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Abstract

SILVA, A. C. M.Comparative Analysis of Image-to-Image Transformation Learn-
ing Approaches. 2020. Master Thesis - Institute of Mathematics and Statistics, Univer-
sity of São Paulo, São Paulo, 2020.

Manually designing an image operator that performs a specific transformation of im-
ages is a hard and time consuming task. The problem of automatically learning image op-
erators has been researched throughout the years. Methods that tackle this problem can be
roughly divided into three types: the traditional pixelwise or sliding-window approaches,
the patch-to-patch approaches enabled by recent end-to-end deep learning models, and
the structurally oriented approaches based on generative techniques. Each approach has
its own advantages and drawbacks. The goal of this dissertation is to study the simi-
larities and differences among these approaches, both conceptually and experimentally.
In particular, we are interested in understanding how well structural information of the
images such as connected thin lines are preserved. The first contribution of this work is an
end-to-end method that joins the advantages of pixelwise and patch-to-patch approaches,
which we call SConvNet. A second contribution is a study that shows that the skeletal
similarity based metric is well suited for evaluating handwritten document binarization
algorithms in a complementary way to traditional pixelwise metrics. At last, we present
an experimental comparison among representative methods of the outlined three types of
approaches, with respect to traditional pixelwise as well as the skeletal similarity metrics,
on two image processing tasks (retinal blood vessel segmentation and handwritten doc-
ument binarization). Better pixelwise metrics were achieved by patch-to-patch methods
while better structural metrics were achieved by structural approaches. This is consistent
with visual inspection, which shows that structural approaches better preserve the overall
structure while patch-to-patch methods generate more precise contours.

Keywords: image-to-image transformations, machine learning, convolutional neural net-
works, image segmentation, image binarization, structure prediction.
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Chapter 1

Introduction

With the advent of technology and the popularization of digital cameras in many
accessible devices, such as mobile phones and smartphones, the amount of available digi-
tal images has been constantly increasing. With that comes a great interest in processing
those images in an efficient manner. For instance, one could sharpen the edges of an im-
age to facilitate the detection of objects, remove degradation and noise from a picture,
or even highlight a specific object within a set of images. Most of these image processing
techniques can be seen as an image-to-image transformation, that is, an operation that
transforms a given image into a version of it that corresponds to a predetermined pattern
(for instance, a smoother version of the image or an image with specific parts highlighted).
Many works on image-to-image transformation are found in the literature, such as col-
orizing a grayscale image (Zhang et al., 2016), denoising a picture (Buades et al., 2005),
removing the effects of camera shake during photographs (Fergus et al., 2006)) or trans-
forming a sketch into a realistic picture (Chen et al., 2009). Some examples are shown
in Figure 1.1, from generating a photo from a sketch to segmentation of streets from an
aerial image.

Although some transformations can be easily implemented or already have an es-
tablished/proven method that performs them, such as transforming a colour image into
a black and white one, extracting edges from an image (Canny, 1986) or enhancing the
contrast of a picture (Pizer et al., 1987), in general they are not as obvious or, in some
cases, a formula that achieves the desired result may even not exist.

Machine learning based approaches are commonly employed when the underlying
rules of a transformation is not obvious. In this sense, the problem of learning image-to-
image transformations could be formulated as follows: given a set of images and their cor-
responding transformation (which must be manually created, at first), estimate a function

1



2 INTRODUCTION 1.1

Figure 1.1: Example of different image-to-image transformations, mapping an input image into
an output one. (source: Isola et al. (2017))

that receives an image and returns a transformed one that best approximates an expected
transformation. In this work we study image-to-image transformation tasks in which the
generated output image has the same size of the input image, and the pixel localization
is kept. Thus, no transformations such as scaling or rotation will be considered.

Methods for automatically learning an image-to-image transformation have been
extensively researched. We consider convenient to categorize them into three different
approaches, depending on the techniques employed in the training phase of the algorithm,
as pixelwise, patch-to-patch, or structurally oriented approaches.

Pixelwise approaches model the problem of learning an image transformation as a
problem of classifying image patches, each centered on a pixel of the image. The main idea
is to classify a small region of the image, and then use this classification as the value of the
region’s central pixel on the output image. This approach has been studied throughout the
years (Barrera et al. (1997); Julca-Aguilar and Hirata (2017); Montagner et al. (2016))
and has presented good performance on locally defined transformations.

The second approach consists in training deep learning methods that receive as
input an image patch and output another patch of the same size. Examples are Fully
Convolutional Networks (Badrinarayanan et al. (2017); Long et al. (2015)) and UNet
(Ronneberger et al. (2015)). This approach is aimed at reducing the cost of predicting
each pixel individually.

The third approach consists in modeling the objects of interest in the image, and
then optimizing the structure of that object in the output image. Modeling the relationship
of pixels in this manner can be done explicitly (Zheng et al. (2015)) or implicitly within
a deep learning architecture (Isola et al. (2017)).
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1.1 Motivation

To the best of our knowledge, there is no systematic comparison between image-to-
image transformation learning approaches. Thus, given a task, it is unclear which approach
would be best suited for learning the transformation. Image processing tasks are diverse
and often related to distinct needs. For instance, while for autonomous vehicles a real-time
semantic segmentation of natural scene images is critical, for automatic disease diagnosis
from medical images an accurate segmentation is much more critical than the processing
speed. In contrast, for handwritten document binarization the most important aspect is
the structural consistency between the strokes in the original and binarized images, rather
than processing speed or pixel-level accuracy.

Some differences of the approaches can be seen in the description of the method. For
instance, Fully Convolutional Networks (FCN) were motivated by the inefficient prediction
of pixelwise approach, as the latter must be applied to every pixel iteratively (Long et al.,
2015). FCN creates a dense prediction of the image by predicting all of the pixels at once.
However, the information about the pixel location is lost during this transformation,
which may lead to blob-like regions in the output image. Hence, FCN can be suited for
autonomous vehicles but it is not efficient for automatic disease diagnosis. Besides, most
methods optimize a pixelwise metric, trying to match every pixel of the output to a ground
truth image. This may not be appropriate to some tasks, such as document binarization,
in which the structural consistency is more important than an accurate segmentation.
Structurally-oriented approaches were created to tackle this problem.

In order to choose the adequate method for a specific task, one must understand the
unique characteristics of each. Therefore, it is important to have a systematic comparison
of the approaches.

1.2 Objectives

The main objective of this work is to study and analyze approaches to image-to-
image transformation learning, from the theoretical and practical point of view. We chose
to follow the categorization previously described.

More specifically, the objectives of this work can be listed as follows:

• Study the three approaches (pixelwise, patch-to-patch and structurally oriented)
and identify the specific advantages and drawbacks of each.
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• Investigate and implement methods that could unite the advantages of each ap-
proach.

• Experimentally evaluate the performance of methods from each approach, regarding
its pixelwise performance evaluation metrics and structurally-oriented metrics.

1.3 Contributions

The main contributions of this thesis are:

• Compilation of advantages and drawbacks of image-to-image transformation learn-
ing methods within the three approaches:

– For local transformations, pixelwise methods produce well defined objects.
However, time cost for training and prediction is higher.

– Patch-to-patch methods are fast during training as well as predicting, but they
lose pixel location information during the process. Output of these methods
can have blob-like structures.

– Structurally oriented approaches present better performance with respect to
structural metrics than other methods maintaining better structural consis-
tency between the ground truth and the prediction. However, these methods
are harder to model and to train.

• Development of SConvNet, an image-to-image learning method that is fully convolu-
tional and preserves pixel location, thus combining the advantages of both pixelwise
and patch-to-patch approaches. SConvNet is a simpler version of fully convolutional
networks, and a comparison between SConvNet and other methods is presented in
Chapter 5.

• Investigation about the use of Skeletal Similarity metrics for the evaluation of doc-
ument binarization algorithms. These metrics better capture the structure consis-
tency between two images, thus, they can be used to evaluate and compare different
binarization algorithms, in a complementary way to traditional pixelwise metrics.
This investigation resulted in a paper presented at the International Conference on
Frontiers in Handwriting Recognition 2020 (ICFHR 2020) (Silva et al., 2020).

• An extensive experimental comparison between the studied methods from the three
approaches, applied on retinal blood vessel segmentation and handwritten binariza-
tion, including:
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– Performance according to common pixelwise metrics

– Performance according to skeletal similarity metrics

1.4 Thesis Structure

The structure of this thesis is as follows: Chapter 2 presents a brief review on the
concepts of the three approaches, and describes example methods from each of the three
approaches. It also describes SConvNet, a simple method that combines the advantages of
pixelwise and patch-to-patch approaches. Chapter 3 presents a review of metrics used for
evaluating image-to-image transformation algorithms, both pixelwise Sensitivity, Speci-
ficity and Accuracy, as well as structurally oriented Skeletal Similarity. Chapter 4 presents
the investigation about using Skeletal Similarity metrics, which were designed for eval-
uation of vessel segmentation, to evaluate document binarization algorithms. Chapter
5 presents an experimental comparison of some of the methods described in Chapter 2
according to the evaluation metrics described in Chapter 3. Chapter 6 reports the con-
clusions of this work.
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Chapter 2

Image-to-Image Transformation
Learning Approaches

Methods for image-to-image transformation learning can be divided into three ap-
proaches based on how the image operator is modeled: a pixelwise approach (learning the
relationship between an image patch and the output value of its central pixel), a patch-
to-patch approach (learning the transformation between a patch and the output values of
the pixels in the entire patch) or a structurally oriented approach (learning the structure
of the objects of interest in the image by modeling the relationship between the pixels in
the output image). This chapter describes in more detail each of these approaches, high-
lighting differences, advantages and drawbacks, while also describing specific methods of
each. We chose to study methods that highlighted the differences of the approaches and
that had already shown good performance in previous works. Section 2.1 explains the
pixelwise approach and describes the family of W-Operators, the pixelwise modeling used
in this work. Section 2.2 explains the concepts of patch-to-patch approach, how it differs
from the pixelwise case, and details Fully Convolutional Network and UNet, two patch-
to-patch methods. Section 2.3 describes the concept of structurally oriented approaches
and details two methods that model the structure of the transformed image. Section 2.4
describes SConvNet, a simple architecture that unites the advantages of pixelwise and
patch-to-patch approaches.

2.1 Pixelwise approach

Traditional image processing algorithms are based on pixelwise processing. Typi-
cally, a function that receives image patches as input and returns scalar values is applied

7



8 IMAGE-TO-IMAGE TRANSFORMATION LEARNING APPROACHES 2.1

pixel-by-pixel, with each image patch being centered on one pixel and the output of the
function being assigned to the same pixel in the output image. This process is often called
sliding window approach, and the window usually is a rectangular shaped parameter that
defines the patch size. Hence, a natural machine learning approach to design image trans-
formations would be to learn these local functions from training images.

A large body of studies on image-to-image transformation learning tackles the design
problem this way (Julca-Aguilar and Hirata (2017); Montagner et al. (2017)), and most
of them consider a family of operators that are translation invariant and locally defined,
called W-Operators. Next, we formally define W-Operators and describe how W-Operator
learning works.

2.1.1 W-Operators

To keep the mathematical formulation simple, we restrict ourselves to grayscale
images. For convenience, we assume images are defined on the grid E = Z2 instead of on
a limited support region. Any grayscale image can be modeled as a function f : E → K

where K = {0, 1, ..., k−1} is the set of k gray levels. For every pixel p, f(p) is the intensity
value of the pixel in image f . The set of all grayscale images with k gray levels is denoted
as KE = {f |f : E→ K}.

An image operator is a function Ψ : KE → KE that takes a grayscale image f
as an input and returns a transformed one Ψ(f). The intensity value of pixel p in the
transformed image Ψ(f) is denoted [Ψ(f)](p). Note that every image g with l gray levels
such that l ≤ k is contained in KE, thus, image transformations that produce binary
images, such as binarization or segmentation are also included in this family of image
operators.

To define a W-Operator, we first need to define the properties of translation invari-
ance and local definition. Denote fq as the translation of image f by vector q ∈ E, i.e.,
fq(p) = f(p− q) ∀p ∈ E. An example of an image f and the respective translation by q
can be seen in Figure 2.1.

An image operator is translation invariant if, for any image and any translation, the
output image obtained by applying the operator to the translated image is equivalent to
translating the output image obtained by applying the operator on the original image.
In other words, an image operator Ψ is considered to be translation invariant if for any
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f

q

f

Figure 2.1: Example of image f , and image fq (f translated by vector q)

f ∈ KE and q ∈ E, the following holds:

Ψ(fq) = [Ψ(f)]q (2.1)

An image operator is locally defined if there exists, for any pixel p, a neighborhood
region such that when the operator is applied to the image restricted to this region, the
output is the same as when the operator is applied to the image restricted to any larger
region. Formally, an image operator is locally defined if there exists a finite window (set)
W ⊆ E such that, for any p ∈ E, f ∈ KE and W ′ ⊇ W we have

[Ψ(f)](p) = [Ψ(f |W ′
p
)](p) (2.2)

Here f |W ′
p
denotes the image f restricted to W ′

p, that is, f |W ′
p
(q) = f(q) if q ∈ W ′

p

and f |W ′
p
(q) = 0 if q 6∈ W ′

p.

An operator that satisfies both properties, translation invariance and local definition,
is called W-operator and is uniquely characterized by a function ψ : WK → K (Heijmans
(1994); Montagner et al. (2016)) that, for any image f ∈ KE and p ∈ E, satisfies:

[Ψ(f)](p) = ψ(f−p|W ) (2.3)

The characteristic function ψ is also called local function.
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2.1.2 W-Operator Learning

As any W-operator Ψ can be uniquely characterized by a function ψ, learning such
operator is equivalent to learning their characteristic function. Moreover, learning such
function can be cast as a classification problem, where the input space consists of every
possible image patch of size equal to the size of W and the classes are the possible pixel
intensity values in the output image. For instance, in the image binarization task, the
problem of designing an image operator Ψ would be modeled as a binary classification
problem, where each pixel needs to be classified as background or foreground. The input
for the classifier would be the image patches centered on each of the pixels, and the
classifier output would be assigned to the respective pixels in the output image.

To train the classifiers, a set of input-output pairs (f, g) of training images is re-
quired. The training process is as follows. We define a window W and slide it over each
input image f in the training image set, extracting the patch under the window at each
pixel p (i.e., f−p|W ) and also the value of the same pixel in the respective output image g,
i.e., g(p). Extracted patches and corresponding output pixel values form the training set.
After the classifier is trained, it can be applied in a pixelwise fashion as described before,
filling the output image one pixel at a time. A diagram of training and prediction steps
of this method can be seen in Figure 2.2. In the diagram, f represents the input image,
g represents the ideal (target) image, ψ̂ the estimated function, and L(ψ̂(.), g(.)) is the
loss function between an output value of the estimated ψ̂ function and the correspondent
pixel value on image g.

Methods that fall within this approach have been extensively researched throughout
the years and have been successfully applied on many image processing tasks, including fil-
tering problems (Dellamonica Jr. et al. (2007)), segmentation tasks (Calvo-Zaragoza et al.
(2017); Julca-Aguilar and Hirata (2017); Montagner et al. (2017)), and biomedical imag-
ing (Cireşan et al. (2012); Melinscak et al. (2015)). These methods use several classifier
algorithms such as Support Vector Machines (SVM), Decision Trees or Convolutional
Neural Networks (CNNs (Goodfellow et al., 2016)).

In Chapter 5 we experimentally evaluate the method proposed in Julca-Aguilar and Hirata
(2017). This method uses a basic CNN architecture, consisting of two building blocks with
convolutional, ReLU and pooling layers, followed by two fully connected layers and a final
softmax layer, as a classifier.
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∀pi ∈ f ∀pi ∈ f

f−pi |W

Classifier

ψ̂(f−pi |W ) g(pi)
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L(ψ̂(f−pi |W ), g(pi))update
parameters
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f−pi |W
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ψ̂(f−pi |W )

Prediction

Figure 2.2: Diagram of sliding window method for image-to-image transformation learning. The
left diagram illustrates the training algorithm of sliding window, while the right diagram illustrates
the prediction step. In both diagrams, the yellow block represents a loop over the pixels of the input
image.

2.2 Patch-to-Patch Approach

With the great success of deep learning techniques applied in computer vision tasks,
such as Convolutional Neural Networks applied in classification problems in the works
of Krizhevsky et al. (2012); Liu and Deng (2015); Szegedy et al. (2015), researches on
semantic segmentation also started to use the same techniques. Semantic segmentation
is a specific type of image-to-image transformation in which every pixel receives a label
that identifies the object to which it belongs. An example of semantic segmentation can
be seen in Figure 2.3.

Although pixel-by-pixel methods can learn a large family of image-to-image trans-
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(a) Natural scene image (b) Semantic Segmentation

Figure 2.3: Semantic segmentation of a natural scene image, in which each object from Figure
2.3a is represented by a color in Figure 2.3b (automobiles are dark blue, sky is red, traffic lights
are light blue, street is light green, sidewalks are darker green,buildings are orange, people are
purple, poles are yellow, and undefined pixels are pink colored)

formations, time consumption of applying the learned function pixel-by-pixel to predict
the image is dependent on image size, which makes prediction of large images very ineffi-
cient. Thus, to mitigate this issue, a deep learning architecture called Fully Convolutional
Neural Network (FCN) was proposed in Long et al. (2015). FCN is fully convolutional
(meaning that it has no fully connected layers) and thus it can process images of arbi-
trary size. It also outputs an image of the same size of the input image, on a single forward
pass. Soon after, another model called UNet was proposed in Ronneberger et al. (2015)
improving some weaknesses of FCN.

2.2.1 Fully Convolutional Networks

To the best of our knowledge, Fully Convolutional Network (FCN) (Long et al.,
2015), proposed for image segmentation tasks, is the first image-to-image transformation
learning method that did not rely on learning a function to be applied on each pixel of
the image, but instead could be applied to the whole image at once.

This architecture was created by replacing every fully connected layers of standard
convolutional neural networks used in classification tasks with convolutional layers. This
can be done by translating each node of the fully connected layer to a filter of a con-
volutional layer. Thus, the output of these new convolutional layers are n feature maps
instead of n-dimensional vectors. With this architecture, image input is not restricted to
a specific size, and the output of the network is not a single value, but instead a reduced
size output image or feature map.

Another detail of FCN relates to up-sampling. Convolutional Neural Networks com-
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monly use pooling layers in order to downsample the original image. Thus, in order to
return the reduced output image size to the same size as the input image, a sequence of up-
sampling layers is applied. For that, the original work of FCN uses backwards convolution
(sometimes called deconvolution).

One of the drawbacks of FCN is the location information that is lost during pooling
and subsequent upsampling layers. This causes the resulting image to appear pixelated,
containing blob-like structures without the fine details in the contour of the regions. To
improve on this, FCN added skip connections that combine shallow layers with the results
of the upsampling. In the original work the authors made three architectures, each one
adding more skip connections (FCN-32s without skip connection, FCN-16s with one skip
connection and FCN-8s with two). This architecture is shown in Figure 2.4.

Figure 2.4: FCN architecture image (source: Long et al. (2015))

2.2.2 UNet

In order to improve on previous results achieved by FCN, a new architecture called
UNet, based on an encoder-decoder structure, was proposed in Ronneberger et al. (2015).
It achieved great success in semantic segmentation, and later became the standard for
many applications in different fields and the base for novel architectures, such as the one
proposed in Isola et al. (2017).

UNet’s encoder-decoder type of architecture is divided in modules, in which each
module on the encoder path have a correspondent module on the decoder path. Each
encoder module consists of a sequence of convolutional layers followed by a pooling layer,
and each decoder module consists of a concatenation of the output feature maps of the
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correspondent encoder module, a sequence of convolutions and an upsampling layer. This
architecture can be drawn as a U-shaped network as shown in Figure 2.5, where the first
half is the encoding part that gradually reduces the image dimension and the second part is
the decoding part that gradually recovers the original image dimension. The concatenation
is illustrated as the horizontal skip connections between modules. In the original work the
convolutional layers with filters 3× 3 are done without padding, reducing the image size
by 2 × 2. Therefore, the output feature map of each module is not the same size as the
input of the decoder module. To concatenate both, a cropped version of the output of
the encoder module is used. Note that this also reduces the output segmentation map. In
order to return a same sized output image, the input size must be a multiple of 2k, where
k is the amount of encoder-decoder modules, and the convolutions must be padded.

Figure 2.5: UNet architecture as proposed in the original paper. (source: Ronneberger et al.
(2015))

2.3 Structural Approach

A third approach to the image-to-image transformation learning problem is to model
the relationship between pixel output values, in order to enforce some object structures.
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Modeling the relationship of output pixels could be useful to reduce output noise, such
as an isolated pixel with distinct value within a region of uniform valued pixels, or for
enforcing connectivity of line-like structures, or improving delineation of object contours.
This is different from the previous approaches since they do not model relation among
output pixels explicitly.

The structural approach is based on the idea that the output values of the pixels
are not independent amongst themselves. In semantic segmentation, pixels that are near
each other should have a greater probability of having the same label. For instance, if the
task is to segment blood vessels from the image, it is desired that the vessel pixels of the
output have a connected, thin and elongated structure.

One of the most common structural approaches for image-to-image transformation
learning relies on probabilistic graphical models, which use graphs to represent the depen-
dence between random variables. Accordingly, pixels of the image are modeled as random
variables (nodes in the graph) and dependence between pixels is modeled as the edges
of the graph. A well-known model is Conditional Random Fields (CRF) (Lafferty et al.,
2001).

Another structural approach for image-to-image transformation learning is based
on Generative Adversarial Networks (GANs), which is a framework for estimating gen-
erative models using adversarial training. Commonly used for generating images, such
as realistic photographs (Brock et al. (2019)) or human faces (Karras et al. (2018)), this
adversarial framework can also be used to learn image-to-image transformation, as shown
in Isola et al. (2017), by conditioning the image generation with an input image. Different
from CRF, output pixel relationship is indirectly modeled by the discriminator, and such
relationship is learned throughout the training phase of the method.

2.3.1 Conditional Random Fields

Conditional Random Fields (also known as CRF) are a type of undirected probabilis-
tic graph model, which represent dependence among random variables, and are commonly
used on structure prediction. This model is very helpful in cases where the parts of the
structures are interrelated, such as in image segmentation. The main idea of this model
is that, by considering a graph G = (V,E) where each vertex u ∈ V represents a pixel in
the image, pixel relationship can be modeled by the edges of such graph.

More specifically, every pixel u can be modeled by a random variable Xu that can
assume a label among a set L = {l1, l2, ..., ln}. Then, we can define a unary cost Φu(Xu =
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Image FCN FCN Output CRF Final Output

Figure 2.6: Example of CRF post-processing method from Chen et al. (2015)

li|I) for each pixel, which is the cost of pixel u assuming the label li given image I.
Although such function can model an image operator, in order to model the relation of
distinct pixels, we need to define a secondary function, such as a pairwise cost. Thus,
we define pairwise cost as a function Φuv(Xu = li, Xv = lj|I), which represents the cost
of assigning label li to pixel u and label lj to pixel v given image I. More generally, we
can define higher-order potentials Ψu1,u2,... = (Xu1 = li1,Xu2 = li2,...|I), which models the
relationship amongst three or more variables. A weighted sum of the defined costs can be
regarded as an energy of the model. Then, a minimization algorithm can be used to find
a pixel-label association with minimal cost. Although this energy minimization problem
is NP-Hard, as shown in Li et al. (2016), CRF algorithms commonly use approximation
methods.

One of the first methods to join CRF and deep learning architectures is the work
of Chen et al. (2015). In their work, Chen et al. propose the use of a Dense CRF (which
models the image as a complete graph) to improve the results of semantic segmentation
deep learning architectures. After training a deep learning architecture and predicting
a segmentation of an image, a Dense CRF is used as a post-processing method to the
segmentation, improving object contours. This Dense CRF uses only unary and pairwise
costs and mean-field as the energy minimization algorithm approximation. An example
of this method can be seen in Figure 2.6.

Unary cost for Chen’s method is defined as the prediction from the deep learning
architecture, and pairwise cost is defined as a weighted sum that depends on the distance
between the pixels and the color difference between them on the original image. The
pairwise cost is defined as follows:

Φuv = w1exp

(
−||pu − pv||

2

2σ2
α

− ||Iu − Iv||
2

2σ2
β

)
+ w2exp

(
−||pu − pv||

2

2σ2
γ

)
(2.4)

where I is the intensity value of a pixel and p its position, σα, σβ, σγ, w1 and w2 are
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hyperparameters (σ controls the scale of each kernel and w their weight). The main idea
is that the cost of assigning different labels to nearby pixels with similar intensity is higher
than assigning different labels to distant pixels or with contrasting intensities. Thus, this
method can better define edges and structures of the segmented objects.

Although Conditional Random Fields as post-processing improved the previous re-
sults on semantic segmentation, this method does not learn the relation between pixels,
but instead assumes a previously defined relationship (close pixels with similar intensities
are more likely to have the same class). This can be problematic if the classes are very
unbalanced. For instance, if the desired segmentation is only one line of white pixels and
the rest are black pixels, CRF techniques tend to erase the white line. To improve on this,
researchers started to develop methods that include Conditional Random Fields in the
neural networks, so that the CRF graph could be also learned from data during training,
instead of having it defined previously.

One of the first works that developed a joint technique with CNN and CRF was
proposed by Zheng et al. (2015). This method unrolls the iterations of the mean-field
inference algorithm to create a Recurrent Neural Network (RNN), a type of neural network
designed for processing sequential data. Each iteration of the mean-field algorithm can be
broken down into common CNN operations, which can be further modeled into an RNN
with the output of each iteration as the input of the next one. This RNN is then coupled
with a previously trained CNN, which enables backpropagation through the mean field
inference and into the CNN, jointly optimizing the parameters of both networks. This
approach achieved a 2% improvement on the state-of-the-art methods at the time it was
proposed.

Although achieving great performance, the probabilistic graphic model (PGM) used
by Zheng et al. was outdated, and other PGMs on image segmentation had obtained
better results with models that used higher order potentials, instead of only unary and
pairwise costs. This was the motivation for the work of Arnab et al. (2016), in which two
higher order potentials were carefully crafted and joined to the network in an end-to-
end fashion, to overcome the drawbacks of previous models. One of the drawbacks was
that the standard CRF model could not correct mistakes made by the unary potentials
(in other words, if a CNN wrongly classified most pixels of a region, CRF would only
propagate the error instead of correcting it). To improve on this, Arnab et. al proposed
a potential based on object detection, that could correct wrongly classified pixels within
the CRF model. The second crafted potential used superpixels to encourage consistency
over similar regions of the image.

CRF models showed great performance in semantic segmentation, however most
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of the works rely on the idea that neighboring pixels with similar colors have the same
class or that a pixel that have many neighbours of different classes is probably noise or
is wrongly classified. This assumption is not true in cases where the objects of interest
have thin structure and small contrast, such as retinal blood vessel segmentation, where
CRF models can delete most vessel pixels, only worsening the output image. Therefore,
we do not include results of the explicit structural modeling of CRF in the experimental
part of this work. The next subsection describes the implicit structural modeling ability
of adversarial networks, which is equivalent to learning a probabilistic graph model like
the CRF.

2.3.2 Generative Adversarial Networks

Generative Adversarial Networks (GAN) is a framework that uses adversarial net-
works in order to estimate a generative model, proposed in Goodfellow et al. (2014). Its
main idea is to train two different networks, a discriminator D and a generator G, in
a sort of minimax two player game. While generator G generates instances that mimic
items from the database, discriminator D classifies instances into real or fake, i.e., if they
are items from the database or created by the generator, respectively. The two networks
are trained in an adversarial approach, where G is optimized to maximize the probability
of D making an error and D minimizes such probability. This training can be made in
alternating iterations, by performing k steps of optimization of D and then l (usually one)
steps optimizing G. A diagram of a GAN architecture can be seen in Figure 2.7, in which
z represents a random vector, LGAN the loss function for G and LD the loss function for
D.

Generator G receives a random input vector of size z, and is trained to produce
a transformed instance. Thus, to generate different fake items, one can input different z
sized vectors into G. However, in the original work of Goodfellow et al., there is nothing
to guide the generator aside from the randomized vector, so we cannot generate the image
as we please. Hence, Conditional Generative Adversarial Networks (cGAN) where created
to overcome this issue (Mirza and Osindero, 2014). In cGANs, both the generator G and
the discriminator D receive an additional input, which can be used to lead the generator
into creating a desired image. This way, instead of estimating a generative model, cGAN
can be used to learn an image-to-image transformation with pairs of input-output images.
The generator G receives the input image and tries to learn how to transform it into the
output image, while the discriminator D receives an input-output pair of images and tries
to discover if the output image was generated by G or if it comes from the database (i.e.,
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Figure 2.7: Example of a GAN architecture

D is a classifier that distinguishes between a real transformation and a learned one).

One of the pioneering methods that uses cGAN to learn an image-to-image trans-
formation was proposed in Isola et al. (2017). Its main idea is that G will learn a map-
ping from a random vector z and the input image I into the desired output Ψ(I), i.e
G : {I, z} → Ψ(I), while D learns to classify a pair of images (I, I ′) into real or fake (i.e.,
whether image I ′ is from the database or generated by G given image I). For example, if
this technique is used to learn document binarization, generator G will receive a document
image and will try to output a binarized version of it, while D will receive a document
image and a binarization, and will try to decide if the binarization was manually made
(real) or if it was made by the generator (fake). Therefore, the objective function LcGAN
consists of two terms, objective of D and objective of G, and can be expressed as:

LcGAN(G,D) = EI,Ψ(I)[log(D(I,Ψ(I)))] + EI,z[log(1−D(I,G(I, z)))] (2.5)

Thus, LcGAN penalizes the joint configuration of the output. Besides that, the work
from Isola et al. also includes a traditional L1 distance in its final loss, due to previous
works finding it beneficial to GAN’s performance (Pathak et al., 2016). Therefore, the
objective function is a combination of L1, which performs well enough to low frequency
structures, and LcGAN , which models high-frequency structures within a N × N image
patch. As shown by Li and Wand (2016), this discriminator effectively models a Markov
Random Field that assumes independence of pixels that are more distant than N pixels.
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2.4 SConvNet - A new fully convolutional model

In Sections 2.1 and 2.2 we described the pixel-by-pixel and the patch-to-patch ap-
proaches for image-to-image transformations.

Patch-to-patch approaches are fully convolutional. Since convolutional networks
commonly use pooling layers, which reduces the input image size, upsampling layers are
needed to return the feature map to the original input image size. The problem with
this method is that computation of pooling and upsampling feature maps results in pixel
location information loss. Therefore, Fully Convolutional Networks for dense prediction
use techniques to overcome this problem, such as adding previous encoding layers to
upsampled feature maps (FCN, Long et al. (2015)), keeping the indexes of the maxi-
mum value in the feature map before the pooling layers (SegNet, Badrinarayanan et al.
(2017)) or concatenating previous feature maps to the decoding part of the network (UNet,
Ronneberger et al. (2015)). On the other hand, in pixelwise methods there is no such prob-
lem, as each pixel output is calculated individually, directly from the information from its
surrounding in the input image.

However, regarding processing time, pixelwise approaches are time demanding with
respect to prediction and, for large images, it may be a critical issue. On the other hand,
patch-to-patch approaches based on fully convolutional networks can predict a large image
in only one forward pass, being, therefore, extremely fast in prediction.

In summary, pixelwise methods keep the location information of every pixel, but
their prediction is computationally expensive. Patch-to-patch methods, on the other hand,
have the opposite behavior. In this section we discuss a simple method that unites the
nice characteristics of both approaches.

2.4.1 Concept

Let K be an odd positive integer. A convolution with a K × K filter outputs a
feature map of reduced size, specifically by K−1 rows and K−1 columns, in comparison
to the input size. For instance, a 5×5 convolution applied on a N×M input will generate
a (N−4)×(M−4) feature map. To generate a feature map of the same size, convolutions
are usually applied on a padded version of the input image (input image in which borders
of a specific size and specific constant value are added).

However, if convolutions with this mask are applied successively without padding,
the resulting maps will have increasingly reduced sizes until it becomes smaller then the
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mask itself. For instance, if we have an input of size N ×N (N also odd, for convenience)
and a mask of size 3× 3, we are able to apply a sequence of bN/2c convolutions with this
mask, until the result is a single point.

By adding activation layers after each convolution layer, possibly a softmax layer
after the last convolution, this architecture can be seen as a single output classifier, that
operates on input image patches. An example with an input patch of size 9 × 9 can be
seen in Figure 2.8.

conv 3×3
+ ReLU

×

conv 3×3
+ ReLU

×

conv 3×3
+ ReLU

×

conv 3×3
+ softmax

× ×

Figure 2.8: Example of convolution sequence reducing input to a single pixel, acting as a classifier

Since the above architecture is fully convolutional, it can be applied on input images
of arbitrary size. For instance, if we apply the network in Fig. 2.8 on an N ×M input
image, the output will be of size (N − 8) × (M − 8) (since a reduction of 2 rows and 2
columns will occur at each of the four convolution layers). In order to have output images
of the same size of the input, it suffices to add a suitable size padding in the input image
only. For the example above, a padding of width 4 would be sufficient.

We call this architecture SConvNet (Simple Convolutional Network), as it is a sim-
pler version of other fully convolutional networks. This network can be trained both pixel-
wise, as in the pixel-by-pixel methods, or patchwise as in the patch-to-patch approaches.
The receptive field of the network is the patch in the input image that results at the end
in a single pixel. As discussed above, to keep image size, we just need to pad the input
image according to the patch size used (for instance, if we use patches of 9 × 9 and the
input image size is originally N×M , padded input image will be of size (N+8)×(M+8)).

The diagram in Figure 2.9 illustrates training of SConvNet following the pixelwise
approach, and its applications for dense prediction. Comparing this diagram to the dia-
gram in Figure 2.2, we can understand the difference between pixelwise approaches and
SConvNet in its prediction steps. Prediction with pixelwise approaches is done iteratively,
predicting the image pixel-by-pixel, while prediction with SConvNet can be done in par-
allel for every pixel in the image in one forward pass. Note that training can be also done
in a patch-to-patch fashion.
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Figure 2.9: Training and prediction processes of SConvNet. The left side diagram illustrates the
training method, in which the yellow block represents a loop over the pixels of the input image,
while the right side diagram shows the prediction step.

2.4.2 Remarks

One of the main differences between SConvNet and other fully convolutional net-
works such as FCN and UNet is the fact that SConvNet does not employ pooling layers.
As a consequence, SConvNet contains more convolutional layers than other architectures
with equivalent receptive field. This means that typically the number of weight parameters
to be learned may be much larger for SConvNet. Therefore, for large input patch sizes,
training SConvNet can become very slow. Nevertheless, there are some strategies that
do not rely on pooling layers or convolutions with strides that are useful to reduce the
amount of parameters. For instance, dilated convolution (Yu and Koltun (2016)) which
is based on sparse kernel matrices, can be used in order to reduce the number of convo-
lutional layers, without reducing the receptive field. Alternatively, the number of feature
maps can be reduced in intermediary layers using 1× 1 convolutions.



Chapter 3

Evaluation Metrics

Performance of image-to-image transformation methods is usually evaluated by com-
puting a similarity metric between the predicted output and the target image. In this
chapter, we describe some metrics that are commonly used for binary images. In Section
3.1 we describe pixelwise evaluation metrics and in Section 3.2, we describe the Skeletal
Similarity metric (Yan et al., 2018a), originally proposed to evaluate retinal blood vessel
segmentation algorithms, that we also use to evaluate handwritten document binarization
algorithms.

3.1 Pixelwise Evaluation Metrics

Pixelwise metrics are calculated by comparing two images pixel-by-pixel. These are
the most common metrics for evaluating image transformation algorithms, as they are
easier to calculate than structural methods. Most of them are based on statistical mea-
sures that are also used for evaluating classification algorithms. From a classification
perspective, each pixel is considered as an instance to be classified.

For binary images, we assume value 1 as foreground (also known as positive value)
and value 0 as background (also known as negative value).

As is common in two-class classification problems, the metrics are defined based on
four main values, which are True Positives (TP , amount of pixels that are positive in
the prediction and in the ground truth), True Negatives (TN , amount of pixels that are
negative in the prediction and in the ground truth), False Positives (FP , amount of pixels
that are positive in the prediction but negative in the ground truth), False Negatives (FN ,
amount of pixels that are negative in the prediction but positive in the ground truth).

23
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Although Precision and Recall are the most common metrics used for segmentation, we
decided to use Sensitivity and Specificity to have a direct correlation with the structural
metrics proposed in Yan et al. (2018a). Sensitivity (Se), Specificity (Sp) and Accuracy
(Acc) are described in the next subsections.

3.1.1 Sensitivity

Sensitivity, also called Recall or True Positive Rate, is the percentage of positive
values that are correctly assigned. It is calculated as follows:

Se =
TP

TP + FN
(3.1)

In a medical test to identify a disease in patients, for instance, sensitivity is the
test’s ability to detect ill patients. Thus, in tests with high sensitivity, a negative result
is very helpful to detect healthy patients. Conversely, positive results are less useful, as,
although a high sensitivity implies that a good percentage of the ill patients are detected,
sensitivity’s calculation does not account for wrongly classified positive values (FP ). For
example, a test that returns positive for every instance would have perfect sensitivity
value, despite every negative value being wrongly classified.

In blood vessel segmentation, positive values correspond to vessel pixels, and sen-
sitivity calculates the percentage of vessel pixels that were correctly identified, i.e., the
ability of the operator to detect a vessel pixel. In document binarization, positive values
correspond to stroke pixels, and sensitivity calculates the percentage of stroke pixels that
were found.

3.1.2 Specificity

Specificity, also called True Negative Rate, is the percentage of negative values that
are correctly assigned. It is calculated as follows:

Sp =
TN

TN + FP
(3.2)

In the medical test example, specificity calculates the test’s ability to correctly detect
healthy patients. Medical tests with high specificity are useful to correctly identify diseases
in the patient, as, similar to sensitivity, specificity calculation does not account for wrongly
classified negative values (FN). Thus, a positive value in a high specificity test has a great
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probability to be correct.

In blood vessel segmentation, negative values account for every non-vessel pixel,
and specificity calculates the percentage of these pixels that are correctly assigned. In
document binarization, negative value accounts for every non-stroke pixel, and specificity
calculates the percentage of these pixels that are correctly identified.

3.1.3 Accuracy

Accuracy is the overall percentage of correctly assigned pixels, and is calculated as
follows:

Acc =
TP + TN

TP + FP + TN + FN
(3.3)

This metric is a more general evaluation of the algorithm’s performance. It takes
every pixel into account, and calculates how many of the image pixels are correct. Thus, in
a balanced set of instances, accuracy is a good overall performance evaluation. However,
for unbalanced classes, this metric can be very misleading. For instance, consider a disease
that only affects one percent of the population. A medical test that diagnoses every person
as healthy (every instance as negative) would have a 99% accuracy, even though the test
does not detect any ill patient.

Our two case studies, blood vessel segmentation and document binarization, have
very unbalanced classes, as there are much more background pixels than foreground pixels
in both.

3.2 Structural Evaluation Metrics

Pixelwise evaluation metrics are very general, and can be used to evaluate algo-
rithms for different image-to-image transformations, such as binarization, segmentation,
morphological operations, and so forth. However, as explained in Section 3.1, those met-
rics can be very misleading, specially in cases with very unbalanced classes. For problems
like blood vessel segmentation or document binarization, evaluating the structural con-
sistency between the algorithm prediction and the desired output can be very valuable,
giving insights into the algorithm’s behaviour (which algorithm better finds the overall
vessel structure or which method generates a more readable binary document image).
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3.2.1 Skeletal Similarity

Along these lines and to better evaluate algorithms that perform retinal blood ves-
sel segmentation, Skeletal Similarity was proposed by Yan et al. (2018a). This metric
compares the structure of the desired ground truth and the given prediction instead of
comparing them pixel-by-pixel, hence, better correlates to the visual appearance of the
segmentation than pixelwise metrics.

The Skeletal Similarity algorithm is based on comparison of skeletons. First, the
skeletons of both images are extracted, and then the skeleton of the ground truth is
divided into small segments. For each of those segments, a correspondent set of pixels on
the predicted image is found and then a similarity between these pixels and the segment
is calculated. The similarity measure in Yan et al. (2018a) combines curve and thickness
similarities. A diagram of the algorithm is shown in Figure 3.1 and a more detailed
description follows.

As shown in the diagram of Fig. 3.1, I denotes the predicted binary image and IG
the reference ground truth. Skeletal Similarity is calculated according to the following five
steps:

1. Skeletonization of images

The first necessary step is to calculate the skeleton of both images I and IG, which
are denoted Skel and SkelG, respectively. As retinal blood vessels are quite simple
structures for skeletonization, the thinning method proposed in Suzuki and Keiichi
(1987) is used, which works by iteratively removing deletable contour pixels until
there is no more deletable pixels.

2. Decomposition of SkelG into a set of segments

Directly calculating a similarity between two skeletons is a difficult task. Therefore,
the skeleton is divided into segments and then similarity is computed segment-wise.
To decompose a skeleton, it is separated into multiple segments by cutting it at the
branching points. Since the resulting segments usually have distinct length , they
are further cut into shorter segments to obtain a more uniform length distribution.
This is done by selecting an edge point of a segment and for every 15 connected
pixels, making a cut. This divides a segment into smaller segments of length up
to 15 pixels. Also, due to the resolution limitation of the images, skeletonization
may create false skeleton segments (an example can be seen in Figure 3.2). As most
of these false skeleton segments are quite small, a simple heuristic that consists in
removing segments that are smaller than a predefined length (for instance, remove
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Figure 3.1: Diagram of Skeletal Similarity algorithm (source: Yan et al. (2018a)).
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Figure 3.2: False skeleton segment created due to the limited resolution of the image

any segment that has length equal to 4 pixels or less) is applied. This segmentation
method applied on SkelG generates a set SegG of skeleton segments:

SegG =
N⋃
i=1

Segi

where N is the total number of segments and Segi is the i-th skeleton segment.

3. Matching pixels in Skel to the segments in SegG

To compare the segments in SegG with the skeleton Skel, for each Segi ∈ SegG

a set of the best matching pixels in Skel is calculated. For that, a region denoted
searching range SRi is generated for each segment Segi, and a set PSegi is created
with every pixel in Skel within this region.

The searching range is generated as follows: for each pixel p in Segi, the minimum
inscribed circle in IG centered at p that is fully contained within a vessel is calculated.
The diameter of this circle is considered as the thickness t of the vessel at p and the
searching radius is defined as:

SRp =


R if Tmax = Tmin⌈
Tmax − t+ ε

bTmax − Tminc

⌉
×R otherwise

(3.4)

where ε is an arbitrarily small positive real number, R is a predefined maximum
range, Tmax is the maximum vessel thickness of the whole image IG and Tmin is
the minimum vessel thickness of IG. Thus, the searching range SRi of a segment
Segi is defined as the union of the generated searching range for each pixel of the
segment, that is, SRi =

⋃
p∈Segi SRp. Then, the searching range for the whole image

is represented by the set:

SRG =
N⋃
i=1

SRi
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For each SRi, the set PSegi of pixels in Skel within SRi are considered for further
calculations, that is, PSegi = SRi ∩ Skel. The set of all pixels that will be used to
calculate Skeletal Similarity is represented by:

PSeg =
N⋃
i=1

PSegi

4. Calculation of Similarities between Segi and PSegi

For each segment i (i = 1, ..., n), the similarities are calculated by comparing the
pixels in PSegi to Segi. The similarity is expressed in terms of the curve similarity
csi and the thickness similarity tsi.

(a) Curve similarity (csi)

Curve similarity csi measures the structural consistency between the segment
Segi and the pixels of PSegi , without any thickness measurement.

To calculate the structure similarity of both segments, a curve is fitted to
segment Segi. Then, the same curve fitting method is applied to the pixels
in the set PSegi . As the segments are limited to 15 pixels, a cubic function
is sufficient. The similarity of both segments is calculated as the similarity
between the two fitted curves.

Consider P1(x) = a1x
3 + b1x

2 + c1x + d1 as the fitted curve of segment Segi
and P2(x) = a2x

3 + b2x
2 + c2x + d2 as the fitted curve on the pixels of PSegi ,

and the coefficient vectors F1 = (a1, b1, c1) and F2 = (a2, b2, c2). Coefficients d1

and d2 are disregarded as they only alter the position of the curve, and do not
change its overall structure. Curve similarity between segment Segi and PSegi
is then calculated as:

csi =
< F1, F2 >

|F1|.|F2|
(3.5)

where < ., . > is the dot product and |.| measures the length of the vector.

(b) Thickness similarity (tsi)

Thickness similarity tsi compares the thickness of segment Segi and PSegi ,
measuring how close are the corresponding vessel thickness in images IG and
I.

To compare the thickness of both segments, the same method of measuring
thickness to generate the searching range is used (i. e, calculating the diameter
of the minimum inscribed circle, in IG for pixels in Segi and in I for pixels in
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PSegi). The thickness WSegi and WPSegi
are calculated as the average thickness

over the set of pixels in Segi and PSegi , respectively.

As thickness variation in thin vessels is more common than in thick vessels,
even in manual annotations, thickness variation in thin vessels are less penalized
than in thick ones. Thus, the thickness similarity is defined as:

tsi =

0 if
|WSegi

−WPSegi
|

WSRi
≥ 1

1−
|WSegi

−WPSegi
|

WSRi
otherwise

(3.6)

where WSRi
is the average thickness of the searching range SRi.

5. Skeletal similarity value calculation

Given the values of csi and tsi, the skeletal similarity value for each segment i is
calculated as a weighted sum as:

ssi = (1− α).csi + α.tsi (3.7)

where α ∈ [0, 1]. Thus, the metric can be more easily adapted to different applica-
tions.

Also, for segments in I that are very small compared to the corresponding one in
IG, ssi is set as 0. Very small is defined as percent of Segi’s length (For instance,
ssi = 0 if |PSegi | < 0.6|Segi|). Then, the overall skeleton similarity is calculated by
a weighted average of the similarity of the segments, in which the weights are the
length of the segment. Thus:

SS =

∑
Segi∈SegG ssi × |Segi|∑

Segi∈SegG |Segi|
(3.8)

As the Skeletal Similarity metric is not based on pixel-by-pixel matching, it is nec-
essary to redefine the notion of True Positive, False Positive, True Negative and False
Negative. By redefining these, it is possible to calculate sensitivity, specificity and accu-
racy (the ability of the method to recognize vessels, the percentage of non-vessel segments
found, and the overall ’correctness’ of the algorithm).

A modified ground truth I ′G is created by assigning the pixels in IG as Pv and Pnv,
that is, vessel pixels and non-vessel pixels. As all the pixels in the searching range SRG

are used on the curve similarity calculation, such pixels are denoted as vessel pixels.
Furthermore, as every vessel pixel in IG is used to calculate the thickness similarity, those
pixels are also denoted as vessel pixels in I ′G. Thus, vessel pixels Pv are represented by
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(IG ∪ SRG) and every other pixel is counted as non-vessel pixel Pnv. Thus, TP, TN, FP,
FN can be redefined as:

TP = SS × Pv
FN = (1− SS)× Pv
FP = Pnv(1)

TN = Pnv(0)

(3.9)

where Pnv(1) represents the number of non-vessel pixels wrongly classified as vessel pixel,
and Pnv(0) is the number of correctly classified non-vessel pixels in Pnv.

Thus, sensitivity, specificity and accuracy can be calculated as:

rSe =
TP

TP + FN
= SS

rSp =
TN

TN + FP
=
Pnv(0)

Pnv

rAcc =
TP + TN

Pv + Pnv
=
SS × Pv + Pnv(0)

Pv + Pnv

(3.10)

Furthermore, accuracy can be rewritten as a weighted sum of the redefined Sensi-
tivity and the redefined Specificity, as follows:

rAcc =
Pv

Pv + Pnv
rSe+

Pnv
Pv + Pnv

rSp (3.11)
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Chapter 4

Skeletal Similarity applied to
Document Binarization

As described in the previous chapter, metrics that compare two images pixel-by-
pixel can be misleading for high imbalanced data. Binarized document images fall into
this category, as there are much more background pixels than foreground ones. This can
be seen in Figure 4.1 which is a typical binarized document image.

(a) Handwritten document image (b) Binarized document image

Figure 4.1: Example of binarized document image from DIBCO database (Pratikakis et al.
(2018))

Thus, there are many researches on how to better evaluate algorithms for this task,
such as the works of Ntirogiannis et al. (2013) and Haiping Lu et al. (2004). However,
many of them, such as the ones used on the Document Image Binarization Competition
(DIBCO, Pratikakis et al. (2018)), are still based on pixel-by-pixel comparison, usually
assigning weights to the pixels in order to surpass the problems of the common statistical
measures, like sensitivity and specificity.

As the structure of strokes in binarized documents has some similarities with the
structure of blood vessels in retinal images, we decided to evaluate Skeletal Similarity,

33



34 SKELETAL SIMILARITY APPLIED TO DOCUMENT BINARIZATION 4.1

described in Section 3.2.1, to measure stroke structure consistency between two docu-
ment images. As document binarization algorithms are mainly used to facilitate character
recognition, our interest is to evaluate if this metric is able to measure the readability of
the binarized image, penalizing structural changes that alters the characters while reduc-
ing the impact of small distortions. To that end, we manually generated distorted binary
images from a ’perfect’ binarization. We used small distortions that do not affect the
overall readability of the text, in order to investigate if the Skeletal Similarity is stable
across those different distortions. We also generated binarizations with real segmentation
algorithms, such as Otsu’s binarization or the method from Calvo-Zaragoza and Gallego
(2019). Then, we calculated pixelwise and Skeletal Similarity metrics, analyzing the whole
images as well as small patches to compare the performance of each metric with the visual
quality of the image. For a clearer discussion, we use the following notation:

• pSe - pixelwise sensitivity (Eq. 3.1)

• pSp - pixelwise specificity (Eq. 3.2)

• pAcc - pixelwise accuracy (Eq. 3.3)

• sSe - structural (skeletal similarity) sensitivity (Eq. 3.10)

• sSp - structural (skeletal similarity) specificity

• sAcc - structural (skeletal similarity) accuracy

For character recognition, the thickness of the strokes does not convey much informa-
tion (there are even character recognition systems that completely discards the thickness
of the text). Therefore, we only calculated the curve similarity (setting α = 0) and dis-
carded the thickness part of the Skeletal Similarity. We also needed to define a maximum
range R to compute Skeletal Similarity, which is dependent on the dataset used. In our
experiments, we tried different R values, however, due to the heterogeneous nature of
DIBCO dataset, larger values allowed unwanted structural changes while smaller values
were not stable to small distortions. We found that setting R = 2 offered the best balance
between penalizing structural changes and forgiving small pixel alterations.

Section 4.1 presents the experiments made with manually generated distorted images
to check if the metrics are consistent with small distortions, while Section 4.2 reports our
experiments with real images generated by document binarization algorithms.
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4.1 Evaluation on simulated data

To create the manually distorted images, we used 31 binarized images from the
Synchromedia Multispectral Dataset (S-MS) database (Hedjam and Cheriet (2013a,b)).
S-MS is a public database that was part of a contest from International Conference
on Document Analysis and Recognition 2015 (ICDAR 2015). It consists, as of the time
these experiments were made, of 31 multispectral document images collected from the
Bibliothèque et Archives nationales du Québec (BAnQ).

We create five different distortions for each image by applying the following trans-
formations:

• Morphological Dilation and Erosion: chosen to test the Skeletal Similarity
metrics stability for thickness differences.

• 2-pixel Translation: Each pixel in the distorted image has the value of the pixel
two columns behind and two rows above in the original image. This is a nearly
imperceptible transformation that greatly affects pixelwise metrics.

• Missing points: Every pixel on an even column and even row was set to back-
ground. This was generated to analyse how the metrics are affected by noise in the
image.

• Missing lines: Even columns and even rows were set to background. This was
created to investigate the metrics stability for information loss.

An example for each transformation is shown in Figure 4.2. As we see in Figure 4.2,
the chosen distortions do not significantly alter the overall structure of the text, even
though in some cases, such as missing rows and columns, the text becomes less visible.
Some distortions, such as dilation or erosion can alter the structure of some characters
(such as thin strokes vanishing in erosion or separate near strokes becoming one in di-
lation), however the alteration is small enough and the majority of the text remains
readable.

It is important to note that, although the text in Figure 4.2f appears to be invisible
at a first glance, this is because the image is shown in reduced resolution. Figure 4.3
displays an image patch from Figure 4.2f with a larger resolution, illustrating that albeit
the distortion, the readability is kept.

Table 4.1 compares pixelwise against Skeletal Similarity metrics for the images in
Figure 4.2. As expected, sSe is way more stable across the distortions, with its value
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(a) Ground Truth (b) Dilation (c) Erosion

(d) Displacement (e) Noise (f) Missing rows and columns

Figure 4.2: Examples of manually generated distorted images. See details in the text

Table 4.1: Pixelwise and SS metrics for the images in Fig. 4.2

Sensitivity Specificity Accuracy
Distortion pSe sSe pSp sSp pAcc sAcc
Dilation 100 98.3 98.1 99.3 98.2 99.3
Erosion 45.4 70.3 100 100 98.6 98.6
Displacement 36.3 91.8 98.4 99.2 96.8 98.9
Missing Points 75 98.8 100 100 99.4 99.9
Missing Lines 25.1 87.1 100 100 98.1 99.4

ranging from 70.3 to 98.8, while pSe values range from 25.1 to 100. As sensitivity measures
the amount of correctly assigned positive instances, pSe value of 36.3 on the displaced
image (Fig. 4.2d) is the same of an image with about two thirds of the strokes missing,
even though the displaced image is perceptually very similar to the original one. The
same happens for the Missing Rows and Columns distortion (Fig. 4.2f), where pSe value
is the same as if only one quarter of the text was correctly assigned, even though the main
structure of the whole text still remains.

We also calculated the average pixelwise and structural metrics for the entire database,
and the values are shown in Table 4.2. Note that the same observed pattern in Table 4.1
occurs with respect to the average metrics, where sSe is more stable than pSe. Also,
displaced images and missing rows and columns images have a pSe value that is equal as
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Figure 4.3: Zoom in of a patch from the image in Fig. 4.2f, illustrating that the distortion does
not affect the overall structure

when only half or a quarter of the text is recovered, respectively. Thus, sSe better rep-
resents the readability of the binary image as well as the structural consistency between
the prediction and the target.

Table 4.2: Average metrics computed on the 31 manually distorted images.

Sensitivity Specificity Accuracy
Distortion pSe sSe pSp sSp pAcc sAcc
Dilation 100 97.5 95.8 98.6 96.2 98.5
Erosion 49.2 78.1 100 100 96.8 97.6
Displacement 53.3 91.5 93.7 95.3 91.3 94.9
Missing Points 74.9 98.9 97.5 97.5 96.1 97.8
Missing Rows 24.9 90.3 99.1 99.1 94.3 98.3

4.2 Evaluation on Real Data

To evaluate how Skeletal Similarity behaves as a document image binarization evalu-
ation metric, we selected four binarization algorithms and applied them on the images from
Document Image Binarization Competition 2018 (DIBCO) (Pratikakis et al., 2018) and
then compared the binarized images with respective ground-truth binarizations. The algo-
rithms, namely Otsu (Otsu, 1979), Sauvola (Sauvola and Pietikäinen, 2000), Howe (Howe,
2011) and Zaragosa (Calvo-Zaragoza and Gallego, 2019), were chosen based on their ex-
pected performance differences. For instance, Otsu is a well-known simple binarization
algorithm, while Sauvola is similar to Otsu but was designed specifically for document
image binarization. Howe was the binarization part of the best performing method in
DIBCO 2018, while Zaragosa is a recent deep learning state-of-the-art document bina-
rization algorithm. Thus, we could investigate the Skeletal Similarity in the same image
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Figure 4.4: Image from the DIBCO 2018 released set

with different binarization performances. A brief description of each algorithm is presented
at the Appendix A.

DIBCO is an annually organized competition that benchmarks the state-of-the-art
algorithms in document binarization. The organizers release a set of new images each year,
which consists of scanned document images that contains representative degradations
that are challenging for binarization algorithms, and, later in the same year, a manually
generated ground truth of those images alongside the results of the submitted methods
are released. Thus, participants can train and test their methods using the images from
previous years, apply their methods on the released images and then submit the results
to evaluation. In 2018, the released set of images consisted of 10 handwritten document
images of varying sizes. One of these 10 images is shown in Figure 4.4.

Among the four algorithms we have selected, only Zaragosa’s method requires train-
ing. We trained Zaragosa’s method with DIBCO images from previous years. All methods
were applied to images from DIBCO 2018 dataset.

4.2.1 Results and Discussion

In this section we present results and discussions regarding the binarizations by
the four algorithms. Similarly to the case of simulated images (Fig. 4.1), we compute
the pixelwise and structural metrics between the binarized images and the corresponding
ground-truth images.

We first compare these metrics with respect to one image in DIBCO 2018. The
selected original image, the respective ground-truth binarization, and the results by the
four binarization algorithms are shown in Figure 4.5. The metrics for the binarization
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algorithm results are presented in Table 4.3.

(a) Input (b) Ground truth binarization

(c) Otsu’s method (d) Sauvola’s method

(e) Howe’s method (f) Zaragosa’s method

Figure 4.5: Example of an image binarized by the four chosen methods

Differently from the manually generated images, visual inspection of the real bina-
rizations is not straightforward. As it can be seen in Figure 4.5, while the superiority of
Zaragosa’s binarization is quite clear (as correctly indicated by the metrics shown in Table
4.3), comparison amongst the other binarizations is rather subjective. For example, take
Sauvola’s and Howe’s results. Howe’s binary image is clearer than Sauvola’s, having less
noise and better defined strokes. Nevertheless, Sauvola’s method correctly assigns most
pixels of the characters on the top-right corner of the image, which are completely missed
by Howe’s binarization. Furthermore, strokes with less contrast, such as the last two lines
of the document, are completely lost in Howe’s image, while in Sauvola’s at least some
pixels are correctly assigned. This appears to be accounted for in the calculated met-
rics by the difference between the pixelwise and Skeletal Similarity metrics. On the one
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Table 4.3: Skeletal Similarity metrics calculated on images of Figure 4.5

Sensitivity Specificity Accuracy
Algorithm pSe sSe pSp sSp pAcc sAcc
Otsu 53.8 62.5 81.9 81.8 80.0 80.4
Sauvola 44.1 58.1 98.5 98.5 94.8 95.5
Howe 47.0 51.6 99.3 99.3 95.7 95.7
Zaragosa 87.2 90.2 99.5 99.5 98.6 98.8

hand, Howe’s pSe is higher than Sauvola’s, but on the other hand Sauvola’s sSe is higher
than Howe’s. In this situation, analyzing both metrics can be beneficial to compare the
performance of each method.

In order to further investigate Skeletal Similarity metrics, we selected small image
patches with interesting differences between the binarizations, and analyzed both metrics
calculated on them. Examples of such patches can be seen in Figures 4.6, 4.7 and 4.8, and
the calculated metrics for those examples are shown in Tables 4.4, 4.5 and 4.6. Patches were
chosen according to common problems of binarization algorithms, such as information loss,
misleading results due to small differences or structural differences that could induce errors
in a character recognition algorithm. Other selected patches, all binarized images and the
pixelwise and structural metrics calculated in all images and patches are available on the
following website: https://imageu.github.io/data+code/. Below we show three examples
of the selected patches and discuss the calculated metrics on them.

Figure 4.6 shows a patch in which each algorithm shows a different case of missing
information. Otsu’s method, although correctly assigning every stroke pixel, assigns almost
all of the pixels in the image as stroke pixels, which generates a perfect value on pSe but
a poor pSp. Sauvola’s method, although with noise and some broken structures, is the
best at recovering the strokes structure, which is shown by sSe value being the highest
amongst all others. Howe’s method completely misses an entire word, however its pSe value
is higher than Sauvola’s. Zaragosa’s binary image, that presents the best pSe value with
the exception of Otsu’s outlier, has the best well defined strokes, yet, it misses a structure
that could be very important in character recognition (the lasso in the beginning of the
second word). Values of pAcc and sAcc showcase a similar pattern, with Sauvola’s being
the best performing algorithm with respect to sAcc due to the most recovered stroke
structure, and Zaragosa’s the best in pAcc due to its superiority in the pixel level (better
defined strokes, without much noise or gaps in the stroke).

Figure 4.7 showcases an example of the stability of Skeletal Similarity metrics for
characters with thickness differences, which contrasts with pixelwise metrics values. In all
of the images, the strokes are visually well defined and the readability of the text remains

https://imageu.github.io/data+code/


4.2 EVALUATION ON REAL DATA 41

Figure 4.6: Patch with missing information. From left to right, top to bottom: Otsu’s, Sauvola’s,
Howe’s and Zaragosa’s methods

Table 4.4: Skeletal Similarity and Pixelwise metrics calculated on patches of Fig 4.6
Sensitivity Specificity Accuracy

Algorithm pSe sSe pSp sSp pAcc sAcc
Otsu 100 52.9 10.9 11.1 20.0 16.9
Sauvola 55.4 88.6 99.8 99.8 95.3 98.2
Howe 50.2 54.1 99.9 100 94.8 93.6
Zaragosa 69.9 82.9 99.9 100 96.8 97.6

intact. However, due to small thickness differences, pSe values range from 77.1 to 89.1

and pAcc values range from 95.4 to 97.1. sSe is way more stable, with all metric values
at perfect value (except Zaragosa’s sSe, which has an almost irrelevant difference of 0.2

per cent).

Figure 4.8 displays an example of structural change being better captured by Skeletal
Similarity metrics than by pixelwise metrics. Looking at the last valley like region, on the
right side of the image, Otsu’s algorithm completely fills it, changing the overall structure
of the character (what was similar to the character ’u’, now looks like a filled character
’a’, a big dot, a filled circle, and so on). Comparing this image with Sauvola’s result,
it is clear that the latter is a better binarization and is more similar to the ground
truth, however that is not accurately captured in the pixelwise metrics. On the other
hand, Skeletal Similarity metrics correctly shows this superiority, specially if we compare
sensitivity values (pSe = 90.1 and sSe = 63.7 on Otsu’s image, while in Sauvola’s we
have pSe = 88.8 and sSe = 84.2).

Our experiments have shown that Skeletal Similarity metrics have a better cor-
relation to the overall structure of the binarized image than pixelwise metrics, better
evaluating structural quality of the output image. These metrics are more stable to small
thickness differences and are more compliant to pixel alterations that does not affect
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Figure 4.7: Patch with small thickness differences. From left to right, top to bottom: Otsu’s,
Sauvola’s, Howe’s and Zaragosa’s methods

Table 4.5: Skeletal Similarity and Pixelwise metrics calculated on Fig. 4.7
Sensitivity Specificity Accuracy

Algorithm pSe sSe pSe sSe pSe sSe
Otsu 77.1 100 100 100 95.4 100
Sauvola 82.3 100 100 100 96.4 100
Howe 89.1 100 99.9 100 97.7 100
Zaragosa 85.6 99.8 100 100 97.1 100

the visual appearance of the image. Moreover, these metrics heavily penalize structural
changes, such as the formation of blobs or filled holes. Therefore, Skeletal Similarity met-
rics can be used for evaluating the structure consistency between a manual binarization
of a document image and a prediction from a binarization algorithm.
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Figure 4.8: Patch with small structural difference. From left to right, top to bottom: Otsu’s,
Sauvola’s, Howe’s and Zaragosa’s methods

Table 4.6: Skeletal Similarity and Pixelwise metrics calculated on Fig. 4.8
Sensitivity Specificity Accuracy

Algorithm pSe sSe pSe sSe pSe sSe
Otsu 90.1 63.7 89.3 93.8 89.5 79.9
Sauvola 88.8 84.2 93.7 97.5 92.2 91.3
Howe 98.5 99.9 96.2 98.7 96.9 99.3
Zaragosa 94.1 99.9 94.1 96.8 94.1 98.2
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Chapter 5

Experimental Results

In this chapter we present results regarding the evaluation of some of the methods
described in Chapter 2 on two image processing tasks, namely segmentation of blood
vessels in retinal images and binarization of handwritten document images. As shown
in Chapter 4, skeletal similarity metrics, originally proposed for evaluating blood vessel
segmentation, are also adequate to measure the structural consistency of binarized hand-
written documents, in a complementary way to traditional pixelwise metrics. Therefore,
to compare the methods, we compute both pixelwise and skeletal similarity metrics (the
ones that are described in Chapter 3).

5.1 Experiment Setup

In this section we describe the datasets used in the experiments and also implemen-
tation related details of the tested methods.

5.1.1 Datasets

DRIVE (Digital Retinal Images for Vessel Extraction) is a curated dataset introduced
in Staal et al. (2004), with the goal of enabling comparative studies of segmentation al-
gorithms. The dataset contains 40 retinal images obtained from a diabetic retinopathy
screening program in The Netherlands. They are divided into training and test sets, each
containing 20 images. Each image in the training set was manually segmented by expe-
rienced ophthalmologists, while every image in the test set was manually segmented by
professionals (which can be used as ground truth) and by non-professionals (which can
be considered as a benchmark to compare the algorithms). We used only the first set. All

45
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original images are colored and of size 565 × 584 pixels. Figure 5.1 shows an example of
an input-output pair of images of this dataset.

(a) Retinal image (b) Segmentation of blood vessels

Figure 5.1: Input-output pair of images from DRIVE dataset.

DIBCO is a dataset used for evaluating binarization algorithms, it is the same dataset
used in the experiments of Chapter 4. Document binarization, and especially of hand-
written old documents, is challenging due to degradations such as the presence of stain
or watermarks, or color and contrast patterns that resemble strokes. Figure 5.2 shows an
image from DIBCO dataset. Note that, although we consider foreground pixels as white
(value 1) and background pixels as black (value 0) as it is commonly assumed, we print
the binarized images with inverted colors for better visualization.

(a) Handwritten document image (b) Binarization of text strokes

Figure 5.2: A pair of input-output images from DIBCO dataset.

These two datasets were chosen based on the following criteria:

• Local Definition: This is one of the properties of image-to-image transformations
described in Section 2.1 (Eq. 2.2). We chose tasks where the assumption of such
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property is reasonable. In fact, both for DIBCO and DRIVE, it is possible in general
to decide if a pixel is positive or negative by just analyzing pixels in a small region
around the pixel, as highlighted in Figures 5.3 and 5.4.

Figure 5.3: Patch of an input image from DRIVE dataset and the corresponding segmentation.
Although the patch restricts content to only a local information, one can segment the vessels fairly
well.

Figure 5.4: Patch of an input image from DIBCO dataset and the corresponding binarization.
Fairly good binarization can be computed even when only a small region is examined.

• Similar structure: As one of the interests in this work is related to structural
aspects of the images, and specifically on how well image-to-image transformation
methods preserve structural information, we chose the two datasets taking into con-
sideration that in both the objects of interest have a connected, thin and elongated
structure. This way, eventual intrinsic differences between methods may be better
observed.

• Public availability: It facilitates the reproduction of the experiments. Both
datasets are publicly available. DRIVE dataset is available in the following link:
https://drive.grand-challenge.org/. DIBCO dataset is accessible from the page of
the 2018 competition (https://vc.ee.duth.gr/h-dibco2018/). It contains the links for
downloading the images of the previous years, as well as an evaluation tool used in
the competition.

• Different aims: Although images in both datasets share some structural similarity,
there are distinct challenges and goals. In retinal blood vessel segmentation, the most
challenging part of the task is detecting thin and small vessels. On the other hand,

https://drive.grand-challenge.org/
https://vc.ee.duth.gr/h-dibco2018/
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in document binarization, the thin and small strokes may be missed as long as the
main structure of the strokes are preserved; the greatest challenges are related with
document degradations, such as stains and watermarks.

The datasets were partitioned into training, validation and testing sets as follows:

DIBCO Training: 87 images (from the competitions held between 2009 to 2016)
Validation: 20 images (from the competition held in 2017)
Testing: 10 images (from the competition held in 2018)

DRIVE Training: 16 images (first 16 images from the original training set)
Validation: 4 images (last 4 images from the original training set)
Testing: 20 images (the same as provided by the dataset)

5.1.2 Evaluated Methods

To perform the experiments, we selected instances of the methods described in Chap-
ter 2. For each method we fixed a network architecture, as listed below.

• CNN: (Section 2.1.1) The architecture consists of two convolutional layers with
32 and 64 filters, respectively. Each one followed by a pooling layer and ReLU
activation. Then, two fully connected layers with 1024 and 2 filters, respectively,
followed by a sigmoid activation function. This architecture is trained in a sliding
window manner, extracting a 13× 13 patch from the input image and the value of
the central pixel in the output image.

• FCN: (Section 2.2.1) The architecture consists of two convolutional layers with
64 filters each, followed by a max-pooling layer, then two more convolutional layers
with 128 filters each, followed by a max-pooling layer, then an upsampling layer and
a final softmax layer. Each convolutional layer is followed by a ReLU activation. In
our experiments we used the most basic model, without concatenation or fusion of
shallow layers.

• UNet: (Section 2.2.2) The encoder path consists of two convolutional layers (with
32 filters each), followed by a max-pooling layer, then two more convolutional layers
(with 64 filters each) and one max-pooling layer. The decoder path consists of a
similar structure, with an upsampling layer followed by two convolutional (64 filters),
then another upsampling and two convolutional layers (32 filters). Between the two
paths there are two convolutional layers (128 filters) and in the end of the decoder
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path there is a last convolutional layer followed by a softmax activation function.
Each convolutional layer, except the last one, is followed by a ReLU activation.

• SConvNet: (Section 2.4) It consists of a sequence of 14 convolutional layers (respec-
tively with 8, 8, 8, 16, 16, 16, 32, 32, 32, 64, 64, 64, 128, 128 filters) and a final softmax
layer. This corresponds to a receptive field of size 29× 29. Each convolutional layer
is followed by a ReLU activation.

• U-GAN and S-GAN: (Section 2.3.2) These are GAN architectures where the gen-
erative part is either the architecture of UNet described above (U-GAN) or the
architecture of SConvNet above (S-GAN). The discriminator in both cases consists
of a basic convolutional network with 4 convolutional, batch normalization, ReLU
activation layers and a final sigmoid activation function. The input of the discrimi-
nator is a concatenation between the input image and output image (real target from
the original training data or target generate by the generator). U-GAN was created
as an effort to further analyze the results on DIBCO, due to the large deviation of
the other methods.

These models were trained using patches from images of the training set and val-
idated on patches extracted from the images in the validation set. Some of the training
hyperparameters were fixed whereas others were adjusted to the architecture as well as
to the datasets. The fixed parameters, used for the training of all models, are:

• Adam Optimizer

• Cross-Entropy as loss function

• Scaling the inputs to have zero mean and unit variance

• Threshold of 0.5 (Output pixels higher than 0.5 were set to foreground, background
otherwise)

Besides these fixed ones, the other hyperparameters that have been adjusted for each
model and dataset are summarized in Tables 5.1 and 5.2, for DRIVE and DIBCO, respec-
tively.

Some of the differences between hyperparameters were due to model requirements.
For instance, to return a same sized output, FCN and UNet must have an input size
that is multiple of 2k, where k is the number of pooling/upsampling layers. To be able
to reduce the patch to a 1 × 1 output, the input image size of SConvNet must be odd.
The difference in the number of epochs difference were due to efficiency and convergence.



50 EXPERIMENTAL RESULTS 5.2

Table 5.1: Hyperparameters for training the model on DRIVE.

Patch size Batch
Method Input Output size Epochs Learning rates
CNN 13× 13 1× 1 256 10 best of 10−1, 10−2, 10−3,

10−4, 10−5, 10−6

FCN 32× 32 32× 32 32 60 10−4

UNet 32× 32 32× 32 32 60 10−4

SConvNet 29× 29 1× 1 128 2 10−4

S-GAN 35× 35 7× 7 256 50 D : 10−4 G : 4.10−4

Table 5.2: Hyperparameters for training the model on DIBCO.

Patch size Batch
Method Input Output size Epochs Learning rates
CNN 13× 13 1× 1 256 10 best of 10−1, 10−2, 10−3,

10−4, 10−5, 10−6

FCN 32× 32 32× 32 32 60 10−4

UNet 32× 32 32× 32 32 60 10−4

SConvNet 29× 29 1× 1 128 2 10−4

U-GAN 48× 48 48× 48 32 101 D : 10−4 G : 4.10−4

S-GAN 61× 61 25× 25 128 101 D : 10−4 G : 4.10−4

SConvNet and CNN achieved convergence with a few epochs, but the time to train each
epoch was larger (due to the larger amount of parameters in SConvNet and larger training
data in CNN). Conversely, the speed of each training epoch for FCN and UNet was faster,
but these architectures required more epochs to achieve convergence. As U-GAN was only
created to further analyze DIBCO, this architecture was not used on the DRIVE dataset.

Although these methods could be optimized to achieve better performance in each
dataset, for instance performing a wider search on hyperparameter space or using training
strategies such as data augmentation, we decided to produce a working model for the
limited training configuration above, and focus on evaluating the behavior of the methods
with respect to structural information preservation.

5.2 Results on DRIVE

The five methods listed in Table 5.1 were trained using the training images. For each
epoch the model was evaluated in the validation set and, if the performance improved,
the model was saved. Resulting images and metrics for one of the test images are shown
in Fig. 5.5. Table 5.3 shows the average and standard deviation performance metrics of
each of the five methods over the test set.
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Table 5.3: Average performance metrics on DRIVE test set.

Pixelwise Structural
Method pSe pSp pAcc sSe sSp sAcc

CNN 73.5 ±7.1 98.0 ±0.8 94.9 ±0.5 65.6 ±8.5 99.6 ±0.2 90.9 ±2.4
FCN 60.6 ±7.8 96.9 ±0.9 92.2 ±0.6 41.6 ±7.5 98.8 ±0.3 84.2 ±2.6
UNet 77.8 ±7.0 97.8 ±0.7 95.2 ±0.6 76.7 ±8.5 99.6 ±0.2 93.7 ±2.4
SConvNet 75.6 ±7.9 97.8 ±0.7 94.9 ±0.7 75.7 ±8.4 99.4 ±0.3 93.3 ±2.3
S-GAN 78.5 ±7.0 97.2 ±0.8 94.8 ±0.5 78.9 ±8.3 99.2 ±0.3 93.9 ±2.2

As it can be seen in Table 5.3, the standard deviation of the methods are very
similar, and, with the exception of Se, the values are considerably low. Therefore, the
average metrics are a good indicative of the overall performance of the algorithms.
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Original Ground Truth

CNN

pSe: 76.2
pSp: 98.2
pAcc: 95.3
sSe: 64.6
sSp: 99.8
sAcc: 90.7

FCN

pSe: 65.7
pSp: 98.7
pAcc: 92.6
sSe: 45.3
sSp: 98.7
sAcc: 85.0

UNet

pSe: 80.6
pSp: 97.8
pAcc: 95.5
sSe: 73.1
sSp: 99.7
sAcc: 92.8

SConvNet

pSe: 78.4
pSp: 97.9
pAcc: 95.3
sSe: 74.1
sSp: 99.6
sAcc: 93.0

S-GAN

pSe: 79.6
pSp: 97.5
pAcc: 95.1
sSe: 75.3
sSp: 99.4
sAcc: 93.2

Figure 5.5: Example of segmentation results by the five methods for a DRIVE test image.
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The first observation is regarding FCN. As expected, we can see it generates pixe-
lated results as shown in Figure 5.5. This is also reflected in the average metrics shown in
Table 5.3. Overall, only thick vessels are segmented and the edges of the vessels are not
precisely defined. This is due to the upsampling technique used by FCN not accounting
for the location information lost during the downsampling part. Sensitivity and accuracy,
both pixelwise and structure-wise have the lowest scores with this method. FCN also has
the largest difference between pixelwise and structural metrics, suggesting that part of
the pixels found by FCN is not very meaningful to the overall structure.

As for CNN, it presents the highest specificity and a relatively low sensitivity. This
can be explained by the fact that classes are highly unbalanced and no strategy to treat
this condition was employed, therefore this method greatly optimizes the classification
of background pixels. It is also interesting to note the difference between pixelwise and
structural metrics. This difference in the performance of CNN is smaller than the difference
in the metrics of FCN, suggesting that the pixels found by CNN are more meaningful to
vessel structures than the ones found by the FCN method.

The remaining three methods, UNet, SConvNet and S-GAN, present more similar
results each other, with UNet presenting a slightly better pSp and S-GAN presenting
better pSe and sSe. It is interesting to compare the difference between pixelwise and
structural metrics, as a higher pSe than sSe means that many pixels found are in the
thickness part of the vessels, while a higher sSe means that the pixels found are more
similar to the skeleton of the image. In the average performance metrics, S-GAN, SCon-
vNet and UNet are the methods in which sSe and pSe are most similar, while CNN and
FCN have a larger difference, suggesting that the pixels found by S-GAN, SConvNet and
UNet have greater contributions to the overall structure of the output image than CNN
and FCN.

To further understand the differences among the three last methods, we computed
a pairwise difference image between UNet and SConvNet (Fig. 5.6a) and between UNet
and S-GAN (Fig. 5.6b) for the images shown in Figure 5.5. In both difference images, the
yellow colour corresponds to vessel pixels found both by UNet and by the other method,
while the blue colour corresponds to vessel pixels found only by UNet, and the red ones
correspond to those found only by the other method. According to the metrics shown
in Figure 5.5, for this test image UNet scores higher than both other methods in pSe

and pAcc, but scores lower in their structural counterparts, suggesting that, while UNet
finds more vessel pixels, SConvNet and S-GAN find more vessel structures. This can be
seen in the difference images, in which most of the red pixels (vessel pixels only found by
SConvNet and S-GAN) are located in thin vessels, indicating more thin structures found,
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and the blue ones (vessel pixels only found by UNet) are usually located alongside yellow
pixels, indicating a better defined structure.

(a) UNet × SConvNet (b) UNet × S-GAN

Figure 5.6: Comparison images highlighting differences between the predictions by (a) UNet and
SConvNet and by (b) UNet and S-GAN. Yellow represents vessel pixels found by both methods,
blue represents vessel pixels found by UNet but missed by the other method, and red represents
vessel pixels missed by UNet but found by the other method.

Figure 5.7 shows additional results of S-GAN and UNet overlaid each other. An
enlarged view of parts of these images are shown in Fig. 5.8. In these figures, yellow
indicates pixels that have been correctly classified as positive by both, red indicates vessel
pixels correctly found by S-GAN and missed by UNet and blue indicates vessel pixels
correctly found by UNet and missed by S-GAN. Most of the thin vessels are red, indicating
that S-GAN is better at finding those, as blue pixels are found in thicker vessels and
usually alongside yellow ones, suggesting that UNet is better at defining the thickness of
the vessels. This is also indicated in the average metrics, as S-GAN has a better structural
accuracy and sensitivity, but UNet has a better overall pixelwise accuracy.
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(a) (b)

(c) (d)

(e)

Figure 5.7: Results of S-GAN and UNet for some of the DRIVE test images. Yellow indicates
pixels found by both methods, red indicates pixels only found by S-GAN and blue indicates vessels
that were only found by UNet.



56 EXPERIMENTAL RESULTS 5.2

Figure 5.8: Zoom in of patches from the comparison images of Fig. 5.7. Yellow indicates pixels
found by both methods, red indicates pixels only found by S-GAN and blue indicates vessels that
were only found by UNet.
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5.3 Results on DIBCO

Table 5.4 shows the average and standard deviation performance metrics of each
of the six methods over the test set. Resulting images and metrics for one test image
are shown in Fig. 5.9 (due to the large portions of background in the right and bottom
borders of the image, we computed the metrics discarding that part).

Table 5.4: Average performance metrics on DIBCO test set.

Pixelwise Structural
Method pSe pSp pAcc sSe sSp sAcc

CNN 86.1 ±13.6 91.4 ±5.2 91.1 ±4.4 92.2 ±10.8 91.4 ±5.2 91.6 ±4.7
FCN 70.1 ±13.4 91.3 ±7.8 89.4 ±6.9 73.7 ±17.5 91.7 ±8.0 90.0 ±7.0
UNet 87.2 ±8.4 96.4 ±3.5 95.5 ±3.3 93.4 ±6.1 96.4 ±3.6 96.0 ±3.3
SConvNet 80.1 ±22.2 96.3 ±3.6 94.6 ±4.0 87.4 ±18.6 96.3 ±3.7 95.1 ±3.9
S-GAN 68.6 ±26.1 95.3 ±5.2 92.7 ±4.9 77.1 ±26.8 95.4 ±5.3 93.2 ±5.3
U-GAN 63.4 ±29.7 97.7 ±1.4 94.6 ±3.7 69.3 ±29.7 98.0 ±1.3 95.1 ±4.1

Differently than the observed on DRIVE dataset, FCN is not the worst performing
method in the metrics (S-GAN and U-GAN scores lower in pixelwise sensitivity and U-
GAN also scores lower structure-wise, but their overall accuracy is higher). However, by
examining an example output image (illustrated in Figure 5.9), we can still see a highly
pixelated output due to its inability to recover pixel location information.

UNet presents the best overall performance in the average metrics and also the
lowest standard deviation. For the particular test image in Fig. 5.9, UNet also presents
competitive values in all of the metrics. Pixelwise, the top three methods are UNet,
followed by SConvNet and CNN. Among the last two, CNN presents better sensitivity
while SConvNet presents better specificity.

For the image in Fig. 5.9, CNN scores higher with respect to pixelwise evaluation
metrics, however it is rated lower in structural metrics. Thus, although this method finds
more foreground pixels, other methods such as S-GAN and SConvNet predict a more
consistent structure compared to the ground truth. CNN’s output also has more noise,
indicated by the lower performance in specificity.

As for the GAN based methods, they perform better regarding specificity but rel-
atively poorly regarding sensitivity. This means that in average they generate cleaner
images (note for instance that it leaves less borders of the stain in the bottom right part
of the image in Fig. 5.9), but at the same time they might miss a larger number of stroke
pixels (see Fig. 5.10 for a poor performance). This is reflected in the high standard devi-
ation, which shows that these methods can have good performance on specific situations,
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Original

CNN

pSe pSp pAcc sSe sSp sAcc
92.5 97.6 97.3 96.5 97.6 97.5

UNet

pSe pSp pAcc sSe sSp sAcc
90.6 98.9 98.4 96.6 98.9 98.7

U-GAN

pSe pSp pAcc sSe sSp sAcc
83.7 98.0 98.1 93.1 99.1 98.7

Ground Truth

FCN

pSe pSp pAcc sSe sSp sAcc
79.0 98.2 97.1 79.0 98.6 97.2

SConvNet

pSe pSp pAcc sSe sSp sAcc
91.4 98.9 98.5 97.5 98.9 98.8

S-GAN

pSe pSp pAcc sSe sSp sAcc
86.5 99.1 98.4 96.0 99.1 98.9

Figure 5.9: Handwritten document binarized by different algorithms alongside pixelwise and
structural metrics.
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(a) Original (b) Ground Truth

(c) CNN (d) FCN

(e) UNet (f) SConvNet

(g) GAN SConvNet (h) GAN UNet

Figure 5.10: Image outputs from six image-to-image transformation learning methods, which
shows the weakness of GANs with regard to classification of foreground pixels in low contrast
images.

but worse results in others. This poor performance could be caused by two factors. First,
due to the large diversity of the dataset, it can be harder to model the structures of
the strokes than the structures of vessels. Second, since both UNet and SConvNet present
relatively higher sensitivity, this poor performance in sensitivity might be related to train-
ing issues (remember that the adversarial framework of GAN makes this method tricky
and not as straightforward to train as the other ones). For the image in Fig. 5.9, both
GANs have the largest differences between pixelwise and structural metrics, indicating
that S-GAN and U-GAN training favors structural aspects. With some tweaks and an
adjustment to the task at hand, these methods could possibly generate results that are
similar to UNet and SConvNet in terms of sensitivity.

By analyzing the standard deviation of the methods (seen in Table 5.4), we can
see that DIBCO is a more challenging dataset than DRIVE (all of the metrics have
a higher deviation, with the exception of structural sensitivity of UNet). This is also a
reflection of the diversity of the dataset, as in DIBCO we have, for instance, different stroke
thickness and different contrasts between foreground and background. DRIVE dataset is
more homogeneous with respect to these aspects.
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5.4 Discussions

Both datasets share some similarities in the objects of interest, such as thin and elon-
gated structures. These similarities are convenient for using the same evaluation metric in
both, as shown in Chapter 4. However, during training some differences emerge. DIBCO
is a more challenging dataset as stroke thickness is more varying than vessel thickness,
there is a difference between writing styles, and there is a larger difference between the
contrast of foreground and background between the images.

The difference of the dataset characteristics is reflected in the performance of the
methods. Overall, all methods presented a more consistent performance on DRIVE images
than on DIBCO images, as seen through visual inspection and by the computed metrics
(smaller variance of the metrics among images in the DRIVE dataset in contrast to a
larger variance on DIBCO images). Training of the models was also easier with respect
to the DRIVE dataset, requiring less data and training time to converge.

Training the structural approaches was more difficult and required a few tricks
to achieve convergence, such as label smoothing (training the algorithm with smooth
labels, such as 0.9 and 0.1, instead of the common hard labels, such as 1 and 0) and
different learning rates for Generator and Discriminator, while pixelwise and patch-to-
patch training was more straightforward. Between the last two, pixelwise converged in
a small number of epochs, but training each epoch required more time, while patch-to-
patch needed more epochs to converge with less training time for each epoch. UNet, a
patch-to-patch method, was more consistent throughout the datasets, being the one that
presented smaller variance of the performance metrics on DIBCO.

Overall, structural approaches performed better on DRIVE, an easier task, where
the variance of images is not large. In this task, favoring the structural aspects resulted in
more thin vessels found. On DIBCO, a more complex task, where there is a larger variance
among the strokes, results show that modeling the structural aspects of the objects and
achieving better results is harder.



Chapter 6

Conclusion

The goal of this thesis was to compare image-to-image transformation learning ap-
proaches, investigating their respective advantages and drawbacks, while also giving an
insight for other researchers into which approach should be suited for learning a desired
image-to-image transformation. Therefore, we divided the approaches into three cate-
gories, separating them regarding their input-output pair relation during training. These
three categories are pixelwise, patch-to-patch and structural. Then, we studied and im-
plemented representative methods of each, to experimentally compare the approaches.

Comparison was based on the standard pixelwise metrics (sensitivity, specificity
and accuracy) and also on structural similarity metrics. The structural similarity metrics
were computed based on Skeletal Similarity counterparts of sensitivity, specificity and
accuracy. These structural metrics were originally proposed for evaluating retinal vessel
segmentation (Yan et al., 2018a). Therefore, we experimentally assessed their suitability
for evaluating handwritten document image binarizations and showed that for this type
of images the metrics are able to capture structural consistency between two images.

Results of the methods with respect to two datasets, DRIVE and DIBCO, suggested
that pixelwise approach is best suited for tasks where the correct assignment of each pixel
is the most important aspect of it. UNet method, a patch-to-patch approach, is one of
the best performing methods throughout the experiments, indicating that it is one of
the best methods in balancing performance of the transformation with the computational
cost during prediction time. UNet was able to recover part of the information about
pixel location that is lost during pooling layers. This suggests that UNet’s concatenation
between previous layers and upsampling layers is a reasonable strategy to recover such
information. The experiments also suggested that structural approaches, such as GANs,
are preferred in tasks where the most important aspect of the transformed image is an
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overall structural consistency, although training these methods is harder than training
the other methods. In fact, the GAN based methods were able to model the structures in
DRIVE images, a relatively homogeneous dataset, finding thin vessels not found by other
methods. However, they did not perform well on DIBCO, which is a more heterogeneous
and challenging dataset.

By investigating the three approaches, we came up with a technique called SCon-
vNet. This technique is a theoretical combination of pixelwise and patch-to-patch ap-
proaches, which joins the advantages of both without their main drawbacks. Thus, it is
a technique that can be trained pixel-by-pixel and it can be applied in the whole image
at once. SConvNet had competitive results in the DRIVE dataset but it showed a worst
result in DIBCO, a more challenging dataset.

Hence, the contributions of this thesis can be summarized as the following items:

• Discussion and description of main state of the art methods for the image-to-image
transformation learning problem, and an experimental comparison between repre-
sentative methods of each.

• Development of SConvNet, a method that unites the advantages of two approaches,
pixelwise and patch-to-patch. This network is also simpler than most fully con-
volutional networks, thus it can be used as an initial approach when tackling an
image-to-image transformation learning problem.

• Investigation of the use of Skeletal Similarity metrics to evaluate the performance
of handwriting document binarization algorithms. This metric better captures the
structural consistency between two document images than pixelwise metrics. Thus,
it can be used in a complementary way for the evaluation of document binarization
algorithms.

6.1 Future Works

Most recent works in binarization use pixelwise Precision and Recall as performance
metrics. We confirmed that Skeletal Similarity metrics are useful to measure the struc-
tural consistency between image transformations. However, while Recall is equivalent to
Sensitivity, having therefore a Skeletal Similarity counterpart, there is still no direct coun-
terpart of the Precision metric for Skeletal Similarity. Thus, a structural Precision metric
should be developed and experimented upon, to structurally compare these metrics in
state-of-the-art works.
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Another direction to be researched is to use the Skeletal Similarity metrics as loss
function in the training step of some algorithms. This idea was proposed in Yan et al.
(2018b), where the thickness part of the Skeletal Similarity algorithm was used in con-
junction with the pixelwise loss to improve upon previous results, however it did not use
the curve similarity part of the Skeletal Similarity algorithm. Adapting such metrics to
be used as loss functions could improve the structural consistency of machine learning
algorithms.
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Appendix A

Binarization Methods

A.1 Otsu

Otsu’s algorithm for binarization of images [Otsu (1979)] returns an intensity thresh-
old value to separate pixels into foreground and background that minimizes intra-class
variance. Intra-class variance is defined as:

σ2
w(t) = ω0(t)σ2

0(t) + ω1(t)σ2
1(t) (A.1)

where weights ω0 and ω1 are the estimated probabilities of each class when threshold t is
employed (which is calculated from the image histogram) and σ2

0 and σ2
1 are the sample

variance of each class. For 2 class problems, minimizing intra-class variance is equivalent
to maximizing inter-class variance, as:

σ2
b (t) = σ2 − σ2

w(t)

= ω0(µ0 − µT )2 + ω1(µ1 − µT )2

= ω0(t)ωT (t)[µ0(t)− µ1(t)]2

(A.2)

where µ0(t) and µ1(t) are the mean values of each class.

Then, Otsu’s method computes σ2
b (t) for each possible value for t, and returns the

one that corresponds to the maximum inter-class variance σ2
b (t).
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A.2 Sauvola

An overview of Sauvola’s algorithm [Sauvola and Pietikäinen (2000)] can be seen in
Figure A.1.

Figure A.1: Overview of Sauvola’s binarization method (source: Sauvola and Pietikäinen
(2000)).

The algorithm aims to find a threshold value for each pixel, instead of a global one
like Otsu’s method. The image is divided into tiles, and each tile passes through the al-
gorithm displayed in Figure A.1. First, according to extracted features of the tile, one
of two binarization algorithms, either one specific for textual components or one specific
for non-textual, is chosen. Then, the chosen algorithm is applied to the tile returning a
threshold value for each pixel of the tile. For non-textual components, a Soft Decision
Method (SDM), which includes noise filtering is used, while for text-components a spe-
cialized text binarization method, such as Niblack’s method from Niblack (1985), is used.
The results of each tile are then combined to return the binarized image.

A.3 Howe

Howe’s method [Howe (2011)] advanced the state-of-the-art in document binariza-
tion field at the time. Even nowadays is considered one of the best performing methods
in document binarization. For instance, the best evaluated method in DIBCO 2018, after
a pre-processing step, use this method for binarization of the images.

This method is based on three main strategies. First, binarization of a document im-
age is considered as a pixel labeling that minimizes a global energy function (a function
that takes a typical additive form, with terms representing data fidelity and smooth-
ness/regularity of the binarization), inspired by Markov Random Field models. Second,
the data fidelity term of this function relies on the Laplacian of the image intensity (which
reduces the problem of light or intensity variance across the image). Third, the smooth-
ness term of this energy function includes edge discontinuities, encouraging the edges to
match stroke boundaries and stronger smoothness over the rest of the image. This global
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energy function is defined as:

E =
m∑
i=0

n∑
j=0

[L0
ij(1−Bij) + L1

ijBij]

+
m∑
i=0

n∑
j=0

Ch
ij(Bij 6= Bi+1,j)

+
m∑
i=0

n∑
j=0

Cv
ij(Bij 6= Bi,j+1)

(A.3)

where the first term is the data fidelity term (L0
ij and L1

ij are the costs of assigning label
Bij to pixel ij), and the last two are the smoothness terms (Cv

ij and Ch
ij are the costs of

assigning a different value to Bij than to its neighbor below or to the left, respectively).
Costs L0

ij and L1
ij are taken from the Laplacian image intensity and costs Ch

ij and Cv
ij are

set to a constant c except where a Canny edge filter (Canny (1986)) identifies a likely
discontinuity.

This global energy function can be solved by maximum flow methods, which can ef-
ficiently compute the optimal binarization (Boykov and Kolmogorov (2004)). Parameters
of this method can be automatically tuned, as shown in (Howe (2013)).

A.4 Zaragosa

Differently from the previously described algorithms, Zaragosa’s method uses ma-
chine learning technique to learn an end-to-end mapping of a document image to a binary
version of it (Calvo-Zaragoza and Gallego (2019)). This method trains an auto-encoder,
called by the authors as Selectional Auto-Encoder (SAE), by feeding the network with
document images and the correspondening binarized ground truth.

This architecture can be divided into two parts, an encoding part that consists of a
sequence of convolutions and downsampling layers, and a decoder part, which consists of
a sequence of convolutions and upsampling layers. An overview of it can be seen in Figure
A.2.

After trained, this architecture can binarize a document image with only one forward
pass.
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Figure A.2: Overview of a SAE used for document binarization (source:
Calvo-Zaragoza and Gallego (2019)).
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