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Abstract

Arenstein, L. An Introduction to Quantum: Computing, Communication Com-

plexity Protocols, Nonlocality and Graph Parameters. Thesis – Institute of Math-

ematics and Statistics, University of São Paulo, São Paulo, 2022.

What are the advantages quantum computing can provide when compared to clas-

sical computing? In this thesis, we aim to answer this question from different per-

spectives. To achieve this goal we divided this work into three parts.

In Part I we start by studying the basic principles of quantum computing. Next,

we introduce two quantum algorithms: the Deutsch–Jozsa and Grover’s algorithms.

The first algorithm has a lower query complexity and the second has a lower time

complexity when compared with the best classical algorithm for the same problems.

The final topic of this initial part is a detailed explanation and example of how to

use Grover’s algorithm to solve a Boolean formula in conjunctive normal form.

In the second part, we focus on communication complexity problems. These

problems are usually stated as follows: two spatially separated parties Alice and

Bob receive an input from a referee. Their goal is to compute the value of a func-

tion that depends on both of their inputs with the least amount of communication

between them. In Part II we will introduce protocols in which the transmission

of quantum bits (qubits), instead of bits, can reduce the amount of communica-

tion necessary to solve these problems. We also study how Alice and Bob can use

quantum entanglement to solve two communication complexity problems without

communicating something that can not be done classically.

In Part III we study nonlocal games inspired by standard graph theory param-

eters. A nonlocal game is usually defined as a game in which players that can

share and do computations in an entangled state have some sort of advantage over

classical players. We begin this final part by introducing the quantum chromatic

number of a graph, which is the minimal number of colors necessary in a nonlocal

game in which Alice and Bob can convince a referee with certainty that they have

a proper coloring of the graph. We end this thesis by introducing other two quan-

tum graph parameters, one related to graph homomorphism and the other to the

independence number of a graph.

Keywords: quantum computing, quantum algorithms, Grover’s algorithm, quan-

tum communication complexity, nonlocality, quantum graph parameters, quantum

chromatic number.



Resumo

Arenstein, L. Uma Introdução à Computação Quântica, Protocolos de Comple-

xidade de Comunicação Quânticos, Não-localidade e Parâmetros Quânticos de

Grafos. Tese – Instituto de Matemática e Estat́ıstica, Universidade de São Paulo,

São Paulo, 2022.

Quais são as vantagens que a computação quântica pode oferecer em relação à

computação clássica? O objetivo desta tese é responder a esta pergunta sob dife-

rentes perspectivas, com este intuito, dividimos este trabalho em três partes.

Na primeira parte começamos a estudar os prinćıpios básicos da computação

quântica. Em seguida apresentamos dois algoritmos quânticos; o algoritmo de

Deutsch–Jozsa e o algoritmo de Grover. O primeiro possui uma menor comple-

xidade de query, já o segundo possui uma menor complexidade de tempo quando

comparados aos melhores algoritmos clássicos para os mesmos problemas. O último

tópico é uma explicação detalhada com um exemplo de como utilizar o algoritmo de

Grover para resolver uma fórmula booleana expressa na forma normal conjuntiva.

Na segunda parte abordamos problemas de complexidade de comunicação. Estes

problemas normalmente envolvem duas pessoas, Alice e Bob, que em locais sepa-

rados recebem um input de um juiz. O objetivo deles é calcular o valor de uma

função que depende dos seus inputs com a menor quantidade de comunicação

entre eles. Nesta parte, apresentamos protocolos nos quais a transmissão de bits

quânticos (qubits), ao invés de bits, podem reduzir a quantidade de comunicação

necessária para resolver estes tipos de problemas. Também estudamos como Alice

e Bob podem utilizar o emaranhamento quântico para resolver dois problemas de

complexidade de comunicação sem que haja comunicação entre ambos, algo que

não pode ser feito classicamente.

Na Parte III estudamos jogos não-locais inspirados em parâmetros usuais da

teoria dos grafos. Jogos não-locais são definidos como jogos em que jogadores

que podem compartilhar e operar em um estado emaranhado possuem algum tipo

de vantagem sobre jogadores clássicos. Iniciamos esta última parte apresentando

o número cromático quântico de um grafo. Esta quantidade representa o menor

número de cores necessárias para Alice e Bob convencerem um juiz que possuem

uma coloração própria de um grafo ao jogarem um jogo não-local. Terminamos

esta tese apresentando outros dois parâmetros quânticos de grafos, um relacionado

ao homomorfismo de grafos e o outro ao número de independência de um grafo.

Palavras-chave: computação quântica, algoritmos quânticos, algoritmo de Grover,

complexidade de comunicação quântica, não-localidade, parâmetros quânticos de

grafos, número cromático quântico.
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Introduction

In the 80s the idea of building a computer that obeyed the laws of quantum me-

chanics began to be taken more seriously. By that time a few scientists had an

intuition that a quantum computer could simulate a quantum system in a feasible

amount of time, something that a classical computer could not do. The field of

quantum computing was born.

Since then, there has been a great deal of development and discoveries in the

field of quantum computing ranging from theoretical results in algorithms and com-

plexity theory to practical implementations of quantum computers.

A recent breakthrough was made by Google in 2019. They announced that

using their quantum computer with 53 qubits they manage to solve a problem in 3

minutes against 2.5 days that would take Summit the most powerful supercomputer

at the time to solve the same problem.

Inspired by the theoretical discoveries and this recent breakthrough we believe

that quantum computers powerful enough to solve useful problems that cannot be

solved classically will become a reality.

In this thesis, divided into three parts, we are interested in different types of ad-

vantages quantum computing can provide when compared to classical computing.

In Part I the advantages will be obtained by presenting two quantum algorithms.

The first one is the Deutsch–Jozsa algorithm which provides an exponentially lower

query complexity (number of calls to an oracle) when compared with the best clas-

sical algorithm. The second one is Grover’s algorithm which provides a quadratic

speed-up in time complexity over the best classical algorithm.

In the second part, we start by describing problems whose input is distributed

among two or more physically separated parties. The solution to these problems

is related to the parties’ input. The field of communication complexity studies the

amount of communication between the parties necessary to solve these sorts of

problems. In Part II we introduce protocols in which the transmission of quantum

bits, instead of bits, can reduce the amount of communication necessary to solve
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these problems. Next, we discuss how entanglement can be used to further re-

duce (or even eliminate) the amount of communication for these communication

complexity problems.

In the final part, we investigate how quantum information processing can pro-

vide new parameters related to well-investigated topics from graph theory. We

introduce nonlocal games in which players that can perform quantum computation

on their inputs have some sort of advantage over classical players.

Overview

In this thesis, besides presenting different advantages quantum computing can pro-

vide, each part is self-contained. For instance, a reader who is already familiar with

quantum computing could go straight to the second or third part. Another aspect

that we would like to emphasize is our effort to make this work as a friendly and

mathematically rigorous introduction to each one of the three parts. We hope that

anyone with a background in linear algebra can follow this thesis.

Part I - Quantum Computing: From Scratch to Grover

We start by introducing the basic principles of quantum computing. First, we define

basic operations and notation that are commonly used in the literature. Next, we

explain what a quantum computation is and introduce the quantum circuit model.

The first milestone of this part is to present one of the first quantum algorithms,

the Deutsch–Jozsa algorithm, that solves the following problem: Suppose we can

query a black box function f : {0, 1}n → {0, 1}. We are promised that f is either

constant (f(x) is the same for all x), or f is balanced (f(x) = 0 for exactly half of the

input strings x, and f(x) = 1 for the other half of the inputs). How many queries

do we have to make to find out with certainty what type of function f is?

Classically, in the worst case, one might need to query half plus one (2n−1 + 1)

of all the possible inputs to find out what type of function f is. Surprisingly, the

Deutsch–Jozsa algorithm solves this problem with just one query.

The final milestone is to introduce Grover’s algorithm. The problem this algo-

rithm solves is: Given a black box function f : {0, 1}n → {0, 1} that on a single

marked string x⋆ evaluates to 1 and for all the others inputs evaluates to 0, the goal

is to determine x⋆. Classically, it takes approximately 2n queries to the function f to

find x⋆, which is linear in the domain size. Grover’s algorithm solves this problem

with high probability using only O(
√
2n) queries to the function f . This quadratic

2



speed-up only happens when the best-known classical algorithm for solving this

kind of problem is to naively search through all the potential solutions, which are

typically exponential in the size of the problem instance.

The final topic of this first part is a detailed explanation and example of how to

use Grover’s algorithm to solve a Boolean formula in conjunctive normal form.

Part II - Quantum Communication Complexity Protocols and Non-
locality

We start the second part by defining basic concepts in the area of communication

complexity. The first protocol that we present is the Distributed Deutsch–Jozsa

which solves the following problem: Consider two players Alice and Bob who are

physically separated from each other. An honest referee will send Alice an n-bit

string x and Bob an n-bit string y, where n is a power of two. They are promised

that their inputs are equal or they differ in exactly n/2 positions. Bob’s goal is to

determine the relation between x and y after receiving just one message from Alice.

In this scenario, we are interested in comparing how many bits against how

many qubits Alice has to send to Bob to solve this problem with certainty. We show

that, for this problem, the capability of sending qubits and performing quantum

computation on them can save an exponential amount of communication.

For this problem, if we allow the classical protocol to have some small error

probability there is no advantage in using qubits instead of bits. Motivated by this

fact, we introduce the Hidden Matching problem. For this second problem, sending

qubits instead of bits gives an exponential separation between a quantum and any

classical protocol even if we allow the latter to have some small error probability.

In the second chapter of Part II, we give a short introduction of quantum nonlo-

cality, one of the most nonclassical manifestations of quantum mechanics. Quantum

nonlocality refers to the scenario where the results of local measurements carried

out on an entangled system are somehow correlated. To understand some of the

concepts of nonlocality we present a so-called nonlocal game in which players that

can share and do computations in an entangled state have some sort of advantages

over classical players.

In the final chapter of this part, we present nonlocal games derived from com-

munication complexity problems. One of them is a variation of the Distributed

Deutsch–Jozsa problem. In this variation, we forbid communication between the

parties but allow them to share an entangled state before the game starts.

3



Part III - Quantum Graph Parameters

To understand the first quantum graph parameter of this final part, the quantum

chromatic number, we need first to explain the c-coloring game. Alice and Bob

receive a simple graph G = (V,E) from a referee. Before the game starts they agree

on a strategy and claim to the referee that they have a proper c-coloring of G. The

players move apart and are now forbidden to communicate. The referee will test

their claim with a one-round game by sending vertices a ∈ V to Alice and b ∈ V to

Bob such that a = b or ab ∈ E. After doing any computation they want Alice sends

the color ca and Bob the color cb to the referee. They win the game if: a = b and

ca = cb or ab and ca ̸= cb.

We prove that for a graph G the minimum c that classical players can choose to

win the c-coloring game with certainty is equal to χ(G). Surprisingly, if the players

are allowed to use quantum resources there are graphs for which Alice and Bob

can win the c-coloring game with probability 1 for c < χ(G). The smallest c such

that quantum players can win the c-coloring game is called the quantum chromatic

number denoted by χq(G).

In the first chapter of Part III, we present all the preliminary concepts from graph

theory necessary to understand the quantum chromatic number. After that, we

focus on a special family of graphs called the Hadamard graphs. We are interested

in this family of graphs because they exhibit an exponential separation between

the classical and quantum chromatic number. For the final topic of this chapter,

we present a quantum protocol to win the c-coloring game while playing with the

Hadamard graph.

In the second chapter of the third part we present a general quantum strategy

for the c-coloring game. We are particularly interested in a graph with 18 vertices

(called G18) that presents a smaller quantum chromatic number when compared

to the classical parameter. One of our goals is to explicitly formulate a quantum

strategy to win the c-coloring with this graph.

The final topics of this thesis are devoted to other quantum graph parameters.

They are related to graph homomorphism and the independence number of a graph

which are well-investigated topics from graph theory.

4
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Chapter 1

Preliminaries

In this initial chapter, we will give a (very) brief overview of the history, important

discoveries and advances in quantum computing. In the rest of this first chapter we

define basic operations and notation that will be used in this thesis.

1.1 A Brief History of Quantum Computing

Since the nineteenth century, physicists made experiments that did not agree with

the laws of classical mechanics. The most prominent explanation for those exper-

iments was made in the early 1920s. A new mathematical framework for physics

called quantum mechanics was created. This theory describes the physical proper-

ties of nature at the scale of atoms and subatomic particles.

In the 80s a few scientists started to wonder if one could build computers that

obeyed the laws of this new theory, using qubits (quantum bits) as the basic unit of

quantum information in place of classical bits, and operate on this qubits according

to the laws of quantum mechanics. Richard Feynman had an intuition at the time

that to simulate an n-particle quantum system using a classical computer would

be inefficient, as it would take an amount of time and space exponential in n.

He idealized a system that would allow us to do computations using the natural

quantum behavior of particles, hoping that this system would be more efficient

than classical computers for this task [Fey82].

In 1985 David Deutsch defined the universal quantum Turing machine [Deu85]

and up until 1994 there was some sparse activity with the development of quantum

algorithms based on query complexity like the Deutsch–Jozsa Algorithm [DJ92]

(introduced in Section 3.2) and also Simon’s Algorithm [Sim97]. The creation of

quantum complexity theory by Bernstein and Vazirani [BV97] was another signifi-

cant step in quantum computing. What really sparked a tremendous interest in the
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field was Peter Shor’s quantum algorithm for efficiently factoring integers in 1994

[Sho94], that could theoretically break the RSA cryptosystem. Another impressive

result is the quantum search algorithm discovered in 1996 by Lov Grover [Gro96],

which we are going to explain in Chapter 4.1.

Since then there has been a great deal of development in the field of quantum

computing ranging from theoretical results in algorithms and complexity theory

to practical implementations of quantum computers. In 2019 Google announced

that they had achieved Quantum Supremacy1 using a quantum computer with 53

working qubits [AAB+19]. The latest Quantum Supremacy demonstration was in

2020 by the University of Science and Technology of China using 76 photons with

their photonic quantum computer [ZWD+20].

1.2 Operations on Binary Strings

Before we start to present quantum computing we need to define some basic op-

erations on binary strings. First we will show how to change between a natural

number and a binary string representation of this number, and later introduce two

basic operations on binary strings. These definitions are essential when construct-

ing or studying quantum algorithms.

Definition 1.2.1
If d is a natural number then it can be written in the base-2 as

d = 2k−1bk−1 + . . . 2b1 + b0, (1.1)

where bj ∈ {0, 1} for all 0 ≤ j ≤ k − 1. The binary representation of d is given
by the binary string s = bk−1bk−2 . . . b1b0. The length of s is equal to k and its jth
element is bj.

Note that for the binary string representation of a natural number to be unam-

biguous we must set the length2 of the binary string before doing the conversion.

For any two binary strings r = r0 . . . rl−1 and s = s0 . . . sl−1 we have the following

operations.

1It is the goal of demonstrating that a programmable quantum device can solve a problem that
no classical computer can solve in any feasible amount of time irrespective of the usefulness of the
problem. This term was coined by John Preskill in 2012.

2The minimum number of bits required to represent a nonzero natural number d is ⌊log2 d⌋+ 1.
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Definition 1.2.2
r ⊕ s is the bitwise addition modulo 2 given by

r ⊕ s = t, with t ∈ {0, 1}l and tk =

{
0 if rk = sk

1 otherwise
∀k = 0, . . . , l − 1. (1.2)

The operator ⊕ is also known as the bitwise exclusive-or (XOR).

Definition 1.2.3
r • s is the bitwise dot product calculated as follows

r • s = r1s1 ⊕ · · · ⊕ rlsl =
l⊕

k=1

rksk. (1.3)

1.3 Essential Linear Algebra and Dirac Notation

In this work, we are going to work with finite-dimensional complex vector spaces

with an inner product denoted by Cn. This type of vector space is a member of

a broader class of vector spaces called Hilbert spaces, that is often used in the

quantum computing literature. As we do not need any property of the Hilbert

spaces in the rest of this paper, all the systems and operators we consider will be in

the standard basis of Cn to be defined in 1.3.1.

Mathematicians are used to write a vector by putting an arrow over the symbol

that identifies the vector or by writing this symbol in italic. In the next sections, you

will see that when we are working with quantum states we often deal with really

sparse vectors, that is why the bra-ket (also known as Dirac3) notation comes in

hand.

A vector v ∈ Cn is denoted in the bra-ket notation as a ket |v⟩ ∈ Cn. The zero

vector will not be written as |0⟩ because of Definition 1.3.1. Instead we will write it

as 0, so

|v⟩+ 0 ↔


v0
v1
...

vn−1

+


0
0
...
0

 ,

where each entry of |v⟩ is a complex number.

Next, is the standard basis definition using the ket notation.
3This notation was invented by the physicist Paul Dirac.
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Definition 1.3.1
The standard basis or computational basis for C2q , which has 2q elements, is{
|j⟩ : j ∈ {0, 1}q

}
.

It is also possible to use the decimal representation of a binary string when

denoting the basis of a vector space. We have the following equivalent ways of

representing the basis states of C22:

Dirac Notation Decimal Representation Vector Notation

|00⟩ , |01⟩ , |10⟩ , |11⟩ |0⟩ , |1⟩ , |2⟩ , |3⟩


1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1

 .

To understand the bra notation we need to recall that for a real or complex

vector space V we can define its dual vector space V ∗ that is the space of all linear

functionals4 on V. The elements of the dual space of Cn are written as a bra ⟨v| ∈
(Cn)∗. In this case a bra is a row vector

⟨v| ↔
(
v0 v1 . . . vn−1

)
.

One important property is that for every |v⟩ ∈ Cn there is a unique ⟨v| ∈ (Cn)∗

(called the dual of |v⟩) obtained by taking the conjugate transpose5 of |v⟩:

|v⟩ =


v0
v1
...

vn−1

 =⇒ |v⟩† = ⟨v| =
(
v∗0 v

∗
1 . . . v

∗
n−1

)
.

The equivalence ⟨v|† = |v⟩ is also true.

Using the bra-ket notation the inner product between |v⟩ and |u⟩ both in Cn is

given by

⟨v|u⟩ =
(
v∗0 · · · v∗n−1

) u0
...

un−1

 =
n−1∑
j=0

v∗juj, (1.4)

4A linear functional is a linear transformation from a real or complex vector space to its field. If
the reader is interested in more details of these definitions we recommend Section 3.5 of [HK71] or
Section 3.F of [Axl15].

5In quantum computation the conjugate transpose is also referred to as the Hermitian conjugate
or Hermitian adjoint and is denoted by a dagger †.
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and our norm in Cn is

∥|v⟩∥ =
√
⟨v|v⟩ =

( n∑
j=1

|vj|2
)1/2

. (1.5)

A quick observation on how to calculate |vj|2, the square absolute value of a complex

number |z|2 with z = x+ iy is calculated as follows

|z|2 = zz∗ = (x+ iy)(x− iy) = x2 + y2. (1.6)

1.4 Tensor Product

The tensor product is a way of combining vector spaces together to form larger

vector spaces. Suppose U and V are complex vector spaces with dimension n and

m respectively. Then we can form a new complex vector space which is the tensor

product of these two spaces W = U ⊗ V with dimension nm. If {|u1⟩ , . . . , |un⟩} is a

basis of U and {|v1⟩ , . . . , |vm⟩} is a basis of V . Then

{|ui⟩ ⊗ |vj⟩ : 1 ≤ i ≤ n, 1 ≤ j ≤ m}

is a basis for W . A vector in W can be expressed as |w⟩ =
∑

j,k wj,k |uj⟩ ⊗ |vk⟩,
meaning that the elements ofW are linear combinations of tensor products |u⟩⊗|v⟩.
For simplicity they are often abbreviated as |u⟩ |v⟩ or |uv⟩.

Consider |u⟩ , |u1⟩ and |u2⟩ ∈ U , |v⟩ , |v1⟩ and |v2⟩ ∈ V and a scalar s ∈ C. By

definition, the tensor product has the following properties:

(P1) s(|u⟩ ⊗ |v⟩) = (s |u⟩)⊗ |v⟩ = |u⟩ ⊗ (s |v⟩).

(P2) (|u1⟩+ |u2⟩)⊗ |v⟩ = |u1⟩ ⊗ |v⟩+ |u2⟩ ⊗ |v⟩.

(P3) |u⟩ ⊗ (|v1⟩+ |v2⟩) = |u⟩ ⊗ |v1⟩+ |u⟩ ⊗ |v2⟩.

If A is a linear operator on U and B is a linear operator on V then we can define

a linear operator A⊗B in W = U ⊗ V by the equation

(A⊗B)(|u⟩ ⊗ |v⟩) ≡ A |u⟩ ⊗B |v⟩ , for all |u⟩ ∈ U and |v⟩ ∈ V. (1.7)

Using the matrix notation of vectors and linear operators we can calculate the

matrix representation for the tensor product between two vectors or between two

linear operators using the Kronecker product.
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Definition 1.4.1
If A ∈ Cm×n and B ∈ Cp×q, then the Kronecker product A⊗B is the block matrix
M ∈ Cmp×nq defined by

M := A⊗B =


a11B . . . a1nB
a21B . . . a2nB

...
...

am1B . . . amnB


mp×nq

. (1.8)

Consider |u⟩ = (u0u1 . . . un−1)
T and |v⟩ = (v0v1 . . . vm−1)

T . The tensor product of |u⟩
and |v⟩ in the matrix notation is given by

|u⟩ ⊗ |v⟩ =


u0 |v⟩
u1 |v⟩

...
un−1 |v⟩

 =



u0v0
u0v1

...
u0vm−1

u1v0
u1v1

...
un−1v0
un−1v1

...
un−1vm−1


mn×1.

A final remark is the notation M⊗n, which means M tensor product with itself n

times, where M can be a vector or the matrix representation of a linear operator.

This notation can also be used to express a vector space tensor product with itself n

times, for instance, (Cd)⊗m is the complex vector space of dimension dm.
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Chapter 2

Quantum: Computation and Circuit
Model

Our goal for this chapter is to define a quantum computation and also introduce

the quantum circuit model. First, we will present the main characteristics of the

qubit and how to do basic operations on single and multiples qubits. After that,

we will motivate and discuss the importance of a universal set of quantum gates.

These concepts will allow us to build the components of the quantum circuit model.

We will end this chapter by introducing the measurement operation that is the last

component of the quantum circuit model.

It is still under debate what the best physical implementation of a qubit is. If

the reader is interested in this discussion we recommend chapter 7 of [NC02]. This

discussion does not affect our work because we are going to treat the qubit as

an abstract mathematical object that represents the basic unit of information on a

quantum computer.

2.1 QuBits

The basic unit of quantum information is the qubit (quantum bit). To formally

define a qubit we need to present the first postulate of quantum mechanics which

tells us how physical states are represented.

State Space Postulate
Associated to any isolated physical system is a complex vector space with in-
ner product known as the state space of the system. The system is completely
described by its state vector, which is a unit vector in the system’s state space.

Let C2 be the state space of a quantum system. Then we can completely describe

this space by its state vector a qubit a unit vector in C2.
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A qubit can be described by a linear combination of the basis vectors of C2,

choosing the computational basis:

|ψ⟩ = α |0⟩+ β |1⟩ , (2.1)

where α, β ∈ C are called amplitudes. These amplitudes satisfy the normalization
condition |α|2 + |β|2 = 1 implying that ∥|ψ⟩∥ =

√
⟨ψ|ψ⟩ = 1. In the measurement

section we will see that when we measure this qubit |ψ⟩, we either observe the

classical bit 0 with probability |α|2 or observe the classical bit 1 with probability

|β|2.
To combine a system with multiples qubits we have the following postulate.

Composition of Systems Postulate
When two physical systems are treated as one combined system, the state space
of the combined physical system is the tensor product space S1 ⊗ S2 of the state
spaces S1, S2 of the component subsystems. If the first system is in the state
|ψ1⟩ and the second system is in the state |ψ2⟩, then the state of the combined
system is |ψ1⟩ ⊗ |ψ2⟩.

As mentioned before it is common to omit the ⊗ symbol and write the composi-

tion of states |ψ1⟩ and |ψ2⟩ as |ψ1⟩ |ψ2⟩ or |ψ1ψ2⟩.
According to these two postulates we will define the state of a quantum system

with multiples qubits.

Definition 2.1.1
The state of a q-qubit quantum system is a unit vector in (C2)⊗q.

By Definition 1.3.1, the 2q base vectors of (C2)⊗q can be written using the Dirac

notation (left) or with their decimal representation (right):

|00 . . . 00⟩︸ ︷︷ ︸
q bits

= |0⟩ ,

|00 . . . 01⟩︸ ︷︷ ︸
q bits

= |1⟩ ,

|00 . . . 10⟩︸ ︷︷ ︸
q bits

= |2⟩ ,

...

|11 . . . 11⟩︸ ︷︷ ︸
q bits

= |2q − 1⟩ .
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We can compactly represent the vectors on the left column as |j⟩, j ∈ {0, 1}q (binary

strings of length q), and the vectors on the right column as |k⟩, 0 ≤ k ≤ 2q − 1.

Using these notations we have the following equivalent ways to represent a q-

qubit system

|ψ⟩ =
∑

j∈{0,1}q
αj |j⟩ , |ψ⟩ =

2q−1∑
k=0

αk |k⟩ ,

∑
j∈{0,1}q

|αj|2 = 1,
2q−1∑
k=0

|αk|2 = 1,

where αj ∈ C. where αk ∈ C.

2.2 Basis States, Superposition and Entanglement

One of the key differences between a qubit and a bit is the possibility that a qubit

can exist in a superposition state.

Definition 2.2.1
Consider a q-qubit quantum system

|ψ⟩ =
∑

j∈{0,1}q
αj |j⟩ . (2.2)

We can classify the state of |ψ⟩ as:

• If there is an l such that αl = 1, then |ψ⟩ is in a basis state.

• Otherwise |ψ⟩ is in a superposition state.

The following definition shows that a q-qubit quantum system is not always just

the tensor product of q 1-qubit states.

Definition 2.2.2
A quantum state |ψ⟩ ∈ (C2)⊗q is a product state if it can be expressed as a tensor
product |ψ1⟩ ⊗ . . .⊗ |ψq⟩ of q 1-qubit states. Otherwise, it is entangled.

Consider |ψ1⟩ = (|00⟩+ |01⟩+ |10⟩+ |11⟩)/2. This is a product state because it can

be expressed as |ψ1⟩ = ((|0⟩+|1⟩)/
√
2)⊗((|0⟩+|1⟩)/

√
2). But |ψ2⟩ = (|00⟩+|11⟩)/

√
2

is an entangled state because it cannot be expressed as a tensor product of two 1-

qubit states.

Quantum entanglement has many applications in the field of quantum informa-

tion theory. Well-known examples are quantum teleportation, superdense coding
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and quantum cryptography. If the reader is interested in these topics we recom-

mend Sections 1.3.7, 2.3 and 12.6 from [NC02]. In the second part of this thesis,

we study how quantum entanglement can be used to solve communication complex-

ity problems. And in the third part we study nonlocal games inspired by standard

graph theory parameters.

With the concepts introduced so far, we can define the first component of the

quantum circuit model.

Quantum Circuit Model - 1
1) A quantum computer has an initial state |ψ⟩ = |b1⟩ ⊗ |b2⟩ ⊗ · · · ⊗ |bq⟩, where
|ψ⟩ ∈ (C2)⊗q is a unit vector and each bi ∈ {0, 1}. This state is stored in a
quantum register.

In the next section, we are going to see what kind of operations we can apply to

the state of a quantum system.

2.3 Operations on a Single Qubit

The next postulate tells us which type of operation we can apply to the state of our

quantum computer.

Evolution Postulate
The evolution of a closed quantum system is described by a unitary operator.
That is, the state |ψ1⟩ of the system is related to the next state of the system
|ψ2⟩ by a unitary operator U :

|ψ2⟩ = U |ψ1⟩ . (2.3)

From the evolution postulate we are going to define what kind of operation we

can do on a quantum computer to evolve the state of the system from one state to

another.

Definition 2.3.1
Any evolution operation applied by a quantum computer corresponds to a unitary
matrix.

A complex square matrix U is unitary if its conjugate transpose U † is also its inverse

U † = U−1, meaning that U †U = UU † = I. An important property of the unitary

matrix is that they preserve the norm of a vector

∥U |v⟩∥2 = (U |v⟩)†(U |v⟩) = ⟨v|U †U︸︷︷︸
I

|v⟩ = ⟨v|v⟩ = ∥v∥2 .
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By Definition 2.3.1 there are two important facts about quantum operations as

they are realized by a unitary matrix: they are linear and reversible.

In Section 2.5 we are going into the details of which unitary matrices a quantum

computer can physically implement.

Even though it looks like we have some major restrictions on what type of oper-

ations we can do on a quantum computer Deutsch [Deu85] proved that a universal

quantum computer is Turing-complete, meaning it can simulate a universal Turing

machine.

A linear operator is specified completely by its action on a basis. With that

information we can construct the matrix for this linear operator on this basis. Con-

sidering the computational basis, the quantum NOT gate is a unitary operator that

maps |0⟩ to |1⟩ and |1⟩ to |0⟩. The matrix for the NOT gate in the computational

basis is

NOT =

[
0 1
1 0

]
. (2.4)

It follows by the definition that the NOT gate is a unitary operator because

(NOT∗)(NOT) = (NOT)(NOT∗) = I.

Being a linear operator the NOT gate will map a linear combination of inputs to

a linear combination of outputs. Consider the 1-qubit state |ψ⟩ = α |0⟩+ β |1⟩. After

applying the NOT gate on |ψ⟩ we get

NOT |ψ⟩ = α |1⟩+ β |0⟩ . (2.5)

Another extremely important 1-qubit quantum gate is the Hadamard gate (H)

that on the computational basis acts as shown on the left while its matrix represen-

tation is given on the right:

H |0⟩ = |0⟩+ |1⟩√
2

≡ |+⟩

H |1⟩ = |0⟩ − |1⟩√
2

≡ |−⟩
(2.6) H =

1√
2

[
1 1
1 −1

]
. (2.7)

The interpretation of the NOT gate is straightforward: it negates (or flips) the

basis state of a qubit. We are used to this operation in classical computing. But

the Hadamard gate is an intrinsically quantum gate. It creates a superposition if

applied to a basis state on the computational basis. We can easily verify a useful

property of the Hadamard gate that HH = I so H = H−1.
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2.4 Operations on Multiples Qubits

In the last section we presented how operations on a single qubit work. Now we

are interested in operations on multiples qubits. Suppose we have a 2-qubit state

|ψ⟩ = (|01⟩ + |10⟩)/
√
2 and we want to apply the Hadamard gate on the first qubit

and the NOT gate on the second qubit. The linear operator describing this operation

on the composite system is H ⊗ NOT. Let us calculate the state of the system after

applying this operator:

(H⊗ NOT) |ψ⟩ = (H⊗ NOT)
( 1√

2
(|01⟩ − |10⟩)

)
=

1√
2

(
H |0⟩ ⊗ NOT |1⟩ − (H |1⟩ ⊗ NOT |0⟩)

)
by (1.7)

=
1√
2

(
|0⟩+ |1⟩√

2
⊗ |0⟩ −

( |0⟩ − |1⟩√
2

⊗ |1⟩
))

by (2.6) and (2.5)

=
1

2
(|00⟩+ |10⟩ − |01⟩+ |11⟩) .

We can achieve the same result using matrix multiplication:

(H⊗ NOT) |ψ⟩ =
(

1√
2

[
1 1
1 −1

]
⊗
[
0 1
1 0

])
1√
2


0
1
−1
0



=
1√
2


0 1 0 1
1 0 1 0
0 1 0 −1
1 0 −1 0

 1√
2


0
1
−1
0



=
1

2


1
−1
1
1

 =
1

2
(|00⟩+ |10⟩ − |01⟩+ |11⟩) .

In the examples above we saw how to operate simultaneously on two qubits.

The procedure is analogous for any number of qubits we have in our quantum

register.

Now, let us introduce the CNOT gate that is an important 2-qubit operation. Just

as we saw in Definition 2.2.2 that a 2-qubit entangled state cannot be expressed as

a tensor product of two 1-qubit states, it is also possible that a 2-qubit quantum

gate cannot be expressed as a tensor product of two 1-qubit quantum gates. This

type of gate is called a entangling gate. An example is the quantum controlled-NOT
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or CNOT gate that on the computational basis acts as shown on the left while its

matrix representation is given on the right:

CNOT |00⟩ → |00⟩ ,
CNOT |01⟩ → |01⟩ ,
CNOT |10⟩ → |11⟩ ,
CNOT |11⟩ → |10⟩ .

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

The CNOT gate negates the second qubit if the first qubit is in state |1⟩, and does

nothing otherwise.

One way to create a 2-qubit entangled state from a basis state is using the

Hadamard and the CNOT gate. Consider the basis state |00⟩, and apply the fol-

lowing operations on this system:

Apply a Hadamard gate on the first qubit

(H⊗ I)(|00⟩) = H |0⟩ ⊗ I |0⟩ = |0⟩+ |1⟩√
2

⊗ |0⟩ = 1√
2
(|00⟩+ |10⟩),

now apply a CNOT gate

CNOT
1√
2
(|00⟩+ |10⟩) = 1√

2
(CNOT |00⟩+ CNOT |10⟩) = |00⟩+ |11⟩√

2
.

The resulting state of the system is the entangled state (|00⟩+ |11⟩)/
√
2.

2.5 Universal Set of Quantum Gates

Current quantum computer hardware cannot implement any unitary matrix, but

as we will see in this section a discrete set of quantum gates can be used to ap-

proximate any unitary matrix. First we are going to give an intuition on what is

necessary for a set of quantum gates to be universal, and later present an important

and efficient result about the approximation of unitary matrices: the Solovay–Kitaev

Theorem [Kit97]. If the reader is interested in a pedagogical review of this theorem

we recommend [DN05].

Suppose T and A are two unitary matrices in Cn×n. The matrix T represents the

target operator that we want but cannot implement and A represents the operator

that is actually implemented. Let us define the error when A is implemented instead

of T by

E(T,A) ≡ sup
|ψ⟩

∥(T − A) |ψ⟩∥ , (2.8)
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where |ψ⟩ ranges over all quantum states in Cn.

We are going to say that a unitary matrix U can be approximated to arbitrary

accuracy if given an error tolerance ϵ > 0 we can implement a unitary matrix V

such that E(U, V ) < ϵ.

Definition 2.5.1
A set of quantum gates S is said to be universal if, for any integer q ≥ 1, any
q-qubit unitary matrix can be approximated to arbitrary accuracy by only using a
finite sequence of products of gates from S.

To give an intuition in which gates would consist of a universal set of quantum

gates, we are going to cite three essentials operations that such set of gates must be

able to do:

1. They can create superposition.

2. They can create entanglement.

3. They must contain real and complex entries.

A candidate for the first condition is the Hadamard gate the as defined in (2.6),

that maps a basis state to a superposition state. In the end of Subsection 2.4 we

saw how to create an entangled state using the Hadamard and the CNOT gate.

This set of gates satisfy the conditions (1) and (2) but as they do not have any

complex numbers we need to add another gate to our set. The T gate acts on the

computational basis as follows

T |0⟩ = |0⟩

T |1⟩ = ei
π
4 |1⟩ .

(2.9)

The set S = {H,CNOT,T} intuitively is a valid candidate for a universal set of

quantum gates. The next theorem proves that they are indeed.

Theorem 2.5.2 - Solovay-Kitaev (simplified)
Let U = U1U2 · · ·Um be the product of a sequence of, m ≥ 1, arbitrary unitary
matrices acting on 1 or 2-qubits. Then we can approximate U with an error
tolerance ϵ > 0 using a sequence of products of only O(m log3.97(m/ϵ)) gates
from the set S = {H,CNOT,T}.

A better result was achieved by [Sel12] using only O(m log(m/ϵ)) gates from

another universal set of quantum gates. Another key point of the Solovay-Kitaev

Theorem is that it also provides a classical algorithm (with the upper bound from

their theorem) to transform any unitary matrix into a sequence of unitary matrices
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from our universal set of quantum gates. This is of much practical interest because it

allows us to use any unitary matrix we want when designing a quantum algorithm.

With this theorem in mind we can better understand the next definition

Definition 2.5.3
A quantum computation is a sequence of unitary operations U1, U2, . . . , Uk, k ≥ 1
where each Ui (1 ≤ i ≤ k) is the product of basic unitary matrices (acts non
trivially on up to 3 qubits). The matrix associated with this computation is given
by U = UkUk−1 · · ·U1.

When we realize a quantum computation on a quantum computer the result might

be exact or an approximation that depends on which unitary matrices belong to the

universal set of quantum gates from this quantum computer.

Using what we presented in the last section we can add another component to

our quantum circuit model.

Quantum Circuit Model - 2
1) A quantum computer has an initial state |ψ⟩ = |b1⟩ ⊗ |b2⟩ ⊗ · · · ⊗ |bq⟩, where
|ψ⟩ ∈ (C2)⊗q is a unit vector and each bi ∈ {0, 1}. This state is contained in a
quantum register.
2.1) The state of the quantum computer evolves by applying unitary operations
specified in advance in the form of an algorithm.
2.2) The final state of the system is given by the quantum computation (Def-
inition 2.5.3) of all operations of step 2.1 applied to the initial state of the
quantum register.

2.6 Measurements

The last component of the quantum circuit model is the measurement operation

used to extract information about the actual state of the quantum system. When

physically measuring the system we have to use some kind of external measurement

apparatus. This implies that the Evolution Postulate is no longer appropriate for

describing this operation as the system is no longer closed.
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Measurement Postulate
Information on the state of a quantum computer can only be obtained through
a measurement. Given a q-qubit state |ψ⟩ =

∑
j∈{0,1}q αj |j⟩, a computational

measurement gate on the kth qubit outputs

0 with probability
∑

j∈{0,1}q
jk=0

|αj|2 or 1 with probability
∑

j∈{0,1}q
jk=1

|αj|2.

Let x ∈ {0, 1} be the measured value of the kth qubit. After the measurement
the quantum state becomes ∑

j∈{0,1}q
jk=x

αj√∑
j:jk=x

|αj|2
|j⟩

and the original state |ψ⟩ is no longer recoverable.

A computational measurement is also known as a measurement in the computa-

tional (or standard) basis or a Z measurement. For simplicity in this work, we are

going to refer to this operation as a measurement. Most of the quantum algorithms

use this type of measurement. But there are more general kinds of measurement

(introduced in Section 9.1) that can be used in other scenarios.

To familiarize the reader with this operation, consider the 2-qubit state

|ψ⟩ =
√

3

11
|00⟩+

√
5

11
|01⟩+

√
1

11
|10⟩+

√
2

11
|11⟩ .

The probability of obtaining the measurement outcome 0 on the second qubit is

equal to ∑
j∈{0,1}2
j2=0

|αj|2 = |α00|2 + |α10|2 =
3

11
+

1

11
=

4

11
.

After we measure a 0 on the second qubit of |ψ⟩ the system is now in the state

|ψ′⟩ =
∑

j∈{0,1}q
j2=0

αj√∑
j:j2=0 |αj|2

|j⟩ =
√

3/11√
4/11

|00⟩+
√
1/11√
4/11

|10⟩ =
√

3

4
|00⟩+

√
1

4
|10⟩ .

The measurement postulate leads to a simple expression for the probability of

observing a given binary string when measuring all the qubits. Consider the q-qubit

state |ψ⟩ =
∑

j∈{0,1}q αj |j⟩. Applying a measurement operation to the q qubits in

any order yields j with probability |αj|2 for each j ∈ {0, 1}q. The proof is given in

Proposition 3.6 of [Nan20].
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Comparing the operations given by the evolution postulate (unitary operations)

with the measurement postulate (measurement operation) we have the following

difference between them.

• Unitary operation:

– Reversible, since if we apply a unitary operator U to a quantum state |ψ⟩
we can get back to |ψ⟩ by applying U∗ to the state U |ψ⟩.

– Deterministic, there is nothing probabilistic in the evolution process of a

quantum system.

• Measurement operation:

– Irreversible, since every information about the system that you did not

obtain through a measurement is lost.

– Probabilistic, because the measurement outcomes are random.

Now we can add the final component of the quantum circuit model, the mea-

surement operation.

Quantum Circuit Model - 3
1) A quantum computer has an initial state |ψ⟩ = |b1⟩ ⊗ |b2⟩ ⊗ . . .⊗ |bq⟩, where
|ψ⟩ ∈ (C2)⊗q is a unit vector and each bi ∈ {0, 1}. This state is contained in a
quantum register.
2.1) The state of the quantum computer evolves by applying unitary operations
specified in advance in the form of an algorithm.
2.2) The final state of the system is given by the quantum computation (Def-
inition 2.5.3) of all operations of step 2.1 applied to the initial state of the
quantum register.
3) The last step is to measure the final state of the system obtaining with a
probability given by the measurement postulate a bit string as output of the
circuit.

A graphical representation of the quantum circuit model is shown below. The

rectangles represent unitary operations, and the red vertical dashed line represents

the state of the quantum computer immediately after the operator on the left of this

line.

Suppose |ψ0⟩ = |b1⟩⊗ |b2⟩⊗ · · ·⊗ |bq⟩ is the initial state of the circuit, where each

bi ∈ {0, 1}.
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|b1⟩

|b2⟩

...

|bq⟩

|ψ0⟩ U1 U2

|ψ0⟩ |ψ1⟩ |ψ2⟩

Analyzing each step of the quantum circuit we have

|ψ0⟩ is the initial state of the quantum register,

|ψ1⟩ = U1 |ψ0⟩ is the state after U1 was applied on |ψ0⟩,

|ψ2⟩ = U2 |ψ1⟩ is the state after U2 was applied on |ψ1⟩.

The quantum computation associated with this circuit is given by the matrix

U = U2U1. After U2 we have the measurement operations. One way we could

measure the state q-qubit state |ψ2⟩ is: we start by measuring any one of the q

qubits obtaining a bit with probability given by the measurement postulate. Now

we update the state of the (q − 1)-qubits system with the result from the first mea-

surement again using the measurement postulate. For the other (q − 1)-qubits we

repeat this same procedure. After these q single qubit measurements we obtain a

bit string of length q with probability equal to the product of the individual mea-

surement probabilities conditioned on the state of the system before this individual

measurement. As we mentioned before applying a measurement operation to the q

qubits in any order yields j with probability |αj|2 for each j ∈ {0, 1}q.

2.6.1 Global Phase

Consider two q-qubits quantum states |ψ⟩ and |ϕ⟩ satisfying |ψ⟩ = eiθ |ϕ⟩ for some

θ ∈ R. Now, let us apply an arbitrary unitary operator U on |ϕ⟩:

U |ϕ⟩ =
∑

j∈{0,1}q
αj |j⟩ . (2.10)

Using the relation between |ψ⟩ and |ϕ⟩, applying U to |ψ⟩ we have

U |ψ⟩ = Ueiθ |ϕ⟩ =
∑

j∈{0,1}q
eiθαj |j⟩ . (2.11)
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Let k be an arbitrary q-bit string. If we measure the state given by (2.10), we

observe k with probability |αk|2. If we measure the state given by (2.11), we observe

k with probability |eiθαk|2 = |αk|2. This result shows us that the probability of

obtaining k as the outcome of a measurement after applying an arbitrary unitary

matrix U is the same for |ϕ⟩ and |ψ⟩. The factor eiθ is called global phase and can be

ignored1; there is no observable difference between these states.

1In the literature the expression “the states are the same up to a global phase” means that the
factor eiθ was used in some way.
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Chapter 3

First Quantum Algorithm

David Deutsch in 1985 proposed the first quantum algorithm [Deu85]. In 1992

Deutsch and Jozsa generalized this algorithm [DJ92] that we are going to intro-

duce in this chapter1. Other early quantum algorithms were the Bernstein–Vazirani

algorithm [BV97] and Simon’s algorithm [Sim97]. They were the first quantum

algorithms that when analyzed under the query complexity model showed faster

solutions than any classic algorithms. In this model we count the number of calls

an algorithm makes to an oracle and ignore all the other operations in the algo-

rithm.

In the first section we will define a quantum oracle that will help us understand

the Deutsch–Jozsa Algorithm introduced in the second section. Later we will discuss

quantum parallelism, a key property in quantum algorithms.

3.1 Oracles

Let f : {0, 1}n → {0, 1} be a black box function. We have oracle access to f when

we can query an input x ∈ {0, 1}n and get f(x) as output. A quantum oracle is a

unitary operator Uf that implements f with the mapping

Uf |x, y⟩ = |x, y ⊕ f(x)⟩ , for all x ∈ {0, 1}n and y ∈ {0, 1}. (3.1)

We can verify that Uf is a reversible operation since

Uf |x, y ⊕ f(x)⟩ = |x, y ⊕ f(x)⊕ f(x)⟩ = |x, y⟩ .

It is common to set |y⟩ as |0⟩, resulting in Uf |x, 0⟩ = |x, 0⊕ f(x)⟩ = |x, f(x)⟩ to

get the result of f(x) on the second register.
1We are actually going to introduce the improved version by Cleve, Ekert, Macchiavello and

Mosca. [CEMM98] but keep the convention on the name of the Deutsch–Jozsa algorithm.
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An oracle constructed in this way is called an XOR Oracle and is represented by

the following circuit

|x⟩
Uf

|x⟩

|y⟩ |y ⊕ f(x)⟩.

From now on an oracle means that we are referring to the quantum case.

We will show that it is possible to write the function value into the phase of

the amplitude rather than changing the second qubit value. If we set |y⟩ to |−⟩ =
(|0⟩ − |1⟩)/

√
2 on the operator Uf defined in (3.1), we have

Uf |x⟩ |−⟩ = Uf

(
|x⟩ 1√

2
(|0⟩ − |1⟩)

)
=

(
Uf (|x⟩ |0⟩)− Uf (|x⟩ |1⟩)√

2

)
=

(
|x⟩ |0⊕ f(x)⟩ − |x⟩ |1⊕ f(x)⟩)√

2

)
= |x⟩

(
|0⊕ f(x)⟩ − |1⊕ f(x)⟩)√

2

)
whether f(x) = 0 or f(x) = 1

= |x⟩ (−1)f(x) |−⟩ associating (−1)f(x) with the first qubit

= (−1)f(x) |x⟩ |−⟩ .
(3.2)

This type of construction is called “Phase Kick-Back”. In the literature, it is

common to call an XOR Oracle by Phase Oracle whenever we set |y⟩ to |−⟩ to use a

representation such as (3.2).

3.2 Deutsch–Jozsa Algorithm

Suppose we have an n-bits classical oracle f : {0, 1}n → {0, 1} that is either a:

• Constant function: f(x) = 0 or f(x) = 1 for all x ∈ {0, 1}n, or a

• Balanced function: f(x) = 0 for exactly half of x ∈ {0, 1}n.

This algorithm solves the problem to determine if f is a constant or balanced

function. The classically deterministic solution to this problem will need to make,

in the worst case, 2n−1 + 1 queries to the classical oracle as one needs to check half

plus one values of the function to find its type. The Deutsch–Jozsa algorithm takes
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advantage of being able to query the oracle in superposition2, solving this problem

with just one query. This algorithm is a generalization of the Deutsch algorithm that

solves the same problem for n = 1.

For this algorithm we have access to a Phase Oracle Uf that implements f

Uf |x⟩ |−⟩ = (−1)f(x) |x⟩ |−⟩ , where x ∈ {0, 1}n.

Next, let us analyze each step of the quantum circuit of the Deutsch–Jozsa algo-

rithm below:

n|0⟩⊗n H⊗n

Uf

H⊗n

|1⟩ H

|ψ1⟩ |ψ2⟩ |ψ3⟩

The initial state of the system is

|ψ0⟩ = |0⟩ . . . |0⟩︸ ︷︷ ︸
n

|1⟩ = |0⟩⊗n |1⟩ .

The first operation of this circuit is to apply a Hadamard gate to each one of the

n+ 1 qubits, leading to

|ψ1⟩ = H⊗(n+1) |ψ0⟩ = H |0⟩H |0⟩ . . .H |0⟩︸ ︷︷ ︸
n

H |1⟩ (2.6)
= |+⟩⊗n |−⟩ . (3.3)

The next step is to apply the oracle Uf to the state |ψ1⟩. As the oracle was defined

in the computational basis we first need to rewrite |ψ1⟩ in this basis as well. Observe

that

|+⟩⊗n =
1√
2
(|0⟩+ |1⟩)⊗ · · · ⊗ 1√

2
(|0⟩+ |1⟩)

=
1√
2n

(
(|0⟩+ |1⟩)⊗ · · · ⊗ (|0⟩+ |1⟩)

)
expanding the tensor product

=
1

2n/2

∑
x∈{0,1}n

|x⟩
equally weighted superposi-
tion of all the bit strings of
size n.

(3.4)

We can rewrite |ψ1⟩ as

|ψ1⟩ =
1

2n/2

∑
x∈{0,1}n

|x⟩ |−⟩ .

2In Section 3.3 we will discuss more on this operation.
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As the first n qubits are now in the standard basis we can apply Uf to this state

|ψ2⟩ = Uf |ψ1⟩ =
1

2n/2

∑
x∈{0,1}n

Uf |x⟩ |−⟩ = 1

2n/2

∑
x∈{0,1}n

(−1)f(x) |x⟩ |−⟩ . (3.5)

We are going to discuss more of this operation called quantum parallelism in Section

3.3.

To facilitate our analysis before applying the last Hadamard to the first n qubits

of |ψ2⟩ we are going to write the action of the Hadamard in another way. For any

x1 ∈ {0, 1}

H |x1⟩ =
1√
2

∑
z1∈{0,1}

(−1)x1z1 |z1⟩ .

It is easy to see that this is equivalent to (2.6).

Generalizing for n qubits represented by the bit string x = x1 . . . xn

H⊗n |x⟩ = H |x1⟩ ⊗ . . .⊗ H |xn⟩

=
1

2n/2

 ∑
z1∈{0,1}

(−1)x1z1 |z1⟩ ⊗ . . .⊗
∑

zn∈{0,1}

(−1)xnzn |zn⟩


=

1

2n/2

 ∑
z∈{0,1}n

(−1)x1z1+...+xnzn |z⟩


=

1

2n/2

∑
z∈{0,1}n

(−1)x•z |z⟩ ,

(3.6)

where • is the dot product defined in (1.2.3). Using this last equation we can cal-

culate |ψ3⟩, by applying a Hadamard on the first n qubits and the identity operator

on the last one:

|ψ3⟩ = (H⊗n ⊗ I) |ψ2⟩

= (H⊗n ⊗ I)

 1

2n/2

∑
x∈{0,1}n

(−1)f(x) |x⟩ |−⟩


=

 1

2n/2

∑
x∈{0,1}n

(−1)f(x)H⊗n |x⟩

⊗ I |−⟩

=
1

2n/2

∑
x∈{0,1}n

(−1)f(x)

 1

2n/2

∑
z∈{0,1}n

(−1)x•z |z⟩

 |−⟩ by (3.6)

=
1

2n

∑
z∈{0,1}n

∑
x∈{0,1}n

(−1)f(x)+x•z |z⟩ |−⟩ .
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The last step of the algorithm is to measure |ψ3⟩. To make our analysis simpler

let us rewrite |ψ3⟩ by separating the state |0⟩⊗n from all the others states in the first

register

|ψ3⟩ =
1

2n

( ∑
x∈{0,1}n

(−1)f(x)+x•00...0 |0⟩⊗n +
∑

z∈{0,1}n
z ̸=0n

∑
x∈{0,1}n

(−1)f(x)+x•z |z⟩
)
|−⟩ .

The amplitude of the state |0⟩⊗n is given by

1

2n

∑
x∈{0,1}n

(−1)f(x).

Now consider the amplitude of this state when:

• f is constant =⇒ 1

2n

∑
x∈{0,1}n

(−1)f(x) =

{
1, if f(x) = 0 ∀x ∈ {0, 1}n

−1, if f(x) = 1 ∀x ∈ {0, 1}n.

• f is balanced =⇒ 1

2n

∑
x∈{0,1}n

(−1)f(x) =
1

2n

( 1

2n−1
· 1︸ ︷︷ ︸

when f(x) = 0
half of the x values

+
1

2n−1
· −1︸ ︷︷ ︸

when f(x) = 1
other half of the x values

)
= 0.

Therefore, after measuring the first n qubits of |ψ3⟩ if we obtain the outcome

0 . . . 0︸ ︷︷ ︸
n

we are certain that f is a constant function. If we obtain any other outcome

then f is a balanced function.

3.3 Quantum Parallelism

In (3.5) we applied the oracle Uf to a superposition of 2n states just once and

obtained the value of f(x) for all of the 2n input values. This is a unique quantum

mechanical effect called quantum parallelism that we can use to build quantum

algorithms. We are going to adapt the explanation given by [dW21].

Suppose we have a classical algorithm that computes some function

f : {0, 1}n → {0, 1}m. Then we can build a quantum circuit Uf (XOR Oracle) that

maps |x⟩ |0⟩ to |x⟩ |f(x)⟩ for every x ∈ {0, 1}n. If we apply Uf to a superposition of

all inputs x (like we did in (3.4)), we get
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Uf

 1√
2n

∑
x∈{0,1}n

|x⟩ |0⟩

 =
1√
2n

∑
x∈{0,1}n

|x⟩ |f(x)⟩ .

We applied Uf just once but the final superposition contains f(x) for all 2n input

values of x. However, this is not very useful by itself and does not give more than

classical randomization, because when we measure the final superposition we will

get just |x⟩ |f(x)⟩ chosen uniformly at random and all other information will be

lost. Quantum parallelism needs to be combined with other operations and effects

like interference and entanglement in order to get something that is better than

classical.

Note that the same explanation is valid for the phase oracle that we used in the

Deutsch–Jozsa algorithm (3.5) because as we saw in Section 3.1 we can construct

the Phase Oracle from the XOR Oracle.
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Chapter 4

Grover’s Algorithm

This chapter is dedicated to the study of Grover’s algorithm. We begin with an

overview of this algorithm. In Section 4.2 we will construct an important unitary

operator used by Grover’s Algorithm. In the following section, we will calculate

how many times we have to run a subroutine to obtain the desired outcome with

high probability.

After introducing this important quantum algorithm we will give a detailed ex-

planation and example of how to use Grover’s algorithm to solve a Boolean formula

in conjunctive normal form. We will end this chapter with some further observa-

tions of this algorithm.

4.1 Algorithm Overview

In 1996, shortly after Shor’s algorithm, Lov Grover discovered Grover’s algorithm

(also known as the quantum search algorithm) that provides a quadratic speed-up

over the best-known classical algorithms for a wide class of important problems.

The problem Grover’s algorithm solves is: Given a black box function

f : {0, 1}n → {0, 1} that on a single marked string x⋆ evaluates to 1 and for all

the others inputs evaluates to 0, the goal is to determine x⋆. Classically it takes

approximately 2n queries to the function f to find x⋆, which is linear in the do-

main size. Grover’s algorithm solves this problem with high probability using only

O(
√
2n) queries to an oracle that implements f . Independently of Grover’s work,

Bennett et al. (1997) proved that any quantum algorithm for this problem needs to

evaluate the oracle Ω(
√
2n) times, so Grover’s algorithm is asymptotically optimal

[BBBV97].
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This quadratic speed-up only happens when the best-known classical algorithm

for solving this kind of problems is to naively search through all the potential solu-

tions, which are typically exponential in the size of the problem instance.

The circuit of Grover’s algorithm is shown below

|0⟩ · · ·

|0⟩ · · ·

...

|0⟩ · · ·

n qubits H⊗n Uf D Uf D

Run Grover Iteration⌊π
4

√
2n
⌋
− 1 more times.

|ψ0⟩ |ψ1⟩ |ψ2⟩ |ψ3⟩

As a resource we have access to Uf that implements f as before:

Uf |x⟩ = (−1)f(x) |x⟩ =

{
|x⟩ , if x ̸= x⋆

− |x⟩ , if x = x⋆.
(4.1)

We can see that there are some similarities between the Deutsch–Jozsa algorithm

with Grover’s algorithm, such as the use of quantum parallelism. What we want to

emphasize in this section is how the use of interference implemented by a certain

operator D is a crucial step in this algorithm.

The initial state of the system is

|ψ0⟩ = |0⟩⊗n .

The first step of the algorithm stands for our complete lack of knowledge of the

marked string x⋆, so we start with an equal superposition of all the possible input

values of f by applying a Hadamard gate to each one of the n qubits, as we did in

(3.3), and writing this state |ψ1⟩ using the same notation as (3.4):

|ψ1⟩ = H⊗n |ψ0⟩ = |+⟩⊗n =
1√
2n

∑
x∈{0,1}n

|x⟩ . (4.2)

The current amplitudes of the state of the system |ψ1⟩ can be visualized with the

following diagram,
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1√
2n

{00 . . . 00} {00 . . . 01} . . . x⋆ . . . {11 . . . 11}

µ

where µ represents the mean of the amplitudes.

With the goal of increasing the amplitude of the |x⋆⟩ state and decreasing

the amplitude of all the other states we will apply the “Grover Iteration” routine⌊π
4

√
2n
⌋

times:

• Apply Uf .

• Apply the Grover Diffusion Operator D.

After the first application of Uf on |ψ1⟩ the system is now in

|ψ2⟩ = Uf |ψ1⟩ = − 1√
2n

|x⋆⟩+
∑

x∈{0,1}n
x ̸=x⋆

1√
2n

|x⟩

Graphically,

∼ 1√
2n

{00 . . . 00} {00 . . . 01} . . .

x⋆

. . . {11 . . . 11}

µ

Now that the state |x⋆⟩ is marked (has a negative amplitude) we will apply the

Grover Diffusion Operator. This operator will act with a constructive interference

on this marked state and with a destructive interference on the other states.

Let µ be the average of the amplitudes of the actual system

µ =
1

2n

∑
x∈{0,1}n

αx, (4.3)

where αx is the amplitude of |x⟩ for each x ∈ {0, 1}n.

The Grover Diffusion Operator D implements the mapping

D

 ∑
x∈{0,1}n

αx |x⟩

 =
∑

x∈{0,1}n
(2µ− αx) |x⟩ . (4.4)

In the next section we will construct D out of unitary gates showing that the

Grover Diffusion Operator is a valid quantum operation.

Before applying D to the current state of the system |ψ2⟩ we need to calculate µ:

µ =
1

2n

∑
x∈{0,1}n

αx =
1

2n

( 2n − 1√
2n︸ ︷︷ ︸

all x except x⋆

− 1√
2n︸︷︷︸
x⋆

)
=

1

2n

(
2n − 2√

2n

)
≈ 1

2n

(
2n√
2n

)
=

1√
2n
,
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the exact value of µ is 1√
2n

minus an irrelevant value that we will not consider.

Let us calculate |ψ3⟩ = D |ψ2⟩:

|ψ3⟩ = D |ψ2⟩ = D
(
− 1√

2n
|x⋆⟩

)
+D

 ∑
x∈{0,1}n
x ̸=x⋆

1√
2n

|x⟩



=

(
2µ− (− 1√

2n
)

)
|x⋆⟩+

 ∑
x∈{0,1}n
x ̸=x⋆

(
2µ− 1√

2n

)
|x⟩



≈ (
2√
2n

+
1√
2n

) |x⋆⟩+

 ∑
x∈{0,1}n
x ̸=x⋆

(
2√
2n

− 1√
2n

)
|x⟩


≈ 3√

2n
|x⋆⟩+

∑
x∈{0,1}n
x ̸=x⋆

1√
2n

|x⟩ .

The amplitude of |x⋆⟩ increased to approximately
3√
2n

in magnitude, while all

the other amplitudes stayed roughly the same.

On the second iteration of the Grover Iteration Operator, after applying Uf to

|ψ3⟩ we have the following amplitudes:

∼ 1√
2n

{00 . . . 00} {00 . . . 01} . . .

∼ 3√
2n

x⋆

. . . {11 . . . 11}

µ

and after applying D on this state we get another increase on the amplitude of the

|x⋆⟩ state:
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∼ 1√
2n

{00 . . . 00} {00 . . . 01} . . .

∼ 5√
2n

x⋆ . . . {11 . . . 11}

µ

After
⌊
π
√
2n/4

⌋
executions of the Grover Iteration, we measure the system and ob-

tain the outcome x⋆ with high probability, and that is the final step of the algorithm.

In the following section we will see how to construct the Grover Diffusion Op-

erator out of unitary gates, and later prove that the number of iterations used gives

us the desired output with high probability.

4.2 Building the Grover Diffusion Operator

In this section we are going to construct the unitary operator that implements D.

First we will show that with two gates we can implement the mapping of D as

shown in (4.4). Besides the Hadamard gate, we need a new operator Z0 defined by

Z0 |x⟩ =

{
|x⟩ , if |x⟩ = |0n⟩
− |x⟩ , otherwise.

(4.5)

The unitary representation of this operator is Z0 = 2 |0n⟩ ⟨0n| − I, where I is

the n × n identity matrix. Let us verify that this representation implements (4.5)

correctly. First we apply Z0 to the |0n⟩ state

Z0 |0n⟩ = 2 |0n⟩ ⟨0n|0n⟩ − I |0n⟩ = 2 |0n⟩ 1− |0n⟩ = |0n⟩ ,

and now to an arbitrary state |x⟩ different from |0n⟩

Z0 |x⟩ = 2 |0n⟩ ⟨0n|x⟩ − I |x⟩ = 2 |0n⟩ 0− |x⟩ = − |x⟩ ,

meaning that the unitary representation is correct.

Now, using the Z0 gate and Hadamard gates we can construct the Grover Diffu-

sion Operator D:
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D = H⊗nZ0H
⊗n

= H⊗n(2 |0n⟩ ⟨0n| − I)H⊗n

= 2
( (

H⊗n |0n⟩
) (

⟨0n|H⊗n) )− (H⊗nH⊗n︸ ︷︷ ︸
involutory

)
= 2
(
|+n⟩

(
H⊗n |0n⟩

)∗ )− I

= 2
(
|+n⟩ (|+n⟩)∗

)
− I

= 2
(
|+n⟩ ⟨+n|

)
− I.

The circuit representation of D is

...
n qubits H⊗n Z0 H⊗n

D

To prove that D realizes the same mapping defined in (4.4) we are going to

apply D to an arbitrary state |ψ⟩ =
∑

x∈{0,1}n αx |x⟩:

D |ψ⟩ =
(
2
(
|+n⟩ ⟨+n|

)
− I
)
|ψ⟩

= 2
(
|+n⟩ ⟨+n|ψ⟩

)
− I |ψ⟩ .

By noting that

⟨+n| =
(
⟨0|+ ⟨1|√

2n

)⊗n

=
∑

x∈{0,1}n

1√
2n

⟨x| , (4.6)

so we can rewrite ⟨+n|ψ⟩ using (4.6)

⟨+n|ψ⟩ =
∑

x∈{0,1}n

αx√
2n

⟨x|x⟩

=
∑

x∈{0,1}n

αx√
2n

= µ
√
2n, because µ =

1

2n

∑
x∈{0,1}n

αx.
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Using this last equality we can keep simplifying D |ψ⟩:

D |ψ⟩ = 2 |+n⟩ ⟨+n|ψ⟩ − |ψ⟩

= 2 |+n⟩µ
√
2n − |ψ⟩

= 2

(
|0⟩+ |1⟩√

2n

)⊗n

µ
√
2n − |ψ⟩

= 2

 ∑
x∈{0,1}n

1√
2n

|x⟩

µ
√
2n − |ψ⟩

= 2

 ∑
x∈{0,1}n

µ |x⟩

− |ψ⟩

=

 ∑
x∈{0,1}n

2µ |x⟩

−
∑

x∈{0,1}n
αx |x⟩

=
∑

x∈{0,1}n
(2µ− αx) |x⟩ .

That is exactly like the mapping defined in (4.4).

Now, for the last part, we are going to show that the circuit below implements

Z0 as defined in (4.5) up to a global phase (as mentioned in Subsection 2.6.1).

...
...

...
...

n qubits

X Z X

X X

X X

Multi-controlled
Z Gate.

The only new operation in this circuit is the Multi-controlled Z Gate that applies a Z

gate on the first qubit if all the other n− 1 qubits are in the |1⟩ state. Let x ∈ {0, 1}n

and

MCZ |x⟩ =

{
− |x⟩ , if |x⟩ = |1n⟩
|x⟩ , otherwise.

(4.7)

To verify that the circuit above implements Z0 up to a global phase of eiπ = −1,

we are first going to apply it to the |0n⟩ state:

NOT⊗nMCZ(NOT⊗n |0n⟩) = NOT⊗n(MCZ |1n⟩) = NOT⊗n(− |1n⟩) = − |0n⟩ ,
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and now to |x⟩ where x ∈ {0, 1}n, x ̸= 0n:

NOT⊗nMCZ(NOT⊗n |xn⟩) = NOT⊗n(MCZ(NOT⊗n |xn⟩)) = NOT⊗n(NOT⊗n |xn⟩) = |xn⟩ ,

as desired.

4.3 Grover Iteration

In this section, we are going to compute the number of times we have to run the

Grover Iteration to obtain the outcome x⋆ with high probability after measuring the

system. We will follow an algebraic approach to find this quantity but there is also

an interesting geometric interpretation of the Grover Iteration that can be found in

Section 6.1.3 of [NC02]

One key point of this analysis is that repeated applications of the Grover Iter-

ation always keep the system in a 2-dimensional subspace of (C2)⊗n spanned by

{|x⋆⟩ , |ψ′⟩} where

|ψ′⟩ = 1√
2n − 1

∑
x∈{0,1}n
x̸=x⋆

|x⟩ . (4.8)

Let ∣∣ψ〉 =√2n − 1

2n
|x⋆⟩ − 1√

2n
|ψ′⟩ .

We can verify that
∣∣ψ〉 is orthogonal to |ψ1⟩ = 1√

2n
|x⋆⟩ +

√
2n−1
2n

|ψ′⟩. These two

vectors form another basis for this same subspace.

Now let us prove that Grover’s algorithm operates entirely within the subspace

spanned by {|x⋆⟩ , |ψ′⟩}. Considering the action of Uf defined in (4.1) we can see

that this operator preserve this subspace

Uf |x⋆⟩ = − |x⋆⟩ and Uf |ψ′⟩ = |ψ′⟩ .

Before showing that D also preserve this subspace we are going to rewrite D using

the equality below that was mentioned before in (4.2)

|+n⟩ = 1√
2n

∑
x∈{0,1}n

|x⟩ ,

using this equation it is easy to show that D = 2 |ψ1⟩ ⟨ψ1| − I. Now let us apply D to

the basis vectors and use (4.8) to write our expressions in terms of |x⋆⟩ and |ψ′⟩
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D |x⋆⟩ = (2 |ψ1⟩ ⟨ψ1| − I) |x⋆⟩= 2 |ψ1⟩ ⟨ψ1|x⋆⟩ − |x⋆⟩ = 2√
2n

|ψ1⟩ − |x⋆⟩

=
2
√

(2n − 1)

2n
|ψ′⟩+

(
2

2n
− 1

)
|x⋆⟩ ,

D |ψ1⟩ = (2 |ψ1⟩ ⟨ψ′| − I) |ψ′⟩= 2

√
2n − 1

2n
|ψ1⟩ − |ψ′⟩ =

(
2(2n − 1)

2n
− 1

)
|ψ′⟩+ 2

√
2n − 1

2n
|x⋆⟩

= −
(

2

2n
− 1

)
|ψ′⟩+ 2

√
2n − 1

2n
|x⋆⟩ ,

concluding that D also preserve the subspace.

Define an angle θ so that sin(θ) = 1/
√
2n from the trigonometric identity sin2 θ+

cos2 θ = 1 we have cos(θ) =
√
2n − 1/

√
2n. Let us write |x⟩ , |ψ′⟩ , |ψ1⟩ and

∣∣ψ〉 in

function of θ

|x⋆⟩ = sin(θ) |ψ1⟩+ cos(θ)
∣∣ψ〉 , |ψ′⟩ = cos(θ) |ψ1⟩ − sin(θ)

∣∣ψ〉 , (4.9)

|ψ1⟩ = sin(θ) |x⋆⟩+ cos(θ) |ψ′⟩ ,
∣∣ψ〉 = cos(θ) |x⋆⟩ − sin(θ) |ψ′⟩ . (4.10)

these equations allow us to convert between the two bases.

Next, we want to analyze the action of repeated applications of the Grover It-

eration in terms of the four equations above. The state of the system immediately

before the first application of Uf is |ψ1⟩ = sin(θ) |x⟩+ cos(θ) |ψ′⟩. Applying Uf gives

the state

Uf |ψ1⟩ = − sin(θ) |x⋆⟩+ cos(θ) |ψ′⟩ = cos(2θ) |ψ1⟩ − sin(2θ)
∣∣ψ〉 . (4.11)

Applying D to (4.11) we have

D(− sin(θ) |x⋆⟩+ cos(θ) |ψ′⟩) = sin(3θ) |x⋆⟩+ cos(3θ) |ψ′⟩

= cos(2θ) |ψ1⟩+ sin(2θ)
∣∣ψ〉 . (4.12)

To get to the equations (4.11) and (4.12) we used (4.9) and (4.10) to convert

between the two bases and also trigonometric identities.

Let G be the operator that represent the Grover Iteration G = DUf , we can verify

by induction that after k application on the starting state |ψ1⟩ we get to the state

Gk |ψ1⟩ = sin((2k + 1)θ) |x⋆⟩+ cos((2k + 1)θ) |ψ′⟩

= cos(2kθ) |ψ1⟩+ sin(2kθ)
∣∣ψ〉 . (4.13)
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When measuring (4.13) we want that the amplitude of the state |x⋆⟩ to be as

close to 1 as possible, sin((2k + 1)θ) ≈ 1 so we want to find (2k + 1)θ ≈ π/2. For

a large n we can use the small angle approximation for sin, in our case sin(θ) ≈ θ.

Calculating k

k ≈ π

4θ
− 1

2
≈ π

4

√
2n,

thus after
⌊
π
√
2n/4

⌋
applications of the Grover Iteration when we measure the state

of the system we get the outcome x⋆ with a probability close to one. By analyzing

(4.13) we can verify that the amplitudes of |x⋆⟩ and |ψ′⟩ are periodic. We can

plot the success probability of Grover’s algorithm as a function of the number of

iterations.

≈ 1

π

4

√
2n

π

2

√
2n

3π

4

√
2n

0

4.4 Solving a CNF formula with Grover’s Algorithm

In this section we will show how to solve a Boolean formula expressed in conjunc-

tive normal form (CNF) using Grover’s algorithm. We will focus on how to build an

oracle for this problem as we already discussed in detail all the other components

of Grover’s algorithm.

Consider a CNF formula with v variables and c clauses. We use two registers to

build this circuit. The first one, with v qubits initialized in the state |0⟩, in the end,

will contain the assignment that satisfies the CNF formula. The second register is

used exclusively by the oracle and has c qubits also initialized in the state |0⟩ plus

one last “check” qubit in the |1⟩ state.

We will explain the construction using a specific formula:

(¬x1) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (x1 ∨ x2). (4.14)

In this case our circuit will need v + c+ 1 = 7 qubits.
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Now, we are going to build the oracle for (4.14). Our oracle will follow Def-

inition (4.1) and with three steps will add a negative amplitude to the state that

represents the solution to (4.14).

The Multi-controlled NOT (MCN) gate is quite similar to the MCZ gate. The ◦
represents an anti-control (condition on qubit being on state |0⟩), and the • repre-

sents a control (condition on qubit being on state |1⟩) and the ⊕ represents the NOT

gate applied to the target qubit. The first step of the oracle for our CNF formula is

shown below.

(¬x1) ∧ (x1 ∨ ¬x2 ∨ x3) ∧ (x1 ∨ x2)
|x1⟩ · · · · · ·

|x2⟩ · · · · · ·

|x3⟩ · · · · · ·

|c1⟩ · · · · · ·

|c2⟩ · · · · · ·

|c3⟩ · · · · · ·

|check⟩ · · · · · ·

Now for the second step of the oracle, we want to change the amplitude from

positive to negative of the states that were not marked in the first step. With a

Multi-controlled Z gate we can achieve that by applying a Z gate on the “check”

qubit if all the qubits from the second register are in their initial state |0⟩. This

implies that the state that satisfies the CNF formula will have a negative amplitude.

The third and final step of the oracle is to “uncompute” the states that were

altered by the first step. We have to make this operation because, for the Grover

Diffusion Operator to work as expected, the state of the system immediately before

this operator must be expressed as a tensor product between the first and second

register. We also want to “reset” the qubits from the second register for futures

applications of the oracle.
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|x1⟩ · · · · · ·

|x2⟩ · · · · · ·

|x3⟩ · · · · · ·

|c1⟩ · · · · · ·

|c2⟩ · · · · · ·

|c3⟩ · · · · · ·

|check⟩ · · · · · ·Z

2nd Step

Below is the circuit of Grover’s algorithm with one step of the Grover Iteration

to solve our sample CNF formula.

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|0⟩

|1⟩

H H X Z X H

H H X X H

H H X X H

Z

Oracle D

|ψ1⟩ |ψ2⟩ |ψ3⟩ |ψ4⟩ |ψ5⟩ |ψ6⟩ |ψ7⟩

Let us explore in detail some important steps of this circuit. The initial state of the

system is |ψ0⟩ = |000⟩ ⊗ |0001⟩. Applying a Hadamard transformation on the first

register gives the state

|ψ1⟩ = H⊗3 |000⟩ ⊗ I⊗4 |0001⟩ = (
1

2
√
2

∑
x∈{0,1}3

|x⟩)⊗ |0001⟩

=
1

2
√
2
(|0000001⟩+ |0010001⟩+ |0100001⟩+ |0110001⟩
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+ |1000001⟩+ |1010001⟩+ |1100001⟩+ |1110001⟩).

Now, we will start the first step of the oracle by marking the states that do not

satisfy the clauses. For the first clause, we will mark all the states with the first qubit

equals to 1 because (¬x1) is not satisfied if x1 = 1 = true.

|ψ2⟩ =
1

2
√
2
(|0000001⟩+ |0010001⟩+ |0100001⟩+ |0110001⟩

+ |1001001⟩+ |1011001⟩+ |1101001⟩+ |1111001⟩).

For the second clause, the state |010⟩ in the first register represents the assign-

ment x1 = 0, x2 = 1 and x3 = 0 does not satisfy the clause (x1 ∨ ¬x2 ∨ x3).

|ψ3⟩ =
1

2
√
2
(|0000001⟩+ |0010001⟩+ |0100101⟩+ |0110001⟩

+ |1001001⟩+ |1011001⟩+ |1101001⟩+ |1111001⟩).

Similarly, for the third clause, we have

|ψ4⟩ =
1

2
√
2
(|0000011⟩+ |0010011⟩+ |0100101⟩+ |0110001⟩

+ |1001001⟩+ |1011001⟩+ |1101001⟩+ |1111001⟩),

finishing the first step of the oracle.

As we mentioned earlier in the second step of the oracle we are going to change

the amplitude of the state that was not marked in the first step. This state represents

an answer to the CNF formula:

|ψ5⟩ =
1

2
√
2
(|0000011⟩+ |0010011⟩+ |0100101⟩−|011 000︸︷︷︸

unmarked
2nd reg

1⟩

+ |1001001⟩+ |1011001⟩+ |1101001⟩+ |1111001⟩).

The third and final step of the oracle is the “uncompute” operation:

|ψ6⟩ =
1

2
√
2
(|0000001⟩+ |0010001⟩+ |0100001⟩− |0110001⟩

+ |1000001⟩+ |1010001⟩+ |1100001⟩+ |1110001⟩)

=
1

2
√
2
(|000⟩+ |001⟩+ |010⟩− |011⟩+ |100⟩+ |101⟩+ |110⟩+ |111⟩)⊗ |0001⟩
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=

(
− 1

2
√
2
|011⟩+

∑
x∈{0,1}3
x ̸=011

1

2
√
2
|x⟩

)
⊗ |0001⟩ ,

ending the oracle phase.

Now we are going to apply the Grover Diffusion Operator on the first register.

Calculating µ as defined in (4.3) gives us

µ =
1

23

∑
x∈{0,1}3
y=0001

αxy =
1

23

(
7

2
√
2
− 1

2
√
2

)
=

3

8
√
2
.

With µ we can apply D on the first register getting to |ψ7⟩:

|ψ7⟩ = (D ⊗ I⊗4) |ψ6⟩ =

=

(
D
(
− 1

2
√
2
|011⟩

)
+D

( ∑
x∈{0,1}3
x ̸=011

1

2
√
2
|x⟩

))
⊗ I(|0001⟩)

=

((
2

3

8
√
2
−
(
− 1

2
√
2

))
|011⟩+

(
2

3

8
√
2
− 1

2
√
2

) ∑
x∈{0,1}3
x ̸=011

|x⟩

)
⊗ (|0001⟩)

=

(
5

4
√
2
|011⟩+ 1

4
√
2

∑
x∈{0,1}3
x ̸=011

|x⟩

)
⊗ (|0001⟩).

When we measure the state |ψ7⟩ the probability of obtaining the outcome 011,

that represents the solution x1 = 0, x2 = 1 and x3 = 1 to this CNF formula, it is

|5/(4
√
2)|2 ≈ 78%. If we execute the Grover Iteration one more time, the probability

of obtaining the right outcome increases to about 94%. For this CNF formula with

three variables (n = 3), two executions of the Grover Iteration is the ideal number

of executions because ⌊π
√
23/4⌋ = 2.

4.5 Further Observations on Grover’s Algorithm

Using an approach like the one presented in the last section we can use Grover’s al-

gorithm to solve any 3-SAT formula with n variables in O(1.414n) time. But, as this

problem is not so “unstructured”, Schöning’s algorithm improved by Rolf [R+03]

solves a 3-SAT formula in O(1.330n) time. Using a generalization of Grover’s Algo-

rithm called Amplitude Amplification [BHMT02] we can build a hybrid algorithm

that solves a 3-SAT formula in O(
√
1.330

n
) [Amb04, DKW05].
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Grover’s algorithm can also be used to search for multiple marked strings. If the

number of marked strings m out of 2n possible values is known beforehand, one

should apply the Grover Iteration routine ⌊(π/4)
√

2n/m⌋ times before measuring

the state of the system. In this scenario all of the m possible solutions have the

same amplitude and their sum is the closest to one as possible.

How about when we do not know if there is at least one marked string m,

where 0 ≤ m ≤ 2n ? In this case we would stick to the following strategy: We

start by assuming all strings are marked, running Grover’s algorithm with m =

2n and checking if the measured string is a solution. If that is not the case, we

assume half of the strings are marked running Grover’s algorithm with m = 2n−1

and checking if the measured string is a solution. Following this same procedure

with m = 2n−2, m = 2n−3, and so on until we have found a marked string or have

searched unsuccessfully with m = 1. Thus, after O(
√

2n/m) queries we have a high

probability of finding a marked string m or concluding that m does not exist.
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Part II

Quantum Communication
Complexity Protocols and Nonlocality
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Chapter 5

Quantum Communication
Complexity Protocols

In 1973, many years before quantum computing became an established field,

Holevo proved that for any classical message the cost of transmitting it from one

party to another in terms of quantum bits, is the same as the cost of transmitting it

in terms of classical bits [Hol73a]. After thinking about this result, our intuition that

quantum information cannot provide a communication efficiency advantage turns

out to be wrong. As we will see in the following sections there are scenarios where

the possibility to send and realize operations on qubits can save an exponential

amount of communication when compared with a classical scenario.

A communication complexity problem can be described as a game played by

Alice and Bob that want to successfully compute a relation with their inputs. For-

mally, this scenario is usually described by three sets A,B and Z and a relation

R ⊆ A × B × Z. Alice and Bob are given inputs a ∈ A and b ∈ B, respectively.

None of the players has any information about its partner output. According to a

shared protocol, Alice and Bob can make any local computation they want and ex-

change messages until Bob has sufficient information to announce an output z ∈ Z

s.t (a, b, z) ∈ R.

The communication cost of a protocol is the sum of the lengths of messages (in

bits) Alice and Bob exchange on the worst-case inputs a and b. It is important to em-

phasize that the computations that Alice and Bob can realize locally do not add up

to the amount of communication between them. The deterministic communication
complexity of a problem R is the cost of the best protocol to compute R correctly.

We are also interested in the bounded-error randomized protocol with error prob-

ability δ > 0. Now, the players have access to public random coins and want to
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announce an output z that satisfy the relation with probability at least 1− δ for any

inputs they are given.

Quantum communication complexity studies scenarios where Alice and Bob

have quantum resources, for example, the parties can send each other qubits and

perform quantum computations on them. In this chapter, we will introduce two

communication complexity problems where quantum players have an advantage

over classical players.

5.1 Distributed Deutsch–Jozsa

The first large gap between quantum and classical communication complexity was

based on the Deutsch–Jozsa Algorithm3.2.

The Distributed Deutsch–Jozsa solves the following problem:

• Alice receives x ∈ {0, 1}n and Bob receives y ∈ {0, 1}n, where n is a power
of two.

• Their inputs satisfy the “DJ promise”:

x = y or x and y differ in exactly n/2 positions (dH(x, y) = n/2).

• Bob’s goal is to determine the relation between x and y after receiving just
one message from Alice.

This scenario is called a one-way communication complexity problem. Buhrman,

Cleve and Wigderson [BCW98] proved, using a combinatorial result of Frankl and

Rödl [FR87], that every classical errorless protocol for this problem needs at least

0.007n bits of communication. We are going to present a quantum protocol that

solves this problem with log n qubits of communication.

Quantum Protocol for the Distributed Deutsch–Jozsa

(A.0) Alice’s initial state is |ψ0⟩ = |0⟩logn |1⟩.

(A.1) Alice applies a Hadamard transform (see (3.3) and (3.4) for reference) in her

log n+ 1 qubits resulting in

|ψ1⟩ = H(logn+1) |0⟩logn |1⟩ = 1√
n

∑
j∈{0,1}logn

|j⟩ |−⟩ .

It will be useful to express the digits of x with their binary index:

x = x0 · · ·xn−1 = x00···0︸︷︷︸
logn

· · · x11···1︸︷︷︸
logn

.
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For steps A.2 and A.3 we are going to use a phase oracle. More details can be

found in Section 3.1.

(A.2) Let Ux be the unitary operator defined by Alice using her input x as:

Ux |j, q⟩ = |j, q ⊕ xj⟩ , for all j ∈ {0, 1}logn and q ∈ {0, 1}. (5.1)

(A.3) Alice applies Ux on |ψ1⟩ resulting in

|ψ2⟩ = Ux |ψ1⟩ =
1√
n

∑
j∈{0,1}logn

(−1)xj |j⟩ |−⟩ . (5.2)

For reference on this step see the phase kick-back construction in (3.2).

(A.4) Alice sends to Bob the first log n qubits of |ψ2⟩, that is

(
∑

j∈{0,1}logn(−1)xj |j⟩)/
√
n.

(B.0) Let Uy be the unitary operator defined by Bob, in the same manner, Alice de-

fined Ux in A.2 but using his input y.

(B.1) Using an auxiliary qubit set to |−⟩, Bob applies Uy on |ψ2⟩ |−⟩ resulting in

|ψ3⟩ = Uy

 1√
n

∑
j∈{0,1}logn

(−1)xj |j⟩ |−⟩


=

1√
n

∑
j∈{0,1}logn

(−1)xjUy(|j⟩ |−⟩)

=
1√
n

∑
j∈{0,1}logn

(−1)xj⊕yj |j⟩ |−⟩ .

From now on we are going to ignore the auxiliary qubit |−⟩.

Before moving on to the next step let us remember the result of Hlogn |b⟩, where

b ∈ {0, 1}logn:

Hlogn |b⟩ = 1√
n

∑
z∈{0,1}logn

(−1)b•z |z⟩ .

In (3.6) we explained how to get to this equality.

(B.2) Bob applies a Hadamard transform in each one of the qubits of |ψ3⟩ resulting

in:

|ψ4⟩ = Hlogn |ψ3⟩ =
1

n

∑
j∈{0,1}logn

(−1)xj⊕yj
∑

z∈{0,1}logn

(−1)j•z |z⟩ (5.3)
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The trick of this proof is to analyze the amplitude of the |0⟩logn state in |ψ4⟩.
Rearranging the terms in (5.3) give us:

|ψ4⟩ =
1

n

( ∑
j∈{0,1}logn

(−1)xj⊕yj |0⟩logn +
∑

j∈{0,1}logn

(−1)xj⊕yj
∑

z∈{0,1}logn

z ̸=|0⟩logn

(−1)j•z |z⟩
)
.

Calculating the amplitude of the state |0⟩logn considering the “DJ promise”:

• if x = y =⇒ 1

n

∑
j∈{0,1}logn

(−1)xj⊕yj =
1

n

∑
j∈{0,1}logn

(−1)0

︸ ︷︷ ︸
n

= 1.

• if dH(x, y) = n/2 =⇒ 1

n

∑
j∈{0,1}logn

(−1)xj⊕yj =
1

n

( n

2︸︷︷︸
xj=yj

−n
2︸︷︷︸

xj ̸=yj

)
= 0.

(B.3) For the final step of the protocol Bob measures |ψ4⟩:

If he obtains the 00 · · · 0 log n-bit string he concludes that x = y.

If he obtains any other log n-bit string he concludes that dH(x, y) = n/2.

The only communication that happens in this protocol is on step A.4 when Alice

sends a log n qubits state to Bob. Providing an exponential separation between the

quantum and classical protocols.

Nevertheless, as was noted in [BCMdW10], the exponential separation between

the quantum and classical communication complexity disappears if we consider a

classical protocol on the bounded-error randomized setup. In this other scenario

O(log n) classical bits suffice to determine the relation between x and y (Section

3.4 of [BCMdW10]).

5.2 Hidden Matching Problem

In 2004 Bar-Yossef, Jayram and Kerenidis [BYJK04] discovered a quantum one-

way protocol that solves the Hidden Matching problem with Alice sending a single

message of size O(log n) qubits to Bob. They also proved that any classical bounded-

error randomized one-way protocol needs Ω(
√
n) bits of communication. This was

the first exponential separation between quantum and bounded-error randomized

one-way communication complexity.

As presented in [BYJK04] consider the following problem:
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Let n be a positive even integer. In the Hidden Matching Problem, denoted
HMn, Alice is given x ∈ {0, 1}n and Bob is given M ∈ Mn (where Mn denotes
the family of all possible perfect matchings on n nodes). Their goal is to output
a tuple ⟨i, j, b⟩ such that the edge {i, j} belongs to the matching M and b =
xi ⊕ xj.

Before we introduce the quantum protocol for this problem we are going to

define another type of measurement. Let us first note that a square matrix P is a

projection matrix if P = P 2.

Definition 5.2.1 - Complete Projective Measurement
Let |ψ⟩ be a n-qubit state and B = {|b1⟩ , . . . , |b2n⟩} an orthonormal basis of
the n-qubit space. A measurement of |ψ⟩ in basis B means that we apply the
projection operators Pj = |bj⟩ ⟨bj|, 1 ≤ j ≤ 2n to |ψ⟩. The outcome of this
measurement is j and the state of the system collapses to |bj⟩ with probability
pj = | ⟨ψ|bj⟩ |2.

More details of this type of measurement can be found in Section 9.1.

Now, we will present the quantum protocol for HMn and later simulate this

protocol.

Quantum Protocol for the Hidden Matching Problem:

Input:

Alice receives x ∈ {0, 1}n and Bob receives M ∈ Mn, where n is a positive

even integer.

(A.1) Alice prepares locally the log n qubit state

|ψ⟩ = 1√
n

n∑
i=1

(−1)xi |i⟩ ,

and sends |ψ⟩ to Bob. For reference on how to prepare this state see steps A.0

to A.3 on the previous protocol.

Bob views his input M as an orthogonal decomposition of the space Cn into

n/2 2-dimensional subspaces.

(B.1) Bob performs a projective measurement on |ψ⟩ in the basis B =
{

1√
2
(|k⟩± |l⟩) |

{k, l} ∈M
}
.

The probability that the outcome of the measurement is a basis state

(|k⟩+ |l⟩)/
√
2 is∣∣∣∣〈ψ∣∣∣∣ 1√

2
(|k⟩+ |l⟩)

〉∣∣∣∣2 = 1

2n
((−1)xk + (−1)xl)2 =

{
2/n, if xk ⊕ xl = 0

0, otherwise.
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If that is the case Bob output the tuple ⟨k, l,0⟩.

Similarly, the probability that the outcome of the measurement is a basis state

(|k⟩− |l⟩)/
√
2 is∣∣∣∣〈ψ∣∣∣∣ 1√

2
(|k⟩− |l⟩)

〉∣∣∣∣2 = 1

2n
((−1)xk − (−1)xl)2 =

{
2/n, if xk ⊕ xl = 1

0, otherwise.

In this case Bob output the tuple ⟨k, l,1⟩.

The only communication in this protocol is on step A.1 when Alice sends a log n

qubits state to Bob.

Simulation of the Quantum Protocol for the Hidden Matching Problem:

Input: x = 1011 and M = {{1, 3}, {2, 4}}.

(A.1) Alice prepares and sends |ψ⟩ = (− |1⟩+ |2⟩ − |3⟩ − |4⟩)/2 to Bob.

Bob’s decomposition of C4 is B =
{
(|1⟩ ± |3⟩)/

√
2, (|2⟩ ± |4⟩)/

√
2
}
.

(B.1) Probability measures |ψ⟩ in basis B and observe:

1√
2
(|1⟩+ |3⟩) is: | ⟨ψ| 1√

2
(|1⟩+ |3⟩)|2 = 1

2
=⇒ x1⊕x3 = 0 Bob output ⟨1, 3, 0⟩.

or

1√
2
(|2⟩− |4⟩) is: | ⟨ψ| 1√

2
(|2⟩− |4⟩)|2 = 1

2
=⇒ x2⊕x4 = 1 Bob output ⟨2, 4, 1⟩.

Following Section 2.3.3 of [Sca13] we will explain his classical protocol for the

HMn with added details proving the following theorem:

Theorem 5.2.2 [Sca13]
For every n that is a perfect square, and every positive integer

√
c ≤ n, there

exists a classical protocol for HMn with c bits of one-way communication, such
that for all inputs x,M,

P(b = xi ⊕ xj) =
1

2
+ Ω(

c√
n
).

Proof. Assume for simplicity that c is even and sufficiently large. Using shared

random variables that were generated before the game started Alice and Bob define

two disjoint subsets S1 and S2 of [n] each one of size
√
n:

S1 = {s1, . . . , s√n}, S2 = {s′1, . . . , s′√n}.
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Let y and z be two
√
n-bit strings defined as:

y = xs1 · · ·xs√n
and z = xs′1 · · ·xs′√n

.

Using shared randomness the players produce 2c/2 random
√
n-bit strings

y(1), . . . , y(2
c/2). For each l, 1 ≤ l ≤ 2c/2, the distance d(y, y(l)) is distributed bi-

nomially as the sum of
√
n fair coin flips.

For the rest of the proof we are interested in the distance between y and y(l) so

we will state the following fact about the tail of the binomial distribution: There

exists a universal constant γ > 0 such that if X is the sum of k fair coin flips. Then,

for all 0 < β <
√
k/2 we have

P(X ≤ k/2− β
√
k) ≥ 2−γ(1+β

2).

Using this fact with our notation gives

P(d(y, y(l)) ≤
√
n/2− βn1/4) ≥ 2−γ(1+β

2). (5.4)

Let us define a bad event when d(y, y(l)) >
√
n/2 − βn1/4. The probability of a

bad event is the complement of (5.4), that it is at most 1 − 2−γ(1+β
2). Considering

y(1), . . . , y(2
c/2) we are going to estimate the following probability:

P(all 2c/2 bit strings y(l) result in bad events) = (1− 2−γ(1+β
2))2

c/2

.

Using the fact that 1 − x ≤ e−x for all x ∈ R we can give an upper bound of the

probability above:

(1− 2−γ(1+β
2))2

c/2 ≤ exp(−(2−γ(1+β
2))2

c/2

) = exp(−(2−γ(1+β
2)+c/2)).

Analyzing the term −γ(1 + β2) + c/2 and choosing β = Θ(
√
c) gives

−γ(1 + β2) +
c

2
= −γ + γδ2c+

c

2
≥ −γδ2c+ c

3
,

taking δ = 1/(2
√
γ) it follows that

−γ(1 + β2) +
c

2
≥ c

12
.

Therefore, the probability that all of the 2c/2 bit strings y(l) result in bad events is

close to zero.
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We can conclude that with probability close to one there will be an l such that

y and y(l) are at normalized distance ≤ 1/2 − Ω(c1/2/n1/4). We will say that each l

that satisfy this inequality is a good event. To prove this statement note that:

dN(y, y
(l)) ≤ (

√
n

2
− βn1/4) n−1/2︸ ︷︷ ︸

normalization

=

√
n

2
− β

n1/4
=

√
n

2
− δ

√
c

n1/4
=

1

2
− Ω

(
c1/2

n1/4

)
.

For the next step of the protocol Alice sends the first l that correspond to a

good event to Bob. Otherwise, she communicates to Bob that there is no such l.

Now, using the
√
n-bit string z she does the same procedure sending the first l′ that

correspond to a good event or communicating if there is no such l′. In this step she

will send at most c/2 + c/2 = c bits of communication to Bob.

Before we continue the protocol we will use the following proposition: With

probability at least 1/2, Bob’s matching M contains an {i, j} with i ∈ S1 and j ∈ S2.

The proof of this proposition is in Appendix A

Bob’s Matching Theorem.

Given that Alice sent l and l′ to Bob we will calculate the probability that he can

predict xi from y(l), from any i = sα, 1 ≤ α ≤
√
n:

P
(
y
(l)
i = yi | dN(y(l), y)

)
= 1− dN(y

(l), y) ≤ 1−
(
1

2
− Ω

(
c1/2

n1/4

))
=

1

2
+ Ω

(
c1/2

n1/4

)
.

Bob can predict xj, from any j = s′β, 1 ≤ β ≤
√
n with the same probability.

Finally, we have to show that Bob can predict xi ⊕ xj with probability 1/2 +

Ω(c/
√
n). There are two scenarios where Bob successfully predicts xi ⊕ xj; when

his individual predictions of xi and xj are both correct and also when they are both

wrong. These two scenarios give us the following:

P
(
y(l)α ⊕ z

(l′)
β = yα ⊕ zβ

)
= P

(
y(l)α = yα and z(l

′)
β = zβ

)
+ P

(
y(l)α ̸= yα and z(l

′)
β ̸= zβ

)
=

(
1

2
+ Ω

( c1/2
n1/4

))2

+

(
1−

(1
2
+ Ω

( c1/2
n1/4

)))2

=
1

2
+ 2Ω

( c

n1/2

)
=

1

2
+ 2δ

c

n1/2
,

taking δ = 1/2 gives the desired probability. In this case Bob’s output y(l)α ⊕ z
(l′)
β .

Considering the case where Bob’s matching M does not contain an {i, j} with

i ∈ S1 and j ∈ S2 or he did not get a good approximation of y and z. In this case he

output a random bit winning with probability 1/2. Considering these two cases this

protocol wins with probability 1/2 + Ω(c/
√
n). ■
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Chapter 6

Nonlocality

Quantum nonlocality refers to the scenario where the results of local measurements

carried out on an entangled system are somehow correlated. This phenomenon as

was proven by Bell [Bel64] violates the principle of locality that states that an object

is directly influenced only by its immediate surroundings. Bell’s motivation was to

prove that quantum mechanics is not a classical theory that depends on hidden

variables.

Consider the following experiment that we can realize with current technology:

Entangled
State

Generator

Alice Bob
|ψ⟩AB

The entangled state generator produces the state |ψ⟩AB = (|0⟩A |0⟩B +

|1⟩A |1⟩B)/
√
2 and proceed to send the first qubit to Alice and the second qubit

to Bob that are far away from each other. Now, Alice measures her qubit obtaining

a random bit 0 or 1 with the same probability. After this measurement, the system

evolves according to the Measurement Postulate (2.6) and whenever Bob measures

his qubit he will observe the same result that Alice got on her measurement.

It is important to note that Bell also proved that quantum nonlocality does not

allow for faster-than-light communication [Bel64]. Hence, in our experiment (or in

any experiment at all) there is no way that Alice can manipulate her qubit to send

a message to Bob faster than the speed of light.

Since Bell’s work, quantum nonlocality has been the subject of much further

theoretical and experimental results. We start our presentation of quantum nonlo-

cality by introducing a nonlocal game (also called pseudo-telepathy game) as they

provide an intuitive way to understand the concepts of nonlocality.
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6.1 CHSH Game

In the CHSH game two players, Alice and Bob, receive input bits x and y from a

referee. Their goal is to send back to the referee bits a and b that satisfy the equation

a⊕ b = x ∧ y. (6.1)

After the players receive their inputs they cannot communicate with each other.

Now that we have defined the CHSH game we will first study how Alice and Bob

can play this game using only classical resources. A randomized strategy consists

of the following. Before the game starts the players can decide on any protocol

and share any random variables they want. After the game starts without any

communication the players can use their inputs, shared random variables and have

unlimited classical computational power that they can use to compute their outputs.

We are going to say that Alice and Bob win the CHSH game with probability p if their

strategy satisfies Equation (6.1) with probability at least p for all possible inputs.

We note that a deterministic strategy can be considered as a randomized strategy

that the players always play with the same fixed shared “random” variable. This

implies that they will always play with the same strategy. For this reason in the rest

of this chapter both of these scenarios will be called classical strategies.
We will show next that there is no deterministic strategy that always succeeds.

Since Alice cannot communicate with Bob her output bit a can only depend on the

value of her input bit x. Let a0 (a1) be Alice’s output when her input bit is 0 (1).

Similarly, let b0 and b1 be Bob’s output depending on his input. Note that these four

bits completely characterize any deterministic strategy of Alice and Bob. Equation

(6.1) translate into the the equations

a0 ⊕ b0 = 0, (6.2)

a0 ⊕ b1 = 0, (6.3)

a1 ⊕ b0 = 0, (6.4)

a1 ⊕ b1 = 1. (6.5)

It is impossible to satisfy all four equations simultaneously since summing them

modulo 2 yields 0 = 1. Hence, for any deterministic strategy there exists an input

configuration for which it fails. However, for any three out of the four equations

above there is a strategy that satisfies these three equations simultaneously for any

input.

Now that we have defined these concepts we will prove the following theorem.
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Theorem 6.1.1
No classical strategy allows Alice and Bob to win the CHSH game with probability
greater than 3/4.

Proof. We will start by formalizing a randomized strategy in the following way.

Before the game starts the players can share a random B-bit string. After receiving

their inputs they can use this bit string and play accordingly. A classical strategy S

denoted by S = (a, b) is defined by two functions a and b, let

a : {0, 1} × {0, 1}B → {0, 1} and b : {0, 1} × {0, 1}B → {0, 1}.

For the next definition we will use the following notation. A bit string r of length

B taken uniformly at random from the set {0, 1}B will be denoted as r ∈u {0, 1}B.

The notation S(x,y) represents the event that a classical strategy S satisfies Equation

(6.1) with the input (x, y). Using these definitions, let

winning probability of S = min
(x,y)∈{0,1}2

Pr∈u{0,1}B(S
(x,y)).

The notation Pr∈u{0,1}B(S
(x,y)) represents the probability of S(x,y) over all values of

r. We will assume that before the game starts Alice and Bob share r.

Now, we will prove two propositions:

(A) There exists an S such that the winning probability of S ≥ 3/4.

Let B = 2 and x, y ∈ {0, 1}. Consider a strategy S = (a, b), let

a(x, 00) = x, a(x, 01) = 1, a(x, 10) = x, a(x, 11) = 0

and

b(y, 00) = ¬y, b(y, 01) = ¬y, b(y, 10) = 0, b(y, 11) = 0.

The winning probability of S for x = 0 and y = 0 is equal to 3/4 because this

strategy will only lose with this input if r = 00. Doing the same analysis for

the other tree inputs we get the same probability. Hence, we can conclude that

the winning probability of S is greater than or equal to 3/4.

(B) For all S the winning probability of S ≤ 3/4.

Because of the structure of the game there are in total 16 deterministic strate-

gies S1, . . . , S16 that the players can play with. After the players generate their

random bit string they are going to play with one of these 16 deterministic
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strategies. We can conclude that any probabilistic strategy is a probability dis-

tribution over these 16 strategies. Consider the variables p1, . . . , p16, where

0 ≤ p1 ≤ 1, i = 1, . . . , 16 and
16∑
i=1

pi = 1.

Any probabilistic strategy can be specified by these pi’s that are the probability

that this strategy will play with Si. It follows that for any input (x, y)

P(S(x,y)) = p11(S
(x,y)
1 ) + · · ·+ p161(S

(x,y)
16 ).

We will show that for an input (x, y) the probability above is at most 3/4.

Consider the weighted bipartite graph below:

00

01

10

11

S1

S2

S16

p1

p1

p1
p2

p2

p2

The edges of the graph were added in the following way. If the strategy Si

satisfies Equation (6.1) with the input (x, y) then there is an edge e = (Si, xy)

with weight pi(e). We will double count the sum of all the edges in the graph.

As each strategy Si wins the game with at most 3 inputs we have that∑
e∈E

p(e) ≤ 3(p1 + · · ·+ p16) = 3.

Now, counting from the other perspective we have that∑
x,y∈{0,1}2

∑
e∈∂(x,y)

p(e) = P(S(0,0)) + · · ·+ P(S(1,1)).

Hence, we can conclude that there is an (x, y) such that the probability that

S wins with this input is at most 3/4. Therefore, from (A) and (B) we can

conclude that there is no classical strategy that allows Alice and Bob to win

the CHSH game with probability greater than 3/4. ■
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Statements such as Theorem 6.1.1 that prove an upper bound on the optimal

success probability of classical strategies for a specific nonlocal game are known as

Bell Inequalities. This specific one is called the CHSH inequality. Next, we will see

a so-called “violation of a Bell Inequality”.

Let us consider a quantum strategy for the CHSH game. Alice and Bob play the

same game, but before receiving their inputs they share the 2-qubit entangled state

|ψ⟩AB = (|0⟩A |0⟩B − |1⟩A |1⟩B)/
√
2 and carry out the following strategy. Let R(θ) be

the unitary operator that rotates a qubit by an angle θ:

R(θ) =

(
cos θ − sin θ
sin θ cos θ

)
.

Depending on the input that Alice receives she applies one of the following rota-

tions: if x = 0 she applies R(−π/16), if x = 1 she applies R(3π/16). Let a represent

the bit that Alice gets after measuring her qubit. Bob performs the same procedure

depending on the value of y. Let b represent the bit he gets after measuring his

qubit. Analyzing the state |ψ⟩AB after Alice rotates her qubit by θA and Bob rotates

his qubit by θB, the entangled state becomes

|ψ′⟩AB =
1√
2

(
cos(θA + θB)(|00⟩AB − |11⟩AB) + sin(θA + θB)(|01⟩AB − |10⟩AB)

)
.

We can summarize the probability of success of the four possible inputs when

Alice and Bob measure their parts of |ψ′⟩AB with the following table:

Inputs (s, t) Correct Output(s) (a, b) Probability of Success
0, 0 0, 0 or 1, 1 2(cos(−π/8)/

√
2)2 = cos2(π/8)

1, 0 or 0, 1 0, 0 or 1, 1 2(cos(π/8)/
√
2)2 = cos2(π/8)

1, 1 0, 1 or 1, 0 2(sin(3π/8)/
√
2)2 = sin2(3π/8) = cos2(π/8)

For all inputs the equation a⊕b = x∧y is satisfied with probability cos2(π/8) ≈ 0.853.

This result shows us that this quantum strategy for the CHSH game succeeds with

a higher probability1 than the best possible classical strategy.

6.2 Structure of Nonlocal Game and Other Examples

The basic structure of nonlocal games can be described as:

1Tsirelson [Cir80] proved that a quantum protocol can’t achieve a success probability higher than
cos2(π/8) for the CHSH game.
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• There is an honest referee that sends the inputs and analyzes the outputs of the

players. It is also possible to formulate these games without a referee assuming

that the players are honest.

• The player’s goal is to compute some sort of relation with their inputs that

satisfy some condition.

• Before the game starts the players can decide on any strategy they want.

– Classical players can share any random variables they want and play ac-

cordingly.

– Quantum players can share any entangled state.

• After the players receive their inputs they cannot communicate with each other.

– Classical players can make any classical computation using their inputs

and random variables.

– Quantum players can make any quantum operation using their inputs and

part of the entangled state.

• The players send their outputs to the referee who computes the result of the

game.

In contrast with the CHSH game, other nonlocal games such as the GHZ

(Greenberger–Horne–Zeilinger) and the Mermin–Peres Magic Square games have

quantum protocols that always succeed. The upper bound on the probability of

success of their classical counterparts is shown on the rightmost column.
Game Players Input Output Best Classical

Condition Goal Strategy
P of Success

GHZ 3 bits: s, t, u bits: a, b, c

s⊕ t⊕ u = 0 a⊕ b⊕ c =

{
0, if stu = 000

1, if stu ∈ {011, 101, 110}.
3/4

Mermin–Peres
Magic Square 2 s, t ∈ {1, 2, 3} Two 3-bit strings a1a2a3 and b1b2b3:

a1 ⊕ a2 ⊕ a3 = 0

b1 ⊕ b2 ⊕ b3 = 1

at = bs

8/9

We are going to use the convention that a game in which quantum players by using

entanglement have some sort of advantage over classical players is called a nonlocal

or pseudo-telepathy game.
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Chapter 7

Nonlocal Quantum Communication
Complexity Protocols

There are some similarities between nonlocal games and communication complex-

ity problems. In both topics the goal of the players is to provide an output that

satisfy some relation given their inputs. On nonlocal games the players have access

to an entangled state but are not allowed to communicate after the game starts. On

communication complexity problems the players do not have access to an entangled

state but can communicate with each other by sending bits or qubits.

From a communication complexity problem we can derive a nonlocal game by

forbidding any kind of communication between the players. For instance, we could

consider a scenario where before the game starts classical players are allowed to

share any kind of random variables and quantum players can share any entangled

state. The Nonlocal Distributed Deutsch–Jozsa is an example of this scenario.

Another situation that we could compare is to replace a quantum communica-

tion channel with a classical communication channel and allow the quantum play-

ers to share an entangled state. In this chapter we will study quantum protocols for

these two scenarios.

7.1 Nonlocal Distributed Deutsch–Jozsa

Consider the Distributed Deutsch–Jozsa (Section 5.1), but now Alice and Bob share

an entangled state of log n qubits and, instead of a quantum communication chan-

nel, they only have access to a classical communication channel. In this variation

they can solve the Distributed Deutsch–Jozsa problem using log n classical bits of

communication.
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To understand this other scenario, let us first introduce the Nonlocal Distributed

Deutsch–Jozsa problem and the quantum protocol to solve this problem due to

Brassard, Cleve and Tapp [BCT99].

• Alice receives x ∈ {0, 1}n and Bob receives y ∈ {0, 1}n, where n is a power
of two.

• Their inputs satisfy the “DJ promise”:

x = y or x and y differ in exactly n/2 positions (dH(x, y) = n/2).

• Their goal is to provide output a, b ∈ {0, 1}logn without using any commu-
nication channel. Such that:

if x = y then a = b or if dH(x, y) = n/2 then a ̸= b.

Quantum Protocol for the Nonlocal Distributed Deutsch–Jozsa:

Before the game starts Alice and Bob share the entangled state

|ψ0⟩AB =
1√
n

∑
j∈{0,1}l

|j⟩ |−⟩︸ ︷︷ ︸
Alice

|j⟩ |−⟩︸ ︷︷ ︸
Bob

,

where l = log n.

The first l + 1 qubits of |ψ0⟩ belongs to Alice and the last l + 1 qubits of |ψ0⟩ to

Bob. Now, Alice and Bob go to separate locations and cannot communicate with

each other.

Game Starts:

Alice receives her input x and applies the unitary Ux as defined in (5.1) to her

l + 1 qubits. Bob does the same operation but using his input y. After this step the

entangled state becomes

|ψ1⟩A,B =
1√
n

∑
j∈{0,1}l

(−1)xj |j⟩ |−⟩ (−1)yj |j⟩ |−⟩

=
1√
n

∑
j∈{0,1}l

(−1)xj⊕yj |j⟩ |−⟩ |j⟩ |−⟩ .

For the next step both of them apply a Hadamard transform on their l qubits

resulting in:

|ψ2⟩A,B =
1√
n

∑
j∈{0,1}l

(−1)xj⊕yj
( 1√

n

∑
a∈{0,1}l

(−1)j•a |a⟩ |−⟩
)( 1√

n

∑
b∈{0,1}l

(−1)j•b |b⟩ |−⟩
)

=
1

n
√
n

∑
a∈{0,1}l

∑
b∈{0,1}l

( ∑
j∈{0,1}l

(−1)xj⊕yj⊕j•(a⊕b) |a⟩ |−⟩ |b⟩ |−⟩
)
.

(7.1)
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Now, let us calculate the probability that Alice observes an l-bit string a and

Bob observes an l-bit string b when each one measures their first l qubits of the

entangled state |ψ2⟩A,B:

P(a, b | x, y) = 1

n3

( ∑
j∈{0,1}l

(−1)xj⊕yj⊕j•(a⊕b)
)2
. (7.2)

Therefore,

P(a, b | x = y) =

{
1
n
, if a = b (there are n different bit strings of size log n)

0, if a ̸= b

and

P(a, b | dH(x, y) = n/2) =

0, if a = b
(half of the amplitudes will be equal to 1
and the other half equal to −1)

1
n
, if a ̸= b.

This analysis shows that they always provide the right output, thus concluding the

protocol. The authors also proved that there is no way that classical players can

win this nonlocal game that is, without communication.

To solve the variation of the Distributed Deutsch–Jozsa presented at the begin-

ning of this section. Alice and Bob first execute this nonlocal protocol. Then, Alice

sends the result of her measurement the log n-bit string a to Bob. Now, he could

solve the Distributed Deutsch–Jozsa by comparing their bit strings. In this varia-

tion the quantum players solved the Distributed Deutsch–Jozsa with log n-bits of

communication against the 0.007n bits of communication necessary in the classical

case.

As presented in [BCMdW10] shared entanglement can sometimes be used to

reduce the amount of communication or even eliminate the necessity of a quantum

channel between the parties.

7.2 x-Pairs Nonlocal Distributed Deutsch–Jozsa

In this section we are going to show how a variation of the Nonlocal Distributed

Deutsch–Jozsa with m players, where m is even, can be solved with the same pro-

tocol presented in the previous section.

Consider the following novel problem1:

1We have not found any reference on the literature to this problem.
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• Let m1,m2, . . . ,mm represent the m players that are arranged into m/2
pairs: p1 = (m1,m2), p2 = (m3,m4), . . . , pm/2 = (mm−1,mm).

• Player mk receives as input an n-bit string ik, where n is a power of two,
and 1 ≤ k ≤ m.

• Let ipl = (i2j−1, i2j), for 1 ≤ j ≤ m/2 and h = m/2.

• Their inputs satisfy the “x-Pairs DJ promise”:

(C1) ip1 = · · · = iph or
(C2) ip1 = · · · = ip(h−x)

and dH(ip(h−x+1)
) = · · · = dH(iph) = n/2,

x ∈ {1,m/2}.

• Their goal is to provide outputs ok ∈ {0, 1}logn, for all 1 ≤ k ≤ m, without
using any communication channel.

• Such that when:

(C1) is true o1 = o2, . . . , om−1 = om,
(C2) is true o1 = o2, . . . , o(2(h−x−1)) = o(2(h−x)) and

o(2(h−x+1)) ̸= o(2(h−x+2)), . . . , o(2(h−1)) ̸= o(2h).

Quantum Protocol for the x-Pairs Nonlocal Distributed Deutsch–Jozsa:

Each pair p1, p2, . . . , pm/2 execute the Nonlocal Distributed Deutsch–Jozsa proto-

col from the previous section. Then, after m/2 executions the players will return

the correct output.

One might ask if it is possible to adapt the protocol of Section 7.1 to a protocol

where the m players play together. We are going to prove that a simple modification

of the protocol for two players would not work for the x-Pairs Nonlocal Distributed

Deutsch–Jozsa problem.

Before the game starts the players share the following entangled state |ψ0⟩p1...pm:

|ψ0⟩p1...pm =
1√
n

∑
j∈{0,1}l

|j⟩ |−⟩︸ ︷︷ ︸
m1

· · · |j⟩ |−⟩︸ ︷︷ ︸
mm

,

where l = log n.

Each player will go to separate locations and cannot communicate with each

other. When the game start the m players receive their inputs ik, 1 ≤ k ≤ m, and

apply the unitary matrix Uik (defined in (5.1)) to their part of the entangled state:

|ψ1⟩p1...pm =
1√
n

∑
j∈{0,1}l

(−1)i1j |j⟩ |−⟩ · · · (−1)imj |j⟩ |−⟩

=
1√
n

∑
j∈{0,1}l

(−1)i1j⊕···⊕imj |j⟩ |−⟩ · · · |j⟩ |−⟩
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Next, each player will apply a Hadamard transform on their l + 1 qubits. The

entangled state becomes

|ψ2⟩p1...pm =
1

n(m+1)/2

∑
o1∈{0,1}l

· · ·
∑

om∈{0,1}l

( ∑
j∈{0,1}l

(−1)i1j⊕···⊕imj⊕k•(o1⊕···⊕om) |o1⟩ |1⟩ · · · |om⟩ |1⟩
)
.

For reference on how to get to this state see equation (7.1).

Now, let us calculate the probability that each one of the m players observes

an l-bit string ok, 1 ≤ k ≤ m, when each player measures their first l qubits of the

entangled state |ψ2⟩p1...pm:

P(o1, · · · , om | i1, · · · , im) =
1

(n(m+1)/2)2

( ∑
k∈{0,1}l

(−1)i1k⊕···⊕imk⊕k•(o1⊕···⊕om)
)2
. (7.3)

Our task is now to analyze the probability of success of this protocol. If the

players input satisfy C1 that is, i1 = · · · = im, each pair is expected to output

the same l-bit string. For any input there are (2l)m/2 = nm/2 valid outputs. Using

equation (7.3) above consider the following probability:

P(o1 = o2, o3 = o4, . . . , om−1 = om | i1 = i2 = · · · = im) =
n2

(n(m+1)/2)2
=

1

nm−1
.

If m = 2 we are in fact in the original Nonlocal Distributed Deutsch–Jozsa setup and

this probability agree with the analysis we did using equation (7.2). But, if there

are more than 2 players (m > 2) as 1/nm−1 is strictly smaller than 1/nm/2 there is

a chance that some pair(s) will output different l-bit strings when all the players

got the same input. Concluding that this simple adaptation of the previous protocol

will not work for the x-Pairs Nonlocal Distributed Deutsch–Jozsa. ■

7.3 Multi-party Nonlocal Hidden Matching

The nonlocal version of the hidden matching problem was introduced in

[BCMdW10]. Later, Scarpa [Sca13] noted that it is possible to transform the two-

party protocol into a multi-party protocol. We are going to formally state this prob-

lem and present a quantum protocol that solves this variation.

The multi-party nonlocal hidden matching problem is defined as:
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• Let n be a power of two and Mn the set of all perfect matchings on the set
[n].

• Let m1,m2, . . . ,mm represent the m players.

• The first m− 1 players receives an input ik ∈ {0, 1}n, 1 ≤ k ≤ m− 1.

• The mth player receives M ∈ Mn.

• The output of the first m− 1 players are bit strings ok ∈ {0, 1}logn, 1 ≤ k ≤
m− 1.

• The output of the mth player is an (a, b) ∈M and c ∈ {0, 1}.

• They win the game if and only if(
(o1 ⊕ · · · ⊕ ok) • (a⊕ b)

)
⊕ c = i1a ⊕ i1b ⊕ · · · ⊕ i(m−1)a ⊕ i(m−1)b.

Quantum Protocol for the Multi-party Nonlocal Hidden Matching Problem:

Initially the m players share the entangled state |ψ0⟩p1...pm:

|ψ0⟩p1...pm =
1√
n

∑
j∈{0,1}l

|j⟩ |−⟩︸ ︷︷ ︸
p1

· · · |j⟩ |−⟩︸ ︷︷ ︸
pm−1

|j⟩︸︷︷︸
pm

,

where l = log n.

Now, the first m − 1 players apply their corresponding unitary matrix Uk (as

defined in (5.1)) with their input ik, 1 ≤ k ≤ m− 1. The state of the system is now

|ψ′
1⟩p1...pm =

1√
n

∑
j∈{0,1}l

(−1)i1j |j⟩ |−⟩ · · · (−1)i(m−1)j |j⟩ |−⟩ |j⟩ ,

to improve readability we will ignore all the |−⟩ qubits:

|ψ1⟩p1...pm =
1√
n

∑
j∈{0,1}l

(−1)i1j |j⟩ · · · (−1)i(m−1)j |j⟩ |j⟩ .

The mth player performs a projective measurement with projectors

Pab = |a⟩ ⟨a| + |b⟩ ⟨b|, with (a, b) ∈ M on his part of |ψ1⟩p1...pm . After this measure-

ment, the state collapses to

|ψ2⟩ =
1√
2

(
(−1)i1a |a⟩ · · · (−1)i(m−1)a |a⟩ |a⟩+ (−1)i1b |b⟩ · · · (−1)i(m−1)b |b⟩ |b⟩

)
.

For the next step, each one of the m players applies a Hadamard transform on

their qubit. The state of the system after the first player applied a Hadamard is

|ψ3⟩ =
1√
2

( 1√
n

∑
o1∈{0,1}l

(−1)i1a⊕o1•a |o1⟩ · · · (−1)i(m−1)a |a⟩ |a⟩
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+(−1)i1b⊕o1•b |o1⟩ · · · (−1)i(m−1)b |b⟩ |b⟩
)
,

and after the mth Hadamard transform we get to

|ψf⟩ =
1√
2

( 1

nm/2

∑
o1∈{0,1}l

(−1)i1a⊕o1•a |o1⟩ · · ·
∑

om∈{0,1}l
(−1)om•a |om⟩

+(−1)i1b⊕o1•b |o1⟩ · · · (−1)i(m)b |om⟩
)
.

Notice that in |ψf⟩ any state |o1⟩ · · · |om⟩ with non zero amplitude must satisfy

the condition

i1a ⊕ o1 • a⊕ · · · ⊕ i(m−1)a ⊕ o(m−1) • a⊕ om • a⊕ i1b ⊕ o1 • b⊕ · · ·

⊕ i(m−1)b ⊕ o(m−1) • b⊕ om • b = 0.

Rearranging the terms:

(o1 + · · ·+ om−1) • (a+ b) + om • (a+ b) = i1a ⊕ i1b ⊕ · · · ⊕ i(m−1)a ⊕ i(m−1)b.

The condition above implies that all of the possible measurements outcomes will

satisfy this equation that is equal to the winning condition of the multi-party non-

local hidden matching problem. Finally, for the last step of the protocol, the players

measure their part of the system. The first m−1 players output their log n-bit strings

o1, . . . , om−1 and the mth player output (a, b) ∈M and a bit c = om • (a+ b).
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Part III

Quantum Graph Parameters
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Chapter 8

Quantum Chromatic Number of
Hadamard Graphs

This chapter is organized as follows. In the first section, we begin by describing all

the preliminary concepts required to understand the quantum chromatic number of

Hadamard graphs. In the next section, we will summarize some important results

from 1998 to 2005 that contributed to the development of this quantum graph

parameter. Finally, in Section 8.3 we present a detailed explanation of the quantum

protocol for the c-coloring game played with the Hadamard graph due to Avis,

Hasegawa, Kikuchi and Sasaki.

8.1 Preliminary Concepts

A simple graph is a pair G = (V,E) where V is a set whose elements are called

vertices and E is a subset of V (2) whose elements are called edges. Two vertices

u, v ∈ V are adjacent if {u, v} ∈ E. We will represent this edge as uv or u ∼ v. In

this chapter we will only work with simple graphs.

Consider the same graph G, and let S ⊂ V be any subset of vertices of G. Then

the induced subgraph G[S] is the graph whose vertex set is S and whose edge set

consists of all of the edges in E that have both endpoints in S.

A c-coloring of a graph G = (V,E) is an assignment of c colors to the vertices

of G. A coloring c is proper if no two adjacent vertices are assigned the same color.

The minimum c for which a graph G is c-colorable is called the chromatic number
denoted by χ(G).

For the next section we are interested in the Hadamard graph. Let N = 4k for

any positive integer k. The Hadamard graph HN is defined as the graph with vertex
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set VN = {0, 1}N and edge set EN = {uv ∈ V
(2)
N | dH(u, v) = N/2}, where dH(u, v)

is the Hamming distance of u and v.

To understand the quantum chromatic number we need first to define the fol-

lowing nonlocal game:

Definition 8.1.1 c-coloring game

• Alice and Bob receive a graph G = (V,E) from the referee.

• The players agree on a protocol to convince the referee that G is c-colorable.

• The referee wants to test their claim with a one-round game.

• The game starts and Alice and Bob are forbidden to communicate.

• The referee sends a ∈ V to Alice and b ∈ V to Bob such that a = b or ab ∈ E.

• Alice sends the color ca and Bob sends the color cb to the referee.

– They win the game if: a = b and ca = cb or ab and ca ̸= cb

Now that we have defined the c-coloring game we can introduce the following

theorem:

Theorem 8.1.2
Let G be a graph. Then, the minimum c that classical players can choose to always
win the c-coloring game with the graph G is χ(G).

Proof. Let us first consider any deterministic strategy classical players can use and

later we will analyze any probabilistic strategy. Let

c⋆ = min{c | classical players can win the c-coloring game}.

We are going to prove that c⋆ = χ(G) for any deterministic strategy:

1) c⋆ ≥ χ(G).

Any deterministic strategy would consist of two deterministic functions fa :

V → [c⋆] for Alice and fb : V → [c⋆] for Bob. To satisfy the first winning condi-

tion the players must always output the same color when asked the same ver-

tex implying that fa = fb. To satisfy the second winning condition fa assigns

different colors to adjacent vertices and therefore induces a proper coloring of

the graph.

2) c⋆ ≤ χ(G).

By the same argument above to satisfy the first winning condition Alice and

Bob’s strategy consists of the same deterministic function fa : V → [c⋆]. For
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the second winning condition the minimum number of colors for which the

players can proper color the graph is χ(G). The function fa maps each vertex

of V to a χ(G)-coloring of G.

To consider any probabilistic strategy we have to consider additional resources.

Before the game starts the players can share a random n-bit string. After receiving

their inputs they can use this shared n-bit string and also generate private random

bit strings and play accordingly. In this scenario a probabilistic strategy is defined

by a function fa : {0, 1}n × V → [c⋆] such that fa(r, v) is the color Alice responds

when she receives v ∈ V from the referee given that the shared random bit string

took on value r. Let fb be a function defined by Bob in the same manner. Now, we

are going to prove that c⋆ = χ(G) for any probabilistic strategy:

1) c⋆ ≥ χ(G).

To satisfy the first winning condition for all r ∈ {0, 1}n and for all v ∈ V

we have fa(r, v) = fb(r, v). For the second winning condition let us define

gr : V → [c⋆] for all r ∈ {0, 1}n by letting gr(v) = fa(r, v). To satisfy this

condition for all r the function gr assigns different colors to adjacent vertices

and therefore induces a proper coloring of the graph.

2) c⋆ ≤ χ(G).

Again to satisfy the first winning condition Alice and Bob have to play with

the same function fa. Now, for the second winning condition let us define

gr : V → [χ(g)] for all r ∈ {0, 1}n by letting gr(v) = fa(r, v). For all r the

function gr maps each vertex of V to a χ(G)-coloring of G.

Hence, even with additional resources, the best probabilistic strategy would still

need χ(G) colors to win the c-coloring game. ■

If the players are allowed to share an entangled state before the game starts and

realize quantum computation and measurements on their part of the state there are

graphs for which Alice and Bob can win the c-coloring game with probability 1 for

c < χ(G). We call the smallest c such that Alice and Bob can win the c-coloring

game with probability one the quantum chromatic number denoted by χq(G). In

this scenario, we are also going to say that the graph G is quantum c-colorable.

Whenever a graph G has χq(G) < χ(G) we are going to say that the c-coloring

game with G is a nonlocal game or a pseudo-telepathy game. The first graph that

exhibited this difference on the quantum and classical chromatic number was a

special case of the Hadamard graph that we are going to introduce in the next

section.
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8.2 Overview

In this section we will summarize some key results from 1998 to 2005 on the c-

coloring game. Buhrman, Cleve and Wigderson in 1998 [BCW98] discovered the

first large gaps between quantum and classical communication complexity. They

introduced two protocols; the distributed version of Deutsch–Jozsa algorithm (ex-

plained in Section 5.1) and also a protocol based on Grover’s algorithm.

In 1999, Brassard, Cleve and Tapp [BCT99] were interested in the amount of

communication necessary for classical systems with shared randomness to simulate

systems with quantum entanglement. Inspired by Buhrman, Cleve and Wigderson

result they proved that for the Nonlocal Distributed Deutsch–Jozsa problem (Sec-

tion 7.1) there is no way that classical players can always win this game without

communication.

Implicitly they proved that quantum players can win the c-coloring game with

probability 1 with the Hadamard graph HN and c = N , where N is a power of two

by using the Nonlocal Distributed Deutsch–Jozsa protocol. For the classical scenario

they used a result by Frankl and Rödl [FR87] that for all large N , the chromatic

number of the Hadamard graph grows exponentially in N . Combining these two

results they implicitly proved that the c-coloring game with HN is asymptotically a

pseudo-telepathy game.

Galliard and Wolf in 2002 [GW02] formally made the connection between the

Nonlocal Distributed Deutsch–Jozsa problem and the c-coloring game. A year later

Galliard, Tapp and Wolf [GTW03] studied the same restricted case of the Hadamard

graph HN for N = 2n. They proved using a combinatorial argument that for n = 4

the c-coloring game with H16 is a pseudo-telepathy game. This graph with 65536

vertices is quantum 16-colorable but χ(G) > 16. They also noted that for any

n smaller than four, in this restricted case where N = 2n, would not provide a

difference between the quantum and classical chromatic number.

The last result of this summary is due to Avis, Hasegawa, Kikuchi and Sasaki

[AHKS06] from 2005. The authors discovered a quantum protocol to win the c-

coloring game on all Hadamard graphs, removing the restriction that N = 2n from

Galliard, Tapp and Wolf. Next, using a result from Godsil and Newman [GN08] that

a Hadamard graph HN has a chromatic number strictly larger than N whenever

N = 4k > 8 they obtained the following result:
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Theorem 8.2.1 Adapted from [AHKS06]
For all k ≥ 3, χq(H4k) ≤ 4k while χ(H4k) > 4k.

We are going to present the prove of this theorem in the next subsection.

After they proved the theorem above they noted that the smallest Hadamard

graph HN such that the c-coloring game is a pseudo-telepathy game with c = N is

the H12. Any of its induced subgraphs with 1609 vertices also have this property.

8.3 c-coloring Game Protocol for Hadamard Graphs

In this section we will prove the upper bound on the quantum chromatic number

from Theorem 8.2.1 by introducing the protocol due to Avis, Hasegawa, Kikuchi

and Sasaki with added details for a self-contained proof. We will show that with

this protocol Alice and Bob can win the c-coloring game with certainty for any

Hadamard graph HN using N colors.

For this protocol we are going to use the quantum Fourier transform1 (QFT).

The QFT acts on a quantum state |x⟩ =
∑N−1

i=0 xi |i⟩ and maps it to a quantum state∑N−1
i=0 yi |i⟩ according to the formula:

yk =
1√
N

N−1∑
j=0

xjω
jk
N , k = 0, . . . , N − 1,

where ωN = exp(2πi/N). Note that N is not necessarily a power of two.

We can check that the QFT applied to a qubit |ψ⟩ = α |0⟩ + β |1⟩ is equal to the

Hadamard transform:

y0 =
1√
2
(αe(2πi

(0·0)
2

) + βe(2πi
(1·0)
2

)) =
1√
2
(α + β)

y1 =
1√
2
(αe(2πi

(0·1)
2

) + βe(2πi
(1·1)
2

)) =
1√
2
(α− β).

Hence,

QFT |ψ⟩ = 1√
2
(α + β) |0⟩+ 1√

2
(α− β) |1⟩ ,

that is equal to H |ψ⟩.
1Quantum analog of the classical discrete Fourier transform applied to the vector of amplitudes

of a quantum state.
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If we consider the QFT or the QFT−1 (inverse of the quantum Fourier trans-

form) applied to a basis state |b⟩ ∈ CN , instead of a general state, we get the

following mapping:

QFT |b⟩ = 1√
N

N−1∑
k=0

ωbkN |k⟩ , QFT−1 |b⟩ = 1√
N

N−1∑
k=0

ω−bk
N |k⟩ .

For instance, applying the QFT to the basis state |01⟩ written as |1⟩ gives:

QFT |1⟩ = 1

2
(ω1·0

4 |0⟩+ ω1·1
4 |1⟩+ ω1·2

4 |2⟩+ ω1·3
4 |3⟩)

=
1

2
(|0⟩+ e

πi
2 |1⟩+ eπi |2⟩+ e

3πi
2 |3⟩)

=
1

2
(|0⟩+ i |1⟩ − |2⟩ − i |3⟩).

Now, that we defined this unitary transformation we can introduce the protocol:

Quantum Protocol for the c-coloring Game for Hadamard Graphs

Before the game starts, Alice and Bob get together and receive from the referee

a Hadamard graph HN . Their first step is to prepare the entangled state

|ψ0⟩AB =
1√
N

N−1∑
i=0

|i⟩A |−⟩A |i⟩B |−⟩B .

To improve readability we will omit both of the |−⟩ states as they will only be used

once as auxiliary qubits.

Alice and Bob move apart and are now forbidden to communicate. The game

starts and the referee sends the vertex a to Alice and the vertex b to Bob. As men-

tioned before in the definition of the Hadamard graph the vertices are expressed as

N -bit strings.

If N is a power of two each one of the players apply the unitary operator Ux
defined in (5.1) using their inputs a and b on their part of |ψ0⟩AB. If N is not a

power of two Alice will apply the unitary operator U ′
a defined as:

U ′
a |j⟩ |q⟩ =

{
|j⟩ |q ⊕ aj⟩ , j = 0, 1, . . . , N − 1 and q ∈ {0, 1}.
|j⟩ |q⟩ , j = N, . . . , 2⌈log2N⌉ − 1 and q ∈ {0, 1}.

Bob will act similarly using his input b. As we had mentioned before both of the

players have access to an auxiliary qubit in the |−⟩ state. Considering the phase

74



kick-back trick (see (3.2) for reference) no matter the value of N after this step the

resulting state is:

|ψ1⟩AB = (Ua⊗Ub) |ψ0⟩AB =
1√
N

N−1∑
i=0

(−1)ai |i⟩A (−1)bi |i⟩B =
1√
N

N−1∑
i=0

(−1)ai⊕bi |i⟩A |i⟩B .

For the next step Alice applies the QFT and Bob the QFT−1 on their part of

|ψ1⟩AB:

|ψ2⟩AB = (QFT⊗QFT−1) |ψ1⟩AB =

(
1√
N

)3 N−1∑
ca=0

N−1∑
cb=0

N−1∑
i=0

ωi(ca−cb)(−1)ai⊕bi |ca⟩A |cb⟩B .

The last step of the protocol is the measurement operation. Alice and Bob mea-

sure their part of |ψ2⟩AB in the computational basis (defined in 2.6) and obtain the

same string c with probability given by:

P(c, c | a, b) = N︸︷︷︸
# possibilities

((
1√
N

)3 N−1∑
i=0

ωi(c−c)(−1)ai⊕bi

)2

=
1

N2

(
N−1∑
i=0

(−1)ai⊕bi

)2

.

(8.1)

If a = b, ai ⊕ bi = 0 for i = 0, . . . , N − 1. Evaluating (8.1) in this case gives

P(c, c | a = b) =
1

N2

(
N−1∑
i=0

(−1)0

)2

=
1

N2
(N)2 = 1.

When Alice and Bob get the same vertex as input they will always send the same

color (expressed by the string c) to the referee.

If a ̸= b, we know that ab ∈ E and by definition dH(a, b) = N/2. Evaluating

(8.1) in this case:

P(c, c | a ̸= b) =
1

N2

(
N

2
− N

2

)2

= 0.

Hence, when Alice and Bob get two adjacent vertices as input they will never send

the same color to the referee.

These analyses show that this protocol allows Alice and Bob to win the c-coloring

game with certainty for any Hadamard graph HN using N colors. ■
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Chapter 9

General Quantum Chromatic Number

In 2006 Cameron, Newman, Montanaro, Severini and Winter [CMN+06] investi-

gated the notion of the quantum chromatic number of any graph. They also proved

general facts about this quantum graph parameter. In this chapter, we will study

some of their results and give a self-contained explanation of the quantum chro-

matic number.

To understand this concept we start by giving the required background from

quantum information theory that is not usually covered in quantum computing

materials. In Section 9.2 we will give an intuition of what two quantum strategies

for any graph would look like.

In Section 9.3 we will introduce some important concepts from [CMN+06].

From this point until Section 9.6 our goal will be to explicitly formulate a quan-

tum strategy that enables Alice and Bob to win the c-coloring game on a special

graph.

The final topic of this chapter is a short review of the smallest known graph with

quantum chromatic number smaller than its classical chromatic number. This is a

2016 result due to Mančinska and Roberson [MR18].

9.1 Other Types of Measurements

In this section, inspired by de Wolf lecture notes [dW21] and also [NC02], we

are going to explain the projective measurement operation, describe what is an

observable and introduce the POVM measurement.

A projective measurement can be described by an observable M , a Hermitian

operator on the state of the system being observed. The observable has spectral
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decomposition M =
∑m

j=1 λjPj, where Pj is the projector onto the eigenspace1 of

M with eigenvalue λj. Using this observable the possible outcomes of the mea-

surement correspond to the eigenvalues λj of M . To illustrate this new type of

measurement consider the following observable:

M = 1︸︷︷︸
λ1

|+⟩ ⟨+|︸ ︷︷ ︸
P1

−1︸︷︷︸
λ2

|−⟩ ⟨−|︸ ︷︷ ︸
P2

.

Measuring the state |ϕ⟩ = |0⟩ with the observable M gives the outcome “2” (label of

the projector associated with the eigenvalue −1) with probability ⟨ϕ|P2 |ϕ⟩ = 1/2

and gives the outcome “1” with probability 1/2. Suppose we got the outcome “2”.

Then, the state of the system collapses to the new state |−⟩. This is called an X

measurement as we are measuring in the X basis {|+⟩ , |−⟩}.

Another common way to describe a projective measurement with m possible

outcomes is by giving a list P1, . . . , Pm of projectors (Pj = P 2
j , 1 ≤ j ≤ m) that act of

the state of the system being measured and that
∑m

j=1 Pj = I. With these conditions

these projectors are pairwise orthogonal meaning that PjPi = 0, if j ̸= i. The

projector Pj projects on some subspace Vj of the total space V , and every state |ψ⟩ ∈
V can be decomposed in a unique way as |ψ⟩ =

∑m
j=1 |ψj⟩, with |ψj⟩ = Pj |ψ⟩ ∈ Vj.

Because the projectors are orthogonal the subspaces Vj are orthogonal as are the

states |ψj⟩. When we apply this measurement to the state |ψ⟩ we get the outcome j

(label of the projector) with probability ∥Pj |ψ⟩∥2 = Tr(Pj |ψ⟩ ⟨ψ|) = ⟨ψ|Pj |ψ⟩ . The

measured state collapses to the new state Pj |ψ⟩ / ∥Pj |ψ⟩∥ .
To familiarize the reader with this type of measurement consider the 2-qubit

state |ψ⟩ = (|00⟩+ |01⟩+ |11⟩)/
√
3. Let P1 = |00⟩ ⟨00| and P2 = |01⟩ ⟨01|+ |10⟩ ⟨10|+

|11⟩ ⟨11| and carry out a projective measurement on |ψ⟩ with this two projectors.

Since P1 |ψ⟩ = |00⟩ /
√
3 and P2 |ψ⟩ = (|01⟩+ |11⟩)/

√
3. We will observe the outcome

“1” with probability ⟨ψ|P1 |ψ⟩ = 1/3 collapsing the state of the system to |00⟩ and

we will observe the outcome “2” with probability 2/3 collapsing the state of the

system to (|01⟩+ |11⟩)/
√
2.

The most general type of measurement is the positive operator-valued measure
(POVM). This measurement is commonly used when we only care about the final

probability distribution of the possibles outcomes, not about the post-measurement

state of the system. A POVM is specified by m positive semi-definite2 matrices
1Let T : V → V be an linear transformation. Given an eigenvalue λ, consider E = {|v⟩ : T |v⟩ =

λ |v⟩} which is the set of all the eigenvectors associated with λ. E is called the eigenspace of T
associated with λ.

2A Hermitian matrix M is positive semi-definite if the scalar ⟨z|M |z⟩ is nonnegative for every
nonzero complex |z⟩.
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E1, . . . , Em that sum to identity. Each one of these matrices are usually called the

elements of the POVM. When measuring a state |ψ⟩ with this POVM the probability

of observing the outcome j, 1 ≤ j ≤ m, is given by ⟨ψ|Ei |ψ⟩ = Tr(Ei |ψ⟩ ⟨ψ|). A

projective measurement is the special case of a POVM where the elements Ej are

projectors.

Peres/Wootters Game

To illustrate a possible use of a POVM we will introduce a quantum detection prob-

lem due to Holevo [Hol73b] and Peres/Wootters [Per97]. Suppose we receive a

qubit |ψj⟩ which is guaranteed to be in one of the following states:

|ψ0⟩ =
1√
2
(|0⟩+ |1⟩) or |ψ1⟩ =

1√
2
(|0⟩+ ω |1⟩) or |ψ2⟩ =

1√
2
(|0⟩+ ω2 |1⟩),

where ω = exp(2iπ/3).

Our task is to answer in which state |ψj⟩ was not in. Our valid answers for each

one of the possible states we got as input are:

• If j = 0 answer 1 or 2.

• If j = 1 answer 0 or 2.

• If j = 2 answer 0 or 1.

To achieve this goal we are going to build a POVM with three elements. First we

need to define the following vectors: |E ′
0⟩ orthogonal to |ψ0⟩, |E ′

1⟩ orthogonal to

|ψ1⟩ and |E ′
2⟩ orthogonal to |ψ2⟩:

|E ′
0⟩ =

1√
2
(|0⟩ − |1⟩), |E ′

1⟩ =
1√
2
(|0⟩ − ω |1⟩), |E ′

2⟩ =
1√
2
(|0⟩ − ω2 |1⟩).

Now, we can use these vectors to define our POVM elements:

E0 =
2

3
|E ′

0⟩ ⟨E ′
0| , E1 =

2

3
|E ′

1⟩ ⟨E ′
1| , E2 =

2

3
|E ′

2⟩ ⟨E ′
2| ,

that sum to I as required.

After verifying that Tr(Ej |ψj⟩ ⟨ψj|) = 0 for i = 0, 1, 2 one can conclude that this

POVM never output the wrong answer. In other words, this POVM always identifies

which state we did not get as input.
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9.2 Intuition of a Quantum Strategy for the c-
coloring game

In Section 8.3 we presented a protocol that wins the c-coloring game on all

Hadamard graphs. Our goal for this section is not to present another graph or

family of graphs that provide pseudo-telepathy on the c-coloring game but to give

an intuition on what two quantum strategies for any graph would look like.

Consider the graph G = (V,E) below:

v1

v3

v2

v4

One way Alice and Bob could win the c-coloring game on the graph G is to play

according to the following strategy: Before the game starts they share the entangled

state |ψ⟩AB = (|00⟩+ |11⟩+ |22⟩)/
√
3 and define four unitary matrices:

Uv1 = Uv4 =

1 0 0
0 1 0
0 0 1

 , Uv2 =

0 1 0
0 0 1
1 0 0

 , Uv3 =

0 0 1
1 0 0
0 1 0

 .
After moving to separate locations the referee sends Alice a vertex a ∈ V and

Bob a vertex b ∈ V . Alice applies the unitary transformation Ua on her part of

|ψ⟩AB, then she measures the resulting state in the computational basis (defined in

2.6) and sends the output to the referee. Bob proceeds in the same manner.

Let us verify that this strategy always wins the c-coloring game on the

graph G. Suppose Alice input is the vertex v3 and Bob got v2 as input. Af-

ter Alice applies Uv3 on her part of |ψ⟩AB, then the entangled state becomes

|ψ′⟩AB = (|1⟩ |0⟩+ |2⟩ |1⟩+ |0⟩ |2⟩)/
√
3. Now, let us express with a table: the possible

results of Alice’s measurement, the state |ψ′⟩AB collapses given the result of this

measurement, and the final state after Bob applies Uv2 on his part of the system

and Bob’s output.

Alice Output |ψ′⟩AB Collapse to |ψ′′⟩AB After Bob Applies Uv2 on |ψ′′⟩AB Bob Output
0 |0⟩A |2⟩B |0⟩A |1⟩B 1
1 |1⟩A |0⟩B |1⟩A |2⟩B 2
2 |2⟩A |1⟩B |1⟩A |0⟩B 0
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After they conclude this protocol the referee received one of the three possible

proper coloring of the vertices v3 and v2: 2, 1 or 0, 2 or 1, 0. It is straightforward to

verify that this strategy always wins the c-coloring game on this graph.

Another way we could formulate a quantum strategy for this game would be

to replace the unitary matrices and measurement in the computational basis by a

projective measurement. Using the same graph and entangled state |ψ⟩AB consider

these four observables with their respective projectors:

M1 = M4 = −1 |0⟩ ⟨0|︸ ︷︷ ︸
P

(1)
−1

+0 |1⟩ ⟨1|︸ ︷︷ ︸
P

(1)
0

+1 |2⟩ ⟨2|︸ ︷︷ ︸
P

(1)
+1

,

M2 = +0 |0⟩ ⟨0|︸ ︷︷ ︸
P

(2)
0

+1 |1⟩ ⟨1|︸ ︷︷ ︸
P

(2)
+1

−1 |2⟩ ⟨2|︸ ︷︷ ︸
P

(2)
−1

,

M3 = +1 |0⟩ ⟨0|︸ ︷︷ ︸
P

(3)
+1

−1 |1⟩ ⟨1|︸ ︷︷ ︸
P

(3)
−1

+0 |2⟩ ⟨2|︸ ︷︷ ︸
P

(3)
0

.

With this strategy, Alice and Bob make a projective measurement using one of

the four observables according to the vertex they got as input. Suppose Alice got

the vertex v3 as input. Let us express the result of Alice measuring her part of |ψ⟩AB
with the observable M3 with the table:

Output |ψ⟩AB Collapse to |ψ′⟩AB
+1 |00⟩
−1 |11⟩
0 |22⟩

It is easy to check that if Bob got the vertex v3 as input he would output the

same color Alice did. Considering he got the vertex v1 (or v4) as input. Measuring

the state |ψ′⟩AB with the observable M1 would result in the following:

Given Alice Output was |ψ⟩AB Collapse to |ψ′⟩AB Bob Output After
Measuring |ψ′⟩AB with M1

+1 |00⟩ −1
−1 |11⟩ 0
0 |22⟩ +1

One could check that the above strategy work by testing all the combination

of inputs. In the next section, we are going to define two consistency conditions

inspired by this strategy with projective measurements that make Alice and Bob

win the c-coloring game with certainty.
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9.3 G18, General Strategy and Rank-r Version

In 2006, Cameron, Newman, Montanaro, Severini and Winter [CMN+06] proved

various general facts about the quantum chromatic number. We are particularly

interested in their results involving the G18, a graph with 18 vertices and 44 edges

with chromatic number 5 and quantum chromatic number 4.

1

3
2

4

5
6

7

8

9

10
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13 14

15 16

17 18

G18

One of the goals of this chapter will be to use their results to explicitly formulate

a quantum strategy for the G18 in terms of the unitary matrices Alice and Bob apply

to each vertex. To achieve this goal we need first to understand how they defined

a general quantum strategy for the c-coloring game and also the rank-r version of

the quantum chromatic number.
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Definition 9.3.1 [CMN+06]
The most general strategy for Alice and Bob to win the c-coloring with prob-
ability 1 with c colors for a graph G = (V,E) consists of an entangled state
|ψ⟩AB ∈ Cd⊗Cd and two families of POVMs. For all v ∈ V , Alice has {Ev

α}α=1,...,c

and Bob has {F v
β}β=1,...,c. This entangled state and POVMs are set by the play-

ers before they get their inputs. When the game starts Alice applies a POVM
measurement according to the vertex she got as input and outputs α, the result
of this measurement (one of the c possible colors). Bob acts similarly and out-
puts β. The fact that they win with probability 1 is expressed by the consistency
condition:

• The players will never output different colors for the same vertex:

∀v ∈ V, ∀α ̸= β, ⟨ψ|Ev
α ⊗ F v

β |ψ⟩ = 0.

• The player will never output the same color for any adjacent vertices:

∀vw ∈ E,∀γ, ⟨ψ|Ev
γ ⊗ Fw

γ |ψ⟩ = 0.

It is important to emphasize that the dimension d of the entangled state and the

rank3 of the POVMs have no relationship to c. Alice and Bob can use any entangled

state and families of POVMs they want. The only quantity we care about is c. In

this general strategy c is the number of possible measurements outcomes.

As we mentioned before we call the smallest c such that Alice and Bob can win

the c-coloring game the quantum chromatic number. The authors noted that an

equivalent definition of the quantum chromatic number is the smallest possible c for

which Alice and Bob while playing accordingly to a general strategy, can convince

the referee that the consistency condition always holds.

In Section II of [CMN+06] the authors prove that there is simpler way to for-

mulate the general strategy with just one family of POVMs and one consistency

condition. Considering the general strategy 9.3.1 we highlight the differences be-

tween these two strategies.

3The rank of a matrix M is the dimension of the vector space spanned by its columns. This
corresponds to the maximal number of linearly independent columns of M .
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Definition 9.3.2 [CMN+06]
For all v ∈ V Alice and Bob have {Ev

α}α=1,...,c. Alice’s strategy is the same but
Bob measures his part of the entangled state according to the vertex he got as
input with {F v

α}α=1,...,c = {Ev
α}α=1,...,c, for all v ∈ V . The consistency condition

can be phrased entirely in terms of Alice’s POVMs:

∀vw ∈ E and ∀α Ev
αE

w
α = 0. (9.1)

The notation M denotes the complex conjugate of the matrix M .

An interesting observation of this quantum graph parameter is that if we restrict

the rank of the POVM elements we can define a restricted case of the quantum

chromatic number.

Definition 9.3.3 [CMN+06]
The rank-r version of the quantum chromatic number χ(r)

q (G) is the minimum c
such that Alice and Bob can win the c-coloring game for G with an entangled
state |ψ⟩AB ∈ Crc ⊗ Crc with the restriction that all the elements of the POVMs
have rank r.

By the definition above the authors conclude that χ(r)
q (G) ≤ χ

(s)
q (G) whenever r ≥ s,

and that χq(G) = inf
r
χ
(r)
q (G). In particular, the rank-1 quantum chromatic number

is an upper bound of the quantum chromatic number.

9.4 Quantum Chromatic Number as a Graph Param-
eter

In Section III of [CMN+06] the authors study some properties of the quantum chro-

matic number as a graph parameter. We are particularly interested in two proposi-

tions from this section. We will first introduce the necessary concepts from graph

theory and then we will present these two properties.

A complete graph is a graph in which every pair of distinct vertices is connected

by a unique edge. A complete graph on n vertices is denoted by Kn. A graph

H = (Vh, Eh) is a subgraph of G = (V,E) if Vh ⊆ V and Eh ⊆ E. Using these two

concepts we will define a clique of a graph G as a complete subgraph of G. The

clique number of G, denoted by ω(G) is the size of the largest clique of G. Finally,

the last concept we need is graph homomorphism. A homomorphism from a graph

G to a graph H is a mapping ϕ : V (G) → V (H) such that

uv ∈ E(G) =⇒ ϕ(u)ϕ(v) ∈ E(H).
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We write G→ H if there is a homomorphism of G to H.

We are now in a position to prove the following propositions:

Proposition 9.4.1 [CMN+06]

If G→ H, then χ(r)
q (G) ≤ χ

(r)
q (H) for all r and hence χq(G) ≤ χq(H).

Proof. Consider the graph H. By Definition 9.3.2 of a general strategy, Alice and

Bob can share an entangled state |ψ⟩AB ∈ Cd ⊗ Cd and for all v ∈ V (H) there is

a family of POVMs {Ev
α}α=1,...,c of rank r such that the consistency condition (9.1)

always holds. Let ϕ be a homomorphism from G to H. Using the mapping ϕ and the

general strategy for the graph H Alice and Bob can define a general strategy for the

graph G in the following manner: They share the same entangled state |ψ⟩AB and

for all v ∈ V (G) they use the POVM {Eϕ(v)
α }α=1,...,c. It is straightforward to verify

that this construction satisfy the consistency condition 9.1. ■

In [CMN+06] the authors state two useful properties that we are going to use

to prove the next proposition. First, for any r ≥ 1, if G has no edges then χ(r)
q (G) =

χq(G) = 1. Second, for any r ≥ 1, if G = Kn then χ(r)
q (G) = χq(G) = n.

Proposition 9.4.2 [CMN+06]
ω(G) ≤ χq(G) ≤ χ(G).

Proof. For the leftmost inequality we note that any graph G contains Kω(G) as a

subgraph hence there is a homomorphism from Kω(G) to G. By Proposition 9.4.1

and the observation from the last paragraph we have that χq(Kω(g)) = ω(G) ≤
χq(G). For the rightmost inequality we note that there is a homomorphism from G

to Kχ(G), by mapping each vertex of G to the vertex of Kχ(G) corresponding to its

color. The results follows by Proposition 9.4.1 and the observation above. ■

9.5 A Strategy for the Rank-1 Quantum Chromatic
Number

The restricted case of the quantum chromatic number where all POVMs elements

have rank 1 can be modeled in two ways. In the first way Alice and Bob share a

c-dimension maximally entangled state |ψ⟩AB ∈ Cc ⊗ Cc, with c ≥ 2, defined as:

|ψ⟩AB =
1√
c

c∑
j=1

|j⟩A |j⟩B , (9.2)
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and apply the POVMs that correspond to the vertex they got as input that satisfy the

consistency condition (9.1). As the elements of the POVMs have rank 1 they are in

fact projective measurements.

In this chapter we are particularly interested in another strategy. In Section II of

[CMN+06] the authors prove that for this special rank-1 case we can formulate the

following strategy in terms of unitary matrices.

Definition 9.5.1
Alice and Bob share a c-dimension maximally entangled state |ψ⟩AB. For each
vertex v ∈ V they define a c × c unitary matrix Uv. The referee sends the
vertex v to Alice and w to Bob. Alice apply the unitary matrix U †

v on her part
of the entangled state and Bob apply the unitary matrix U⊤

w on his part of the
entangled state. By definition the system evolves according to the application of
(U †

v ⊗ U⊤
w ) to |ψ⟩AB. Next, they measure (U †

v ⊗ U⊤
w ) |ψ⟩AB in the computational

basis (defined in 2.6). Alice’s output is a color α ∈ [c] and Bob’s is a color
β ∈ [c]. The consistency condition for this strategy is:

∀vw ∈ E, U †
vUw has only zeroes on the diagonal. (9.3)

Let us prove that 9.5.1 provides a valid strategy for the c-coloring game.

Proof:

1) Alice and Bob get the same vertex v as input.

The following facts will be useful before we show that in this case they answer the

same color to the referee. Let c ≥ 2 and

Uv =

m11 · · · m1c
... . . . ...

mc1 · · · mcc

 .
By definition U †

vUv = I, so we can conclude that

c∑
p=1

mpqmpq = 1, for q = 1, . . . , c, (9.4)

and
c∑

p=1

mpqmpr = 0, for q, r = 1, . . . , c and q ̸= r. (9.5)

Now, we will study the evolution of the system:

(U †
v ⊗ U⊤

v ) |ψ⟩AB = (U †
v ⊗ U⊤

v )
1√
c
(|1⟩ |1⟩+ · · ·+ |c⟩ |c⟩)
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=
1√
c


m11

...
m1c

⊗

m11
...

m1c

+ · · ·+

mc1
...
mcc

⊗

mc1
...
mcc




=
1√
c

m11m11 + · · ·+mc1mc1
...

mc1mc1 + · · ·+mccmcc

 ,

by the summation 9.5 this state vector is equal to

=
1√
c

(
(m11m11 + · · ·+mc1mc1) |1⟩ |1⟩+ (m12m12 + · · ·+mc2mc2) |2⟩ |2⟩

+ · · ·+ (mc1mc1 + · · ·+mccmcc) |c⟩ |c⟩
)
,

and using the summation 9.4 we get to

=
1√
c

c∑
j=1

|j⟩ |j⟩ .

Because all the possible measurements outcomes are of the form jj, for j = 1, . . . , c,

Alice and Bob will answer the same color when they get the same vertex as input.

2) Alice and Bob get adjacent vertices v and w as input.

For this second scenario we need the following fact. Let c ≥ 2 and

Uv =

v11 · · · v1c
... . . . ...
vc1 · · · vcc

 , Uw =

w11 · · · w1c
... . . . ...
wc1 · · · wcc

 .
The product U †

vUw is the c× c matrix

K =

k11 · · · k1c
... . . . ...
kc1 · · · kcc


such that

kqr =
c∑

p=1

vpqwpr, for q, r = 1, . . . , c.

By the consistency condition 9.3 K has only zeroes on the diagonal so we have that

kqr = 0 for all q = r.
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We will show that in this second scenario there is no chance that Alice and Bob

answer the same color to the referee. The state of the system evolves according to:

(U †
v ⊗ U⊤

w ) |ψ⟩AB = (U †
v ⊗ U⊤

w )
1√
c
(|1⟩ |1⟩+ · · ·+ |c⟩ |c⟩)

=
1√
c


v11...
v1c

⊗

w11
...
w1c

+ · · ·+

vc1...
vcc

⊗

wc1...
wcc




=
1√
c

v11w11 + · · ·+ vc1wc1
...

vc1wc1 + · · ·+ vccwcc


=

1√
c

(
k11, k12, · · · , k1c, k21, k22, · · · · · · , kc1, · · · , kcc

)⊤
,

because of the analysis we did above the state of the system is equal to

=
1√
c

(
0, k12, · · · , k1c, k21, 0, · · · · · · , kc1, · · · , 0

)⊤
=

1√
c

∑
q,r∈[c]
q ̸=r

kqr |q⟩ |r⟩ .

Because all the possible measurements outcomes are of the form qr, for q, r ∈ [c]

with q ̸= r, Alice and Bob will never answer the same color when they get adjacent

vertices as input. ■

Before we move to our goal to formulate the quantum strategy for the G18 in

terms of unitary matrices we need to present a proof of the theorem below (adapted

from Proposition 12 of [CMN+06]). Our proof that relates an orthogonal represen-

tation of a graph in R4 with the quantum chromatic number will help us find unitary

matrices to win the c-coloring game on the G18. An orthogonal representation4 of a

graph G is a mapping ϕ from the vertices of G to the non-zero vectors of some vec-

tor space whose entries are taken from the set {−1, 0, 1}, such that if two vertices x

and y are adjacent, then ϕ(x) and ϕ(y) are orthogonal.

Theorem 9.5.2 Adapted from [CMN+06]
Let G be a graph with an orthogonal representation in R4. Then, χ(1)

q (G) ≤ 4.

Proof: Let G = (V,E) be a graph with n vertices and an orthogonal representation

in R4. Then, by definition for every vertex v ∈ V we can associate a vector lv from

the orthogonal representation such that:

∀vw ∈ E, lv and lw are orthogonal.

4An orthogonal representation does not have any restriction on the entries of the vectors.
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For every lv ∈ R4 we will define a unitary matrix

Uv =
1√∑4
j=1 |vj|


v1 v2 v3 v4
−v2 v1 −v4 v3
−v3 v4 v1 −v2
−v4 −v3 v2 v1

 . (9.6)

This matrix is unitary because for any lv ∈ R4

U †
vUv =

1∑4
j=1 |vj|


v21 + v22 + v23 + v24 0 0 0

0 v22 + v21 + v24 + v23 0 0
0 0 v23 + v24 + v21 + v22 0
0 0 0 v24 + v23 + v22 + v21

 = I.

Now, let us verify that the consistency condition (9.3) holds. Let vw be any edge

of G we will show that diag(U †
vUw) = (0, 0, 0, 0):

diag(U †
vUw) =

1√(∑4
j=1 |vj|

)(∑4
j=1 |wj|

)(v1w1 + v2w2 + v3w3 + v4w4,

v2w2 + v1w1 + v4w4 + v3w3,

v3w3 + v4w4 + v1w1 + v2w2,

v4w4 + v3w3 + v2w2 + v1w1),

the four elements of the diagonal of U †
vUw are equal to the inner product of lv

with lw. As these vectors are associated with the vertices of an edge of G they are

orthogonal. Hence, diag(U †
vUw) = (0, 0, 0, 0) as desired.

In other words, if G has an orthogonal representation in R4, then Alice and Bob

can associate each vector of the orthogonal representation with a unitary matrix of

the form (9.6) and follow the strategy mentioned at the beginning of this section.

We have proved that they will win the c-coloring game with c = 4 for G with

certainty implying that χ(1)
q (G) ≤ 4. ■

9.5.1 Quantum Chromatic Number of G18

In [CMN+06] the authors verified that the classical chromatic number of the graph

G18 is 5. For the quantum chromatic number they first provided the following list

of vectors:
l1, l2, . . . , l18 = (0, 0, 1,−1), (1, 0, 0, 0), (0, 1, 1, 1), (0, 1, 0,−1), (0, 0, 1, 0),

(1, 1, 0, 1), (1,−1, 0, 0), (0, 0, 0, 1), (1, 1, 1, 0), (1, 0,−1, 0),

(0, 1, 0, 0), (1, 0, 1, 1), (0, 1,−1, 0), (1, 0, 0,−1), (1, 1, 1, 1),

(1, 1,−1,−1), (1,−1, 1,−1), (1,−1,−1, 1),

(9.7)
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which gives an orthogonal representation of G18 ∈ R4 implying that χ(1)
q (G) ≤ 4.

As we mentioned before the rank-1 quantum chromatic number is an upper

bound of the quantum chromatic number. To conclude χq(G18) = 4 the authors

observed that the G18 graph contains a 4-clique (vertices 15−18). So by Proposition

9.4.2 they proved that χq(G) = 4

As we promised at the beginning of this subsection we are going to simulate a

round of the c-coloring game with the G18 graph. First Alice and Bob receive the

graph G18 from the referee. They agree on the list of vectors (9.7) which gives

an orthogonal representation in R4 and also on the unitary matrix given in (9.6).

Before moving apart they share the entangled state

|ψ⟩AB =
1√
4

4∑
j=1

|j⟩A |j⟩B ,

and inform the referee they have a 4-coloring of the graph. The game starts and the

referee sends the vertex v1 to Alice and the vertex v3 to Bob.

Alice is going to apply the unitary matrix

U †
1 =

1√
2


0 0 −1 1
0 0 −1 −1
1 1 0 0
−1 1 0 0

 , (9.8)

given by l1 and Bob the unitary matrix

U⊤
3 =

1√
3


0 −1 −1 −1
1 0 1 −1
1 −1 0 1
1 1 −1 0

 , (9.9)

given by l3. By definition, the system evolves according to:

(U †
1 ⊗ U⊤

3 ) |ψ⟩AB = (U †
1 ⊗ U⊤

3 )
1

2
(|1⟩ |1⟩+ |2⟩ |2⟩+ |3⟩ |3⟩+ |4⟩ |4⟩)

=
1

2
√
6

(
(|3⟩ − |4⟩)(|2⟩+ |3⟩+ |4⟩) + (|3⟩+ |4⟩)(− |1⟩ − |3⟩+ |4⟩)

+ (− |1⟩ − |2⟩)(− |1⟩+ |2⟩ − |4⟩) + (|1⟩ − |2⟩)(− |1⟩ − |2⟩+ |3⟩)
)

=
1

2
√
6

(
|3⟩ |2⟩+ 2 |3⟩ |4⟩ − |4⟩ |2⟩ − 2 |4⟩ |3⟩ − |3⟩ |1⟩ − |4⟩ |1⟩

− 2 |1⟩ |2⟩+ |1⟩ |4⟩+ 2 |2⟩ |1⟩+ |2⟩ |4⟩+ |1⟩ |3⟩ − |2⟩ |3⟩
)
.

Because all the possible measurement outcomes are different Alice and Bob send

different colors to the referee.
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9.6 Another Graph with χ > χq

Mančinska and Roberson in 2016 [MR18] discovered the smallest known example

of a graph with quantum chromatic number smaller than the classical chromatic

number. They start by considering the G13 graph

A

B C

M L

N

Z

W

Y

R

Q

X
P

G13

which has an orthogonal representation in R3 given by the following list of vectors:

lA, lB, lC , lQ, lR, lN , lP , lL, lM , lW , lY , lX , lZ = (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0), (1,−1, 0),

(1, 0, 1), (1, 0,−1), (0, 1, 1), (0, 1,−1),

(1, 1, 1), (1, 1,−1), (1,−1, 1), (−1, 1, 1).

Next, they considered a graph denoted as G14 that can be obtained by adding an ex-

tra vertex to G13 and making it adjacent to all the 13 vertices of G13. This additional

vertex is called an apex vertex denoted by Ω. If we consider the orthogonal repre-

sentation of G13 we can construct an orthogonal representation of G14 by adding a

coordinate which is zero and assign the vector (0, 0, 0, 1) to Ω.

First, the authors using Theorem 9.5.2 noted that χq(G13) ≤ 4. Next, they gave

an explicit proof that the quantum chromatic number of G13 is 4 which is equal

to the classical chromatic number. Again, by Theorem 9.5.2 χq(G14) ≤ 4 but as

χq(G14) ≥ χq(G13) = 4 they concluded that

χq(G14) = χq(G13) = 4.

Adding an apex vertex to any graph would increase the chromatic number by one

unit. Surprisingly, for the G13 the quantum chromatic number remained unchanged

after this addition. As a further remark the authors suspected that χ(G) = χq(G)

for any graph G with fewer than 14 vertices.
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Chapter 10

Other Quantum Graph Parameters

This final chapter is dedicated to the study of two other quantum graph param-

eters quantum homomorphism and the quantum independence number. We are

interested in two aspects of these parameters: first, presenting the main difference

from these parameters with the quantum chromatic number, and second, exhibiting

graphs whose classical and quantum parameters differ. For a thorough introduction

to these topics, we refer the reader to [MR16] and [Sca13].

10.1 Quantum Homomorphisms

Mančinska and Roberson in 2016 [MR16], besides other results, studied a gener-

alization of the c-coloring game called the (X, Y )-homomorphism game. In this

nonlocal game Alice and Bob’s goal is to convince a referee that a graph G admits a

homomorphism to a graph H with certainty.

Let us formally define this game. In the (X, Y )-homomorphism game Alice and

Bob receive a pair of graphs X and Y from a referee. They agree on a strategy to

convince the referee that X → Y who will test their claim with a one-round game.

The game starts and the players are not allowed to communicate. The referee sends

vertices xA and xB of X to Alice and Bob, respectively. Instead of sending two

colors, as they did in the c-coloring game, the players will send two vertices of Y to

the referee. Alice sends yA and Bob sends yB. They win the (X, Y )-homomorphism

game if the following conditions are satisfied:

if xA = xB, then yA = yB;

if xA ∼ xB, then yA ∼ yB.

To understand why this game is a generalization of the c-coloring game note

that a homomorphism from a graph X to the complete graph Kc is equivalent to a
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c-coloring of X. As Kc is c-colorable we can assign a color to each vertex x of X

with the color assigned to ϕ(x) of Kc. This argument implies that when Y = Kc the

(X, Y )-homomorphism game reduces to the c-coloring game.

By an argument similar to the classical strategy of the c-coloring game (see

Theorem 8.1.2) classical players can only win the (X, Y )-homomorphism game if

X → Y .

A general quantum strategy for this game is identical to the one presented for

the c-coloring game except for the families of POVMs used by the players. For all

x ∈ V (X), Alice has {Ex
α}α∈V (Y ) obtaining some outcome α ∈ V (Y ) when she

measures her part of the entangled state |ψ⟩AB ∈ Cd ⊗ Cd. Bob has {F x
β }β∈V (Y )

obtaining some outcome β ∈ V (Y ) when he measures his part of the entangled

state. For this game the consistency condition is:

• The players will never output different vertices when they got the same vertex

x as input:

∀x ∈ V (X),∀α ̸= β, ⟨ψ|Ex
α ⊗ F x

β |ψ⟩ = 0.

• The player will never output the same vertex for any adjacent vertices xAxB
they got as input:

∀xAxB ∈ E(X),∀α ̸∼ β, ⟨ψ|ExA
α ⊗ F xB

β |ψ⟩ = 0.

Whenever quantum player can win this game we are going to say that X
q−→ Y .

The same observation we did on Section 9.3 about the notation of the POVM also

applies to this consistency condition.

In the c-coloring game we were interested in graphs that quantum players can

win with a c < χ(G). Up until now the only examples of graphs X and Y such

that X ̸→ Y but X
q−→ Y are with one of the graphs being complete or when Kn

is a subgraph of Y for some positive integer n [MR16]. For instance the (G18, K4)-

homomorphism game1 is a nonlocal game because G18 ̸→ K4 but G18
q−→ K4.

To end this section, we note that in the same manner several graph parameters

can be defined in terms of homomorphisms it is also possible to define quantum

analogs of these parameters. By simply replacing “homomorphism” with “quantum

homomorphism” in the definition we have the following:

quantum chromatic number: χq(G) := min{n ∈ N | G q−→ Kn},
1We could also say that the (G14,K4)-homomorphism game is a nonlocal game by the same

argument
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quantum clique number: ωq(G) := max{n ∈ N | Kn
q−→ G}.

10.2 Quantum Independence Number

Another graph parameter presented in [MR16] was the quantum independence

number. Let us first define the classical independence number before we move to

the quantum counterpart. An independent set is a set of vertices in a graph such

that no two elements of this set are adjacent. An independent set is maximum
if the graph contains no larger independent set. The cardinality of a maximum

independent set of G is called the independence number and is denoted by α(G).

Another way we could define the independence number would be using the

clique number of a graph, for this, we need to define the complement of a graph.

The complement of a graph G, denoted by G is a graph with V (G) = V (G) such

that two distinct vertices of G are adjacent if and only if they are not adjacent in G.

With these definitions we have that α(G) := ω(G), and in the quantum framework

αq(G) := ωq(G).

Scarpa in [Sca13] proposed the following2 nonlocal game that gives an alter-

native definition to αq(G) that is closely related to the c-coloring game. In the

t-independent set game Alice and Bob receive a graph G from the referee. They

agree on a strategy to convince the referee that they know a t-tuple (v1, . . . , vt)

whose vertices can be used to make an independent set I of G. The referee will

test their claim with a one-round game. After the game starts the players are not

allowed to communicate. The referee chooses two numbers x, y ∈ [t] and separately

asks Alice to provide the vx vertex of the t-tuple and Bob to provide the vy vertex

of the t-tuple. They win the t-independent set game if the following consistency

condition is satisfied:

if x = y, then vx = vy;

if x ̸= y, then vx ̸∼ vy.

By an argument similar to the classical strategy of the c-coloring game (see Theorem

8.1.2) classical players cannot win this game with certainty when t > α(G). The

general quantum strategy is almost the same as the one presented for the c-coloring

2We have in fact made some adaptations to his version of the game.
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game. The only difference is in the families of POVMs that are defined using the

vertices from I the independent set of G.

Now that we have presented this nonlocal game we can define αq(G) without

quantum homomorphism. For all graphs G, the quantum independence number is

the maximum number t for which Alice and Bob can convince the referee that the

consistency condition above always hold for the t-independent set game played

with the graph G.

As mentioned earlier the goal of this section will be to explicitly calculate the

independence and quantum independence number of graphs in which these param-

eters differs. We are interested in graphs G such that α(G) < αq(G). To achieve this

goal we will use Theorem 3.4.8 from [Sca13]. Before we move to this theorem we

need to define the Cartesian product of graphs and also three lemmas.

Definition 10.2.1
The Cartesian product of graphs G and H, denoted by G□H is a graph such that:
The vertex set of G□H is the Cartesian product V (G) × V (H) and two vertices
(u, u′) and (v, v′) are adjacent in G□H if and only if either u = v and u′ is
adjacent to v′ in H, or u′ = v′ and u is adjacent to v in G.

Now that we have defined the Cartesian product of graphs we can move to the

following lemmas:

Lemma 10.2.2 [Sca13]
Let G be a graph on n vertices with χ(G) > k. Then we have α(G□Kk) < n.

Proof. Consider the graph G□Kk. By the definition of the Cartesian product the

vertex set of G□Kk can be partitioned into n disjoint cliques of size k. Towards a

contradiction, suppose α(G□Kk) ≥ n. As we can pick at most one vertex from each

clique suppose α(G□Kk) = n and let I be an independent set of size n. Using the

graph G□Kk we can get a k-coloring of G, as follows: if (v, ki) ∈ I we will color

v ∈ V (G) with color i, where i ∈ [k]. This is a proper k coloring of G because by

the definition of the Cartesian product of graphs, for all v ∼ u ∈ E(G) we have

((v, ki) ∼ (u, ki)) ∈ E(G□Kk), implying that the vertices v and u will not both get

color i. This contradicts the assumption that χ(G) > k. ■

The other result we need is:

Lemma 10.2.3 [Sca13]
Let G be a graph on n vertices and χq(G) ≤ k. Then we have αq(G□Kk) = n.
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We will omit the proof of this lemma (that can be found on Section 3.4.2 of [Sca13])

as it needs further concepts that are out of the scope of this section.

Finally, the last lemma is due to Vizing

Lemma 10.2.4 [Viz63]
For all graphs G, H, the independence number of their Cartesian product satis-
fies

α(G□H) ≤ min{α(G) · |V (H)|, α(H) · |V (G)|}

Proof. Assume without loss of generality that α(G) · |V (H)| ≤ α(H) · |V (G)|.
Suppose, towards a contradiction that α(G□H) > α(G) · |V (H)|, then there is a

h ∈ V (H) such that there are more than α(G) non-adjacent vertices of G□H of the

form (g, h). This implies the existence of an independent set of G of size larger than

α(G), because there is an edge between (v, i) and (w, i) whenever vw ∈ E(G). ■

Combining these three results we obtain the following.

Theorem 10.2.5 [Sca13]
Let G be a graph on n vertices with χ(G) > χq(G) = k. Then:

1) α(G□Kk) < αq(G□Kk) = n.

2) α(G□Kk) ≤ α(G) · k.

Proof. For the first bound we note that the graph G with n vertices has χ(G) > k and

χq(G) = k we have from Lemma 10.2.2 that α(G□Kk) < n and from Lemma 10.2.3

that αq(G□Kk) = n. Combining these two results gives the desired inequality.

For the second bound it follows from Lemma 10.2.4 that

α(G□Kk) ≤ min{α(G) · k, 1 · n},

which gives the desired inequality. ■

Inspired by these results we computed the independence and quantum indepen-

dence number of the following graphs:

G |V (G)| |E(G)| α(G) αq(G)
G18□K4 72 284 17 18
G14□K4 56 232 13 14

In Section 8.2 we saw that Hadamard graphs exhibit an exponential separation

between quantum and classical chromatic number. Now, we are going to build

another family of graphs that exhibits a separation in the quantum and classical

independence number. Each member of this new family is a Cartesian product of a

Hadamard graph with a complete graph.
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To show this gap consider the Hadamard graph HN . Let N = 4k ≥ 12. By

Theorem 8.2.1 χq(HN) ≤ N while χ(HN) > N . Consider the graph HN□KN .

By Lemma 10.2.3 if χq(HN) ≤ N then αq(HN□KN) = |V (HN)| = 2N . For the

classical case from [FR87] it follows that for the same N , there exists an ϵ > 0

such that α(HN) ≤ (2− ϵ)N . By the second bound of Theorem 10.2.5 we have that

α(HN□KN) ≤ (2− ϵ)N ·N .

In particular, using a result from [dKP07] that proved that α(H16) = 2304 and

the discussion above we have that

αq(H16□K16) = |V (H16)| = 216 = 65536,

while

α(H16□K16) ≤ α(H16) · 16 = 36864.
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Appendix A

Bob’s Matching Theorem

The following theorem allows us to prove that with probability at least 1/2, Bob’s

matching M contains an {i, j} with i ∈ S1 and j ∈ S2.

Bob’s Matching Theorem
Let n be an even perfect square and

S ∈u
(

n

2
√
n

)
.

Consider the disjoints subsets

S1 ∈u
(
S√
n

)
and S2 := S \ S1,

and let M be a matching taken uniformly at random from the set of all perfect
matchings on [n] (a partition into n/2 disjoints pairs of [n]).
Bob’s matching theorem states that:

P(∃{i, j} ∈M, i ∈ S1 and j ∈ S2) ≥ 1/2.

Before we start our proof it is useful to think about the perfect matching M as a

graph. For instance, for n = 16 we could have the following sets S1 and S2

S1

S2
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in this example we have exactly two edges with one endpoint in S1 and one end-

point in S2.

Proof. Let n, S1, S2 and M as defined in the theorem. The total amount of events,

expressed by T , is equal to the total amount of sets S1 and S2 we can make:

T =

(
n√
n

)(
n−

√
n√

n

)
.

Our first goal will be to calculate the total possible amount of bad events. Given

M,S1 and S2 we define a bad event as the scenario where there is not a single edge

with one endpoint in S1 and the other endpoint in S2.

After calculating the total number of bad events we will prove our theorem by

showing that

P(∃{i, j} ∈M, i ∈ S1 and j ∈ S2) = 1− # bad events
T

≥ 1

2
.

For that we need to define two sets, let

D = {{i1, i2} | i1, i2 ∈ S1 and {i1, i2} ∈M},

and

B = {v ∈ [n] \ S1 | {i, v} ∈M for some i ∈ S1}.

The members of the set B are the ones that if they belonged to S1 they would

be part of an element of D. Below are three possible examples for n = 16:

S1

m1 m2

m3 m4

m5 m6

m15 m16

S1

m1 m2

m3 m4

m5 m6

m15 m16

S1

m1 m2

m3 m4

m5 m6

m15 m16

m7 m8

D = {m1m2,m3m4} D = {m3m4} D = ∅

B = ∅ B = {m2,m6} B = {m2,m4,m6,m8}

It is straightforward to see that the size of the set D ranges from zero to
√
n/2

(inclusively). And we can write the size of the set B as |B| =
√
n− 2|D|. With this

last equality we can calculate the size of |S1 +B| =
√
n+

√
n− 2|D| = 2(

√
n− |D|).
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Some useful observations are that when |D| =
√
n/2 it is impossible to have a

good event at least one edge with one endpoint in S1 and the other endpoint in S2.

But when |D| = 0 to have just bad events we must have |B| =
√
n.

The total amount of bad events (TB) is given by

TB =

√
n/2∑
d=0

#type d︷ ︸︸ ︷(
n/2

d

) # not type d︷ ︸︸ ︷(
n/2− d√
n− 2d

) # possible combinations︷ ︸︸ ︷
2
√
n−2d︸ ︷︷ ︸

|S1+B|

(
n− 2(

√
n− d)√
n

)
︸ ︷︷ ︸

|S2|

.

Evaluating TB/T for different values of n we note that this quantity converges

to 1/e as n gets bigger. Let Rn = TB/T for n = 43, 44, . . . , 410:

n Rn Rn −Rn−1 1/e−Rn

43 0.31774 0.050139
44 0.34388 0.026145 0.023993
45 0.35613 0.012252 0.011741
46 0.36207 0.005932 0.005808
47 0.36499 0.002919 0.002889
48 0.36643 0.001448 0.001440
49 0.36715 0.000721 0.000719
410 0.36751 0.000360 0.000359

With this analysis, we can conclude that the probability of success is

1− TB/T ≈ 1− 1/e ≈ 0.63. This completes the proof that

P(∃{i, j} ∈M, i ∈ S1 and j ∈ S2) ≥ 1/2. ■
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