or Neural Networks, to name a few.

A Dimensionality Reduction (DR), or projection, technique is a function

𝑃 ∶ ℝ𝑛 → ℝ𝑞 (D.2)

that maps a sample 𝐱 ∈ ℝ𝑛 to a point 𝐩 = 𝑃(𝐱), 𝐩 ∈ ℝ𝑞 (typically, 𝑞 = 2). Projecting a
dataset 𝐷 yields a 𝑞D scatterplot denoted next as 𝑃(𝐷). The inverse of 𝑃 , denoted 𝑃−1(𝐩),
maps, or backprojects, a 𝑞D point 𝐩 to the high-dimensional space ℝ𝑛.

Decision Boundary Maps: A Decision Boundary Map (DBM) is an image that depicts
how a given model 𝑓 partitions the projection space ℝ2 into decision zones. A decision
zone is a set of points 𝐩 ∈ ℝ2 for which 𝑓 (𝑃−1(𝐩)) = 𝑐𝑘, i.e., back-project to data points
classified by 𝑓 to the same label 𝑐𝑘, and is colored by the label 𝑐𝑘. Decision zones are
separated by decision boundaries, which are pixels 𝐩 whose labels (colors) differ from those
of at least one 8-neighbor pixel. A DBM shows, among other things, how 𝑓 partitions
the high-dimensional space into decision zones, how large these zones are, how they are
adjacent to each other, and how smooth the decision boundaries between classes are [165].
This gives insights on whether the model 𝑓 has overfitted the training data, and how
well separated the data is, i.e., how difficult is the classification task. DBMs are a step
forward from the key observation of Rauber et al. [160] who showed how projections aid
in deciding whether a high-dimensional dataset is easily classifiable or not. Simply put,
DBMs support the same tasks but provide more information by ‘filling in’ the white gaps
between the points of a 2D scatterplot 𝑃(𝐷) by extrapolating the classifier 𝑓 .

The DBM technique of Rodrigues et al. [165] relies heavily on direct and inverse
projections. The direct mapping is used to create a 2D scatterplot 𝑃(𝐷) from a dataset
𝐷. The inverse mapping 𝑃−1 creates synthetic data points from all pixels 𝐩 in the 2D
bounding box of 𝑃(𝐷). These data points 𝑃−1(𝐩) are then classified by 𝑓 , and colored by the
assigned labels 𝑓 (𝑃−1(𝐩)). DBM has two main issues: (1) The inverse projection technique
𝑃−1 used, iLAMP [7], scales poorly to the hundreds of thousands of pixels a DBM has.
This was addressed in [165] by using low-resolution DBMs. To increase accuracy, several
points were sampled over a pixel in these maps and the pixel class (color) was set by
majority-voting on the labels assigned by 𝑓 to the back-projections of these points. This
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scheme however creates artifacts visible as highly jagged decision boundaries. (2) Since
DBM uses an unsupervised projection 𝑃 , outliers in a dataset 𝐷 can generate spurious
‘islands’ of pixels having a different label (color) than their neighbors, thus appearing as
spurious decision zones that confuse the user.

Improved Decision Boundary Maps: Several improvements were proposed to address
the above-mentioned issues of DBMs. Rodrigues et al. [48] examined the DBMs generated
for four classifiers and using 28 projection techniques 𝑃 and found that suitably parame-
terized t-SNE [118] and UMAP [125] projections limit the spurious islands in the decision
maps. Next, the same authors proposed a simple filtering technique to eliminate poorly
projected points from 𝑃(𝐷) and use only the remaining ones to construct the inverse
mapping 𝑃−1 [164]. They also increased the accuracy and speed of computing the DBMs
by using a deep learning technique [49] to construct 𝑃−1 from a given direct mapping
𝑃(𝐷). Finally, they proposed ways to visualize the distance-to-closest-boundary of all
points inside a decision zone to highlight areas prone to misclassification.

Related Dense Maps: Besides DBMs used to visualize the working of a classifier model,
dense maps have been used to analyze high-dimensional data in other contexts. Closer
to our application, OptMap [44] uses dense maps to explore the optimization process of
generic regressors 𝑟 ∶ ℝ2 → ℝ. StrategyAtlas [33] projects high-dimensional datasets to 2D
using UMAP and creates dense maps showing the value of a user-selected dimension over
the projection space using Shepard interpolation around the projected points [180]. Similar
interpolation is used to construct dense maps showing errors at the projected points [11,
122] or dimensions that explain how neighbor projection points are related [192]. Among
these techniques, only OptMap uses an inverse projection to map from the image space to
the data space – all other techniques only interpolate data values at the sample points in
the image space. As explained in [164], such image-space interpolation can be misleading
since distances in the projection space usually do not directly reflect distances in the data
space.

Dimensionality reduction in DBMs: As explained above, DBMs rely heavily on Dimen-
sionality Reduction (DR) or projection techniques. For the DBM context, such a technique
should ideally

1. Work generically for any type of high-dimensional dataset 𝐷;

2. Be computationally fast, ideally linear in the number of samples and dimensions of
𝐷;

3. Provide both the direct (𝑃 ) and inverse (𝑃−1) projection;

4. Be simple to parameterize (for easy usage in practice);

5. Provide a high-accuracy projection;

6. Be stable and have out-of-sample (OOS) capability.

The first four requirements above are, we believe, evident. Requirement 5 (accuracy)
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means that 𝑃(𝐷) can successfully preserve the structure of the data (clusters, neighbors,
outliers) present in 𝐷. If this is not the case, any (visual) inference done on 𝑃(𝐷) – such
as reasoning about the sizes, shapes, and relative positions of decision zones – may be
misleading. Accuracy is typically gauged by measuring several so-called projection quality
metrics [196, 176, 11, 85]. Such quality metrics have been used to filter poorly projected
points to improve the DBM quality [164], as outlined earlier.

Requirement 6 also deserves a separate explanation: A projection technique 𝑃 is called
stable if small changes in its input dataset 𝐷 cause only small changes in the created
scatterplot 𝑃(𝐷). As a special case, a projection is called deterministic if it outputs the same
𝑃(𝐷) for the same input 𝐷. Stable and deterministic projection techniques are preferred
for many visualization applications as they simplify the user’s task – one e.g. can exactly
reproduce the output of a projection for the same dataset 𝐷; and small-scale noise or
inaccuracies in the input 𝐷 do not massively affect the obtained visualization. Separately,
a projection 𝑃 is called to have out of sample (OOS) ability if it can project new, unseen,
samples along those earlier provided in some dataset 𝐷, without modifying the projection
𝑃(𝐷). OOS is desirable when one needs to project a sequence of related datasets [131, 50,
198]. OOS projections are typically also stable, though the converse is not necessarily true.
For DBM construction, we ideally want both 𝑃 and 𝑃−1 to be stable and deterministic. If
not, one could obtain radically different decision maps from the same classifier, e.g. when
trained with slightly different data 𝐷. In turn, this would make the visual interpretation of
the respective classifier via the DBMs very challenging if not hardly possible.

Measuring projection stability is a relatively new and little explored topic, as most
quantitative studies on DR focused so far on ensuring high projection quality (see the
survey in [50]). Key difficulties for stability measurement are defining the ‘allowable’
change in the data 𝐷 and in the projection 𝑃(𝐷). Vernier et al. [198] present, to our
knowledge, the first attempt to quantify stability for dynamic projection techniques by
measuring the correlation of changes in the 2D distances between points in 𝑃(𝐷) and
their 𝑛D distances in 𝐷. Data changes are implicitly given by the application domain
as 𝐷 is a time-dependent dataset. Bredius et al. [19] gauge the stability of a specific
projection method [47] by explicitly synthesizing noise-like changes of 𝐷 and depicting
the changes in 𝑃(𝐷). However, they perform no quantitative stability measurements.
Espadoto et al. [43] use similar noise-like changes to train a projection method to behave
less sensitively (thus, be more stable) in their presence. However, they do not explicitly
measure or reason about projection stability. For inverse projections 𝑃−1 or DBMs, we
are not aware of any stability study. Our work here is, to our knowledge, the first study
that explicitly measures the stability of a DBM pipeline involving both direct and inverse
projections.

Many DR techniques have been proposed over the years, as reviewed in various
surveys [72, 119, 42, 184, 109, 38, 210, 131, 50]. Below we describe a few representative ones
from DBM computation perspective and outline how these fare concerning requirements
1-5 mentioned above.

Principal Component Analysis [86] (PCA) is one of the most popular DR techniques
for many decades, and complies well with all requirements except 5 (accuracy), especially
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for data of high intrinsic dimensionality. PCA was used to compute both 𝑃 and 𝑃−1

by the OptMap visualization method for regressor analysis [44]. However, the authors
noted that higher-quality results could be obtained by using a more accurate projection
technique.

The Manifold Learning family of methods contains techniques such as MDS [194],
Isomap [188], and LLE [167], which aim to capture nonlinear data structure by mapping
to 2D the high-dimensional manifold on which data is located. These methods generally
yield better results than PCA (5) but do not scale well computationally (2), and also yield
poor results when the intrinsic data dimensionality is higher than two. Also, many such
methods require careful parameter tuning (4) to obtain suitable results.

The SNE (Stochastic Neighborhood Embedding) family of methods, of which the most
popular member is t-SNE [118], are best known for the high quality of the projections they
produce (5). Yet, they can be hard to tune [204], and typically have no OOS capability and/or
stability (6). Parametric t-SNE [117] adds OOS and stability at the expense of a significantly
slower and more complex implementation. Several refinements of t-SNE improve speed (2),
such as tree-accelerated t-SNE [115], hierarchical SNE [154], and approximated t-SNE [153],
and various GPU accelerations of t-SNE [155, 25]. Uniform Manifold Approximation and
Projection (UMAP) [125], while not part of the SNE family, generates projections with
comparable quality to t-SNE (5), but much faster (2), and with OOS capability (6).

All the above projection techniques work in an unsupervised way – they use only
distance information between points in 𝐷 to compute 𝑃(𝐷). Recently, Espadoto et al. [47]
proposed Neural Network Projection (NNP) to learn the projection 𝑃(𝐷), computed by
any user-selected technique 𝑃 , from a small subset 𝐷′ ⊂ 𝐷, using a deep learning regressor.
While slightly less accurate than the original 𝑃 (5), NNP is computationally linear in the
size and dimensionality of 𝐷 (2), has OOS ability (5), and is simple to implement and
parameter-free (4). A recent study [19] showed that NNP is very stable to a wide range
of perturbations of its input data 𝐷. NNP was further refined [126] to use neighborhood
information between samples in 𝐷 and further increase the projection accuracy (5). A
related idea to NNP was used by NNInv [49] to learn the inverse mapping 𝑃−1. NNP and
NNInv were next extended by Self-Supervised Network Projection (SSNP) [46], which
can be used either in a self-supervised fashion, by computing pseudo-labels by a generic
clustering algorithm on 𝐷, or in a supervised fashion (similar to NNP), using ground truth
labels 𝐲 coming with 𝐷. We choose SSNP to create our proposed SDBM as it complies well
with our earlier stated six requirements for a projection method in the DBM context:

1. SSNP works generically for any high-dimensional dataset;

2. SSNP is GPU-accelerated, which makes it one to two magnitude orders faster than
DBM (see next Sec. D.4.4);

3. SSNP provides both the direct and inverse mappings (𝑃 and 𝑃−1) needed by the DBM
method;

4. SSNP is parameter-free (after its training phase has been completed);

5. SSNP provides good cluster separation by partitioning the data space 𝐷 as a classifier
would do, which is closely related to the original goal of DBM;



D.3 | METHOD

97

6. SSNP is parametric, thus has OOS and, as we show next in Sec. D.4.3, leads to a DBM
computation stable to changes in the input dataset 𝐷.

D.3 Method

We next describe our proposed SDBM technique and how it is different from its
predecessor, DBM. Our technique has five steps as illustrated by the pipeline in Fig. D.1.
Below, we detail all these steps.
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Figure D.1: SDBM pipeline (see Sec. D.3).

0. Input data: SDBM needs only two inputs – a high-dimensional dataset 𝐷 and its label
vector 𝐲. The definitions of these are given in Sec. D.2. As stated earlier, no restrictions
exist on the data dimensionality 𝑛, data nature, or the number of labels 𝐾 used in 𝐲. Simply
put, any labeled dataset (𝐷, 𝐲) that can be used to build a classification model for some
problem is acceptable as input for SDBM. Therefore, SDBM is applicable to visualize the
decision boundaries and zones of any classifier.

1. Create mappings: We train SSNP to create the direct and inverse projections 𝑃 and
𝑃−1 based on 𝐷 and 𝐲. This step is fundamentally different from DBM. In detail: DBM
requires the user to supply a projection technique 𝑃 to map 𝐷 to a 2D scatterplot 𝑃(𝐷).
Next, DBM uses 𝑃(𝐷) to learn the inverse mapping, or inverse projection 𝑃−1. For this,
DBM uses various inverse projection techniques such as NNInv [49] or iLAMP [7] (see
also Sec. D.2). The problem with this is that, depending on the direct projection 𝑃 chosen
by the user, these inverse projection techniques may have difficulties in computing an
accurate inverse projection 𝑃−1. That is, for several points 𝐱 in the input domain of the
classifier, 𝑃−1(𝑃(𝐱)) ≠ 𝐱, i.e., 𝑃−1 is not the exact inverse of 𝑃 . In practice, this leads to
jagged decision boundaries and noise-like small islands scattered all over the dense maps
created by DBM (see examples in Fig. D.5 later on). SDBM does not have this problem
as it uses the SSNP method to jointly compute both 𝑃 and 𝑃−1, as mentioned in Sec. D.2.
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As shown by our results in Sec. D.4, this joint computation of 𝑃 and 𝑃−1 used by SDBM
significantly reduces the above-mentioned artifacts in the decision maps.

2. Create 2D grid: Create an image 𝐺 ⊂ ℝ2 with a resolution of 𝑅 pixels, where 𝑅 is
chosen by the user. Higher 𝑅 values capture more details in the decision maps but take
longer to compute – more precisely, the computation time is linear in the number of pixels
of the map. This is different from DBM. In detail, DBM uses the full resolution of 𝐺 to
compute the direct projection 𝑃(𝐷) but then evaluates 𝑃−1 on a subsampled version of 𝐺
of a lower resolution than 𝑅 to reduce computation time (see Sec. D.2). In contrast, SDBM
uses the full user-specified resolution 𝑅 to compute both 𝑃 and 𝑃−1 (for all experiments in
this paper, we set this to 𝑅 = 3002 pixels). SDBM does not need to use subsampling since
its underlying direct-and-inverse projection technique, SSNP, is fast enough to treat the
full resolution specified by the user.

3. Create synthetic data points: Use the trained 𝑃−1 (delivered by SSNP in step 1) to map
each pixel 𝐩 ∈ 𝐺 to a high-dimensional data point 𝐱 ∈ ℝ𝑛. This is similar to DBM, except
for the use of a dense pixel grid and the jointly-trained 𝑃 and 𝑃−1 mappings delivered by
SSNP (see step 1).

4. Train classifier: Train the classifier 𝑓 to be visualized using the dataset 𝐷 and its labels
𝐲, as in a usual machine learning setting. This step is identical to DBM. Any single-class-
output classifier 𝑓 ∶ ℝ𝑛 → 𝐶 can be used generically, e.g., Logistic Regression (LR), Random
Forests (RF), Support Vector Machines (SVM), or neural networks. Moreover, no restrictions
are placed on the design or architecture of 𝑓 . Also, note that the classifier training occurs
after the construction of the mappings 𝑃 and 𝑃−1 in step 2. That is, these mappings have
no knowledge of the class labels. Hence, we can reuse these mappings computed in step 2
to next construct decision maps to visualize any classifier to be trained on the given inputs
(𝐷, 𝐲). Simply put, once step 2 is executed, we can next quickly construct decision maps
to compare how several classifiers perform on a given (𝐷, 𝐲). We illustrate this further in
our results (Sec. D.4).

5. Create DBM: Color all pixels 𝐩 ∈ 𝐺 by the values of 𝑓 (𝑃−1(𝐩)), i.e., the inferred classes
of their corresponding (synthetic) data points, using a categorical color map. In this paper
we use the ‘tab20’ color map [79]. This is the same as DBM.

5b. Encode classifier confidence (optional part of step 5): For a classifier 𝑓 that
provides the probability of a sample 𝐱 belonging to a class 𝑐𝑘, we encode this probability
in the brightness of the pixel 𝐩 that back-projects to 𝐱. The lower the confidence of
the classifier is, the darker the pixel appears on the map. This informs the user of the
confidence of the decision zone in that area – dark areas in the map, typically close to
decision boundaries, indicate regions in the data space where the classifier is less confident.
This is the same as DBM.

5c. Draw scatterplot (optional part of step 5): If desired, one can visualize the projection
𝑃(𝐷) of the training set 𝐷 by drawing it as a scatterplot atop the DBM. Note that this
is the only place where SDBM uses the projection 𝑃 . The added value of showing this
scatterplot is showing users where are the actual data points in the decision map. If users
do not wish to see this scatterplot, we only use the inverse projection 𝑃−1 computed in
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step 3 above. Since we use SSNP to jointly compute 𝑃 and 𝑃−1, we obtain 𝑃 for free, so
there is no additional cost to drawing this scatterplot.

Summarizing the above pipeline in simple words, SDBM creates an image 𝐺, takes
every pixel of this image, and backprojects it to the data space ℝ𝑛 to obtain a data point,
computes a label for this point by using the classifier we wish to explore, and finally colors
the pixel to show the class label and, optionally, the classifier’s confidence, at that location.
The result is a densely colored map where same-color regions indicate regions in the data
space where the classifier yields the same output (label), and color boundaries between
adjacent regions indicate the decision boundaries of the classifier.

Figure D.2: Decision Boundary Maps (DBMs) created with SDBM for several classifiers (columns) and
synthetic datasets (rows). Lighter pixels represent training samples from the datasets 𝐷. Insets show
decision map details around the region where all decision zones meet for the 10-class, 700-dimensional
dataset.

D.4 Results
We next evaluate SDBM against the desirable criteria C1-C5 introduced in Sec. D.1.

Specifically, we analyze quality (C1) by first using SDBM with synthetic data in a controlled
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Figure D.3: Decision Boundary Maps (DBMs) created with SDBM for several classifiers (columns) and
real-world datasets (rows). Numbers inside each map indicate test accuracy obtained by each classifier,
bold indicating top performers. Lighter pixels represent training samples from the datasets 𝐷. Insets
show details in the decision zones for Logistic Regression and Random Forests for the Reuters dataset.

setting, as we know what the ‘ground truth’ shapes of the decision zones are for a given
synthetic dataset and given classifier (Sec. D.4.1). We next assess quality for more complex
real-world datasets and additional classifiers (Sec. D.4.2) and also compare SDBM with
DBM. This shows also that SDBM is generic (C4) and that it increases quality as compared
to DBM. Next, and in addition to [134], we present several experiments that measure
SDBM’s stability in the presence of different amounts and types of data change to support
our stability claims (C5). Finally, we show how SDBM compares to DBM speed-wise and
thereby justify our scalability claims (C2, Sec. D.4.4). We end this section by providing full
implementation details for SDBM (Sec. D.4.5).

D.4.1 Quality on Synthetic Datasets
To assess how SDBM performs in a controlled situation, we consider several synthetic

Gaussian blobs with 5000 samples, with varied dimensionality (100 and 700), and varied
number of classes (2 and 10). All points in a blob have the same class label. These are,
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Figure D.4: Decision Boundary Maps created with SDBM for several classifiers, HAR, and Reuters
datasets. Columns show different classifiers. Rows show different datasets, with and without confidence
encoded into brightness.

thus, easily classifiable datasets, for which we expect the decision zones to ‘surround’
the respective blobs. We construct decision maps for four classifiers, namely Logistic
Regression [36], SVM [35] (with an RBF kernel), Random Forests [20] (200 estimators),
and a Neural Network (multi-layer perceptron with 3 layers of 200 units each). All these
classifiers can handle the synthetic datasets with 100% accuracy. Consequently, as said
above, we expect to see clearly-separated decision zones surrounding the data blobs in the
projection.

Figure D.2 shows the SDBM maps for all the dataset vs classifier combinations, with
decision zones colored by class labels. Projected samples in 𝑃(𝐷) are colored by their class
too, but slightly brighter than the maps so they are visible around their respective decision
zones. We first see that the projections (bright ‘spots’ in the figure) indicate well-separated
blobs, which confirms the easy structure of these datasets. We also see that all decision
zones are compact and with smooth boundaries, as expected for such simple datasets, and
enclose the Gaussian blobs with the same respective labels. For example, the red and blue
zones for the 2-class, 100-dimensional dataset (Fig. D.2, top row), contain two clusters
of light red, respectively light blue, projected points. The maps for Logistic Regression
show almost perfectly straight boundaries, which is a known fact for this classifier. In
contrast, the more sophisticated classifiers, Random Forests, and Neural Networks create
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boundaries that are slightly more complex than Logistic Regression and SVM for the most
complex dataset. The differences are best visible for Random Forests and Neural Networks
in the small wiggles of the decision zone shapes in the center of the maps in Fig. D.2,
bottom row (see also insets).

D.4.2 Quality on Real-World Datasets
We next show how SDBM performs on three real-world datasets. To select such datasets,

we look at candidates who are (a) challenging for classification problems; (b) quite diverse
in terms of data provenance, dimensionality (hundreds of dimensions), and size (thousands
of samples); (c) well-known, and openly accessible, to the machine learning community,
for comparison and replication purposes. This quickly leads us to select datasets used in
many ML evaluation benchmarks. Additionally, we note that using such datasets makes
sense in our context since we want to evaluate a technique (SDBM) that is designed to
visualize the behavior of classifier models.

With the above requirements, we selected the following datasets for evaluating
SDBM:

FashionMNIST [209]: 10K samples of 𝐾 = 10 types of clothing images, rendered as
28x28-pixel gray scale images, flattened to 784-element vectors. We also use a subset of this
dataset containing only two classes, namely Ankle Boot and T-Shirt, to show an example
where classes are more easily separable.

Human Activity Recognition (HAR) [9]: 10299 samples from 30 subjects performing
𝐾 = 6 daily activities, and used for human activity recognition. The samples have 561
dimensions that encode in the time and frequency domains 3-axial linear acceleration and
3-axial angular velocity measured on the subjects.

MNIST [101]: 70K samples of 𝐾 = 10 handwritten digits from 0 to 9, rendered as 28x28-
pixel gray scale images, flattened to 784-element vectors. This dataset was downsampled
to 10K observations for all uses in this paper.

Reuters Newswire Dataset [191]: 8432 samples of news report documents, from which
5000 attributes were extracted using the standard TF-IDF [173] text processing method.
From the full dataset, we use only the 𝐾 = 6 most frequent classes.

Figure D.3 shows the SDBM maps for these datasets for the same classifiers used
in Sec. D.4.1. These datasets are considerably more complex than the synthetic ones
(Sec. D.4.1), also seen by the varying accuracies they achieve for the different classifiers.
Still, for all combinations, the classifiers’ decision zones are visible in Fig. D.3. Also, we see
– like for the synthetic datasets – how these decision zones surround the blobs of training-
set samples, depicted as lighter-colored points in Fig. D.3. As for the synthetic datasets,
simpler classifiers (Logistic Regression and SVM) show decision zones that are more
contiguous and have smoother, simpler, boundaries. More complex classifiers (Random
Forests and Neural Networks) show more complex shapes and topologies of the decision
zones. The maps for the Random Forest classifiers show very jagged boundaries. This can
be a result of having an ensemble of classifiers working together. An interesting insight
can be obtained when comparing the maps for different classifiers trained on the same
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dataset. Consider, e.g., for the Reuters dataset (bottom row), the best classifier (Logistic
Regression (LR), accuracy 0.893) and the poorest classifier (Random Forests (RF), accuracy
0.874). The projected points are the same for the two maps since we use the same training
set. Still, we see different shapes and sizes of the decision zones. Consider now a small area
in the two maps (see insets at the bottom of Fig. D.3). As described earlier, both training-set
points and decision zones are colored by label values. Hence, misclassified points will have
different colors from their surrounding zones, while correctly classified points have the
same (slightly lighter) colors as the surrounding zones. Comparing the map details for
LR and RF, we see that the red decision zone (A) is smaller for RF than for LR, while the
blue zone (B) is comparatively larger. In the RF inset, we see that several red points in the
black circle fall in the blue (B) and pink (C) decision zones, indicating misclassifications.
These red points fall under the large red decision zone for the LR map. Hence, we conclude
that the shapes of the LR decision zones, in this region, are more correctly following the
training data than those of RF. Similar reasoning can be done to compare other decision
map areas.

Encoding classifier confidence: Figure D.4 shows SDBM maps with classifier confidence
encoded as brightness, as described in Sec. D.3. We see the added value of depicting
confidence if we compare the first-vs-second (HAR), respectively third-vs-fourth (Reuters),
rows in Fig. D.4. The confidence maps show a brightness gradient, dark close to the decision
boundaries (where colors change in the maps) and bright deep in the decision zones. This
shows that confidence increases as we go deeper into the decision zones, i.e., closer to
the training samples. For the HAR dataset, these dark bands are quite thin for Logistic
Regression and SVM, thicker for Random Forests, and extremely and uniformly thin for
Neural Networks. This tells us that Neural Networks have an overall very high confidence
everywhere (except very close to the decision boundaries); Logistic Regression and SVM
are less confident close to the boundaries; and Random Forests have a higher variation of
confidence over the data space. Note how these findings match the classification accuracy
values (Fig. D.3). For Random Forests, the darkest region covers the central blue decision
zone and the top-right of the left yellow zone. These are exactly the areas where the map
for Random Forests significantly differs from those of all the other three classifiers. Hence,
we can infer that the island-like blue decision zone that Random Forests created is likely
wrong, as it is low confidence and different from what the other three classifiers created
in that area. For the Reuters dataset (Fig. D.4 bottom row), all classifiers produced a beige
region at the top left corner. Brightness shows us that all classifiers except SVM treat this
region as a low-confidence one. This can be explained by the total absence of training
samples in that region. This also tells us that the behavior of SVM in this region is likely
wrong.

Confidence visualization also helps to quickly assess the overall difficulty of classifying
a dataset. Consider e.g. the Reuters dataset (Fig. D.4 bottom row). Compared to HAR
(Fig. D.4, second row), the decision maps for this dataset are darker for all four classifiers.
This shows that it is harder to extrapolate (during inference) from a model trained on
Reuters than one trained on HAR. Note that this is not the same as the usual testing-after-
training in ML. Indeed, for testing, one needs to ‘reserve’ a set of labeled samples that
cannot be used during training. In contrast, SDBM does not need to do this as it synthesizes
‘testing’ samples on the fly via the inverse projection 𝑃−1. Also, classical ML testing only
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gives a global or per-class accuracy. In contrast, SDBM gives a per-region-of-the-data-space
confidence, encoded by brightness.

Comparison with DBM: Figure D.5 shows the SDBM maps side-by-side with maps
created by the original DBM technique for Logistic Regression, Random Forest, and k-NN
classifiers and three real-world datasets. For DBM, we used UMAP [125] for the direct
projection and iLAMP [7] for the inverse projection. Several observations can be made, as
follows.

First, we see that the SDBM and DBM projections 𝑃(𝐷) of the same datasets are not
the same – compare the bright-colored dots in the corresponding figures. This is expected
since DBM employs a user-chosen projection technique 𝑃 (UMAP in our case) while SDBM
learns 𝑃 from the label-based clustering of the data using the SSNP method (see Sec. D.3).
Since the DBM and SDBM projections 𝑃(𝐷) differ, it is expected that the overall shapes of
the ensuing decision maps will also differ – see e.g. the nearly horizontal decision boundary
between the blue and red zones for Random Forests with DBM for FashionMNIST (2-class)
vs the angled boundary between the same zones for the same classifier, same dataset, with
SDBM (Fig. D.5, middle row, two leftmost images). For the relatively simple classification
problem that FashionMNIST (2-class) is, this is not a problem. Both DBM and SDBM
produce useful and usable renditions of the two resulting decision zones, showing that
this classification problem succeeded with no issues.
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Figure D.5: Comparison between SDBM and DBM using three different datasets and three classifiers.

For more difficult datasets (FashionMNIST 10-class or HAR), the situation is very
different: DBM shows highly noisy pictures, in which it is very hard to say where and
which are the actual decision zones. If these images were correct, this would mean that
none of the three tested classifiers could correctly handle these two datasets. Indeed, such
noise-like rapid changes as the DBM images show would mean that the classifiers would
change decisions extremely rapidly and randomly as points only slightly change over the
data space. This is known not to be the case for these classifiers. In more detail: Logistic
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Regression has built-in limitations of how quickly its decision boundaries can change [164].
k-NN essentially constructs a Voronoi diagram around the same-class samples in the 𝑛D
space, partitioning that space into cells whose boundaries are smooth manifolds. DBM
does not show any such behavior (Fig. D.5, third and fifth columns). In contrast, SDBM
shows a far lower noise level and far smoother, contiguous, decision zones and boundaries.
Even though we do not have formal ground truth on how the zones and boundaries of
these dataset-classifier combinations look, SDBM matches better the prior knowledge we
have on these problems than DBM.
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Figure D.6: DBM images using more direct and inverse projection methods, FashionMNIST (10 class).
Compare these images with SDBM for the same classifiers and dataset in Fig. D.5 (column 4).

However, DBM’s results depend on the choice of the direct projection 𝑃 and inverse
projection 𝑃−1 it uses (see Sec. D.3). To compare SDBM with DBM under these degrees of
freedom, we ran DBM for the three classifiers shown in Fig. D.5 on the FashionMNIST
10-class dataset but used four different projection methods 𝑃 (Metric MDS [99], PLMP [149],
Projection by Clustering (PBC) [148], and t-SNE [118]), and used NNInv [49] instead of
iLAMP for the inverse projection 𝑃−1. Figure D.6 shows the decision maps created by DBM
for these configurations. We see that these are practically as noisy as the DBM results
shown in Fig. D.5 (column 3). In contrast, the SDBM results (Fig. D.5, column 4) show better
separated, less noisy, smoother-boundary decision zones. This strengthens our claim that
SDBM produces higher-quality maps than DBM.

D.4.3 Stability Analysis
We now turn to the stability desirable criterion (C5, Sec. D.1). As explained there and

also in Sec. D.2, a stable decision map algorithm shows only small changes in the output
decision map when its input, i.e., the labeled dataset (𝐷, 𝐲) it was constructed to show,
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change little. By extension, when this input does not change, the output map should also
not change. If this is not the case, then the decision map may show patterns that are highly
influenced by irrelevant (small) changes in the input data or algorithm parameters which,
in turn, can be highly misleading.

Figures D.5 and D.6 show two reasons why the original DBM algorithm is unstable.
First, we see that DBM creates very noisy, discontinuous, decision maps. However, as
we explained in Sec. D.4.2, the visualized classifiers are known to change their decision
slowly as their inputs change. The DBM images in Figs. D.5 and D.6 show a different
picture, suggesting that the classifiers rapidly change outputs as inputs only slightly
change. Thus, DBM itself introduces instabilities in the computation of the decision maps
which are not genuinely there in the visualized classifiers. In contrast, SDBM shows far
smoother, less noisy, decision maps, for the same classifiers and datasets. Secondly, Fig. D.6
shows that DBM creates very different (and still noisy and discontinuous) decision maps
when we change its two hyperparameters, namely the direct projection 𝑃 and inverse
projection 𝑃−1, for the same dataset-classifier combination. This is by definition an unstable
algorithm.

While SDBM shows far smoother, more continuous, decision maps than DBM, we
would like more evidence to claim that SDBM is stable. In this section, we address this by
explicitly measuring SDBM’s stability, as follows (see also Fig. D.7; compare to Fig. D.1
that shows the baseline SDBM method):

0. Inputs

dataset D
labels   y

2. Changed datasets

datasets D
i
= π(D,σ

i
)

labels   y 4. Compute SDBMs

3. Train classifiers

D
i
y

f
i
 : ℝn→C

Di
y

D y

Di y

fi

1. Define changes

change types π
change amounts σ

i

5. Visualize stability

individual maps

aggregate maps

Si

Figure D.7: Pipeline for assessing SDBM stability.

• let 𝐷 ∈ ℝ𝑛 be a training dataset with labels 𝐲 (Fig. D.7 step 0);

• let 𝑓 (𝐷) be a classification model trained on 𝐷 and 𝐲;

• let 𝑆(𝑓 ) be the decision map computed by SDBM on 𝑓 (𝐷);

• let 𝜋 ∶ ℝ𝑛 × [0, 1] → ℝ𝑛 be a change, or perturbation function. That is, 𝜋(𝐷, 𝜎) is the
dataset 𝐷 changed by 𝜋 with a change intensity 𝜎 ∈ [0, 1]. Larger 𝜎 values change
𝐷 more, and 𝜋(𝐷, 0) = 𝐷, i.e. a value 𝜎 = 0 means no change. We record this change
intensity 𝜎 by a set of samples, or change amounts, 𝜎𝑖 (Fig. D.7 step 1);
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• compute 𝐷𝑖 = 𝜋(𝐷, 𝜎𝑖), a set variations of the dataset 𝐷, changed by perturbation 𝜋,
with change intensities 𝜎𝑖 (Fig. D.7 step 2);

• train the models 𝑓𝑖 = 𝑓 (𝐷𝑖). Labels 𝐲 of 𝐷𝑖 stay the same as those of 𝐷, only the
sample values change (Fig. D.7 step 3). Note that we apply the changes on the training
sets of the visualized classifiers, not the test sets since changing a test set will not
change the decision map of a trained classifier;

• construct the decision maps 𝑆𝑖 = 𝑆(𝑓𝑖) (Fig. D.7 step 4);

• visualize the maps 𝑆𝑖 to interpret the stability of SDBM (Fig. D.7 step 5).

The intuition of the above procedure is simple: Let 𝑆0 be the decision map computed
by SDBM for a dataset 𝐷 and some classifier 𝑓 . Let 𝑆𝑖 be the decision maps computed by
SDBM for the same classifier but for increasingly perturbed versions 𝐷𝑖 of the dataset. If
SDBM is a stable method, then it should produce decision maps 𝑆𝑖 which are similar to
𝑆0 for low 𝑖 values and increasingly different from 𝑆0 as 𝑖 increases. Note that a similar
definition of stability – small input data changes should lead to small output visualization
changes – was used to assess other visualization techniques for high-dimensional data
such as projections [198, 19] and treemaps [199, 197].

We apply this procedure to three types of data changes 𝜋 defined as follows:

• Add constant: 𝜋 adds a fixed bias value 𝜎 to all dimensions of 𝐷. For the image
datasets (MNIST, FashionMNIST), we used 𝜎𝑖 ∈ {0.07, 0.15, 0.3}, which corresponds
to a ‘brightening’ of the images with up to 30%. For the Reuters text dataset, we used
𝜎𝑖 ∈ {0.05, 0.08, 0.2};

• Drop dimensions: 𝜋 sets to zero a given number of randomly chosen dimensions
from the 𝑛 ones of 𝐷. We used here 𝜎𝑖 ∈ {0.1𝑛, 0.2𝑛, 0.3𝑛}, which means that 𝜋 has
an effect similar to removing up to 30% of 𝐷’s dimensions;

• Random noise: 𝜋 adds to all 𝐷’s dimensions random noise sampled from a normal
distribution with mean 0 and standard deviation 𝜎𝑖 ∈ {0.01, 0.05, 0.1}.

These changes are related to the ones used in [19] to test the stability of the NNP
projection – not the same as our classifier decision maps, but related in spirit. For additional
rationale referring to the purposefulness of these changes, we refer to [19].

Visualizing stability: We next apply these three change types 𝜋, each sampled for
three change intensities 𝜎𝑖, for the SDBM maps constructed for Logistic Regression and
Neural Networks trained with the MNIST, FashionMNIST, and Reuters datasets – thus, we
compute and evaluate a total of 3 × 3 × 2 × 3 = 54 decision map images. Figures D.8, D.9,
and D.10 show these images for the three datasets with confidence encoded into brightness
(see Sec. D.4.2). In each figure, the leftmost column (labeled ‘without noise’) shows the
decision map of the original, unperturbed, dataset. The rightmost three columns show, per
row, the decision maps for the respective (classifier, dataset, noise-type) combination, for
increasing amounts of noise amounts. As explained earlier, if the decision maps slowly
and increasingly change as the noise level increases relative to the noise-free map, this
means that the SDBM method is stable.
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Figure D.8: SDBM decision maps for two classifiers trained with varying types and amounts of noise,
FashionMNIST dataset. Confidence is encoded into brightness. The leftmost column shows the maps for
the original, un-noised, datasets. As more noise is added (columns 2 to 4, noise amounts marked inside
images), the decision maps start progressively diverging from the original, leftmost, map.
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Figure D.9: SDBM decision maps for two classifiers trained with varying types and amounts of noise,
MNIST dataset. Confidence is encoded into brightness. The leftmost column shows the maps for the
original, un-noised, datasets. As more noise is added (columns 2 to 4, noise amounts marked inside
images), the decision maps start progressively diverging from the original, leftmost, map.
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Figure D.10: SDBM decision maps for two classifiers trained with varying types and amounts of noise,
Reuters dataset. Confidence is encoded into brightness. The leftmost column shows the maps for the
original, un-noised, datasets. As more noise is added (columns 2 to 4, noise amounts marked inside
images), the decision maps start progressively diverging from the original, leftmost, map.
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Figures D.8, D.9, and D.10 show indeed this stability. If we scan each row left-to-right,
we see how the images become progressively more different from the leftmost image
(decision map for the unchanged dataset). Different rows for a classifier show the effect of
the three different change types. Interestingly, in terms of the overall amount of visual
change, these effects are quite similar. Take, for example, Logistic Regression trained with
FashionMNIST (Fig. D.8, top three rows): The nine images to the right are quite similar
among themselves and also similar to the decision map of the unchanged dataset (shown
in the left column). Also, we see that the changes in the maps do not seem to differ –
in terms of amount – for the three datasets. The fact that SDBM appears to be quite
stable for different change types and for different datasets is a quite unexpected result,
as the nature of the three change types and the three tested datasets is quite different.
Related work [19] has shown that, when testing the stability of the NNP deep-learned
projection [47], different change types (similar to ours) have quite different effects and also
that the effects differ strongly as a function of the dataset. In other words, SDBM appears
to be a more stable method than NNP. There can be many factors that make SDBM and
NNP different, including the supervised nature of NNP vs self-supervised one of SDBM and
the fact that SDBM learns and next applies both a direct and inverse projection, whereas
NNP only learns a direct projection.

Figures D.8, D.9, and D.10 also outline two other important aspects of SDBM. First, we
see that not just the shapes and sizes, but also the relative positions in the image of the
various decision zones are quite stable over change. This is important for practical SDBM
usage. Indeed, if the decision zones would maintain similar sizes and shapes but wildly
change positions, interpreting the maps would be hard. Moreover, such position changes
would confuse the user as they would imply instability of the underlying classification
model. Secondly, we see that the confidence of the maps changes only very little as with
the dataset changes. This is a desirable result that confirms indirectly SDBM’s stability, as
follows: Small changes of the confidence indicate that the trained classifiers for the various
changed datasets 𝜋(𝐷, 𝜎𝑖) behave similarly to the classifier trained on the unchanged
dataset. Since these classifiers are similar, their decision maps also should be similar – and
this is what we observe in the above-mentioned images.

Aggregated change maps: Visualizing individual SDBM maps for increasing amounts of
change can be difficult as each such image needs to be compared with the original map
(for the unchanged dataset). This becomes even harder to do when one wants to consider
more than a few sample values of the change amount – which is useful when one wants
to discern a clearer trend in terms of visual (map) change vs data change. To address this,
we propose two ways to aggregate multiple SDBM maps, as follows. Consider all maps 𝑆𝑖
computed multiple values 𝜎𝑖, 1 ≤ 𝑖 ≤ 𝑁 , for a single change type 𝜋. We compute a single
aggregated map by analyzing, at each pixel location 𝐩, the label values 𝑓𝑖 of the 𝑁 images
𝑆𝑖 at location 𝐩, using a ‘hard voting’ procedure. The color assigned to the aggregated map
at 𝐩 will map the label appearing most frequently in the set {𝑓1,… , 𝑓𝑛} at that location. We
also set the luminance of the aggregated map at 𝐩 to the fraction of the 𝑁 maps that have
‘voted’ for this value.

Figure D.11 shows SDBM maps for the same classifiers and datasets as discussed above,
aggregated using hard voting for each change type. We do not aggregate different change
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types together as we believe this would be confusing to interpret. For each change type,
we use 𝑁 = 10 different change values 𝜎𝑖, sampled uniformly between the minimum and
maximum values used earlier to generate Figs. D.8, D.9, and D.10. We interpret the images
in this figure as follows: Bright colored areas indicate stable decision zones which do not
change as the classifier’s training set is perturbed. Darker areas indicate decision zones that
change as the training set is perturbed – the darker the area, the more that decision zone
changes during the applied data changes. The images exhibit a ‘color banded’ structure
because there are at most 𝐾 = 10 possible brightness levels, where 𝐾 is the number of
classes of the problem. These range from fully bright, indicating 100% agreement of all
decision zones for all 𝑁 trained classifiers, to a luminance of 1/𝐾 , which indicates that the
𝑁 classifiers are uniformly split into 𝐾 groups each voting for a different label value. The
brightness inside a decision zone has a similar gradient to that shown earlier in Figures D.8,
D.9, and D.10 – that is, points close to a decision boundary appear darkest while points
deep inside a decision zone are brightest. However, the meaning of the brightness is
different: In the earlier image, brightness encoded confidence of classification at a given
map location; in the aggregated map, brightness encodes stability of the decision maps at
a given location. Confidence and stability are positively correlated – a map changes the
least in areas where a classifier is very confident of its inference and conversely. However,
the two visualizations convey different types of insights, as explained above.

The above discussion suggests that it would be useful to create an aggregated map
that visualizes both confidence and stability. We do this by using, by analogy with the
technique presented above, a ‘soft voting’ procedure, as follows. The color of each pixel in
this soft-voting map is determined identically to the hard-voting map as the most frequent
label in the set {𝑓1,… , 𝑓𝑛} at that location. However, we now set the brightness to depict
the average value, at that location, of the confidences of the 𝑁 classifiers whose SDBM
maps we want to aggregate. This way, the soft-voting map depicts the overall confidence
of the aggregated maps across all applied change levels 𝜎𝑖.

Figure D.12 shows the SDBMs for the same classifiers and datasets as in Fig. D.11
aggregated with soft voting. The interpretation of the aggregated images in Fig. D.12 is
different from those in Fig. D.11 – darker regions indicate now areas where the aggregated
decision maps have overall low confidence. We see that such areas follow the decision
zone borders in the aggregated maps, just as in the original, unperturbed, maps (shown in
the leftmost column in Fig. D.12). We also see that the dark areas in Fig. D.12 correlate well
with the dark areas in Fig. D.11. This tells us that, for the studied classifiers and datasets,
the decision maps are less stable in areas where the classifiers are low confidence, and
conversely, decision maps are stable in areas of high classifier confidence. The latter answers
our question from Sec. D.1 positively.

D.4.4 Computational Scalability
We next study the scalability of SDBM and compare it to the original DBM method. For

this, we created maps using synthetic Gaussian blobs datasets with 5 clusters, varying the
dimensionality from 10 to 500, and varying the map size from 252 to 3002 pixels. We did
not use larger maps since the speed trends were already clear from these sizes, with DBM
getting considerably slower than SDBM. We used this synthetic data approach, rather than
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Figure D.11: Aggregated decision maps computed by hard voting for two classifiers trained with three
change types, ten change amounts, on three datasets. The leftmost column shows the decision maps of
the unchanged datasets.
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Figure D.12: Aggregated decision maps computed by soft voting for two classifiers trained with three
change types, ten change amounts, on three datasets. The leftmost column shows the decision maps of
the unchanged datasets.
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real-world datasets, as it allowed us to control the data dimensionality in a fine-grained
way, which is the key factor influencing computing speed for both methods. Note that the
number of samples does not heavily influence DBM and DBM’s computing times. Both
methods only need to project a dataset once after which they need to apply the inverse
projection 𝑃−1 for each map pixel. For typical situations, the pixel count is far larger than
the sample count, which makes the former dominate the map computation cost.

Figure D.13 shows the running times of both methods as a function of both the grid
size (horizontal axis) and dataset dimensionality (different-color lines). We see that DBM’s
runtime increases quickly with dimensionality, taking about 5 minutes to create a 3002
map for the 500-dimensional dataset. In contrast, SDBM is over an order of magnitude
faster, taking roughly 7 seconds to run for the same dataset. Also, we see that SDBM’s
speed depends far less on the data dimensionality, whereas this is a major slowdown
factor for DBM. All in all, this shows that SDBM is significantly more scalable than DBM.
This can be explained by the fact that SSNP, which underlies SDBM, jointly trains both
the direct and inverse projections by deep learning. SDBM is GPU-accelerated, linear in
the sample and dimension counts both for training and inference and does not need to
use different resolutions and sampling tricks for accelerating the 2D to 𝑛D mapping (see
Sec. D.3). In contrast, DBM uses UMAP and iLAMP for the direct, respectively, inverse
projections (as mentioned earlier). None of these techniques is GPU-accelerated. Also, while
UMAP is close to linear in the sample count and dimensionality, iLAMP is superlinear in
dimensionality and sample count. Together, these aspects make DBM significantly slower
than SDBM.

Figure D.13: Computation time to create decision maps of increasing size by SDBM and DBM using
synthetic datasets of varying dimensionality. The vertical axis is on a logarithmic scale.

D.4.5 Implementation details
All experiments presented above were run on a dual 8-core Intel Xeon Silver 4110 with

256 GB RAM and an NVidia GeForce RTX 2070 GPU with 8 GB VRAM. Table D.1 lists all
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open-source software libraries used to build SDBM and the other tested techniques. Our
implementation and all datasets used in this work are publicly available at [190].

Technique Software used publicly available at Reference
SSNP http://keras.io (TensorFlow backend) [30]
UMAP http://github.com/lmcinnes/umap [125]

Table D.1: Software packages used in the evaluation.

D.5 Discussion
We discuss how our technique performs for the criteria C1-C5 introduced in

Sec. D.1.

Quality (C1): SDBM can create maps that show classifier decision boundaries very clearly,
and, most importantly, much clearer than the maps created with the original DBM. For the
same dataset-classifier combinations, SDBM’s maps show significantly less noise, more
compact decision zones, and smoother decision boundaries, than DBM. These results are
in line with what we expect for dataset-classifier combinations for which we have ground
truth knowledge about their decision zones and boundaries (see Fig. D.5 and related text).
As such, we conclude that SDBM captures the actual decision zones better than DBM.

Scalability (C2): SDBM is an order of magnitude faster than DBM. Since SDBM scales
linearly in the number of observations during inference/drawing, and it is end-to-end
GPU-accelerated, it can generate maps having hundreds of thousands of pixels in a few
seconds, which makes it practical for handling large datasets and rendering highly detailed
decision maps.

Ease of use (C3): SDBM produces good results with practically no need for hyperparameter
tuning. In more detail, there are only two such hyperparameters. First, there is the number
of epochs used to train SSNP to construct the direct and inverse projections. Following [46],
we set this to a default value of 10. Secondly, there is the resolution 𝑅 of the output decision
map. Note, however, that this parameter does not influence the stability of the method, but
only the level of detail of the produced decision maps. As Fig. D.13 shows, the computation
time is linear with the output resolution – which is expected, since SDBM needs to execute
an inverse projection and classifier model inference per output pixel, and both these
operations have a constant cost. We also note that compared to SDBM, the parameter-
setting of DBM is far more complex. Briefly put, DBM is very slow and as such uses
a low resolution. However, this implies a sparse sampling of the input data space. To
counter this, DBM creates multiple randomly-distributed 2D sample points in each grid
cell, backprojects these, classifies the backprojections, and aggregates the resulting labels
to compute the final pixel color. To obtain good results, DBM requires careful tuning of
the number of such sample points inside every pixel (for more details, we refer to [164]).
SDBM does not have any of these problems as it can directly construct high-resolution
images.

Genericity (C4): As for the original DBM method, SDBM is agnostic to the nature and
dimensionality of the input data, and to the classifier being visualized. We show that

http://keras.io
http://github.com/lmcinnes/umap
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SDBM achieves high quality on datasets of different natures and coming from a wide
range of application domains and with classifiers based on quite different algorithms. As
such, SDBM does not trade any flexibility that DBM already offered, but increases quality,
scalability, and ease of use, as explained above.

Stability (C5): We have described a range of experiments that show that SDBM is stable to
changes in the training dataset of the classifiers it visualizes. For quite significant changes
amounting to additive bias up to 30% of the data range, dropping up to 30% dimensions,
and adding noise up to a 0.1 standard deviation, SDBM creates decision maps that differ
visually little from the ones for the unperturbed datasets. Additionally, we showed that the
type of perturbation does not significantly influence the amount of change in the produced
decision maps. The maps are also stable in the sense that decision zones are plotted in
(roughly) the same areas of the map regardless of the perturbation. Moreover, the overall
visual appearance of the decision maps, e.g. in terms of decision boundary smoothness
and island-like small-scale disconnected regions, is not influenced by perturbing the
training set. Interestingly, the stability of SDBM is far higher in the presence of similar
input perturbations than that of a related NNP technique that also uses deep learning for
projecting high-dimensional data [19]. Interpreting SDBM’s stability needs, potentially,
a few extra words: What we showed, is that classifiers trained by changed training data
produce similar decision maps to classifiers trained by unperturbed data. We argue that
this makes sense in the formal definition of stability of a function (SDBM in our case)
since we change the input of that function which, in our case, is the trained classifier 𝑓
(see Sec. D.2). In turn, 𝑓 ’s behavior depends solely on its training set. One could argue
that a trained classifier also depends on the test set and that such a test set should be
varied as well to assess the classifier. While this is true, changing a test set does not change
the formal decision zones or boundaries of a trained classifier model, hence it does not
change its SDBM visualization. As such, the main variable we can change to assess SDBM’s
stability is the classifier’s training set. Importantly, we also showed that SDBM is more
stable than its predecessor, DBM – which can be ascribed to the deterministic nature of the
deep-learned direct and inverse projections in SSNP as opposed to the direct and inverse
projections (UMAP, respectively iLAMP) used by DBM.

Limitations: SDBM shares a few limitations with DBM. First and foremost, it is hard to
formally assess the quality of the decision maps it produces for dataset-classifier combi-
nations for which we do not have clear ground truth on the shape and position of their
decision zones and boundaries. Our work showed that SDBM produces results fully in
line with known ground truth for such simple situations. However, this does not formally
guarantee that the same is true for more complex datasets and any classifiers. Finding ways
to assess this is an open problem to be studied in future work. Secondly, the interpretation
of the SDBM maps can be enhanced. Examples shown in this paper outlined how such
maps can help to find out whether a trained classifier can generalize well and how far, from
its training set, and how different classifier-dataset combinations can be compared by such
maps. Yet, such evidence is qualitative. A more formal study showing how users actually
interpret such maps to extract quantitative information on the visualized classification
problems is needed. Finally, while our stability study outlined that SDBM is surprisingly
stable to significant variations of a classifier’s training set, a full understanding of such a
stability concept needs further work. For instance, one would like to test SDBM stability
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in the presence of varying the training hyperparameters of the classifier. Also, in such
a stability study, one would arguably want to use more data-domain-dependent change
types than the generic ones that we explored in Sec. D.4.3.

Applications: Decision maps are not an end by themselves but a tool that allows ML
engineers to study a given classification model and, in the case, the model performs poorly,
obtain insights on how to improve it. The current paper has shown that SDBM can produce
high-quality decision maps that have all the requirements needed for their application
in practice (as discussed above). As such, SDBM is now ready to be deployed in concrete
scenarios. In this respect, we believe that imaging applications are one of the domains
where SDBM would best fit. Examples of ML applications in this domain include transfer
learning for image classification [159], understanding important features for classification
of histopathology images [28], analysis of misclassification results in cell image classifica-
tion [110], microorganism image segmentation [217], and data augmentation for cancer
image classification [158].

What all these applications have in common – from a technical perspective – is the (a)
usage of complex multi-stage, deep learning, models to (b) analyze image data. As such,
fine-tuning the respective models is a complex task, for which projections are typically
used. We believe that using decision maps can significantly augment the insights shown
by projections as one can effectively see how decision zones and decision boundaries
relate to the training-set and test-set points. Moreover, since the targeted data are images,
one can effectively display such images e.g. as users move a tooltip over the decision
map image. This can show not only which existing images fall in specific decision zones
(or close to decision boundaries), but also synthesize new images, via backprojection,
that fall in the ‘empty’ spaces between existing samples. These synthesized images can
next help understand and improve how the trained classification models work, e.g., by
user-supervised data augmentation.

D.6 Conclusion

In this paper, we have presented and explored the behavior of SDBM, a new method
for producing classifier Decision Boundary Maps. Compared to the only other similar
technique we are aware of – DBM – our method has several desirable characteristics. First,
it can create decision maps that are far smoother and less noisy than those created by
DBM and also match the known ground truth of the visualized classification problems
far better than DBM, therefore allowing users to interpret the studied classifiers with less
confusion. Secondly, SDBM is about an order of magnitude faster than DBM due to its joint
computation of direct and inverse projections on a fixed-resolution image by deep learning.
Thirdly, SDBM has virtually no parameters to tune (apart from the resolution of the desired
final image) which makes it easier to use than DBM. Finally, in addition to our earlier
work [134], we have presented a comprehensive study of the stability of SDBM in the
presence of several types and amounts of changes of the examined classifiers’ training sets.
Our study shows that SDBM is quite stable for a wide range of such changes, irrespective
of the classifier used or the nature of the training set. We have also presented new methods
to compactly visualize SDBM’s stability using aggregated maps which summarize the
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changes in several SDBM maps.

Future work can target several directions. A very relevant direction is the generation
of maps for multi-output classifiers, i.e., classifiers that can output more than a single class
for a sample. Secondly, we consider organizing more quantitative studies to gauge which
are the interpretation errors that SDBM maps generate when users consider them to assess
and/or compare the behavior of different classifiers, which is the core use-case of decision
maps. Thirdly, proposing new methods to measure and visualize SDBM’s stability can not
only help to increase trust in this method but also help to understand the stability of other
regressors for changing high-dimensional data [198, 19, 44]. In this sense, proposing formal
metrics to characterize SDBM’s stability, akin to measuring directional derivatives of a
multi-variable function, or sensitivity analysis [172], is a key direction to follow. Last but
not least, using SDBM to understand and improve existing complex classification models,
especially for image data, is an important direction we aim to pursue.

Acknowledgments
This study was financed in part by FAPESP grants 2015/22308-2, 2017/25835-9, and

2020/13275-1, and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior -
Brasil (CAPES) - Finance Code 001.





121

Appendix E

Appendix: SDBM: Supervised
Decision Boundary Maps for
Machine Learning Classifiers

This chapter is partially based on the paper of the same name [136].

E.1 Introduction

In recent years, Machine Learning (ML) techniques have become very popular in many
fields to support pattern recognition and predictive modeling. Despite their popularity,
the inner workings of trained ML models are hard to explain, which can hamper their
adoption where transparency and accountability of inference are required [163]. For Deep
Learning (DL) models, explainability is an even harder concern, as such models have
millions of parameters that contribute jointly to the generation of many levels of latent
features [58].

For the more specific case of ML classifiers, several approaches for model explanation
have been proposed, using variable importance [112], locally interpretable models [163],
and a variety of visualization-based techniques [160, 161]. Garcia et al. [58] recently pre-
sented a survey of visual techniques oriented towards the explanation of DL models.

A particular visual explanation technique in this set is the Decision Boundary Map
(DBM) [164]. DBM extends classical multidimensional projections [131] by filling in the
gaps between projected points from a labeled dataset used to train a classifier with syn-
thesized, classified, data points. This effectively creates a 2D dense image that shows
how the classifier partitions its high-dimensional data space into per-class decision zones.
DBM is, to our knowledge, the first technique that succeeds in visually depicting such
classifier decision zones for any classifier. However, DBM has several limitations – it
is slow, sensitive to parameter settings, and produces noisy visualizations from which
it is hard to understand which are the shapes, topologies, and extents of the decision
zones.
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In this paper, we propose Supervised Decision Boundary Maps (SDBM), a supervised
technique, which improves DBM in four key directions:

Quality (C1): SDBM produces decision maps that allow for a clearer, and far less noise-
prone, visual separation of a higher number of decision zones from real-world, complex,
datasets, than DBM;

Scalability (C2): SDBM is GPU accelerated and has linear complexity in the number of
samples and dimensions, allowing the creation of megapixel maps in a few seconds on
commodity hardware, in contrast to the minutes needed by DBM;

Ease of use (C3): SDBM produces good results with minimal or no parameter tuning;

Genericity (C4): SDBM can construct decision boundaries for any single-value classi-
fier.

We structure this paper as follows: Section E.2 discusses related work on classifier
visualization. Section E.3 details our SDBM method. Section E.4 presents the results
that support our contributions outlined above. Section E.5 discusses our method. Finally,
Section E.6 concludes the paper.

E.2 Background
We next introduce the notation used in this paper. Let 𝐱 = (𝑥1,… , 𝑥𝑛), 𝑥 𝑖 ∈ ℝ, 1 ≤ 𝑖 ≤ 𝑛

be an 𝑛-dimensional (𝑛D) real-valued, labeled observation, and 𝐷 = {𝐱𝑗 }, 1 ≤ 𝑗 ≤ 𝑁 be a
dataset with 𝑁 samples, e.g., a table with 𝑁 rows (samples) and 𝑛 columns (dimensions).
Let 𝐶 = {𝑐𝑘}, 1 ≤ 𝑘 ≤ 𝐾 be the set of 𝐾 class labels used in 𝐷. Let 𝐲 = {𝑦𝑗 |𝑦𝑗 ∈ 𝐶}, 1 ≤ 𝑗 ≤ 𝑁
be the class labels associated with each sample 𝐱𝑗 .

A classifier is a function
𝑓 ∶ ℝ𝑛 → 𝐶, (E.1)

that maps between data samples and class labels and is learned using a training algorithm
over the dataset 𝐷. Logistic Regression [36], SVM [35], Random Forests [20], and Neural
Networks are examples of ML algorithms.

A Dimensionality Reduction (DR), or projection, technique is a function

𝑃 ∶ ℝ𝑛 → ℝ𝑞 , (E.2)

where 𝑞 ≪ 𝑛, and typically 𝑞 = 2. The projection 𝑃(𝐱) of a sample 𝐱 ∈ ℝ𝑛 is a 𝑞D
point 𝐩 ∈ ℝ𝑞 . Projecting a set 𝐷 yields thus a 𝑞D scatterplot, which we denote next as
𝑃(𝐷). The inverse of 𝑃 , denoted 𝑃−1(𝐩), maps a 𝑞D point 𝐩 to the high-dimensional spaceℝ𝑛.

Decision Boundary Maps: Given a classifier 𝑓 , a Decision Boundary Map (DBM) is a
2D image that shows a representation of how 𝑓 partitions the ℝ𝑛 data space into decision
zones. A decision zone is a set of 2D points 𝐩 for which 𝑓 (𝑃−1(𝐩)) = {𝑐𝑘 |𝑐𝑘 ∈ 𝐶} – that is,
map high-dimensional points which are classified by 𝑓 to the same class 𝑐𝑘. Class labels 𝑐𝑘
are color-coded in the decision maps. Decision zones are separated by decision boundaries,
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which are pixels 𝐩 whose labels (colors) differ from those of at least one 8-neighbor pixel
in the DBM. The DBM shows, among other things, how the high-dimensional space is
effectively partitioned by 𝑓 into decision zones, how large these zones are, how they are
adjacent to each other, and how smooth the decision boundaries between classes are [164].
This gives insights into whether the classifier 𝑓 has overfitted the training data, how well
separated the data is, i.e., and how difficult is the task of partitioning the high-dimensional
space to obtain good classification accuracy. DBMs are a step forward atop of the key
observation in Rauber et al. [160], which showed how multidimensional projections aid
in deciding whether a high-dimensional dataset is easily classifiable or not. Simply put,
DBMs support the same task but provide more information by ‘filling in’ the white gaps
between the points of a 2D scatterplot 𝑃(𝐷) by extrapolating the classifier 𝑓 .

The DBM technique, as introduced by Rodrigues et al. [164], relies heavily on direct
and inverse projections, to create the mappings 𝑃 and 𝑃−1. The direct mapping is used
to create a 2D scatterplot 𝑃(𝐷) from the dataset 𝐷. The inverse mapping 𝑃−1 creates
synthetic 𝑛D data points from all pixels 𝐩 in the 2D bounding box of 𝑃(𝐷). These points
𝑃−1(𝐩) are then classified by 𝑓 , and colored by the assigned class labels 𝑓 (𝑃−1(𝐩)). While
this approach is conceptually sound, it has two main issues: (1) The inverse projection
technique 𝑃−1 used, iLAMP [7], scales poorly to the hundreds of thousands of points
a dense pixel map has. This was addressed in [164] by subsampling the 2D projection
space into cells larger than one pixel, sampling a few 2D pixels from each cell, and next
deciding the label (and thus color) of each cell by majority voting on the classification of
the inverse-projections of these samples. This subsampling creates artifacts that are visible
in the highly jagged boundaries of the decision zones. (2) Since the direct projections 𝑃
used are unsupervised, outliers in the data 𝐷 can generate ‘islands’ of pixels having a
different label (and thus color) than their neighbors. This creates spurious decision zones
and decision boundaries which next make the resulting DBMs hard to analyze by the user,
in particular when the problem has several classes.

Dimensionality reduction: Both the original DBM technique and our improved version
SDBM rely heavily on Dimensionality Reduction (DR) techniques. Many DR techniques
have been proposed over the years, as reviewed in various surveys [72, 119, 42, 184, 109, 38,
210, 131, 50]. Below we describe a few representative ones, referring to the aforementioned
surveys for a more thorough discussion.

Principal Component Analysis [86] (PCA) is one of the most popular DR techniques
for many decades, being easy to use, easy to interpret, and scalable. However, PCA does
not perform well for data of high intrinsic dimensionality and is thus not the best option
for data visualization tasks.

The Manifold Learning family of methods contains techniques such as MDS [194],
Isomap [188], and LLE [167], which aim to capture nonlinear data structure by mapping
the high-dimensional manifold on which data is located to 2D. These methods generally
yield better results than PCA for visualization tasks, but do not scale well computationally,
and also yield poor results when the intrinsic data dimensionality is higher than two.

The SNE (Stochastic Neighborhood Embedding) family of methods, of which the
most popular member is t-SNE [118], are very good for visual tasks due to the visual
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cluster segregation they produce. Yet, they can be hard to tune [204], and typically have
no out-of-sample capability. Several refinements of t-SNE improve speed, such as tree-
accelerated t-SNE [115], hierarchical SNE [154], and approximated t-SNE [153], and various
GPU accelerations of t-SNE [155, 25]. Uniform Manifold Approximation and Projection
(UMAP) [125], while not part of the SNE family, generates projections with comparable
quality to t-SNE, but much faster, and with out-of-sample capability.

All the above projection techniques work in an unsupervised fashion, by using informa-
tion on distances between data points in 𝐷 to compute the projection 𝑃(𝐷). Recently, [47]
proposed Neural Network Projection (NNP) to learn the projection 𝑃(𝐷), computed by
any user-selected technique 𝑃 , from a small subset 𝐷′ ⊂ 𝐷, using a deep learning regressor.
While slightly less accurate than the original 𝑃 , this technique is computationally linear
in the size and dimensionality of 𝐷, has out-of-sample capability, is stable, and is simple
to implement and parameter-free. The same idea was used by NNInv [49] to learn the
inverse mapping 𝑃−1. These approaches were next extended by Self-Supervised Network
Projection (SSNP) [46], which can be used either in a self-supervised fashion, by computing
pseudo-labels by a generic clustering algorithm on 𝐷, or in a supervised fashion (similar to
NNP), using ground truth labels 𝐲 coming with 𝐷. SSNP’s supervised mode is key to the
creation of our proposed SDBM for the following reasons:

• SSNP provides good cluster separation by partitioning the data space 𝐷 as a classifier
would do, which is closely related to the original goal of DBM;

• SSNP provides both the direct and inverse mappings (𝑃 and 𝑃−1) needed by DBM to
generate synthetic data points;

• SSNP is GPU-accelerated, which makes SDBM one to two magnitude orders faster
than DBM.

E.3 Method

We next describe our proposed SDBM technique and how it is different from its
predecessor, DBM (see also Fig. E.1 for step-by-step details of the SDBM pipeline):
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Figure E.1: SDBM pipeline.
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Figure E.2: Decision Boundary Maps (DBMs) created with SDBM for several classifiers (columns) and
synthetic datasets (rows). Lighter pixels represent training samples from the datasets 𝐷.

1. Train classifier: Train the classifier 𝑓 to be visualized using the dataset 𝐷 and its class
labels 𝐲. This step is identical to DBM. Any single-class-output classifier 𝑓 ∶ ℝ𝑛 → 𝐶 can
be used generically, e.g., Logistic Regression (LR), Random Forests (RF), Support Vector
Machines (SVM), or neural networks.

2. Create mappings: Train SSNP to create the direct and inverse projections 𝑃 and
𝑃−1 based on 𝐷 and 𝐲. This step is fundamentally different from DBM which accepts
any user-selected projection 𝑃 and then constructs 𝑃−1 by deep learning the 2D to 𝑛D
mapping using deep learning [49] (see also Sec. E.2). This asymmetric design of DBM
makes 𝑃−1 significantly differ from the mathematical inverse of 𝑃 for several points 𝐱, i.e.,
𝑃−1(𝑃(𝐱)) ≠ 𝐱, which is visible as jagged decision boundaries and noise-like small islands
scattered all over the dense maps (see Fig. E.5 later on). As we shall see in Sec. E.4, the
joint computation of 𝑃 and 𝑃−1 used by SDBM significantly reduce such artifacts.

3. Create 2D grid: Create an image 𝐺 ⊂ ℝ2. This is different from DBM which uses sub-
sampling of the 2D projection space (see Sec. E.2). In detail, SDBM uses the full resolution
of 𝐺 to compute 𝑃(𝐷) but then evaluates 𝑃−1 on a subsampled version thereof. In our case,
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both 𝑃 and 𝑃−1 use the full resolution image 𝐺. For the experiments in this paper, we set
the resolution of 𝐺 to 3002 pixels.

4. Create synthetic data points: Use the trained 𝑃−1 to map each pixel 𝐩 ∈ 𝐺2 to a
high-dimensional data point 𝐱 ∈ ℝ𝑛. This is similar to DBM, except for the use of a dense
pixel grid and jointly-trained 𝑃 and 𝑃−1 (see above).

5. Color pixels: Color all pixels 𝐩 ∈ 𝐺 by the values of 𝑓 (𝑃−1(𝐩)), i.e., the inferred classes
of their corresponding (synthetic) data points, using a categorical color map. In this paper
we use the ‘tab20’ color map [79]. This is the same as DBM.

6. Encode classifier confidence (optional): For classifiers 𝑓 that provide the probability
of a sample 𝐱 belonging to a class 𝑐𝑘, we encode that probability in the brightness of the
pixel 𝐩 that back-projects to 𝐱. The lower the confidence of the classifier is, the darker the
pixel appears on the map, thereby informing the user of the confidence of the decision
zone in that area. This is the same as DBM.
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Figure E.3: Decision Boundary Maps (DBMs) created with SDBM for several classifiers (columns) and
real-world datasets (rows). Numbers inside each map indicate test accuracy obtained by each classifier,
bold indicating top performers. Lighter pixels represent training samples from the datasets 𝐷.
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Figure E.4: Decision Boundary Maps created with SDBM for several classifiers, HAR, and Reuters
datasets. Columns show different classifiers. Rows show different datasets, with and without confidence
encoded into brightness.

E.4 Results
We next present the results that support our claims regarding SDBM. First, we show

how our method performs with synthetic data, where perfect class separation is possible
by most classifiers (Sec. E.4.1). This allows us to verify how the technique performs under
a controlled setting where we know the ‘ground truth’ shapes of the decision zones.
Next, we show how SDBM performs on more complex real-world datasets and additional
classifiers (Sec. E.4.2) and also how it compares with DBM. This supports our claim that
our technique can be generically used and that it improves quality vs DBM. We next show
how SDBM compares to the original DBM speed-wise, thereby supporting our claims of
improved scalability (Sec. E.4.3). Finally, we provide full implementation details for SDBM
(Sec. E.4.4).

E.4.1 Quality on Synthetic Datasets
We assess how SDBM performs in a controlled situation where the ground truth

is known, i.e., datasets with clear class separation and known shapes of the expected
decision zones. The datasets contain synthetic Gaussian blobs with 5000 samples, with
varied dimensionality (100 and 700), and varied number of classes (2 and 10). We used
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four different classifiers, namely Logistic Regression, SVM (with an RBF kernel), Random
Forests (200 estimators), and a Neural Network (multi-layer perceptron having 3 layers of
200 units).

Figure E.2 shows the maps created using SDBM for all the different classifiers and
dataset combinations. Decision zones are categorically colored. Projected samples in 𝑃(𝐷)
are drawn colored also by their class, but slightly brighter, to distinguish them from the
maps. We see that the decision zones are compact and with smooth boundaries, as expected
for such simple classification problems. They enclose the Gaussian blobs with the same
respective labels – e.g., the red and blue zones for the 2-class, 100-dimensional dataset
in Fig. E.2, top row, contain two clusters of light red, respectively light blue, projected
points. We also see that the maps for Logistic Regression show almost perfectly straight
boundaries, which is a known fact for this classifier. In contrast, the more sophisticated
classifiers, such as Random Forests and Neural Networks, create boundaries that are
slightly more complex than the others for the most complex dataset (Fig. E.2, bottom row,
at the center of the maps for those classifiers).

E.4.2 Quality on Real-World Datasets
We next show how SDBM performs on real-world datasets. These datasets are selected

from publicly available sources, matching the criteria of being high-dimensional, reason-
ably large (thousands of samples), and having a non-trivial data structure. They are also
frequently used in ML classification evaluations and projection evaluations.

FashionMNIST [209]: 70K samples of 𝐾 = 10 types of pieces of clothing, rendered as
28x28-pixel gray scale images, flattened to 784-element vectors. We also use a subset of this
dataset containing only two classes, namely Ankle Boot and T-Shirt, to provide an example
of a problem where classes are more easily separable. This dataset was downsampled to
10K observations for all uses in this paper.

Human Activity Recognition (HAR) [9]: 10299 samples from 30 subjects performing
𝐾 = 6 activities of daily living used for human activity recognition, described with 561
dimensions that encode 3-axial linear acceleration and 3-axial angular velocity measured
on the subjects.

MNIST [101]: 70K samples of 𝐾 = 10 handwritten digits from 0 to 9, rendered as 28x28-
pixel gray scale images, flattened to 784-element vectors. This dataset was downsampled
to 10K observations for all uses in this paper.

Reuters Newswire Dataset [191]: 8432 observations of news report documents, from
which 5000 attributes were extracted using TF-IDF [173], a standard method in text pro-
cessing. This is a subset of the full dataset which contains data for the 𝐾 = 6 most frequent
classes.

Figure E.3 shows the maps created by SDBM for these datasets, with the same types of
classifiers used in Sec. E.4.1. Even though the current real-world datasets are considerably
more complex and harder to separate into classes, the classifiers’ decision boundaries
are visible. Simpler classifiers (Logistic Regression and SVM) show decision zones that
are more contiguous and have smoother, simpler, boundaries. More complex classifiers
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(Random Forests and Neural Networks) show more complex shapes and topologies of
the decision zones. In particular, the maps created for the Random Forest classifiers show
very jagged boundaries. This can be a result of having an ensemble of classifiers working
together.

Encoding classifier confidence: Figure E.4 shows maps created by SDBM with classifier
confidence encoded as brightness, as described in Sec. E.3. This allows us to see how
different classifiers model probability very differently, and thus produce different results.
The added value of encoding confidence can be seen if we compare the first-vs-second,
respectively third-vs-fourth, rows in Fig. E.4. The confidence-encoding maps show a
smooth brightness gradient, dark close to the decision boundaries (where colors change
in the images) and bright deep in the decision zones. The effect is slightly reminiscent of
shaded cushion maps [206], i.e., and it enhances the visual separation of the color-coded
decision zones. More importantly, the shading gradient effectively shows how confidence
increases as we go deeper into the decision zones for different classifiers: For example,
for the HAR dataset, these shaded bands are quite thin for Logistic Regression and SVM,
thicker and less informative for Random Forests, and extremely and uniformly thin for
Neural Networks. This tells us that Neural Networks have an overall very high confidence
everywhere (except very close to the decision boundaries); Logistic Regression and SVM
are less confident close to the boundaries; and Random Forests have a higher variation of
confidence over the data space. For Random Forests, we see that the darkest region falls in
the area of the central blue decision zone and the top-right of the left yellow zone. These
are precisely the areas where the map of this classifier significantly differs from those
of all the other three classifiers. Hence, we can infer that the isolated blue decision zone
that Random Forests created is likely wrong, as it is low confidence and different from
what all the other three classifiers created in that area. For the Reuters dataset (Fig. E.4
bottom row), we see that all classifiers produced a beige region at the top left corner. The
confidence information (brightness) shows us that all classifiers but one (SVM) treat this
region as a low-confidence one. This can be explained by the total absence of training
samples in that region. More importantly, this tells us that the behavior of SVM in this
region is likely wrong.

Confidence visualization also serves in quickly and globally assessing the overall quality
of a trained classifier. Consider e.g. the Reuters dataset (Fig. E.4 bottom row). Compared to
all other three rows in Fig. E.4, the decision maps for this dataset are darker. This shows
that this dataset is harder to extrapolate from during inference. Note that this is not the
same as the usual testing-after-training in ML. Indeed, for testing, one needs to ‘reserve’
a set of samples unseen during training to evaluate the trained classifier on. In contrast,
SDBM decision maps do not need to do this as they synthesize ‘testing’ samples on the
fly via the inverse projection 𝑃−1. Moreover, classical ML testing only gives a global or
per-class accuracy. In contrast, SDBM gives a per-region-of-the-data-space confidence,
encoded by brightness.

Comparison with the Original DBM: Figure E.5 shows maps created by SDBM side-by-
side with maps created by the original DBM technique, using Logistic Regression, Random
Forest, and k-NN classifiers, for three real-world datasets. In this experiment, we used
UMAP [125] as the direct projection for DBM, and iLAMP [7] for the inverse projection,
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respectively Several important observations can be made, as follows.

First, we see that the projections 𝑃(𝐷) of the same datasets are not the same with
DBM and SDBM – compare the bright-colored dots in the corresponding figures. This is
expected, since, as explained in Sec. E.3, DBM employs a user-chosen projection technique
𝑃 , whereas SDBM learns 𝑃 from the label-based clustering of the data, following the SSNP
method (see Sec. E.3). Since the projections 𝑃(𝐷) of the same datasets differ for the two
methods, it is expected that the overall shapes of the ensuing decision boundaries will also
differ – see e.g. the difference between the nearly horizontal decision boundary between
the blue and red zones for Random Forests with DBM for FashionMNIST (2-class) and the
angled boundary between the same zones for the same classifier, same dataset, with SDBM
(Fig. E.5, middle row, two leftmost images). For the relatively simple classification problem
that FashionMNIST (2-class) is, this is not a problem. Both DBM and SDBM produce useful
and usable renditions of the two resulting decision zones, showing that this classification
problem succeeded with no issues.

When considering more difficult datasets (FashionMNIST 10-class or HAR), the situ-
ation is dramatically different: DBM shows highly noisy pictures, where it is even hard
to say where and which are the actual decision zones. These images suggest that none
of the three tested classifiers could correctly handle these datasets, in the sense that they
would change decisions extremely rapidly and randomly as points only slightly change
over the data space. This is known not to be the case for these datasets and classifiers.
Logistic Regression has built-in limitations of how quickly its decision boundaries can
change [164]. k-NN is also known to construct essentially a Voronoi diagram around the
same-class samples in the 𝑛D space, partitioning that space into cells whose boundaries
are smooth manifolds. DBM does not show any such behavior (Fig. E.5, third and fifth
columns). In contrast, SDBM shows a far lower noise level and far smoother, contiguous,
decision zones and boundaries. Even though we do not have formal ground truth on how
the zones and boundaries of these dataset-classifier combinations look, SDBM matches
better the knowledge we have on these problems than DBM.

E.4.3 Computational Scalability
We next study the scalability of SDBM and compare it to the original DBM method.

For this, we created maps using synthetic Gaussian blobs datasets with 5 clusters, varying
the dimensionality from 10 to 500, and varying the map size from 252 to 3002 pixels. We
did not use larger maps since the speed trends were already clear from these sizes, with
DBM getting considerably slower than SDBM. Figure E.6 shows the running times of both
methods as a function of both the grid size (horizontal axis) and dataset dimensionality
(different-color lines). We see that DBM’s runtime increases quickly with dimensionality,
taking about 5 minutes to create a 3002 map for the 500-dimensional dataset.

In contrast, SDBM is over an order of magnitude faster, taking roughly 7 seconds
to run for the same dataset. Also, we see that SDBM’s speed only marginally depends
on the dimensionality, whereas this is a major slowdown factor for DBM. Concerning
the number of samples, we see that both methods exhibit similar trends, with SDBM
being closer to a linear trend than DBM. However, the slope of the SDBM graphs is
smaller than those of DBM for the same dimensionality. All in all, this shows that SDBM
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Figure E.5: Comparison between SDBM and DBM using three different datasets and three classifiers.

is significantly more scalable than DBM. This can be explained by the fact that SSNP,
which underlies SDBM, jointly trains both the direct and inverse projections by deep
learning. As this is GPU-accelerated, linear in the sample and dimension counts both for
training and inference and does not need to use different resolutions and sampling tricks
for accelerating the 2D to 𝑛D mapping (see Sec. E.3). In contrast, DBM uses UMAP and
iLAMP for the direct, respectively, inverse projections (as mentioned earlier). None of
these techniques is GPU-accelerated.

Figure E.6: Plot showing the order of growth of time used to create maps of increasing size using DBM
and SDBM, using synthetic datasets of varying dimensionality. The vertical axis is on a logarithmic
scale.
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E.4.4 Implementation details
All experiments presented above were run on a dual 8-core Intel Xeon Silver 4110 with

256 GB RAM and an NVidia GeForce RTX 2070 GPU with 8 GB VRAM. Table E.1 lists all
open-source software libraries used to build SDBM and the other tested techniques. Our
implementation, plus all code used in this experiment, is publicly available at [190].

Technique Software used publicly available at
SSNP keras.io (TensorFlow backend) [30]

UMAP github.com/lmcinnes/umap [125]

Table E.1: Software packages used in the evaluation.

E.5 Discussion
We discuss how our technique performs for the criteria laid out in Section E.1.

Quality (C1): SDBM can create maps that show classifier decision boundaries very clearly,
and, most importantly, much clearer than the maps created with the original DBM. For the
same dataset-classifier combinations, SDBM’s maps show significantly less noise, more
compact decision zones, and smoother decision boundaries, than DBM. These results
are in line with what we expect for dataset-classifier combinations for which we have
ground truth knowledge about their decision zones and boundaries (see Fig. E.5 and related
text). As such, we conclude that SDBM captures the actual decision zones better than
DBM.

Scalability (C2): SDBM is an order of magnitude faster than DBM. Since SDBM scales
linearly in the number of observations during inference/drawing, and it is end-to-end
GPU-accelerated, it can generate maps having hundreds of thousands of pixels in a few
seconds, which makes it practical for handling large datasets and rendering highly detailed
decision maps.

Ease of use (C3): SDBM produces good results with minimal tuning. The single
performance-sensitive setting is the size of the map image. All maps in this paper have
3002 pixels. As the figures show, this resolution is already sufficient for rendering detailed
decision maps for all the tested dataset-classifier combinations. Compared to DBM, SDBM
tuning is far simpler, as it does not require tuning of cell and sample sizes required by the
former (for details of DBM tuning, we refer to [164]).

Genericity (C4): As for the original DBM method, SDBM is agnostic to the nature and
dimensionality of the input data, and to the classifier being visualized. We show that
SDBM achieves high quality on datasets of different natures and coming from a wide
range of application domains and with classifiers based on quite different algorithms. As
such, SDBM does not trade any flexibility that DBM already offered, but increases quality,
scalability, and ease of use, as explained above.

Limitations: SDBM shares a few limitations with DBM. First and foremost, it is hard to
formally assess the quality of the decision maps it produces for dataset-classifier combi-
nations for which we do not have clear ground truth on the shape and position of their
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decision zones and boundaries. Current testing shown in this paper has outlined that
SDBM produces results fully in line with known ground truth for such simple situations.
However, this does not formally guarantee that the same is true for more complex datasets
and any classifiers. Finding ways to assess this is an open problem to be studied in future
work. Secondly, the interpretation of the SDBM maps can be enhanced. Examples shown
in this paper outlined how such maps can help to find out whether a trained classifier
can generalize well and how far, from its training set, and how different classifier-dataset
combinations can be compared by such maps. Yet, such evidence is qualitative. A more
formal study showing how users interpret such maps to extract quantitative information
on the visualized classification problems is needed.

E.6 Conclusion
We have presented SDBM, a new method for producing classifier Decision Boundary

Maps. Compared to the only similar technique we are aware of – DBM – our method
presents several desirable characteristics. First and foremost, it can create decision maps
that are far smoother and less noisy than those created by DBM and also match the known
ground truth of the visualized classification problems far better than DBM, therefore
allowing users to interpret the studied classifiers with less confusion. Secondly, SDBM is
about an order of magnitude faster than DBM due to its joint computation of direct and
inverse projections on a fixed-resolution image. Finally, SDBM has virtually no parameters
to tune (apart from the resolution of the desired final image) which makes it easier to use
than DBM.

Future work can target several directions. We believe a very relevant one to be the
generation of maps for multi-output classifiers, i.e., classifiers that can output more than a
single class for a sample. Secondly, we consider organizing more quantitative studies to
gauge which are the interpretation errors that SDBM maps generate when users consider
them to assess and/or compare the behavior of different classifiers, which is the core use-
case for decision maps. Thirdly, we consider adapting SDBM to help the understanding of
semantic segmentation models. Last but not least, the packaging of SDBM into a reusable
library that can be integrated into typical ML pipelines can help it gain widespread
usage.
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