• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
10.11606/D.45.2018.tde-20122017-205014
Documento
Autor
Nombre completo
Anderson Meirelles Freitas
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2017
Director
Tribunal
Miranda, Paulo Andre Vechiatto de (Presidente)
Almeida Junior, Jurandy Gomes de
Marana, Aparecido Nilceu
Título en portugués
TSS e TSB: novos descritores de forma baseados em tensor scale
Palabras clave en portugués
Análise de formas
CBIR
Descritores de forma
Escala tensorial
Recuperação de imagens baseada em conteúdo
Tensor scale
Visão computacional
Resumen en portugués
Neste trabalho são apresentados dois novos descritores de forma para tarefas de recuperação de imagens por conteúdo (CBIR) e análise de formas, que são construídos sobre uma extensão do conceito de tensor scale baseada na Transformada de Distância Euclidiana (EDT). Primeiro, o algoritmo de tensor scale é utilizado para extrair informações da forma sobre suas estruturas locais (espessura, orientação e anisotropia) representadas pela maior elipse contida em uma região homogênea centrada em cada pixel da imagem. Nos novos descritores, o limite do intervalo das orientações das elipses do modelo de tensor scale é estendido de 180º para 360º, de forma a melhor discriminar a descrição das estruturas locais. Então, com base em diferentes abordagens de amostragem, visando resumir informações mais relevantes, os novos descritores são construídos. No primeiro descritor proposto, Tensor Scale Sector (TSS), a distribuição das orientações relativas das estruturas locais em setores circulares é utilizada para compor um vetor de características de tamanho fixo, para uma caracterização de formas baseada em região. No segundo descritor, o Tensor Scale Band (TSB), foram considerados histogramas das orientações relativas extraídos de bandas concêntricas, formando também um vetor de características de tamanho fixo, com uma função de distância de tempo linear. Resultados experimentais com diferentes bases de formas (MPEG-7 e MNIST) são apresentados para ilustrar e validar os métodos. TSS demonstra resultados comparáveis aos métodos estado da arte, que geralmente dependem de algoritmos custosos de otimização de correspondências. Já o TSB, com sua função de distância em tempo linear, se demonstra como uma solução adequada para grandes coleções de formas.
Título en inglés
TSS & TSB: new shape descriptors based on tensor scale
Palabras clave en inglés
CBIR
Computer vision
Content based image retrieval
Shape analysis
Shape descriptors
Tensor scale
Resumen en inglés
In this work, two new shape descriptors are proposed for tasks in Content-Based Image Retrieval (CBIR) and Shape Analysis tasks, which are built upon an extended tensor scale based on the Euclidean Distance Transform (EDT). First, the tensor scale algorithm is applied to extract shape attributes from its local structures (thickness, orientation, and anisotropy) as represented by the largest ellipse within a homogeneous region centered at each image pixel. In the new descriptors, the upper limit of the interval of local orientation of tensor scale ellipses is extended from 180º to 360º, to better discriminate the description of local structures. Then, the new descriptors are built based on different sampling approaches, aiming to summarize the most relevant features. In the first proposed descriptor, Tensor Scale Sector descriptor (TSS), the local distributions of relative orientations within circular sectors are used to compose a fixed-length feature vector, for a region-based shape characterization. For the second method, the Tensor Scale Band (TSB) descriptor, histograms of relative orientations are considered for each circular concentric band, to also compose a fixed-length feature vector, with linear time distance function for matching. Experimental results for different shape datasets (MPEG-7 and MNIST) are presented to illustrate and validate the methods. TSS can achieve high retrieval values comparable to state-of-the-art methods, which usually rely on time-consuming correspondence optimization algorithms, but uses a simpler and faster distance function, while the even faster linear complexity of TSB leads to a suitable solution for very large shape collections.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
Fecha de Publicación
2018-04-16
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2022. Todos los derechos reservados.