Master's Dissertation
DOI
https://doi.org/10.11606/D.45.2018.tde-20032018-003225
Document
Author
Full name
Diogo Haruki Kykuta
E-mail
Institute/School/College
Knowledge Area
Date of Defense
Published
São Paulo, 2018
Supervisor
Committee
Ferreira, Carlos Eduardo (President)
Franco, Álvaro Junio Pereira
Pina Junior, Jose Coelho de
Title in Portuguese
Comparação de algoritmos para o Problema dos K Menores Caminhos
Keywords in Portuguese
Caminho mínimo
Grafos
Grafos dirigidos com peso nos arcos
K menores caminhos
Abstract in Portuguese
O Problema dos K Menores Caminhos é uma generalização do Problema do Menor Caminho, em que desejamos encontrar os K caminhos de menor custo entre dois vértices de um grafo. Estudamos e implementamos algoritmos que resolvem esse problema em grafos dirigidos, com peso nos arcos e que permitem apenas caminhos sem repetição de vértices na resposta. Comparamos seus desempenhos utilizando grafos do 9th DIMACS Implementation Challenge. Identificamos os pontos fortes e fracos de cada algoritmo, e propusemos uma variante híbrida dos algoritmos de Feng e de Pascoal. Essa variante proposta obteve desempenho superior aos algoritmos base em alguns grafos, e resultado superior a pelo menos um deles na grande maioria dos testes.
Title in English
Comparison of algorithms for K Shortest Paths Problem
Keywords in English
Graphs
K shortest paths
Shortest path
Weighted directed graph
Abstract in English
The K-Shortest Path Problem is a generalization of the Shortest Path Problem, in which we must find the K paths between two vertices in a graph that have the lowest costs. We study some K-Shortest Path Problem algorithms applied to weighted directed graphs, allowing only paths with no repeated vertices. We compare empirically implementation of some algorithms, using instance graphs from the 9th DIMACS Implementation Challenge. We identify the strengths and weaknesses of each algorithm, and we propose a hybrid version of Feng's and Pascoal's algorithms. This proposed variant achieve better perfomance compared to both base algorithms in some graphs, and it is better than at least one of them in most cases.
WARNING - Viewing this document is conditioned on your acceptance of the following terms of use:
This document is only for private use for research and teaching activities. Reproduction for commercial use is forbidden. This rights cover the whole data about this document as well as its contents. Any uses or copies of this document in whole or in part must include the author's name.
Publishing Date
2018-05-22