
Mechanisms to improve fuzz testing for
message brokers

Luis Gustavo Araujo Rodriguez

Thesis presented to the
Institute of Mathematics and Statistics

of the University of São Paulo
in partial fulfillment
of the requirements
for the degree of
Doctor of Science

Program: Computer Science

Advisor: Prof. Dr. Daniel Macêdo Batista

This study was financed in part by the Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001,

and by CNPq (grant 381249/2022-0).

São Paulo

September, 2023

Mechanisms to improve fuzz testing for
message brokers

Luis Gustavo Araujo Rodriguez

This version of the thesis includes the

corrections and modifications suggested

by the Examining Committee during the

defense of the original version of the work,

which took place on September 1, 2023.

A copy of the original version is available

at the Institute of Mathematics and

Statistics of the University of São Paulo.

Examining Committee:

Prof. Dr. Daniel Macêdo Batista (advisor) – IME-USP

Profª. Drª. Michelle Silva Wangham – Univali

Prof. Dr. Alfredo Goldman vel Lejbman – IME-USP

Prof. Dr. Fabio Moreira Costa – UFG

Prof. Dr. Lucas Carvalho Cordeiro – University of Manchester

The content of this work is published under the CC BY 4.0 license

(Creative Commons Attribution 4.0 International License)

https://creativecommons.org/licenses/by/4.0/

This PhD thesis is dedicated to my dear and beloved

mother, Dilma Nereyda Rodriguez Saravia. I love you mom.

i

Acknowledgments

La grandeza de una persona no esta en su super-

ficie, sino en las Honduras de su alma y mente.

First and foremost, I thank God for giving me the opportunity to pursue and complete

the doctoral program. I can not thank you enough for so many blessings I have received

throughout my life. Thank you for making my dream come true, and for giving me the

experience of a lifetime at the University of São Paulo. I also want to thank God for my

wonderful family and friends.

I would like to thank my family, whose support was one of the driving forces behind

my hard work and dedication. Thank you to my dear and beloved mother, Dilma Nereyda

Rodriguez Saravia, for her hard work and huge sacrifice in order to give me a good

education. Thank you for loving me despite my imperfections, and for always putting my

happiness, future, dreams, ambitions, and well-being first rather than your own. I can not

thank you enough for everything you have done for me, and I promise that no matter

what happens I will continue making you proud. This thesis is dedicated to you because I

know that I would not have been able to even apply to a doctoral program without your

unconditional and everlasting love. I am so incredibly blessed to have you as my mother,

and I hope that my accomplishments brought joy and happiness into your life. Thank you

to my sister, Nereyda Maria Araujo Rodriguez, for the support during the graduate studies.

Thank you to Katie Thompson, a family member, true friend, and incredible mentor who

has supported me since my childhood. Thank you Katie for believing in me and caring

about my future. I am incredibly honored and grateful to have you always by my side.

Thank you to my aunts and uncles for looking out for me. Thank you to my aunt Miriam

Rodriguez for her generosity. Thank you to my aunt Josefa Rodriguez for her compassion.

Thank you to my aunt Alba Rodriguez for always lending a helping hand. Thank you to

my uncle Carlos Rodriguez for teaching me the importance of education for both personal

and professional growth. Thank you to my aunt Norma Saravia for taking care of me when

I was young. Thank you to my uncles Luis Rodriguez and Rafael Soto for the conversations.

ii

Thank you to my cousins Yami Soto, Paulina Rivera, Samuelito Rivera, Samuel Rivera,

Larissa Soto, Nelson Rodriguez, and Fanny Rodriguez for being by my side through tough

times. Thank you to Martha Andino for being such a kind-hearted person to my family.

Thank you to Vilma Bonano for being so supportive of my decision to pursue a doctoral

degree. Thank you to Ricardo Cervantes for teaching me the importance of aspirations

and goals in life. Thank you to Jenny Giron, Mariela Giron, and Mirna Cano for being

extremely generous whenever I needed assistance. Thank you to Norma Rivera for always

having my back.

In addition to my family, there are so many people that played a key role in my journey

towards finishing the doctoral degree. I want to thank my wonderful friends that I had the

pleasure of meeting at the University of São Paulo. Thank you to Thamillys Marques, the

first friend I made at the university, for providing the necessary strength to overcome all

the challenges faced during the first years of the doctoral program. Thank you to Carlos

Enrique Paucar Farfan for the comforting words to handle stressful situations. Thank you

to Erik Miguel de Elias for always taking the time off to have stress-reducing conversations

over a cup a coffee. Thank you to Fatemeh Mosaiyebzadeh for always reassuring me that I

was going to earn the doctoral degree. Thank you to Felipe Caetano Silva and Julio Kenji

Ueda for reducing my anxiety with humor, laughter, video games, and subway sandwiches.

Thank you to Antônio Kaique Barroso Fernandes for always showing friendliness and

generosity towards me. Thank you to Guilherme Vieira dos Santos for being so kind and

supportive during the writing process of this thesis. Thank you to Igor Moreira Félix and

his family for their trust and company during the COVID-19 pandemic. Thank you to

Bernardo Martins, Gabriel Morete, Lucas Stankus, Marcelo Schmitt, Matheus Tavares,

Pedro Siqueira, Pedro Arraes, Renato Cordeiro Ferreira, Thiago Lima Oliveira, and Ygor

Requenha Romano for their friendliness towards me. Thank you to Priscila Lima for

helping me to overcome self-doubt.

I especially wanted to thank the following friends who have made such a profound and

positive impact on my life. I will forever cherish the moments we shared at the University

of São Paulo. In particular, I will always remember how we persevered and supported

one another in order to earn our graduate degrees. Thank you to Danilo Pereira Escudero

for giving me hope and strength in moments of despair. Thank you to Douglas Chagas

da Silva for always helping me whenever I was struggling in life. Thank you to Luiz

Felipe Fronchetti Dias for always supporting me, despite the distance. Thank you to Luiz

Henrique Neves Rodrigues for being a friend I could rely on anytime and anywhere. Thank

you to Mairieli Santos Wessel for always wanting the best for me. Thank you to Samuel

Plaça de Paula for always being by my side on this long and arduous journey; and for

being an encouraging, a dependable, a humorous, and most importantly, a true friend. I

iii

am truly happy for your constant presence in my life. Thank you to Thatiane de Oliveira

Rosa, my loyal companion on this journey since the first day of the doctoral program.

Thank you for lifting me up everytime I felt life was dragging me down. We have endured

many hardships together, and I am incredibly lucky and blessed to have you by my side

helping me to overcome every obstacle in my life. Thank you for the real and wonderful

friendship you have given me.

Thank you to my friends at the Regional Center of Environmental Documentation

and Interpretation (CREDIA), which is an institute that taught me so much about the

importance of discipline and hard work. Thank you to Gaby Montoya for always making

me laugh and feel calm despite all the hardships and challenges faced over the last few years.

Thank you to Miriam Elisa Lopez Rosales for being a major support system throughout

the doctoral studies; for always believing in my capabilities, and encouraging me to face

my fears and to never give up on my dreams. I would not have gotten to where I am today

without your guidance and friendship.

I also would like to thank my dear friends from Colombia that have supported me

ever since we met in Maringá. Thank you to David Fernando Posso Suarez for always

providing me with words of encouragement whenever I needed them the most. Thank

you to Yessica Acosta Urian for the everlasting support, continuous presence, and real

friendship provided during stressful times.

I’d also like to thank my friends from the Catholic University of Honduras for being

so supportive and understanding since pursuing my graduate studies. A special thanks

to Cindy Montoya, Diana Calix, Debby Martinez, Hector Pallares, Jeny Aguilera, Karen

Rodriguez, Karen Pinto, Kenia Gutierrez, Mariela Raudales, Rony Fiallos, Sory Streber, and

Tiffany Coca.

I’d also like to express gratitude to my friends from La Ceiba Bilingual School. Thus,

thank you to Andrea Galindo, Carlos Fermin Arellano Oliva, Cinthia Klarissa Corea Santos,

Jonathan Villafranca, and Rodrigo Sabillon for their continuous presence and support in

my life.

This thesis would not have been possible without the unconditional support and

valuable guidance from Prof. Dr. Daniel Macêdo Batista, my advisor, who I have had the

pleasure of collaborating with for five years. Thank you for the lessons learned, patience,

and most importantly for the belief that I could undertake this research project. It was a

great honor conducting research with you, and I hope we can continue working together

in the future.

I’d also like to thank my professors at the Institute of Mathematics and Statistics who

iv

have imparted so much knowledge and wisdom in order to better hone my skills as a

researcher. Thank you to Prof. Dr. Fabio Kon for supporting me financially, and caring

about my future. Thank you to Prof. Dr. Jose Coelho de Pina Junior for the engaging and

insightful conversations during our lunch breaks. Thank you to Profa. Dra. Kelly Rosa

Braghetto for being so kind and supportive to me. Thank you to Prof. Dr. Leônidas de

Oliveira Brandão for the positive messages during the COVID-19 pandemic.

Thank you to my examining committee, Profa. Dra. Michelle Wangham, Prof. Dr.

Alfredo Goldman, Prof. Dr. Fabio Costa, and Prof. Dr. Lucas Cordeiro for their valuable

and insightful suggestions to improve the doctoral thesis.

I also would like to thank employees at IME-USP for their support and kindness. Thank

you to the security personnel who always kept me company, especially during the difficult

times of the COVID-19 pandemic. In that regard, thank you to Alice Ferreira, Daniel

Jeferson, Denilson Ribeiro, Fatima Silverio, Gabriel Flores, Gabriela Borges, Guilherme

Almeida, José Geraldo, Jozined Ferreira, Kaique Gustavo, Ketreson Silva, Rosineide Dias,

Leandro Maia, Luan Carlos de Jesus, Lucimar Ribeiro, Manuel Izau, Marcone da Silva,

Milton Rafael, Thiago Wesley, Valuquira Fernandes, and Wendell Augusto.

I also want to deeply thank the library staff of the Institute of Mathematics and Statistics

for their constant support, kindness, and friendship during my last few months as a PhD

candidate. Thank you to Maria das Graças Silva de Lima for always taking the time to

listen to my worries, and providing the necessary words to ease my fears. Thank you to

Ricardo Vila Real Tanaka for being so kind and willing to help me focus on the doctoral

studies. Thank you to Daniel Feltrin Amaral for always providing assistance whenever I

needed it.

I would like to thank the staff of the graduate program in computer science for their

crucial assistance throughout the doctoral studies, especially in the months leading up to

the defense. Thank you to Katia Kiesshau for the patience, advice, and kindness whenever I

had inquiries about the PhD program. Thank you to Luiza Ribeiro Camilo da Silva for also

always willing to help me in times of need. Thank you to Ana Carla de Souza, Cristiane

de Fátima Braulino, and Edina Arouca for always caring about my well-being during the

doctoral studies.

I could not leave out the professors and employees from the State University of Maringá

who encouraged me to send my application to the University of São Paulo. Thank you to

Prof. Dr. Anderson Faustino da Silva, my Master’s advisor, for inspiring me with words of

wisdom and teaching me the importance of self-improvement, perseverance, and critical

thinking. The lessons learned from you played a big role in preparing me for the doctoral

v

studies. Thank you to Prof. Dr. Elvio João Leonardo and Prof Dr. Nardênio Almeida

Martins for their unconditional support and trust in me. Thank you to Inês Laccort for the

friendship, encouragement, and support during the difficult times of my graduate studies.

Thank you to Elenir Voi Xavier, my portuguese teacher and friend, for always believing in

me. Thank you to Denise Dalcol for the friendship we have maintained after earning our

Master’s degrees.

Thank you to CAPES and CNPq (grant 381249/2022-0) for the financial support, which

was crucial for the completion of this thesis.

Finally, thank you to everyone who has supported me on this incredible journey. I am

truly honored and blessed to have known every single one of you, and to have represented

my home country Honduras for the last couple of years.

Resumo

Luis Gustavo Araujo Rodriguez. Mecanismos para melhorar testes fuzzing em bro-
kers de mensagens. Tese (Doutorado). Instituto de Matemática e Estatística, Universi-

dade de São Paulo, São Paulo, 2023.

Os protocolos de publicação-assinatura têm desempenhado um papel fundamental no sucesso da In-

ternet das Coisas. À medida que a Internet das Coisas se expande para novos usuários e ambientes, a

necessidade de testar melhor os protocolos de publicação-assinatura torna-se ainda maior. No entanto, a

área de testes para protocolos publicação-assinatura é pouco explorada, com poucos estudos que examinam

estratégias eficazes para aumentar a confiabilidade e a robustez de brokers de mensagens contra pacotes mal-

formados. Considerando que diversas falhas descobertas nos brokers são por causa de pacotes malformados,

testes baseados em fuzzing surgiram como uma das técnicas mais importantes para mitigar esse problema.

No entanto, o fuzzing enfrenta muitos desafios quando aplicado aos protocolos de publicação-assinatura,

que se distinguem de outros protocolos por sua funcionalidade de publicação de mensagens e arquitetura

orientada a eventos. Isso levanta a questão sobre se os desenvolvedores e as ferramentas baseadas em fuzzing

(ou fuzzers) estão considerando os atributos exclusivos do padrão publicação-assinatura na hora de realizar

os testes. O objetivo desta tese de doutorado é apresentar estratégias eficazes de fuzzing para os proto-

colos de publicação-assinatura, com o objetivo de contribuir para o desenvolvimento de aplicações mais

robustas na Internet das Coisas e Cidades Inteligentes. De acordo com as pesquisas preliminares, há uma

falta de abordagens sistemáticas baseadas em fuzzing na literatura para testar os protocolos de publicação-

assinatura. Além disso, MQTT se destaca como o protocolo de publicação-assinatura mais popular para

o qual os desenvolvedores propuseram técnicas de fuzzing na literatura. Por tanto, MQTT oferece uma

oportunidade de entender os requisitos e estratégias para testar efetivamente um protocolo de publicação-

assinatura. Esta pesquisa de doutorado foi dividida em três fases. Na primeira fase, foi analisado se uma

abordagem de fuzzing baseada em gramática pode ser aplicada a um protocolo de publicação-assinatura,

entendendo assim os desafios e requisitos necessários. Assim, foi proposta uma metodologia e arquitetura

para desenvolver um fuzzer baseado em gramática para testar um protocolo de publicação-assinatura. O

resultado final é um fuzzer chamado MQTTGRAM, que foi então comparado com duas outras abordagens de

fuzzing, e superou ambas, apesar de realizar menos testes. Na segunda fase, foi desenvolvida uma taxonomia

que classifica todas as técnicas de fuzzing existentes para MQTT, das quais seis foram avaliadas em con-

dições equivalentes para determinar se os desenvolvedores estão considerando os atributos exclusivos do

padrão publicação-assinatura na hora de realizar os testes. Além disso, os fuzzers para MQTT foram avalia-

dos em termos de testes de estresse. Na terceira fase, MQTTGRAM foi aprimorado, incorporando três elementos

essencias para testar os protocolos de publicação-assinatura: comunicação bidirecional; conhecimento de

tópicos; e suporte a múltiplas versões. Esta pesquisa de doutorado fornece três contribuições principais: (1) o

desenvolvimento e aprimoramento de uma abordagem de fuzzing baseada em gramática para um protocolo

de publicação-assinatura; (2) taxonomia e avaliação de desempenho de fuzzers para MQTT em condições

equivalentes; e (3) identificação de deficiências dos fuzzers para trabalhos futuros.

Palavras-chave: Publicação-assinatura. Fuzzing. Testes. Protocolos de Rede. Broker de Mensagens.

MQTT. IoT.

Abstract

Luis Gustavo Araujo Rodriguez. Mechanisms to improve fuzz testing for message
brokers. Thesis (Doctorate). Institute of Mathematics and Statistics, University of São

Paulo, São Paulo, 2023.

Publish/subscribe (or pub/sub) protocols have played a key role in the success of the Internet of Things.

As the Internet of Things expands to new users and environments, the need to better test pub/sub proto-

cols becomes even more pressing. However, pub/sub protocol testing is an under-explored field, with few

research studies examining effective strategies to increase the reliability and robustness of message brokers

against malformed packets. Considering that several bugs discovered in message brokers are related to mal-

formed packets, fuzz testing (or fuzzing) has emerged as one of the most promising, necessary, and ideal

techniques to mitigate this issue. However, fuzzing faces many challenges when applied to pub/sub proto-

cols, which distinguish themselves from other network-based systems by their message-publishing features

and event-driven architecture. This poses the question as to whether developers and existing fuzz testing

tools (or fuzzers) consider the unique attributes of the pub/sub messaging pattern. The objective of this PhD

thesis is to study and develop effective fuzzing strategies for pub/sub protocols, aiming at contributing to

the development of more robust applications in IoT and Smart Cities. According to the research findings,

there is a lack of systematic approaches in the literature to fuzz-test pub/sub protocols. Furthermore, MQTT

stands out as the most popular pub/sub protocol for which developers have proposed fuzzing techniques in

the literature. However, as MQTT is the most widely-used pub/sub protocol, it provides an opportunity to

understand the requirements and strategies to effectively fuzz a pub/sub protocol. This PhD research was

divided into three phases. In the first phase, it was analyzed whether a systematic testing approach such

as grammar-based fuzzing can be applied to a pub/sub protocol such as MQTT, thereby understanding

the challenges and necessary requirements. A grammar-based methodology and architecture was therefore

conceived and proposed for a pub/sub protocol. The end result is a fuzzer called MQTTGRAM, which was then

compared with two other fuzzing approaches and outperformed both of them, despite exchanging up to

9x fewer packets. In the second phase, a taxonomy was developed that classifies all existing fuzzing tech-

niques for MQTT, six of which were evaluated under equivalent conditions in order to determine whether

developers are considering the unique attributes of the pub/sub design pattern. Furthermore, the fuzzers

were evaluated in terms of their resource usage or stress-testing capabilities. In the third phase, MQTTGRAM

was improved by incorporating three essential elements for pub/sub protocol fuzzing, which are lacking

across all fuzzing techniques proposed for MQTT: two-way communication; topic awareness; and version

support. Overall, this PhD research provides three main contributions: (1) the development and refinement

of a grammar-based fuzzing approach for a pub/sub protocol; (2) taxonomy and performance evaluation of

MQTT fuzzers under equivalent conditions; and (3) identification of shortcomings for future work.

Keywords: Publish-subscribe. Fuzzing. Testing. Network Protocols. Message Broker. MQTT. IoT.

xi

List of Abbreviations

ACL Access Control Lists

AMQP Advanced Message Queuing Protocol

CoAP Constrained Application Protocol

DDS Data Distribution Service

DoS Denial of Service

DTLS Datagram Transport Layer Security

HTTP Hypertext Transfer Protocol

IETF Internet Engineering Task Force

IME Institute of Mathematics and Statistics

IoT Internet of Things

ITS Intelligent Transportation Systems

M2M Machine-to-Machine

MQTT Message Queuing Telemetry Transport

NVD National Vulnerability Database

OASIS Organization for the Advancement of Structured Information Standards

OMG Object Management Group

Pub/Sub Publish/Subscribe

QoS Quality of Service

SDK Software Development Kit

TCP Transmission Control Protocol

TLS Transport Layer Security

UDP User Datagram Protocol

USP University of São Paulo

XMPP Extensible Messaging and Presence Protocol

xii

List of Figures

1.1 Components of a Pub/Sub Network . 2

1.2 Overview of Doctoral Studies . 5

1.3 Testbed Developed and Used for Doctoral Studies 8

2.1 Fuzz Testing/Fuzzing . 12

2.2 Architectural Messaging Patterns . 13

2.3 Traditional Network Protocol Fuzzing (1 Client) 14

2.4 Pub/Sub Protocol Fuzzing (2 Clients) . 15

2.5 Network-Based Fuzzer Sending a Malicious Subscribe Packet to the Broker

and Causing a Stack Overflow (CVE-2019-11779). 17

2.6 Causes of Vulnerabilities in MQTT (As of April 19th, 2023) 18

2.7 Vulnerability Disclosure Delays (As of April 19th, 2023) 18

2.8 Outdated Brokers Accessible (As of April 19th, 2023) 19

3.1 Architecture of MQTTGRAM . 26

3.2 Simple Example of the MQTT 3.1.1 Grammar in Backus-Naur Form . . . 27

3.3 Derivation Tree for a PUBLISH Packet in Hexadecimal Notation 29

3.4 Results of 3-Minute Test Runs . 32

3.5 Results of 30-Minute Test Runs . 33

3.6 Results of 500- and 8000-Packet Test Runs 34

4.1 Last Will and Testament Messages . 41

4.2 Retained Messages . 41

4.3 Persistent Session . 42

4.4 Taxonomy of Fuzzing Techniques for MQTT 42

4.5 Statement Coverage (Mosquitto 1.6.8) . 46

4.6 Statement Coverage (Moquette 0.13) . 49

5.1 Refined Architecture for MQTTGRAM-R 59

5.2 Simple Example of the MQTT 5.0 Grammar in Backus-Naur Form 60

xiii

5.3 Statement Coverage in handle_connect.c 62

5.4 Statement Coverage in handle_publish.c 64

5.5 Statement Coverage in handle_subscribe.c 65

5.6 Statement Coverage in subs.c . 67

6.1 Centralized Broker Architecture for Pub/Sub Messaging 71

6.2 Average CPU Usage of Mosquitto During 30 Minutes. 74

6.3 Average CPU Usage of Mosquitto When Exchanging 8000 Packets. 74

6.4 Average Memory Usage of Mosquitto During 30 Minutes. 74

6.5 Average Memory Usage of Mosquitto When Exchanging 8000 Packets. . 75

6.6 Average CPU Usage of Moquette During 30 Minutes. 76

6.7 Average CPU Usage of Moquette When Exchanging 8000 Packets. 76

6.8 Average Memory Usage of Moquette During 30 Minutes. 77

6.9 Average Memory Usage of Moquette When Exchanging 8000 Packets. . . 77

C.1 Structure of An MQTT Control Packet 94

C.2 Pub/Sub Messaging Sequence on MQTT 95

C.3 Message Sequence for AUTH, UNSUBSCRIBE, PING, and DISCONNECT

Packets . 97

C.4 Simultaneous and Successive Messages 98

D.1 Input Coverage (Mosquitto 1.6.8) . 100

D.2 Input Coverage (Moquette 0.13) . 102

E.1 Packets Exchanged with Mosquitto 1.6.8 in 30 Minutes 103

E.2 Average Time to Exchange 8000 Packets 104

E.3 Packets Exchanged with Moquette 0.13 in 30 Minutes 106

List of Tables

2.1 Timeline of Mosquitto Version Releases (As of April 19th, 2023) 20

2.2 Open Source MQTT Fuzzers . 21

2.3 Related Work . 21

xiv

3.1 Statement Coverage of Moquette Achieved by MQTT Fuzzers in 30 Minutes

(Results by Sochor et al. (2020b) were copied directly from their research

paper due to their fuzzer being proprietary) 34

4.1 Statement Coverage of Moquette (30 Minutes) (Cells highlighted in blue

indicate the highest coverage percentage for a particular directory.) . . . 50

4.2 Packet Generation - Connect Flags # : Correct usage of a flag value | # :

Incorrect usage of a flag value | # : No usage of a flag value 54

4.3 Packet Generation - Publish Flags # : Correct usage of a flag value | # :

Incorrect usage of a flag value | # : No usage of a flag value 54

4.4 Feature Coverage of MQTT Fuzzers (30 Minutes) ✔: Tested successfully | ×:

Tested unsuccessfully | ✔*: Tested successfully if clients > 1 55

5.1 Classification of Fuzzers for Pub/Sub Brokers 59

B.1 Comparison of IoT Protocols . 91

C.1 MQTT Control Packets . 93

C.2 Fixed Header Format of the PUBLISH Packet 94

D.1 Input Coverage of Moquette (8000 packets) 102

xv

Contents

1 Introduction 1
1.1 Objectives of Doctoral Studies . 3

1.2 Phases and Contributions of Doctoral Studies 4

1.2.1 Dissemination of Research Findings 6

1.2.2 Development of Open Source Fuzzers and Testbed 8

1.2.3 Contributions to Open Source Software 10

1.2.4 Contribution to Research Paper Unrelated to Doctoral Studies . . 10

1.3 Thesis Outline . 10

2 State of the Art in Pub/Sub Protocol Fuzzing 11
2.1 Background . 11

2.2 Challenges . 13

2.3 Literature Review . 15

2.4 MQTT Fuzzing . 16

2.4.1 Related Work . 19

3 A Grammar-Based Fuzzing Technique for a Pub/Sub Protocol 25
3.1 Architecture . 26

3.2 Algorithms . 28

3.2.1 Selecting the Packet Type . 28

3.2.2 Generating the Packets . 28

3.2.3 Feeding the Packets . 30

3.2.4 Evaluating the Response . 31

3.2.5 Monitoring the Program . 31

3.3 Performance Evaluation . 31

3.3.1 Mosquitto . 32

3.3.2 Takeaway from Experiments . 35

3.4 Threats to Validity . 36

3.5 Concluding Remarks . 36

xvi

4 Taxonomy and Coverage Evaluation of Fuzzing Techniques for the MQTT
Protocol 37
4.1 Design Considerations for MQTT Fuzzers 39

4.2 Taxonomy . 42

4.3 Performance Evaluation . 43

4.3.1 Statement Coverage . 45

4.3.2 Feature Coverage . 53

4.4 Concluding Remarks . 56

5 Refinement of a Grammar-Based Fuzzing Technique for a Pub/Sub Proto-
col 57
5.1 Refinements . 58

5.2 Performance Evaluation . 61

5.2.1 handle_connect.c . 62

5.2.2 handle_publish.c . 63

5.2.3 handle_subscribe.c . 65

5.2.4 subs.c . 66

5.3 Concluding Remarks . 69

6 Stress Test Evaluation of Fuzzing Techniques for MQTT Brokers 71
6.1 State of the Art . 72

6.2 Performance Evaluation . 73

6.2.1 Mosquitto . 73

6.2.2 Moquette . 76

6.3 Discussion . 77

6.4 Concluding Remarks . 79

7 Conclusions and Future Work 81
7.1 Future Work . 82

7.1.1 Improvements to Existing Fuzzing Techniques 82

7.1.2 Development of Built-In Fault Detection Mechanisms 84

7.1.3 Development of a Resource-Intensive Fuzzer for MQTT Brokers . 85

7.1.4 Development of Fuzzers Based on Hybrid and Machine Learning

Approaches . 85

7.1.5 Performance Evaluation Over Longer Test Runs 85

7.1.6 Maintenance of MQTT Fuzzers 85

7.1.7 Expand the Research Scope to Include Other Pub/Sub Protocols . 86

xvii

Appendixes

A Usage of MQTT in IoT Applications 87
A.1 Home Automation Systems . 87

A.2 Health Monitoring Systems . 87

A.3 Intelligent Transportation Systems . 88

A.4 Electricity Metering Systems . 88

B Comparison Between MQTT and Other IoT Protocols 89
B.1 HTTP . 89

B.2 XMPP . 89

B.3 AMQP . 90

B.4 DDS . 90

B.5 CoAP . 90

B.6 Summary . 90

C MQTT Packets 93
C.1 Structure . 93

C.2 Transmission . 94

D Input Coverage of Fuzzing Techniques for the MQTT Protocol 99
D.1 Mosquitto . 99

D.2 Moquette . 101

E Packet Exchange of Fuzzing Techniques for the MQTT Protocol 103

References 107

1

Chapter 1

Introduction

For decades, Smart Cities have been envisioned as technologically advanced urban areas
that offer automated, efficient, and immersive services to their citizens (Zanella et al.,
2014). Smart Cities began merely as a proof of concept, but have recently taken off after the
rise of the Internet of Things (IoT). The objective of a Smart City is to improve the lives of
its citizens through the use of information and communication technologies. However, the
heterogeneous and ubiquitous environments of a Smart City demand a flexible messaging
model capable of withstanding the multitude of requests from its citizens. In that regard, the
traditional client-server model is unsuitable for Smart Cities because the server provides
information only upon receiving client requests. This could result in the server receiving
far too many simultaneous requests than it can handle, possibly leading to a city-wide
denial of service.

The publish/subscribe (pub/sub) messaging model mitigates this issue to a certain
degree by allowing the server to provide information automatically without the need for a
client request. In order to accomplish this task, clients subscribe to a topic of their choice,
receiving new and updated messages from the server automatically at any given moment.
The pub/sub messaging model is therefore integral to the realization of Smart Cities, whose
success relies heavily on automated services. In contrast to their traditional client-server
counterparts, pub/sub networks usually have three main components: (1) subscriber, (2)
publisher, and (3) broker. The latter component is the most important to the success of the
network, and it is responsible for receiving messages from publishers and sending them to
interested subscribers.

For example, Figure 1.1 presents an IoT scenario in which temperature sensors and light
sensors act as publishers. Both types of sensors inform their status (ON) to a ventilation and
illumination system, which act as interested subscribers. For clarity purposes, publishers
and their respective subscribers are highlighted in the same colors. The broker acts as an
intermediary between the publishers and subscribers, receiving messages from the former
component and sending them to the latter.

Although successful, the pub/sub messaging model introduces several challenges that
have yet to be studied or addressed. Most notably, adapting client-server applications,
frameworks, and testing techniques to the pub/sub model requires further research efforts.
In fact, pub/sub protocol testing is a field that is extremely important, yet somehow unex-

2

1 | INTRODUCTION

Broker

Temperature
Sensors

Publisher

Light
Sensors

Publisher

Ventilation
System

Subscriber

Illumination
System

Subscriber

1. Message:ON 2. Message:ON

1. Message:ON 2. Message:ON

Figure 1.1: Components of a Pub/Sub Network

plored and neglected to a certain extent in the literature. This research gap is especially
worrisome when considering that the majority of bugs found in message or pub/sub brokers
are related to malformed packets (Araujo Rodriguez and Macêdo Batista, 2020), most
of which are officially disclosed several days after their discovery (Araujo Rodriguez,
Selvatici Trazzi, et al., 2018). In addition to vulnerability disclosure delays, deploying and
applying patches to pub/sub brokers in real-world environments is usually complex due
to either their location or lack of auto-update functionality (Husnain et al., 2022).

The root cause of these problems stems from the heavy emphasis placed on function-
ality rather than security in IoT (Săndescu et al., 2018), meaning that pub/sub protocols
tend to be insecure by design and unreliable in large-scale areas such as Smart Cities. In
fact, insecure design and injection are two of the most common causes of vulnerabilities
globally (OWASP, 2021). Insecure design refers to weak protocol implementations with
design flaws, whereas injection refers to untrusted inputs. Specifically, weak protocol
implementations are considered to be the most serious security threat in IoT (Munea, Lim,
et al., 2016; Munea, Luk Kim, et al., 2017; Makhshari and Mesbah, 2021; Husnain et al.,
2022), potentially exposing smart applications to catastrophic cyberattacks.

All of the aforementioned issues can be mitigated or avoided altogether with effective
testing mechanisms for pub/sub brokers. In that regard, one of the most ideal and necessary
testing techniques for pub/sub protocols is fuzzing (Luo et al., 2018; Praveen et al., 2023),
which consists in generating and sending random inputs to a message broker. The output
of the broker is then analyzed for potential weaknesses. Fuzzing emerged in the early
1990s as an effective testing strategy for UNIX utilities (Miller et al., 1990). The success of
fuzzing led to its application across several target systems, including network protocols.
Fast forward to the present, and pub/sub protocol fuzzing is an under-explored field,
with few research studies examining effective strategies to increase the reliability and
robustness of message brokers against random or malformed packets.

1.1 | OBJECTIVES OF DOCTORAL STUDIES

3

1.1 Objectives of Doctoral Studies
Considering the important role of message brokers and their susceptibility to mal-

formed packets, the objective of this PhD research is to study and develop effective fuzzing
strategies for pub/sub protocols, aiming to contribute to the development of more robust
applications in IoT and Smart Cities. This PhD research focuses specifically on fuzzers
for broker-side implementations of pub/sub protocols because of their primary and critical

role in the network. In order to satisfy the objective of this doctoral research, a preliminary
study was first conducted to examine the advancements and trends of pub/sub proto-
col fuzzing since its inception. The research findings of the preliminary study revealed
two important findings. First, at the time of writing, the Message Queuing Telemetry
Transport (or MQTT) stands out as the only pub/sub protocol for which developers have
proposed several different fuzzing techniques in the literature. Second, there is a lack of
systematic approaches in the literature to fuzz-test pub/sub protocols (Araujo Rodriguez
and Macêdo Batista, 2020). Considering the preliminary studies, the research questions
formulated for the doctoral studies are as follows:

RQ1: How can a grammar-based fuzzer for a pub/sub protocol such as MQTT be

developed?

Research Gap: As their name suggests, grammar-based fuzzers generate test cases by
using a grammar, which describes the syntax and structure of an input (or packet in the
case of network protocols). Despite being renowned as one of the most effective testing
strategies for network protocols (Godefroid et al., 2017), grammar-based fuzzing has
been avoided in favor of other alternatives throughout the years due to its complicated
nature (Hernández Ramos et al., 2018; Sochor et al., 2020b). The situation is further
aggravated by the fact that there are no sources explaining how to adapt grammar-based
fuzzing to pub/sub protocols. Thus, the goal of RQ1 is to propose and explain a grammar-
based methodology and architecture for a pub/sub protocol, which can be used as a
reference by developers and researchers in future studies.

RQ2: What fuzzing techniques have been proposed for MQTT over the last few

years?

Research Gap: Research on MQTT fuzzing has grown considerably, with several
different techniques found across the literature, more so than for any other IoT or pub/sub
protocol. Thus, the goal of RQ2 is to develop a taxonomy based on fuzzing techniques
proposed for MQTT across all research studies. The taxonomy can be used by researchers
to either gain a better understanding of advancements in the field for future studies, or
benchmark each technique for the most optimal decision-making.

RQ3: How effective are fuzzing frameworks for MQTT in terms of their testing

and pub/sub capabilities?

Research Gap: The current state of the art lacks a comprehensive performance com-
parison between MQTT fuzzers. The problem stems from the fact that few research papers
on MQTT fuzzing consider traditional testing metrics (Zeng et al., 2020; Sochor et al.,
2020b; Araujo Rodriguez and Macêdo Batista, 2021). Moreover, fuzzing performance
is measured differently across research studies, either by calculating the number of paths

4

1 | INTRODUCTION

(path coverage) or statements (statement coverage) executed in the source code, thereby
hindering a comparison. The situation is further aggravated when considering that there
are no standardized methods or metrics in the literature to evaluate fuzzers for pub/sub
protocols such as MQTT. This research gap also raises the question of whether developers
are considering the unique characteristics of the pub/sub design pattern when building
their own fuzzers. The goal of RQ3 is to examine open-source MQTT fuzzers in terms of
their testing and pub/sub capabilities, identifying shortcomings and missteps by developers
for the aforementioned design pattern.

RQ4: How effective is an MQTT fuzzer when considering three essential elements

for pub/sub fuzzing: two-way communication capabilities; topic awareness; and

multiversion support?

Research Gap: Regardless of their technique, MQTT fuzzers are essentially pub/sub
test suites, whose overall goal should be to cover functionalities pertaining to the unique
attributes of the design pattern. In that regard, developing an effective and high-coverage
fuzzer for MQTT or any other pub/sub protocol requires a keen focus on message pub-

lication, which is not only the most defining, distinguishing, and important feature of
the broker, but also the most computationally intensive. However, the research findings
indicate that all fuzzers have shortcomings in regards to pub/sub protocol testing. The goal
of RQ4 is to improve an existing MQTT fuzzer by incorporating three essential elements for
successful pub/sub fuzzing: (1) two-way communication capabilities; (2) topic awareness;
and (3) multiversion support.

RQ5: How effective are existing fuzzing strategies at impacting the CPU and

memory usage of the broker during testing?

Research Gap: At the time of writing, none of the open-source MQTT fuzzers are
capable of receiving resource-related feedback about the broker during testing. Developers
have no choice but to select and extend one of the open-source fuzzers available for
testing purposes. It is therefore important for developers to understand the capabilities
of each option available. The goal of RQ5 is to survey, benchmark, and evaluate existing
state-of-the-art fuzz testing tools for MQTT brokers to determine their capabilities in
detecting CPU- and memory-consumption bugs. In order to move the state of the art
forward, shortcomings and guidelines will be provided for developers to build better
resource-heavy fuzzers for MQTT brokers in Smart Cities.

It is worth noting that all of the aforementioned research questions arose sequentially
throughout the doctoral studies, rather than all at once. In other words, the findings of an
experiment led to another research question, and so forth.

1.2 Phases and Contributions of Doctoral Studies
Based on the five research questions, the doctoral studies consisted of three phrases. Fig-

ure 1.2 presents an overview of the research activities performed for each phase throughout
the doctoral studies.

1.2 | PHASES AND CONTRIBUTIONS OF DOCTORAL STUDIES

5

Preliminary Studies

Analysis of Vulnerabil-
ity Disclosure Delays

Literature Review of
Fuzzing Techniques

Phase 1: Development of Testbed and Fuzzer

Development of Testbed
for Experiments

Development of New Grammar-
Based Approach for MQTT

Incorporate Grammar-Based
Approach into MQTTGRAM

Improve Scapy’s Open
Source MQTT Library

Coverage Evalua-
tion of MQTTGRAM

Phase 2: Performance Evaluation of State-of-the-Art Fuzzing Techniques

Taxonomy & Coverage Eval-
uation of Fuzzing Techniques

Stress Test Evaluation
of Fuzzing Techniques

Phase 3: Refinement of MQTTGRAM

Improve MQTTGRAM by
Adding Support for MQTT 5.0

Add Support for
MQTT 5.0 in Scapy

Coverage Evaluation of
Refined MQTTGRAM

P1 P2

P3

P5 P4

P6

Figure 1.2: Overview of Doctoral Studies

6

1 | INTRODUCTION

The technical contributions of this research are highlighted in yellow, whereas the
scientific contributions are highlighted in green. A total of six papers (indicated by blue
circles) were written to disseminate the research findings, four of which have been pub-
lished in peer-reviewed conferences and journals at the time of writing. The remaining
two papers are currently under review for publication.

1.2.1 Dissemination of Research Findings
P1 Luis Gustavo Araujo Rodriguez, Julia Selvatici Trazzi, Victor Fossaluza, Rodrigo Cam-

piolo, and Daniel Macêdo Batista. Analysis of Vulnerability Disclosure Delays
from the National Vulnerability Database. In: Proceedings of the Workshop on

CyberSecurity in Connected Devices at the Brazilian Symposium on Computer Net-

works and Distributed Systems., 2018. URL: https://sol.sbc.org.br/index.php/wscdc/
article/view/2394

The objective of this paper was to evaluate vulnerability disclosure delays from
the National Vulnerability Database (NVD) in order to state its efficiency. Among
several findings, it was observed that the majority of vulnerabilities are disclosed
within 1-7 days after their discovery. Based on these results, the paper provided
recommendations for those who currently rely on NVD, such as IoT manufacturers
and developers. This paper won an honorable mention for the Best Paper Award.

P2 Luis Gustavo Araujo Rodriguez and Daniel Macêdo Batista. Program-Aware Fuzzing
for MQTT Applications. In: Proceedings of the ACM SIGSOFT International Sym-

posium on Software Testing and Analysis., Doctoral Symposium, 2020. DOI: 10.1145/
3395363.3402645

Due to vulnerability disclosure delays, P1 confirmed the necessity for prevention and
proactive approaches such as test-driven mechanisms in the field of IoT. In order to
narrow down the scope of the PhD research, the objective of this paper was two-fold:
(1) identify the test-driven approach that is most suited for IoT message brokers based
on MQTT standards; and (2) analyze existing MQTT-based testing frameworks. This
paper revealed that test-driven approaches for MQTT should be based on malformed
or random packets, which are the most common causes of vulnerabilities in message
brokers. At the time of publication, the paper also unveiled that testing frameworks
were based on blackbox fuzzing, meaning that vulnerabilities are difficult and time-
consuming to find. The paper therefore presented and proposed the overall design of
a new greybox fuzzer for testing MQTT applications. Overall, one of, if not the most
important finding of this paper was the lack of systematic and modern approaches
in the literature to fuzz-test pub/sub protocols. The paper therefore presented a
research proposal to study and develop effective fuzzing strategies for pub/sub
protocols, aiming to contribute to the development of more robust applications
in IoT and Smart Cities. The research proposal and findings of this paper were
presented at a Doctoral Symposium, which offered PhD students the opportunity
to receive feedback from field specialists. The main feedback received from field
specialists was to develop a new grammar-based fuzzing technique for a pub/sub
protocol.

https://sol.sbc.org.br/index.php/wscdc/article/ view/2394
https://sol.sbc.org.br/index.php/wscdc/article/ view/2394
10.1145/3395363.3402645
10.1145/3395363.3402645

1.2 | PHASES AND CONTRIBUTIONS OF DOCTORAL STUDIES

7

P3 Luis Gustavo Araujo Rodriguez and Daniel Macêdo Batista. Towards Improving
Fuzzer Efficiency for the MQTT Protocol. In: Proceedings of the IEEE Symposium

on Computers and Communications., 2021. DOI: 10.1109/ISCC53001.2021.9631520

A new grammar-based methodology and architecture was developed based on the
feedback received from the Doctoral Symposium Program Committee. The end
result is a fuzzer called MQTTGRAM, which was then compared with two other fuzzing
approaches and outperformed both of them, despite exchanging up to 9x fewer
packets with the broker. The research findings were presented in this paper, which
at the time of its publication, was the first to evaluate the effectiveness of a grammar-
based fuzzer for a pub/sub protocol (Araujo Rodriguez and Macêdo Batista,
2021).

P4 Luis Gustavo Araujo Rodriguez and Daniel Macêdo Batista. Resource-Intensive
Fuzzing for MQTT Brokers: State of the Art, Performance Evaluation, and
Open Issues. IEEE Networking Letters., Volume 5, Issue 2 (2023). DOI: 10.1109/LNET.
2023.3263556

This paper evaluates the resource consumption of state-of-the-art fuzzing frame-
works, thereby understanding the degree to which brokers are tested before deploy-
ment. The research findings attest that only one framework shows the most promise
for memory-intensive testing, outperforming its counterparts by more than 20%.
This paper also highlights shortcomings that prevent existing frameworks from
consuming considerable system resources. This paper was the first to investigate
about the fuzzers’ resource-exhaustion capabilities.

P5 Luis Gustavo Araujo Rodriguez and Daniel Macêdo Batista. A Survey, Taxonomy,
and Performance Evaluation of Fuzzing Techniques for the MQTT Protocol.
ACM Computing Surveys., 2023. Under Review.

After developing a grammar-based approach for a pub/sub protocol, a question was
raised as to whether developers were designing their fuzzers considering the unique
attributes and features of pub/sub messaging. This uncertainty stems from the fact
that there is currently a lack of research regarding the strengths and weaknesses
of each fuzzing technique for MQTT. This situation also hinders a developer’s
understanding of the pros and cons of each technique in order to select the most
appropriate for testing purposes. In order to mitigate these issues, this paper analyzes
the existing fuzzing techniques in depth and under equivalent conditions, which will
not only clarify and reveal their effectiveness to developers, but also identify future
directions. Overall, this paper provides three main contributions. First, it presents a
literature review and taxonomical classification of fuzzing techniques for MQTT,
followed by an analysis and performance benchmarks of six popular frameworks.
Finally, this paper presents open issues and proposes improvements for existing
MQTT fuzzers. The research findings attest that most fuzzing frameworks for MQTT
are incapable of testing all the pub/sub functionalities and features defined in the
standard, thus providing research opportunities to mitigate their limitations and
apply their techniques effectively on other pub/sub protocols.

P6 Luis Gustavo Araujo Rodriguez and Daniel Macêdo Batista. Improving Pub/Sub

10.1109/ISCC53001.2021.9631520
10.1109/LNET.2023.3263556
10.1109/LNET.2023.3263556

8

1 | INTRODUCTION

Fuzzing for IoT Message Brokers: A Case Study of MQTT. Elsevier Computer

Networks, 2023. Under Review.

After carefully reviewing the literature, the research findings presented in P5 indicate
that all fuzzers lack three essential elements for pub/sub fuzzing: (1) Two-way
communication capabilities; (2) Topic awareness; and (3) Multiversion support. This
paper therefore proposes a new fuzzer that incorporates all three elements within a
single architecture. The proposed fuzzer manages to outperform all of its state-of-
the-art competitors in terms of standardized testing metrics such as code coverage,
executing up to 12x more statements in pub/sub-related files.

1.2.2 Development of Open Source Fuzzers and Testbed

Fuzzers

The source code of the original and refined version of MQTTGRAM, as well as the gram-
mars, are freely available under the General Public License (Version 2)1 2, allowing devel-
opers to better test message brokers, and facilitating further research studies.

Testbed

The testbed built and used for the doctoral studies is also publicly available under the
same license 3, providing developers the opportunity to evaluate their own fuzzers for
testing purposes. Figure 1.3 presents the architecture of the testbed, whose main purpose
is to monitor the broker while fuzzing.

Fuzzer Broker

Logs

Host Machine

Host Monitor

Virtual Machine

Virtual Monitor

Figure 1.3: Testbed Developed and Used for Doctoral Studies

The repository for the testbed contains several automation scripts including a Vagrant-

file, which is a configuration file that creates the exact same test environment used for
the doctoral studies. More specifically, the Vagrantfile configures the broker according to
the architecture presented in Figure 1.3. The Vagrantfile installs the necessary dependen-
cies for the broker to communicate with the fuzzer over a private network. As a result,

1 https://github.com/luisgar1990/MQTTGRAM. Accessed on May 17th, 2023
2 https://github.com/luisgar1990/MQTTGRAM-R. Accessed on May 17th, 2023
3 https://github.com/luisgar1990/mqtt-testbed. Accessed on May 17th, 2023

https://github.com/luisgar1990/MQTTGRAM
https://github.com/luisgar1990/MQTTGRAM-R
https://github.com/luisgar1990/mqtt-testbed

1.2 | PHASES AND CONTRIBUTIONS OF DOCTORAL STUDIES

9

the automation scripts and Vagrantfile play a key role in improving and increasing the
reproducibility of the research findings from the doctoral studies.

Experimental Setup for Doctoral Studies

The experiments for the doctoral studies were performed on an Intel(R) Core(TM)
i7-2700K CPU @ 3.50GHz with 16GB of RAM running the Ubuntu 16.04.6 LTS operating
system. The MQTT fuzzers ran natively on the system hardware, whereas the MQTT
brokers were hosted on a virtual machine. The native and virtual machine have the same
hardware specifications except for the RAM, which is 1 GB on the latter. The MQTT fuzzers
and brokers were executed using default settings. The brokers interact with each MQTT
fuzzer individually. The MQTT brokers selected as the target systems for the doctoral
studies were Mosquitto 1.6.8 and Moquette 0.13, both of which rank among the most popular
in the literature (Hernández Ramos et al., 2018; Palmieri et al., 2019; Casteur et al.,
2020; Sochor et al., 2020b; Zeng et al., 2020; Aichernig et al., 2021; Di Paolo et al., 2021;
Araujo Rodriguez and Macêdo Batista, 2021).

Test runs were repeated 100 times in order to calculate the average and standard
deviation for each stopping criterion. The fuzzers test the brokers until a certain time has
elapsed or a specific number of packets has been exchanged between both parties. After
each test run, information regarding a fuzzer’s performance is calculated and recorded in
three different types of logs.

The broker log contains broker-related information such as the average CPU and
memory usage, as well as the number of statements or lines executed in its source code
during a test run. The latter metric is known as statement coverage, and it has proven to be
more reliable than other metrics at predicting the quality of a test suite (Gopinath et al.,
2014). Statement coverage is calculated using gcov and Cobertura, which are coverage
tools designed for programs written in C (Mosquitto) and Java (Moquette) respectively. A
variant of statement coverage called input coverage was also used throughout the doctoral
studies to measure a fuzzer’s performance. Input coverage refers to the statement coverage
achieved by a fuzzer after exchanging a specific number of packets with the broker.

In addition to statement and input coverage, fuzzers were evaluated based on their
feature coverage, which refers to pub/sub functionalities or behaviors that were covered
during testing. A tool called tshark was used to capture and record the network packets
exchanged between the MQTT fuzzers and the broker in the packet log during the test run.
The packet logs were then manually inspected to determine which pub/sub features were
tested by the MQTT fuzzers.

The fuzzer log contains information regarding crashes. For each test run, the Mosquitto
broker is compiled with AddressSanitizer, which is a debugging tool that detects poten-
tial memory corruption vulnerabilities even if a crash is untriggered. The fuzzing process
is also monitored constantly during the test runs in case either Mosquitto or Moquette
crashes.

Further details on the stopping criteria, metrics, MQTT brokers, and fuzzers chosen
for each experiment are explained in later chapters of the thesis.

10

1 | INTRODUCTION

1.2.3 Contributions to Open Source Software
While developing the grammar-based fuzzer for MQTT, a popular Python library called

Scapy was lacking functionality or features described in the MQTT 3.1.1 standard. Improve-
ments were made to that library as an additional contribution of this research (Araujo
Rodriguez, 2020). Scapy was further improved afterwards to support MQTT 5.0, which
will play a major role in several research fields including Fuzzing. This contribution
will allow developers to analyze, parse, craft, and modify MQTT 5.0 packets for their
own research and needs. Although the pull request is still under review at the time of
writing (Araujo Rodriguez, 2021), the changes requested by the maintainers are currently
being addressed.

1.2.4 Contribution to Research Paper Unrelated to Doctoral
Studies

During the doctoral studies, an opportunity emerged to collaborate on a research paper
related to MQTT and intrusion detection systems:

Fatemeh Mosaiyebzadeh, Luis Gustavo Araujo Rodriguez, Daniel Macêdo Batista
and Roberto Hirata, A Network Intrusion Detection System using deep Learning
against MQTT Attacks in IoT. In: Proceedings of the IEEE Latin-American Conference on

Communications., 2021. DOI: 10.1109/LATINCOM53176.2021.9647850

Suggestions were provided throughout the writing process to further improve the
research paper.

1.3 Thesis Outline
This PhD thesis is organized as follows. Chapter 2 first explains about architectural

messaging patterns and fuzzing. These explanations are then followed by a literature review
on pub/sub protocol fuzzing, as well as MQTT fuzzers that are available to developers for
testing purposes. Chapter 3 presents the new grammar-based fuzzing technique for a pub-
/sub protocol such as MQTT. Chapter 4 presents a taxonomy and performance evaluation
of pub/sub fuzzers, which at the time of writing are mostly for MQTT. Chapter 5 presents a
refined version of the grammar-based approach that incorporates three essential elements
for pub/sub fuzzing. Chapter 6 presents and discusses the performance achieved by MQTT
fuzzers in terms of the broker’s CPU and memory. Chapter 7 marks the conclusions of
this PhD thesis, and discusses future work.

10.1109/LATINCOM53176.2021.9647850

11

Chapter 2

State of the Art in Pub/Sub
Protocol Fuzzing

The aim of this chapter is to first explain the concepts of fuzzing and pub/sub protocol
messaging. These explanations are then followed by an overview of the challenges and
advancements regarding pub/sub protocol fuzzing. The final sections of this chapter focus
on MQTT, which at the time of writing is the only pub/sub protocol for which developers
have proposed several different fuzzing techniques in the literature.

2.1 Background
A vulnerability is a flaw or weakness that can be exploited because of design, imple-

mentation or configuration mistakes (Antunes et al., 2010). Testing software applications
with effective mechanisms is necessary to identify and mitigate design issues or flaws
before deployment, thereby increasing their reliability (J. Chen et al., 2018; Liljedahl,
2019). The tests can be performed either manually or automatically. However, finding bugs
manually is complex in large-scale systems. Automated methods have therefore become
the norm for bug finding. Automated program analysis is classified into two categories:
static analysis and dynamic analysis.

Static analysis involves examining the source code of the program at compile-time

to discover vulnerabilities (J. Chen et al., 2018). In other words, static analysis searches
for vulnerabilities without executing the program. Dynamic analysis, however, involves
monitoring the program at run-time to detect potential vulnerabilities.

Automated test analysis may provide misleading claims regarding the existence or
absence of bugs in a program. The former claim is known as a false positive, whereas the
latter is referred to as a false negative. Static analysis may provide several false positives,
requiring user intervention to identify genuine vulnerabilities. Furthermore, static analysis
focuses only on limited properties of the program at compile-time, thereby hindering its
detection capabilities. However, static analysis has higher statement coverage and detection
speeds than its dynamic counterpart, which compensates for its low performance by having
few false positives (Zaddach et al., 2014).

12

2 | STATE OF THE ART IN PUB/SUB PROTOCOL FUZZING

One of the most common and popular types of dynamic analysis is Fuzz Testing (or
fuzzing) (J. Li et al., 2018), which is an automated technique that consists in generating
and sending random or unexpected inputs to a target system. The system behavior is
then constantly monitored for any errors (Manès et al., 2019). The term fuzzing was
introduced by Miller et al. (1990), which developed a tool called fuzz that generated
and fed invalid inputs to eighty-eight UNIX utilities. Program behavior along with their
corresponding inputs were stored in a log file for further analysis. The tool discovered
several vulnerabilities, which were undetected by traditional testing practices.

Since then, fuzzing has become one of the most popular dynamic analysis techniques
for several reasons. First, it has higher scalability and accuracy than other automated
testing techniques (J. Li et al., 2018). Second, it has proven to have considerable impact for
detecting vulnerabilities in IoT (J. Chen et al., 2018). Third, it can mitigate implementation
issues and zero-day attacks. These benefits are reasons why fuzz testing is considered
the primary bug-finding technique for most software applications (Munea, Lim, et al.,
2016; Munea, Luk Kim, et al., 2017; Luo et al., 2018; Boehme et al., 2021; Vinzenz and
Oka, 2021).

Figure 2.1 illustrates a simple interaction between a fuzzer and a software application,
which will read and parse random inputs for the entire test run.

Fuzzer Software
#$&@!*?

Figure 2.1: Fuzz Testing/Fuzzing

There are three potential outcomes of the software application while interacting with a
fuzzer. The first, and probably the most devastating, outcome is a crash immediately after
it reads a random input. The second outcome is an immediate rejection of a random input.
The third and probably the most desired outcome by software testers is the recognition and

acceptance of a random input. The latter outcome is the most promising as it will allow
testers to monitor how random inputs affect the functionality of the software application.
In order to produce promising outcomes, a fuzzer needs to interact intelligently with the
target system in a fully-automated manner.

Target systems can range from simple file-processing programs to complex network
protocols. Developers must tailor their fuzzers to the specific characteristics and archi-
tectures of a target system in order to ensure a successful test run. Network protocols, in
particular, may vary considerably in terms of their architecture. For example, Figure 2.2
presents three different types of messaging patterns.

One-way communication (Figure 2.2a) refers to unidirectional messaging, meaning that
packets flow in a single direction. In a two-way communication (Figure 2.2b), packets flow
from a sender to a receiver, and vice versa. A two-way communication, or bidirectional

messaging, is commonly used for distributed systems, in which its components are spread
across multiple devices.

The pub/sub messaging model (Figure 2.2c) is another form of two-way communication
that, despite also using the request-response pattern, has certain features that distinguishes

2.2 | CHALLENGES

13

Client Server

message

(a) One-Way

Client Server

message
message

(b) Two-Way

Client A Server Client B

message
message

message
message

(c) Pub/Sub

Figure 2.2: Architectural Messaging Patterns

itself from its traditional client-server counterpart. Most notably, pub/sub communications
are less isolated, meaning a client A is capable of sending messages to a client B, and vice
versa. Clients interact with one another through the server (or broker), which redirects
messages considering certain attributes such as topics of interest. The role of the broker
in pub/sub communications is two-fold: (1) handle requests and (2) route messages to
interested subscribers.

Pub/sub messaging has several advantages over traditional client-server approaches.
First, subscribers receive messages regardless of their connectivity. For example, if a sub-
scriber is offline, messages can be queued for delivery after regaining connectivity. Second,
pub/sub messaging offers asynchronous communication, meaning data is transmitted
at irregular intervals. This means that publishers and subscribers can send and receive
messages quickly, without being synchronized by an external clock.

Due to pub/sub messaging being a promising design pattern, several pub/sub protocols
have been developed for low-powered devices in the IoT. Examples of pub/sub protocols
include, but are not limited to, the Advanced Message Queuing Protocol (AMQP), the
Data Distribution Service (DDS), the Extensible Messaging and Presence Protocol (XMPP),
and MQTT. Among the aforementioned pub/sub protocols, MQTT is the most popular
in IoT environments (See Appendix B for a comparison between MQTT and other IoT
protocols).

2.2 Challenges

Traditional network protocol fuzzing is difficult (Pham et al., 2020), and follows the
premise that the server interacts with only one type of client (or requester). Figure 2.3

14

2 | STATE OF THE ART IN PUB/SUB PROTOCOL FUZZING

presents the traditional approach for network protocol fuzzing, which involves the fuzzer
exchanging messages with the server as if it were a normal client. The server perceives no
difference whatsoever between a fuzzer and a legitimate client.

Fuzzer Server
test

cases

Figure 2.3: Traditional Network Protocol Fuzzing (1 Client)

For most one- and two-way communication protocols, the traditional approach will
suffice to cover all of their functionalities during testing. For pub/sub messaging systems,
however, the traditional approach is unsuitable because it is designed with single-client
protocols in mind. In fact, several research studies have raised awareness about the short-
comings of traditional protocol fuzzers for pub/sub brokers (Sneha Suhitha Galiveeti
and Pranitha Malae, 2020; Zeng et al., 2020).

This concern is due in part to the literature lacking information about design consid-
erations and challenges when developing a pub/sub protocol fuzzer. Most survey papers
explain the common challenges of network protocol fuzzing, neglecting those associated
with the unique attributes of the pub/sub design pattern. For example, Zhu et al. (2022)
provide a roadmap for developers to grasp a better understanding of fuzz testing and its
use across multiple domains such as network protocols. The authors mainly focus on
file-transfer and cryptographic protocols, whereas pub/sub protocols were left out to limit
the scope of their study. Their roadmap therefore provides insufficient information to
developers interested in fuzzing pub/sub protocols.

Several other research papers focus specifically on two challenges regarding network
protocol fuzzing (Munea, Lim, et al., 2016; Manès et al., 2019; Zhao, 2020; Liang et al.,
2018; J. Li et al., 2018; Yurong Chen et al., 2019; Boehme et al., 2021): (1) highly-structured
inputs and (2) state traversal. In terms of the former challenge, a network-based fuzzer
must generate inputs that satisfy the syntax and structural requirements established by
the protocol standard. Traditional fuzzers, such as American Fuzzy Lop (AFL) (Michael
Zalewski, 2013), have difficulty meeting this criteria (Y. Li et al., 2021), forcing developers
to resort to more specialized approaches for pub/sub protocols. In terms of the latter
challenge, the success of state traversal depends on a fuzzer’s capability to generate highly-
structured inputs, which must be sent in the correct order to guide the test run to a
specific state. Although these are two of the most common challenges faced by developers
when fuzzing network protocols, research studies fail to provide information regarding a
third challenge: version support. Protocol implementations support several versions of a
standard. For example, Mosquitto is a broker-side implementation that supports versions
3.1, 3.1.1, and 5.0 of the MQTT protocol. A fuzzer must therefore have an understanding of
the input structure and state traversal for each version in order to increase its effectiveness.
The effectiveness of protocol fuzzers therefore depends on their success to overcome all
three of the aforementioned challenges (highly-structured inputs; state traversal; and
version support).

Pub/sub protocols further complicate the testing process by locking its core features
behind message subscriptions. This means that a pub/sub fuzzer must at the very least be

2.3 | LITERATURE REVIEW

15

capable of creating test scenarios based on message publishing features. This entails that
fuzzers act as both a publisher and a subscriber for each test scenario in order to trigger
the broker into publishing messages. A pub/sub fuzzer therefore distinguishes itself from
its counterparts by its dual-role testing strategy and heavy emphasis on topic generation,
both of which must be performed systematically because of two reasons. First, a pub/sub
fuzzer can publish messages only after it creates a subscription topic. Second, a pub/sub
fuzzer needs to be able to generate topics that match across publication and subscription
requests, otherwise the broker will not route messages to interested subscribers. Figure 2.4
presents an example in which a fuzzer fails to create a test scenario that involves both a
publisher and a subscriber.

Fuzzer Broker Subscriber
test

cases X
Figure 2.4: Pub/Sub Protocol Fuzzing (2 Clients)

In such a case, a fuzzer, in the role of a publisher, generates and sends random in-
puts to a broker, which never delivers messages to the subscribers. As a result, message
publications are completely absent during testing, becoming a major hindrance towards
effective pub/sub protocol testing. However, it is worth noting that the focus should not

be strictly tied to publication and subscription requests during testing because specific
pub/sub features may also depend on connection parameters established between the
fuzzer and the broker.

2.3 Literature Review
Despite its importance for IoT brokers, pub/sub protocol fuzzing is still in its early

stages of adoption. In fact, research on pub/sub protocol fuzzing has progressed slowly
compared to other fields. For example, file fuzzing has advanced and improved drastically
over the past decade, employing sophisticated algorithms based on the principles of natural
selection and genetics to carefully select coverage-increasing test cases. This technique is
commonly referred to as greybox fuzzing. AFL, in particular, is one of the most popular and
successful greybox fuzzers for file-processing programs (Pham et al., 2020). The success
of AFL led to the emergence of several extensions that add support for different types of
programs such as compilers and, more recently, network protocols.

The main issue of AFL and most of its extensions is their limited support for the
pub/sub design pattern (Zeng et al., 2020). This in turn has led to a lack of consideration
for pub/sub target systems in popular benchmark suites such as ProFuzzBench (Natella
and Pham, 2021), which at the time of writing supports only the client-server model. Over
time, these issues have hindered the progression of pub/sub protocol fuzzing in two key
aspects. From a technological point of view, the fuzzers, while advanced, are incapable
of testing core features of the pub/sub design pattern such as message publication. From
a developer’s point of view, there is a lack of information in the literature regarding
effective strategies to properly fuzz a pub/sub protocol. As a result, developers have
applied ineffective testing strategies for pub/sub protocols across several research studies.
For example, Sneha Suhitha Galiveeti and Pranitha Malae (2020) create two test

16

2 | STATE OF THE ART IN PUB/SUB PROTOCOL FUZZING

scenarios in which the broker interacts with a publisher and a subscriber separately rather
than collectively. Aljaafari et al. (2020) create test scenarios that involve only a publisher.
Both of these research studies lack scenarios involving both a publisher and a subscriber,
meaning message publishing features are most likely neglected during testing. In order to
mitigate this issue, Zeng et al. (2020) propose MultiFuzz, which is an extension based on
AFL that is designed to create test scenarios that involve publishing MQTT messages to
interested subscribers. This makes MQTT the first and only pub/sub protocol supported
by AFL.

Effort has been put into supporting MQTT because of its importance in the realization
of Smart Cities. The popularity and adoption of MQTT for IoT applications has been
unprecedented. In fact, MQTT has had a huge impact in real-world environments such as
cloud computing (See Appendix A for further details). For example, AWS IoT 1, Google
Cloud IoT Core 2, and Azure IoT Hub 3 connect IoT devices to cloud computing services
via communication protocols such as MQTT.

Developers seem to prefer MQTT over other pub/sub protocols because of its simplicity
and lightweight nature. For example, MQTT offers three levels of Quality of Service (QoS),
whereas other pub/sub protocols such as the Data Distribution Service (DDS) offer twenty-
three (see Appendix B, Table B.1 for further details). These and several other differences
hinder the possibilities of developing a single generic fuzzer that is capable of testing every

pub/sub protocol effectively. Developers are well aware of this difficulty, building fuzzers
geared towards a specific pub/sub protocol. The most notable evidence of this trend has
been the sheer number of fuzzers available specifically for MQTT. However, quantity
does not equal quality, and in the case of MQTT, there is a lack of information regarding
the testing capabilities of existing fuzzers for pub/sub functionalities. For developers, the
main question is whether fuzzers are built and designed with the unique attributes of the
pub/sub design pattern in mind (Zeng et al., 2020).

2.4 MQTT Fuzzing
Despite these concerns, research on pub/sub or MQTT fuzzing lacked considerably until

studies found faulty or weak protocol implementations in real-world environments (Anan-
tharaman et al., 2017; Alghamdi et al., 2018; J. Chen et al., 2018; Maggi et al., 2018;
Palmieri et al., 2019). A manual study was later conducted to determine the root cause
of vulnerabilities (Araujo Rodriguez and Macêdo Batista, 2020). The research study
revealed that most MQTT-vulnerabilities are exploited because of malformed packets,
which could allow information disclosure, remote code execution, and denial of service,
thereby hindering confidentiality, integrity, and availability, respectively. In fact, a stack
overflow vulnerability (CVE-2019-11779)4 was discovered in 2019 by sending a crafted
subscribe packet to the broker, as shown in Figure 2.5.

1 https://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html. Accessed on April 3rd,
2023

2 https://cloud.google.com/iot-core/. Accessed on April 3rd, 2023
3 https://azure.microsoft.com/en-us/overview/iot/#overview. Accessed on April 3rd, 2023
4 https://nvd.nist.gov/vuln/detail/CVE-2019-11779. Accessed on June 12th, 2023

https://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html
https://cloud.google.com/iot-core/
https://azure.microsoft.com/en-us/overview/iot/#overview
https://nvd.nist.gov/vuln/detail/CVE-2019-11779

2.4 | MQTT FUZZING

17

MQTT Fixed Header
Message type: Subscribe Request
Reserved:2
Msg Len: 65405
MQTT Variable Header
Message Identifier: 1
MQTT Payload
Topic Length: 65400
Topic: ///
////////////////////////////...///////////////////
Requested QoS: At most once delivery
(Fire and Forget) (0)

Subscriber (Fuzzer)

*********** [NO RESPONSE] ***********

Broker

Figure 2.5: Network-Based Fuzzer Sending a Malicious Subscribe Packet to the Broker and Causing

a Stack Overflow (CVE-2019-11779).

Since then, the situation remains the same. As of April 19th 2023, searching for key-
words related to MQTT brokers (MQTT, mosquitto, mosca, Paho, ActiveMQ) in the NVD
database yields one-hundred and twenty vulnerabilities, ninety-four of which are trig-
gered by malformed packets. Among the remaining vulnerabilities, seven are related
to cryptographic issues, whereas nineteen are triggered by improper authentication or
configuration. As of April 19th 2023, malformed packets account for 78.33% of all MQTT-
related vulnerabilities, and have consistently been prominent for the last few years, as
shown in Figure 2.6.

For seven consecutive years, malformed packets account for more than 60% of vulner-
abilities discovered annually, representing a major threat to MQTT implementations in
real-world environments. More specifically, malformed packets accounted for 75%, 82.4%,
61.0%, 76.9%, 100%, 90.9%, and 77.8% of vulnerabilities discovered in 2017, 2018, 2019,
2020, 2021, 2022, and 2023 respectively. It is expected that this trend will continue in the
future (Anantharaman et al., 2017), which is especially worrisome when considering
that vulnerabilities are disclosed several days after their discovery (Araujo Rodriguez,
Selvatici Trazzi, et al., 2018). Figure 2.7 presents disclosure delays of vulnerabilities
related and unrelated to malformed packets.

The horizontal line within each rectangle indicates the median, which is 8 and 7 days
for the former and latter type of vulnerability respectively. The upper quartiles denote
the median of the larger disclosure delays, which are more common for vulnerabilities
related to malformed packets. It is worth noting that although all types of vulnerabilities
had similar disclosure delays on average, vulnerabilities related to malformed packets had
twelve disclosures delayed for over 100 days, whereas their counterparts had only one.
Moreover, there were exactly nineteen vulnerabilities related to malformed packets that
were disclosed after seventy days, whereas their counterparts had only four cases. Based
on these results, vulnerabilities triggered by malformed packets had higher disclosure
delays than their counterparts.

18

2 | STATE OF THE ART IN PUB/SUB PROTOCOL FUZZING

2017 2018 2019 2020 2021 2022 2023

0

5

10

15

20

6

14

13

10

20 20

7

2 2

6

3

0

2 2

0

1

2

0 0

1

3

Year

N
um

be
r

of
V

ul
ne

ra
bi

lit
ie

s

Types of MQTT Vulnerabilities

Malformed Packets Other Issues Cryptographic Issues

Figure 2.6: Causes of Vulnerabilities in MQTT (As of April 19th, 2023)

Malformed packets Other

0

50

100

Types of Vulnerabilities

D
ay

s
D

el
ay

ed

NVD Disclosure Delays

Figure 2.7: Vulnerability Disclosure Delays (As of April 19th, 2023)

However, regardless of disclosure delays, patching vulnerabilities found in brokers de-
ployed to real-world environments is complex because of their limited hardware resources
or location (Săndescu et al., 2018; Thantharate et al., 2019; Eceiza et al., 2021; Newman
and Al-Nemrat, 2021; Husnain et al., 2022). As a result, it is common for brokers to use
outdated versions of MQTT implementations (Araujo Rodriguez and Macêdo Batista,

2.4 | MQTT FUZZING

19

2020). For example, searching for mqtt on the Shodan 5 search engine yields 52,411 MQTT
brokers accessible from the Internet, with Mosquitto ranking as the most popular. Figure 2.8
presents the top eleven versions of Mosquitto accessible from the Internet as of April 19th,
2023.

0.2 0.4 0.6 0.8 1 1.2 1.4

⋅10
4

1.4.10
1.6.10
1.5.7

2.0.11
2.0.15
1.4.15
1.6.9

1.4.13
1.4

1.5.9
1.4.8

Amount

Ve
rs

io
n

Outdated brokers accessible

Figure 2.8: Outdated Brokers Accessible (As of April 19th, 2023)

Assuming that version numbers are incremented whenever a patch is applied, the
results presented in Figure 2.8 confirm the lack of updates applied to MQTT brokers. This
situation is especially worrisome when considering that it is common for multiple versions
of Mosquitto to be released on the same day (Table 2.1), further reducing the likelihood of
IoT devices being up to date.

2.4.1 Related Work
Over the last few years, several fuzzing frameworks have been proposed to mitigate

these issues. In fact, MQTT is the only pub/sub protocol for which there have been a
multitude of fuzzing techniques proposed in the literature. As of April 19th 2023, search-
ing for mqtt fuzzers using Google Scholar yields several publications about fuzzing
techniques for MQTT. These research papers have been published in a wide variety of
sources, ranging from conference workshops to peer-reviewed journals. More specifically,
publications about MQTT fuzzers were mainly found in 6 conferences and 2 journals. The
6 conferences are as follows: ACM International Conference on Availability, Reliability,
and Security; IEEE Conference on Software Testing, Verification, and Validation; IEEE
International Symposium on Computers and Communications; IEEE International Wireless
Communications and Mobile Computing; IEEE World Congress on Services; and Italian
Conference on Cybersecurity. The 2 journals are Sensors; and Wireless Communications
and Mobile Computing.

5 https://www.shodan.io/. Accessed on April 19th, 2023

https://www.shodan.io/

20

2 | STATE OF THE ART IN PUB/SUB PROTOCOL FUZZING

Year 2020

Feb ∙ 27 : 1.6.9

May ∙ 25 : 1.6.10

Aug ∙ 11 : 1.6.11

19 : 1.5.10, 1.6.12

Dec ∙ 03 : 2.0.0

10 : 2.0.1, 2.0.2

17 : 2.0.3

22 : 2.0.4

Year 2021

Jan ∙ 11 : 2.0.5

28 : 2.0.6

Feb ∙ 04 : 2.0.7

Mar ∙ 11 : 1.5.11, 1.6.13,
1.6.14, 2.0.8, 2.0.9

Apr ∙ 03 : 2.0.10

Jun ∙ 09 : 1.6.15, 2.0.11

Aug ∙ 31 : 2.0.12

Oct ∙ 27 : 2.0.13

Nov ∙ 17 : 2.0.14

Year 2022

Aug ∙ 16 : 2.0.15

Table 2.1: Timeline of Mosquitto Version Releases (As of April 19th, 2023)

There are also remote-hosting services such as GitHub that provide access to MQTT
fuzzers based on different techniques than those proposed in the literature. As of April 19th
2023, searching for mqtt fuzzers on GitHub yields over 10 fuzzing frameworks specifically
designed for MQTT. For this research, the search results were narrowed by considering
high-ranking MQTT fuzzers on GitHub that were either developed by corporations or
published in peer-reviewed sources. High-ranking repositories on GitHub are determined
by the number of stars. Three MQTT fuzzers were found that meet this criteria: Scapy’s
fuzz() function (Philippe Biondi and the Scapy Community, 2023), mqtt_fuzz (F-
Secure Corporation, 2015) and IoT-Testware (Eclipse Foundation, 2018). Table 2.2
presents URLs for every open source MQTT fuzzer found on Google Scholar and GitHub.
The column Published highlights the fuzzers that were peer-reviewed and accepted for a
journal or conference publication.

All of the fuzzers shown in Table 2.2 use different strategies for testing purposes. Thus,
Table 2.3 further classifies each MQTT fuzzer into two categories: (1) understanding the

2.4 | MQTT FUZZING

21

target broker; and (2) test case generation technique.

Fuzzer GitHub Repository Year Last Updated Published
fuzz() https://github.com/secdev/scapy/blob/master/scapy/packet.py 2008 April 8, 2023
mqtt_fuzz https://github.com/F-Secure/mqtt_fuzz 2015 March 21, 2022
Polymorph https://github.com/shramos/polymorph 2018 April 11, 2022 ✔

IoT-Testware https://github.com/eclipse/iottestware.fuzzing 2018 October 15, 2019
MQTTSA https://github.com/stfbk/mqttsa 2019 March 9, 2022 ✔

CyberExploit https://github.com/CyberExploitProject/CyberExploit 2020 August 9, 2020 ✔

MultiFuzz https://github.com/hdusoftsec/MultiFuzz 2020 September 3, 2021 ✔

AFLNet-MQTT https://github.com/SuhithaG/MQTT-fuzzing-using-AFLNET 2020 November 29, 2020
Aichernig et al. (2021) https://github.com/DES-Lab/Learning-Based-Fuzzing 2021 April 13, 2021 ✔

Di Paolo et al. (2021) https://github.com/aedoardo/mqtt 2021 September 22, 2021 ✔

FUME https://github.com/PBearson/FUME-Fuzzing-MQTT-Brokers 2022 March 6, 2023 ✔

Table 2.2: Open Source MQTT Fuzzers

Existing
Frameworks

Understanding Target Broker Test Case Generation Technique Open
SourceBlackbox Greybox Whitebox Naive Mutation-Based Generation-Based Hybrid

fuzz() ✔ ✔ ✔

mqtt_fuzz ✔ ✔ ✔

Polymorph ✔ ✔ ✔

IoT-Testware ✔ ✔ ✔

MQTTSA ✔ ✔ ✔

MultiFuzz ✔ ✔ ✔

AFLNet-MQTT ✔ ✔ ✔

Anantharaman et al. (2017) ✔ ✔

CyberExploit ✔ ✔ ✔

Sochor et al. (2020a) ✔ ✔

Di Paolo et al. (2021) ✔ ✔ ✔

Aichernig et al. (2021) ✔ ✔ ✔

Defensics ✔ ✔

FUME ✔ ✔ ✔

Table 2.3: Related Work

The first category refers to a fuzzer’s awareness of the internals of a broker. In that
regard, a blackbox fuzzer is completely unaware of the internals of the broker. No program
analysis is used to generate the test cases. A greybox fuzzer is partially aware of the
internals of the broker. New test cases are generated based on feedback received during
testing, such as the number of lines or statements executed in the source code (statement
coverage). A whitebox fuzzer is completely aware of the internals of the broker. In terms
of the second category, a naive fuzzer generates test cases without considering the formal
specifications of the protocol. Mutation-based fuzzers introduce small changes to existing
test cases, whereas generation-based fuzzers generate test cases from scratch. A hybrid

fuzzer combines aspects of both mutation- and generation-based fuzzers to generate the
test cases. For example, it generates test cases from scratch; mutates them; generates new
test cases, and so forth. The following subsections are organized based on the second
category, explaining each MQTT fuzzer in depth.

Naive

Recent works have used Scapy to generate malformed network packets (Melo and
Geus, 2017; Eclipse Foundation, 2018; Hernández Ramos et al., 2018). Network packets
can be crafted from scratch and fuzzed using Scapy’s fuzz() function 6, which can be

6 https://github.com/secdev/scapy/blob/master/scapy/packet.py. Accessed on April 19th, 2023

https://github.com/secdev/scapy/blob/master/scapy/packet.py
https://github.com/F-Secure/mqtt_fuzz
https://github.com/shramos/polymorph
https://github.com/eclipse/iottestware.fuzzing
https://github.com/stfbk/mqttsa
https://github.com/CyberExploitProject/CyberExploit
https://github.com/hdusoftsec/MultiFuzz
https://github.com/SuhithaG/MQTT-fuzzing-using-AFLNET
https://github.com/DES-Lab/Learning-Based-Fuzzing
https://github.com/aedoardo/mqtt
https://github.com/PBearson/FUME-Fuzzing-MQTT-Brokers
https://github.com/secdev/scapy/blob/master/scapy/packet.py

22

2 | STATE OF THE ART IN PUB/SUB PROTOCOL FUZZING

classified as a naive fuzzer because it lacks knowledge of protocol specifications. Scapy’s
fuzz() function generates packets that are rejected by the broker almost immediately,
and thus has difficulty reaching deep protocol states.

Mutation

F-Secure Corporation (2015) proposed mqtt-fuzz, a mutation-based fuzzer whose
goal is to be user friendly for testing purposes. mqtt-fuzz is currently one of the most
popular MQTT fuzzers (Hernández Ramos et al., 2018; Palmieri et al., 2019), renowned
recently for finding a flaw in a message broker (Kwon et al., 2021). However, in its current
form, mqtt_fuzz is unaware of certain features and syntax rules defined in the standard,
meaning it may (1) occasionally craft syntactically invalid inputs; (2) require considerable
amount of test cases to reach deep protocol states; and (3) cover limited functionality of
MQTT.

Hernández Ramos et al. (2018) proposed Polymorph, a template-based fuzzer that
aims to reduce user effort. The architecture of Polymorph consists of three modules. The
sniffer module captures network packets exchanged between the client and the broker.
The template module generates templates based on network packets captured by the
sniffer module. The templates enable the fuzzer module to perform three tasks: (1) mutate
user-selected fields; (2) recalculate field attributes to maintain packet consistency; and (3)
send mutated packets to the broker. Despite having low CPU consumption, Polymorph
lacks syntactic knowledge about MQTT messages. Moreover, the test effectiveness of
Polymorph depends on packets captured by the sniffer module, which may not understand
all of MQTT’s functionality.

Similar to Hernández Ramos et al. (2018), Eclipse Foundation (2018) proposed IoT-
Testware, a fuzzer that is incapable of generating MQTT messages on its own, requiring
valid templates to gain program knowledge. Moreover, the fuzzer’s mutation strategy is
based on rules predefined by the user, which requires a deep understanding of MQTT to
configure the tests effectively.

Palmieri et al. (2019) proposed MQTTSA, a tool that detects security misconfigurations
in MQTT brokers, and then suggests mitigation strategies to users. MQTTSA consists of
several penetration-testing mechanisms, including a data tampering module that mutates
and sends packets to MQTT brokers. However, a recent study by Araujo Rodriguez
and Macêdo Batista (2020) showed that MQTTSA has low statement coverage during
testing.

Zeng et al. (2020) proposed MultiFuzz, a coverage-based fuzzer specifically designed
for multi-party protocols. The main feature of MultiFuzz is its ability to support multiple
connections during the fuzzing campaign, enabling it to act as multiple clients. In contrast to
other coverage-guided approaches such as AFL and AFLNet (Pham et al., 2020), MultiFuzz
can act as both a publisher and subscriber, thus being capable of generating test cases
that cover the main functionalities of the pub/sub design pattern. MultiFuzz has higher
path coverage than generic fuzzers such as AFL, MOPT, and AFLNet. For this thesis, path

coverage is defined as the number of paths executed in the source code. However, at the
time of writing, its coverage performance against fuzzers designed specifically for MQTT
is unknown.

2.4 | MQTT FUZZING

23

Sneha Suhitha Galiveeti and Pranitha Malae (2020) proposed AFLNet-MQTT, a
coverage-guided approach based on AFLNet for MQTT. The architecture of AFLNet-MQTT
is mostly the same as AFLNet, with the only two differences being the request and response
sequence parser, which are slightly modified to support MQTT. AFLNet-MQTT offers both
a stateless and stateful mode of execution. Sneha Suhitha Galiveeti and Pranitha
Malae (2020) evaluate AFLNet-MQTT using three metrics: number of hangs, number of
crashes, and path coverage. Despite testing Mosquitto for approximately 20 hours, AFLNet-
MQTT was incapable of triggering hangs or crashes in stateless mode (Sneha Suhitha
Galiveeti and Pranitha Malae, 2020). However, AFLNet-MQTT manages to produce
better results in stateful mode, triggering 29 unique hangs within 18 hours. Regardless of
the execution mode, AFLNet-MQTT underperforms considerably in terms of path coverage,
achieving at most 3.75%.

Generation

Anantharaman et al. (2017) developed MQTT parsers that recognize valid and invalid
messages, thereby avoiding potential security vulnerabilities. A parser and input language
were developed for specific MQTT messages. The message is processed only if it is recog-
nized by the parser, otherwise it is discarded. The authors developed a generation-based
fuzzer to test their parsers. The main limitations of this research are as follows. First,
their fuzzer only sends MQTT messages to the broker in correct order, meaning incorrect
functionality is neglected during testing. Second, more focus is given to the parsers than
their fuzzer’s input generation capabilities.

Casteur et al. (2020) demonstrated the effectiveness of Docker containers7 to fuzz
MQTT. For their fuzzer, the authors opted to define packet fields manually or randomly,
rather than systematically using a grammar. As a result, their fuzzer does not cover all
of MQTT’s functionality during testing. For example, analyzing their fuzzer’s packet
generator8 reveals that if the User Name Flag of a CONNECT packet is set to 1, then the
Password Flag is also set to 1. However, according to the MQTT 3.1.1 standard, passwords
are optional if the User Name Flag is set to 1.

Sochor et al. (2020a) proposed a fuzz testing architecture for MQTT. The architecture
mainly consists of a test case generator and a test adapter. The test cases are generated using
Randoop, which is an online random test case generator. The test adapter is responsible
for the following tasks. First, it handles messages exchanged between the client and the
broker. Second, it sends packets based on existing vulnerabilities to the MQTT broker.
Although the architecture proved to be effective, the test case generator is not designed
with MQTT’s complex packet syntax or structure in mind, increasing the likelihood of it
crafting invalid messages more frequently.

Di Paolo et al. (2021) performed fuzz testing on five broker implementations and three
client implementations of MQTT. The authors developed a fuzzing framework to detect
undefined behaviors in MQTT implementations. The fuzzing framework receives a JSON

7 https://www.docker.com/. Accessed on March 23rd, 2023
8 https://github.com/CyberExploitProject/CyberExploit/blob/master/PacketsGenerator/v1/mqtt_gen.py.

Accessed on March 23rd, 2023

https://www.docker.com/
https://github.com/CyberExploitProject/CyberExploit/blob/master/PacketsGenerator/v1/mqtt_gen.py

24

2 | STATE OF THE ART IN PUB/SUB PROTOCOL FUZZING

file as input, which specifies the message sequence for each test scenario. The behavior of
the target system was monitored when handling long message topics, incorrect packet
sequences/fields, and delayed transmissions. Despite detecting potential weaknesses in
MQTT implementations, the authors failed to provide information regarding their fuzzer’s
statement or path coverage.

Aichernig et al. (2021) introduced a tool that uses a technique based on automata
learning to automatically infer the message syntax and sequence of a network protocol.
The learned model is then used to generate test cases for the fuzzing campaign. The authors
performed a case study on five MQTT implementations to validate their learning-based
technique. According to the authors, the learning-based fuzzing approach found inconsis-
tencies in five MQTT implementations, proving to be effective. The fuzzing framework
supports only version 5.0 of the MQTT protocol, which is considerably less popular than
version 3.1.1 (Di Paolo et al., 2021).

Hybrid

Synopsis (2021) developed Defensics, which is a hybrid fuzzer for multiple domains,
including interfaces, files, and network protocols. Defensics allows users to: (1) customize
pre-built test cases, or (2) write custom-made test cases using a Software Development Kit
(SDK). Defensics is updated regularly to support new protocol specifications. However, at
the time of writing, Defensics lacks support for the latest version (5.0) of MQTT. Further
details of Defensics’ test generation capabilities are unknown due to its proprietary
nature.

Pearson et al. (2022) proposed FUME, a hybrid fuzzer that uses Markov modeling and
finite state machines to make several choices throughout the fuzzing campaign, such as
selecting between mutation- and generation-based approaches.

25

Chapter 3

A Grammar-Based Fuzzing
Technique for a Pub/Sub
Protocol

It is important for fuzzers to: (1) possess knowledge of MQTT’s specifications; (2) cover
all functionalities; and (3) guarantee acceptance by the broker. However, current fuzzing
frameworks have limitations in all three categories.

Existing naive fuzzers, such as Scapy’s fuzz() function (Philippe Biondi and the
Scapy Community, 2023), lack program knowledge, meaning that fuzzed packets may be
immediately rejected by the broker, and thus deep protocol states are difficult to reach
during testing. Although injecting abnormal packets is effective, it is important to adhere
to protocol specifications.

Existing mutation-based fuzzers (F-Secure Corporation, 2015; Hernández Ramos
et al., 2018; Eclipse Foundation, 2018), gain program knowledge through samples or
templates. Although mutation-based fuzzing speeds up test generation, it also lacks knowl-
edge of protocol specifications, meaning it may occasionally: (1) craft syntactically invalid
inputs; (2) require considerable amount of test cases to reach deep protocol states; (3)
cover limited functionality of MQTT; and (4) require a deep understanding of MQTT’s
specifications to configure the fuzzer effectively.

Existing generation-based fuzzers (Casteur et al., 2020; Sochor et al., 2020b), have
limited knowledge of MQTT’s specifications, and thus have difficulties to cover all of its
features.

All of the aforementioned problems stem from the lack of a systematic and effective
input generation scheme, which is a current research challenge for several target sys-
tems (C. Chen et al., 2018) including pub/sub protocols. Among several schemes, grammar-

based fuzzing is considered to be the most effective for applications with complex input
structures (Godefroid et al., 2017). Grammar-based fuzzers, as their name suggests, gain
knowledge from grammars, which are among the most reliable sources for knowledge
acquisition.

26

3 | A GRAMMAR-BASED FUZZING TECHNIQUE FOR A PUB/SUB PROTOCOL

Thus far, research on grammar-based fuzzing for MQTT or any other pub/sub pro-
tocol is currently non-existent and unexplored. Developers have opted for alternatives
to grammar-based approaches throughout the years due to their complicated and time-
consuming nature (Hernández Ramos et al., 2018). For example, Aichernig et al. (2021)
propose an automata-learning technique to infer the message syntax of MQTT without
the need for a grammar. Hernández Ramos et al. (2018), Zeng et al. (2020), Casteur et al.

(2020), Di Paolo et al. (2021), and Pearson et al. (2022) provide their MQTT fuzzers with
templates for them to gain an understanding of the message syntax, thereby avoiding
grammars altogether.

Despite their complexity, grammars offer several advantages over other knowledge
acquisition sources: (1) higher level of automation for generating packets; (2) higher
flexibility for integrating into fuzzing frameworks; (3) better understanding of the protocol
and its control packet structure; (4) higher flexibility for developers to modify for their
own needs, (5) guaranteed acceptance by the broker; (6) higher feature coverage of the
protocol; and (7) systematic and efficient test generation.

Grammar-based approaches for MQTT are not only necessary, but also demanded
across several research studies (Hernández Ramos et al., 2018; Sochor et al., 2020b). Al-
though developers and researchers have expressed interest, the literature lacks information
about how to apply grammar-based fuzzing to pub/sub protocols. Thus, the main question
worth answering is:

RQ1: How can a grammar-based fuzzer for a pub/sub protocol such as MQTT be

developed?

The following sections propose a new methodology and an architecture in order to
develop a grammar-based fuzzer for a pub/sub protocol such as MQTT.

3.1 Architecture
The grammar-based approach is incorporated into a new network-based fuzzer called

MQTTGRAM. The architecture of MQTTGRAM consists of two major components, which are
the Response Engine and the Packet Generator, as shown in Figure 3.1.

MQTT state

TCP state

Response Engine

Grammar 3.1.1

Packet Generator

MQTT broker

MQTTGRAM

start
state packet

response

Figure 3.1: Architecture of MQTTGRAM

3.1 | ARCHITECTURE

27

The response engine and packet generator work collectively to fuzz a pub/sub bro-
ker. The response engine is mainly responsible for supporting a two-way communication

between the fuzzer and the broker. The response engine consists of two subcomponents.
The first subcomponent, TCP State, handles the TCP sequence and acknowledgment
numbers for each packet sent to the broker. The second subcomponent, MQTT State,
handles and analyzes messages received from the broker in order to identify which state

of the protocol has been reached at a particular moment during testing. This information
is then provided to the packet generator, which generates a response message to guide the
fuzzing process to the next state considering the sequence defined by the standard (See
Appendix C, Section C.2 for further details). The messages are in hexadecimal notation,
which is often used in networking to represent packet formats. The packet generator of
MQTTGRAM generates hexadecimal strings from a grammar considering the format defined
by the MQTT 3.1.1 standard (Andrew Banks and Rahul Gupta, 2014). The hexadecimal
string is then sent to the broker as an MQTT packet. A simple example of the MQTT 3.1.1
grammar and its expansion rules is shown below:

⟨start⟩ ::= ⟨packets⟩

⟨packets⟩ ::= ⟨publish⟩

⟨publish⟩ ::= ⟨fixed-header⟩⟨variable-header⟩

| ⟨fixed-header⟩⟨variable-header⟩⟨payload⟩

⟨fixed-header⟩ ::= ‘Hexadecimal string of fixed header’
⟨variable-header⟩ ::= ‘Hexadecimal string of variable header’
⟨payload⟩ ::= ‘Hexadecimal string of payload’

Figure 3.2: Simple Example of the MQTT 3.1.1 Grammar in Backus-Naur Form

Nonterminal symbols are on the left and enclosed between angle brackets (<>). Substi-
tution options or expansion rules for the nonterminal symbol are on the right. Expansion
rules describe how to replace nonterminals with terminal symbols, which can not be
substituted or expanded any further. The end result is a string that consists entirely of
terminal symbols, which in this case are hexadecimal digits representing an MQTT packet.
The proposed grammar has a nonterminal symbol <packets> that describes expansion
rules for each MQTT packet. The selection of the expansion rule depends on the packet
required by the response engine to reach the next protocol state. For example, if the
response engine requires a publish packet, then the nonterminal symbol chosen to be
expanded is <publish>. The algorithm then randomly selects a production rule to generate
a publish packet either with or without a payload. It is worth noting that network packets
are usually divided into three fields: (1) the fixed header; (2) the variable header; and (3)
the payload (See Appendix C, Section C.1 for further details). Following this premise, the
grammar developed for MQTTGRAM has production rules to generate each field accordingly.
The end result of the proposed grammar is the concatenation of hexadecimal strings for
the fixed header, variable header, and payload, which together make up an MQTT 3.1.1
message.

28

3 | A GRAMMAR-BASED FUZZING TECHNIQUE FOR A PUB/SUB PROTOCOL

3.2 Algorithms
Algorithm 1 presents the pseudocode of a generation-based fuzzing approach that uses

a grammar to generate network packets from scratch. The algorithm is explained in the
following subsections.

Algorithm 1: Grammar-Based Fuzzing Approach for MQTT
Input: Protocol State 𝑆

1 while stopping_criterion == false do
2 𝑡 ← 𝑠𝑒𝑙𝑒𝑐𝑡_𝑝𝑎𝑐𝑘𝑒𝑡_𝑡𝑦𝑝𝑒(𝑆);
3 𝑚 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑝𝑎𝑐𝑘𝑒𝑡(𝑡);
4 𝑟 ← 𝑓 𝑒𝑒𝑑_𝑖𝑛𝑝𝑢𝑡(𝑚);
5 𝑆 ← 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒_𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒(𝑟);
6 𝐿 ← 𝑚𝑜𝑛𝑖𝑡𝑜𝑟_𝑝𝑟𝑜𝑔𝑟𝑎𝑚(𝑆)

Output: 𝐿

3.2.1 Selecting the Packet Type
Network packets must follow a particular order to reach deep protocol states. For

example, a DISCONNECT packet must be sent only if the MQTT client is in a connected

state. The interactions must adhere to formal specifications of the protocol, transitioning
to different states in the correct order. Protocol states are determined by control packets
(See Appendix C, Table C.1 for further details). For example, if an MQTT client receives a
CONNACK packet from the broker, then the client is connected.

MQTTGRAM uses an approach that selects and generates packets based on the current
broker state. For example, at the beginning of the test run, a fuzzer based on the proposed
approach is in a disconnected state because it has not established a connection with the
broker. Thus, it performs a Transmission Control Protocol (TCP) handshake and sends
a CONNECT packet to the broker. If MQTTGRAM receives a CONNACK packet from the
broker, then it has successfully transitioned to a connected state.

3.2.2 Generating the Packets
Protocol fuzzers need to possess knowledge of both the input structure and states,

maintaining execution consistency throughout the fuzzing campaign (Yurong Chen et al.,
2019). It is not enough to simply gain program knowledge through a grammar. The fuzzer
needs to be state-aware (Kitagawa et al., 2010), and generate packets based on the type
of packets received from the broker. Moreover, the fuzzer needs to generate the necessary
packets to reach deep protocol states.

Derivation of Hexadecimal Strings

Algorithm 2 presents the pseudocode for the derivation of hexadecimal strings from
an MQTT grammar. The process of choosing a nonterminal and applying an expansion
rule is adapted from (Zeller et al., 2020) considering the MQTT standard.

3.2 | ALGORITHMS

29

Algorithm 2: Derivation of Hexadecimal String from an MQTT Grammar
Input: Packet Type 𝑡 , Grammar 𝑔

1 while nonterminals from t > 0 do
2 𝑛 ← 𝑐ℎ𝑜𝑜𝑠𝑒_𝑛𝑜𝑛𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙(𝑡, 𝑔);
3 𝑒 ← 𝑐ℎ𝑜𝑜𝑠𝑒_𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛_𝑟𝑢𝑙𝑒(𝑛, 𝑔);
4 𝑠 ← 𝑎𝑝𝑝𝑙𝑦_𝑒𝑥𝑝𝑎𝑛𝑠𝑖𝑜𝑛(𝑒, 𝑛);

5 for field_lengths in 𝑠 do
6 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒(𝑓 𝑖𝑒𝑙𝑑_𝑙𝑒𝑛𝑔𝑡ℎ𝑠);

7 𝑝 ← 𝑐𝑜𝑛𝑣𝑒𝑟𝑡_𝑠𝑡𝑟𝑖𝑛𝑔_𝑡𝑜_𝑏𝑦𝑡𝑒𝑠(𝑠);
8 𝑚 ← 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒_𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔_𝑙𝑒𝑛𝑔𝑡ℎ(𝑝);

Output: 𝑚

The MQTT 3.1.1 standard states that several packet fields must be represented as UTF-8
encoded strings, such as usernames, passwords, and topic names. Each UTF-8 encoded
string is prefixed with a two-byte length field. This is required in order to identify multiple
UTF-8 encoded strings correctly. Thus, when there are no further expansions, Algorithm 2
calculates the length of each UTF-8 encoded string and remaining length (lines 5-8).

Figure 3.3 presents an example of Algorithm 2 when generating a PUBLISH

packet.

<start>

<packets>

<connect>

. . .

<publish>

\x3

\x3

\x3

<publish_fixed_header_qos0>

<publish_reserved_qos0>

1

1

<remaining-length>

\t

\x03

\x03

<publish_variable_header_qos0>

<string-length>

\n\n

\x00\x01

\x00\x01

<topic-name>

<utf8-characters>

<utf8-latin-smallletters>

\x6d

\x6d

<subscribe>

. . .

Step 1

Step 2

Step 5

Step 4

Step 3

Figure 3.3: Derivation Tree for a PUBLISH Packet in Hexadecimal Notation

The steps performed by Algorithm 2 to generate the hexadecimal string that represents
a PUBLISH packet, shown in Figure 3.3, are as follows.

Step 1: The derivation process begins with a start symbol <start>, which is expanded

30

3 | A GRAMMAR-BASED FUZZING TECHNIQUE FOR A PUB/SUB PROTOCOL

into the nonterminal symbol <packets>. The symbol <packets> has fourteen ex-
pansion alternatives, each one being a type of MQTT packet. In this case, the
nonterminal symbol <publish> is chosen to be expanded. The symbol <publish>
has four expansion rules. However, Figure 3.3 presents only one of these expansions
rules (\x3<publish_fixed_header_qos0><publish_variable_header_qos0>)
for simplicity purposes. The expansion rule shown in Figure 3.3 is for PUBLISH

packets whose QoS level is set to 0, and the payload is absent. The expansion rule is di-
vided into three fields in Figure 3.3 to better illustrate the methodology. The first field
\x3 is a terminal symbol that consists of three characters: \x mean that digits are in
hexadecimal; and 3 represents the value of a PUBLISH packet according to the MQTT
3.1.1 standard. The second field <publish_fixed_header_qos0> is expanded into
two nonterminal symbols: <publish_reserved_qos0> and <remaining_length>.
The symbol <publish_reserved_qos0> is substituted for 1, which signifies that
the Retain Flag in the packet is set to 1. The symbol <remaining_length> is substi-
tuted for \t, which is a temporary symbol that will be replaced with the remaining
length in Step 4. The third field <publish_variable_header_qos0> is also ex-
panded into two nonterminal symbols: <string-length> and <topic-name>. Simi-
lar to <remaining_length>, the symbol <string-length> is substituted for \n\n,
which will be replaced with the actual length of <topic-name> in Step 3. The sym-
bol <topic-name> is expanded into the nonterminal symbol <utf8-characters>,
which currently has four expansion alternatives: <utf8-numbers>, <utf8-latin-
capitalletters>, <utf8-latin-smallletters>, <utf8-symbols>. In this case,
Algorithm 2 randomly chooses <utf8-latin-smallletters>, which is substituted
for \x6d, representing the letter m. It is worth noting that the grammar is recursive,
meaning nonterminal symbols such as <utf8-latin-smallletters> or <topic-
name> can be expanded an infinite number of times, yielding complex inputs.

Step 2: When all nonterminals have been expanded, a hexadecimal string is produced.

Step 3: Using regular expressions, all UTF-8 encoded strings are retrieved by searching
for \n\n, and their length is calculated.

Step 4: The remaining length of the packet is calculated, hence the importance of calcu-
lating the length of all UTF-8 encoded strings in Step 3.

Step 5: When all necessary field lengths are calculated, the derived output is a byte string
that represents an MQTT packet.

3.2.3 Feeding the Packets

MQTTGRAM interacts directly with the broker rather than acting as a man-in-the-middle.
This approach provides more control over the packets that are generated during the test
run. Rather than requiring initial test cases, MQTTGRAM generates its own network packets
to communicate with the broker successfully.

3.3 | PERFORMANCE EVALUATION

31

3.2.4 Evaluating the Response
MQTTGRAM sends mainly five types of packets to the broker: PUBLISH, SUBSCRIBE,

UNSUBSCRIBE, PINGREQ, and DISCONNECT. For every packet sent, the last response
from the broker is evaluated based on the TCP flag and the broker state. If the packet’s TCP
flag is set to Finish (FIN) or Reset (RST), MQTTGRAM reconnects to the broker automatically;
otherwise MQTTGRAM analyzes the type of MQTT packet, and responds accordingly. For
example, if the broker sends a PUBLISH packet, MQTTGRAM responds by sending a PUBACK

packet or PUBREC packet when the QoS level is set to 1 and 2 respectively.

3.2.5 Monitoring the Program
The fuzzing process is monitored constantly for any crashes or errors until a stopping

criterion has been satisfied. Logs are used to store information about the test run.

3.3 Performance Evaluation
The performance of the proposed grammar-based approach is compared with that of

a naive fuzzer (fuzz()), a mutation-based fuzzer (mqtt_fuzz), and a generation-based
fuzzer (Sochor et al., 2020b). fuzz() and mqtt_fuzz are among the most popular naive
and mutation-based fuzzers, respectively, and thus were chosen for the experiments.
The fuzzer by Sochor et al. (2020b) was chosen for its promising vulnerability-oriented
approach, however it is proprietary, meaning it could not be evaluated on the testbed
developed for the doctoral studies. As a result, the grammar-based approach was evaluated
in the same manner as the fuzzer by Sochor et al. (2020b) for comparison purposes.

Two variants of MQTTGRAM were developed in order to evaluate how probabilistic
settings for control packet types affect the performance of the proposed grammar-based
approach. The first variant, mqttgram-c, sends MQTT packets to the broker in correct
order, and packets sent to the broker have the same probability of being generated. The
second variant, mqttgram-cf, sends MQTT packets in correct order, and occasionally
out of order. Moreover, each PUBLISH, SUBSCRIBE, and UNSUBSCRIBE packet has a 25%
chance of being generated; PINGREQ has a 15% chance, and DISCONNECT has a 10% chance.
Considering these slight modifications, mqttgram-c covers only correct functionalities,
whereas mqttgram-cf covers both correct and failed functionalities. Moreover, mqttgram-
cf’s configuration of sending packets out-of-order and preferring packets with topic fields
is based on existing MQTT vulnerabilities.

The effectiveness of the proposed grammar-based approach is evaluated using two
metrics: (1) statement coverage and (2) input coverage, the latter of which is considered
indispensable when developing grammar-based approaches (Havrikov and Zeller, 2019).
Mosquitto and Moquette were chosen as the target systems because they rank among
the most popular MQTT brokers (Hernández Ramos et al., 2018; Sochor et al., 2020b).
Two separate experiments were conducted, each satisfying a different stopping criterion.
For the first experiment, the fuzzers perform 3- and 30-minute test runs. For the second
experiment, the fuzzers test the brokers until 500 and 8000 packets have been exchanged
between both parties. The testbed shown in Figure 1.3, and explained in Section 1.2.2 was

32

3 | A GRAMMAR-BASED FUZZING TECHNIQUE FOR A PUB/SUB PROTOCOL

used for the performance evaluation. It is worth noting that Sochor et al. (2020b) chose
Moquette as the target system to evaluate their fuzzer, hence its absence in figures based
on Mosquitto.

3.3.1 Mosquitto
Figure 3.4a presents the statement coverage achieved by the fuzzers in 3 minutes.

fuzz() has the lowest statement coverage, executing at most 1125 statements and at the
very least 1083. mqttgram-c manages to have higher statement coverage than fuzz(),
executing at most 2017 statements and at least 1799. Thus, mqttgram-c performs at most
59.91% better because it has knowledge of MQTT’s specifications. mqtt_fuzz manages to
execute at most 2069 statements, performing 83.91% and 2.58% better than fuzz() and
mqttgram-c respectively. mqttgram-cf fared slightly better, achieving a coverage increase
of at most 0.68% and 85.15% compared to mqtt_fuzz and fuzz() respectively.

m
qt

tg
ra

m
-cf

m
qt

t_
fu

zz
m

qt
tg

ra
m

-c

fu
zz

()

1000

1200

1400

1600

1800

2000

MQTT Fuzzers

#
o
f

s
t
a
t
e
m

e
n

t
s

Statement Coverage (3 minutes)

(a)

m
qt

t_
fu

zz

fu
zz

()
m

qt
tg

ra
m

-c
m

qt
tg

ra
m

-cf

0.5

1

1.5

2

⋅10
4

MQTT Fuzzers

#
o
f

p
a
c
k
e
t
s

Packet Exchange (3 minutes)

(b)

Figure 3.4: Results of 3-Minute Test Runs

mqtt_fuzz manages to have better statement coverage overall because it exchanges
a considerable amount of packets with the broker, as shown in Figure 3.4b. On average,
mqtt_fuzz and Mosquitto exchange 20111 packets, approximately 544.79%, 765.36%, and
783.61% more than fuzz(), mqttgram-c, and mqttgram-cf respectively. Since mqtt_fuzz
sends more packets to Mosquitto, there is a higher probability that more code paths are
traversed during a short amount of time (3 minutes). However, mqttgram-cf is more
effective than its counterpart, executing 2083 statements while exchanging only 2,258
packets. mqttgram-cf has higher statement coverage because it considers correct and
failed functionalities of MQTT. Moreover, mqttgram-cf triggers more functionalities of
MQTT because it has knowledge of its specifications. fuzz() manages to send more
packets to Mosquitto than mqttgram-c and mqttgram-cf within the same time frame.
This is because fuzz() generates random packets without considering the MQTT standard.

3.3 | PERFORMANCE EVALUATION

33

For simplicity purposes, the following figures do not present the results of fuzz() because
it achieves low performance in terms of statement coverage.

Although mqtt_fuzz has the highest statement coverage overall in 3 minutes, a differ-
ent outcome occurs in 30 minutes (Figure 3.5a). Among all MQTT fuzzers, mqttgram-cf
has the highest statement coverage, executing 2140 statements at most, which is approx-
imately up to 90%, 1.51%, and 0.99% more than fuzz(), mqttgram-c, and mqtt_fuzz
respectively. It is worth noting that on average mqttgram-cf and Mosquitto exchange
the lowest number of packets (Figure 3.5b), approximately 22995; thus confirming the
effectiveness of the proposed grammar-based approach.

m
qt

tg
ra

m
-cf

m
qt

t_
fu

zz

m
qt

tg
ra

m
-c

2020

2040

2060

2080

2100

2120

2140

MQTT Fuzzers

#
o
f

s
t
a
t
e
m

e
n

t
s

Statement Coverage (30 minutes)

(a)

m
qt

t_
fu

zz

m
qt

tg
ra

m
-c

m
qt

tg
ra

m
-cf

0.5

1

1.5

2

2.5

⋅10
5

MQTT Fuzzers

#
o
f

p
a
c
k
e
t
s

Packet Exchange (30 minutes)

(b)

Figure 3.5: Results of 30-Minute Test Runs

Over time, both variants of MQTTGRAM have higher statement coverage because they
possess knowledge of MQTT’s packet format, thus triggering all possible behaviors. The
remaining fuzzers have an average number of packets exchanged with the broker as
follows: mqtt_fuzz: 218557; mqttgram-c: 23364; and fuzz(): 30993.

Figure 3.6a presents the input coverage achieved by the MQTT fuzzers when exchang-
ing exactly 500 packets with the broker. mqtt_fuzz has the highest coverage performance,
executing 2005 statements. mqttgram-c, mqttgram-cf, and fuzz() execute at most 1961,
1971, and 1118 statements respectively. Although variants of MQTTGRAM have lower cov-
erage than their counterparts, exchanging 8000 packets with Mosquitto has a different
outcome (Figure 3.6b). On average, mqttgram-c and mqttgram-cf execute 2009 and 2060
statements respectively. The results of both variants are higher than their counterparts,
confirming that they test more functionality of MQTT effectively.

Moquette

This section presents a performance comparison between MQTTGRAM and the fuzzer
proposed by Sochor et al., 2020b, which also developed two variants of their approach.

34

3 | A GRAMMAR-BASED FUZZING TECHNIQUE FOR A PUB/SUB PROTOCOL

m
qt

t_
fu

zz

m
qt

tg
ra

m
-cf

m
qt

tg
ra

m
-c

1800

1900

2000

MQTT Fuzzers

#
o
f

s
t
a
t
e
m

e
n

t
s

Input Coverage (500 packets)

(a)

m
qt

tg
ra

m
-cf

m
qt

tg
ra

m
-c

m
qt

t_
fu

zz

1950

2000

2050

2100

MQTT Fuzzers

#
o
f

s
t
a
t
e
m

e
n

t
s

Input Coverage (8000 packets)

(b)

Figure 3.6: Results of 500- and 8000-Packet Test Runs

The first variant generates packets that are not based on existing vulnerabilities of MQTT,
whereas the second variant generates packets based on a list of twenty-five cyberattacks.
mqttgram-cf is classified as being vulnerability-oriented in Table 3.1 because it is designed
to send packets with topic fields much more frequently. This design choice is based on the
fact that several implementation flaws in MQTT have been uncovered with topic-based
packets (Di Paolo et al., 2021).

Since Sochor et al. (2020b) measure statement coverage for each source code directory
of Moquette, the performance of MQTTGRAM is evaluated in the same manner to enable a
comparison between the two fuzzers. Table 3.1 presents the statement coverage achieved
by the two variants of MQTTGRAM and the fuzzer proposed by Sochor et al. (2020b) during
30 minutes.

Source Code
(Directory)

Fuzzed packets not based on existing vulnerabilities Fuzzed packets based on existing vulnerabilities
Sochor et al. 2020 mqttgram-c Sochor et al. 2020 mqttgram-cf

broker 57.8% 66.34% 58% 67.57%
broker.security 11.3% 15% 12.8% 15%
broker.subscriptions 59.0% 73.52% 63.9% 73.92%
broker.config 49.3% 51% 49.3% 51%
broker.metrics 77.5% 73% 77.5% 73%
persistence 9.1% 9% 9.1% 9%
interception 32.3% 30% 32.3% 30%
Logging 62.5% 43% 62.5% 43%
Total 50.0% 56.76% 51.4% 57.24%

Table 3.1: Statement Coverage of Moquette Achieved by MQTT Fuzzers in 30 Minutes (Results

by Sochor et al. (2020b) were copied directly from their research paper due to their fuzzer being

proprietary)

It is worth noting that the fuzzer proposed by Sochor et al. (2020b) is not publicly
available. Thus, the performance of MQTTGRAM is compared with results shown in their
research paper (Sochor et al., 2020b). Moreover, results by Sochor et al. (2020b) are based

3.3 | PERFORMANCE EVALUATION

35

on a single thirty-minute fuzzing campaign, whereas the results of MQTTGRAM in Table 3.1
are based on the average of a hundred test runs.

Table 3.1 highlights in bold the highest statement coverage for each directory of
Moquette. Both variants of MQTTGRAM have the highest statement coverage in the bro-
ker.security directory. Although mqttgram-c is geared towards correct functionality of
MQTT, it manages to outperform the vulnerability-oriented fuzzer by Sochor et al. (2020b).
Moreover, although Sochor et al. (2020b) generated fuzzed packets based on twenty-five
cyberattacks, mqttgram-cf outperforms their approach by considering only two patterns
of existing MQTT vulnerabilities. This confirms that grammar-based approaches for MQTT
are not only efficient, but have better chances of triggering more flaws in MQTT.

3.3.2 Takeaway from Experiments
There are three takeaways from the experiments. First, mutation-based approaches,

such as mqtt_fuzz, are more suitable for short-lived fuzzing executions. Second, MQTT
fuzzers must possess knowledge of the protocol standard to test brokers effectively
over longer sessions. Third, mqttgram-cf demonstrated the possibility of using different
grammar-based approaches to achieve better results. It is worth noting that no crashes
were triggered during the test runs.

After developing and evaluating MQTTGRAM, the answer to RQ1 is as follows:

RQ1: How can a grammar-based fuzzer for a pub/sub protocol such as
MQTT be developed?

Network protocols support different types of packets, each usually consisting of
a fixed header, a variable header, and a payload. For the grammar, production
rules should be defined in accordance with the structure of a packet. For example,
each type of packet should have its own designated nonterminal symbol (<pub-
lish>), which then should be substituted with three nonterminal symbols, each
representing a layer of the packet (<fixed-header><variable-header><payload>).
A production rule has to be created for each optional field. For example, suppose
the payload of a packet is optional. Thus, two production rules will need to be
created for each scenario: (<fixed-header><variable-header><payload>) and (<fixed-
header><variable-header>). For variable-length fields, recursive production rules
are needed to generate complex values. Among variable-length fields, subscription
topics are one of, if not, the most important to test pub/sub protocols. A compromise
has to be made for production rules to generate unexpected, but semantically-
meaningful topics that activate and test message publishing features. A strategy
to overcome this challenge is to limit the character set in order to increase the
chances of generating the same topics across publication and subscription requests.
However, the derivation process by itself is insufficient to test message publishing
features because the fuzzer has to interact correctly with the broker in order to
receive subscription messages. Thus, a response engine and a packet generator
should operate collectively during a test run.

36

3 | A GRAMMAR-BASED FUZZING TECHNIQUE FOR A PUB/SUB PROTOCOL

3.4 Threats to Validity
Hardware: Sochor et al. (2020b) failed to provide any information whatsoever regarding

their testbed’s hardware configuration, which may or may not differ from that of
Figure 1.3. In terms of the former case, different hardware configurations may
provide an unfair performance comparison between the fuzzer proposed by Sochor
et al. (2020b) and its competitors. This threat to the validity of the experiments
is minimized, however, by using the same stopping criterion (30 minutes), metric
(statement coverage), and target broker (Moquette 0.13) chosen by Sochor et al.

(2020b) for their research study.

Metrics: Due to the absence of crashes, the effectiveness of the fuzzers was measured and
determined using statement coverage, which is a metric that indicates how likely an
implementation flaw will be discovered during a test run. However, statement cov-
erage provides no guarantees that a fuzzer will actually uncover an implementation
flaw in a target broker.

Time: In this research study, the fuzzers test the brokers for up to 30 minutes, which is
the same stopping criterion used by Sochor et al. (2020b) for their experiments. The
reason for using the same stopping criterion is to provide a more fair and consistent
comparison between results generated by Sochor et al. (2020b) and those generated
by the testbed presented in Figure 1.3. However, the coverage performance of the
fuzzers after 30 minutes is unknown, meaning that there is no way to guarantee that
the number of statements will either be the same or improve over longer periods of
time.

Repetitions: Experiment results generated by the testbed shown in Figure 1.3 are based
on one hundred test runs, whereas those provided by Sochor et al. (2020b) are
based on only one. The different number of test runs between both research studies
is a potential threat to the validity of the performance analysis and comparison
presented in Table 3.1.

3.5 Concluding Remarks
Existing fuzzing frameworks lack knowledge of MQTT’s specifications, hindering their

testing capabilities. As a result, several research papers have expressed interest in grammar-
based approaches, however the literature lacks information on how to apply them to
pub/sub protocols such as MQTT. This research aimed to address both of these limitations
by presenting a grammar-based approach that aims for high code and state coverage.
Based on our experiments, the grammar-based approach implemented in MQTTGRAM has
higher statement coverage than existing MQTT fuzzers. Thus, an important contribution
of this research is the confirmation that grammar-based approaches for pub/sub protocols
are not only viable, but also effective and promising for testing purposes. Furthermore,
the design considerations, architecture, methodology, and even challenges presented for
this research study can help developers to build grammar-based fuzzers for other pub/sub
protocols.

37

Chapter 4

Taxonomy and Coverage
Evaluation of Fuzzing Techniques
for the MQTT Protocol

While developing the new grammar-based fuzzing technique for MQTT, four additional
research gaps were identified in the literature regarding pub/sub protocol fuzzing:

Gap 1: Most research studies focus on the fuzzers’ bug-finding capabilities rather
than their coverage performance Although bug-finding is an important metric during
testing, it fails to provide sufficient feedback on how thoroughly the tests are performed
by the fuzzers. Several test coverage metrics are unused or neglected in most research
studies, such as statement coverage. For example, despite being among the most popular
and accessible fuzzers, mqtt_fuzz was evaluated in terms of statement coverage only until
recently (Araujo Rodriguez and Macêdo Batista, 2021). The literature also currently
lacks information regarding the fuzzers’ shortcomings in terms of feature and functionality
testing. This poses the question as to whether developers and existing fuzzers, regardless
of their testing technique, are considering the unique attributes of the pub/sub messaging
pattern. The issue is further aggravated by proprietary fuzzers such as Defensics, which
despite being popular, remains largely unstudied from a scientific perspective, with limited
information regarding its testing or coverage capabilities. As a result, unknown testing
capabilities currently hinder further advancements in the field of MQTT and pub/sub
protocol fuzzing.

Gap 2: The lack of baseline results for comparison purposes is clearly evident
across the literature, hindering possible opportunities for future work. For ex-
ample, Sneha Suhitha Galiveeti and PranithaMalae (2020) noted the lack of baseline
results in the literature, having no choice but to avoid performance comparisons for their
study. Zeng et al. (2020) compared their fuzzer with others unrelated to MQTT due to the
lack of baseline results. For this thesis, it was necessary to first create baseline results of
a naive- and mutation-based approach to demonstrate the advantages of MQTTGRAM, as
shown in Chapter 3.

38

4 | TAXONOMY AND COVERAGE EVALUATION OF FUZZING TECHNIQUES FOR THE MQTT PROTOCOL

Gap 3: Fuzzer evaluation is conducted inconsistently across the literature. Aich-
ernig et al. (2021) and Di Paolo et al. (2021) measure fuzzing effectiveness by the number
of security inconsistencies found across several brokers, neglecting coverage metrics
altogether. Casteur et al. (2020) use a scoring system to rank the effectiveness of each
scenario generated by their fuzzer. At the beginning of the fuzzing campaign, scenarios are
assigned an initial score, which is later incremented for each inconsistency found during
testing. Inconsistent behavior is determined by several factors such as slow broker response
times and error logs. The more inconsistencies found during testing, the higher the rank
of each scenario. Top-ranked scenarios are therefore considered more promising and
effective at testing MQTT implementations. Hernández Ramos et al. (2018) evaluate their
proxy fuzzer by considering the following criteria: the time to process and mutate packets;
the number of implementation flaws found during testing; and the CPU consumption
of the host machine. Palmieri et al. (2019) present the number and types of messages
intercepted by their fuzzer, as well as its threat detection and pub/sub capabilities. As a
future work, Palmieri et al. (2019) propose a more in-depth analysis of the effectiveness of
their framework in providing feedback to developers about the current broker configura-
tion. Anantharaman et al. (2017) fail to provide any sort of explanation regarding their
fuzzers’ performance during testing. In contrast, Sochor et al. (2020b) deeply explain the
issues identified across multiple brokers, as well as the number of unhandled exceptions
and test failures throughout the experiments. Sochor et al. (2020b) also present their
fuzzers’ statement coverage. For this thesis, statement coverage was chosen for evalua-
tion purposes, whereas Zeng et al. (2020) preferred path coverage, thereby hindering a
performance comparison between the two research studies. At the time of writing, only
the latter three research studies use traditional testing metrics to evaluate their proposals.
The reason behind this issue is due to the lack of standardized methods or metrics in the
literature to evaluate fuzzers for pub/sub protocols such as MQTT.

Gap 4: Lack of a performance comparison between MQTT fuzzers. This in turn
raises uncertainty about the improvement of subsequent fuzzers compared to their prede-
cessors. There is also a lack of awareness regarding the benefits and limitations of each
fuzzing technique for MQTT. This situation stems from the fact that no research study
has benchmarked existing MQTT fuzzers across a wide variety of testing and pub/sub
metrics.

Analyzing and evaluating multiple fuzzing techniques under the same conditions
provides opportunities to: (1) establish a necessary baseline for future research studies;
(2) raise awareness about their testing and pub/sub capabilities; and (3) offer constructive
feedback to their developers. This chapter therefore aims to answer the following research
questions:

RQ2: What fuzzing techniques have been proposed for MQTT over the last few

years?

RQ3: How effective are fuzzing frameworks for MQTT in terms of their testing

and pub/sub capabilities?

For RQ2, a literature review is conducted in order to develop a taxonomy based on
fuzzing techniques proposed specifically for MQTT brokers. The taxonomy presents a total

4.1 | DESIGN CONSIDERATIONS FOR MQTT FUZZERS

39

of sixteen fuzzing frameworks found across the literature, more so than for any other IoT
protocol. Table 2.3 classified MQTT fuzzers into four main categories based on their test
case generation technique. The proposed taxonomy goes one step further, and classifies
the MQTT fuzzers based on their distinguishing or innovative feature for testing purposes.
The taxonomy therefore provides a more detailed overview of the current state of the art
in terms of fuzzing techniques for MQTT.

In order to answer RQ3, at least one MQTT fuzzer from each category in the taxon-
omy is evaluated using three different types of criteria based on testing, pub/sub, and
MQTT-specific metrics respectively. The first criterion (testing) is based on statement

coverage, which is the most traditional, yet the most reliable metric to predict the quality
of test suites (Gopinath et al., 2014). The second criterion (pub/sub) is based on pub/sub

behavior, which is a metric that is used to evaluate whether the MQTT fuzzers are testing
message publication, which is the process in which the broker sends messages to interested
subscribers. Message publication is the most important and representative feature of the
pub/sub design pattern, meaning every pub/sub fuzzer should at least be capable of testing
it regardless of whether they are designed for MQTT or not. The second criterion is based
on a generic metric for pub/sub protocols, whereas the third criterion is based on features
specific to MQTT. For the third criterion, the MQTT fuzzers are evaluated in terms of their
testing capabilities for core features of MQTT: (1) QoS Levels; (2) Last Will and Testament;
(3) Retained Messages; and (4) Persistent Sessions. The results of the second and third
criteria are presented collectively as Feature Coverage in Section 4.3. The research findings
attest that most fuzzing frameworks are incapable of testing message publications and the
four core features of MQTT defined in the standard.

Overall, this chapter provides three main research contributions: (1) a taxonomical
classification of fuzzing techniques for MQTT; (2) a performance comparison and discus-
sion of fuzzing techniques proposed by several researchers for MQTT; and (3) a baseline
for future studies to compare with. It is worth noting that MQTT is the only pub/sub
protocol for which developers have a proposed a wide variety of fuzzing techniques in
the literature at the time of writing. Thus, this chapter classifies and evaluates most, if
not all, advancements in the field of pub/sub protocol fuzzing as well, despite focusing
specifically on MQTT. The lessons learned from this research study can therefore help lay
the foundation for effective pub/sub protocol fuzzing in general.

This chapter begins by explaining aspects that need to be considered by developers
when designing MQTT fuzzers regardless of their testing strategy. These explanations are
then followed by a taxonomical classification of techniques used by developers to fuzz
MQTT and pub/sub protocols in general. The final section of this chapter presents a perfor-
mance evaluation of each technique presented in the taxonomy. The design considerations
presented in the earlier sections of this chapter will play a key role in the evaluation.

4.1 Design Considerations for MQTT Fuzzers
The most difficult, and possibly the most important, types of bugs to find in pub/sub

brokers are those related to their message publishing features. These types of bugs are
not only a major threat to the security of the IoT application, but also to its QoS. From

40

4 | TAXONOMY AND COVERAGE EVALUATION OF FUZZING TECHNIQUES FOR THE MQTT PROTOCOL

a security standpoint, a bug can intentionally be exploited by a publisher to either crash
the broker or an end device acting as a subscriber. Another potential outcome is the
publisher uncovering a software weakness unintentionally, which can then be found and
exploited by subscribers to perform unauthorized actions. The latter outcome is actually
based on a real-world vulnerability found in an MQTT broker (CVE-2018-12546)1. From
a user standpoint, publication-related bugs may lead to low-quality experiences when
subscribers receive messages based on their topics of interest. In order to reduce these
risks, features based on the unique characteristics of the pub/sub design pattern need to
be tested thoroughly.

The main challenge of fuzzing MQTT implementations is that most of its pub/sub
features can only be tested if the fuzzer performs a specific type of connection, subscription,
and publication request. Certain features of MQTT also depend on user interactions from
previous sessions. The fuzzer must therefore reconnect using an existing client ID to
activate certain features at some point during testing. The complexity is further increased
with the release of MQTT 5.0 (Andrew Banks and Ed Briggs and Ken Borgendale
and Rahul Gupta, 2019), which introduces 27 user properties, each with its own specific
syntax and format. As a result, an MQTT fuzzer has to be designed in such a way that it
satisfies the necessary requirements to activate and test these features despite its random
nature. Regardless of the version of MQTT, every fuzzer should at least strive to activate
and test the following four pub/sub features defined in the standard.

QoS Levels

The delivery of messages to interested subscribers is guaranteed by specifying a QoS
level:

• Messages set to QoS level 0 are delivered to the subscriber at most once. The publisher
does not receive an acknowledgment from the broker.

• Messages set to QoS level 1 are delivered to the subscriber at least once until receiving
an acknowledgment from the broker.

• Messages set to QoS level 2 are delivered to the subscriber exactly once using a
four-way handshake.

Last Will and Testament

The Last Will and Testament is a feature whereby subscribers are notified if a pub-
lisher disconnects from the network unexpectedly. The broker detects an unexpected
disconnection if the publisher does not respond within a given time period. MQTT’s Last
Will and Testament feature can be considerably useful to inform the status of an IoT
device if a network failure or loss of battery power occurs. Since environment settings
can occasionally hinder device connectivity, this feature can help keep track of devices
and their status. Figure 4.1 presents an example of a device that unexpectedly disconnects
from the broker, which will then notify subscribers of the outcome.

1 https://nvd.nist.gov/vuln/detail/CVE-2018-12546. Accessed on June 12th, 2023

https://nvd.nist.gov/vuln/detail/CVE-2018-12546

4.1 | DESIGN CONSIDERATIONS FOR MQTT FUZZERS

41

Publisher Broker

Subscriber
1

Subscriber
2

X

Publisher Offline

Publisher Offline

Figure 4.1: Last Will and Testament Messages

Publishers can specify their last will messages when connecting to the broker. The
CONNECT packet has a Will Flag to activate this feature. If activated, publishers will need
to specify the Last Will Topic and its corresponding message. Clients subscribed to this
topic will be notified in the event of an unexpected disconnection.

Retained Messages

Retained Messages are messages delivered immediately to newly-subscribed MQTT
clients, as shown in Figure 4.2.

Subscriber Broker

1. Subscribe to topic:
device/status

2. Retained Message:
Offline

Figure 4.2: Retained Messages

The main benefit of this feature is that it offers subscribers the ability to receive infor-
mation automatically, rather than manually. Publishers specify these messages by setting
the Retain Flag to True. Only one retained message is allowed per topic. However, retained
messages can be updated when desired. If updated, messages are pushed automatically to
subscribers.

42

4 | TAXONOMY AND COVERAGE EVALUATION OF FUZZING TECHNIQUES FOR THE MQTT PROTOCOL

Persistent Session

A Persistent Session is a feature where a subscriber’s information is stored in the
broker, as shown in Figure 4.3.

Subscriber Broker

1. Reconnect to broker

2. Sending messages
from previous session

Figure 4.3: Persistent Session

If the subscriber disconnects from the broker, information such as subscriptions will
be retained, meaning resubscribing is unnecessary in later sessions. Persistent sessions
provide several benefits for IoT applications. First, persistent sessions can reduce workload
for users. For example, resubscribing can be unmanageable if users are subscribed to a
considerable number of topics. Second, persistent sessions can reduce inefficient network
usage and overhead for constrained devices (Giambona et al., 2018). Third, QoS 1 and 2
messages are queued until clients reconnect to the network. This can be useful if a device
disconnects temporarily to preserve battery power.

4.2 Taxonomy
Figure 4.4 presents the proposed taxonomy of MQTT fuzzers, all of which are classified

based on their core testing strategy.

MQTT Fuzzers

Naive Mutation Generation Hybrid

Philippe Biondi and the
Scapy Community (2023)

Man in the Middle

Hernández Ramos et al. (2018)

Eclipse Foundation (2018)

Direct

F-Secure Corporation (2015)

Palmieri et al. (2019)

Zeng et al. (2020)

Sneha Suhitha Galiveeti and
Pranitha Malae (2020)

Scenario

Anantharaman et al. (2017)

Casteur et al. (2020)

Di Paolo et al. (2021)

Attack

Sochor et al. (2020b)

Learning

Aichernig et al. (2021)

Grammar

Araujo Rodriguez and
Macêdo Batista (2021)

Gotkowicz and Cordeiro
(2022)

Synopsis (2021)

Pearson et al. (2022)

MQTT 3.1 - 3.1.1

MQTT 3.1.1

MQTT 3.1 - 5.0

MQTT 5.0

Evaluated
Compared

Analyzed

Figure 4.4: Taxonomy of Fuzzing Techniques for MQTT

4.3 | PERFORMANCE EVALUATION

43

The taxonomy uncovers that a wide variety of fuzzing-inspired approaches have
been proposed for MQTT, ranging from simple techniques based on templates to more
sophisticated algorithms based on Markov modeling and automata learning. In fact, more
techniques have been proposed for MQTT than for any other protocol in the last few
years. The MQTT fuzzers shown in the taxonomy are classified into four main categories:
(1) Naive; (2) Mutation; (3); Generation; and (4) Hybrid. The four categories are based on
the fuzzers’ input generation capabilities. Mutation-based fuzzers are further classified by
their type of interaction with the broker, being either direct or indirect, the latter of which
is referred to as proxy or man-in-the-middle fuzzing. Generation-based fuzzers are usually
interacting with the broker directly, and thus were classified by their packet-crafting
technique.

The fuzzers shown in the taxonomy are further classified by the version(s) of MQTT
supported for testing purposes. Dashed rectangles () indicate fuzzers that support
only version 3.1.1 of MQTT, whereas dotted rectangles () indicate fuzzers that
support only version 5.0. Fuzzers that support versions 3.1 and 3.1.1 are indicated by densely
dashed rectangles (), whereas fuzzers that support all three versions of MQTT (3.1,
3.1.1, and 5.0) are indicated by a rectangle with a dash-and-dot pattern ().

After developing the taxonomy of MQTT fuzzers, the answer to RQ2 is as fol-
lows:

RQ2: What fuzzing techniques have been proposed for MQTT over the last
few years?

The proposed taxonomy presents sixteen MQTT fuzzers, most of which are classified
as either a mutation- or generation-based approach. Mutation-based fuzzers are
split into direct- and man-in-the-middle-based approaches, the former of which is
more prevalent in the literature at the time of writing. Two main mutation-based
approaches currently exist for MQTT: coverage-guided and basic mutational fuzzing.
Generation-based fuzzers are more varied, consisting of four types: attack, learning,
grammar, and scenario; the latter being the most popular option. FUME is the only
fuzzer that supports all versions of the MQTT standard; whereas two fuzzers are
specifically built for v5.0; one is designed for both v3.1 and v3.1.1; and the remaining
twelve are only for v3.1.1.

4.3 Performance Evaluation

Now that the taxonomical classification has been developed, the main question left
unanswered is whether the techniques found across the literature were designed consider-
ing the unique attributes of the pub/sub design pattern. Thus, the goal of this section is
to determine the testing and pub/sub capabilities of each technique, thereby answering
RQ3. The MQTT fuzzers, brokers, and metrics chosen for the performance evaluation are
explained in the following sections.

44

4 | TAXONOMY AND COVERAGE EVALUATION OF FUZZING TECHNIQUES FOR THE MQTT PROTOCOL

MQTT Fuzzers

Figure 4.4 highlights in yellow the MQTT fuzzers that were evaluated on the testbed.
At least one fuzzing technique from each category in the taxonomy is evaluated to provide
a more in-depth comparison. In order to evaluate the scenario-based fuzzer developed
by Casteur et al. (2020), its source code was modified for it to interact with brokers in
virtual machines rather than in Docker containers. As a result, the following modifications
were applied to the source code:

• The TCP/IP layer is now managed for every packet because the original frame-
work used Scapy supplied sockets to interact with Docker containers;

• The fuzzer now disconnects from the broker at the end of each test sce-
nario. The original framework does not perform disconnection requests because the
test environment consisted of several brokers in Docker containers, each handling
different test scenarios. In contrast, the testbed developed for this research study
(Figure 1.3) consists of a single broker, meaning disconnection requests are necessary
to successfully transition between different scenarios.

There are several fuzzers that could not be evaluated on the testbed due to being either
proprietary (Anantharaman et al., 2017; Sochor et al., 2020b; Synopsis, 2021), partially
automated (Hernández Ramos et al., 2018; Eclipse Foundation, 2018; Palmieri et al.,
2019; Zeng et al., 2020; Di Paolo et al., 2021), or unfinished (Gotkowicz and Cordeiro,
2022). Despite these hindrances, two workarounds were performed in order to evaluate
their effectiveness in some manner. First, the source code of less automated fuzzers (high-
lighted in red in Figure 4.4) was analyzed in order to slightly estimate their effectiveness.
Second, if the source code is unavailable, then a fuzzer’s performance from other research
studies (highlighted in orange in Figure 4.4) is compared with those of its counterparts on
the testbed. For example, the attack-based fuzzer by Sochor et al. (2020b) could not be
evaluated on the testbed due to it being proprietary. In order to mitigate this limitation, the
MQTT fuzzers were evaluated using the same metrics, tools, and broker chosen by Sochor
et al. (2020b) for their experiments. This allows for a comparison between results from
their paper (Sochor et al., 2020b) and performances achieved by its counterparts on the
testbed.

MQTT Brokers

Mosquitto and Moquette were selected as the target systems for the experiments. In par-
ticular, Mosquitto was chosen because it has proven to be the implementation that is most
representative of the standard, offering support for most, if not all, features and versions of
MQTT (Mladenov et al., 2017; Tappler et al., 2017; Aichernig et al., 2021). Mosquitto’s
adherence to the standard therefore makes it a suitable target system to determine whether
fuzzers are testing all features and functionalities of MQTT thoroughly.

Version 1.6.8 of Mosquitto was specifically chosen because of three reasons. First,
Mosquitto 1.6.8 is still widely used despite being released in late 2019. Second, Mosquitto
1.6.8 is the most widely used and preferred version to evaluate different fuzzing techniques
for MQTT (Sochor et al., 2020b; Aichernig et al., 2021; Araujo Rodriguez and Macêdo
Batista, 2021). Third, certain fuzzers were designed specifically with version 1.6.8 in mind.

4.3 | PERFORMANCE EVALUATION

45

For example, Aichernig et al. (2021) chose version 1.6.8 of Mosquitto specifically in their
case study to generate the necessary test cases and evaluate the performance of their
fuzzer.

In addition to Mosquitto, Moquette 0.13 was chosen as the second target system
because it is the same version used by Sochor et al. (2020b) to evaluate their proprietary
fuzzer based on attack patterns. Using the same version therefore enables a performance
comparison between open-source fuzzers and their attack-based counterpart. It is worth
noting that Mosquitto supports versions 3.1, 3.1.1, and 5.0 of MQTT, whereas Moquette
supports the former two. It was therefore impractical to test Moquette with the learning-
based approach proposed by Aichernig et al. (2021) because it was specifically designed
for MQTT 5.0.

Performance Metrics

The test runs are monitored constantly in case the broker crashes. When no bugs are
found during testing, statement coverage is regarded as the ideal metric to measure the
effectiveness of fuzzing frameworks (Boehme et al., 2021). This is because the higher the
number of statements executed in the source code, the more likely the fuzzers will find
broker errors. Thus, statement coverage was chosen as one of the performance metrics
to measure the effectiveness of the tests performed by the fuzzers during 30 minutes. It
is worth noting that it was impractical to monitor the statement coverage of the fuzzers
in real-time due to their blackbox nature. In order to provide a more in-depth analysis of
their performance during testing, statement coverage is measured after every 3 minutes
(3, 6, 9, 12, 15, 18, 21, 24, 27, 30). Fuzzing campaigns are repeated 100 times in order to
calculate the average and standard deviation for each increment. In addition to statement
coverage, the fuzzers are evaluated based on their Feature Coverage, which refers to the
pub/sub functionalities or behaviors that were covered during testing.

4.3.1 Statement Coverage
Testing MQTT implementations in depth is only achievable with high-coverage fuzzers.

Figures 4.5 and 4.6 are each divided into several subfigures, all of which display the
statement coverage achieved by MQTT fuzzers throughout 30 minutes. In order to display
the results as clearly as possible, fuzzers with similar performance were arranged in the
same row and in ascending order. As a result, the subfigures in each row have different
y-axis labels. For simplicity purposes, each fuzzer is referred to by their name shown in the
title of the subfigures. The learning-based approach by Aichernig et al. (2021) is referred
to as learner from this point forward due to lacking a formal name. In the following
sections, the name MQTTGRAM refers to both mqttgram-c and mqttgram-cf. Each fuzzing
technique is assigned its own color.

Mosquitto

Among all MQTT fuzzers, FUME achieves the highest statement coverage in 30 minutes,
executing at most 2311 statements. mqttgram-cf, mqtt_fuzz, and mqttgram-c execute
2140, 2120, and 2108 statements respectively, slightly less than FUME. learner and Cy-
berExploit execute at most 1818 and 1396 statements respectively, underperforming

46

4 | TAXONOMY AND COVERAGE EVALUATION OF FUZZING TECHNIQUES FOR THE MQTT PROTOCOL

2100

2150

2200

2250

2300
#

o
f

s
t
a
t
e
m

e
n

t
s

Hybrid (FUME)
Pearson et al. 2022

1800

1850

1900

1950

2000

2050

2100

2150

#
o
f

s
t
a
t
e
m

e
n

t
s

Grammar (mqttgram-c)
Rodriguez et al. 2021

Mutation (mqtt_fuzz)
Fsecure Corporation

Grammar (mqttgram-cf)
Rodriguez et al. 2021

3 6 9 12 15 18 21 24 27 30

1000

1200

1400

1600

1800

Minutes

#
o
f

s
t
a
t
e
m

e
n

t
s

Naive (fuzz())
Scapy

3 6 9 12 15 18 21 24 27 30

Minutes

Scenario (CyberExploit)
Casteur et al. 2020

3 6 9 12 15 18 21 24 27 30

Minutes

Learning
Aichernig et al. 2021

Figure 4.5: Statement Coverage (Mosquitto 1.6.8)

considerably compared to their counterparts. Unsurprisingly, fuzz() executes at most
1126 statements, ranking as the worst-performing fuzzer. The following paragraphs explain
the statement coverage of each fuzzer more in depth. The explanations are in order from
the worst- to best-performing fuzzer.

fuzz(): fuzz() executes on average between 1088 and 1091 statements in 30 minutes.
fuzz() underperforms considerably because its test runs mostly consist of failed connec-
tion attempts, stemming from the fact that it generates packets in a completely random
manner. Protocol states were largely unexplored, so much so that the fuzz() executed 0%
of the statements in files unrelated to connection requests. In terms of connection files,
the fuzzer executes approximately 6% of the statements.

CyberExploit: In contrast to fuzz(), CyberExploit connects successfully with the
broker. However, CyberExploit ranks as the second-worst fuzzer based on statement
coverage according to the research findings. Its coverage improves by up to 0.29% from 3 to
30 minutes, meaning it executes the same statements for most of the test run. The coverage
performance of CyberExploit remains mostly static, executing on average between 1345

4.3 | PERFORMANCE EVALUATION

47

and 1383 statements in 30 minutes. Its underwhelming performance can be attributed to
the following reasons. First, CyberExploit assigns the same values to most fields except
for topics in SUBSCRIBE and PUBLISH packets. CyberExploit generates random topics
of different lengths, ranging from 2 to 400 characters. Although random topic generation
has been a successful technique for bug detection in MQTT implementations (Sochor
et al., 2020b), it is largely ineffective at reaching high statement coverage because fuzzers
will rarely subscribe to valid topics. In order to effectively test a pub/sub protocol such as
MQTT, topics should not only be syntactically valid, but also semantically meaningful.
Crafting valid and meaningful topics will ensure that the core functionality of pub/sub
protocols, message publication, is covered during testing.

Second, CyberExploit generates scenarios based on short-lived interactions with the
broker. Scenarios are performed in a similar manner, usually beginning with a connection
request to the broker, followed by either a subscription or publish request. The test scenarios
consist of a small set of packets, meaning connection requests are performed 3x more
frequently than its publish or subscribe counterparts.

Third, CyberExploit is incapable of generating test cases for several functionalities
of MQTT. For example, several MQTT flags for optional features, such as username and
password authentication, are disabled during the test run. Mandatory packet flags also lack
variety, with several of them set to the default or same value in most test cases. For example,
CyberExploit generates CONNECT packets with the same client ID, repeating the exact
test case for 30 minutes. The root cause of this issue lies in the packet generator developed
for CyberExploit, which is unaware of several features defined in the standard.

Fourth, CyberExploit is also incapable of generating both UNSUBSCRIBE and PING

packets. MQTT fuzzers should be capable of generating all control packet types, especially
those related to the core functionality of the pub/sub design pattern.

learner: Despite outperforming CyberExploit, learner has similar drawbacks that
hinders it from executing more statements. First, learner is incapable of generating
three control packet types: PING, AUTH, and PUBLISH (QoS 2). Second, similar to Cy-
berExploit, learner connects to the broker in the same manner throughout the entire
fuzzing campaign, reusing a predefined username for authentication purposes. Publish
and subscription requests by learner are always performed using QoS 1. It is also worth
noting that learner generates publication and subscription messages with the same topic
at the beginning of the fuzzing campaign. Reusing the same topic triggers the broker
into publishing messages to subscribers. Third, learner lacks support for all the user
properties of MQTT 5.0, except Session Expiry Interval and Topic Alias Maximum, both of
which were used within 30 minutes. Future fuzzing frameworks should support all the
user properties of MQTT 5.0, covering different behaviors or features. Fourth, on several
occasions, learner disconnects immediately after the broker accepts a connection request.
As learner gains a better understanding of MQTT over time, immediate disconnections
become less frequent. Similar to CyberExploit, learner requests up to 3x more connec-
tions than message publications or subscriptions. The connection requests are performed
in the exact manner for 30 minutes, meaning several authentication mechanisms are left
untested.

48

4 | TAXONOMY AND COVERAGE EVALUATION OF FUZZING TECHNIQUES FOR THE MQTT PROTOCOL

learner outperforms CyberExploit for several reasons. First, learner supports only
MQTT 5.0, meaning it executes both version-specific and independent statements. Second,
CyberExploit is incapable of triggering the broker into publishing messages, which is
yet another important behavior left untested. Third, learner connects to the broker with
a username and client ID, whereas CyberExploit uses only the latter.

Despite outperforming CyberExploit, learner rarely executes more statements over
time. The largest increase in statement coverage (0.94%) occurs between 3 and 6 minutes.
After approximately 4 minutes and 16 seconds, learner changes its testing strategy to
one that is based solely on random topic generation. As a result, statement coverage
rarely increases after 6 minutes. In that regard, learner, with its stale statement coverage,
performs similar to CyberExploit when testing MQTT implementations. It is worth
noting that CyberExploit occasionally sends packets out of order, whereas learner
always follows the correct sequence.

mqtt_fuzz: mqtt_fuzz offers a substantial improvement over its scenario-, learning-,
and naive-based counterparts, executing at most 2120 statements. On average, mqtt_fuzz
executes between 2022 and 2073 statements in 30 minutes. mqtt_fuzz outperforms Cy-
berExploit and learner because of the following reasons. First, mqtt_fuzz is capable of
generating every type of control packet. Second, mqtt_fuzz performs connection requests
using multiple client IDs and MQTT flags, the latter of which are all related to core
features such as QoS, Last Will and Testament, and Persistent Sessions. Third, mqtt_fuzz
occasionally uses nonrandom and predefined topics to trigger the broker into publishing
messages. Fourth, since mqtt_fuzz is a mutation-based approach, test cases are generated
from existing MQTT packets rather than from scratch. As a result, mqtt_fuzz exchanges
a considerable amount of packets with the broker compared to its counterparts.

Despite offering a substantial improvement over its counterparts, mqtt_fuzz has
several shortcomings that remain unaddressed. Most notably, mqtt_fuzz is incapable of
generating valid CONNECT packets with usernames, passwords, and will retain fields.
Another shortcoming is the constant reuse of test cases, meaning more time is spent on
executing the same, rather than new, statements. At the time of writing, mqtt_fuzz also
lacks support for MQTT 5.0.

MQTTGRAM: The grammar-based approaches presented in Chapter 3, mqttgram-c
and mqttgram-cf, have a similar performance to mqtt_fuzz. On average, mqttgram-c
executes from 1928 to 2052 statements in 30 minutes. mqttgram-cf outperforms mqttgram-
c, executing from 1981 to 2096 statements on average. In terms of both grammar-based
approaches, the standard deviation of their coverage results decreases as time progresses.
The opposite occurs for mqtt_fuzz, which outperforms mqttgram-c mainly because
it occasionally sends packets out of order to the broker, thereby testing both correct
and incorrect functionalities of MQTT. The superior performance by mqtt_fuzz over
mqttgram-c highlights the importance of testing both types of functionalities.

FUME: On average, FUME executes from 2138 to 2242 statements in 30 minutes. FUME
executes more statements than its counterparts because it supports all major versions of
MQTT, being the only framework to do so at the time of writing. Despite outperforming

4.3 | PERFORMANCE EVALUATION

49

its counterparts, FUME also suffers from shortcomings with regard to pub/sub protocol
testing. Most notably, there are two issues preventing it from effectively testing message
publication. First, FUME generates invalid, rather than valid publish messages for most of
the test run. As a result, the broker rejects most publish requests immediately, preventing
FUME from reaching certain states or publishing messages to subscription topics. Second,
for each test scenario, FUME connects to the broker, sends a small set of packets in both
random and rapid succession, and then disconnects before receiving any acknowledgment
or response whatsoever. This process is repeated until a stopping criterion has been
satisfied. Each test scenario therefore consists of short interactions with the broker. As a
result, the fuzzing campaigns consist mostly of connection rather than pub/sub-related
requests, which should be the focus when testing network protocols such as MQTT.

Moquette

As stated previously, it was impractical to perform experiments with learner and
FUME because Moquette lacks support for version 5.0 of MQTT at the time of writing. The
results in Figure 4.6 follow mostly the same pattern as in Figure 4.5.

1200

1300

1400

1500

1600

1700

#
o
f

s
t
a
t
e
m

e
n

t
s

Grammar (mqttgram-c)
Rodriguez et al. 2021

Mutation (mqtt_fuzz)
Fsecure Corporation

Grammar (mqttgram-cf)
Rodriguez et al. 2021

3 6 9 12 15 18 21 24 27 30

500

600

700

800

900

1000

Minutes

#
o
f

s
t
a
t
e
m

e
n

t
s

Naive (fuzz())
Scapy

3 6 9 12 15 18 21 24 27 30

Minutes

Scenario (CyberExploit)
Casteur et al. 2020

Figure 4.6: Statement Coverage (Moquette 0.13)

mqttgram-cf executes at most 1613 statements in 30 minutes, outperforming all of
its counterparts. In contrast to results obtained in the previous study with Mosquitto,
mqttgram-c executes more statements in Moquette than mqtt_fuzz. mqttgram-c and
mqtt_fuzz execute at most 1596 and 1566 statements respectively. CyberExploit and
fuzz() underperform considerably compared to their counterparts, executing at most 995
and 571 statements respectively. Similar to their performance in Mosquitto, both fuzzers
rarely execute more statements over time.

All of the aforementioned MQTT fuzzers were further evaluated using the same metrics

50

4 | TAXONOMY AND COVERAGE EVALUATION OF FUZZING TECHNIQUES FOR THE MQTT PROTOCOL

as Sochor et al. (2020b) in order to compare them with their attack-based counterpart,
which is proprietary. Before going any further, it is important to explain three aspects of
the experiments performed by Sochor et al. (2020b) to evaluate their fuzzer:

1. Sochor et al. (2020b) evaluated their fuzzer using Moquette instead of Mosquitto.

2. Sochor et al. (2020b) did not perform a single repetition of their experiments,
meaning that their fuzzers’ coverage performance is based on a result from a sin-
gle test run, lacking sufficient evidence. In contrast, coverage performance by its
counterparts are based on the average of 100 test runs.

3. Sochor et al. (2020b) developed two variants of their proprietary fuzzer, one of
which is based on existing vulnerabilities. The explanations regarding the coverage
performance by both of these variants may therefore be inaccurate due to their
proprietary nature. For simplicity purposes, the variant based on existing vulnera-
bilities is referred to as vulnerability-oriented, whereas its counterpart is referred to
as vulnerability-unoriented.

Table 4.1 presents the results of the attack-based approach by Sochor et al. (2020b)
and its counterparts. Cells highlighted in blue indicate the highest coverage percentage
for a particular directory. Table 4.1 classifies fuzzers considering both types of variants
developed by Sochor et al. (2020b) in order to enable a more fair comparison. The following
paragraphs discuss the coverage performances for each directory in depth.

Source Code
(Directory)

Fuzzed packets not based on existing vulnerabilities Fuzzed packets based on existing vulnerabilities
fuzz() CyberExploit Sochor et al. 2020 mqtt_fuzz mqttgram-c Sochor et al. 2020 mqttgram-cf

broker 21.00% 39.42% 57.80% 64.20% 66.34% 58.00% 67.57%
broker.security 12.00% 12.00% 11.30% 13.02% 15.00% 12.80% 15.00%
broker.subscriptions 8.00% 23.56% 59.00% 73.86% 73.52% 63.90% 73.92%
broker.config 51.00% 51.00% 49.30% 51.00% 51.00% 49.30% 51.00%
broker.metrics 44.00% 67.81% 77.50% 71.78% 73.00% 77.50% 73.00%
persistence 3.00% 3.00% 9.10% 9.00% 9.00% 9.10% 9.00%
interception 11.00% 25.65% 32.30% 28.04% 30.00% 32.30% 30.00%
Logging 43.00% 43.00% 62.50% 43.00% 43.00% 62.50% 43.00%
Total 19.21% 33.83% 50.00% 55.24% 56.76% 51.40% 57.24%

Table 4.1: Statement Coverage of Moquette (30 Minutes) (Cells highlighted in blue indicate the

highest coverage percentage for a particular directory.)

broker: The broker directory contains files for client authorizations, session storage,
queued/retained messages, among others. Coverage performance depends primarily upon a
fuzzer’s understanding of the states and packets defined in the standard. In that regard, both
variants of MQTTGRAM outperform their counterparts within their respective categories.
More specifically, mqttgram-c, mqttgram-cf, and mqtt_fuzz outperform the fuzzers
developed by Sochor et al. (2020b), executing 66.34%, 67.57%, and 64.2% of the statements
respectively. Unsurprisingly, CyberExploit and fuzz() execute only 39.42% and 21% of
the statements respectively. Similar to mqtt_fuzz, their underwhelming performance is
also due to the lack of test cases for certain functionalities of MQTT. The vulnerability-
unoriented approach by Sochor et al. (2020b) executes 57.8% of the statements, whereas
its vulnerability-oriented counterpart executes 58%. Although the latter fuzzer narrowly
outperforms the former, both seem to be incapable of testing several features of MQTT
compared to their grammar- and mutation-based counterparts.

4.3 | PERFORMANCE EVALUATION

51

The results in the broker directory provide a general overview of the fuzzers’ coverage
performance during testing. However, a more in-depth analysis is required in order to gain
a better understanding of the fuzzers’ shortcomings and coverage capabilities. Thus, the
following paragraphs explain the fuzzers’ coverage performance in specific subdirectories
of the broker directory.

broker.security: Files in the broker.security directory are associated with authenti-
cation mechanisms, most notably Access Control Lists (ACL). ACL are used by Moquette
to assign pub/sub permissions to users, therefore acting as network-based filters for
topics. Moquette uses ACL to block interactions with unknown publishers or subscribers,
improving network security as a result. Coverage performance in security-related files
is relatively low for all fuzzers. Both variants of MQTTGRAM execute approximately 15%
of the statements, the result of which is the highest among all fuzzers. mqtt_fuzz and
the vulnerability-oriented approach by Sochor et al. (2020b) execute 13.02% and 12.8%
of the statements respectively. MQTTGRAM outperforms its counterparts due to its use of
usernames and passwords when connecting to the broker. In contrast, both fuzz() and
CyberExploit are incapable of generating syntactically valid packets with usernames and
passwords, executing only 12% of the statements. However, despite of this hindrance, they
outperform the vulnerability-unoriented approach by Sochor et al. (2020b). The subpar
performance of all fuzzers is caused by their disuse of ACL during testing.

broker.subscriptions: Files in the broker.subscriptions directory are necessary
for subscription-related tasks, such as topic matching and message delivery, which play
a key role in enabling pub/sub communication between devices. When testing pub/sub
protocols such as MQTT, fuzzers should strive to execute as many statements as possible in
subscription-related files, such as those located in this directory. This outcome is not only
achieved by triggering the broker into publishing messages, but also by testing exceptional
pub/sub behaviors. For example, in addition to triggering the broker into publishing
messages, mqtt_fuzz tests exceptional behavior by sending packets out of order, and
using incorrect levels of QoS. This allows mqtt_fuzz to slightly outperform mqttgram-c,
which triggers only normal pub/sub behaviors. Similar to mqtt_fuzz, mqttgram-cf also
tests exceptional behavior by sending packets out of order. However, despite performing
less subscription requests than mqtt_fuzz, mqttgram-cf achieves the highest statement
coverage at 73.92%. mqttgram-cf outperforms mqtt_fuzz because it generates topics that
contain wildcard characters (# or +) in a manner that is prohibited by the formal specifi-
cation of MQTT. CyberExploit underperforms considerably, executing approximately
23.56% of the statements. Its low coverage performance is because of its incapability to
trigger the broker into publishing messages. The interaction between CyberExploit and
the broker is therefore more similar to the traditional client-server approach than pub/sub,
meaning that the core functionality of MQTT is neglected during testing. Unsurprisingly,
fuzz() executes the fewest statements in 30 minutes. fuzz() is unable to connect to the
broker successfully, hence the lack of topic subscriptions during testing.

broker.config: The broker.config directory contains configuration files that allow
users to modify a wide variety of settings, such as port numbers. All fuzzers evaluated

52

4 | TAXONOMY AND COVERAGE EVALUATION OF FUZZING TECHNIQUES FOR THE MQTT PROTOCOL

on the testbed have the same coverage performance in configuration-related files (51%)
because Moquette was executed using default settings.

broker.metrics: The broker.metrics directory contains the necessary files to collect
statistical information such as the number of clients connected to the broker. Both fuzzers
by Sochor et al. (2020b) outperform their counterparts, executing 77.5% of the statements.
As stated previously, it cannot be determined if their superior performance is due to Sochor
et al. (2020b) modifying Moquette’s source code or triggering an exceptional crash that
generates more statistical information about the broker session. In terms of its counter-
parts, coverage performance seems to depend primarily on the fuzzers’ knowledge of
MQTT. Both variants of MQTTGRAM execute 73% of the statements, followed by mqtt_fuzz,
CyberExploit, and fuzz() with 71.78%, 67.81%, and 44% respectively.

persistence: The persistence directory contains the necessary files to enable both
persistent sessions and storage. When enabling the former, user-related information, such
as subscriptions and queued messages, are stored in memory by default. However, Moquette
deletes the information on shutdown, requiring users to create new sessions from scratch
after restart. In order to mitigate this issue, Moquette offers an option called persistent

storage, in which the information is stored in a database and persists regardless if the broker
is offline or online. All fuzzers achieve subpar performance when executing statements in
persistence-related files because Moquette was executed using default settings, meaning
persistent storage is disabled during testing. Results indicate that their performance depends
on the level of understanding of MQTT. Both fuzzers developed by Sochor et al. (2020b)
achieve the highest coverage performance, executing 9.1% of the statements. These results
hint that Sochor et al. (2020b) probably tested Moquette using default settings.

interception: Interceptors can be extended to monitor Moquette’s incoming messages
and notify about specific events. The source files of these interceptors can be found
in the interception directory, which contains a subdirectory named messages. The
former directory contains files associated with the Interception Handler, whereas the latter
subdirectory contains the necessary files to notify about specific message events, such
as normal or abrupt disconnections. Moquette disables packet interception by default,
meaning files in the messages directory are neglected throughout the experiments. As a
result, the coverage tool used for the experiments (Cobertura) reports 0% of statement
coverage for all files in the messages directory. However, despite the lack of packet
interception, statements from some files in the interception directory are executed,
as shown in Table 4.1. It cannot be determined which statements are executed because
Cobertura generates coverage reports with limited information. However, it should be
highlighted that files associated with the Interception Handler import functions from
broker-related files, such as those used for subscription, connection, and publish requests.
Since no messages are intercepted during the fuzzing campaign, coverage performances
in the interception directory are most likely associated with functions imported from
broker-related files, or more specifically with the functionalities and features of MQTT
covered during testing. This may be a valid observation because coverage performances
are ranked in decreasing order from most to least knowledgeable fuzzer. Both variants of
MQTTGRAM outperform all of their counterparts, executing 30% of the statements, followed

4.3 | PERFORMANCE EVALUATION

53

by mqtt_fuzz, CyberExploit, and fuzz() with 28.04%, 25.65%, and 11% respectively. It
cannot be determined if the superior performance of the proprietary fuzzer proposed
by Sochor et al. (2020b) is due to it intercepting packets during testing. If that were the
case, files in the messages directory would have been executed, thereby outperforming
its counterparts. Another explanation for the fuzzer’s superior performance may have
to do with the possibility of Moquette’s source code being extended or modified by the
researchers to better intercept messages.

Logging: The Logging directory contains the necessary files for Moquette to perform
log-related tasks. Default logging activities are performed by Moquette on the testbed,
meaning coverage performance is the same across all fuzzing-inspired approaches, which
achieve 43%. Both of the fuzzers proposed by Sochor et al. (2020b) outperform their
counterparts, executing 62.5% of the statements. The superior performance of the fuzzers
proposed by Sochor et al. (2020b) may be due to either: (1) a possible alteration of the
source code to generate additional or more detailed logs about Moquette’s behavior during
testing; or (2) exceptional crashes. However, the exact reason cannot be determined due to
the lack of information provided by Sochor et al. (2020b) about logging procedures for
their experiments.

Summary: The last row of Table 4.1 presents the fuzzers’ average performance consid-
ering the statement coverage of each subdirectory. Both mqttgram-c and mqttgram-cf
execute 56.76% and 57.24% of the statements respectively, outperforming all of their counter-
parts. mqtt_fuzz executes 55.24% of the statements, followed by the vulnerability-oriented
approach by Sochor et al. (2020b) with 51.4%, and its unoriented counterpart with 50.0%.
The low coverage performance of the latter two fuzzers may be due to their incapability
of triggering important functionalities during testing. CyberExploit and fuzz() are the
worst-performing fuzzers, executing 33.83% and 19.21% of the statements respectively.
Among all directories, broker, broker.security, and broker.subscriptions are the
most important because their files are directly linked to MQTT’s pub/sub functionalities.
The grammar-based approaches presented in Chapter 3 test the contents of these directories
more in depth, despite exchanging the fewest packets with the broker.

4.3.2 Feature Coverage
Thus far, only the statement coverage of each fuzzer has been discussed. A testing

metric that also plays a crucial role in measuring the effectiveness of fuzzing frameworks
is feature coverage. As its name suggests, feature coverage refers to the pub/sub features or
functionalities tested by each fuzzer. However, before explaining about feature coverage, it
is important to discuss which MQTT flags are enabled or disabled by each fuzzer throughout
the test run. MQTT offers several flags for a wide variety of purposes, such as basic
authentication, guaranteed message delivery, and persistent sessions, among others. Flags
are directly tied to the functionality of a network protocol, meaning a fuzzer’s packet
generator should be designed with them in mind. Most flags are disabled by default,
meaning the fuzzer must enable them by generating syntactically valid packets, otherwise
the broker will close the connection immediately. Fuzzers should also attempt to explore
several flag combinations in order to test several features simultaneously.

54

4 | TAXONOMY AND COVERAGE EVALUATION OF FUZZING TECHNIQUES FOR THE MQTT PROTOCOL

Tables 4.2 and 4.3 present a detailed summary of the flags used by MQTT fuzzers when
performing connection and publish requests respectively. The first column presents the
MQTT fuzzer, whereas the remaining columns indicate whether a specific flag value is
used during the test run. Each flag value is represented by a circle in Tables 4.2 and 4.3. It
is worth mentioning that most flags in network protocols are represented by a single bit,
and can be set to a value of either 0 or 1. There are exceptions, such as the QoS flag, which
can be set to a third possible value of 2. The first, second, and third circle (if any) therefore
represent the value of 0, 1, and 2 respectively. The type of circle shown for each value
indicates either correct # , incorrect # , or no usage # . For example, 0 1 indicates that
the first value (0) for a specific flag is used correctly by an MQTT fuzzer, whereas the
second (1) is not. For simplicity purposes, results of mqttgram-c and mqttgram-cf are
combined in a single row because both fuzzers enable and disable the same flags. As shown
in Tables 4.2 and 4.3, most fuzzers except for FUME and both variants of MQTTGRAM are
incapable of crafting syntactically valid packets when setting flags to certain values.

MQTT Fuzzer User Name Flag Password Flag Will Retain Will QoS Will Flag Clean Session

mqtt_fuzz 0 1 0 1 0 1 0 1 2 0 1 0 1

CyberExploit 0 1 0 1 0 1 0 1 2 0 1 0 1

Di Paolo et al. (2021) 0 1 0 1 0 1 0 1 2 0 1 0 1

learner 0 1 0 1 0 1 0 1 2 0 1 0 1

MQTTGRAM 0 1 0 1 0 1 0 1 2 0 1 0 1

FUME 0 1 0 1 0 1 0 1 2 0 1 0 1

Table 4.2: Packet Generation - Connect Flags

#
: Correct usage of a flag value |

#
: Incorrect usage of a flag value |

#
: No usage of a flag value

MQTT Fuzzer DUP flag QoS Level Retain flag

mqtt_fuzz 0 1 2 0 1 2 0 1 2

CyberExploit 0 1 0 1 2 0 1

Di Paolo et al. (2021) 0 1 0 1 2 0 1

learner 0 1 2 0 1 2 0 1

MQTTGRAM 0 1 2 0 1 2 0 1 2

FUME 0 1 2 0 1 2 0 1 2

Table 4.3: Packet Generation - Publish Flags

#
: Correct usage of a flag value |

#
: Incorrect usage of a flag value |

#
: No usage of a flag value

Table 4.4 presents the features tested by each fuzzer within 30 minutes. The feature
coverage of each fuzzer is determined by examining the packet logs. It is worth noting
that Tables 4.2 and 4.3 are directly related to Table 4.4 because certain flags have to be
enabled to test specific features. Each column name in Table 4.4 is based on a core pub/sub
feature of MQTT. The symbol ✔indicates if a feature is tested by an MQTT fuzzer whereas
the symbol × indicates the opposite. The symbol ✔* indicates that the fuzzer would have
been capable of testing a feature if other clients had been connected to the broker during
testing. The following paragraphs explain the results for each feature.

4.3 | PERFORMANCE EVALUATION

55

MQTT Fuzzer Pub/Sub Behavior All QoS Levels Last Will and Testament Retained Messages Persistent Session
mqtt_fuzz ✔ ✔ ✔* ✔ ✔

CyberExploit × × × × ×

Di Paolo et al. (2021) × ✔ × × ×

learner ✔ × × × ×

MQTTGRAM ✔ ✔ ✔* ✔ ✔

FUME ✔ ✔ ✔* ✔ ✔

Table 4.4: Feature Coverage of MQTT Fuzzers (30 Minutes)

✔: Tested successfully | ×: Tested unsuccessfully | ✔*: Tested successfully if clients > 1

Pub/Sub Behavior: In order to trigger the broker into publishing messages, a fuzzer
must perform a subscription and publish request with the same topic. In that regard, Cyber-
Exploit and the fuzzer proposed by Di Paolo et al. (2021) fail to meet this requirement,
generating long random topics that are never used more than once. It is worth noting
that, in most cases, both mqtt_fuzz and learner are capable of triggering the broker into
publishing messages only because of their use of predefined topics.

All QoS Levels: QoS-based functionality is fully tested by all MQTT fuzzers except
CyberExploit and learner, which test only level 0 and 1 respectively.

Last Will and Testament: The will flag enables immediate notifications for when an
MQTT client disconnects from the network. The will flag is never enabled by CyberEx-
ploit, learner, and the fuzzer proposed by Di Paolo et al. (2021) during the test run.
As such, these three fuzzers are incapable of testing the Last Will and Testament feature
of MQTT. Among all the core functionalities of MQTT, the Last and Will Testament is
the most difficult to test thoroughly because it requires multiple clients connected to the
broker. In that regard, none of the fuzzers manage to fully test this feature due to the
lack of additional clients during testing. However, mqtt_fuzz, FUME, and both variants
of MQTTGRAM would have been capable of fully testing this feature if other clients had
also been connected to the broker. This is because of two reasons. First, all three fuzzers
are capable of triggering the broker into publishing messages to subscribers. Second, the
fuzzers subscribe to will topics occasionally during testing. The symbol ✔* in Table 4.4
therefore indicates that these fuzzers would have been capable of fully testing the Last
Will and Testament feature if other clients had been connected to the broker.

Retained Messages: As shown in Tables 4.2 and 4.3, learner and the fuzzer proposed
by Di Paolo et al. (2021) disable retain flags during testing. CyberExploit attempts, but
ultimately fails, to generate valid packets that enable retain flags. As a result, learner,
CyberExploit, and the fuzzer proposed by Di Paolo et al. (2021) are all unable to test the
functionality of retained messages.

Persistent Session: CyberExploit, learner, and the fuzzer proposed by Di Paolo
et al. (2021) enable the clean session flag for the entire test run, meaning user information
is never stored in the broker.

After analyzing the performance of all the fuzzers evaluated on the testbed, the answer to
RQ3 is as follows:

56

4 | TAXONOMY AND COVERAGE EVALUATION OF FUZZING TECHNIQUES FOR THE MQTT PROTOCOL

RQ3: How effective are fuzzing frameworks for MQTT in terms of their
testing and pub/sub capabilities?

FUME executes the most number of statements in MQTT implementations because
it supports multiple versions of the standard, thereby being the most effective
for testing purposes. In terms of pub/sub capabilities, most fuzzers proposed thus
far support a single version of MQTT, meaning that message publishing features
introduced in other releases are left untested. Existing learning-based techniques are
incapable of understanding and testing the core functionalities of MQTT. Scenario-
based approaches are mainly geared towards random topic generation, neglecting
pub/sub functionality altogether during testing. Proxy fuzzers apply random muta-
tions to packet fields selected by the user, unaware of necessary requirements for
testing message publications. The Markov modeling approach incorporated into
FUME supports multiple versions of MQTT, but lacks awareness of valid message
sequences and state transitions. In fact, FUME struggles to craft valid publish pack-
ets, meaning that it tests pub/sub functionality on rare occasions. MQTTGRAM and
mqtt_fuzz are more consistent in terms of testing message publications. However,
mqtt_fuzz manages to test message publishing features only because of its use of
predefined topics, meaning that its test cases lack variety. Overall, MQTTGRAM man-
ages to generate more varied, but semantically-meaningful topics that activate and
test message publishing features of the broker. Future research should address the
aforementioned issues, combine techniques, and cover more pub/sub functionality
during testing, the latter of which is neglected to some extent across all fuzzers
proposed for MQTT thus far. The shortcomings presented in this chapter can raise
awareness and motivate developers to better test pub/sub protocols such as MQTT
in future work.

4.4 Concluding Remarks
MQTT Fuzzing has been evolving considerably in the last few years, quickly gaining

prominence due to its necessity in the IoT. However, several issues have arisen that
hinder its progression and future research studies. Most notably, the lack of baseline
data and standardized pub/sub metrics in the literature has led to limited information
regarding the strengths, weaknesses, and even improvements of each fuzzing technique
over its predecessors. To mitigate these issues, a literature review was first conducted
in order to create a taxonomical classification of all fuzzing techniques proposed for
MQTT, providing developers a clear and more detailed overview of the current state of
the art. Afterwards, each technique was benchmarked across a wide variety of testing
metrics under equivalent conditions, further highlighting their benefits and shortcomings
to developers for future research opportunities. As a result, developers can now compare
their findings with the baseline results presented in this study to further improve their
testing strategy. The findings presented in this chapter are further complemented by the
results shown in Appendixes D and E, which delve deep into the fuzzers’ input coverage
and packet exchange capabilities respectively.

57

Chapter 5

Refinement of a Grammar-Based
Fuzzing Technique for a Pub/Sub
Protocol

The research findings presented in Chapter 4 indicate that all open-source fuzzers
have shortcomings in regards to pub/sub protocol testing. Upon further investigation, it is
found that developers neglect three essential elements for successful pub/sub fuzzing: (1)
two-way communication capabilities; (2) topic awareness; and (3) multiversion support.
The following paragraphs explain each element in more detail.

Two-way communication: According to the taxonomy shown in Figure 4.4, there are
two main approaches to fuzzing a pub/sub broker. Both approaches differ in terms of
the fuzzer’s role during testing, which can either be a man in the middle or a normal
client. In terms of the former role, the fuzzer intercepts and modifies messages in
transit between the broker and the clients. In terms of the latter role, the fuzzer
exchanges messages directly with the broker as if it were a normal client. Regardless
of the role, the test architecture should support a request-response (or two-way)
communication pattern between the broker and a client, otherwise the fuzzer will fail
to trigger message publications. Four fuzzers fail to meet this requirement. fuzz()
lacks a complete understanding of MQTT, thereby preventing it from sending valid
requests and responses to the broker. FUME first sends a connection request, followed
by several other messages in random order. All of the messages generated by FUME are
sent within a single packet, after which it proceeds to end the connection. This means
that FUME sends only one packet for each connection. Similarly, the fuzzer proposed
by Di Paolo et al. (2021) sends messages without acknowledging to any request
or response by the broker. AFLNet-MQTT is incapable of behaving as a publisher
or subscriber because its architecture lacks a complete understanding of two-way
communication with MQTT.

Multiversion: Most protocol implementations support multiple versions of the standard.
Subsequent versions of the standard either add or remove features for message
publications. For this research study, a fuzzer is classified as multiversion if it supports
at least two versions of a protocol standard. At the time of writing, FUME is the only

58

5 | REFINEMENT OF A GRAMMAR-BASED FUZZING TECHNIQUE FOR A PUB/SUB PROTOCOL

fuzzer in the literature that supports all three major versions of MQTT (3.1, 3.1.1, and
5.0). AFLNet-MQTT, fuzz(), and Polymorph have flexible architectures that enable
them to test any implementation regardless of the version of MQTT. In contrast, the
remaining fuzzers shown in the taxonomy (Figure 4.4) are designed for a specific
version of MQTT.

Topic Awareness: Topic generation should be a central focus of pub/sub fuzzers. In fact,
it is the element or requirement that sets it apart from fuzzers for other types of target
systems. As stated previously, a pub/sub fuzzer must generate topics that strike a
balance between semantically-meaningful and error-prone values. For this research
study, a fuzzer is classified as topic aware if it is capable of generating random, but
semantically-meaningful topics that trigger the broker into publishing messages.
Five fuzzers are currently incapable of testing message publications because of
different reasons. For example, fuzz() is unaware of the MQTT message format,
whereas AFLNet-MQTT is incapable of acting as a genuine MQTT client. Polymorph
mutates messages in transit between the broker and MQTT clients, lacking the
necessary capabilities to generate semantically-meaningful topics. CyberExploit
generates invalid topics throughout the entire test run, but is able to respond and
acknowledge requests from the broker. The fuzzer proposed by Di Paolo et al. (2021)
has the opposite problem, generating valid topics without acknowledging messages
from the broker.

According to the research findings, all MQTT fuzzers were designed with either 1 or
2 elements in mind. However, none of the MQTT fuzzers available for testing purposes
encompass all three elements. Thus, the research hypothesis for this study is:

When considering the three elements, effectiveness is higher than that of existing

MQTT fuzzers.

The research question that will be used to validate the research hypothesis is as
follows:

RQ4: How effective is an MQTT fuzzer when considering three essential elements

for pub/sub fuzzing: two-way communication capabilities; topic awareness; and

multiversion support?

In order to answer RQ4, the architecture and the algorithm of the original MQTTGRAM
were modified to meet all three of these criteria. The modifications and improvements
ultimately resulted in a new grammar-based fuzzer called mqttgram-r. Table 5.1 compares
mqttgram-r with its counterparts.

5.1 Refinements
As stated previously, the main difference between mqttgram-cf and mqttgram-c

is that the former fuzzer prioritizes topic-based messages during testing. mqttgram-r
is based on mqttgram-cf because pub/sub fuzzers should in fact prioritize topic-based
messages to trigger important publish operations of the broker.

The response engine and packet generator of the original MQTTGRAM satisfy only two

5.1 | REFINEMENTS

59

MQTT Fuzzers Two-way Multiversion Topic Awareness
fuzz() × ✔ ×

mqtt_fuzz ✔ × ✔

Polymorph ✔ ✔ ×

CyberExploit ✔ × ×

MultiFuzz ✔ × ✔

AFLNet-MQTT × ✔ ×

Aichernig et al. (2021) ✔ × ✔

Di Paolo et al. (2021) × × ×

MQTTGRAM ✔ × ✔

FUME × ✔ ✔

mqttgram-r (This research) ✔ ✔ ✔

Table 5.1: Classification of Fuzzers for Pub/Sub Brokers

of the essential conditions for successful pub/sub fuzzing: two-way communication and
topic awareness. The original packet generator supported only version 3.1.1 of MQTT.
Figure 5.1 presents the refined architecture for mqttgram-r. The main difference between
the architectures of mqttgram-r and the original MQTTGRAM is that the former supports
versions 3.1.1 and 5.0 of MQTT. This means that, in contrast to its counterparts, mqttgram-
r meets all three of the criteria shown in Table 5.1.

MQTT state

TCP state

Response Engine

Grammar 3.1.1

Grammar 5.0.0

Packet Generator

MQTT broker

MQTTGRAM-R

start
state packet

response

Figure 5.1: Refined Architecture for MQTTGRAM-R

mqttgram-r generates hexadecimal strings from two grammars based on MQTT 3.1.1
and 5.0 respectively. There are several notable differences between both versions, which in
turn influenced the development of the grammar for MQTT 5.0. For example, the headers
of MQTT packets vary across different versions of the standard. In fact, several MQTT
5.0 packets have reason codes, as part of their variable header, to indicate the result of an
operation. The most notable difference or feature of MQTT 5.0, however, is the introduction
of user properties, which are UTF-8 string key-value pairs defined by the user to set specific
rules or settings such as session expiry intervals, topic aliases, maximum packet size,
among others. A grammar based on MQTT 5.0 is developed that incorporates all changes
made to the packet headers, including all 45 reason codes and 27 user properties introduced

60

5 | REFINEMENT OF A GRAMMAR-BASED FUZZING TECHNIQUE FOR A PUB/SUB PROTOCOL

in the latest version of the standard. A simple example of our MQTT 5.0 grammar and its
expansion rules is shown below:

⟨start⟩ ::= ⟨packets⟩

⟨packets⟩ ::= ⟨publish⟩

⟨publish⟩ ::= ⟨fheader⟩⟨vheader⟩⟨properties⟩

| ⟨fheader⟩⟨vheader⟩⟨properties⟩⟨payload⟩

⟨properties⟩ ::= ⟨no-property⟩ | ⟨propertyN⟩

⟨no-property⟩ ::= ‘Number 0 in Hex notation’
⟨propertyN⟩ ::= ⟨length⟩⟨id⟩⟨value⟩

⟨length⟩ ::= ‘length of id and value’
⟨id⟩ ::= ‘id of property in Hex notation’
⟨value⟩ ::= ‘value of property in Hex notation’
⟨fheader⟩ ::= ‘Hexadecimal string of fixed header’
⟨vheader⟩ ::= ‘Hexadecimal string of variable header’
⟨payload⟩ ::= ‘Hexadecimal string of payload’

Figure 5.2: Simple Example of the MQTT 5.0 Grammar in Backus-Naur Form

Rather than developing it from scratch, the MQTT 5.0 grammar is adapted from its 3.1.1
counterpart used by the original MQTTGRAM. New and updated expansion rules were defined
to describe the grammatical structure of MQTT 5.0 messages. The main difference between
the MQTT 3.1.1 and 5.0 grammar is the latter’s nonterminal symbol <properties>, which
describes the necessary expansion rules to generate all 27 properties considering their
length, ID, and values defined in the standard. The end result of the grammar is the
concatenation of hex strings for the fixed header, variable header, payload, and properties,
which together make up an MQTT 5.0 message.

Algorithm 3 presents the pseudocode of the proposed multiversion grammar-based
approach for a pub/sub protocol, which is incorporated into mqttgram-r.

Algorithm 3: Multiversion grammar-based fuzzing approach for MQTT
Input: Protocol State 𝑆, Protocol Version 𝑉

1 while stopping_criterion == false do
2 𝑡 ← 𝑠𝑒𝑙𝑒𝑐𝑡_𝑝𝑎𝑐𝑘𝑒𝑡_𝑡𝑦𝑝𝑒(𝑆, 𝑉);
3 𝑚 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒_𝑝𝑎𝑐𝑘𝑒𝑡(𝑡);
4 𝑟 ← 𝑓 𝑒𝑒𝑑_𝑖𝑛𝑝𝑢𝑡(𝑚);
5 𝑆 ← 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒_𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒(𝑟);
6 if 𝑆 == disconnected then
7 𝑉 ← 𝑐ℎ𝑜𝑜𝑠𝑒_𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙_𝑣𝑒𝑟𝑠𝑖𝑜𝑛();

8 𝐿 ← 𝑚𝑜𝑛𝑖𝑡𝑜𝑟_𝑝𝑟𝑜𝑔𝑟𝑎𝑚(𝑆)

Output: 𝐿

The algorithms proposed in Chapter 3 were adapted for mqttgram-r. More specifically,
Algorithm 3 is adapted from Algorithm 1, and receives two inputs instead of one: (1) a

5.2 | PERFORMANCE EVALUATION

61

Protocol State 𝑆 and (2) a Protocol Version 𝑉 , the latter of which can be either v3.1.1 or
v5.0. Before establishing a connection with the broker, the algorithm randomly chooses
between testing either version 3.1.1 or 5.0 of MQTT. 𝑉 is then assigned the version number
chosen by the algorithm. mqttgram-r then selects (line 2 in Algorithm 3), generates, and
sends MQTT messages based on version 𝑉 to the broker until a disconnection occurs, after
which 𝑉 is assigned a random value for the next connection (lines 6-7 in Algorithm 3). This
process is repeated until a stopping criterion has been satisfied. In other words, mqttgram-
r tests only one version of MQTT for each connection with the broker. This design choice
is based on the fact that the broker will disconnect a fuzzer from the network unless
both parties exchange messages that belong to the same version. Maintaining version
consistency therefore leads to fewer connection requests, which in turn leads to a greater
focus on publication or subscription messages during testing.

Algorithm 2 remains largely unchanged for mqttgram-r, the only difference being
that the calculate() function (line 6) now calculates the lengths of user properties after
the hexadecimal string has been produced.

With these changes, mqttgram-r mitigates certain shortcomings found in MQTT
5.x compatible fuzzers and presented in Chapter 4. For example, in contrast to learner,
mqttgram-r supports all 27 properties introduced in MQTT 5.0. In contrast to FUME,
mqttgram-r sends messages based on the same MQTT version to the broker for each
connection. This in turn allows mqttgram-r to have infrequent disconnections from
the broker, thereby increasing the probability of triggering message publications during
testing.

5.2 Performance Evaluation
This section evaluates the performance of the proposed multiversion grammar-based

approach, which is incorporated into mqttgram-r. For the experiments, Mosquitto 1.6.8 is
selected as the target broker. mqttgram-r and its counterparts exchange messages with
Mosquitto until a stopping criterion is satisfied. Two separate experiments were conducted,
each with a different stopping criterion. In the first experiment, the fuzzers communicate
with Mosquitto for 30 minutes. In the second experiment, the fuzzers communicate with
Mosquitto until 8000 packets have been exchanged between both parties. For each stopping
criterion, the average statement coverage achieved by the MQTT fuzzers in 100 test runs
is calculated. For comparison purposes, mqttgram-r is also evaluated when testing only
MQTT 5.0. This variant is referred to as mqttgram5-cf for the remainder of the chapter.
Among the 10 open-source fuzzers available to developers, six are completely automated,
whereas the remaining four require user intervention. In order to provide a more fair
comparison, only automated fuzzers are evaluated for this research study. The testbed
shown in Figure 1.3 was used for the performance evaluation.

Statement coverage should always be analyzed in conjunction with the important
features or functionalities of the protocol. In the case of MQTT implementations, the
most important files are those related to features of the pub/sub design pattern, such as
message publications and topic subscriptions. In that regard, the fuzzers are evaluated
by measuring the number of statements executed in pub/sub-related files of Mosquitto:

62

5 | REFINEMENT OF A GRAMMAR-BASED FUZZING TECHNIQUE FOR A PUB/SUB PROTOCOL

handle_publish.c, handle_subscribe.c, and subs.c. The number of statements exe-
cuted in handle_connect.c is also measured in order to determine the degree to which
connection requests are favored over their pub/sub counterparts.

5.2.1 handle_connect.c
Figure 5.3 presents the number of statements (as a percentage) executed by each fuzzer

in 30 minutes, and after exchanging 8000 packets with the broker. Despite the two different
stopping criteria, coverage percentages shown in Figure 5.3 vary slightly and are in the
same decreasing order.

0 20 40 60 80 100

fuzz()

CyberExploit

learner

mqttgram-cf

mqttgram5-cf

mqttgram-r

mqtt_fuzz

FUME

6.56

24

31

46.13

47.42

49.46

50.52

64.04

6.96

24

31

46.81

48

49.97

54.17

67.96

Coverage Percentage (%)

30 Minutes
8000 Packets

Figure 5.3: Statement Coverage in handle_connect.c

FUME achieves the highest coverage in 30 minutes, executing approximately 67.96% of
the statements. Furthermore, FUME executes 64.04% of the statements after exchanging
8000 packets with Mosquitto, outperforming its counterparts by a wide margin. The
outperformance of FUME is directly linked to the overabundance of connection requests
performed during testing. This is due to the following three reasons. First, FUME performs
multiple tasks, including connection requests, simultaneously, after which it disconnects
from the broker and repeats the entire process until a stopping criterion has been satisfied.
For each test scenario, the interaction between FUME and Mosquitto is considerably short,
meaning the latter handles connection requests much more frequently than pub/sub-
related operations. For each scenario, FUME sends packets unrelated to connection and
disconnection requests in random order, which does not comply with the rules provided by
the standard. As a result, Mosquitto closes the connection with FUME immediately, halting
message publications or any other pub/sub functionality in that particular test scenario.
Connections are closed within a short time frame, meaning FUME reconnects to the broker
very frequently. Third, FUME generates many PUBLISH packets incorrectly, which causes
the broker to close the connection. FUME then establishes a new connection with the broker
to continue the tests.

Similar to FUME, mqtt_fuzz performs connection requests frequently. As a result,
mqtt_fuzz executes approximately 54.17% of the statements in 30 minutes, outperforming
most of its counterparts, except for FUME. This outcome also holds true when mqtt_fuzz

5.2 | PERFORMANCE EVALUATION

63

and Mosquitto exchange 8000 packets, which results in 50.52% of the statements being
executed. In contrast to FUME, mqtt_fuzz interacts with the broker dynamically, requesting
and responding to messages accordingly. In order to accomplish this goal, mqtt_fuzz
correctly generates and sends messages to the broker on most occasions. For example,
mqtt_fuzz is incapable of generating test cases for username and password authentication,
which cause Mosquitto to close the connection immediately. This in turn makes mqtt_fuzz
reconnect more frequently to Mosquitto than most fuzzers, except for FUME. Connection
requests are also more prevalent because mqtt_fuzz uses a mutation-based approach,
which creates and sends test cases to Mosquitto faster than their generation-based coun-
terparts. It is also worth noting that mqtt_fuzz performs disconnection requests at any
given moment during testing. In that regard, the vast majority of disconnections mainly
occur upon request of mqtt_fuzz rather than Mosquitto.

learner executes approximately 31% of the statements in 30 minutes and after ex-
changing 8000 packets with Mosquitto. Likewise, CyberExploit achieves the exact cov-
erage performance when satisfying both conditions, executing approximately 24% of
the statements. The coverage performance across both stopping conditions is identical
because learner and CyberExploit perform exactly the same connection request for the
entire test run. However, learner outperforms CyberExploit because of two reasons.
First, learner performs more connection requests than CyberExploit. In fact, within
the first four minutes of testing, learner performs only connection-related requests. The
initial test period therefore plays a key role in the success of learner over CyberExploit.
Second, learner uses a username and client ID to authenticate with the broker, whereas
CyberExploit opts only for the latter. learner further differentiates itself from Cyber-
Exploit by performing connection requests with properties specific to MQTT 5.0. The
aforementioned differences allow learner to outperform CyberExploit.

All variants of MQTTGRAM perform up to 4x fewer connection requests than their
counterparts. Among all variants of MQTTGRAM, mqttgram-r achieves the highest coverage
performance, executing approximately 49.97% of the statements in 30 minutes. mqttgram5-
cf, mqttgram-cf, and mqttgram-c execute 48%, 46.81%, and 46.55% of the statements,
respectively. Coverage performances are fairly similar after exchanging 8000 packets with
the broker. mqttgram-r and mqttgram5-cf execute approximately 49.46% and 47.42% of
the statements, respectively. mqttgram-cf and mqttgram-c achieve a nearly identical
coverage performance, each executing 46.13% and 46.11% of the statements.

Among all fuzzers, fuzz() achieves the lowest coverage performance. fuzz() executes
6.96% and 6.56% of the statements in 30 minutes, and after exchanging 8000 packets with
the broker, respectively.

5.2.2 handle_publish.c
Figure 5.4 presents the statement coverage percentage achieved by the MQTT fuzzers

in the file handle_publish.c.

Despite executing the largest number of statements in handle_connect.c, FUME fails
to outperform most fuzzers in handle_publish.c except for fuzz(), which executes no
statements whatsoever. As a result, FUME achieves the second-lowest performance, execut-

64

5 | REFINEMENT OF A GRAMMAR-BASED FUZZING TECHNIQUE FOR A PUB/SUB PROTOCOL

0 20 40 60 80 100

fuzz()
FUME

CyberExploit
mqttgram-c

mqttgram-cf
mqtt_fuzz

learner

mqttgram-r
mqttgram5-cf

0

3.9

25

31

31.07

31.29

31

47.07

47.19

0

11.1

25

31.02

31.09

34.66

35

47.2

47.51

Coverage Percentage (%)

30 Minutes
8000 Packets

Figure 5.4: Statement Coverage in handle_publish.c

ing approximately 11.1% of the statements in 30 minutes, and only 3.9% after exchanging
8000 packets with Mosquitto. The low coverage performance can be attributed to the fact
that most of the publish requests performed by FUME are invalid.

CyberExploit executes 25% of the statements within the first three minutes of testing,
and before exchanging 500 packets with Mosquitto. Despite outperforming FUME within a
short time frame, CyberExploit executed no more than 25% of the statements across all
of its test runs. The lack of a coverage increase is due to CyberExploit performing the
same publish request for most of the test run.

mqttgram-cf and mqttgram-c slightly outperform CyberExploit, executing 31.09%
and 31.02% of the statements respectively in 30 minutes. mqtt_fuzz surpasses the cover-
age performance of mqttgram-cf and mqttgram-c, executing 34.66% of the statements.
Despite using fewer Publish flags than its aforementioned counterparts, learner achieves
a higher coverage performance (35%) because it executes statements specifically written
for MQTT 5.0. Aside from learner, only FUME, mqttgram5-cf, and mqttgram-r are ca-
pable of executing statements specifically for MQTT 5.0. mqttgram-r and mqttgram5-cf
outperform their counterparts by executing at least 12% more statements. More specif-
ically, mqttgram5-cf executes 47.51% of the statements, whereas mqttgram-r executes
47.2%.

Although learner outperforms mqtt_fuzz, mqttgram-c, and mqttgram-cf in 30-
minute test runs, a different outcome occurs after exchanging 8000 packets with Mosquitto.
All of the aforementioned four fuzzers achieve a near identical performance. However,
mqttgram-cf and mqtt_fuzz slightly outperform both learner and mqttgram-c, execut-
ing 31.07% and 31.29% of the statements, respectively. It is worth noting that mqtt_fuzz
achieves a peak coverage performance of 34%, whereas mqttgram-cf executes at most
33% of the statements. However, their peak coverage performance is considerably sur-
passed by mqttgram-r and mqttgram5-cf, which execute 47.07% and 47.19% of the state-
ments respectively. mqttgram5-cf achieves a peak coverage performance of 51%, whereas
mqttgram-r achieves 50%.

5.2 | PERFORMANCE EVALUATION

65

5.2.3 handle_subscribe.c
Figure 5.5 presents the statement coverage of the MQTT fuzzers in han-

dle_subscribe.c.

0 20 40 60 80 100

fuzz()
CyberExploit

mqttgram-c
mqttgram-cf

learner

mqtt_fuzz
mqttgram5-cf

FUME

mqttgram-r

0

12

55.04

55.5

58

58.13

65.82

64.1

69.7

0

12

55.96

57.2

58

62.67

67.62

67.99

71.76

Coverage Percentage (%)

30 Minutes
8000 Packets

Figure 5.5: Statement Coverage in handle_subscribe.c

Among all fuzzers, mqttgram-r achieves the highest coverage performance, executing
71.76% of the statements in 30 minutes. This outcome is all the more surprising given that
mqttgram-r exchanges at least 15x fewer packets than FUME, which executes 67.99% of
the statements within the same time frame. This result sheds light on two common issues
across existing MQTT fuzzers: (1) the abundance of repeated test cases and (2) the lack of
domain knowledge, which in turn leads to the same statements being executed repeatedly
regardless of how many packets are sent over time.

On average, mqttgram5-cf and FUME achieve a similar coverage performance despite
the former supporting only MQTT 5.0 and exchanging the fewest packets with Mosquitto
in 30 minutes. However, FUME manages to achieve a peak coverage performance of 75%,
whereas mqttgram5-cf achieves 70%.

mqtt_fuzz achieves the fourth-best coverage performance, executing at most 64%
of the statements. On average, mqtt_fuzz executes 62.67% of the statements, whereas
learner executes 58%, which is also its best coverage percentage across 100 test runs. In
fact, learner executes 58% of the statements in approximately 3 minutes, and remains
the same for the remainder of the test run. It is worth noting that, at the time of writing,
mqttgram5-cf and learner are the only fuzzers designed specifically for MQTT 5.0.
However, between the two fuzzers, mqttgram5-cf is the most effective test suite for
MQTT 5.0, outperforming learner by a margin of nearly 10%. Despite using Mosquitto
to infer the message sequence and syntax of MQTT, learner underperforms considerably
in terms of statement coverage.

The coverage performance between mqttgram-c and mqttgram-cf is nearly identical,
averaging approximately 55.96% and 57.20% respectively in 30 minutes. However, their
statement coverage peaks at 60% in 30-minute test runs, outperforming learner by 2%. It

66

5 | REFINEMENT OF A GRAMMAR-BASED FUZZING TECHNIQUE FOR A PUB/SUB PROTOCOL

is worth noting that the performance of mqtt_fuzz surpasses that of mqttgram-cf and
mqttgram-c. The reason behind this outcome is due to mqtt_fuzz performing subscription
requests with both invalid and valid QoS levels, whereas its grammar-based counterparts
use only the former type.

CyberExploit achieves the second-lowest performance, averaging and peaking at 12%
of the statements. The reason for its low statement coverage is due to subscription requests
being performed mostly in the same manner during testing. Most notably, CyberExploit
uses the same identifier (0) and QoS level (0) for every subscription message it generates
and sends to the broker. As a result, levels 1 and 2 of QoS are left untested. Subscription
topics are the only exceptions to this rule, varying considerably across test cases.

fuzz() fails to execute any statement whatsoever in handle_subscribe.c because
it is incapable of connecting successfully to the broker. As a result, the broker does not
receive nor handle any subscription request from fuzz().

In terms of the packet-based experiments, mqttgram-r achieves the highest coverage
performance, outperforming its counterparts by a margin of at least 4%. On average,
mqttgram5-cf and FUME execute 65.82% and 64.1% of the statements, respectively. Prior
to 2000 packets, the statement coverage of mqttgram5-cf peaks at 68%, and afterwards
increases to 70%, which is exactly the same result across all of its 30-minute test runs. The
statement coverage of FUME peaks at 68% prior to exchanging 500 packets with Mosquitto,
and remains the same for the remainder of the test run. Regardless of the stopping criterion,
the coverage performance of both mqttgram5-cf and FUME are fairly similar, despite the
latter supporting multiple versions of the standard.

The remaining six fuzzers, including mqtt_fuzz, achieve the same ranking when
satisfying both stopping conditions. The statement coverage of learner peaks and re-
mains at 58% during most of the fuzzing campaign. The considerable lack of increase in
statement coverage signals that learner performs the same type of subscription request
constantly. This reinforces the fact that developers are neglecting the core characteristics of
the pub/sub design pattern when building MQTT fuzzers. mqttgram-c and mqttgram-cf
achieve similar performance, executing 55.04% and 55.5% of the statements respectively.
CyberExploit underperforms considerably when compared to its counterparts, executing
at most 12% of the statements. Similar to learner, CyberExploit achieves peak perfor-
mance very early during testing, meaning its subscription-related test cases lack variety.
Unsurprisingly, fuzz() executed no statements whatsoever, as is the case in its 30-minute
test runs.

5.2.4 subs.c
subs.c may very well be considered the most important file for Mosquitto because

its purpose is to publish messages to interested subscribers. In that regard, subs.c is the
file that is most associated with the core features of the pub/sub design pattern. MQTT
fuzzers should therefore prioritize statement coverage in subs.c. Figure 5.6 reveals that the
variants of MQTTGRAM are the only fuzzers capable of executing over 60% of the statements
across both stopping conditions.

mqttgram-r, in particular, achieves the best performance among other variants of

5.2 | PERFORMANCE EVALUATION

67

0 20 40 60 80 100

fuzz()
CyberExploit

learner

mqtt_fuzz
FUME

mqttgram5-cf
mqttgram-c

mqttgram-cf
mqttgram-r

24

25

56

57.79

53.89

61.58

63.09

64.51

64.63

24

25

56

58.97

61.54

62.28

64.91

65.13

66.25

Coverage Percentage (%)

30 Minutes
8000 Packets

Figure 5.6: Statement Coverage in subs.c

MQTTGRAM, executing 66.25% of the statements in 30 minutes. mqttgram-cf and mqttgram-
c execute 65.13% and 64.91% of the statements respectively. In fact, among all the variants
of MQTTGRAM, mqttgram-cf triggers the highest average number of message publications
in 30 minutes (319), followed by mqttgram-r (212), mqttgram5-cf (192), and mqttgram-c
(178) respectively. The latter fuzzer triggers the lowest number of message publications
because it is designed to generate topic-based packets less frequently than its counter-
parts (Araujo Rodriguez andMacêdoBatista, 2021). mqttgram5-cf triggers the second-
lowest number of publications because its methodology for packet generation is more
time consuming than that of its counterparts. This has to do with the fact that version 5.0
of MQTT packets adds more fields and user properties to the payload than past releases.
For each MQTT 5.0 packet, mqttgram5-cf needs to randomly select a user property and
define its corresponding value, the process of which affects the overall number of test
cases generated and sent to the broker over time. mqttgram-r is affected by this issue to a
lesser degree because it occasionally generates MQTT 3.1.1 packets, which demand less
effort. However, despite triggering the second-highest number of message publications,
mqttgram-r executes more statements in subs.c than mqttgram-cf. This result stems
from the fact that mqttgram-r supports two versions of the standard, whereas mqttgram-
cf supports only one. The superior performance of mqttgram-r serves as an indication of
its aim and capabilities in triggering the broker into publishing messages using different
parameters, whereas all of their counterparts fail in this regard.

For example, FUME triggers the broker into publishing at least 8x more messages
(2769) to interested subscribers in 30 minutes than all variants of MQTTGRAM. Despite the
large number of message publications, FUME executes 61.54% of the statements, slightly
below the average performance of its grammar-based counterparts. This is surprising
given the fact that FUME supports all major versions of MQTT, whereas its counterparts
support one or two releases at most. Another surprising fact is the number of packets
exchanged between FUME and Mosquitto. The higher the number of packets exchanged
with the broker, the greater the chances of executing more statements and triggering
additional message publications. In that regard, FUME exchanges 546,284.2 packets with

68

5 | REFINEMENT OF A GRAMMAR-BASED FUZZING TECHNIQUE FOR A PUB/SUB PROTOCOL

Mosquitto in 30 minutes, out of which only 268.6 (0.05%) are publish requests. The lack of
message publications is further hindered by the fact that most publish requests performed
during testing are invalid, hence its performance drop to 53.89% in 8000-packet test runs.
As a result, FUME struggles to trigger Mosquitto into publishing messages to interested
subscribers, meaning the core functionality of the pub/sub pattern is neglected to a certain
degree during testing. Although FUME performs approximately 5745 subscription requests
during the test run, these efforts also seem to be of little avail.

Among MQTT fuzzers, mqtt_fuzz performs the most subscription and publish re-
quests, averaging 6868 and 4926 respectively in 30 minutes. This leads mqtt_fuzz to
trigger 15012.1 message publications in 30 minutes, outperforming all of its counterparts
by a wide margin. Despite the large number of message publications, mqtt_fuzz is slightly
outperformed by FUME and MQTTGRAM-based fuzzers in terms of statement coverage, which
averages approximately 58.97%. It is worth noting that mqtt_fuzz achieves a coverage
performance of 58.02% in 3 minutes, meaning it increments its statement coverage by
approximately 1% at the end of the test run.

learner, on the other hand, is incapable of increasing its coverage performance after 3
minutes, executing at most 56% of the statements. This is due to the fact that learner uses
the same connection, publish, and subscription parameters for the entire test run. This
is also the case for CyberExploit, which its coverage percentage never surpasses 25%
after 3 minutes. In addition to the same parameters, CyberExploit and learner assign
the same values to the majority of the fields in connection- and pub/sub-related packets,
the sole exceptions being subscription topics and their corresponding messages. However,
in contrast to learner, at no time during testing does CyberExploit trigger the broker
into publishing messages. The lack of message publications causes CyberExploit to
achieve the second-lowest coverage performance among MQTT fuzzers. Likewise, similar
to CyberExploit, fuzz() executes 24% of the statements due to also being incapable of
triggering message publications. It is worth noting that fuzz() achieves the same coverage
percentage (24%) after exchanging 8000 packets with Mosquitto, as shown in Figure 5.6.
CyberExploit executes 25% of the statements, which is also its same coverage percentage
in 30-minute test runs.

A major performance difference shown in Figure 5.6 is with regards to FUME, which
drops to 53.89% when executing 8000-packet test runs. The reason behind the performance
drop has to do with the fact that FUME struggles to generate valid publish packets, requiring
more time than its counterparts to execute certain statements. Unsurprisingly, learner
achieves the same result as in 30-minute test runs, executing 56% of the statements.
The coverage performance of mqtt_fuzz varies slightly across both stopping conditions,
executing 57.79% of the statements in 8000-packet test runs. The variants of the MQTTGRAM
are the only fuzzers capable of executing over 60% of the statements. mqttgram-r achieves
the highest coverage performance (64.63%), followed by mqttgram-cf (64.51%), mqttgram-
c (63.09%), and mqttgram-5cf (61.58%), respectively.

After evaluating the performance of mqttgram-r, the answer to RQ4 is as fol-
lows:

5.3 | CONCLUDING REMARKS

69

RQ4: How effective is an MQTT fuzzer when considering three essential
elements for pub/sub fuzzing: two-way communication capabilities; topic
awareness; and multiversion support?

Chapter 4 identified FUME as the most effective MQTT fuzzer proposed in the
literature thus far. However, mqttgram-r manages to outperform all of its state-of-
the-art competitors, including FUME, in terms of standardized testing metrics such
as code coverage, executing up to 12x more statements in pub/sub-related files. This
result is all the more surprising given that mqttgram-r supports fewer versions
of MQTT than FUME, and still manages to achieve the highest statement coverage.
mqttgram-r and FUME execute at most 2321 and 2311 statements, respectively. On
average, mqttgram-r executes from 2131 to 2276 statements in 30 minutes, whereas
FUME executes from 2138 to 2242 statements. The original MQTTGRAM underperforms
considerably compared to mqttgram-r, executing at most 2140 statements in 30
minutes. These results therefore confirm the research hypothesis, which stated that
the effectiveness of an MQTT fuzzer is higher when considering the three essential
elements.

5.3 Concluding Remarks
Chapter 4 determined that all fuzzers have issues regarding pub/sub protocol testing.

This chapter therefore presented and evaluated a new fuzzer based on an architecture that
developers can use as a reference to test MQTT or other pub/sub protocols. The open-
source fuzzer introduced in this chapter outperforms all of its state-of-the-art-competitors
in terms of pub/sub testing. Not only did this chapter present the new multiversion
grammar-based approach for a pub/sub protocol, but it also reinforced the importance of
the contributions presented in previous chapters of this thesis for the development of better
testing tools. This chapter can therefore help raise awareness and motivate developers to
better design their fuzzers considering the three essential elements for successful pub/sub
fuzzing in future studies.

71

Chapter 6

Stress Test Evaluation of Fuzzing
Techniques for MQTT Brokers

Centralized pub/sub architectures, such as the one shown in Figure 6.1, have been
adopted for several smart city applications, including transportation systems, traffic control,
and healthcare services.

Publisher 1

Publisher 2

Publisher N

Broker

Subscriber 1

Subscriber 2

Subscriber N

Figure 6.1: Centralized Broker Architecture for Pub/Sub Messaging

As previously stated, a major disadvantage of centralized architectures, when com-
pared to their distributed counterparts, is that the broker most often becomes a perfor-
mance bottleneck because it is the single entity responsible for data transmission and
storage (Johnsen et al., 2018). In the worst case scenario, a performance bottleneck leads to
a Denial of Service (DoS), which has negative effects, especially in large-scale environments
such as smart cities. For example, the lack of transport services is detrimental to citizens
and city revenue; the absence of traffic control systems may increase the number of car
accidents; and unavailable healthcare systems can delay urgent medical procedures or
appointments.

DoS attacks can also be performed intentionally to either flood or crash the target
system. Both of these outcomes usually occur by elevating the CPU and memory usage
of the broker to such a degree that its functionality is affected. According to the MITRE
Corporation (2006), uncontrolled resource consumption has a high probability of leading
to an exploit. In fact, resource-related vulnerabilities rank within the top 25 most dangerous
software weaknesses (MITRE Corporation, 2006). Furthermore, resource exhaustion is

72

6 | STRESS TEST EVALUATION OF FUZZING TECHNIQUES FOR MQTT BROKERS

one of the most common types of DoS attacks in IoT according to the literature (Mrabet
et al., 2020).

The robustness of the broker therefore plays a key role in the success and reliability of
smart city applications, which must be capable of providing high quality services under
heavy workload. A DoS can be mitigated or avoided altogether if the robustness of the
broker is tested thoroughly before deployment, thereby guaranteeing its reliability in
real-world environments (Oliveira et al., 2019). The MITRE Corporation (2006) lists
fuzz testing as one of the three main detection methods for resource-exhaustion problems.
However, in order to guarantee that the broker is robust and reliable enough against
performance bottlenecks or issues in smart cities, a fuzzer should perform CPU- and
memory-intensive tests (Săndescu et al., 2018). Despite the wide range of broker fuzzers
available, there is a lack of information in the literature regarding their capabilities to
perform resource-exhaustion attacks during the test run.

This chapter therefore aims to answer the following research question:

RQ5: How effective are existing fuzzing strategies at impacting the CPU and

memory usage of the broker during testing?

Although there have been several publications about the broker’s performance while
under heavy workload (Mishra and Kertesz, 2021), none have evaluated the capabilities
of existing fuzzing tools for stress-testing purposes. This is therefore the first research to
investigate about the fuzzers’ capabilities in regards to resource exhaustion. This chapter
also highlights questionable design choices that prevent existing fuzzers from consuming
more system resources.

6.1 State of the Art
At the time of writing, broker fuzzers proposed in the literature are mostly for MQTT,

which research studies have demonstrated is extremely vulnerable to resource-exhaustion
attacks (Kim et al., 2017). Since 2016, at least ten vulnerabilities related to memory man-
agement have been triggered in MQTT brokers. Examples of memory-management vul-
nerabilities are CVE-2016-10523, CVE-2017-2894, CVE-2017-7651, CVE-2018-17614, CVE-
2018-19417, CVE-2018-19587, CVE-2018-5879, CVE-2018-8531, and CVE-2019-12951. All
of the aforementioned vulnerabilities were triggered by sending malicious or malformed
packets to the broker, which is a common practice among cyberattackers. Despite these
issues, resource-related metrics are barely used in the literature for comparing MQTT
fuzzers. At the time of writing, only Hernández Ramos et al. (2018) evaluated their fuzzer
by considering the CPU consumption of the broker.

Although none of the broker fuzzers presented in the previous chapters are designed
specifically for resource-intensive purposes, it is important to evaluate their stress-testing
capabilities because of three reasons. First, open-source resource-guided fuzzers designed
specifically for MQTT brokers are nonexistent. A resource-guided fuzzer receives and ana-
lyzes resource-related feedback about the broker while fuzzing. Due to their nonexistence,
developers have two choices: (1) develop their own resource-guided fuzzer from scratch; or
(2) use and extend an existing framework to perform stress testing. Developers have thus

6.2 | PERFORMANCE EVALUATION

73

far preferred the latter, as evidenced by the research studies conducted by Fehrenbach
(2017) and Morelli et al. (2021), which propose to use or extend an open-source MQTT
fuzzer to perform more complex resource-exhaustion attacks. Second, the tools proposed
by Fehrenbach (2017) and Morelli et al. (2021) are proprietary, meaning developers
have no choice but to select one of the state-of-the art fuzzing frameworks evaluated in
this research study. As such, it is important for developers to be aware of the capabilities
and shortcomings of each open-source fuzzer in order to select the most appropriate for
testing purposes. Third, although there exists open-source resource-guided fuzzers such
as MEMLock (Wen et al., 2020) or ResFuz (L. Chen et al., 2022), they are incompatible with
network-based target systems such as brokers, meaning developers are more likely to use
and extend the open-source fuzzers evaluated in this research study.

6.2 Performance Evaluation
This section evaluates six open source MQTT fuzzers (Philippe Biondi and the Scapy

Community, 2023; F-Secure Corporation, 2015; Casteur et al., 2020; Aichernig et al.,
2021; Araujo Rodriguez and Macêdo Batista, 2021; Pearson et al., 2022). Mosquitto
1.6.8 and Moquette 0.13 were chosen as the target brokers because of their popularity in the
literature (Hernández Ramos et al., 2018; Bender et al., 2021; Sochor et al., 2020b). The
MQTT brokers and fuzzers were evaluated using default settings. The CPU and memory
usage of the brokers are monitored throughout the fuzzing campaigns. The more CPU-
and memory-intensive inputs are sent to the brokers, the higher the probability of finding
resource-exhaustion bugs. Fuzzing campaigns are repeated 100 times in order to calculate
the average and standard deviation for each stopping criterion. Two separate experiments
were conducted, each satisfying a different stopping criterion. For the first experiment,
the fuzzers are executed until a certain time has elapsed (30 minutes). For the second
experiment, the fuzzers are executed until a specific number of packets has been exchanged
with the brokers (8000). Resource usage is measured after every three minutes and after
500, 1000, 2000, 4000, 6000, and 8000 packets. The fuzzers are referred to by either their
designated name (if available) or main characteristic. Similar to the previous chapters, the
fuzzer by Aichernig et al. (2021) is referred to as learner due to lacking a formal name.
It is worth noting that Moquette lacks support for MQTT 5.0, hence the reason why it
could not be tested with learner and FUME. The testbed shown in Figure 1.3 was used for
the performance evaluation.

6.2.1 Mosquitto
Figure 6.2 presents the CPU usage of Mosquitto when fuzzing for 30 minutes. It is

worth noting that the figures in this section present the results of only one variant of
MQTTGRAM (mqttgram-cf) because it performs nearly identical to mqttgram-c.

Among all MQTT fuzzers, FUME consumes the most CPU resources on Mosquitto,
followed by mqtt_fuzz and learner respectively. The CPU usage by FUME ranges from
1.05% to 1.23%, and peaks at 2.40%. mqtt_fuzz consumes at most 1.50% of the CPU, and
normal usage ranges from 0.92% to 1.07%. learner uses up to 0.40% of the CPU, and
average consumption is fairly consistent throughout 30 minutes, remaining mostly at

74

6 | STRESS TEST EVALUATION OF FUZZING TECHNIQUES FOR MQTT BROKERS

10 20 30

1

1.2

1.4

Minutes

U
sa

ge
(%

)

FUME

10 20 30

Minutes

mqtt_fuzz

10 20 30

Minutes

learner

10 20 30

Minutes

CyberExploit

10 20 30

Minutes

fuzz()

10 20 30

Minutes

mqttgram-cf

Figure 6.2: Average CPU Usage of Mosquitto During 30 Minutes.

0.30%. Peak CPU usage when testing with fuzz() and CyberExploit is slightly lower than
its counterparts, reaching at most 0.30% and 0.20% respectively. Average CPU usage by both
fuzzers is mostly consistent throughout 30 minutes, ranging from 0.10% to 0.14%. Finally,
both variants of MQTTGRAM perform mostly the same, with mqttgram-c and mqttgram-cf
using at most 0.10% and 0.20% respectively. Average CPU usage by both grammar-based
approaches remains at 0.10% throughout most of the fuzzing campaign.

Based on the time-based experiments, all MQTT fuzzers are incapable of creating CPU-
intensive scenarios that test the broker’s performance under heavy workload. The results
of the packet-based experiments, shown in Figure 6.3, further confirm this limitation.

0

2
,0
0
0

4
,0
0
0

6
,0
0
0

8
,0
0
0

0.6

0.8

1

1.2

1.4

Packets

U
sa

ge
(%

)

FUME

0

2
,0
0
0

4
,0
0
0

6
,0
0
0

8
,0
0
0

Packets

mqtt_fuzz

0

2
,0
0
0

4
,0
0
0

6
,0
0
0

8
,0
0
0

Packets

learner

0

2
,0
0
0

4
,0
0
0

6
,0
0
0

8
,0
0
0

Packets

CyberExploit
0

2
,0
0
0

4
,0
0
0

6
,0
0
0

8
,0
0
0

Packets

fuzz()

0

2
,0
0
0

4
,0
0
0

6
,0
0
0

8
,0
0
0

Packets

mqttgram-cf

Figure 6.3: Average CPU Usage of Mosquitto When Exchanging 8000 Packets.

Figure 6.4 presents the memory usage of Mosquitto when fuzzing for 30 minutes.

10 20 30

10

20

30

Minutes

U
sa

ge
(%

)

FUME

10 20 30

Minutes

mqtt_fuzz

10 20 30

Minutes

learner

10 20 30

Minutes

CyberExploit

10 20 30

Minutes

fuzz()

10 20 30

Minutes

mqttgram-cf

Figure 6.4: Average Memory Usage of Mosquitto During 30 Minutes.

FUME peaks Mosquitto’s memory usage at 43.50%, outperforming all other state-of-the-
art fuzzing techniques combined. The memory usage by learner peaks at 6.10%, followed
by mqtt_fuzz at 5.80%, and mqttgram-cf at 4.90%, respectively. The memory usage by
FUME ranges from 4.93% to 22.39%, increasing at a higher rate than those of its counterparts.
The percentage increase may be directly linked to the network traffic during testing. For
example, FUME exchanges 544,082 packets with Mosquitto in 30 minutes, outperforming
all other fuzzers by a wide margin. In fact, mqtt_fuzz generates over 50% less network

6.2 | PERFORMANCE EVALUATION

75

traffic (218,557) than FUME in the same time frame. Similarly, mqtt_fuzz exchanges over
50% more packets with the broker than learner (75,855). Despite outperforming learner,
mqtt_fuzz consumes only from 3.71% to 4.04% of memory on average. In contrast, learner
increases Mosquitto’s memory usage from 1.59% to 6.08%. According to the results, a
broker’s memory consumption seems to increase at a higher rate when testing MQTT
5.0, as is the case of FUME and learner. The latter fuzzer consumes less memory at the
beginning of the fuzzing campaign because its interactions with the broker are mostly
short-lived, consisting solely of connection and disconnection requests. However, learner
slightly covers more functionality over time by performing publish and subscribe requests,
increasing Mosquitto’s memory usage as a result.

Despite covering more functionality than learner, mqttgram-cf increases
Mosquitto’s memory usage only from 1.39% to 3.97% on average. Both mqttgram-c
and CyberExploit consume at most 3.70% of Mosquitto’s memory, and their average
usage is nearly identical. The former’s memory usage ranges from 1.32% to 3.57%,
whereas the latter’s from 1.33% to 3.65%. Among all fuzzers for MQTT brokers, fuzz()
underperformed the most in terms of Mosquitto’s memory usage, consuming at most 2.90%.
Average memory usage by fuzz() ranges from 1.30% to 2.89% throughout 30 minutes.
Despite covering less functionality than most of its counterparts, learner consumes more
memory on Mosquitto than most fuzzers at the end of 30 minutes, except for FUME. More
specifically, learner outperforms mqtt_fuzz, despite the latter exchanging considerably
more packets with the broker than the former. In fact, all fuzzers compatible with MQTT
5.0 have the largest percent increase from 3 to 30 minutes. For example, mqtt_fuzz
increases memory usage by up to 0.33% from 3 to 30 minutes, whereas learner increases
memory usage by up to 4.50% in the same time frame.

Similarly, fuzz() uses the least amount of memory when exchanging up to 8000
packets with Mosquitto, as shown in Figure 6.5.

0

2
,0
0
0

4
,0
0
0

6
,0
0
0

8
,0
0
0

1

2

3

4

5

Packets

U
sa

ge
(%

)

FUME

0

2
,0
0
0

4
,0
0
0

6
,0
0
0

8
,0
0
0

Packets

mqtt_fuzz

0

2
,0
0
0

4
,0
0
0

6
,0
0
0

8
,0
0
0

Packets

learner

0

2
,0
0
0

4
,0
0
0

6
,0
0
0

8
,0
0
0

Packets

CyberExploit

0

2
,0
0
0

4
,0
0
0

6
,0
0
0

8
,0
0
0

Packets

fuzz()

0

2
,0
0
0

4
,0
0
0

6
,0
0
0

8
,0
0
0

Packets

mqttgram-cf

Figure 6.5: Average Memory Usage of Mosquitto When Exchanging 8000 Packets.

In fact, fuzzers that cover the least amount of functionality seem to consume fewer
memory resources than their counterparts. For example, fuzz() and CyberExploit per-
form roughly the same, consuming at most 1.60% of Mosquitto’s memory. The average
memory usage by both fuzzers ranges from 1.11% to 1.60%. Despite learner ranking
second-best in terms of memory usage at the end of 30 minutes, it ranks as the third lowest
when exchanging up to 8000 packets, consuming at most 1.70% of memory. Average
memory usage by learner ranges from 1.20% to 1.69%. mqttgram-c and mqttgram-
cf perform slightly better than the aforementioned approaches, using at most 2.10%
and 2.20% of memory respectively. More specifically, mqttgram-cf performs better than

76

6 | STRESS TEST EVALUATION OF FUZZING TECHNIQUES FOR MQTT BROKERS

mqttgram-c overall, consuming from 1.20% to 2.13% of memory on average. Memory
usage by mqttgram-c ranges from 1.19% to 1.98%. Among all fuzzers, mqttgram-cf has
the largest percent increase (0.93%) when exchanging up to 8000 packets with Mosquitto,
followed by mqttgram-c (0.78%). However, it is worth noting that learner outperforms
both mqttgram-cf and mqttgram-c at the end of 30 minutes because it exchanges more
packets with the broker than the aforementioned approaches, hence the importance of
evaluating fuzzers based on the number of packets. Among all fuzzers, mqtt_fuzz has the
highest average memory usage, which ranges from 2.99% to 3.60%. The minimum value
(2.99%) is higher than all standout performances of nearly every fuzzer except for FUME,
which consumes at most 4.80% of memory resources, whereas mqtt_fuzz uses at most
4.60%. Although FUME has the highest standout performance (4.80%) among all fuzzers, its
average memory usage ranges from 1.57% to 2.18%, meaning it is slightly outperformed by
mqtt_fuzz.

6.2.2 Moquette
All fuzzers manage to either maintain or increase Mosquitto’s CPU usage during the

test run. In contrast, Moquette’s CPU usage gradually decreases over time, as shown in
Figure 6.6.

10 20 30

2

3

4

Minutes

U
sa

ge
(%

)

mqtt_fuzz

10 20 30

Minutes

CyberExploit

10 20 30

Minutes

fuzz()

10 20 30

Minutes

mqttgram-cf

Figure 6.6: Average CPU Usage of Moquette During 30 Minutes.

For example, mqtt_fuzz consumes the highest amount of CPU on Moquette, reaching
up to 4.00%. However, CPU usage decreases from 3.66% to 1.84% on average at the end
of 30 minutes. Moquette’s CPU usage also decreases when testing it with CyberExploit,
lowering from 1.46% to 0.58%. Both variants of MQTTGRAM performed in a similar manner,
consuming at most 1.50% of CPU usage, which decreases to roughly 0.60% at the end of the
fuzzing campaign. Moquette’s CPU usage peaks at 6.70% when exchanging 8000 packets
with mqtt_fuzz, and gradually decreases over time, as shown in Figure 6.7.

0

2
,0
0
0

4
,0
0
0

6
,0
0
0

8
,0
0
0

4

5

6

7

Packets

U
sa

ge
(%

)

mqtt_fuzz

0

2
,0
0
0

4
,0
0
0

6
,0
0
0

8
,0
0
0

Packets

CyberExploit

0

2
,0
0
0

4
,0
0
0

6
,0
0
0

8
,0
0
0

Packets

fuzz()

0

2
,0
0
0

4
,0
0
0

6
,0
0
0

8
,0
0
0

Packets

mqttgram-cf

Figure 6.7: Average CPU Usage of Moquette When Exchanging 8000 Packets.

6.3 | DISCUSSION

77

Moquette’s memory usage is fairly similar to that of Mosquitto, as shown in Fig-
ure 6.8.

10 20 30

8

9

10

Minutes

U
sa

ge
(%

)

mqtt_fuzz

10 20 30

Minutes

CyberExploit

10 20 30

Minutes

fuzz()

10 20 30

Minutes

mqttgram-cf

Figure 6.8: Average Memory Usage of Moquette During 30 Minutes.

In fact, fuzzers rank in the exact order across both brokers at the end of 30 minutes.
For example, among 3.x compatible fuzzers, mqtt_fuzz consumes the most memory on
both Mosquitto and Moquette. Due to the identical rank order at the end of 30 minutes,
all explanations about Mosquitto’s fuzzing campaigns also apply to those of Moquette. In
fact, Moquette’s memory usage throughout 30 minutes further confirms that most fuzzers,
except for FUME, are incapable of performing memory-intensive tests for pub/sub brokers.
The average memory usage by 3.x compatible fuzzers ranges from 5.90% to 9.00%, and
peaks at 10.40%.

Fuzzers rank differently, however, when exchanging 8000 packets with Moquette, as
shown in Figure 6.9.

0

2
,0
0
0

4
,0
0
0

6
,0
0
0

8
,0
0
0

6

6.5

7

Packets

U
sa

ge
(%

)

mqtt_fuzz

0

2
,0
0
0

4
,0
0
0

6
,0
0
0

8
,0
0
0

Packets

CyberExploit

0

2
,0
0
0

4
,0
0
0

6
,0
0
0

8
,0
0
0

Packets

fuzz()

0

2
,0
0
0

4
,0
0
0

6
,0
0
0

8
,0
0
0

Packets

mqttgram-cf

Figure 6.9: Average Memory Usage of Moquette When Exchanging 8000 Packets.

Unexpectedly, fuzz() outperforms other fuzzers in terms of average memory usage,
which ranges from 5.95% to 6.55%. Both fuzz() and mqttgram-cf consume at most 7.50%
of memory, whereas the remaining fuzzers use no more than 6.60%.

Overall, the fuzzers consume few CPU and memory resources on Moquette. These
results support the major finding of this research study, which is that existing MQTT
fuzzers are incapable of intensively testing both a broker’s CPU and memory.

6.3 Discussion
Although fuzzers underperformed in terms of the brokers’ CPU consumption, their

results provide insight into two ineffective strategies to avoid for future work. First,
sending a considerable amount of packets, as is the case of mqtt_fuzz and FUME, does

78

6 | STRESS TEST EVALUATION OF FUZZING TECHNIQUES FOR MQTT BROKERS

not increase the CPU usage considerably. Second, performing publish requests with long
topic names, as is the case of FUME and CyberExploit, also consumes few CPU resources
on Mosquitto. Future work should be directed towards improving these strategies. For
example, running multiple instances of fuzzers simultaneously could potentially increase
the CPU usage of the broker. Future research could analyze the effectiveness of fuzzers
when running multiple instances, exploring strategies that increase CPU resources and
hinder the performance of the broker.

There are also several opportunities for future work considering the lessons learned
from Mosquitto’s memory usage while fuzzing. First, performing multiple requests si-
multaneously and successively seems to be an effective strategy to consume more of the
broker’s memory. In this chapter, performing multiple requests simultaneously refers to
sending multiple requests in a single packet to the broker, whereas performing multiple

requests successively refers to sending multiple packets one after the other without waiting
for a response from the broker (See Appendix C, Figure C.4). Future work should attempt
to develop fuzzers that apply both approaches to increase the broker’s workload.

Second, storing significant amounts of user data on the broker should be performed
in order to increase memory usage during testing. This task can be accomplished by
disabling clean sessions and enabling retained messages when performing connection and
publish requests respectively. Storing user sessions and topic messages can increase the
broker’s memory usage because multiple messages will have to be published by the broker
when a client resumes communications or subscribes to a given topic. Furthermore, topic
filters with wildcard characters, such as # or +, should be used to receive multiple publish
messages from the broker.

Third, MQTT 5.0 sessions are more memory intensive than their older counterparts.
This is evidenced by the following three observations. First, learner outperforms Cy-
berExploit in terms of memory usage despite generating shorter topic names for both
publish and subscribe requests. Second, learner exchanges fewer packets with the broker
than mqtt_fuzz, but still manages to use more memory. Third, in contrast to mqtt_fuzz,
learner stores neither user- nor subscription-related information in the broker. The reason
for the outperformance of learner stems from the fact that MQTT 5.0 is a substantial
upgrade over its older siblings, supporting a wide variety of features such as user properties
or subscription options. Thus, most MQTT 5.0 packets possess more fields, meaning the
broker must store additional subscription-related information. For example, SUBSCRIBE

packets in MQTT 5.0 contain more fields for configuration options, such as scheduled
message transmissions, all of which are stored on the broker. User sessions are therefore
much more memory consuming, which explains why 5.x compatible fuzzers have the
largest percent increase over time.

The memory consumption analysis of MQTT fuzzers also reveals different performance
rankings for each type of stopping criterion. For example, FUME consumed the most memory
at the end of 30 minutes, followed by learner and mqtt_fuzz respectively. However,
when exchanging the same number of packets with Mosquitto, mqtt_fuzz ranks as the
most memory-consuming fuzzer on average, whereas FUME and learner fell to second
and third place respectively. The different performance rankings may indicate that certain
strategies are more effective than others in terms of memory consumption. In fact, when

6.4 | CONCLUDING REMARKS

79

fuzzers generate the same amount of network traffic (8000 packets), their limitations
in terms of memory consumption become more noticeable. Considering the research
findings presented in this paper, it is strongly recommend that developers incorporate
resource-exhaustion techniques into their MQTT fuzzers.

After analyzing the resource-consumption of existing MQTT fuzzers, the answer to
RQ5 is as follows:

RQ5: How effective are existing fuzzing strategies at impacting the CPU
and memory usage of the broker during testing?

The results confirm that current fuzzers are incapable of intensively testing both the
broker’s CPU and memory. Among existing fuzzers, FUME shows the most promise
for resource-intensive testing, peaking the memory usage of the broker at 43.5%,
which is more than 20% when compared to its counterparts.

6.4 Concluding Remarks
MQTT brokers are currently being deployed to large-scale scenarios such as smart

cities. In that regard, the broker should be robust enough to handle requests from its
citizens. Several fuzzers are made available to developers for testing-purposes. However,
developers are unaware of the fuzzers’ shortcomings in terms of resource-exhaustive
testing. This chapter presented a performance evaluation of the most popular open-source
fuzzers in the literature. Developers can use the guidelines presented in this chapter to
either improve existing fuzzers or incorporate them into their own testing tool.

81

Chapter 7

Conclusions and Future Work

Fuzzing has made considerable progress across multiple domains. However, a research
field that has been largely neglected is pub/sub protocol fuzzing, which is important to
guarantee the reliability of message brokers deployed to the Internet of Things. The aim
of this PhD research was therefore to study and develop effective fuzzing strategies for
pub/sub protocols, aiming to contribute to the development of more robust applications in
IoT and Smart Cities. This thesis therefore began by analyzing the research advancements
and trends of pub/sub protocol fuzzing since its inception (Chapter 2). In that regard, the
thesis focused primarily on MQTT, the only pub/sub protocol for which developers have
proposed a wide variety of fuzzing techniques in the literature. Despite focusing specifically
on MQTT, this research can serve as an initial step towards developing effective fuzzing
strategies for pub/sub protocols in general, raising awareness and encouraging developers
to better test brokers considering their message-publishing features and event-driven
architecture.

It was evident after reviewing the literature that several research gaps needed to
be filled in order to further advance the field of pub/sub protocol fuzzing. For example,
information regarding established testing techniques such as grammar-based fuzzing for
pub/sub protocols was mostly nonexistent in the literature, despite developers and re-
searchers expressing interest. As a result, a new grammar-based approach for a pub/sub
protocol (MQTT) was proposed and incorporated into a new fuzzer called MQTTGRAM 1,
which developers can now use as a reference for testing purposes (Chapter 3).

MQTTGRAM joined several other fuzzers in providing a different testing strategy to devel-
opers and researchers, leading to a promising, yet complicated situation. On the one hand,
developers now have several different and varied options at their disposal to test MQTT, but
on the other hand the sheer number of techniques hinders decision-making in choosing the
most appropriate or effective for a given situation. This hindrance will also have a negative
impact on future studies, which will be unable to discern promising research directions
or advancements in the field of pub/sub protocol fuzzing. As a result, a taxonomical
classification (Chapter 4, Figure 4.4) and performance benchmark of fuzzing techniques for
MQTT were presented in this thesis to clarify inquiries regarding their effectiveness. Due to

1 https://github.com/luisgar1990/MQTTGRAM. Accessed on May 17th, 2023

https://github.com/luisgar1990/MQTTGRAM

82

7 | CONCLUSIONS AND FUTURE WORK

the sheer amount of fuzzing techniques proposed for MQTT, one could have easily assumed
that developers have a wide range of options to test their brokers’ pub/sub functionalities.
However, upon further investigation, the research findings indicated that all fuzzers have
shortcomings regarding pub/sub protocol testing (Chapter 4). The root of the problem
stems from the fact that all techniques were proposed without considering three essential
elements for testing message-publishing features: (1) Two-way communication; (2) Topic
awareness; and (3) Multiversion support. The algorithm and architecture of MQTTGRAM
were refined to meet the three criteria (Chapter 5) 2, outperforming all state-of-the-art
fuzzing techniques in terms of statement coverage, which is an established metric to
measure the quality of test suites. In addition to test metrics, the fuzzers were evaluated
based on their stress-testing capabilities in order to incentivate future studies in that field
(Chapter 6). The testbed 3 used for the doctoral studies is also freely available for future
work.

7.1 Future Work
Considering that pub/sub fuzzers are mostly for MQTT at the time of writing, the

research findings presented in this thesis highlight the current state of both MQTT and
pub/sub protocol fuzzing in general. This section, however, focuses more on the lessons
learned and future research directions to move both fields forward.

7.1.1 Improvements to Existing Fuzzing Techniques

Learning-based fuzzing

Automatic knowledge acquisition using learning-based algorithms has been extensively
researched to mitigate development and configuration efforts for fuzzers. However, the
main shortcoming of learning-based fuzzers is that their knowledge is based more on
protocol implementations rather than formal specifications. This approach also comes at
the risk of putting more effort and time into learning the protocol rather than actually
testing it, as evidenced by the subpar performance of learner. Developing a successful
learning-based algorithm tailored specifically to pub/sub protocols such as MQTT is a
challenge that has yet to be mitigated. Future work should focus on improving learning-
based algorithms, and learner specifically, in two areas. First, in its current state, the
learning-based algorithm for learner is incapable of understanding several core pub/sub
functionalities of MQTT. The algorithm needs to better infer the syntax rules and message
sequence from a given MQTT implementation. Second, learner takes approximately 4
minutes to generate interesting test cases as it interacts with the broker. learner should
therefore be improved to gain knowledge of MQTT either quicker, or before rather than
during testing.

2 https://github.com/luisgar1990/MQTTGRAM-R. Accessed on May 17th, 2023
3 https://github.com/luisgar1990/mqtt-testbed. Accessed on May 17th, 2023

https://github.com/luisgar1990/MQTTGRAM-R
https://github.com/luisgar1990/mqtt-testbed

7.1 | FUTURE WORK

83

Scenario-based fuzzing

Generating different types of scenarios is a useful, promising, and suitable technique
to test specific functionalities of a target system. Pub/sub protocols, in particular, tend to
be more scenario-oriented than other network-based systems due to their feature-rich and
requirement-heavy nature. For example, there are at least three possible scenarios related
to message publication that are worth considering when testing pub/sub protocols. First,
a broker will discard publish messages if there are no interested subscribers. Second, a
broker will send topic messages immediately to connected subscribers. Third, the broker
will retain and send topic messages after the subscriber reconnects to the network. Existing
scenario-based fuzzers fail to generate the latter two scenarios, meaning the broker discards
topic messages throughout the entire test run. The fuzzer proposed by Di Paolo et al.

(2021) is currently incapable of performing subscription requests, whereas CyberExploit
is unable to trigger the broker into publishing messages. Another common misstep found
across MQTT fuzzers is their short-lived test scenarios, each consisting of a single pub/sub
packet. Scenario-based fuzzers must be designed around the idea that a message will be
published only if there is at least one interested subscriber. For each test scenario, the
fuzzer should at least perform a valid subscription request, and then publish a message
to an existing topic. For future work, scenario-based fuzzers should therefore be more
tailored to the pub/sub design pattern.

Mutation-based fuzzing

A mutation-based fuzzer should trigger the broker into publishing messages regardless
of how a packet is modified. Mutation-based fuzzing, in the context of pub/sub protocols,
must therefore be performed carefully, otherwise the broker will very rarely send messages
to interested subscribers. For example, a broker publishes messages only to existing topics.
Mutating a single character in an existing topic could potentially generate a new value that
may be inconsistent with prior subscription requests. As a result, the mutated message
will be discarded by the broker, preventing it from reaching subscribers. Proxy fuzzers, in
particular, are more prone to this issue because they mutate packets in transit without
considering user subscriptions or sessions.

Coverage-guided fuzzing with mutation testing is an approach considered less effective
for network protocols (Yurong Chen et al., 2019). In fact, coverage-guided fuzzers such
as AFLNet and its variant AFLNet-MQTT are incapable of behaving as genuine MQTT
clients because their current architecture is unsuitable for pub/sub communications (Zeng
et al., 2020; Sneha Suhitha Galiveeti and PranithaMalae, 2020). According to Sneha
Suhitha Galiveeti and Pranitha Malae (2020), the architecture of their fuzzer hinders
its coverage performance significantly, becoming a major issue when testing MQTT imple-
mentations. At the time of writing, only MultiFuzz attempts to mitigate the shortcomings
of the architecture through the use of message-aware mutation operators. Future work
should continue mitigating limitations of the architecture in order to better support the
pub/sub design pattern.

Another major issue is the time-consuming nature of coverage-guided approaches
to discover new code paths during testing, as evidenced by the performance evaluation
of MultiFuzz (Zeng et al., 2020) and AFLNet-MQTT (Sneha Suhitha Galiveeti and

84

7 | CONCLUSIONS AND FUTURE WORK

Pranitha Malae, 2020). This task is far more complex for network-based fuzzers, which
have to discover coverage-increasing test cases, while still maintaining an active connection
with the broker. Future work should attempt to develop fast coverage-guided approaches
capable of supporting several versions of MQTT.

Hybrid-based fuzzing

Combining mutation- and generation-based techniques seems promising for future
research because it allows developers to take advantage of their strengths during the
test run. However, in order to effectively leverage the strengths of both mutation- and
generation-based techniques, a hybrid-based fuzzer has to be much more aware of messages
and states than its counterparts. The main challenge lies in carefully choosing between
mutation- or generation-based techniques during testing. Otherwise, the fuzzer will make
poor decisions regarding the type of packet generation that is most appropriate for a given
situation. In the context of pub/sub protocols, there are multiple factors to consider when
making a decision, such as subscriptions or user sessions. Thus, a hybrid-fuzzer for MQTT
has to be smart enough to choose the technique that will enable it to reach pub/sub states
in a more effective and efficient manner. FUME fails to meet this requirement because it is
unaware of most state transitions, except those necessary to connect to and disconnect
from the broker. Future work should focus on improving both the finite state machine
from which FUME is modeled by, and the decision-making process for the most appropriate
packet generation technique during testing.

Grammar-based fuzzing

Future work should combine grammar-based fuzzing with multiple techniques pre-
sented in the taxonomy. For example, the grammar can be used to generate vulnerability-
oriented packets. Coverage-guided fuzzing should also be used with the MQTT grammars
in order to gain feedback during testing, and thus attempt to generate packets that traverse
through undiscovered code paths.

7.1.2 Development of Built-In Fault Detection Mechanisms
Most MQTT fuzzers lack fault detection mechanisms, requiring external debugging

tools to monitor the behavior of the broker during testing. For example, this thesis uses
AddressSanitizer as a tool to detect run-time errors or memory leaks in Mosquitto
throughout the fuzzing campaign.Casteur et al. (2020),Di Paolo et al. (2021), and Sochor
et al. (2020b) analyze system logs after each test run for any sort of indication regarding
crashes or unhandled exceptions. The Polymorph fuzzing framework by Hernández
Ramos et al. (2018) consists of five modules, none of which monitor exceptions. The repos-
itory description of mqtt_fuzz states that brokers should be compiled using debugging
tools such as AddressSanitizer or gdb to detect potential flaws during testing. It is
impractical to determine if Defensics monitors exceptions during testing because its
source code is unavailable. Future work should focus on developing fuzzers that are able
to detect faults in the broker. At the time of writing, MultiFuzz, AFLNet-MQTT, FUME and
learner are the only fuzzers that possess built-in fault detection mechanisms.

7.1 | FUTURE WORK

85

7.1.3 Development of a Resource-Intensive Fuzzer for MQTT
Brokers

A resource-intensive fuzzer should be developed considering the lessons learned from
the research study presented in Chapter 6. For future work, additional experiments should
also be conducted with other broker-side implementations such as HiveMQ, VerneMQ,
and RabbitMQ. A simple traffic generator should be developed in order to provide baseline
results against which to compare the stress-testing capabilities of existing and subsequent
fuzzers.

7.1.4 Development of Fuzzers Based on Hybrid and Machine
Learning Approaches

Although promising, the fuzzing techniques proposed for MQTT thus far are either
underdeveloped or unsuitable for pub/sub protocols, as evidenced by the research findings
presented in the previous chapters. Future work should delve deeper into two promising
techniques for pub/sub protocols. First, hybrid-based approaches that incorporate elements
of both grammar-based and mutation-based fuzzing should be further studied for pub/sub
protocols. Second, fuzzing techniques based on machine learning should also be further
explored.

7.1.5 Performance Evaluation Over Longer Test Runs
It is worth clarifying that the broker was constantly monitored during the test runs in

the case of an unexpected crash. However, none of the fuzzers were capable of crashing
the broker within 30 minutes. Future work should attempt to evaluate the fuzzers over
longer test runs in order to further identify shortcomings and areas of improvement.

7.1.6 Maintenance of MQTT Fuzzers
Most, if not all, research proposals lack information regarding their fuzzers’ flexibility

to evolve in lockstep with MQTT itself. For example, in its current form, learner is
only applicable to MQTT 5.0, meaning it requires adjustments for future versions. The
emergence of FUME in early 2022 further diminishes the relevance, longevity, and necessity
of learner due to the former’s built-in knowledge of the message syntax for version 5.0.
Among other examples, Sochor et al. (2020b) developed an attack-based fuzzer that, while
promising, requires further maintenance as more types of implementation flaws emerge.
The simple mutations performed by mqtt_fuzz to a given packet will be less effective as
MQTT implementations become more robust over time, requiring further improvement.
FUME supports all major versions of MQTT, extending its lifespan even further. However,
no information is given regarding its flexibility to evolve as new versions of MQTT are
released. The effectiveness of proxy fuzzers, proposed by Hernández Ramos et al. (2018)
and Eclipse Foundation (2018), is mostly unaffected by new version releases because
they simply mutate packets that are transmitted from one endpoint to another, lacking
packet generators or any sort of knowledge regarding state transitions. Future work should
attempt to propose flexible approaches that can easily evolve over time.

86

7 | CONCLUSIONS AND FUTURE WORK

7.1.7 Expand the Research Scope to Include Other Pub/Sub
Protocols

MQTT is the most popular pub/sub protocol in terms of the number of fuzzing tech-
niques. However, future work should focus on advancing the state of the art by studying
fuzzers for other pub/sub protocols such as AMQP, DDS, and XMPP. Most importantly,
future work should adapt existing fuzzing strategies for MQTT to other pub/sub protocols,
analyzing their strengths and weaknesses more in depth.

87

Appendix A

Usage of MQTT in IoT
Applications

MQTT is used for several technologies, including Facebook Messenger, Amazon Web
Services, Arduino, and Mongoose OS (Maggi et al., 2018). MQTT is also currently being
integrated into several IoT-based applications, such as home automation systems; health
monitoring systems; Intelligent Transportation Systems (ITS); and electricity metering
systems.

A.1 Home Automation Systems
Future smart cities must integrate home automation systems into their infrastruc-

ture (Schiefer, 2015). A home automation system connects lighting, heating, ventilation,
and electronic devices, which interact intelligently to automate domestic tasks. Over
the last few years, home automation systems have grown in terms of popularity. Open
source home automation software such as HomeAssistant

1, HomeGear
2, Domoticz

3, and
OpenHab

4 are compatible with MQTT, allowing users to integrate custom-made or publicly
available brokers 5.

A.2 Health Monitoring Systems
Over the last few years, the healthcare industry has shown interest in using IoT tech-

nologies to improve services (Casino et al., 2015). Health monitoring systems use sensors to
collect information, such as a patient’s pulse rate, which is then transferred to hospitals for
further analysis. Health monitoring systems provide significant advantages over traditional

1 https://www.home-assistant.io/. Accessed on March 23rd, 2023
2 https://homegear.eu/. Accessed on March 23rd, 2023
3 https://www.domoticz.com/. Accessed on March 23rd, 2023
4 https://www.openhab.org/. Accessed on March 23rd, 2023
5 https://www.home-assistant.io/integrations/mqtt/. Accessed on March 23rd, 2023

https://www.home-assistant.io/
https://homegear.eu/
https://www.domoticz.com/
https://www.openhab.org/
https://www.home-assistant.io/integrations/mqtt/

88

APPENDIX A

healthcare methods. In fact, studies have confirmed the benefits of MQTT in the healthcare
sector (Yi et al., 2016; Georgi and Le Bouquin Jeannès, 2017). For example, MQTT offers
real-time communication, which is necessary for efficient monitoring systems (Georgi
and Le Bouquin Jeannès, 2017). Real-time communication allows medical practitioners
to access data immediately and continuously. The ease of access to medical data reduces
frequent visits of senior citizens; increases health awareness; and minimizes healthcare
costs (Khan et al., 2019).

A.3 Intelligent Transportation Systems
ITS offer services that improve the overall transport and traffic management. MQTT

has emerged as a popular and effective protocol for bus-tracking systems because of its
reliability and scalability. Several research papers propose real-time bus-tracking systems
using MQTT to transfer the bus’ location to an external server for further analysis (Sharad
et al., 2016; Lohokare et al., 2017; Pianez et al., 2017; Rutke, 2019). Users can monitor the
bus’ location with a website or mobile application. These recent research studies confirm
the popularity and interest of MQTT for ITS.

A.4 Electricity Metering Systems
Smart Grids are applications that distribute and generate energy efficiently (Engel,

2013). A Smart Grid has three primary objectives: distribute energy efficiently; provide in-
formation and feedback to clients; and offer secure and integrated services (Curiale, 2014).
A key component of Smart Grids is Smart Electricity Metering, which is used to capture
information related to energy consumption, and transfer it to the service provider. Miškuf
et al. (2017) propose an MQTT-based metering system that measures and analyzes energy
consumption, highlighting the benefits of MQTT in electricity metering systems.

89

Appendix B

Comparison Between MQTT and
Other IoT Protocols

This section highlights the differences between MQTT and other IoT protocols. The
explanation of each protocol is in chronological order.

B.1 HTTP
The Hypertext Transfer Protocol (HTTP) emerged in 1991 for the World Wide Web. It

is based on the client-server model and runs on top of the Transmission Control Protocol
(TCP). The size of the header and message depends on the web server or programming
technology (Naik, 2017). Unlike MQTT, HTTP is power inefficient and lacks QoS. Despite
its popularity, HTTP’s slow performance and large memory footprint makes it unsuitable
for IoT environments (Naik, 2017).

B.2 XMPP
XMPP was introduced in 1999, and designed originally for instant messaging. However,

it has also been used as a pub/sub messaging protocol for IoT. XMPP runs on top of TCP
and is standardized by the Internet Engineering Task Force (IETF) 1. An advantage of XMPP
is its built-in support for Transport Layer Security (TLS), offering more security by default.
Unlike MQTT, XMPP lacks levels of QoS, being less flexible and more prone to packet loss
in unreliable networks as a result (Dizdarević et al., 2019). XMPP’s message size is larger
than MQTT, hindering its performance in constrained networks (Dizdarević et al., 2019).
In fact, a current challenge is optimizing XMPP for low-powered devices (Dizdarević
et al., 2019; Wang et al., 2017).

1 https://tools.ietf.org/html/rfc6120. Accessed on March 23rd, 2023

https://tools.ietf.org/html/rfc6120

90

APPENDIX B

B.3 AMQP
AMQP was introduced in 2003, and also runs on top of TCP. Similar to MQTT, AMQP

is standardized by the Organization for the Advancement of Structured Information
Standards (OASIS) 2, and its control packets are divided into three fields. The Frame Header

is required for every packet. However, unlike MQTT, the frame header has a size of
eight bytes. The remaining two fields, Extended Header and Frame Body, are optional,
and their size depends on the broker or programming technology. Despite offering three
levels of QoS (Dizdarević et al., 2019), AMQP’s main drawback is its large code footprint,
which makes it unsuitable for constrained devices (Dizdarević et al., 2019). Unlike MQTT,
AMQP lacks features such as Last Will and Testament, Retained Messages, and Persistent
Sessions.

B.4 DDS
DDS is a publish-subscribe messaging protocol introduced in 2004 by the Object

Management Group (OMG). DDS’s distinguishing feature is its decentralized broker archi-
tecture (Al-Fuqaha et al., 2015), which enables peer-to-peer communications between
the network clients (Dizdarević et al., 2019). In contrast to MQTT and AMQP, DDS offers
23 levels of QoS (Al-Fuqaha et al., 2015). However, the main drawback of DDS is its high
bandwidth consumption compared to MQTT (Yuang Chen and Kunz, 2016).

B.5 CoAP
The Constrained Application Protocol (CoAP) is based on the client-server model

for M2M communications (Maggi et al., 2018), and emerged in 2010 as a lightweight
alternative to HTTP. Unlike MQTT, CoAP runs on top of the User Datagram Protocol
(UDP), meaning it has low latency, but is more prone to packet loss. Message delivery
is even more unreliable when considering that CoAP offers limited support for QoS. In
contrast to MQTT, CoAP lacks levels of QoS, relying only on acknowledgment signals for
message delivery confirmation. For added security, CoAP supports protocols such as the
Datagram Transport Layer Security (DTLS) (Halabi et al., 2018).

B.6 Summary
Table B.1 presents a brief comparison of IoT protocols.

Among all protocols presented in Table B.1, MQTT is the preferred choice by IoT
developers because of two reasons (Eclipse Foundation, 2022). First, it is lightweight
compared to traditional protocols such as HTTP. A study by Yuang Chen and Kunz (2016)
further confirms that MQTT consumes less bandwidth than CoAP and DDS. Second, it can
be used for real-time communication, which is appropriate for smart city applications such
as home automation systems, health monitoring systems, and intelligent transportation

2 http://docs.oasis-open.org/amqp/core/v1.0/amqp-core-overview-v1.0.html. Accessed on March 23rd, 2023

http://docs.oasis-open.org/amqp/core/v1.0/amqp-core-overview-v1.0.html

B.6 | SUMMARY

91

Protocol QoS Transport Fixed Header
HTTP No TCP Undefined
XMPP No TCP Undefined
AMQP 3 Levels TCP 8 Bytes
DDS 23 Levels TCP Undefined
CoAP Limited UDP 4 Bytes
MQTT 3 Levels TCP 2 Bytes

Table B.1: Comparison of IoT Protocols

systems (Jaloudi, 2019). Home automation systems tend to provide better support for
MQTT than XMPP and AMQP. For example, HomeAssistant and Domoticz have extensive
support for MQTT; limited support for XMPP; and no support for AMQP. HomeGear has
built-in support for MQTT; and no support for XMPP and AMQP.

It is worth noting that among all pub/sub protocols discussed in this section, MQTT is
considered the most popular for IoT (Zeng et al., 2020). Testing MQTT in depth is therefore
necessary considering its popularity and benefits over its counterparts.

93

Appendix C

MQTT Packets

MQTT clients and brokers communicate with one another using control packets. The
delivery of these control packets is guaranteed by specifying a QoS level. Certain control
packets require a specific level of QoS to be delivered. Table C.1 presents all of MQTT’s
control packets.

Control Packet Type Description
CONNECT Connection request
CONNACK Connection acknowledgment
PUBLISH Publish a message
PUBACK Publish acknowledgment (QoS 1 & 2)
PUBREC Publish received (QoS 2)
PUBREL Publish release (QoS 2)
PUBCOMP Publish completed (QoS 2)
SUBSCRIBE Subscribe request
SUBACK Subscribe acknowledgment
UNSUBSCRIBE Unsubscribe request
UNSUBACK Unsubscribe acknowledgment
PINGREQ Ping request
PINGRESP Ping received
DISCONNECT Disconnect message
AUTH Authentication Exchange (MQTT 5)

Table C.1: MQTT Control Packets

C.1 Structure
An MQTT control packet is divided into three fields: the fixed header; the variable

header; and the payload, as shown in Figure C.1.

• Fixed Header: The size of the fixed header is only two bytes, thereby enabling
lightweight messaging for resource-constrained devices. The bits 7-4 of the fixed

94

APPENDIX C

Fixed Header Variable Header Payload

Figure C.1: Structure of An MQTT Control Packet

header consist of the type of packet being sent. The remaining bits (3-0) of the first
byte are reserved for flags specific to each packet. For example, if a PUBLISH packet
is sent to the broker, then the four bits are reserved for three flags: (1) duplicate
messages (DUP); (2) QoS level (QoS); and (3) retained messages (RETAIN); as shown
in Table C.2. All of the aforementioned features of MQTT, such as retained messages,
will be further explained in the following sections. The second byte represents the
number of bytes remaining, considering the variable header and the payload.

Bits 7 6 5 4 3 2 1 0
Byte 1 Control Packet Type DUP QoS RETAIN
Byte 2 Remaining Length

Table C.2: Fixed Header Format of the PUBLISH Packet

• Variable Header: The variable header is optional, being absent in MQTT control
packets such as PINGREQ, PINGRESP, and DISCONNECT. The variable header varies
depending on the packet type. For example, the variable header of the PUBLISH

packet contains the topic length and topic name, whereas the variable header of the
SUBSCRIBE packet contains a message identifier.

• Payload: The payload is also optional, and varies depending on the packet type. For
example, the payload of the PUBLISH packet contains the topic message that will
be sent to interested subscribers. In contrast, the payload of the CONNECT packet
contains user-related information such as the ID, username, and password.

C.2 Transmission
Figure. C.2 and C.3 present sequence diagrams of MQTT using the control packets.

Both figures present different types of scenarios involving a publisher, subscriber, and
broker. Figure C.2 presents interactions related to the core functionality of the pub/sub
design pattern, whereas Figure C.3 presents other scenarios.

The scenarios of Figure C.2 are as follows.

1. Connection Request: Both the publisher and subscriber request to connect to the
broker by sending a CONNECT packet. The broker acknowledges the connection as
successful by responding with a CONNACK packet.

2. Pub/sub with QoS 0: The subscriber sends a SUBSCRIBE packet, specifying the
topic of interest (a) and QoS level (0). The broker acknowledges the subscription as
successful by sending a SUBACK packet. Afterwards, the publisher sends a message
about that particular topic to the broker, which then redirects the message to the

C.2 | TRANSMISSION

95

Publisher Broker Subscriber

CONNECT
CONNACK

CONNECT
CONNACK

1. Connection Request1. Connection Request

SUBSCRIBE(topic=a, qos=0)

SUBACK
PUBLISH(topic=a, qos=0)

PUBLISH(topic=a, qos=0)

2. Pub/Sub with QoS 02. Pub/Sub with QoS 0

SUBSCRIBE(topic=a, qos=1)

SUBACK
PUBLISH(topic=a, qos=1)

PUBACK
PUBLISH(topic=a, qos=1)

PUBACK

3. Pub/Sub with QoS 13. Pub/Sub with QoS 1

SUBSCRIBE(topic=a, qos=2)

SUBACK
PUBLISH(topic=a, qos=2)

PUBREC
PUBREL

PUBCOMP
PUBLISH(topic=a, qos=2)

PUBREC
PUBREL

PUBCOMP

4. Pub/Sub with QoS 24. Pub/Sub with QoS 2

Figure C.2: Pub/Sub Messaging Sequence on MQTT

96

APPENDIX C

interested subscriber. Messages set to QoS level 0 are delivered to the subscriber at

most once. The publisher does not receive an acknowledgment from the broker.

3. Pub/Sub with QoS 1: This interaction is based on messages set to QoS level 1. In
such a case, messages are delivered to the subscriber at least once until receiving an
acknowledgment from the broker (PUBACK).

4. Pub/Sub with QoS 2: If subscriptions are set to QoS level 2, then messages are
delivered to subscribers exactly once using a four-way handshake.

The scenarios of Figure C.3 are as follows.

5. Connection Request with AUTH (MQTT 5.0): MQTT 5.0 supports enhanced
user authentication through the use of AUTH packets, which can be exchanged
between MQTT clients and brokers. The AUTH packets contain data based on
the authentication method established in the CONNECT packet. Exchanging both
CONNECT and AUTH packets adds an extra layer of security because the former
only enables a basic authentication using usernames and passwords.

6. Unsubscribe request: MQTT clients can cancel topic subscriptions via UNSUB-

SCRIBE messages. The broker acknowledges unsubscribe requests as successful by
responding with an UNSUBACK packet.

7. PING utility: Ping messages are used to verify the status of MQTT clients and
brokers. Once a PINGREQ packet is sent out, a PINGRESP packet is expected. Unde-
livered responses could signal network connection issues.

8. Disconnection Request: Publishers and subscribers can close the network connec-
tion with the broker by delivering DISCONNECT packets.

Similar to HTTP, MQTT supports pipelined connections, which means that multiple
requests or responses can be sent over a single transmission. Due to their asynchronous
nature, MQTT messages can also be sent successively without waiting for an immediate
response from the broker or clients. Figure C.4 presents an example of simultaneous and
successive messages.

C.2 | TRANSMISSION

97

Publisher Broker Subscriber

CONNECT
AUTH
AUTH

CONNACK
CONNECT

AUTH
AUTH

CONNACK

5. Connection Request with AUTH (MQTT 5.0)5. Connection Request with AUTH (MQTT 5.0)

UNSUBSCRIBE(topic=a)

UNSUBACK

6. Unsubscribe request6. Unsubscribe request

PINGREQ

PINGRESP
PINGREQ

PINGRESP

7. PING utility7. PING utility

DISCONNECT

DISCONNECT

8. Disconnection Request8. Disconnection Request

Figure C.3: Message Sequence for AUTH, UNSUBSCRIBE, PING, and DISCONNECT Packets

98

APPENDIX C

Client Broker

Request #1
Request #2
Request #3

Packet with Simultaneous RequestsPacket with Simultaneous Requests

Response #1
Response #2
Response #3

Packet with Simultaneous ResponsesPacket with Simultaneous Responses

Packet #1

Packet #1

Packet #2

Packet #3

Packet #2

Packet #3

Successive messagesSuccessive messages

Figure C.4: Simultaneous and Successive Messages

99

Appendix D

Input Coverage of Fuzzing
Techniques for the MQTT
Protocol

Input coverage refers to the statement coverage achieved by an MQTT fuzzer after
exchanging a specific number of packets with the broker. The input coverage achieved
by all MQTT fuzzers was evaluated after exchanging 500, 1000, 2000, 4000, 6000, and
8000 packets. The input coverage of each fuzzer was evaluated because of the following
reasons. First, grammar-based fuzzers are more aware of the input structure than their
counterparts, making it necessary to analyze the quality of their test cases during the
fuzzing campaign. Second, mutation-based approaches usually inject more test cases into
target systems than their counterparts. This is largely due to mutation-based approaches
using predefined test cases rather than generating new ones from scratch. The significant
advantage of mutation-based approaches makes it necessary to measure the statement
coverage after exchanging the same number of packets with the broker, thereby evaluating
the fuzzers based on the quality, rather than quantity of the test cases. Third, an analysis
of the input coverage will also provide a better understanding of how many packets are
required by each fuzzer to execute a specific number of statements in the source code. The
following sections present the input coverage by each MQTT fuzzer for Mosquitto and
Moquette.

D.1 Mosquitto

Figure D.1 presents the input coverage of each MQTT fuzzer.

As expected, fuzz(), learner, and CyberExploit underperform because of their
aforementioned shortcomings. fuzz() executes at most 1119 statements, and its coverage
performance increases up to 0.37% during the test run. Although learner has higher
input coverage than fuzz() and CyberExploit, its coverage performance varies the
least, executing from 1793 to 1797 statements on average. The input coverage by learner
increases up to 0.16% after exchanging 500 packets with Mosquitto. CyberExploit also

100

APPENDIX D

1900

1950

2000

2050

2100
#

o
f

s
t
a
t
e
m

e
n

t
s

Hybrid (FUME)
Pearson et al. 2022

1750

1800

1850

1900

1950

2000

2050

2100

#
o
f

s
t
a
t
e
m

e
n

t
s

Mutation (mqtt_fuzz)
Fsecure Corporation

Grammar (mqttgram-c)
Rodriguez et al. 2021

Grammar (mqttgram-cf)
Rodriguez et al. 2021

50
0

10
00

20
00

40
00

60
00

80
00

1200

1400

1600

1800

Packets

#
o
f

s
t
a
t
e
m

e
n

t
s

Naive (fuzz())
Scapy

50
0

10
00

20
00

40
00

60
00

80
00

Packets

Scenario (CyberExploit)
Casteur et al. 2020

50
0

10
00

20
00

40
00

60
00

80
00

Packets

Learning
Aichernig et al. 2021

Figure D.1: Input Coverage (Mosquitto 1.6.8)

outperforms fuzz(), executing at most 1383 statements. The coverage performance by
CyberExploit increases up to 1.39% during testing.

Among all fuzzers, learner increases input coverage the least during testing. This
outcome is attributed to two main reasons. First, and as previously explained, learner
reuses several packets and values constantly, rather than generating different test cases to
execute more functionality and statements in the source code. Second, learner requires
time to infer the message syntax and sequence of a network protocol, hindering its input
coverage considerably at the beginning of the fuzzing campaign. For example, prior to
exchanging 8000 packets with Mosquitto, learner alternates between two values for
subscription topics until gaining a better understanding of the message syntax. However,
regardless of the stopping criterion, learner struggles to execute more statements be-
cause it is currently incapable of inferring key features of network protocols for testing
purposes.

As more packets are exchanged with the broker, the more statements are expected to be
executed by an MQTT fuzzer. However, as shown in Figure D.1, the number of statements

D.2 | MOQUETTE

101

rarely increases when testing with all three aforementioned fuzzers. After exchanging
500 packets with Mosquitto, learner executes only three additional statements, whereas
fuzz() and CyberExploit execute four and nineteen respectively. This lack of increase
during testing further confirms that the test cases generated by these fuzzers are of low
quality. In contrast, the techniques used by FUME, mqtt_fuzz, and MQTTGRAM prove to be
very well aware of MQTT’s specifications, generating test cases of higher quality than
its counterparts. The coverage performance of these fuzzers follows expected patterns,
increasing at a steady pace over time.

On average, mqtt_fuzz executes from 1931 to 1998 statements after exchanging 500
packets with Mosquitto. The input coverage by mqtt_fuzz increases up to 3.46% during
the test run, peaking at 2035 statements. mqttgram-c outperforms the peak input coverage
achieved by mqtt_fuzz, executing 2044 statements before 6000 packets are exchanged
with Mosquitto. mqttgram-cf outperforms both mqttgram-c and mqtt_fuzz, executing
2089 statements before 2000 packets. The input coverage of mqttgram-cf and mqttgram-
c increases by up to 10.21% and 9.78% respectively, percentages of which are the highest
among all MQTT fuzzers. The performance increase of mqttgram-c and mqttgram-cf
serve as an indication of the quality of their test cases. On average, mqttgram-cf is
slightly outperformed by FUME, despite the fact that the latter supports all major versions
of MQTT, whereas the former supports only 3.1.1. On average, FUME executes from 2024
to 2066 statements after exchanging 500 packets with Mosquitto. However, the peak input
coverage achieved by FUME is 2122 statements, outperforming all of its counterparts. FUME
is therefore a better option to test MQTT implementations because it executes more
statements with few test cases and low bandwidth consumption.

D.2 Moquette
Figure D.2 presents the input coverage of each MQTT fuzzer.

The results follow the same pattern as in Figure D.1, with fuzz() and CyberExploit
performing poorly in terms of input coverage. fuzz() and CyberExploit execute at
most 545 and 986 statements respectively. mqtt_fuzz outperforms both fuzz() and
CyberExploit, executing at most 1531 statements. On average, the input coverage by Cy-
berExploit, mqtt_fuzz, and fuzz() increases up to 3.53%, 1.15%, and 0.18% respectively.
These coverage performances further highlight the lack of varied and full-featured test
cases by most fuzzers except for both variants of MQTTGRAM. In fact, the input coverage
by mqttgram-c and mqttgram-cf increases up to 14.44% and 18.14% respectively after
exchanging 500 packets with Moquette. In addition to their considerable performance in-
crease during testing, mqttgram-c and mqttgram-cf achieves the highest input coverage,
executing at most 1558 and 1594 statements respectively.

Table D.1 presents the fuzzers’ average coverage performance after exchanging exactly
8000 packets with Moquette. However, the results by Sochor et al. (2020b) in Table D.1 are
based on on a single 30-minute test run due to their fuzzer being proprietary. Nevertheless,
in spite of the small discrepancy, results are fairly similar with those in Table 4.1. Both
variants of MQTTGRAM outperform their counterparts when exchanging the same number
of packets with Moquette.

102

APPENDIX D

1100

1200

1300

1400

1500

1600

#
o
f

s
t
a
t
e
m

e
n

t
s

Mutation (mqtt_fuzz)
Fsecure Corporation

Grammar (mqttgram-c)
Rodriguez et al. 2021

Grammar (mqttgram-cf)
Rodriguez et al. 2021

50
0

10
00

20
00

40
00

60
00

80
00

500

600

700

800

900

1000

Packets

#
o
f

s
t
a
t
e
m

e
n

t
s

Naive (fuzz())
Scapy

50
0

10
00

20
00

40
00

60
00

80
00

Packets

Scenario (CyberExploit)
Casteur et al. 2020

Figure D.2: Input Coverage (Moquette 0.13)

Source Code
(Directory)

Fuzzed packets not based on existing vulnerabilities Fuzzed packets based on existing vulnerabilities
Scapy Casteur et al. 2020 Sochor et al. 2020 mqtt_fuzz mqttgram-c Sochor et al. 2020 mqttgram-cf

broker 21.00% 39.63% 57.80% 62.39% 62.42% 58.00% 66.29%
broker.security 12.00% 12.00% 11.30% 13.00% 15.00% 12.80% 15.00%
broker.subscriptions 8.00% 24.01% 59.00% 71.93% 71.65% 63.90% 73.32%
persistence 3.00% 3.00% 9.10% 9.00% 9.00% 9.10% 9.00%
interception 11.00% 26.00% 32.30% 28.00% 30.00% 32.30% 30.00%
broker.config 51.00% 51.00% 49.30% 51.00% 51.00% 49.30% 51.00%
broker.metrics 44.00% 68.00% 77.50% 71.10% 73.00% 77.50% 73.00%
Logging 43.00% 43.00% 62.50% 43.00% 43.00% 62.50% 43.00%
Total 19.23% 34.02% 50.00% 53.96% 54.31% 51.40% 56.67%

Table D.1: Input Coverage of Moquette (8000 packets)

103

Appendix E

Packet Exchange of Fuzzing
Techniques for the MQTT
Protocol

Figure E.1 presents the number of packets exchanged between the MQTT fuzzers and
Mosquitto 1.6.8 in 30 minutes.

FU
M

E
m

qt
t_

fu
zz

lea
rn

er
Cyb

er
Ex

pl
oi

t
fu

zz
()

m
qt

tg
ra

m

0

2

4

6

⋅10
5

MQTT Fuzzers

#
o
f

p
a
c
k
e
t
s

Packet Exchange (30 min)

Figure E.1: Packets Exchanged with Mosquitto 1.6.8 in 30 Minutes

For simplicity purposes, results of MQTTGRAM shown in Figure E.1 are only from
mqttgram-c because its performance is nearly identical to mqttgram-cf, the latter of
which exchanges the lowest number of packets with the broker.

104

APPENDIX E

As shown in Figure E.1, FUME exchanges at least 2x more packets than its counterparts
because of the following reasons. First, FUME performs multiple requests in a single packet
due to MQTT supporting asynchronous communications. For each session, FUME sends
most packets over a single TCP connection. All packets except for CONNECT are sent in
random order to the broker. Connection requests are performed first to avoid immediate
rejection by the broker. After sending multiple requests in a single packet, FUME receives a
message from the broker acknowledging the connection as successful. FUME then recon-
nects to the broker intentionally to repeat the process until a stopping criterion is satisfied.
Thus, the test run mostly consists of short-lived interactions with the broker.

mqtt_fuzz exchanges up to 9x more packets with Mosquitto than most fuzzers, except
for FUME, because it slightly modifies predefined test cases rather than generating new
ones from scratch. The latter approach is performed by the remaining four fuzzers shown
in Figure E.1, hence their low network traffic during testing. learner exchanges more
packets than the last three fuzzers because it generates smaller values for subscription
topics in the test cases. CyberExploit generates subscription topics of considerable, but
acceptable length. In contrast to learner and CyberExploit, fuzz() generates values of
arbitrary length for several fields, including subscription topics. MQTTGRAM exchanges the
fewest packets with the broker because of its careful generation-based approach.

In order to gain a better understanding of how quickly these fuzzers generate network
packets, Figure E.2 presents the average time elapsed until exchanging 8000 packets with
Mosquitto.

0 2 4 6 8 10

FUME

mqtt_fuzz

learner

CyberExploit

fuzz()

mqttgram-c

mqttgram-cf

Minutes

Average Time

Figure E.2: Average Time to Exchange 8000 Packets

Developing fast packet generators brings several benefits to the testing phase, most
notably frequent communications between the fuzzer and the broker. As a result, there is
a higher probability of uncovering more bugs or reaching deeper states of the protocol
within a short period of time. These benefits are overshadowed, however, if packets sent in
rapid succession to the broker are of low quality. Thus, the effectiveness of MQTT fuzzers
cannot be solely analyzed nor determined by the amount of time spent generating the

E | PACKET EXCHANGE OF FUZZING TECHNIQUES FOR THE MQTT PROTOCOL

105

necessary network packets (Figure E.2). Standardized metrics such as statement, input,
and feature coverage must be analyzed alongside with Figure E.2 to determine both the
effectiveness and efficiency of MQTT fuzzers. As expected, all variants of MQTTGRAM are
the most time consuming because their aim is to carefully and correctly craft the network
packets. More specifically, mqttgram-cf and mqttgram-c exchange 8000 packets in 642
and 630 seconds respectively. mqttgram-cf generates more topic-based packets than
mqttgram-c, the task of which is time consuming due to the complexity and length of the
message fields. fuzz() took roughly 8 minutes, whereas CyberExploit took 6 minutes.
CyberExploit takes less time because it generates all the necessary network packets
prior to testing an MQTT implementation. In contrast, fuzz() generates network packets
during the fuzzing campaign, thereby having a longer response delay when it interacts
with the broker. Furthermore, fuzz() assigns longer values than CyberExploit, resulting
in larger packets that are more time consuming to generate. learner took slightly less
than 4 minutes because of its mapper component, which rapidly translates abstract data
into concrete data and vice versa for packet generation. The authors cited the complexity
of generating MQTT packets as a motivation to develop the mapper component. Since the
process of translating abstract data into concrete data is less complex than crafting entire
packets from scratch, learner takes less time to exchange 8000 packets with the broker
than its generation-based counterparts. mqtt_fuzz and FUME take the least amount of
time, exchanging 8000 packets in approximately 1 and 2 minutes respectively. mqtt_fuzz
is a much simpler (F-Secure Corporation, 2015) fuzzer than FUME, using only mutation-
based approaches to craft the test cases. FUME, on the other hand, uses both mutation- and
generation-based approaches, adding an extra layer of complexity to its testing capabilities.
However, FUME takes less time to exchange 8000 packets than mqtt_fuzz because of its triage

algorithm, which, according to the official repository description, uses simple alterations
to craft the test cases. mqtt_fuzz, on the other hand, uses Radamsa, which applies various
types of heuristics to modify the inputs, and can therefore take a longer time to generate
the test cases.

Figure E.3 presents the number of packets exchanged with Moquette 0.13 in 30 minutes.
Results are mostly similar to those achieved with Mosquitto. Unsurprisingly, mqtt_fuzz
exchanges at least 7x, 6x, and 4x more packets than MQTTGRAM, fuzz(), and CyberExploit
respectively. However, as explained in the previous sections, both variants of MQTTGRAM
manage to outperform its counterparts in terms of statement coverage, despite exchanging
the fewest packets with Moquette.

106

APPENDIX E

m
qt

t_
fu

zz
Cyb

er
Ex

pl
oi

t

fu
zz

()
m

qt
tg

ra
m

0

1

2

⋅10
5

MQTT Fuzzers

#
o
f

p
a
c
k
e
t
s

Packet Exchange (30 min)

Figure E.3: Packets Exchanged with Moquette 0.13 in 30 Minutes

107

References

[Aichernig et al. 2021] Bernhard K. Aichernig, Edi Muškardin, and Andrea Pfer-
scher. “Learning-Based Fuzzing of IoT Message Brokers”. In: Proceedings of the

IEEE Conference on Software Testing, Verification and Validation. 2021, pp. 47–58.
doi: 10.1109/ICST49551.2021.00017 (cit. on pp. 9, 21, 24, 26, 38, 42, 44, 45, 59, 73).

[Alghamdi et al. 2018] Khalid Alghamdi, Ali Alqazzaz, Anyi Liu, and Hua Ming.
“IoTVerif: An Automated Tool to Verify SSL/TLS Certificate Validation in Android
MQTT Client Applications”. In: Proceedings of the ACM Conference on Data and

Application Security and Privacy. New York, NY, USA: Association for Computing
Machinery, 2018, pp. 95–102. isbn: 9781450356329. doi: 10.1145/3176258.3176334
(cit. on p. 16).

[Aljaafari et al. 2020] Fatimah Aljaafari, Lucas C. Cordeiro, and Mustafa A.
Mustafa. “Verifying Software Vulnerabilities in IoT Cryptographic Protocols”.
CoRR (2020). doi: 10.48550/arXiv.2001.09837 (cit. on p. 16).

[Anantharaman et al. 2017] P. Anantharaman, M. Locasto, G. F. Ciocarlie, and
U. Lindqvist. “Building Hardened Internet-of-Things Clients with Language-
Theoretic Security”. In: Proceedings of the IEEE Security and Privacy Workshops.
2017, pp. 120–126. doi: 10.1109/SPW.2017.36 (cit. on pp. 16, 17, 21, 23, 38, 42, 44).

[Andrew Banks and Ed Briggs and Ken Borgendale and Rahul Gupta 2019]
Andrew Banks and Ed Briggs and Ken Borgendale and Rahul Gupta.
MQTT Version 5.0 Oasis Standard. https://docs.oasis-open.org/mqtt/mqtt/v5.0/
mqtt-v5.0.html. [Online; accessed 22-March-2023]. 2019 (cit. on p. 40).

[Andrew Banks and Rahul Gupta 2014] Andrew Banks and Rahul Gupta.
MQTT Version 3.1.1 Oasis Standard. http : / / docs . oasis - open . org / mqtt / mqtt /
v3.1.1/os/mqtt-v3.1.1-os.html. [Online; accessed 22-March-2023]. 2014 (cit. on
p. 27).

[Antunes et al. 2010] João Antunes, Nuno Neves, Miguel Correia, Paulo Verissimo,
and Rui Neves. “Vulnerability discovery with attack injection”. IEEE Transactions

on Software Engineering 36.3 (2010), pp. 357–370. issn: 00985589. doi: 10.1109/
TSE.2009.91 (cit. on p. 11).

https://doi.org/10.1109/ICST49551.2021.00017
https://doi.org/10.1145/3176258.3176334
https://doi.org/10.48550/arXiv.2001.09837
https://doi.org/10.1109/SPW.2017.36
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
https://doi.org/10.1109/TSE.2009.91
https://doi.org/10.1109/TSE.2009.91

108

REFERENCES

[Araujo Rodriguez 2021] Luis Gustavo Araujo Rodriguez. Adding support for ver-

sion 5.0 of the MQTT protocol. https : / / github . com / secdev / scapy / pull / 3292.
[Online; accessed 14-June-2023]. 2021 (cit. on p. 10).

[Araujo Rodriguez 2020] Luis Gustavo Araujo Rodriguez. MQTTSubscribe now sup-

ports multiple topic subscriptions in the payload. https://github.com/secdev/scapy/
pull/2759. [Online; accessed 14-June-2023]. 2020 (cit. on p. 10).

[Araujo Rodriguez and Macêdo Batista 2020] Luis Gustavo Araujo Rodriguez
and Daniel Macêdo Batista. “Program-Aware Fuzzing for MQTT Applications”.
In: Proceedings of the ACM SIGSOFT International Symposium on Software Testing

and Analysis. Virtual Event, USA: Association for Computing Machinery, 2020,
pp. 582–586. isbn: 9781450380089. doi: 10.1145/3395363.3402645 (cit. on pp. 2, 3,
16, 18, 22).

[Araujo Rodriguez and Macêdo Batista 2021] Luis Gustavo Araujo Rodriguez
and Daniel Macêdo Batista. “Towards Improving Fuzzer Efficiency for the
MQTT Protocol”. In: Proceedings of the IEEE Symposium on Computers and

Communications. 2021, pp. 1–7. doi: 10.1109/ISCC53001.2021.9631520 (cit. on
pp. 3, 7, 9, 37, 42, 44, 67, 73).

[Araujo Rodriguez, Selvatici Trazzi, et al. 2018] Luis Gustavo Araujo Rodriguez,
Julia Selvatici Trazzi, Victor Fossaluza, Rodrigo Campiolo, and Daniel
Macêdo Batista. “Analysis of Vulnerability Disclosure Delays from the National
Vulnerability Database”. In: Proceedings of the Workshop on CyberSecurity in Con-

nected Devices at the Brazilian Symposium on Computer Networks and Distributed

Systems. São José dos Campos: SBC, 2018. url: https://sol.sbc.org.br/index.php/
wscdc/article/view/2394 (cit. on pp. 2, 17).

[Bender et al. 2021] Melvin Bender, Erkin Kirdan, Marc-Oliver Pahl, and Georg
Carle. “Open-Source MQTT Evaluation”. In: Proceedings of the IEEE Annual Con-

sumer Communications & Networking Conference. 2021, pp. 1–4. doi: 10 . 1109 /
CCNC49032.2021.9369499 (cit. on p. 73).

[Boehme et al. 2021] Marcel Boehme, Cristian Cadar, and Abhik Roychoudhury.
“Fuzzing: Challenges and Reflections”. IEEE Software 38.3 (2021), pp. 79–86. doi:
10.1109/MS.2020.3016773 (cit. on pp. 12, 14, 45).

[Casino et al. 2015] Fran Casino, Edgar Batista, Constantinos Patsakis, and Agusti
Solanas. “Context-aware recommender for smart health”. In: Proceedings of the

International Smart Cities Conference. 2015, pp. 1–2. doi: 10 . 1109 / ISC2 . 2015 .
7366176 (cit. on p. 87).

[Casteur et al. 2020] G. Casteur et al. “Fuzzing attacks for vulnerability discovery
within MQTT protocol”. In: Proceedings of the International Wireless Communica-

tions and Mobile Computing. 2020, pp. 420–425. doi: 10.1109/IWCMC48107.2020.
9148320 (cit. on pp. 9, 21, 23, 25, 26, 38, 42, 44, 73, 84).

https://github.com/secdev/scapy/pull/3292
https://github.com/secdev/scapy/pull/2759
https://github.com/secdev/scapy/pull/2759
https://doi.org/10.1145/3395363.3402645
https://doi.org/10.1109/ISCC53001.2021.9631520
https://sol.sbc.org.br/index.php/wscdc/article/view/2394
https://sol.sbc.org.br/index.php/wscdc/article/view/2394
https://doi.org/10.1109/CCNC49032.2021.9369499
https://doi.org/10.1109/CCNC49032.2021.9369499
https://doi.org/10.1109/MS.2020.3016773
https://doi.org/10.1109/ISC2.2015.7366176
https://doi.org/10.1109/ISC2.2015.7366176
https://doi.org/10.1109/IWCMC48107.2020.9148320
https://doi.org/10.1109/IWCMC48107.2020.9148320

REFERENCES

109

[C. Chen et al. 2018] Chen Chen et al. “A systematic review of fuzzing techniques”.
Computers & Security 75 (2018), pp. 118–137. issn: 0167-4048. doi: https://doi.org/
10.1016/j.cose.2018.02.002 (cit. on p. 25).

[J. Chen et al. 2018] Jiongyi Chen et al. “IoTFuzzer: Discovering Memory Corruptions
in IoT Through App-based Fuzzing”. In: Network and Distributed Systems Security

Symposium. 2018. doi: 10.14722/ndss.2018.23159 (cit. on pp. 11, 12, 16).

[L. Chen et al. 2022] Liqian Chen et al. “Estimating Worst-case Resource Usage by
Resource-usage-aware Fuzzing”. In: Fundamental Approaches to Software Engi-

neering. Cham: Springer International Publishing, 2022, pp. 92–101. isbn: 978-3-
030-99429-7. doi: 10.1007/978-3-030-99429-7_5 (cit. on p. 73).

[Yuang Chen and Kunz 2016] Yuang Chen and Thomas Kunz. “Performance evalua-
tion of IoT protocols under a constrained wireless access network”. In: Proceedings

of the International Conference on Selected Topics in Mobile Wireless Networking.
2016, pp. 1–7. doi: 10.1109/MoWNet.2016.7496622 (cit. on p. 90).

[Yurong Chen et al. 2019] Yurong Chen, Tian lan, and Guru Venkataramani. “Ex-
ploring Effective Fuzzing Strategies to Analyze Communication Protocols”. In: Pro-

ceedings of the ACM Workshop on Forming an Ecosystem Around Software Trans-

formation. London, United Kingdom: Association for Computing Machinery, 2019,
pp. 17–23. isbn: 9781450368346. doi: 10.1145/3338502.3359762 (cit. on pp. 14, 28,
83).

[Curiale 2014] Mauro Curiale. “From smart grids to smart city”. In: Proceedings of

the Saudi Arabia Smart Grid Conference. 2014, pp. 1–9. doi: 10.1109/SASG.2014.
7274280 (cit. on p. 88).

[Di Paolo et al. 2021] Edoardo. Di Paolo, Enrico Bassetti, and Angelo Spognardi.
“Security assessment of common open source MQTT brokers and clients”. In:
Proceedings of the CEUR Workshop of the Italian Conference on Cybersecurity. 2021.
url: https://ceur-ws.org/Vol-2940/paper40.pdf (cit. on pp. 9, 21, 23, 24, 26, 34, 38,
42, 44, 54, 55, 57–59, 83, 84).

[Dizdarević et al. 2019] Jasenka Dizdarević, Francisco Carpio, Admela Jukan, and
Xavi Masip-Bruin. “A Survey of Communication Protocols for Internet of Things
and Related Challenges of Fog and Cloud Computing Integration”. ACM Comput-

ing Surveys 51.6 (2019), 116:1–116:29. issn: 0360-0300. doi: 10.1145/3292674. url:
http://doi.acm.org/10.1145/3292674 (cit. on pp. 89, 90).

[Eceiza et al. 2021] Maialen Eceiza, Jose Luis Flores, and Mikel Iturbe. “Fuzzing the
Internet of Things: A Review on the Techniques and Challenges for Efficient
Vulnerability Discovery in Embedded Systems”. IEEE Internet of Things Journal

8.13 (2021), pp. 10390–10411. doi: 10.1109/JIOT.2021.3056179 (cit. on p. 18).

https://doi.org/https://doi.org/10.1016/j.cose.2018.02.002
https://doi.org/https://doi.org/10.1016/j.cose.2018.02.002
https://doi.org/10.14722/ndss.2018.23159
https://doi.org/10.1007/978-3-030-99429-7_5
https://doi.org/10.1109/MoWNet.2016.7496622
https://doi.org/10.1145/3338502.3359762
https://doi.org/10.1109/SASG.2014.7274280
https://doi.org/10.1109/SASG.2014.7274280
https://ceur-ws.org/Vol-2940/paper40.pdf
https://doi.org/10.1145/3292674
http://doi.acm.org/10.1145/3292674
https://doi.org/10.1109/JIOT.2021.3056179

110

REFERENCES

[Eclipse Foundation 2018] Eclipse Foundation. Eclipse IoT-Testware. https : / /
iottestware . readthedocs . io / en / development / smart _ fuzzer . html. [Online;
accessed 23-March-2023]. 2018 (cit. on pp. 20–22, 25, 42, 44, 85).

[Eclipse Foundation 2022] Eclipse Foundation. The Eclipse Foundation Releases

2022 IoT & Edge Developer Survey Results. https://newsroom.eclipse.org/news/
announcements/eclipse-foundation-releases-2022-iot-edge-developer-survey-
results%C2%A0. [Online; accessed 23-March-2023]. 2022 (cit. on p. 90).

[Engel 2013] Dominik Engel. “Privacy and Security Challenges in the Smart Grid
User Domain”. In: Proceedings of the ACM Workshop on Information Hiding and

Multimedia Security. ACM, 2013, pp. 85–86. isbn: 978-1-4503-2081-8. doi: 10.1145/
2482513.2482966. url: http://doi.acm.org/10.1145/2482513.2482966 (cit. on p. 88).

[F-Secure Corporation 2015] F-Secure Corporation. A simple fuzzer for the MQTT

protocol. https: //github.com/F- Secure/mqtt_fuzz. [Online; accessed 16-May-
2023]. 2015 (cit. on pp. 20–22, 25, 42, 73, 105).

[Fehrenbach 2017] Patrik Fehrenbach. Messaging Queues in the IoT under pressure.
https : / / blog . it - securityguard . com / wp - content / uploads / 2017 / 10 / IOT _
Mosquitto_Pfehrenbach.pdf. [Online; accessed 16-May-2023]. 2017 (cit. on p. 73).

[Al-Fuqaha et al. 2015] Ala Al-Fuqaha, Mohsen Guizani, Mehdi Mohammadi, Mo-
hammed Aledhari, and Moussa Ayyash. “Internet of Things: A Survey on En-
abling Technologies, Protocols, and Applications”. IEEE Communications Surveys

& Tutorials 17.4 (2015), pp. 2347–2376. doi: 10.1109/COMST.2015.2444095 (cit. on
p. 90).

[Georgi and Le Bouquin Jeannès 2017] Nawras Georgi and Régine Le Bouquin
Jeannès. “Proposal of a health monitoring system for continuous care”. In: Pro-

ceedings of the International Conference on Advances in Biomedical Engineering.
2017, pp. 1–4. doi: 10.1109/ICABME.2017.8167548 (cit. on p. 88).

[Giambona et al. 2018] Riccardo Giambona, Alessandro E. C. Redondi, and Matteo
Cesana. “MQTT+: Enhanced Syntax and Broker Functionalities for Data Filtering,
Processing and Aggregation”. In: Proceedings of the ACM International Symposium

on QoS and Security for Wireless and Mobile Networks. ACM, 2018, pp. 77–84. isbn:
978-1-4503-5963-4. doi: 10.1145/3267129.3267135. url: http://doi.acm.org/10.
1145/3267129.3267135 (cit. on p. 42).

[Godefroid et al. 2017] Patrice Godefroid, Hila Peleg, and Rishabh Singh.
“Learn&Fuzz: Machine learning for input fuzzing”. In: Proceedings of the IEEE/ACM

International Conference on Automated Software Engineering. 2017, pp. 50–59. doi:
10.1109/ASE.2017.8115618 (cit. on pp. 3, 25).

https://iottestware.readthedocs.io/en/development/smart_fuzzer.html
https://iottestware.readthedocs.io/en/development/smart_fuzzer.html
https://newsroom.eclipse.org/news/announcements/eclipse-foundation-releases-2022-iot-edge-developer-survey-results%C2%A0
https://newsroom.eclipse.org/news/announcements/eclipse-foundation-releases-2022-iot-edge-developer-survey-results%C2%A0
https://newsroom.eclipse.org/news/announcements/eclipse-foundation-releases-2022-iot-edge-developer-survey-results%C2%A0
https://doi.org/10.1145/2482513.2482966
https://doi.org/10.1145/2482513.2482966
http://doi.acm.org/10.1145/2482513.2482966
https://github.com/F-Secure/mqtt_fuzz
https://blog.it-securityguard.com/wp-content/uploads/2017/10/IOT_Mosquitto_Pfehrenbach.pdf
https://blog.it-securityguard.com/wp-content/uploads/2017/10/IOT_Mosquitto_Pfehrenbach.pdf
https://doi.org/10.1109/COMST.2015.2444095
https://doi.org/10.1109/ICABME.2017.8167548
https://doi.org/10.1145/3267129.3267135
http://doi.acm.org/10.1145/3267129.3267135
http://doi.acm.org/10.1145/3267129.3267135
https://doi.org/10.1109/ASE.2017.8115618

REFERENCES

111

[Gopinath et al. 2014] Rahul Gopinath, Carlos Jensen, and Alex Groce. “Code cov-
erage for suite evaluation by developers”. In: Proceedings of the International Con-

ference on Software Engineering. Hyderabad, India: Association for Computing
Machinery, 2014, pp. 72–82. isbn: 9781450327565. doi: 10.1145/2568225.2568278.
url: https://doi.org/10.1145/2568225.2568278 (cit. on pp. 9, 39).

[Gotkowicz and Cordeiro 2022] Maksymilian Gotkowicz and Lucas Cordeiro.
“Grammar-Aware MQTT Fuzzing: A New Fuzzing Strategy for the Security
Testing of MQTT Broker Applications”. A Third Year Project Report for the
Degree of Bachelor of Science. University of Manchester, 2022. url: https :
/ /ssvlab.github. io/ lucasccordeiro/supervisions/bsc_thesis_maks .pdf (cit. on
pp. 42, 44).

[Halabi et al. 2018] Dana Halabi, Salam Hamdan, and Sufyan Almajali. “Enhance
the security in smart home applications based on IOT-CoAP protocol”. In: Pro-

ceedings of the International Conference on Digital Information, Networking, and

Wireless Communications. 2018, pp. 81–85. doi: 10.1109/DINWC.2018.8357000
(cit. on p. 90).

[Havrikov and Zeller 2019] Nikolas Havrikov and Andreas Zeller. “Systematically
Covering Input Structure”. In: Proceedings of the IEEE/ACM International Confer-

ence on Automated Software Engineering. 2019, pp. 189–199. doi: 10.1109/ASE.
2019.00027 (cit. on p. 31).

[Hernández Ramos et al. 2018] Santiago Hernández Ramos, M. Teresa Villalba,
Raquel Lacuesta, and Syed H. Ahmed. “MQTT Security: A Novel Fuzzing Ap-
proach”. Wireless Communications and Mobile Computing 2018 (2018). issn: 1530-
8669. doi: 10.1155/2018/8261746 (cit. on pp. 3, 9, 21, 22, 25, 26, 31, 38, 42, 44, 72,
73, 84, 85).

[Husnain et al. 2022] Muhammad Husnain et al. “Preventing MQTT Vulnerabilities
Using IoT-Enabled Intrusion Detection System”. Sensors 22.2 (2022). issn: 1424-
8220. doi: 10.3390/s22020567 (cit. on pp. 2, 18).

[Jaloudi 2019] Samer Jaloudi. “MQTT for IoT-based Applications in Smart Cities”.
Palestinian Journal of Technology and Applied Sciences 2 (2019). [Online; accessed
22-June-2023]. url: https://web.archive.org/web/20200212031109/https://zenodo.
org/record/2582892/files/1.pdf (cit. on p. 91).

[Johnsen et al. 2018] Frank T. Johnsen, Lars Landmark, Mariann Hauge, Erlend
Larsen, and Øivind Kure. “Publish/subscribe versus a content-based approach for
information dissemination”. In: Proceedings of the IEEE Military Communications

Conference. 2018, pp. 1–9. doi: 10.1109/MILCOM.2018.8599786 (cit. on p. 71).

https://doi.org/10.1145/2568225.2568278
https://doi.org/10.1145/2568225.2568278
https://ssvlab.github.io/lucasccordeiro/supervisions/bsc_thesis_maks.pdf
https://ssvlab.github.io/lucasccordeiro/supervisions/bsc_thesis_maks.pdf
https://doi.org/10.1109/DINWC.2018.8357000
https://doi.org/10.1109/ASE.2019.00027
https://doi.org/10.1109/ASE.2019.00027
https://doi.org/10.1155/2018/8261746
https://doi.org/10.3390/s22020567
https://web.archive.org/web/20200212031109/https://zenodo.org/record/2582892/files/1.pdf
https://web.archive.org/web/20200212031109/https://zenodo.org/record/2582892/files/1.pdf
https://doi.org/10.1109/MILCOM.2018.8599786

112

REFERENCES

[Khan et al. 2019] Imran Khan et al. “Healthcare Monitoring System and transforming
Monitored data into Real time Clinical Feedback based on IoT using Raspberry
Pi”. In: Proceedings of the International Conference on Computing, Mathematics

and Engineering Technologies. 2019, pp. 1–6. doi: 10.1109/ICOMET.2019.8673393
(cit. on p. 88).

[Kim et al. 2017] Jun Young Kim, Ralph Holz, Wen Hu, and Sanjay Jha. “Automated
Analysis of Secure Internet of Things Protocols”. In: Proceedings of the Annual

Computer Security Applications Conference. Orlando, FL, USA: Association for
Computing Machinery, 2017, pp. 238–249. isbn: 9781450353458. doi: 10.1145/
3134600.3134624 (cit. on p. 72).

[Kitagawa et al. 2010] Takahisa Kitagawa, Miyuki Hanaoka, and Kenji Kono. “Asp-
Fuzz: A State-Aware Protocol Fuzzer based on Application-Layer Protocols”.
In: Proceedings of the IEEE Symposium on Computers and Communications. 2010,
pp. 202–208. doi: 10.1109/ISCC.2010.5546704 (cit. on p. 28).

[Kwon et al. 2021] Soonhong Kwon, Sang-Jin Son, Yangseo Choi, and Jong-Hyouk
Lee. “Protocol fuzzing to find security vulnerabilities of RabbitMQ”. Concurrency

and Computation: Practice and Experience 33.23 (2021), pp. 1–14. doi: https://doi.
org/10.1002/cpe.6012 (cit. on p. 22).

[J. Li et al. 2018] Jun Li, Bodong Zhao, and Chao Zhang. “Fuzzing: a survey”. Cyberse-

curity 1 (Dec. 2018). doi: 10.1186/s42400-018-0002-y (cit. on pp. 12, 14).

[Y. Li et al. 2021] Yabin Li et al. “Generating Highly Structured Inputs: A Survey”. In:
Proceedings of the IEEE International Conference on Data Science in Cyberspace.
2021, pp. 466–473. doi: 10.1109/DSC53577.2021.00075 (cit. on p. 14).

[Liang et al. 2018] Hongliang Liang, Xiaoxiao Pei, Xiaodong Jia, Wuwei Shen, and
JianZhang. “Fuzzing: State of the Art”. IEEE Transactions on Reliability 67.3 (2018),
pp. 1199–1218. doi: 10.1109/TR.2018.2834476 (cit. on p. 14).

[Liljedahl 2019] Fredrik Liljedahl. “Exploring the Possibilities of Robustness Testing
CoAP Implementations Using Evolutionary Fuzzing”. Master’s dissertation. KTH
Royal Institute of Technology, 2019. url: https://www.diva-portal.org/smash/
get/diva2:1383128/FULLTEXT01.pdf (cit. on p. 11).

[Lohokare et al. 2017] Jay Lohokare, Reshul Dani, Sumedh Sontakke, and Rahul
Adhao. “Scalable tracking system for public buses using IoT technologies”. In:
Proceedings of the International Conference on Emerging Trends Innovation in ICT.
2017, pp. 104–109. doi: 10.1109/ETIICT.2017.7977019 (cit. on p. 88).

[Luo et al. 2018] Jian-Zhen Luo, Chun Shan, Jun Cai, and Yan Liu. “IoT Application-
Layer Protocol Vulnerability Detection using Reverse Engineering”. Symmetry

10.11 (2018), p. 561. doi: 10.3390/sym10110561 (cit. on pp. 2, 12).

https://doi.org/10.1109/ICOMET.2019.8673393
https://doi.org/10.1145/3134600.3134624
https://doi.org/10.1145/3134600.3134624
https://doi.org/10.1109/ISCC.2010.5546704
https://doi.org/https://doi.org/10.1002/cpe.6012
https://doi.org/https://doi.org/10.1002/cpe.6012
https://doi.org/10.1186/s42400-018-0002-y
https://doi.org/10.1109/DSC53577.2021.00075
https://doi.org/10.1109/TR.2018.2834476
https://www.diva-portal.org/smash/get/diva2:1383128/FULLTEXT01.pdf
https://www.diva-portal.org/smash/get/diva2:1383128/FULLTEXT01.pdf
https://doi.org/10.1109/ETIICT.2017.7977019
https://doi.org/10.3390/sym10110561

REFERENCES

113

[Maggi et al. 2018] Federico Maggi, Rainer Vosseler, and Davide Quarta. The

Fragility of Industrial IoT’s Data Backbone. [Online; accessed 22-June-2023]. Trend
Micro, 2018. url: https://documents.trendmicro.com/assets/white_papers/wp-
the-fragility-of-industrial-IoTs-data-backbone.pdf (cit. on pp. 16, 87, 90).

[Makhshari and Mesbah 2021] Amir Makhshari and Ali Mesbah. “IoT Bugs and De-
velopment Challenges”. In: Proceedings of the IEEE/ACM International Conference

on Software Engineering. 2021, pp. 460–472. doi: 10.1109/ICSE43902.2021.00051
(cit. on p. 2).

[Manès et al. 2019] Valentin Jean Marie Manès et al. “The Art, Science, and Engineer-
ing of Fuzzing: A Survey”. IEEE Transactions on Software Engineering (2019). doi:
10.1109/TSE.2019.2946563 (cit. on pp. 12, 14).

[Melo and Geus 2017] Bruno Melo and Paulo Geus. “Robustness Testing of CoAP
Server-side Implementations through Black-box Fuzzing Techniques”. In: Pro-

ceedings of the Brazilian Symposium on Information and Computational Systems

Security. Brasília: SBC, 2017, pp. 533–540. doi: 10.5753/sbseg.2017.19528 (cit. on
p. 21).

[Michael Zalewski 2013] Michael Zalewski. American Fuzzy Lop. https://lcamtuf.
coredump.cx/afl/. [Online; accessed 23-March-2023]. 2013 (cit. on p. 14).

[Miller et al. 1990] Barton P. Miller, Louis Fredriksen, and Bryan So. “An Empirical
Study of the Reliability of UNIX Utilities”. Communications of the ACM 33.12
(1990), pp. 32–44. issn: 0001-0782. doi: 10.1145/96267.96279 (cit. on pp. 2, 12).

[Mishra and Kertesz 2021] Biswajeeban Mishra and Attila Kertesz. “Stress-Testing
MQTT Brokers: A Comparative Analysis of Performance Measurements”. Energies

14.18 (2021). issn: 1996-1073. doi: 10.3390/en14185817 (cit. on p. 72).

[Miškuf et al. 2017] Martin Miškuf, Erik Kajáti, and Iveta Zolotová. “Smart meter-
ing IoT solution based on NodeMCU for more accurate energy consumption
analysis”. International Journal of Internet of Things and Web Services 2 (2017).
url: https://www.iaras.org/iaras/filedownloads/ijitws/2017/022-0017(2017).pdf
(cit. on p. 88).

[MITRE Corporation 2006] MITRE Corporation. CWE-400 Uncontrolled Resource

Consumption. https://cwe.mitre.org/data/definitions/400.html. [Online; accessed
27-September-2022]. 2006 (cit. on pp. 71, 72).

[Mladenov et al. 2017] Kristiyan Mladenov, Stijn VanWinsen, Chris Mavrakis, and
KPMG Cyber. “Formal verification of the implementation of the MQTT protocol
in IoT devices”. Master’s dissertation. University of Amsterdam, 2017. url: https:
//rp.os3.nl/2016-2017/p42/report.pdf (cit. on p. 44).

https://documents.trendmicro.com/assets/white_papers/wp-the-fragility-of-industrial-IoTs-data-backbone.pdf
https://documents.trendmicro.com/assets/white_papers/wp-the-fragility-of-industrial-IoTs-data-backbone.pdf
https://doi.org/10.1109/ICSE43902.2021.00051
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.5753/sbseg.2017.19528
https://lcamtuf.coredump.cx/afl/
https://lcamtuf.coredump.cx/afl/
https://doi.org/10.1145/96267.96279
https://doi.org/10.3390/en14185817
https://www.iaras.org/iaras/filedownloads/ijitws/2017/022-0017(2017).pdf
https://cwe.mitre.org/data/definitions/400.html
https://rp.os3.nl/2016-2017/p42/report.pdf
https://rp.os3.nl/2016-2017/p42/report.pdf

114

REFERENCES

[Morelli et al. 2021] Umberto Morelli, Ivan Vaccari, Silvio Ranise, and Enrico Cam-
biaso. “DoS Attacks in Available MQTT Implementations: Investigating the Im-
pact on Brokers and Devices, and Supported Anti-DoS Protections”. In: Proceedings

of the International Conference on Availability, Reliability and Security. Vienna,
Austria: Association for Computing Machinery, 2021. isbn: 9781450390514. doi:
10.1145/3465481.3470049 (cit. on p. 73).

[Mrabet et al. 2020] Hichem Mrabet, Sana Belguith, Adeeb Alhomoud, and Abder-
razak Jemai. “A Survey of IoT Security Based on a Layered Architecture of Sensing
and Data Analysis”. Sensors 20.13 (2020). issn: 1424-8220. doi: 10.3390/s20133625
(cit. on p. 72).

[Munea, Lim, et al. 2016] Tewodros Legesse Munea, Hyunwoo Lim, and Taeshik Shon.
“Network Protocol Fuzz Testing for Information Systems and Applications: a
Survey and Taxonomy”. Multimedia Tools and Applications 75.22 (2016), pp. 14745–
14757. doi: https://doi.org/10.1007/s11042-015-2763-6 (cit. on pp. 2, 12, 14).

[Munea, Luk Kim, et al. 2017] Tewodros Legesse Munea, I. Luk Kim, and Taeshik
Shon. “Design and Implementation of Fuzzing Framework Based on IoT Applica-
tions”. Wireless Personal Communications 93.2 (2017), pp. 365–382. issn: 1572834X.
doi: 10.1007/s11277-016-3322-9 (cit. on pp. 2, 12).

[Naik 2017] Nitin Naik. “Choice of effective messaging protocols for IoT systems:
MQTT, CoAP, AMQP and HTTP”. In: Proceedings of the IEEE International Systems

Engineering Symposium. 2017, pp. 1–7. doi: 10.1109/SysEng.2017.8088251 (cit. on
p. 89).

[Natella and Pham 2021] Roberto Natella and Van-Thuan Pham. “ProFuzzBench: A
Benchmark for Stateful Protocol Fuzzing”. In: Proceedings of the ACM SIGSOFT

International Symposium on Software Testing and Analysis. Virtual, Denmark: As-
sociation for Computing Machinery, 2021, pp. 662–665. isbn: 9781450384599. doi:
10.1145/3460319.3469077 (cit. on p. 15).

[Newman and Al-Nemrat 2021] Benjamin Newman and Ameer Al-Nemrat. “Mak-
ing the Internet of Things Sustainable: An Evidence Based Practical Approach in
Finding Solutions for yet to Be Discussed Challenges in the Internet of Things”.
In: Digital Forensic Investigation of Internet of Things (IoT) Devices. Springer Inter-
national Publishing, 2021, pp. 255–285. isbn: 978-3-030-60425-7. doi: 10.1007/978-
3-030-60425-7_11 (cit. on p. 18).

[Oliveira et al. 2019] Davi L. de Oliveira et al. “Performance Evaluation of MQTT
Brokers in the Internet of Things for Smart Cities”. In: Proceedings of the In-

ternational Conference on Smart and Sustainable Technologies. 2019, pp. 1–6. doi:
10.23919/SpliTech.2019.8783166 (cit. on p. 72).

[OWASP 2021] OWASP. OWASP Top 10. https://owasp.org/Top10/. [Online; accessed
23-March-2023]. 2021 (cit. on p. 2).

https://doi.org/10.1145/3465481.3470049
https://doi.org/10.3390/s20133625
https://doi.org/https://doi.org/10.1007/s11042-015-2763-6
https://doi.org/10.1007/s11277-016-3322-9
https://doi.org/10.1109/SysEng.2017.8088251
https://doi.org/10.1145/3460319.3469077
https://doi.org/10.1007/978-3-030-60425-7_11
https://doi.org/10.1007/978-3-030-60425-7_11
https://doi.org/10.23919/SpliTech.2019.8783166
https://owasp.org/Top10/

REFERENCES

115

[Palmieri et al. 2019] Andrea Palmieri, Paolo Prem, Silvio Ranise, Umberto Morelli,
and Tahir Ahmad. “MQTTSA : A Tool for Automatically Assisting the Secure
Deployments of MQTT brokers”. In: IEEE World Congress on Services. Vol. 2642-
939X. IEEE, 2019, pp. 47–53. isbn: 9781728138510. doi: 10.1109/SERVICES.2019.
00023 (cit. on pp. 9, 16, 21, 22, 38, 42, 44).

[Pearson et al. 2022] Bryan Pearson, Yue Zhang, Cliff Zou, and Xinwen Fu. “FUME:
Fuzzing Message Queuing Telemetry Transport Brokers”. In: Proceedings of the

IEEE Conference on Computer Communications. 2022, pp. 1699–1708. doi: 10.1109/
INFOCOM48880.2022.9796755 (cit. on pp. 21, 24, 26, 42, 73).

[Pham et al. 2020] Van-Thuan Pham, Marcel Böhme, and Abhik Roychoudhury.
“AFLNET: A Greybox Fuzzer for Network Protocols”. In: Proceedings of the IEEE

International Conference on Software Testing, Validation and Verification. 2020,
pp. 460–465. doi: 10.1109/ICST46399.2020.00062 (cit. on pp. 13, 15, 22).

[Philippe Biondi and the Scapy Community 2023] Philippe Biondi and the Scapy
Community. Usage – Scapy 2.5.0 documentation – Fuzzing. https : / / scapy .
readthedocs.io/en/latest/usage.html#fuzzing. [Online; accessed 14-May-2023].
2023 (cit. on pp. 20, 21, 25, 42, 73).

[Pianez et al. 2017] Gabriel Dornellas Pianez, Thiago Teodoro Peres, and Wânderson
de Oliveira Assis. Smart Cities Mobility - Um projeto de automação voltado para

otimizaccão da logística de transporte público urbano por meio de GPS e rede de

comunicação. Tech. rep. 2017. url: https://maua.br/files/122017/smart-cities-
mobility-um-projeto-automacao-voltado-para-otimizacao-logistica-transporte-
publico-urbano-por-meio-gps-rede-comunicacao-261731.pdf (cit. on p. 88).

[Praveen et al. 2023] Meghna Praveen, Ali Raza, and Maheen Hasib. “Open-Source
Security Testing Tools for IoT Protocols - MQTT and Zigbee”. In: Proceedings

of the Advances in Science and Engineering Technology International Conferences.
2023, pp. 01–06. doi: 10.1109/ASET56582.2023.10180709 (cit. on p. 2).

[Rutke 2019] Julio Cezar Rutke. “Uma abordagem baseada em visão computacional
com internet das coisas para contagem de passageiros em transporte publico
urbano”. Master’s Thesis. Universidade do Estado de Santa Catarina, 2019. url:
https://www.udesc.br/arquivos/cct/id_cpmenu/1024/Disserta__o_merged_
comCAPA_15571594468679_1024.pdf (cit. on p. 88).

[Săndescu et al. 2018] Cristian Săndescu, Octavian Grigorescu, Răzvan Rughiniş,
Răzvan Deaconescu, and Mihnea Calin. “Why IoT security is failing. The Need
of a Test Driven Security Approach”. In: Proceedings of the RoEduNet Conference:

Networking in Education and Research. 2018, pp. 1–6. doi: 10.1109/ROEDUNET.
2018.8514135 (cit. on pp. 2, 18, 72).

[Schiefer 2015] Michael Schiefer. “Smart Home Definition and Security Threats”. In:
Proceedings of the International Conference on IT Security Incident Management IT

Forensics. 2015, pp. 114–118. doi: 10.1109/IMF.2015.17 (cit. on p. 87).

https://doi.org/10.1109/SERVICES.2019.00023
https://doi.org/10.1109/SERVICES.2019.00023
https://doi.org/10.1109/INFOCOM48880.2022.9796755
https://doi.org/10.1109/INFOCOM48880.2022.9796755
https://doi.org/10.1109/ICST46399.2020.00062
https://scapy.readthedocs.io/en/latest/usage.html#fuzzing
https://scapy.readthedocs.io/en/latest/usage.html#fuzzing
https://maua.br/files/122017/smart-cities-mobility-um-projeto-automacao-voltado-para-otimizacao-logistica-transporte-publico-urbano-por-meio-gps-rede-comunicacao-261731.pdf
https://maua.br/files/122017/smart-cities-mobility-um-projeto-automacao-voltado-para-otimizacao-logistica-transporte-publico-urbano-por-meio-gps-rede-comunicacao-261731.pdf
https://maua.br/files/122017/smart-cities-mobility-um-projeto-automacao-voltado-para-otimizacao-logistica-transporte-publico-urbano-por-meio-gps-rede-comunicacao-261731.pdf
https://doi.org/10.1109/ASET56582.2023.10180709
https://www.udesc.br/arquivos/cct/id_cpmenu/1024/Disserta__o_merged_comCAPA_15571594468679_1024.pdf
https://www.udesc.br/arquivos/cct/id_cpmenu/1024/Disserta__o_merged_comCAPA_15571594468679_1024.pdf
https://doi.org/10.1109/ROEDUNET.2018.8514135
https://doi.org/10.1109/ROEDUNET.2018.8514135
https://doi.org/10.1109/IMF.2015.17

116

REFERENCES

[Sharad et al. 2016] S. Sharad, P. Bagavathi Sivakumar, and V. Anantha Narayanan.
“The smart bus for a smart city — A real-time implementation”. In: Proceedings of

the IEEE International Conference on Advanced Networks and Telecommunications

Systems. 2016, pp. 1–6. doi: 10.1109/ANTS.2016.7947850 (cit. on p. 88).

[Sneha Suhitha Galiveeti and Pranitha Malae 2020] Sneha SuhithaGaliveeti
and Pranitha Malae. MQTT fuzzing using AFLNET. https : / / github . com /
SuhithaG/MQTT- fuzzing - using - AFLNET. [Online; accessed 23-March-2023].
2020 (cit. on pp. 14, 15, 21, 23, 37, 42, 83).

[Sochor et al. 2020a] Hannes Sochor, Flavio Ferrarotti, and Rudolf Ramler. “An
Architecture for Automated Security Test Case Generation for MQTT Systems”.
In: Database and Expert Systems Applications. Springer International Publishing,
2020, pp. 48–62. isbn: 978-3-030-59028-4. doi: 10.1007/978- 3- 030- 59028- 4_5
(cit. on pp. 21, 23).

[Sochor et al. 2020b] Hannes Sochor, Flavio Ferrarotti, and Rudolf Ramler. “Auto-
mated Security Test Generation for MQTT Using Attack Patterns”. In: Proceedings

of the 15th International Conference on Availability, Reliability and Security. Virtual
Event, Ireland: Association for Computing Machinery, 2020. isbn: 9781450388337.
doi: 10.1145/3407023.3407078 (cit. on pp. 3, 9, 25, 26, 31–36, 38, 42, 44, 45, 47,
50–53, 73, 84, 85, 101).

[Synopsis 2021] Synopsis. Defensics Fuzz Testing. https : / / www . synopsys . com /
software- integrity / security - testing/ fuzz - testing .html.. [Online; accessed 29-
September-2021]. 2021 (cit. on pp. 21, 24, 42, 44).

[Tappler et al. 2017] Martin Tappler, Bernhard K. Aichernig, and Roderick Bloem.
“Model-Based Testing IoT Communication via Active Automata Learning”. In:
Proceedings of the IEEE International Conference on Software Testing, Verification

and Validation. 2017, pp. 276–287. doi: 10.1109/ICST.2017.32 (cit. on p. 44).

[Thantharate et al. 2019] Anurag Thantharate, Cory Beard, and Poonam
Kankariya. “CoAP and MQTT Based Models to Deliver Software and Security
Updates to IoT Devices over the Air”. In: Proceedings of the International Conference

on Internet of Things and IEEE Green Computing and Communications and IEEE

Cyber, Physical and Social Computing and IEEE Smart Data. 2019, pp. 1065–1070.
doi: 10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00183 (cit. on p. 18).

[Vinzenz and Oka 2021] Nico Vinzenz and Dennis Kengo Oka. “Integrating Fuzz Test-
ing into the Cybersecurity Validation Strategy”. In: SAE WCX Digital Summit. SAE
International, Apr. 2021. doi: https://doi.org/10.4271/2021-01-0139 (cit. on p. 12).

[Wang et al. 2017] Heng Wang, Daijin Xiong, Ping Wang, and Yuqiang Liu. “A
Lightweight XMPP Publish/Subscribe Scheme for Resource-Constrained IoT De-
vices”. IEEE Access 5 (2017), pp. 16393–16405. doi: 10.1109/ACCESS.2017.2742020
(cit. on p. 89).

https://doi.org/10.1109/ANTS.2016.7947850
https://github.com/SuhithaG/MQTT-fuzzing-using-AFLNET
https://github.com/SuhithaG/MQTT-fuzzing-using-AFLNET
https://doi.org/10.1007/978-3-030-59028-4_5
https://doi.org/10.1145/3407023.3407078
https://www.synopsys.com/software-integrity/security-testing/fuzz-testing.html.
https://www.synopsys.com/software-integrity/security-testing/fuzz-testing.html.
https://doi.org/10.1109/ICST.2017.32
https://doi.org/10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00183
https://doi.org/https://doi.org/10.4271/2021-01-0139
https://doi.org/10.1109/ACCESS.2017.2742020

REFERENCES

117

[Wen et al. 2020] Cheng Wen et al. “MEMLOCK: Memory Usage Guided Fuzzing”.
In: 2020 IEEE/ACM 42nd International Conference on Software Engineering (ICSE).
2020, pp. 765–777. doi: 10.1145/3377811.3380396 (cit. on p. 73).

[Yi et al. 2016] Ding Yi, Fan Binwen, Kong Xiaoming, and Ma Qianqian. “Design
and implementation of mobile health monitoring system based on MQTT pro-
tocol”. In: Proceedings of the IEEE Advanced Information Management, Commu-

nicates, Electronic and Automation Control Conference. 2016, pp. 1679–1682. doi:
10.1109/IMCEC.2016.7867503 (cit. on p. 88).

[Zaddach et al. 2014] Jonas Zaddach, Luca Bruno, Aurélien Francillon, and Davide
Balzarotti. “Avatar: a framework to support dynamic security analysis of em-
bedded systems’ firmwares”. In: Proceedings of the Network and Distributed System

Security Symposium. 2014. doi: 10.14722/NDSS.2014.23229 (cit. on p. 11).

[Zanella et al. 2014] Andrea Zanella, Nicola Bui, Angelo Castellani, Lorenzo Van-
gelista, and Michele Zorzi. “Internet of Things for Smart Cities”. IEEE Internet of

Things Journal 1.1 (2014), pp. 22–32. doi: 10.1109/JIOT.2014.2306328 (cit. on p. 1).

[Zeller et al. 2020] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser,
and Christian Holler. “Fuzzing with Grammars”. In: The Fuzzing Book. [Online;
accessed 12-June-2023]. CISPA Helmholtz Center for Information Security, 2020.
url: https://www.fuzzingbook.org/html/Grammars.html (cit. on p. 28).

[Zeng et al. 2020] Yingpei Zeng et al. “MultiFuzz: A Coverage-Based Multiparty-
Protocol Fuzzer for IoT Publish/Subscribe Protocols”. Sensors 20.18 (2020). issn:
1424-8220. doi: 10.3390/s20185194. url: https://www.mdpi.com/1424-8220/20/
18/5194 (cit. on pp. 3, 9, 14–16, 21, 22, 26, 37, 38, 42, 44, 83, 91).

[Zhao 2020] Danyang Zhao. “Fuzzing Technique in Web Applications and Beyond”.
1678 (2020), p. 012109. doi: 10 . 1088 / 1742 - 6596 / 1678 / 1 / 012109. url: https :
//doi.org/10.1088/1742-6596/1678/1/012109 (cit. on p. 14).

[Zhu et al. 2022] Xiaogang Zhu, Sheng Wen, Seyit Camtepe, and Yang Xiang.
“Fuzzing: A Survey for Roadmap”. ACM Computing. Surverys 54.11s (2022).
issn: 0360-0300. doi: 10.1145/3512345. url: https : / /doi .org/10 .1145/3512345
(cit. on p. 14).

https://doi.org/10.1145/3377811.3380396
https://doi.org/10.1109/IMCEC.2016.7867503
https://doi.org/10.14722/NDSS.2014.23229
https://doi.org/10.1109/JIOT.2014.2306328
https://www.fuzzingbook.org/html/Grammars.html
https://doi.org/10.3390/s20185194
https://www.mdpi.com/1424-8220/20/18/5194
https://www.mdpi.com/1424-8220/20/18/5194
https://doi.org/10.1088/1742-6596/1678/1/012109
https://doi.org/10.1088/1742-6596/1678/1/012109
https://doi.org/10.1088/1742-6596/1678/1/012109
https://doi.org/10.1145/3512345
https://doi.org/10.1145/3512345

	Introduction
	Objectives of Doctoral Studies
	Phases and Contributions of Doctoral Studies
	Dissemination of Research Findings
	Development of Open Source Fuzzers and Testbed
	Contributions to Open Source Software
	Contribution to Research Paper Unrelated to Doctoral Studies

	Thesis Outline

	State of the Art in Pub/Sub Protocol Fuzzing
	Background
	Challenges
	Literature Review
	MQTT Fuzzing
	Related Work

	A Grammar-Based Fuzzing Technique for a Pub/Sub Protocol
	Architecture
	Algorithms
	Selecting the Packet Type
	Generating the Packets
	Feeding the Packets
	Evaluating the Response
	Monitoring the Program

	Performance Evaluation
	Mosquitto
	Takeaway from Experiments

	Threats to Validity
	Concluding Remarks

	Taxonomy and Coverage Evaluation of Fuzzing Techniques for the MQTT Protocol
	Design Considerations for MQTT Fuzzers
	Taxonomy
	Performance Evaluation
	Statement Coverage
	Feature Coverage

	Concluding Remarks

	Refinement of a Grammar-Based Fuzzing Technique for a Pub/Sub Protocol
	Refinements
	Performance Evaluation
	handle_connect.c
	handle_publish.c
	handle_subscribe.c
	subs.c

	Concluding Remarks

	Stress Test Evaluation of Fuzzing Techniques for MQTT Brokers
	State of the Art
	Performance Evaluation
	Mosquitto
	Moquette

	Discussion
	Concluding Remarks

	Conclusions and Future Work
	Future Work
	Improvements to Existing Fuzzing Techniques
	Development of Built-In Fault Detection Mechanisms
	Development of a Resource-Intensive Fuzzer for MQTT Brokers
	Development of Fuzzers Based on Hybrid and Machine Learning Approaches
	Performance Evaluation Over Longer Test Runs
	Maintenance of MQTT Fuzzers
	Expand the Research Scope to Include Other Pub/Sub Protocols

	Usage of MQTT in IoT Applications
	Home Automation Systems
	Health Monitoring Systems
	Intelligent Transportation Systems
	Electricity Metering Systems

	Comparison Between MQTT and Other IoT Protocols
	HTTP
	XMPP
	AMQP
	DDS
	CoAP
	Summary

	MQTT Packets
	Structure
	Transmission

	Input Coverage of Fuzzing Techniques for the MQTT Protocol
	Mosquitto
	Moquette

	Packet Exchange of Fuzzing Techniques for the MQTT Protocol
	References

