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“Either this is madness or it is Hell.”
“It is neither,” calmly replied the voice of the
Sphere, “it is Knowledge; it is Three Dimen-
sions: open your eye once again and try to look
steadily.”

Edwin Abbott, Flatland: A Romance of Many Dimensions
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Resumo

Igor de Camargo e Souza Câmara. Quantificação em lógicas de descrição de tipi-
calidade. Tese (Doutorado). Instituto de Matemática e Estatística, Universidade de São

Paulo, São Paulo, 2023.

Esta tese explora a intersecção das Lógicas de Descrição (DLs) com a teoria dos protótipos no contexto

da representação de conhecimento e raciocínio. DLs são formalismos largamente usados para representação

de conhecimento e servem como a espinha dorsal da Web Semântica. Esta tese argumenta que incorporar a

teoria dos protótipos às DLs pode ser um incremento desejável e pavimenta o caminho para a introdução de

raciocínio não-monotônico. Essa ampliação expandiria o raciocínio baseado em DLs para incluir regularidades

que são tipicamente, mas nem sempre, verificadas. Por exemplo, ela poderia incluir conhecimento como

pássaros tipicamente voam, uma regularidade que é verdadeira em quase todos os casos, mas admite exceções.

Essa forma de raciocínio é crucial para a inferência inspirada nos processos cognitivos humanos e também

para lidar com problemas como o raciocínio sob informação incompleta.

A abordagem desta tese se insere na tradição que combina DLs e tipicalidade através do raciocínio

derrotável (defeasible), em particular, pela adoção de inclusões derrotáveis de conceitos (DCIs). Raciocínio

baseado em materialização é uma das técnicas mais proeminentes dessa tradução. Essa técnica se resume a

redução de inferências derrotáveis enriquecendo o lado esquerdo das inclusões com conceitos que represen-

tam axiomas derrotáveis. Esses conceitos são chamados a materialização dos axiomas que eles representam.

Semânticas distintas baseadas em materialização são caracterizadas pelas técnicas que usam para selecionar

os conjuntos de axiomas que serão materializados com um dado conceito.

Embora as semânticas baseadas em materialização sejam inegavelmente bem sucedidas, elas possuem

sérias limitações. Em particular, elas possuem uma natureza proposicional e, portanto, não podem estender

informação derrotável através de quantificadores, um problema conhecido como negligência de quantifi-
cadores. Portanto, pássaros tipicamente voam e pardais são pássaros permitem a conclusão de que pardais
tipicamente voam, No entanto, não é possível concluir de gatos comem pássaros que gatos tipicamente comem
animais voadores.

A tese se apoia nos recém introduzidos modelos de tipicalidade para abordar essas limitações e definir

um maquinário semântico que melhore semânticas já existentes e inclua nelas propriedades de primeira-

ordem. Ela expande o já estabelecido framework semântico de modelos de tipicalidade para a lógica EL⊥,

uma semântica parametrizada em forças (strenghts) e coberturas (coverages) com seis variações cobrindo

semânticas baseadas em materialização já existentes. Adicionalmente, a tese propõe um novo framework

para a lógica ELI⊥, que inclui uma semântica proposicional, equivalente às semânticas baseadas em

materialização, e uma semântica aninhada que resolve o problema da negligência de quantificadores.

Palavras-chave: Lógicas de Descrição. Tipicalidade. Raciocínio derrotável. Negligência de Quantificado-

res.





Abstract

Igor de Camargo e Souza Câmara. Quantification in Description Logics of Typicality.

Thesis (Doctorate). Institute of Mathematics and Statistics, University of São Paulo, São

Paulo, 2023.

This thesis delves into the intersection of Description Logics (DLs) and prototype theory in the context

of knowledge representation and reasoning. DLs are formalisms widely used in knowledge representation

and serve as the backbone of the Semantic Web. The thesis proposes that integrating aspects from prototype

theory into DLs would be a desirable upgrade, enabling the introduction of nonmonotonic reasoning. This

augmentation would expand reasoning based on DLs to include regularities that are typically verified but

not always true. For instance, it would include knowledge such as birds typically fly, which is generally

but not always true. Inferences of this kind are fundamental for modeling human-inspired reasoning and

tackling problems like reasoning under incomplete information.

The approach taken in this thesis follows the tradition of combining DLs and typicality through defeasible

reasoning by using defeasible concept inclusions (DCIs). Materialization-based semantics is one of the most

successful techniques for dealing with defeasible knowledge in DLs. This technique reduces checking

defeasible entailments such as concept subsumption and instance checking to an enriched classical query,

in which concepts representing defeasible axioms are added to the left-hand side of the inclusion. These

concepts are called the materialization of the axioms they represent. Distinct materialization-based semantics

are characterized by their techniques to select the axioms to materialize with any given concept.

Although materialization-based semantics are undeniably successful, they suffer from some serious

drawbacks. In particular, they share a propositional nature and, therefore, cannot extend defeasible informa-

tion through quantifiers, a problem known as quantification neglect. Hence, birds typically fly and robins are
birds allow concluding that robins typically fly. However, it is impossible to conclude from cats eat birds that

cats typically eat flying animals.

The thesis builds on the recently-introduced typicality models to address these limitations to define

a semantical framework that improves existing semantics and includes first-order properties. It expands

the existing framework for typicality models for the logic EL⊥, which is a semantics parametrized along

strengths and coverages with six variations covering existing semantics. Additionally, the thesis proposes a

new framework for the logic ELI⊥, which includes a propositional semantics equivalent to materialization-

based reasoning and a nested semantics that solves quantification neglect for existing materialization-based

semantics.

Keywords: Description Logics. Typicality. Defeasible Reasoning. Quantification neglect.
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Chapter 1

Introduction

D
escription logics (DLs) are a family of knowledge representation formalisms
that are used to represent and reason about knowledge in a structured and logical
manner. The primary role of DLs in knowledge representation and reasoning is to

provide a formal and expressive language for representing and reasoning about concepts
and their relationships. DLs are widely used in various applications, such as computational
ontologies through the Web Ontology Language (OWL) profiles.

The philosophical basis for concept representation in FOL and, by extension, in DLs is
the classical theory of concepts. Despite the name, the classical theory of concepts is not a
single, well-defined theory. Historically, several related theories put together under the
umbrella term “classical theory” described the inner working of concepts. Those theories,
which date back to Aristotle, envisage concepts as sets of individuals defined by a list of
features, which can be combined compositionally to form more complex ones. Over the
last century, this theory received critiques from the empirical cognitive sciences, especially
in the work of Eleanor Rosch and colleagues, and philosophy, exemplified by the work of
the philosopher Ludwig Wittgenstein.

Wittgenstein developed the idea of a family resemblance [Wit09]. According to it,
instances of a concept share some properties. However, there is no single list that each
instance must have, an effect that mirrors the resemblance among family members: some
have a nose with certain properties, others share the eye color, and so forth. Each belongs
to the family, but there is no single list of properties instantiated exactly by all.

During the 1970s, this idea was put forward by several empirical works in the cognitive
sciences, defying the reign of classical theory. Among those works, the one defended by
Eleanor Rosch and her collaborators, published in a series of papers from the 1970s onwards,
had a considerable impact. According to her prototype theory, concept membership is not
equivalent to the binary set membership of standard set theory but is better characterized
in terms of a gradient. Hence, individuals are more or less representative of a given
concept.

“Although logic may treat categories as though membership is all or none,
natural languages possess linguistic mechanisms for coding and coping with
gradients of category membership.” [Ros78, p. 199]
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Furthermore, the idea of having a single list of necessary and sufficient conditions
characterizing concepts is also abandoned in favor of non-essential features not considered
in a classical-inspired theory. Typicality effects are seen in every domain of human concep-
tualization, from color categorization to the classification of human-made objects.

The borders of concepts are another point of disagreement between the two traditions.
While, according to classical theory, borders are crisp, prototype theory and some related
theories postulate fuzzy boundaries. This stance is backed up by empirical experiments
in which human subjects usually agree on the classification of those objects closer to
the prototype – or in the central region of the conceptual space, in Gärdenfors’ (2000)
conceptual spaces’ terminology – but may disagree, or take up more time to make their
judgment, in outlier instances.

A final topic of divergence is compositionality. Classical theory and Description Logics
also present concepts as compositional entities. Therefore, newer concepts can be built
from more basic ones with the help of combining constructors. “Flying animal” denotes the
intersection of animals with flying objects. However, compositionality has been heavily
criticized. Problematic cases include, for example, concepts such as stone lion – which is
not an actual lion made of stone but probably a statue of a lion.

The table below summarizes the main disagreements between the classical and proto-
type theories: There are several reasons to port features from prototype theory to DLs.

Classical Theory Prototype Theory
Concepts are characterized by Necessary and Shared properties and

sufficient conditions similarity to optimal members
Membership All or nothing Graded

Borders Crisp Fuzzy
Compositionality Yes No

Table 1.1: comparison between classical and prototype theory

There are many valuable inferences achievable only through typicality-inspired nonmono-
tonic reasoning. Suppose a doctor encounters a patient with fever, cough, and loss of
smell in 2021. They may conclude that the patient suffers from COVID-19, even though
he has not confirmed the presence of the SARS-CoV-2 virus via a PCR sample analysis.
The somewhat rushed conclusion can provide valuable guidance to treatment while they
wait for more accurate information. Later, when new information comes out, the doctor
may keep the conclusion if the presence of the virus is confirmed or nonmonotonically
withdraw it if that is not the case. The capacity for drawing conclusions from incomplete
information is central to many human endeavors.

Another motivation is dealing with noise in the data, making knowledge representation
more robust and error resistant. With concepts described by strict inclusions, a single
non-coping entity may threaten a knowledge base by spreading inconsistency. When
some of the information is not obligatory, but expected, entities that do not conform can
be handled as unusual or atypical instances, not paradoxical ones.
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Finally, there may be value in modeling human reasoning in itself. Drawing human-like
conclusions from information can create more robust AI systems and, at the same time,
shed light on the mechanisms of human reasoning.

The task of combining DLs and typicality has been investigated by more than a decade.
There are several approaches, such as circumscribed KBs [BLW06], [BLW09], [Bon+15a],
modal-like typicality operators [Gio+07], [Gio+08], [Gio+09], [Gio+13], [Var18] defeasible
concept inclusions [CS10], [CS12], [Cas+14a], [BV18] and defeasible and probabilistic
constructors [Poz17], [Poz18]. Materialization-based reasoning combined with defeasible
inclusions is a very influential framework for handling typicality. This reasoning paradigm
employs classical inference to compute defeasible (i.e. typical) inclusions between concepts,
denoted by 𝐶 ⊏∼ 𝐷 . The procedure is to define new semantics in which a knowledge base
satisfies certain defeasible inclusions iff classical semantics satisfy an enriched version
of the same inclusion. More specifically, if we want to check whether K |=mat, 𝐶 ⊏∼ 𝐷 ,
we check K |= 𝐶 ⊓U ⊑ 𝐷 , whereU is a special concept whose extension matches the
elements that satisfy a set of DCIsU = {𝐸1 ⊏∼ 𝐹1, . . . , 𝐸𝑛 ⊏∼ 𝐹𝑛}. The conceptU is called
the materialization ofU.

Several different materialization-based semantics exist, such as rational, relevant,
lexicographic, and skeptical [CS10], [CS12], [Cas+14a], [GG20]. They differ in their criteria
for selecting the DCIs to enrich the concept on the left-hand side. Part of the success
of materialization-based semantics is due to its reliance on classical reasoning, a design
choice that enables efficient and effective inference through well-optimized reasoners.
Moreover, materialization-based systems are based on closures defined alongside the KLM
hierarchy for nonmonotonic reasoning, which is a very influential ordered set of features
for nonmonotonic systems [KLM90].

A major issue with combining KLM postulates with DL is that the postulates are defined
over a propositional setting. Therefore, they do not cover DL’s first-order components.
More specifically, they do not say anything about the behavior of concepts nested within
quantifiers. Overall, materialization-based reasoning for DLs suffers from the same ailment.
Materialization-based defeasible semantics enable defeasible inferences such as

• birds typically fly;

• robins are birds;

• therefore robins typically fly.

However, when concepts occur nested within quantifiers, the semantical framework
cannot reach them with defeasible information. Therefore, it does not draw inferences
such as

• birds typically fly;

• cats eat birds;

• therefore cats typically eat flying animals.

This limitation is known as quantification neglect and was noted independently by
[Bon+15a], [PT17a], and [Bon19].
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Recently, a semantics based on a special class of models – typicality models – was
developed for the lightweight defeasible DL EL⊥ to solve quantification neglect. Typicality
model semantics presents a general framework capable of modeling several materialization-
based semantics. It is parametrized along two features: strength and coverage. Strength
relates to the materialization-based procedure on the background of the semantics, while
coverage deals with the spread of defeasible information. There are two possibilities for
coverage:

• propositional, for a semantic paradigm that does not extend defeasible information
through quantifiers, and

• nested, for semantics in which defeasible information traverses arbitrarily long
chains of quantifiers.

We present strengths corresponding to major materialization-based semantics, such as
rational materialization-based reasoning proposed originally in [CS10]. A semantics based
on typicality models with rational strength and propositional coverage coincides perfectly
with materialization-based rational reasoning.

Typicality models deal with quantification neglect by a procedural upgrade that travels
from propositional to nested coverage. The final result is a defeasible semantics that
addresses one of the major drawbacks of materialization-based reasoning for defeasible
DLs, enabling more sophisticated reasoning with typicalities.

This dissertation’s main goal is to contribute to improving DLs of typicality through
semantics based on typicality models. To this end, we continue investigating unsolved
problems in the framework for EL⊥ and push typicality models to more expressive se-
mantics.

For EL⊥, we introduce a new strength corresponding to the materialization-based
lexicographic semantics. Besides, we fully compare all the six inference relations based on
typicality models for EL⊥, which was not done to this date. This comparison sheds light
on major challenges in reasoning defeasibly in a first-order setting.

Intending to extend typicality models to DLs in the Horn fragment of FOL, we present
a comprehensive study for the logic ELI⊥. The addition of inverse roles is known to
greatly impact the expressivity and complexity of the logic by allowing a restricted form of
value restrictions (i.e. universal quantification). Our preliminary study shows that adapting
typicality models for more expressive frameworks is possible, but it is a challenging task.
To retrace the path from propositional to nested reasoning, we introduced heavy technical
machinery to account for the increased expressivity. The result is a working defeasible
semantics overcoming quantification neglect over some reasoning tasks such as defeasible
subsumption and defeasible instance checking.

The dissertation is structured as follows:

• Chapter 2 introduces description logics, including a more detailed coverage of EL⊥
and ELI⊥ and some fundamental results on them.

• Chapter 3 introduces nonmonotonic reasoning through the KLM framework, which
is crucial to our approach by being the foundation of many of the DLs of typicality,
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including materialization-based systems in general.

• Chapter 4 gives an extensive and detailed overview of the current research in the
area. It covers several different techniques spread over different DLs. We compare
strengths and pinpoint shortcomings of the most relevant systems examined. To the
best of our knowledge, no published survey covers this topic. Therefore, this is the
first contribution of this dissertation. The content is formatted as an independent
paper and will be submitted for publication.

The second part of the dissertation is concerned with typicality models.

• Chapter 5 presents a very brief overview of typicality models, discussing the main
intuitions and commonalities between the two systems examined afterward.

• Chapter 6 presents results on typicality models for the DL EL⊥. Some of the results
were previously established by Pensel and Turhan (2017), (2018), (2018), and Pensel
(2019). Besides the differences in presentation for some results, we introduce two
novelties to this framework which are the main contributions of this chapter. First, we
introduce a new strength based on the lexicographic closure, defining propositional
and nested lexicographic reasoning. Then, we present a broad comparison between
all six semantics based on typicality models for EL⊥ and three materialization-based
semantics. Finally, we sketch a technique for extending the semantics to encompass
instance checking for the rational strength.

• Chapter 7 concentrates the major contributions of this dissertation. It presents a
new framework for typicality models for the logic ELI⊥. This framework includes
new definitions of domain and satisfaction and an independent upgrade procedure
to lift propositional to nested reasoning. The upgrade procedure for EL⊥ relies on
several properties absent for ELI⊥. Hence the new procedure is only inspired by
the original one. We also consider an adaptation of the instance checking extension
from EL⊥ that covers reasoning of rational strength in both coverages.

– Some of the results of this chapter have been presented in [CT22b], [CT22a],
and [CT23].

• Finally, chapter 8 discusses some issues common to both typicality models frame-
works covered in the dissertation. This discussion highlights the challenges of
reasoning defeasibly in a first-order setting and points to some possible drawbacks
of the typicality model’s solution.
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Part I

Background
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Chapter 2

Description Logics

D
escription Logics (DLs) are a family of logical-based knowledge representation
formalisms. They are decidable fragments of first-order logic that cover unary
predicates (named concepts) and binary predicates (named roles). In that sense,

they extend the expressivity of propositional logic without sacrificing decidability. DLs are
tailored to specific use cases. Therefore, reflecting the trade-off between expressiveness
and tractability, they vary in their computational complexity. They go from lightweight
formalisms, such as EL, to very expressive ones, such as SROIQ. Because DLs have a
first-order nature, the language of DLs usually includes quantifiers.

A wide range of real-life applications justifies the study of DLs. The most notable
one is their role as the theoretical backbone of computational ontologies through the
web-ontology language (OWL). Beyond the Semantic Web, ontologies are one of the most
popular ways of representing knowledge. Successful examples include ontologies in the
biomedical domain, such as gene ontology (GO) [Ash+00] or GALEN medical terminology
[Rec+95]. Other interesting applications include ontology-based data access (OBDA), where
ontologies are used to query databases, and ontology-based data integration (OBDI), where
ontologies are employed to integrate heterogeneous databases covering shared knowledge
domains.

2.1 Syntax

DLs represent knowledge from a universe of discourse by characterizing its elements.
The language to describe the behavior of the elements is composed of concepts (i.e., unary
predicates), which refer to sets of elements, and roles (i.e., binary predicates), which refer to
pairs of elements. More concretely, concepts characterize things such as birds, pet, orphan,
and central nervous system. Roles, on the other hand, cover relationships such as parentOf,
eats, is part of, and regulates. Concepts and roles are built from basic building blocks called
names. Formally, two disjoint sets – NC, for concepts, and NR, for roles – define the basic
building blocks. Complex concepts arise from the combination of names and roles by
constructors connected by a well-defined syntax. Definition 2.1 specifies the grammar for
the DL ALC, which is the starting point for many DLs.
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Definition 2.1 (ALC concepts). Let NC and NR be two sets s.t. NC ∩NR = ∅, 𝐴 ∈ NC and
𝑟 ∈ NR. Let ⊤ and ⊥ be two constants. An ALC concept 𝐶 is given by:

𝐶, 𝐷 := ⊤ | ⊥ | 𝐴 | ¬𝐶 | 𝐶 ⊓ 𝐷 | 𝐶 ⊔ 𝐷 | ∃𝑟 .𝐶 | ∀𝑟 .𝐶

The constructors ¬, ⊓, ⊔, ∃, ∀ are called negation, conjunction, disjunction, existential
restriction and value restriction.

DLs also enable reference to specific elements of the universe of discourse through
named individuals. A set of names, denoted by NI, is introduced to this end. As before, this
set is disjoint w.r.t. NC and NR.

Now, two important notions related to concepts will be introduced – subconcepts
and quantified concepts. The former allows identifying the construction blocs that make
any given concept, while the latter pinpoints concepts within the scope of some quanti-
fier.

Definition 2.2 (Subconcepts & quantified concepts). Let 𝐶 be a concept. Then, the set of
subconcepts of 𝐶 , denoted by Sub(𝐶), is given recursively by

• {𝐶} if 𝐶 ∈ NC;

• {𝐶} ∪ Sub(𝐷) ∪ Sub(𝐸) if 𝐶 ∈ {𝐷 ⊓ 𝐸, 𝐷 ⊔ 𝐸};

• {𝐶} ∪ Sub(𝐷) if 𝐶 ∈ {¬𝐷 , ∃𝑟 .𝐷 , ∀𝑟 .𝐷}.

The set of subconcepts of a set of concepts Γ is defined by Sub(Γ) = ⋃
𝐶∈Γ Sub(𝐶).

The set of quantified concepts is the set of concepts nested in quantifiers. Formally,𝑄𝑐 (𝐶) =
{𝐷 | ∃𝑟 .𝐷 ∈ Sub(𝐶) or ∀𝑟 .𝐷 ∈ Sub(𝐶)}. As before, the set of quantified concepts for a set of
concepts Γ is given by 𝑄𝑐 (Γ) = ⋃

𝐶∈Γ𝑄𝑐 (𝐶). A set of concepts Γ is said to be closed under
quantification iff 𝐶 ∈ Γ for every 𝐶 ∈ 𝑄𝑐 (Γ).

Example 2.3. Let Γ = {∃𝑟 .𝐶 ⊓ 𝐷 , ∀𝑠 .(𝐸 ⊔ ¬𝐹 )}. Then, Sub(Γ) = {∃𝑟 .𝐶 ⊓
𝐷 , ∃𝑟 .𝐶 , 𝐷 , 𝐶 , ∀𝑠 .(𝐸 ⊔ ¬𝐹 ), 𝐸 ⊔ ¬𝐹 , 𝐸, ¬𝐹 , 𝐹 } and 𝑄𝑐 (Γ) = {𝐶 ⊓ 𝐷 , 𝐸 ⊔ ¬𝐹 , }.

Some more expressive DLs have additional constructors, such as number restrictions.
Others, such as the members of the EL family, have less. DLs can also have syntactical
restrictions on where certain concepts can occur in knowledge representation. Those
restrictions are usually proposed to tame the complexity of some DL.

2.2 Semantics
DLs are fragments of first-order logic (FOL) and therefore inherit its set-theoretical

semantics. This semantics is supported by interpretations, pairs that define a universe
of elements and mappings that connect those elements to concepts, roles, and individu-
als.

Definition 2.4. An interpretation I = (ΔI, ·I) is a pair composed of the non-empty set ΔI ,
called the domain of the interpretation, and a mapping ·I that maps basic concepts, roles and
constants to the domain in the following way:
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thetis

Deity

achilles

Greek

hector

Trojan

patroclus

Greek

motherOf killed killed

Figure 2.1: A graphical interpretation of I = (ΔI, ·I). Nodes represent elements of the domain, and
their labels cover concept membership. Edges represent the roles that label them.

1. 𝐴 ∈ NC to 𝐴I ⊆ ΔI ;

2. ⊤ to ΔI and ⊥ to ∅;

3. 𝑟 ∈ NR to 𝑟I ⊆ ΔI × ΔI ;

4. 𝑎 ∈ NI to 𝑎I ∈ ΔI .

For complex concepts 𝐶 , the extension is given compositionally by the following equiva-
lences:

Constructor Syntax Semantics

Negation (¬𝐶)I ΔI \𝐶I

Conjunction (𝐶 ⊓ 𝐷)I 𝐶I ∩ 𝐷I

Disjunction (𝐶 ⊔ 𝐷)I 𝐶I ∪ 𝐷I

Existential restriction (∃𝑟 .𝐶)I {𝑑 ∈ ΔI | there is some 𝑒 ∈ ΔI such (𝑟, 𝑒) ∈ 𝑟I and 𝑒 ∈ 𝐶I}
Value restriction (∀𝑟 .𝐶)I {𝑑 ∈ ΔI | for all 𝑒 ∈ ΔI such that (𝑑, 𝑒) ∈ 𝑟I , 𝑒 ∈ 𝐶I}

The set of elements denoted by 𝐶I is named the extension of 𝐶 in I.

Example 2.5. Let us consider a simple language that describes the Trojan War. Let Deity,
Mortal, Trojan and Greek be concept names and motherOf and killed be roles. A possible
interpretation for this vocabulary is I = (ΔI, ·I), where

ΔI = {𝑡ℎ𝑒𝑡𝑖𝑠, 𝑎𝑐ℎ𝑖𝑙𝑙𝑒𝑠, ℎ𝑒𝑐𝑡𝑜𝑟, 𝑝𝑎𝑡𝑟𝑜𝑐𝑙𝑢𝑠};
DeityI = {𝑡ℎ𝑒𝑡𝑖𝑠};

MortalI = {𝑎𝑐ℎ𝑖𝑙𝑙𝑒𝑠, ℎ𝑒𝑐𝑡𝑜𝑟 };
TrojanI = {ℎ𝑒𝑐𝑡𝑜𝑟 };
GreekI = {𝑎𝑐ℎ𝑖𝑙𝑙𝑒𝑠, 𝑝𝑎𝑡𝑟𝑜𝑐𝑙𝑢𝑠};

motherOfI = {(𝑡ℎ𝑒𝑡𝑖𝑠, 𝑎𝑐ℎ𝑖𝑙𝑙𝑒𝑠)};
killedI = {(𝑎𝑐ℎ𝑖𝑙𝑙𝑒𝑠, ℎ𝑒𝑐𝑡𝑜𝑟 ), (ℎ𝑒𝑐𝑡𝑜𝑟, 𝑝𝑎𝑡𝑟𝑜𝑐𝑙𝑢𝑠)}.

Interpretations can be seen as directed labeled graphs, where nodes represent the
elements of the domain, and edges represent roles. A graphical representation of I is
depicted in Figure 2.1.

Of course, this interpretation captures actual knowledge about the Trojan War only
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incidentally. Nothing in the vocabulary forces the domain to be comprised of this particular
set of elements. Any set and mapping function would work in the same way. The only
requirement is that the domain is not empty – therefore, any cardinality besides 0 is
accepted, including infinite domains.

What interests us in modeling knowledge are the generalities that hold across all
interpretations satisfying some condition and the patterns between concepts and roles
that hold in them. We constrain the sets of interpretations to examine those properties by
means of knowledge bases, which are collections of formulas called axioms. Axioms carry
information on the intended interplay between the terms that make the vocabulary.

2.3 Representing Knowledge with DLs
There are two main ingredients in representing knowledge in DLs: (1) general concept

inclusions (GCIs) and (2) concept or role assertions. Those ingredients make the two
main components of a knowledge base: the terminological box (TBox), denoted by T ,
and the assertional box (ABox), denoted by A. Formally, a knowledge base (KB) is a pair
K = (T ,A).1

The terminological component of a knowledge base encodes relationships between
concepts. It should cover information such as every parent has a child and (Greek) gods are
immortal. GCIs encode this kind of information through a included in symbol, ⊑, that relates
two (simple or complex) concepts. Our examples could be written as Parent ⊑ ∃has.Child
and GreekGod ⊑ Immortal. Those formulas, called axioms, should be read as every instance
of the left-hand side concept is an instance of the right-hand side concept. A TBox T is a set
of such axioms.

If the terminological part of a KB can be seen as carrying information on the data
structure, assertional knowledge, on the other hand, deals with the actual data, which is
represented by individuals. The ABox contains concept and role assertions, which are attri-
butions individual(s) to a concept or a role, respectively. Hector killed Patroclus and Thetis
is a deity and has a child are examples of this kind of knowledge and would be represented
in the DL formalism by killed(hector, patroclus) and (Deity⊓∃has.Child) (thetis), where
killed and has are roles, Deity and Child are concepts and hector, patroclus, and thetis are
individual names. An ABox A is a set of such assertions.

It will also be useful to port subconcepts and quantified concepts from Definition 2.2
to KBs. Adapting them is straightforward: Sub(T ) = ⋃

𝐶⊑𝐷∈T (Sub(𝐶) ∪ Sub(𝐷)) and
Sub(A) = ⋃

𝐶 (𝑎)∈A Sub(𝐶). Then, Sub(K) = Sub(T ) ∪ Sub(A). The same idea holds for

1 Later in the thesis, we will deal with broader KBs, known as defeasible knowledge bases (DKBs). They
increase the standard KBs by including a defeasible terminological component. Some more expressive DLs
also have a third strict component in their KBs, role hierarchies, the role counterpart to the TBox. Those
axioms are stored in the so-called RBoxes.
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sets of quantified concepts:

𝑄𝑐 (𝐶 ⊏∼ 𝐷) := 𝑄𝑐 (𝐶 ⊑ 𝐷)
:= {𝐴 | ∃𝑟 .𝐴 ∈ Sub(𝐶) ∪ Sub(𝐷) or ∀𝑟 .𝐴 ∈ Sub(𝐶) ∪ Sub(𝐷)}

𝑄𝑐 (T ) := {𝑄𝑐 (𝐶 ⊑ 𝐷) | 𝐶 ⊑ 𝐷 ∈ T }
𝑄𝑐 (A) := {𝐴 ∈ sigC(A) | 𝐶 (𝑎) ∈ A and ∃𝑟 .𝐴 occurs in 𝐶}

The axioms that make up a KB are connected to interpretations by the notion of
satisfaction. If every element in the domain of some interpretation I conforms to some
axiom, we say that this interpretation satisfies it. If an interpretation satisfies all axioms in
some KB K , we say that this interpretation is a model of K . Formally:

Definition 2.6 (Satisfaction & Model). Let 𝐶 ⊑ 𝐷 be a GCI and 𝐶 (𝑎) be an assertion for
some DLL. Let I = (ΔI, ·I) be an interpretation. We say that I satisfies𝐶 ⊑ 𝐷 iff𝐶I ⊆ 𝐷I ,
denoted by I |= 𝐶 ⊑ 𝐷 . We say that I satisfies 𝐶 (𝑎) iff 𝑎I ∈ 𝐶I , denoted by I |= 𝐶 (𝑎).

Let K = (T ,A) be a KB. If I satisfies all GCIs in T and all assertions in A, we say that
I is a model of K , denoted by I |= K . We denote the set of all models of K by Mod(K).

Axioms can be translated into the language of FOL through closed formulas, and
interpretations for both formalisms are interchangeable given this translation. Formally:

DL FOL

𝐶 ⊑ 𝐷 ∀𝑥 (𝐶 (𝑥) → 𝐷 (𝑥))
𝐶 ⊑ 𝐷 ⊓ 𝐸 ∀𝑥 (𝐶 (𝑥) → (𝐷 (𝑥) ∧ 𝐸 (𝑥)))
𝐶 ⊑ 𝐷 ⊔ 𝐸 ∀𝑥 (𝐶 (𝑥) → (𝐷 (𝑥) ∨ 𝐸 (𝑥)))
𝐶 ⊑ ∃𝑟 .𝐷 ∀𝑥 (𝐶 (𝑥) → ∃𝑦 (𝑟 (𝑥,𝑦) ∧ 𝐷 (𝑦)))
𝐶 ⊑ ∀𝑟 .𝐷 ∀𝑥 (𝐶 (𝑥) → ∀𝑦 (𝑟 (𝑥,𝑦) → 𝐷 (𝑦)))

Example 2.7. Let K = (T ,A) be a KB s.t.

T ={∃motherOf .⊤ ⊔ ∃fatherOf .⊤ ⊑ Parent,

Greek ⊔ Trojan ⊑ Mortal,

Mortal ⊓ Deity ⊑ ⊥};

A ={Deity(thetis), Greek(achilles), Greek(patroclus),
Trojan(hector), motherOf (thetis, achilles)
killed(hector, patroclus), killed(achilles, hector)}.

This KB constrains our interpretations to certain widely known facts about the Trojan
War, namely, that Achilles, the son of the nymph Thetis, killed the trojan prince Hector to
avenge the death of his companion Patroclus. Every interpretation that models K has to
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conform to this information, regardless of which elements make up its domain. Notice
that interpretation I depicted in Example 2.5 is a model of K .

Besides the stated facts, the KB also allows infering information that is not explicitly
encoded. For example, one can conclude that there is (at least) one deity; that Thetis is
a parent; that Achilles, Patroclus, and Hector are mortals; and that Thetis is not. We say
that some formula –𝐶 ⊑ 𝐷 or𝐶 (𝑎) – follows from a KBK iff every model I ofK is also a
model of the formula. This is denoted by K |= 𝐶 ⊑ 𝐷 and K |= 𝐶 (𝑎), respectively.

2.4 Reasoning Tasks

Reasoning is deciding what follows from some given KB K . FOL is undecidable, which
means that there is no procedure guaranteed to output a correct answer to every query of
this nature. However, reasoning in DLs is possible because they are decidable fragments of
FOL, i.e. there are procedures guaranteed to terminate and give a correct answer to any
query and KB in a DL L, although the complexity of this task varies greatly depending on
the DL being used. There are several different reasoning tasks

Definition 2.8 (Consistency Checking). A KB K is said to be consistent if it is satisfiable,
i.e., Mod(K) ≠ ∅. A concept𝐶 is consistent w.r.t.K iff there is some model I ofK s.t.𝐶I ≠ ∅.

Notice that there may be inconsistent concepts in consistent KBs. The conflict only
arises if the KB requires that the inconsistent concept is non-empty.

Another reasoning task is subsumption checking, which amounts to verifying whether
one concept 𝐶 is subsumed by another, 𝐷 .

Definition 2.9 (Subsumption Checking). Let K be a KB and 𝐶, 𝐷 be concepts. We say that
𝐶 is subsumed by 𝐷 in K , denoted by K |= 𝐶 ⊑ 𝐷 , iff, for every I ∈ Mod(K), 𝐶I ⊆ 𝐷I .

Finally, we define instance checking, i.e. checking if some named individual 𝑎 necessarily
belongs to some concept 𝐶 .

Definition 2.10 (Instance Checking). LetK be a KB,𝐶 be a concept, and 𝑎 ∈ NI be a named
individual. We say that 𝑎 is in 𝐶 in K , denoted by K |= 𝐶 (𝑎), iff, for every I ∈ Mod(K),
𝑎 ∈ 𝐶I .

Both subsumption and instance checking can be reduced to consistency checking. Let
K = (T ,A) be the KB, 𝐶 ⊑ 𝐷 be the subsumption, and 𝐶 (𝑎) the instance to be checked.
Then, K |= 𝐶 ⊑ 𝐷 amounts to checking the consistency of 𝐾′ = (T ∪ {𝐶 ⊓ ¬𝐷},A), and
K |= 𝐶 (𝑎) to checking the consistency of 𝐾′′ = (T ,A ∪ {¬𝐶 (𝑎)}). This equivalence can
be seen even in languages without full negation, such as those of the EL family equipped
with the ⊥ constant. Instead of the concept𝐶 ⊓ ¬𝐷 , we introduce a new auxiliary concept
name Aux, and add 𝐶 ⊑ Aux and Aux ⊓ 𝐷 ⊑ ⊥ to T . For instance checking, we may also
add Aux, enrich A with Aux(𝑎), and T with Aux ⊓𝐶 ⊑ ⊥.
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2.5 The EL family

Taming complexity is an important part of DL research. Reasoning in general KBs2 in
the basic DL ALC is already ExpTime–complete. [Baa+17, Th. 5.11] However, there are
more palatable options. EL is a lightweight DL that has a polynomicalcal reasoning algo-
rithm. Plain EL cannot express contradictions, as it lacks full negation and the ⊥ concept.
Therefore, it is not a particularly interesting logic for defeasible reasoning. Nonetheless,
introducing ⊥ in the language opens space for inconsistency and defeasibility and does
not increase the reasoning complexity [Bra04], [BBL05], [Pen19, p. 22].

This introduction characterizes the DLs EL⊥ and ELI⊥. We cover the main technical
machinery and results for reasoning through canonical models. We present those results in
our notation and with differences in formulation required by the purpose of the dissertation.
Nonetheless, the literature already established most of what is presented here. For the
EL⊥ calculi, the reader is referred to [BBL05] and [Baa+17]. The EL⊥ canonical model
presentation that we consider is inspired by [LW10]. Reasoning for ELI⊥ is established
in [BLB08] and also covered by [Baa+17]. Although inspired by the procedure presented
in [Baa+17], the idea of prime set is original to our work. Pensel and Turhan [PT18b]
proposed representative domains for EL⊥. The adaptation for ELI⊥ is also original to
this dissertation.

2.5.1 EL⊥
The language of EL⊥ has the two constructors that make up EL– conjunction and

existential restrictions – and includes the constant ⊥ to define concept disjointness.

Definition 2.11 (EL⊥ Concept). Let NC and NR be two non-empty disjoint sets. Let𝐴 ∈ NC
and 𝑟 ∈ NR. An EL⊥ concept 𝐶 is given by:

𝐶 := ⊥ | 𝐴 | 𝐶 ⊓ 𝐷 | ∃𝑟 .𝐶

Where 𝐶, 𝐷 range over EL⊥ concepts. An EL⊥ KB K is a KB s.t. every concept 𝐶 that
occurs in it is an EL⊥ concept.

The lack of disjunction in EL⊥ makes reasoning easier by eliminating the need for
backtracking, which is not possible in DLs such as ALC. Proving subsumptions can be
done directly by deriving all subsumptions that follow from the KB, saturating it, a task
known as classification. In EL⊥, this calculation can be done in polynomial time w.r.t. the
size of K . For a more detailed account of the consequence-based reasoning algorithm, the
reader is referred to [BBL05] and [Baa+17].

One important feature of the DLs in the EL family is the canonical model property,
i.e., any KB K has a special model that can be homomorphically embedded into every
other model of K . In EL⊥ and its extension ELI⊥, which will be introduced later in the

2 If the TBox is acyclic, then the complexity goes down to PSpace [Baa+17, Th. 5.5]. A TBox T is said to be
acyclic if (i) no concept name in T uses itself and (ii) concept names do not occur twice more than one
time on the left-hand side of a GCI in T [Baa+17, pp. D. 2.9].
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text, this model can be used to check subsumption and instances directly by looking at
elements that represent the concept on the left-hand side of the inclusion or applied to
the individual. Canonical models are defined w.r.t. relevant contexts, which delimit the
domain to a given set of salient concepts. Relevant contexts are defined w.r.t. DKBs and
queries.

Definition 2.12 (Relevant context for EL⊥). [Pen19, pp. D. 2.13.] Let K = (T ,D) be a
DKB. The set C ⊂ 𝔏(EL⊥) is an EL⊥ relevant context for K if it satisfies:

• 𝑄𝑐 (K) ⊆ C,

• For every 𝐶 ∈ C, K ̸|= 𝐶 ⊑ ⊥,

• 𝑄𝑐 (C) ⊆ C.

As a special case, we define the context of a KB K , denoted by C(K), by the least
set closed under quantification containing all satisfiable concepts 𝐶, 𝐷 s.t. 𝐶 ⊑ 𝐷 ∈ T
or 𝐶 (𝑎) ∈ A. To include an arbitry query 𝐶 ⊑ 𝐷 in the context, one can add 𝐶 ⊑ ⊤ to
T .

Example 2.13 (Relevant context for EL⊥). Let K = (T ,D) be a DKB such that T = {𝐴 ⊑
∃𝑟 .∃𝑠 .𝐵} and D = {𝐵 ⊏∼ 𝐶 ⊓ 𝐷}. The set C = {𝐴, ∃𝑠 .𝐵, 𝐵} is a relevant context for K . On
the other hand, the set C′ = {𝐴, ∃𝑠 .𝐵} is not a relevant context for K , as 𝑄𝑐 (C′) ⊈ C′.

Adapting the definition given in [LW10], a direct definition of the canonical model for
EL⊥ is given by:

Definition 2.14 (Canonical Model for EL⊥). Let K = (T ,A) be a KB and C be a con-
text over the language of EL⊥ consistent with K . The canonical model of K over C is an
interpretation IK,C = (ΔIK,C, ·IK,C) s.t. ΔIK,C = C ∪ sigI(K) and ·IK,C is defined by

𝐴IK,C = {𝐶 ∈ ΔIK,C | K |= 𝐶 ⊑ 𝐴}
∪ {𝑎 ∈ ΔIK,C | K |= 𝐴(𝑎)};

𝑟IK,C = {(𝐶, 𝐷) ∈ ΔIK,C × ΔIK,C | K |= 𝐶 ⊑ ∃𝑟 .𝐷}
∪ {(𝑎,𝐶) ∈ ΔIK,C × ΔIK,C | K |= (∃𝑟 .𝐶) (𝑎)};

𝑎IK,C = 𝑎.

As a special case, if C = C(K), we denote IK,C by IK .

As mentioned before, it is possible to read subsumptions directly from canonical models
by looking at concept representatives.

Lemma 2.15. Let K be a KB and C be a context s.t. 𝐶, 𝐷 ∈ C, and 𝑎 ∈ sigI(K). Let IK,C be
the canonical model for K over C. Then,

1. K |= 𝐶 ⊑ 𝐷 iff 𝐶 ∈ 𝐷IK,C , and

2. K |= 𝐶 (𝑎) iff 𝑎 ∈ 𝐶IK,C .

Proof. 1. The proof is on the structure of 𝐷 . For the base case, let 𝐷 ∈ NC. Then, by
definition, 𝐶 ∈ 𝐷IK,C iff K |= 𝐶 ⊑ 𝐷 . There are two cases to examine in the inductive step
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because 𝐷 ∈ {𝐸 ⊓ 𝐹, ∃𝑟 .𝐸}, for two concepts 𝐸, 𝐹 . If 𝐷 = 𝐸 ⊓ 𝐹 ,

𝐶 ∈ 𝐷IK,C ⇔
𝐶 ∈ 𝐸IK,C and 𝐶 ∈ 𝐹IK,C ⇔
K |= 𝐶 ⊑ 𝐸 and K |= 𝐶 ⊑ 𝐹 ⇔
K |= 𝐶 ⊑ 𝐷

2. We show the directions separately. First, suppose that 𝐶 ∈ (∃𝑟 .𝐸)IK,C . Then, there is
some element 𝐹 s.t. (𝐶, 𝐹 ) ∈ 𝑟IK,C and 𝐹 ∈ 𝐸IK,C . Notice that 𝐹 is a concept representative
because, by construction, all role successors are concept representatives. Individuals only
appear in role edges as predecessors. Then, by hypothesis, K |= 𝐶 ⊑ ∃𝑟 .𝐹 and K |= 𝐹 ⊑ 𝐸.
But this implies that K |= 𝐶 ⊑ ∃𝑟 .𝐸, proving one direction.

Now, suppose that K |= 𝐶 ⊑ ∃𝑟 .𝐸. Notice that ∃𝑟 .𝐸 = 𝐷 is in the context C. Then, by
the construction of the domain, 𝐸 ∈ ΔIK,C , as 𝐸 ∈ 𝑄𝑐 (∃𝑟 .𝐸). Finally, by the definition of
the extension of 𝑟 , (𝐶, 𝐸) ∈ 𝑟IK,C and, because K |= 𝐸 ⊑ 𝐸, 𝐸 ∈ 𝐸IK,C . Therefore, 𝐶 ∈ 𝐷IK,C .

(2) For the base case, once more, by definition, 𝑎 ∈ 𝐶IK,C iff K |= 𝐶 (𝑎).

For the inductive steps, the cases are the same as before. First, if 𝐶 = 𝐷 ⊓ 𝐸,

𝑎 ∈ 𝐶IK,C ⇔
𝑎 ∈ 𝐷IK,C and 𝑎 ∈ 𝐸IK,C ⇔
K |= 𝐷 (𝑎) and K |= 𝐸 (𝑎)
K |= 𝐶 (𝑎)

The second case uses the same argument presented in (1). Suppose that 𝑎 ∈ (∃𝑟 .𝐷)IK,C .
Then, there is some 𝐸 ∈ ΔIK,C s.t. (𝑎, 𝐸) ∈ 𝑟IK,C and 𝐸 ∈ 𝐷IK,C . By hypothesis, K |=
(∃𝑟 .𝐸) (𝑎) and K |= 𝐷 ⊑ 𝐸. From this, it follows that K |= (∃𝑟 .𝐷).

For the other direction, let K |= (∃𝑟 .𝐷) (𝑎). Because (∃𝑟 .𝐷) ∈ C, 𝐷 ∈ C and 𝐷 ∈ ΔIK,C .
Then, by definition, (𝑎, 𝐷) ∈ 𝑟IK,C and 𝐷 ∈ 𝐷IK,C . Finally, 𝑎 ∈ (∃𝑟 .𝐷)IK,C , completing the
proof. □

Example 2.16. Let K = (T ,A) be an EL⊥ KB s.t. T = {Trojan ⊑ Mortal ⊓
∃hasEnemy.Greek,Greek ⊑ Mortal,Mortal⊓Deity ⊑ ⊥} andA = {Trojan(hector)}. Let
C = {Trojan,Greek,Mortal,Deity}. The canonical model IK,C ofK over C can be visualized
by the graph diagram depicted in Figure 2.2.

From Example 2.16, it is possible to see that the expected relationships between concepts
hold – e.g., Trojan ⊑ ∃hasEnemy.Greek –, but it is also possible to draw new conclusions,
such as Trojan ⊑ ∃hasEnemy.Mortal and Mortal(hector).

2.5.2 ELI⊥
Most of the letters in the nomenclature of DLs have special meanings, and this is the

case for the I in ELI⊥, which stands for inverted roles. ELI⊥ adds a construct to refer to
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Mortal
Trojan

Greek

Deity

Trojan

Greek

hector

Mortal

Deity

Figure 2.2: A graphical interpretation of IK,C = (ΔIK,C, ·IK,C). Nodes represent the elements of the
domain, and the labeled colored rectangles show the extension of the named concepts. Finally, edges
represent the extension of the role hasEnemy.

the inverse of a role 𝑟 , denoted by 𝑟−, to the language of EL⊥. Roles are interpreted by
pairs of elements from the domain and, for every role, we can define its inverse by taking
the inverse of the pairs. Formally, (𝑎, 𝑏) ∈ 𝑟I iff (𝑏, 𝑎) ∈ 𝑟I .

At first glance, this addition is useful to represent meaningful inverses, e.g., hasChild−

is hasParent, and so on. However, inverse roles are not limited to this simple use and their
addition results in a great increase in the expressivity and complexity of EL⊥. Employing
the equivalence ∃𝑟−.𝐶 ⊑ 𝐷 ≡ 𝐶 ⊑ ∀𝑟 .𝐷 , the language of ELI⊥ is able to represent
value restrictions on the right-hand side of GCIs. From now on, whenever a GCI of the
form 𝐶 ⊑ ∀𝑟 .𝐷 appears in the context of ELI⊥, it should be seen as an abbreviation for
∃𝑟−.𝐶 ⊑ 𝐷 .

Throughout this dissertation, we will work with syntactically restricted TBoxes called
normalized TBoxes. This syntactical restriction does not result in a loss of expressivity
since there are methods to normalize any TBox that output a conservative extension of
the original one, i.e., it preserves subsumption for the shared concepts. It is possible to
normalize any ELI⊥ TBox by a linear number of applications of normalization rules, and
the size of the new TBox is linear on the size of the original non-normalized one. [Baa+17,
Lemma 4.2]

Definition 2.17 (ELI⊥ TBox normal form). Let 𝐴,𝐴′, 𝐵 ∈ NC ∪ {⊥,⊤} and 𝑟 ∈ NR
−. An

ELI⊥ TBox T is in TBox normal form (written T-NF(T )), if all of its axioms have one of
the following forms:

𝐴 ⊑ 𝐵 𝐴 ⊓𝐴′ ⊑ 𝐵 𝐴 ⊑ ∃𝑟 .𝐵 𝐴 ⊑ ∀𝑟−.𝐵

A simple ABox A is an ABox which contains only assertions concerning named
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𝐵

𝐶

𝐴

𝐵

𝐶

Figure 2.3: A graphical interpretation of the EL⊥ canonical model IK,C = (ΔIK,C, ·IK,C) defined over
the KB K from Example 2.18. The nodes 𝐴, 𝐵, and 𝐶 represent the elements of the domain and the
labelled dashed rectangles show the extension of named concepts. Finally, edges represent the extension
of the role 𝑟 . The violation arises from the (𝐴,𝐶) edge and is marked in red.

concepts, i.e., for every 𝐶 (𝑎) ∈ A, 𝐶 ∈ NC. It is also possible to simplify any given ABox
by introducing new concept names 𝐶𝑎𝑢𝑥 for each 𝐶 (𝑎) ∈ A, substituting the assertion
𝐶 (𝑎) for 𝐶𝑎𝑢𝑥 (𝑎), and adding 𝐶𝑎𝑢𝑥 ⊑ 𝐶 to the TBox. From now on, we consider all the
ABoxes to be simple and the TBoxes to be normalized unless stated otherwise.

The introduction of inverse roles undermines the procedure for building the EL⊥
canonical model from Definition 2.14. The intuition for this failure is that the EL⊥ canonical
model has too many role edges, and ELI⊥ introduces restrictions on edges. This excess of
edges originates in the requirement that, for everyK |= 𝐶 ⊑ ∃𝑟 .𝐷 , there is a corresponding
pair (𝐶, 𝐷) ∈ 𝑟IK . A simple example shows why this is the case.

Example 2.18. Let K = (T ,A) where T = {𝐴 ⊑ ∃𝑟 .𝐵,𝐴 ⊑ ∀𝑟 .𝐶} and A = ∅.

The interpretation stemming from Definition 2.14 would not be a model, as the edge
𝑟 (𝐴, 𝐵) violates 𝐴 ⊑ ∀𝑟 .𝐶 . It is not possible to fix this violation by adding the element 𝐵 to
the extension of the concept 𝐶 because it is not true that 𝐵 ⊑ 𝐶 .

The key to overcoming this obstacle is noticing the inner workings of value restric-
tions, namely, that they make existing roles “collect” all the concepts nested inside the
corresponding restrictions. For K from Example 2.18, the 𝐵 𝑟 -successor for 𝐴 is not only a
𝐵, but also a 𝐶 – hence, it can be represented by 𝐵 ⊓𝐶 . This intuition can be put to work
by departing from concept representatives to sets of named concepts representing their
conjunction.3 Let 𝑀 ⊆ NC be a set of named concepts. The corresponding concept of 𝑀
is

⌈𝑀⌉ :=
{.

𝐴∈𝑀 𝐴 , if 𝑀 ≠ ∅
⊤ , otherwise

Each domain element is the representative of its corresponding concept. Single concepts
𝐶 can still be represented by the singleton {𝐶}. By convention, ⌈∅⌉ = ⊤, which allows
representing existential requirements such as 𝐶 ⊑ ∃𝑟 .⊤.

Given the transition from concept representatives to sets of named concepts, it is
necessary to decide once again which elements will compose the domain of the canonical
model. A representative domain for some KB K = (T ,A) contains all the combinations of

3 More inclusive sets of concepts can be used and may even be more economical. However, the construction
of typicality models for ELI⊥ will demand this restriction to names.
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named concepts appearing within quantification, singletons of the named concepts in the
Tbox, and the individuals from the Abox.

Definition 2.19 (Representative Domain for ELI⊥). Let K = (T ,A) be an ELI⊥ KB.
The representative domain for K is given by

ΔK = {{𝐴} | 𝐴 ∈ sigC(K)} ∪ P(𝑄𝑐 (K)) ∪ sigI(A)

Finding the right edges for the canonical model amounts to finding witness that are
maximal according to the subset relation. Going back to the Example 2.3, the 𝑟 edge
departing from 𝐴 (now {𝐴}) should land neither in {𝐵}, nor in {𝐶}, but in {𝐵,𝐶}. In other
words, the 𝐵 edge should collect all value restrictions imposed by the KB. Formally, they
are defined as follows:

Definition 2.20 (Prime successor). Let K = (T ,D) be a DKB, I = (ΔI, ·I) an interpre-
tation, 𝐶 ∈ 𝔏(ELI⊥) be a concept, and 𝑟 ∈ {𝑠, 𝑠−} with 𝑠 ∈ sigR(K). Then, 𝑁 ∈ ΔK is a
prime 𝑟 -successor for 𝐶 in I iff:

1. K |= 𝐶 ⊑ ∃𝑟 .⌈𝑁 ⌉, and

2. There is no 𝑁 ′ ∈ ΔK s.t.

(a) 𝑁 ⊂ 𝑁 ′, and

(b) K |= 𝐶 ⊑ ∃𝑟 .⌈𝑁 ′⌉

By employing the representative domain as its domain and restricting role edges
through primeness, it is possible to give a suitable direct definition of a canonical model
for ELI⊥.

Definition 2.21 (Canonical Model for ELI⊥). Let K = (T ,A) be an ELI⊥ KB. Then,
IK = (ΔIK , ·IK ) is the canonical model for K , where ΔIK = ΔK is the representative domain
for K and

𝐴IK = {𝑀 ⊆ NC | K |= ⌈𝑀⌉ ⊑ 𝐴} ∪ {𝑎 ∈ sigI(K) | K |= 𝐴(𝑎)}
𝑟IK = {(𝑀, 𝑁 ) ∈ P(NC) × P(NC) | K |= ⌈𝑀⌉ ⊑ ∃𝑟 .⌈𝑁 ⌉ and 𝑁 is prime for 𝑀 and 𝑟 }
∪ {(𝑁,𝑀) ∈ P(NC) × P(NC) | K |= ⌈𝑀⌉ ⊑ ∃𝑟−.⌈𝑁 ⌉ and 𝑁 is prime for 𝑀 and 𝑟− }
∪ {(𝑎,𝑀) ∈ sigI(K) × P(NC) | K |= (∃𝑟 .⌈𝑀⌉)(𝑎) and 𝑀 is prime for 𝑎 and 𝑟 }
∪ {(𝑀,𝑎) ∈ P(NC) × sigI(K) | K |= (∃𝑟−.⌈𝑀⌉)(𝑎) and 𝑀 is prime for 𝑎 and 𝑟− }

𝑎IK = 𝑎

The reader should note that the four-part definition of the extension of roles is necessary
to cover all four edge-generating scenarios – prime successors of straight and inverted roles,
and prime successors of an individual with respect to straight and inverted roles.

Example 2.22 (Canonical Model for ELI⊥). Let K = (T ,A) be an ELI⊥ KB
s.t. T = {Trojan ⊓ Soldier ⊑ ∃killed.Greek, Soldier ⊑ ∀killed.Soldier} and A =

{Trojan(hector), Soldier(hector)}.
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Greek

Trojan

Soldier

Trojan

Soldier

Greek

hector

{G, S }

∅

killed

Figure 2.4: A graphical representation of IK = (ΔIK , ·IK ). Nodes represent the elements of the domain,
and the labeled colored rectangles show the extension of named concepts. For the sake of simplicity,
the brackets in singletons are omitted; hence, Soldier stands for {Soldier}. The set with more elements
contains only the initials for graphical purposes. As before, edges represent the roles that label them.

IK = (ΔIK , ·IK ) is the canonical model according to Definition 2.21. Then, the represen-
tative domain is

ΔIK = {∅, {Trojan}, {Greek}, {Soldier}, {Greek, Soldier}, hector}

A graphical representation of the model is depicted in Diagram 2.4.

The problem pointed out in Example 2.18 vanished by the requirement of primeness
for roles. The representative of hector has only one killed successor, and it is neither the
Greek nor the Soldier representative, but the Greek ⊓ Soldier. The construction of the
representative domain does not include Trojan ⊓ Soldier, despite it being in the axioms.
The required combinations are limited to those whose elements can appear together as a
prime successor to avoid an unnecessary expansion of the domain. Hence, the required
combinations are sets of elements that appear nested in quantifiers.

Unlike the construction from EL⊥, it is not possible to answer any query by look-
ing directly into the model. If this were the case, IK would answer affirmatively to
Greek ⊑ ∀killed.Greek, simply because, in this model, greeks do not kill anyone, making
the subsumption vacuously true. This does not pose a serious threat to the canonical
model’s purpose, as the property still holds between conjunctions of named concepts,
and it is possible to represent any query by named concepts with the introduction of
auxiliary concepts and some supplementary axioms. Suppose 𝐶 ⊑ 𝐷 is the query. Then,
Let 𝐶𝑎𝑢𝑥 , 𝐷𝑎𝑢𝑥 ∈ NC s.t. 𝐶𝑎𝑢𝑥 , 𝐷𝑎𝑢𝑥 ∉ sigC(K). Let T ∗ = T ∪ {𝐶𝑎𝑢𝑥 ⊑ 𝐶, 𝐷 ⊑ 𝐷𝑎𝑢𝑥 }. It is
easy to see that T |= 𝐶 ⊑ 𝐷 iff T ∗ |= 𝐶𝑎𝑢𝑥 ⊑ 𝐷𝑎𝑢𝑥 , and that the second query contains
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only named concepts. This also applies to the full KB K .4

Now, this construction will be shown to have the necessary properties. The argument
is divided into two main parts. First, it is necessary to prove that it is indeed a model of the
KB. Then, after this is established, the property of representing subsumptions by concept
representatives and instance relationships by individual representatives is shown.

Lemma 2.23. K = (T ,A) be an ELI⊥ KB. Then, the interpretation IK = (ΔIK , ·IK ) as
defined in Definition 2.21 is a model of K .

Proof. As stated before, K is a normalized KB. Therefore, its axioms have one of the
following forms:

𝐴 ⊑ 𝐵 | 𝐴1 ⊓𝐴2 ⊑ 𝐵 | 𝐴 ⊑ ∃𝑟 .𝐵 | 𝐴 ⊑ ∀𝑟 .𝐵
To show this property, we examine each of the forms for generic elements of the domain
ΔIK . We consider the two classes of elements – sets of named concepts and individuals –
separately.

(1) For an element 𝑀 s.t. 𝑀 ⊆ sigC(K).

(𝐴 ⊑ 𝐵) If 𝑀 ∈ 𝐴IK , K |= ⌈𝑀⌉ ⊑ 𝐴, and, therefore, K |= ⌈𝑀⌉ ⊑ 𝐵. By construction,
𝑀 ∈ 𝐵IK .

(𝐴1 ⊓ 𝐴2 ⊑ 𝐵) The argument is the same as before, with the additional step from
𝑀 ∈ (𝐴1 ⊓𝐴2)IK to 𝑀 ∈ 𝐴IK1 and 𝑀 ∈ 𝐴IK2 .

(𝐴 ⊑ ∃𝑟 .𝐵) Notice that {𝐵} ∈ 𝑄𝑐 (K) and, therefore, {𝐵} ∈ ΔIK . Due to the inclusion of
sets of quantified concepts in the domain, this guarantees that there is some 𝑁 ⊆ sigC(K)
s.t. 𝐵 ∈ 𝑁 , K |= ⌈𝑀⌉ ⊑ ∃𝑟 .⌈𝑁 ⌉, and 𝑁 is prime for 𝑀 . By construction of the domain,
(𝑀, 𝑁 ) ∈ 𝑟IK and, because 𝐵 ∈ 𝑁 , K |= ⌈𝑁 ⌉ ⊑ 𝐵, and 𝑁 ∈ 𝐵IK . Taken together, these
facts imply 𝑀 ∈ (∃𝑟 .𝐵)IK .

(𝐴 ⊑ ∀𝑟 .𝐵) Suppose that (𝑀, 𝑁 ) ∈ 𝑟IK , for the elements 𝑀 and 𝑁 s.t. 𝑀 ∈ 𝐴IK . There
are two possible explanations for the origin of this edge. Either K |= ⌈𝑀⌉ ⊑ ∃𝑟 .⌈𝑁 ⌉, and
𝑁 is prime, or K |= ⌈𝑁 ⌉ ⊑ ∃𝑟−.⌈𝑀⌉, and 𝑀 is prime.

On the first case, because 𝑁 is prime for 𝑀 and K , and because 𝐵 ∈ 𝑄𝑐 (K), 𝐵 ∈ 𝑁 .
Otherwise, the prime successor would be 𝑁 ∪ {𝐵}. Therefore K |= ⌈𝑀⌉ ⊑ 𝐵 and, by
construction, 𝑀 ∈ 𝐵IK .

In the second case, we show that K |= ⌈𝑁 ⌉ ⊑ 𝐵. Suppose, by contradiction, that this is
not the case. Therefore, there is an interpretation I s.t. I |= K and 𝑛 ∈ ΔI with 𝑛 ∈ ⌈𝑁 ⌉I
and 𝑛 ∉ 𝐵I . Because K |= ⌈𝑁 ⌉ ⊑ ∃𝑟−.⌈𝑀⌉, there is some 𝑚 ∈ ΔI s.t. 𝑚 ∈ ⌈𝑀⌉I and
(𝑚,𝑛) ∈ 𝑟I . However, this would result in the violation of the axiom 𝐴 ⊑ ∀𝑟 .𝐵, and I
would not be a model of K .

Finally, because K |= ⌈𝑁 ⌉ ⊑ 𝐵, 𝑁 ∈ 𝐵IK .

□

4 Given that 𝐶 and 𝐷 can be any concept whatsoever, the resulting TBox T ∗ may have to be renormalized.
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Lemma 2.24. Let K = (T ,A) be an ELI⊥ KB, IK = (ΔIK , ·IK ) be its canonical model,
𝐴, 𝐵 ∈ sigC(K) and 𝑎 ∈ sigI(K).

1. K |= 𝐴 ⊑ 𝐵 iff {𝐴} ∈ 𝐵IK ;

2. K |= 𝐴(𝑎) iff 𝑎 ∈ 𝐴IK .

Proof. Both properties follow directly from Definition 2.21. □
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Chapter 3

Nonmonotonic Reasoning

C
lassical logics are monotonic. Formally, this means that if some set of formulas
Γ entails a formula Φ, every proper superset of Γ also entails Φ. Informally, mono-
tonicity means increasing the presupposed information augments the entailed

conclusions. Although this property is cogent for various domains, such as mathematics,
human reasoning often lacks it.

Suppose a doctor is treating a patient whose symptoms are similar to the textbook
definition of an extremely contagious disease. The doctor can assume that the patient is
indeed suffering from the disease, therefore isolating them from others even though some
tests are necessary to confirm the diagnosis. In this scenario, the doctor operates under
the assumption that the patient suffers from the contagious disease but can retract this
new information if the tests come back negative.

Another scenario where nonmonotonicity comes into play is legal reasoning. It is often
assumed that everyone is innocent unless proven otherwise. This principle is nonmono-
tonic, as proving the guilt of someone would entail retracting the previous conclusion that
they were innocent.

Those two examples highlight scenarios where nonmonotonicity is useful: dealing
with incomplete information and with the transformation of the information. In the first
case, artificial intelligence systems may benefit from drawing conclusions before having
all the available information, as gathering it can be costly, and there may be urgency in
taking some action. In the second case, some conclusions may become invalid in light of
some change in the world or the system’s knowledge.

There are several reasoning patterns in which nonmonotonicity plays an important
role, such as inductive reasoning, abductive reasoning, and typicality-based reasoning.
Inductive reasoning is characterized by extrapolating tendencies and rules from available
data and is widely used within scientific reasoning. In abductive reasoning, the agent
tries to come up with the best explanation for a series of facts, even though the facts
themselves may be insufficient for a doubt-free conclusion. This method was employed by
the famous detective Sherlock Homes, even though Holmes himself incorrectly called his
way of drawing inferences deduction. Finally, typicality-based reasoning is very prevalent
in concept formation and categorization. In a nutshell, this reasoning pattern consists in



26

3 | NONMONOTONIC REASONING

judging potential instances of a concept by comparing it to a prototype, a fictional object
that embodies the most common and salient features of the members, even if some of
them are not necessarily present in every member. As a popular adage says: if it has the
nose of a pig, the ears of a pig, and the tail of a pig, it must be a pig. On the other direction,
we may assume that a member of a given class has the prototypical qualities attributed to
it. Hence, if we know that some animal is a bird, we usually conclude that it flies, even
though some birds, such as ostriches and penguins, do not.

It is debatable whether robust AI systems must imitate human reasoning patterns.
However, some form of nonmonotonic reasoning seems unavoidable as the area progresses.
Tasks that deal with incomplete information and transforming scenarios are ubiquitous in
the problems tackled by AI systems. Self-driving cars have to take unavoidable decisions
even when they do not possess all the information required for a decision within a safe
margin. Systems for medical diagnosis have to operate under transforming information,
as new exams may rule out some conditions and point to others.

In the realm of knowledge representation and reasoning, nonmonotonicity is of utmost
importance. Several areas of knowledge are not representable under a monotonic paradigm.
In medical ontologies, for example, it may be necessary to represent things that are often
true, but that admit exceptions. Humans have five fingers in each hand unless they suffer
from polydactyly, for example. Areas that deal with hierarchies of rules may also need
nonmonotonic representation capacity in order to formalize their presuppositions. In legal
reasoning, a more general law may overrule the more specific ones. A law may regulate
violence, but another more specific one can create an exception if the violence is a form of
self-defense.

In the rest of this section, two nonmonotonic reasoning paradigms will be presented:
the KLM framework and circumscription. Those paradigms were chosen because they
greatly impacted typicality-based reasoning in DLs, even though they were proposed to
different formalisms. The eventual inadequacies of translating them to DLs is a central
topic in the thesis. For a more in-depth exploration of nonmonotonic logics, including
several other nonmonotonic calculi, the reader is referred to [AW97] and [Bre91].

3.1 The KLM Framework for NMR systems
The KLM framework is the name given to an influential hierarchy of nonmonotonic

reasoning systems proposed by Krauss, Lehman, and Magidor (1990), followed up in other
papers by the same authors, such as [LM92], and [Leh95]. The authors’ motivation was to
outline nonmonotonic systems by sets of positive properties instead of focusing on what
they lacked. Their study is based on proof-theoretical characterizations of nonmonotonic
systems with Gentzen-style sequents. Furthermore, Krauss, Lehman, and Magidor lay out
semantical characterizations for each of the five systems in their hierarchy, providing
representation theorems for each.

The authors hoped that their hierarchy would provide a benchmark to evaluate a wide
array of NMR systems. It should serve to compare autoepistemic logic and circumscription,
techniques already popular at the time of the publication. This goal was reasonably suc-
cessful, and the KLM properties are widely used in NMR research up to this day. However,
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the framework also has shortcomings that can be limiting, as will be discussed.

The language of the KLM framework is that of propositional calculus. Therefore, there
are no rules involving quantifiers. To account for defeasibility, the authors introduce a
symbol for conditional assertions, |∼. Conditional assertions express a binary relationship
between formulas. Given two formulas 𝜙,𝜓 , the conditional assertion 𝜙 |∼ 𝜓 is understood
as “’if 𝜙 , normally 𝜓”, or as “𝜓 is a plausible consequence of 𝜙” [KLM90, p. 7]. Sets of
conditional assertions are consequence relations [KLM90, p. 7].

The introduction of conditional assertions allows the partitioning of knowledge into
two realms. One realm has a stable, always true set of rules, while the other represents
regularities that usually hold but are not necessarily true, i.e., the defeasible informa-
tion.

The original paper discusses five different logical systems, presented from the weaker
to the strongest. Those systems are: C, CL, CM, P and M, the last one corresponding to
plain monotonic reasoning.

Definition 3.1 (Cumulative Reasoning – System C). [KLM90, pp. D. 1]

A consequence relation |∼ is cumulative iff it complies with the axiom schema reflexivity
and the rules below:

(Reflexivity) 𝜙 |∼ 𝜙

(Left Logical Equivalence) |= 𝜙 ≡ 𝜓 𝜙 |∼ 𝜒
𝜓 |∼ 𝜒

(Right Weakening) |= 𝜙 → 𝜓 𝜒 |∼ 𝜙
𝜒 |∼ 𝜓

(Cut) 𝜙 ∧𝜓 |∼ 𝜒 𝜙 |∼ 𝜓
𝜙 |∼ 𝜒

(Cautious Monotonicity) 𝜙 |∼ 𝜓 𝜙 |∼ 𝜒
𝜙 ∧𝜓 |∼ 𝜒

The intuition for the rules are the following:

• reflexivity expresses the fact that every formula normally implies itself. It is a basic
principle that can only be broken in a scenario involving theory change [KLM90].

• Left Logical Equivalence expresses the fact that logically equivalent formulas should
conditionally imply the same thing. Conditional assertions are impervious to syn-
tactical differences on the left-hand side.

• Right Weakening expresses the fact that something that conditional assertions carry
all the logical implications of their consequent, i.e., if something normally follows
from a situation, everything that logically follows also follows. If pets are usually
dogs, it also follows that pets are usually mammals.
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• Cut backs the cumulative aspect that names system C. It is a principle valid in mono-
tonic reasoning that does not imply monotonicity. Roughly, it says that if a bigger
set of hypotheses allows conditionally inferring something, but one hypothesis also
allows conditionally inferring the others, this hypothesis should be sufficient to
derive the conclusion. In KLM’s words: “Its meaning, it should be stressed, is that a
plausible conclusion is as secure as the assumptions that ground it. Therefore it may
be added (this is the origin of the term cumulative) into the assumptions. There is
no loss of confidence along the chain of derivation.” [KLM90, p. 12]

• Cautious Monotonicity says that facts that are conditionally inferred from some
hypothesis should not invalidate other facts also conditionally inferred from the
same hypothesis. If birds normally fly and have feathers, flying birds normally have
feathers.

Definition 3.2 (Cumulative Reasoning with Loop – System CL). A consequence relation |∼
is cumulative with loop iff it is cumulative and complies with the following rule:

(Loop) 𝜙0 |∼ 𝜙1, 𝜙1 |∼ 𝜙2, . . . , 𝜙𝑘−1 |∼ 𝜙𝑘 , 𝜙𝑘 |∼ 𝜙0
𝜙0 |∼ 𝜙𝑘

The introduction of loop has a semantical motivation. Models for cumulative logic
have a preference relation defined over worlds, and introducing this rule is shown to be
equivalent to imposing transitivity over this order. Regardless, the rule states that if there
is a loop of conditional assertions, any of them can be derived from any other. [KLM90,
p. 22]

Definition 3.3 (Preferential Reasoning – System P). A consequence relation |∼ is preferential
iff it is cumulative and complies with the following rule:

(Or) 𝜙 |∼ 𝜒 𝜓 |∼ 𝜒
𝜙 ∨𝜓 |∼ 𝜒

The rule or states that if two hypotheses separately conditionally derive some fact,
knowing that at least one of them is true is enough to derive the fact. Rain normally makes
the ground wet, and snow usually makes the ground wet. If the forecast says that it will
either rain or snow, we should prepare our waterproof boots.

The system P is a powerful one and allows deriving loop as a theorem. Before appearing
in the KLM paper, it was studied by several authors, such as [Ada65] and [PG88].

Definition 3.4 (Cumulative Monotonic Reasoning – System CM). A consequence relation
|∼ is cumulative monotonic iff it is cumulative and satisfies the following rule:

(Monotonicity) |= 𝜙 → 𝜓 𝜓 |∼ 𝜒
𝜙 |∼ 𝜒
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C {𝑅, 𝑅𝑊 , 𝐿𝐿𝐸,𝐶𝑢𝑡,𝐶𝑀}

CL C ∪ {𝐿𝑜𝑜𝑝}

CMC ∪ {𝑀} P C ∪ {𝑂𝑟 }

MC ∪ {𝐶𝑜𝑛}

Figure 3.1: Diagram representing the NMR systems presented in [KLM90]. Dashed black lines attribute
systems to their axioms. Dotted purple lines highlight how C is the minimal system, and straight black
arrows depict the relationship between their inferential strengths.

Cumulative monotonic reasoning is a strong reasoning framework that allows deriving
loop, therefore strictly extending CL. However, it is incomparable to P. This rule seems
undesirable for nonmonotonic systems, although CMR is not fully monotonic in itself.
The rule can be instantiated to generate inferences with undesirable conclusions, such as
penguins are birds and birds normally fly. Therefore, penguins normally fly.

Definition 3.5 (Monotonic Reasoning – System M). A consequence relation |∼ is monotonic
iff it is cumulative and complies with the following rule:

(Contraposition) 𝜙 |∼ 𝜓
¬𝜓 |∼ ¬𝜙

Monotonic reasoning needs no introduction and is proved to be strictly stronger than
both P and CM [KLM90, pp. L. 34 & 35]. The hierarchy of those systems is depicted in
Figure 3.1.

3.2 Extensions of the KLM Framework: Rational and
Lexicographic Closures

Much debate followed the original KLM paper. Two extensions of the framework
are of special importance to DLs of typicality: rational reasoning and the lexicographic
closure.

The discussion around rational reasoning started in [KLM90] and was further developed
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in (1992). Preferential reasoning is considered the core of a good NMR system. However,
the authors noticed that it does not comply with three properties deemed desirable for
NMR systems. The properties are:

(Negation Rationality) 𝜙 ∧ 𝜒 ̸ |∼ 𝜓 𝜙 ∧ ¬𝜒 ̸ |∼ 𝜓
𝜙 ̸ |∼ 𝜓

(Disjunctive Rationality) 𝜙 ̸ |∼ 𝜒 𝜓 ̸ |∼ 𝜒
𝜙 ∨𝜓 ̸ |∼ 𝜒

(Rational Monotonicity) 𝜙 ∧𝜓 ̸ |∼ 𝜒 𝜙 ̸ |∼ ¬𝜓
𝜙 ̸ |∼ 𝜒

Their negative aspect is what unifies the three rationality postulates and distinguishes
them from the KLM properties. They cannot be expressed as Horn rules, i.e., they are not
derivations of some formula from other formulas. On the contrary, they “(...) deduce the
absence of an assertion from the absence of other assertions.” [LM92, p. 16] The intuitions
for the rules are the following:

• Negation rationality guarantees that defeasible inferences should not be drawn
exclusively from the lack of information. If 𝜓 usually follows from 𝜙 , it should
usually follow from at least one of the more specific, disjoint scenarios 𝜙 ∧ 𝜒 and
𝜙 ∧ ¬𝜒 .

• On a similar fashion, disjunctive rationality states that disjunctive defeasible infer-
ences should be supported by at least one of the disjuncts. If animals that are bats or
birds usually fly, we expect that at least one of bats usually fly and birds usually fly
to be valid.

• Rational monotonicity is a bit more intricate. Lehman and Magidor justify it by
highlighting how it minimizes information retraction: “(...) it says that an agent
should not have to retract any previous defeasible conclusion when learning about
a new fact the negation of which was not previously derivable.” .

Put together with preferential reasoning, they are arranged in order of increasing
strength. Rational monotonicity, the stronger one, implies disjunctive rationality, which,
in turn, implies negation rationality. The authors propose rational reasoning: a framework
that satisfies all properties from preferential reasoning plus rational monotonicity. This
framework is coupled with a proper semantics with a representation theorem.

Some reasonable principles are desirable for defeasible reasoning but also resist cod-
ification as sequent-based rules such as the ones discussed. To address some of these
concerns, Lehmann 1995 discusses another improvement over rational reasoning: the lexio-
graphic closure. The term closure alludes to the approach that considers sets of conditional
assertions closed under certain properties. The informal principles of defeasible reasoning
evoked in the paper are [Leh95, p. 63]:

1. Presumption of typicality states that further specifying something should hold less
specific conclusions unless there is reason to conclude otherwise. Formally, given
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𝜙 |∼ 𝜓 , we do not know whether we should conclude that 𝜙 ∧ 𝜒 |∼ 𝜓 or 𝜙 |∼ ¬𝜒 ,
and presumption of typicality favors the former.

2. Presumption of independence is a further refinement of presumption of typicality. It
states that we should expect conclusions to be independent, even when they are
derived from the same premises. Presumption of independence is a central concept
for typicality DLs, as it regulates concept inheritance. If birds normally fly and birds
normally have feathers, we suppose that flying and being feathered are independent.
Hence, if we face a penguin, a bird that does not fly, we still should be able to
conclude that it has feathers.

3. Priority to typicality says that between presumptions of typicality and independence,
typicality prevails. It is a principle that deals with further refinement in concepts
that have some kind of clash. In the well-known penguin example, we know that
birds normally fly and that penguins (& birds) normally do not fly. Hence, when we
face a particular penguin species, the blue penguin, we should conclude that it does
not fly.

4. Respect for specificity expresses the overriding of general information by a more
specific one. It says that, when facing conflicting inferences, one of them with an
antecedent that is a refinement of the other, we should opt for the more specific
one. Penguins (& birds) normally do not fly conflicts with Birds normally fly, and we
should discard the latter, i.e., penguins should not fly.

Lexicographic closure is a syntactic-based reasoning procedure that refines rational
closure complying with those principles.1 Because it is syntactic based, different but
logically-equivalent formulas can yield different outputs. Whether this is a feature or a
bug is a topic of considerable discussion. An argument for treating logically-equivalent
information differently, depending on how it is presented, is the following: suppose that 𝜙
and 𝜓 are statements about an airplane’s altitude and speed. 𝜙 ∧𝜓 is a report given by
a single sensor, while 𝜙 and 𝜓 are two separate reports originating in two independent
sensors. Although their information is the same, it should be treated separately. The reader
can evaluate the strength of this line of reasoning. It should be noticed, however, that
human imagination is wide, and scenarios that invalidate principles of reasoning are not a
scarce commodity.

1 The procedure for generating the lexicographic closure will be discussed in more detail in its version for
DLs in Section 4.3.1.
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Part II

Description Logics of Typicality
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Chapter 4

A Survey of Description Logics of
Typicality

D
escription logics that deal with typicality have a long story. The DL and NMR
research communities developed a wide array of techniques to incorporate aspects
of the prototype theory of concepts at several levels. Those levels include the

expansion of the language with special operators and constructions, the introduction of new
kinds of concept and role inclusion, and algorithmic techniques to draw non-monotonic
inference.

In this chapter, we present an overview of the area’s state-of-the-art. The text is the
result of a survey that systematically examined more than 230 papers from more than
231 authors. The main presentation is divided in three topics: representation of typicality,
which covers the tools developed to represent typciality within DLs; semantics, which
exposes the new semantics proposed to the extended DLs; and reasoning, which presents
some proof-theory methods for the extended DLs. After the main exposition, the chapter
has a section covering issues and open problems. Finally, a meta-analysis present some
interesting data on the papers examined. The meta-data of all the papers examined was
transformed into a graph database, which reveals research and collaboration patterns of
the community.

Sections on typicality models semantics and reasoning, present in the original version
of the survey, were ommited, as they are explored in finer detail in Part III, Chapters 5, 6,
7, and 9.

4.1 Representing Typicality in DLs
Typicality has many forms. It may appear as reasoning that assumes normality; in

the partitioning of a set’s members into more and less typical elements; in the degrees
of representativeness that an individual has for a concept; in the determination of a
hypothetical maximally representative element, i.e., a prototype. Therefore, there are
numerous ways of representing typicality within DLs. In this section, we cover the most
relevant approaches, discuss their way of presenting typicality, and debate some of the
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advantages and shortcomings of each method.

4.1.1 Defeasible Inclusions

Representing the relationship between concepts in the form of GCIs is one of the core
capacities of DLs. The GCI𝐶 ⊑ 𝐷 expresses that𝐶s are 𝐷s, which can be readily translated
to the language of first-order logic as ∀𝑥 (𝐶 (𝑥) → 𝐷 (𝑥)). It is possible to portray typicality
as the knowledge of what is expected to be the case but is not necessarily so, such as birds
typically fly. Therefore, it is natural to represent it as a special kind of GCI that is not
necessarily true of every element belonging to the antecedent, 𝐶 . This special form of GCI
is called a Defeasible Concept Inclusion (DCI ).

This approach is one of the oldest and most prolific ways of incorporating typicality into
DLs and dates back to the late 2000s [BHM09] and early 2010s [CS10]. In the latter, DCIs
are represented with a symbol for defeasible sequents, |∼, alluding to the KLM [KLM90]
framework for defeasible reasoning. Nonetheless, the most common option in the literature
is the defeasible inclusion denoted by 𝐶 ⊏∼ 𝐷 , which conveys that 𝐶s are typically 𝐷s.
DCIs are generally stored in an isolated component of the KB called defeasible box (DBox),
usually denoted by D.

One feature of typicality-informed reasoning is its dependence on contexts. Because
categorization stems from experience, what counts as typical may be a function of what
is normally seen by a given agent. DCIs, however, cannot capture this, as 𝐶 ⊏∼ 𝐷 means
“𝐶s are usually 𝐷s” in every context. There are diverse strategies for dealing with this.
Some try to circumvent this limitation by attaching indexes to the DCIs. Those indexes
can be role names, as proposed by Britz & Varzinczak (2017), ((2017)), (2018). One of the
advantages of such an approach is that there is a finite and fixed set of contexts ready for use.
Additionally, some rationale backs it up in a broader sense: roles determine relationships
between individuals, and those relationships determine contexts of interaction.

Some more expressive DLs have role hierarchies – i.e., inclusion between roles –
alongside the standard GCIs. They can represent things such as isFather ⊑ isParent,
i.e., that fatherhood implies parenthood. Because instances of relationships can be more
or less typical, it is natural to extend the DCIs framework to role inclusions. Britz &
Varzinczak (2016), (2017) and (2017) present DLs that can represent inclusions such as
isParent ⊏∼ isProgenitor, which express that the parents of someone are usually, although
not necessarily, their progenitors.

The idea of defeasibility is not limited to inclusions. Britz & Varzinczak (2016), (2017),
(2017) propose adding defeasible constructors to the language, which provides alternative
ways of conveying defeasible knowledge. Some examples are the defeasible value restriction,∨∼𝑟 .𝐶 , which defines concepts whose usual role successors for the role 𝑟 are 𝐶s; and
the defeasible (qualified) number restrictions, ≳ 𝑛𝑟 .𝐶 , ≲ 𝑛𝑟 .𝐶 and ≃ 𝑛𝑟 .𝐶 , which defines
concepts that typically have at least, at most and exactly 𝑛 role successors, respectively,
for the role the 𝑟 , that are 𝐶s.
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4.1.2 Typicality Operators
Another way to represent typicality within DLs is to enrich the language with a

“typicality operator”. This technique was introduced in [Gio+07] and appeared in many
other works, such as [Gio+08], [Gio+09] and [Gio+13]. Different research groups – see, for
example, [BMV11], and [Var18] – also adopted the idea, although the choice of symbols
varies throughout the literature. The typicality operator, denoted by T(·), is a modal-like
operator that, when applied to a concept𝐶 , designates the most typical, normal, or common
members of 𝐶 .1 A sparrow is in T(Bird), but a penguin is not.

Unlike DCIs, the typicality operator introduces new concepts to the language. Concepts
are characterized by GCIs. Suppose we have a concept referring to typical birds, denoted
by T(Bird). To characterize typical birds, we need GCIs such as T(Bird) ⊑ Flying, a
construction that resembles DCIs in many ways. Their intended meaning is slightly
different. While 𝐶 ⊏∼ 𝐷 means that 𝐶s are typically 𝐷s, T(𝐶) ⊑ 𝐷 means that typical
𝐶s are 𝐷s. However, for most practical purposes, it is possible to translate T(𝐶) ⊑ 𝐷 to
𝐶 ⊏∼ 𝐷 , and vice-versa. This translation is common in the literature. It is used to adapt many
procedures defined for typicality operators to defeasible inclusions or the other way around.
Nonetheless, there are some meaningful differences. Most DLs containing the typicality
operator are syntactically limited to allow it only on the left-hand side of GCIs, as in the
example given in the last paragraph. However, there are some more expressive logics in
which it can also appear on the right-hand side. Giordano & Dupré (2018) give an example:
“friends of Mary are typical students”, which can be translated to the language of DL as
∃friendOf.{mary} ⊑ T(Student).2, a GCI that cannot be translated by the equivalence
T𝐶 ⊑ 𝐷 ≡ 𝐶 ⊏∼ 𝐷 , as the typicality operator occurs on the right-hand side instead of the
left-hand side.

Typicality operators also enable characterizing atypical instances of a given concept.
The DL presented in [BNM16] has a dual constructor, denoted by ·E , that identifies atypical
instances of a concept. Introducing such constructors may not be strictly necessary, as
it is possible to define atypicality through other constructors, such as in 𝐶 ⊓ ¬T(𝐶).
This translation rests on the assumption that all information on atypicality is negative,
i.e. atypical instances are those that do not have typical properties. A challenge to this
assumption would be that, in some cases, atypical individuals are defined by positive traits.
Swans are typically white, but atypical swans are not only non-white but also black. In this
modeling scenario, having an operator to characterize atypicality could be useful.

Abnormal concepts also appear in circumscribed DLs, such as the ones described in
[BLW06] and [BLW09]. Circumscription is a semantical approach to non-monotonicity
that constrains the models of some KB by minimizing the extension of some predicates
specified by a circumscription pattern. There is no real atypicality operator in circumscribed
DLs, which have the same constructors as the monotonic DLs that generate them. However,
one straightforward way of implementing a circumscription pattern is to add atypical
versions of some concepts – e.g., 𝐴𝑏Bird, for Bird – to construct defeasible inclusions.

1 Analogous approaches can be seen in [BS17], where the operator is called normality operator, and denoted
by 𝑁 ; in [Var18], where the operator is denoted by •; and in [BNM16], where 𝛿𝐶 denotes “the concept𝐶 by
default” [BNM16, p. 249].

2 Notice that this DL also has nominals, e.g. {mary}.
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This is done in the same way as the translation from the typicality operator to defeasible
inclusions. To express that typical birds fly, the following axiom is added to the KB:
Bird ⊓ ¬𝐴𝑏Bird ⊑ Flying. Then, the circumscription pattern is defined to minimize all the
atypical concepts. We cover circumscribed DLs in more detail in Section 4.2.5.

Probabilities are another way to enrich the typicality operators. Pozzato (2015), (2016),
(2017), (2018) develops a framework that associates probabilities to concept inclusions
with typicality operators on their left-hand side, indexing GCIs in a similar way to the
contextual indices introduced in 4.1.1. Given a number 𝑝 ∈ (0, 1), T(𝐶) ⊑𝑝 𝐷 represents
that the typical 𝐶s are usually 𝐷s with a probability of 𝑝 . This language adds finer detail
to the otherwise qualitative description of typically.

Following defeasible role hierarchies, there are also typicality operators for roles. The
typicality operator • in [Var18] can be applied to concepts and roles. In the second case,
it selects the most typical pairs of a role. Similarly to concepts, role pairs can be more
or less typical, referring to other pairwise relationships. For example, parents are also
usually biological parents, which can be expressed by •parent_of ⊑ biological_parent_of.
However, this is only sometimes the case, as other arrangements exist, such as adoption.
Typical roles work in the same way as typical concepts. It is assumed that there are more
and less typical representatives of a role and that the most typical present certain properties
that are not necessary for membership.

4.1.3 Reiter-like Defaults
One of the most well-known approaches to non-monotonic reasoning is the adoption

of the so-called default rules, proposed by Raymond Reiter in (1980), transposed to DLs
by Baader and Hollunder (1995). Default rules have three components and are usually
denoted by (𝛼 : 𝛽1 . . . 𝛽2 \ 𝛾), where 𝛼 is called the prerequisite; 𝛽𝑖 are called justifications;
and 𝛾 is called the conclusion. The conclusion should follow from the prerequisite and the
consistency of the justifications. Defaults are usually interpreted in epistemic terms, i.e.,
one should believe𝛾 if they believe 𝛼 and every 𝛽𝑖 is consistent with their knowledge.

Baader and Hollunder (1995) introduce terminological default theories, which are combi-
nations of the DLALCF with open defaults theories from Reiter. A terminological default
theory is a pair (A,D), where A is a regular ABox and D, is “a finite set of rules whose
prerequisites, justifications and consequents are concept terms.” [BH95, p. 155]

Frota et al. (2014) takes a slightly different approach, where a description default theory
is a pair (𝑊,D), where𝑊 is the union of an ALC TBox and ABox. In the same vein,
Kolovski, Parsia, and Katz (2006) define terminological default theories by (𝑊,D). In this
case,𝑊 stands for a SHOIN KB instead of an ALC KB.

Some approaches combine DLs with non-monotonic, closed-world rules. In this field,
Motik & Rosati (2010) developed the MKNF+framework – minimal knowledge and negation
as failure. This framework, which is based on answer set programming (ASP), deals with
hybrid KBs, a combination of standard KBs with prolog rules. Rules have the form 𝐻1 ∨
· · · ∨𝐻𝑘 ← 𝐵1, . . . , 𝐵𝑚, 𝑛𝑜𝑡 𝐵𝑚+1, . . . , 𝑛𝑜𝑡 𝐵𝑛 , where 𝐵𝑖 are body literals and 𝐻𝑖 , head literals
[MR10, p. 8]. There are also two classes of negation: ¬, the classical negation, and 𝑛𝑜𝑡 , the
non-monotonic negation as failure. This framework allows expressing default rules by
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setting 𝛾 ← 𝛼,
𝑛∧
𝑖=1
𝑛𝑜𝑡¬𝛽𝑖 . The authors present the following example:

HeartOnLeft(𝑥) ← Vertebrate(𝑥), 𝑛𝑜𝑡¬HeartOnLeft(𝑥)

Given an individual, Peter, which is a vertebrate, Vertebrate(Peter), we conclude that
it has its heart on the left side of the body (HeartOnLeft(Peter)). However, if the hybrid KB
also has (or allows to derive) ¬HeartOnLeft(Peter), the rule is not applied. This scenario
is a good example of reasoning based on typicality, as vertebrates usually have their hearts
on the left side. However, there also is a rare condition in humans, named situs inversus,
whose bearers have the heart on the other side.

4.1.4 Weighted Concept Combination

Most of the techniques presented so far enable drawing conclusions from individuals
deemed typical representatives of a given class. For instance, we may conclude that some
bird flies because we have reasons to believe it is a typical bird. Weighted concept combi-
nation inverts this direction by allowing inferences that employ (typical) characteristics to
group individuals similarly to classification algorithms.

Porello et al. (2019) introduce a family of constructors denoted by ∇∇, which they call
tooth operators. Each operator has an associated vector of weights,𝑤 ∈ R𝑛 , and a threshold
value, 𝑡 ∈ R. Given a list of ALC concepts, 𝐶1, . . . ,𝐶𝑛 , the combination ∇∇𝑡𝑤 (𝐶1, . . . ,𝐶𝑛)
designates a new concept. The intuition is that each individual has a value, calculated
as the sum of the weights of the concepts 𝐶𝑖 it instantiates. The operator selects those
individuals whose value surpasses the threshold 𝑡 . This definition covers some well-known
theories of conceptualization from cognitive sciences, such as the prototype view, the
exemplar view, the knowledge view, Gärdenfors’ conceptual spaces, and Barsalou’s theory
of frames [Por+19, p. 2]. As an example, the authors give a model of elephant:

𝐸 = ∇∇𝑡 ((Large,𝑤1), (Heavy,𝑤2), (hasTrunk,𝑤3), (Grey,𝑤4))

Tooth operators are very general and can model several kinds of operators as special
cases, such as Boolean operators – for example, 𝐶 ⊓ 𝐷 = ∇∇2(1,1) (𝐶, 𝐷) for concept con-
junction and 𝐶 ⊔ 𝐷 = ∇∇1(1,1) (𝐶, 𝐷) for concept disjunction – and majority voting, i.e., a
concept defined by those individuals that satisfy the majority of the concepts in a list –
𝐶 = ∇∇

𝑛
2
(1,...,1) (𝐶1, . . . ,𝐶𝑛). The authors introduce a formalization of the prototype of a given

concept 𝐶 . The prototype is derived from sets of attributes, which are disjoint properties.
Color is an attribute whose properties are concepts representing particular colors, such
as red and green. Each attribute has an associated weighted, 𝑑𝑖 , which represents its
importance for the categorization of 𝐶-members – its “diagnositicy” – and each property
has a salience, 𝑠 𝑗

𝑖
, i.e. the degree to which that particular property is representative of 𝐶 –

its “typicality” –. The prototype of 𝐶 , 𝜋𝐶 , is then defined by:

𝜋𝐶 := {(𝑄1
1, 𝑠

1
1 · 𝑑1), . . . , (𝑄1

𝑟 , 𝑠
1
𝑟 · 𝑑1), . . . , (𝑄𝑛𝑞 , 𝑠𝑛1 · 𝑑1), . . . , (𝑄𝑛1 , 𝑠𝑛1 · 𝑑𝑛), . . . , (𝑄𝑛𝑚, 𝑠𝑛𝑚 · 𝑑𝑛)}
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By defining a threshold, 𝑡 , one can use the∇∇ operator to define the focal region as

𝐶 := ∇∇{(𝑄1
1, 𝑠

1
1 · 𝑑1), . . . , (𝑄1

𝑟 , 𝑠
1
𝑟 · 𝑑1), . . . , (𝑄𝑛𝑞 , 𝑠𝑛1 · 𝑑1), . . . , (𝑄𝑛1 , 𝑠𝑛1 · 𝑑𝑛), . . . , (𝑄𝑛𝑚, 𝑠𝑛𝑚 · 𝑑𝑛)}

Finally, maximal typical individuals, such as those selected by typicality operators,
T(𝐶), can be modeled by selecting the maximal elements according to the construction
above. This is done by defining the threshold as the maximal value, i.e. ∇∇max.

Another approach that subscribes to weighting characteristics to determine concept
membership is [BE16]. The authors take inspiration from the conceptual spaces proposed
by Gärdenfors (2000), and define prototypes as focal points of some space. Typicality is
determined by measuring the distance between a particular individual and this focal point.
This operation is performed by the automata-based reasoning for DL, except, in this case,
the automata have weights.

Weighted automata receive a tree-shaped interpretation with the individual at the
root and return a non-negative integer representing the distance of the individual to the
focal point. This procedure paves the way for the definition of the so-called threshold
concepts, denoted by 𝑃∼𝑛 (A), where ∼∈ {<, ≤, >, ≥}, A is the weighted automaton, and
𝑛 is the threshold. Threshold concepts encompass all the elements within ∼ 𝑛 distance
of 𝐶 , according to A [BE16, p. 2]. As an example, the authors model the concept of a
cup, “(. . . ) a small container with handles, which can hold liquids and is made of plastic
or porcelain” [BE16, p. 8]. In the proposed formalism, this description is denoted by:
𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 ⊓ 𝑆𝑚𝑎𝑙𝑙 ⊓ ∃ℎ𝑎𝑠𝑃𝑎𝑟𝑡 .𝐻𝑎𝑛𝑑𝑙𝑒 ⊓∀ℎ𝑜𝑙𝑑𝑠.𝐿𝑖𝑞𝑢𝑖𝑑 ⊓∀𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 .(𝐺𝑙𝑎𝑠𝑠 ⊓ 𝑃𝑜𝑟𝑐𝑒𝑙𝑎𝑖𝑛),
which is a crisp definition and is translated to the weighted version, with modal-like □
and ^ communicating necessary and likely properties to

(𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 ∨ 3) ∧ (𝑆𝑚𝑎𝑙𝑙 ∨ 1) ∧ (^(ℎ𝑎𝑠𝑃𝑎𝑟𝑡 ∧ 𝐻𝑎𝑛𝑑𝑙𝑒) ∨ 1) ∧ □(¬ℎ𝑜𝑙𝑑𝑠 ∨ (𝐿𝑖𝑞𝑢𝑖𝑑 ∨ 2))
∧□(¬𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙 ∨ ((𝐺𝑙𝑎𝑠𝑠 ∨ 1) ∨ (𝑃𝑜𝑟𝑐𝑒𝑙𝑎𝑖𝑛 ∨ 1)))

The intuition is that an object will either have a property – e.g. being a container – or
pay the corresponding price in the form of an increase in its overall distance to the focal
point. The greater the number is, the farthest away from the focal point the individual
will be. Threshold concepts can be articulated not only in terms of a maximal distance,
which amounts to its typicality but also in terms of a minimum distance, which amounts to
exceptionally. A more nuanced take on typicality arises by grading distance with integers,
as several levels of proximity to the focal point are possible.

This approach has been further developed – e.g. [BG17] – under the name of threshold
concepts.

4.2 Semantics

Despite the vast literature on DLs of typicality, there has yet to be a consensus on its
semantical characterization. In this section, we explore several variations of semantics
based on preference relations and those based on canonical models.
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4.2.1 Preferential Semantics
Constructions such as T(𝐶) and defeasible inclusions such as 𝐶 ⊏∼ 𝐷 pick the most

typical elements of 𝐶 , something that can be accomplished through selection functions.
Those functions first appear in the context of DLs of typicality in [Gio+07]. The paper
proposes extending regular interpretations with a function 𝑓 : P(Δ) → P(Δ) that, given
a set representing the domain of a concept, 𝐶 , outputs a subset of this set that contains its
most typical elements. Giordano et al. (2007) postulate five properties that such a function
should obey. Those properties are modeled after the KLM conditional logic [Gio+07,
p. 261]:

(𝑓T−1) 𝑓T(𝑆) ⊆ 𝑆
(𝑓T−2) if 𝑆 ≠ ∅, then also 𝑓T(𝑆) ≠ ∅
(𝑓T−3) if 𝑓T(𝑆) ⊆ 𝑅, then 𝑓T(𝑆) = 𝑓T(𝑆 ∩ 𝑅)
(𝑓T−4) 𝑓T(

⋃
𝑆𝑖) ⊆

⋃
𝑓T(𝑆𝑖)

(𝑓T−5)
⋂

𝑓T(𝑆𝑖) ⊆ 𝑓T(
⋃

𝑆𝑖)

One way of realizing such a function is by defining a strict partial order over the
domain. This order must satisfy the smoothness condition, which ensures that there is a
minimal element for every set of elements. Formally, “(. . . ) for all 𝑆 ⊆ Δ, for all 𝑥 ∈ 𝑆 ,
either 𝑥 ∈ 𝑀𝑖𝑛< (𝑆) or ∃𝑦 ∈ 𝑀𝑖𝑛< (𝑆) such that 𝑦 < 𝑥” [Gio+07, p. 262]. An interpretation
is a triple I = (Δ, ·I, <), where Δ and ·I are the domain and interpretation function, and
<⊆ Δ × Δ, is an order over the domain as specified. 3

The formalism employed an auxiliary tool to bridge the gap between the typicality
operator and the order <: the modal operator □, modeled after Gödel-Lob’s logic of
provability. The semantics of the operator is given by (□𝐶)I = {𝑥 ∈ Δ | for every 𝑦 ∈
Δ, if 𝑦 < 𝑥 then 𝑦 ∈ 𝐶I}, i.e., it selects the elements of the domain for which every smaller
element with respect to < is in 𝐶 . The semantics for the typicality operator is given by
T(𝐶) = □¬𝐶 ⊓𝐶 , i.e., the elements of𝐶 for which all preferred elements are not in𝐶 . This
formalism grounds the DL ALC + Tmin, a non-monotonic extension of ALC with the
typicality operator.

4.2.2 Multipreferentiality
Suppose the following scenario: Alice and Bruce are both high schoolers and athletes.

Alice is a good student, and her sport is chess; Bruce, on the other hand, is a terrible
student and plays basketball. Arguably, Alice is a typical student but an atypical athlete,
as chess is an uncommon and exceptional sport in many ways. On the other hand, Bruce
is an atypical student but a typical athlete. A single preference order would fall short of
representing this toy-model scenario: either Alice < Bruce (or vice-versa), in which case
Alice (or Bruce) would be both a typical athlete and a typical student, and Bruce (or Alice)

3 Although we only mentioned the interpretation of T(𝐶), these techniques can be easily transposed to
defeasible DLs. A straightforward way is to say that a defeasible inclusion 𝐶 ⊏∼ 𝐷 is verified by an
interpretation I if for every minimal 𝑥 ∈ 𝐶I – selected by an appropriate 𝑓 or an order < – 𝑥 ∈ 𝐷I .
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would be none, or they would be incomparable and would be both typical athletes and
students.

A possible solution is to consider interpretations with several preference orders to
account for different contexts. Although this problem was diagnosed early in the research,
solutions only appeared recently. Gliozzi (2016) and Giordano & Gliozzi (2018) explore in-
terpretations based on several local preference relationships that can transmit information
to a more general, global one. Formally, the enriched rational interpretation is a structure:
M = (Δ, <𝐴1, . . . , <𝐴𝑛

, <, ·), where 𝐴𝑖 , 1 ≤ 𝑖 ≤ 𝑛, are concepts of the language [GG18,
p. 5]. These concepts are on the right-hand side of inclusions of the form T(𝐶) ⊑ 𝐴𝑖 . GCIs
of this kind are valid when all the minimal C-elements in the domain, according to the
global order, <, and to the local one, <𝐴𝑖

, are also𝐴𝑖-elements. The global order is partially
dependent on the concept-indexed orders. The principle of specificity conditions the global
order to the partial ones in the following way: if two elements 𝑥,𝑦 are such that 𝑥 <𝐴𝑖

𝑦

and 𝑦 <𝐴 𝑗
𝑥 , for two different concepts 𝐴𝑖, 𝐴 𝑗 , the global order favors the one that falsifies

less specific properties.

Similarly, Britz and Varzinczak (2017) discuss the idea of a context-based defeasible
concept inclusion mediated by several orderings, each representing a single context.
One of the main differences between this approach and Giordano and Gliozzi’s is that
roles index the orderings instead of concepts. Furthermore, there is no global preference
relationship, and each order, <𝑟 , where 𝑟 is a role, corresponds to a single defeasible
inclusion, ⊑𝑟 . Formally, an ordered interpretation is defined by O := (ΔO, ·O, <<O), where
ΔO is the domain; ·O is the interpretation mapping and <<O := (<<O1 , . . . , <<O|𝑅 |) is a set

of orders on roles satisfying the smoothness condition. Therefore, <<O
𝑖
⊆ 𝑟O

𝑖
× 𝑟O

𝑖
, for

𝑖 = 1, . . . , | 𝑅 |.

The path from orderings over pairs to orderings over individuals is indirect. It is given
by an intermediate ordering defined by

≺O𝑟 := {(𝑥,𝑦) | there is some (𝑥, 𝑧) ∈ 𝑟O such that for all (𝑦, 𝑣) ∈ 𝑟O [((𝑥, 𝑧), (𝑦, 𝑣)) ∈<<O𝑟 ]}

In other words, 𝑥 ≺O𝑟 𝑦 is the case if a given pair with 𝑥 as its first element is minimal for
every pair with 𝑦 as its first element. With 𝑥 ≺O𝑟 𝑦 defined, it is possible to fetch minimal
elements as usual. Notice, however, that minimal elements will always be minimal to some
role-defined context.

4.2.3 Role Preferentiality
Given some domain Δ, it is possible to introduce a preferential order on Δ × Δ to

account for logics that can express defeasible role hierarchies. Varcinczak (2018) defines
bi-ordered interpretations by: B := (ΔB, ·B, <B, <<B), where ΔB is the domain; ·B is an
interpretation mapping; <B⊆ ΔB × ΔB is a typicality ordering over the domain and <<B⊆
(ΔB×ΔB)× (ΔB×ΔB) is a typicality ordering on domain’s pairs, i.e., role extensions.

Bi-ordered semantics is the counterpart of single-ordered semantics that handles role
preferentiality. In single-ordered semantics, the minimal elements of any given concept
must comply with the defeasible or typical axioms associated with the concept. Therefore,
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not all birds fly, but the minimal elements in the extension of bird fly. The same relation
holds for roles. Typical axioms on roles, such as parents are biological progenitors, must be
respected by the minimal pairs in the extension of Parent, according to <<.

Although bi-ordered semantics are technically multipreferential, as they have more
than one preference relation, they suffer from the same problems as traditional, single-
ordered preferential semantics. The two orders cover different aspects of the model and
encompass all concepts in the case of < and all role edges in the case of <<.

4.2.4 Non-monotonic Consequence and Semantics
Standard preferential semantics alone do not guarantee non-monotonic reasoning,

something noticed early in the research on typicality DLs. Giordano et al. (2007), who
introduced the DLALC+T, pointed out that it did not support several intuitive conclusions.
Suppose that some KB states that typical birds fly and that Tweety is a bird. It is desirable
to (non-monotonically) conclude that Tweety flies; however, considering all preferential
models, this is not inferred because we do not know whether Tweety is a typical bird.

From the semantical point of view, a popular strategy is to restrict the models to a
fraction of the valid interpretations. There are several ways of achieving this. Giordano
(2008) presents a preferential semantics to characterize ALC + Tmin. The semantics
minimizes atypical instances by considering only models with a minimal amount of
atypical individuals, which is done on the language level by keeping track of individuals
belonging to ¬□¬𝐶 concepts – i.e., atypical individuals for the concept 𝐶 . Let L𝑇 be the
set of concepts occurring in the KB and I = (ΔI, ·I, <). Then, the set of atypical instances
of concepts in I is defined by:

I□−L𝑇 := {(𝑥,¬□¬𝐶) | 𝑥 ∈ (¬□¬𝐶)I , with 𝑥 ∈ Δ,𝐶 ∈ L𝑇 }

A preference relation over the models, denoted by L𝑇 , compares theirM□−L𝑇 sets.

Definition 4.1. [Gio+08, def. 3] Let I = (ΔI, ·I, <I) and J = (ΔJ , ·J , <J ) be two
preferential models of a KBK . Let I□−L𝑇 ,J

□−

L𝑇 be the sets of atypical instances of I and J with
respect to the concepts in K , respectively. Then, I <L𝑇 J iff ΔI = ΔJ and (2) I□−L𝑇 ⊂ J

□−

L𝑇 .

The downside to this strategy is that it depends on the language instead of relying
solely on the structure of the models. A strategy to overcome this problem is to employ
the concept of ranks, an option taken made by Giordano et al. (2013) and Bonatti et al.
(2015). Those ranks are grounded in the specificity of the domain’s elements, and there is
more than one way of defining them.

Definition 4.2 (Interpretation-based rank). [Gio+13, p. 9] Let I = (ΔI, ·I, <I) be a prefer-
ential interpretation. The rank of an element 𝑥 ∈ ΔI is denoted by RankI (𝑥) and is defined
as the longest chain 𝑥0 <I · · · <I 𝑥 , where 𝑥0 is minimal with respect to <I .

Let 𝐶 be a concept in the language of some DL. Then, the rank of 𝐶 in I is defined by
RankI (𝐶) =𝑚𝑖𝑛{RankI (𝑥) : 𝑥 ∈ 𝐶I}

It is possible to define a preference relation over models by comparing the ranks of the
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domain elements. Formally, for models I = (ΔI, ·I, <I) and J = (ΔJ , ·J , <J ), I ≺ J
iff :

1. ΔI = ΔJ .

2. For all 𝑥 ∈ ΔI,RankI (𝑥) ≤ RankJ (𝑥).

3. There exists 𝑦 ∈ ΔI such that RankI (𝑦) < RankJ (𝑦).

4.2.5 Circumscription
McCarthy (1980) introduced circumscription to model reasoning that jumps to conclu-

sions from non-expressed information, a task very similar to prototype-based inference.
Circumscription works by restricting the class of models of some knowledge base to those
that minimize a set of predicates specified by a circumscription pattern. Brewka (1987)
introduced a semantic based on circumscription for frame languages, and Bonatti et al.
[BLW06], [BLW09], [BFS10], [BFS11a], [BFS11b], [Bon+15a], [BS17] explored questions
regarding complexity and decidability for a wide array of circumscribed DLs.

A circumscription pattern CP for a knowledge base K over a language 𝐿 is a tuple
defined by CP = (≺, 𝑀, 𝐹,𝑉 ), where 𝑀 , 𝐹 , and𝑉 are mutually disjoint subsets of NC ∪NR,
characterizing minimized, fixed and varying predicates and ≺ is a partial order over 𝑀
representing a preference for minimization. We denote the circumscription of a KB K by
the circumscription pattern CP by CircCP (K). Typicality-based reasoning can be done
by stipulating atipicality concepts and defining a circumscription pattern that minimizes
them. The axioms on typical birds can be formalized by:

Bird ⊑ Flying ⊔𝐴𝑏Bird (4.1)
Penguin ⊑ ¬Flying (4.2)

A circumscription pattern modeling typicality-based reasoning should include𝐴𝑏Bird in𝑀 ,
but the rest of the specification will yield different results. If every other predicate were
kept fixed, the circumscribed KB would entail Penguin ≡ 𝐴𝑏Bird. The only reason for the
existence of atypical birds is the absence of flying, and the only bird that requires this
property, according to the KB, is the penguin. If, on the other hand, the concept Penguin
were allowed to vary, then the KB would entail Penguin ⊑ ⊥, as every model that had a
penguin would also have an atypical bird and therefore could be further improved by the
removal of this element from the extension of both concepts.

Conflicts between the minimization of different predicates may arise. If the penguin
axiom (6) were substituted by a defeasible version, such as Penguin ⊑ ¬Flying⊔𝐴𝑏Penguin,
and the atypicality concept were included in𝑀 as expected, there would be more than one
way of minimizing models with penguins in the domain. The first option is prioritizing
the minimization of 𝐴𝑏Penguin. In this case, the element would be a typical penguin but
an atypical bird. As expected, it would not fly. On the other hand, prioritizing the mini-
mization of 𝐴𝑏Bird would result in a circumscribed model with an atypical penguin that is
a typical bird, i.e. a flying penguin. The order ≺ determines the options that the pattern
enforces.
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Circumscription is more flexible than some of the other non-monotonic semantics
covered in this survey. Therefore, it relies heavily on specifications provided by the
knowledge engineers. If the latter alternative seems to lead to undesirable conclusions (i.e.,
flying penguins), it is due to the principle of specificity. According to this principle, the
circumscription pattern should drop more general axioms in favor of more specific ones,
which can be achieved by defining ≺ according to the subsumption hierarchy, similarly to
the rational chain construction described in Section 4.3.1.

Defeasible reasoning tasks such as subsumptions and instance checkings are defined
with the introduction of some auxiliary concepts. Suppose that the following axiom was
added to the KB: Flying ⊑ ∃has.Wings. If all the normal predicates were kept fixed,
CircCP (K) ̸|= Bird ⊑ ∃has.Wings would be the case, as models containing penguins
would be counterexamples to this inclusion. A defeasible subsumption query should
answer whether birds typically have wings. Questions such as this can be answered with
the introduction of the special operator CWAK (𝐴) = 𝐴 ⊓

.{¬𝐵 | 𝐵 ∈ NC and 𝐴 @K 𝐵}.
It selects the 𝐴 elements that belong only to 𝐴 supersets, which can be seen as 𝐴’s
without further specification [BFS10]. A model-theoretic version of this idea based on an
interpretation I is given by the set ⌊𝐴⌋I , which is comprised of every 𝑑 ∈ ΔI such that
𝑑 ∈ 𝐴I and 𝑑 ∈ 𝐵I iff K |= 𝐴 ⊑ 𝐵, for 𝐴, 𝐵 ∈ NC. The defeasible subsumption query is
defined by CircCP (K) |=𝐶𝑊 𝐴 ⊑ 𝐷 iff for all models I of CircCP (K), ⌊𝐴⌋I ⊆ 𝐷I [BFS10,
def. 3].

A similar procedure applies to instance checking. Instead of checking named individu-
als, one checks the concept to which they belong in an extended KB. AtClsK (𝑎) =

.{𝐴 |
K |= 𝐴(𝑎)} captures the concepts to which an individual 𝑎 belongs. An extended version
of the KB is defined by adding CWAK (AtClsK (𝑎)) statements for all individuals in the
𝐾𝐵. The extended KB is denoted by CWA(K). Then, defeasibly checking 𝐶 (𝑎) is finally
defined w.r.t. this extended KB by Circfix(CWA(K)) |= 𝐶 (𝑎), or, model theoretically, by
{𝐴 ∈ NC | 𝑎I} = {𝐴 ∈ NC | K |= 𝐴(𝑎)} implying 𝑎I ∈ 𝐶I , for all models I ∈ Circfix(K)
[BFS10, Def. 6 & 7].

These reasoning tasks are defined w.r.t. EL⊥ and can lose important properties in more
expressive circumscribed DLs. It can be the case that subconcepts 𝐴1, . . . , 𝐴𝑛 completely
cover some concept 𝐶 . In this case, there are no 𝐶 individuals that do not belong to more
specific subconcepts. This is not a problem for EL⊥ as this coverage of 𝐶 by 𝐴1, . . . , 𝐴𝑛
cannot be expressed in it [BFS10, p. 70].

Circumscription is not immune to inheritance blocking. Consider the penguin knowl-
edge base with the additional axiom Bird ⊑ 𝐴𝑏Bird ⊔ Feathered. Such a KB would not
entail Penguin ⊑ Feathered. Consider the model I with PenguinI = 𝐴𝑏Bird

I ≠ ∅ and
FeatheredI = FlyingI , i.e., a model in which penguins do not have feathers. This model
cannot be improved, as all penguins are in the atypical birds’ extension, and therefore
adding them to the extension of Feathered would not create a preferred model. In principle,
it is possible to overcome inheritance blocking in such a scenario by having more than one
atypicality predicate. In this case, one atypicality would be independent of the other, and
if they are indeed logically independent, one could be minimized despite of the other. This
technique is similar to the introduction of several preference relations in the preferential
interpretations presented in Section 4.2.2.
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Circumscribed DLs are also one of the few non-monotonic semantics to extend in-
formation to anonymous individuals introduced by existential quantification [BFS11b].
However, the information transfer via roles is limited, and defeasible conclusions are not
necessarily pushed through quantifiers. Hence, 𝐴 ⊏∼ 𝐵 does not imply ∃𝑟 .𝐴 ⊏∼ ∃𝑟 .𝐵. Let
us consider the penguin KB with the following additional axiom: Cat ⊑ ∃eats.Bird, and a
circumscription pattern minimizing𝐴𝑏Bird. There are two different outcomes depending on
whether Penguin is a fixed of a varying predicate. If it is fixed, a model I with ΔI = {𝑐, 𝑝},
𝑐 ∈ CatI , (𝑐, 𝑝), and 𝑝 ∈ PenguinI cannot be further improved. The element 𝑝 is an
atypical bird – 𝑝 ∈ 𝐴𝑏Bird – but it cannot be removed from the extension of this concept,
as it is a penguin, penguins are atypical birds, and the penguin predicate is fixed. If, on
the other hand, Penguin is a varying predicate, one would get that Penguin ≡ ⊥, as every
model J with elements in 𝐴𝑏JBird would be improved by removing them from the atypical
concept extension. This would also imply removing elements from Penguin as penguins
are atypical birds by definition.

Decidability and complexity are amongst the more pressing challenges for circum-
scription in DLs. Most of the results are based on logics with the finite model property
[BFS11b]; although some results were provided for DLs lacking this property in [Bon+15a].
Some restrictions must be imposed over the circumscription patterns to secure decidability.
Roles names should neither be minimized nor fixed. They should vary freely, i.e., NR ⊆ 𝑉
[BLW09]. Special cases of circumscription patterns are defined by taking this restriction
into account. The pattern Circvar is defined by letting roles and non-minimized concepts
vary freely, and Circfix or CircNC denotes the pattern where all non-minimized concept
names are fixed (but the roles still vary freely).

Even lightweight circumscribed DLs, such as EL⊥, can be intractable. Unrestricted
circumscribed EL⊥ is ExpTime-hard [BFS11b]. However, there are interesting fragments
with lower complexities. Notably, Circfix applied to the 𝐿𝐿 fragment of EL⊥ (which is
defined by disallowing unqualified existentials on the left-hand side of inclusions) is
polynomial [BFS11b]. Most of the results rely on the finite model property. However,
some DLs lacking this feature have been investigated. In particular, Bonatti et al. (2015)
shows that ALCFI and 𝐷𝐿 − 𝐿𝑖𝑡𝑒𝐹

𝑏𝑜𝑜𝑙
with fixed roles are decidable. The complexity of

reasoning within these logics is unknown up to this date [Bon+15a].

4.3 Reasoning Methods

This section examines some techniques developed to perform reasoning tasks that
include typicality. Most techniques considered are adaptations of pre-existing methods
developed for other logics, such as classical propositional logic. In some cases, they trans-
late defeasible into standard reasoning, which allows employing efficient DL reasoning
techniques. In other cases, they propose new methods like the dual tableaux systems
developed for ALC + Tmin. We investigate two main reasoning tasks – checking de-
feasible subsumption and instance checking – and focus on two families of techniques:
materialization-based reasoning and tableaux.
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4.3.1 Materialization-Based Reasoning
Materialization-based reasoning rests on the assumption that it is possible to check

defeasible subsumption by performing certain classical queries. The overall idea is to enrich
the concept on the left-hand side of the subsumption with supplementary information. This
supplementary information is the transformation of terminological axioms into concepts
by an element satisfies a GCI 𝐶 ⊑ 𝐷 iff ¬𝐶 ⊔ 𝐷 . The same analogy holds for DCIs such
as 𝐶 ⊏∼ 𝐷 . Notice that any element that satisfies with the GCI or DCI is a member of the
concept, and vice-versa.

Definition 4.3 (Disjunctive materialization). Let 𝐶 ⊑ 𝐷 be a GCI, 𝐶 ⊏∼ 𝐷 be a DCI, and 𝑆
be a set of GCIs or DCIs. The materialization of these elements is defined by:

• 𝐶 ⊑ 𝐷 := ¬𝐶 ⊔ 𝐷

• 𝐶 ⊏∼ 𝐷 := ¬𝐶 ⊔ 𝐷

• 𝑆 =
.
𝐶 ⊏∼𝐷∈𝑆 𝐶

⊏∼ 𝐷 ⊓
.
𝐶⊑𝐷∈𝑆 𝐶 ⊑ 𝐷

In order to check if 𝐶 ⊏∼ 𝐷 follows from some DKB, one checks whether the ma-
terialization of a selected set of DCIs in conjunction with 𝐶 is classically subsumed by
𝐷 . Some materialization-based reasoning methods select more than one subset of D to
materialize with a given concept 𝐶 and define skeptical or credulous reasoning over this
set. The literature contains several methods for selecting the DCIs to materialize alongside
concepts. We call those methods strengths, and give a general characterization for them all
based on a selection function.

Definition 4.4 (Consistent-selection function). Let K = (A,T ,D) be a DKB, 𝐶 ∈ 𝔏(L)
be a concept in the language of a DL L, and s be a strength. A consistent selection function for
s and K is a function selK,s : 𝔏(L) ∪ sigI(K) → P(D) such that, ifU ∈ selK,s(𝐶), then
K ̸|= 𝐶 ⊓U ⊑ ⊥.

If L ∈ {EL⊥, ELI⊥}, the condition is altered to K ̸|= 𝐶 ⊓ U ⊑ ⊥ to account for non-
disjunctive materialization. Finally, when the consistent-selection function selects a singleton,
we employ a slight abuse of notation and define selK,s(𝐶) = U instead of {U}.

Definition 4.5 (Materialization-based subsumption). LetK = (A,T ,D) be a DKB,𝐶, 𝐷 ∈
𝔏(L) be concepts of some DL L, s be a strength, and selK,s() be a materialization-based
reasoning method. Then, K |=mat,s 𝐶 ⊏∼ 𝐷 iff K |= 𝐶 ⊓U ⊑ 𝐷 for everyU ∈ selK,s(𝐶).

Several methods of materialization-based reasoning were proposed to capture different
properties of typicality reasoning and to address particular shortcomings of the already-
existing varieties in the literature. Some of them conform to specific closures, i.e., conform
to some inferential properties, such as the rational or the lexicographic closure. These
algorithms are sometimes referred to by the term closure.

Materialization-Based Rational Closure

Casini & Straccia (2010) proposed materialization-based rational reasoning to define a
rational reasoning procedure in the sense of the hierarchy proposed by Kraus, Lehmann,
and Magidor (1990). Informally known as the KLM hierarchy, it characterizes several
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defeasible reasoning procedures in terms of their inferential properties and correspon-
dent semantics bridged by representation theorems. The hierarchy is based on defeasible
sequents, such as 𝛼 |∼ 𝛽 , for propositional formulas 𝛼 and 𝛽 . The following principles
characterize preferential logic, the fundamental system of the hierarchy.

𝛼 |∼𝛼 (Ref)
|= 𝛼 ↔ 𝛽, 𝛼 |∼𝛾

𝛽 |∼𝛾 (𝐿𝐿𝐸) 𝛼 |∼ 𝛽, 𝛼 |∼𝛾
𝛼 |∼ 𝛽 ∧ 𝛾 (𝐴𝑛𝑑)

𝛼 |∼𝛾, 𝛽 |∼𝛾
𝛼 ∨ 𝛽 |∼𝛾 (𝑂𝑟 ) |= 𝛼 → 𝛽, 𝛾 |∼𝛼

𝛾 |∼ 𝛽 (𝑅𝑊 ) 𝛼 |∼ 𝛽, 𝛼 |∼𝛾
𝛼 ∧ 𝛽 |∼𝛾 (𝐶𝑀)

Rational reasoning emerges from combining the preferential closure with rational
monotonicity, a negative property. As emphasized by Kraus, Lehmann, and Magidor, the
preferential properties cover positive aspects of defeasible reasoning. They speak about
what should follow from a DKB. Rational monotonicity, on the other hand, says that
something should not follow from the, DKB given the absence of some information.

𝛼 ∧ 𝛽 ̸ |∼𝛾, 𝛼 ̸ |∼ ¬𝛽
𝛼 ̸ |∼𝛾 (𝑅𝑀)

Rational monotonicity serves to limit the update brought by new information. The
intuition is that the only information that should bring updates is the ones whose negation
was previously expected. [KLM90, p. 33]

A technique of translating those principles to DLs is swapping the propositions for
concepts and the defeasible sequents by DCIs. This approach was popularized by Casini &
Straccia (2010), although they employed a symbol for defeasible sequents instead of the
standard defeasible inclusion and a slightly different set of rules.

𝐶 ⊏∼ 𝐶 (Ref)
|= 𝐶 = 𝐷, 𝐶 ⊏∼ 𝐸

𝐷 ⊏∼ 𝐸
(𝐿𝐿𝐸) 𝐶

⊏∼ 𝐷, 𝐶 ⊏∼ 𝐸
𝐶 ⊏∼ 𝐷 ⊓ 𝐸

(𝐴𝑛𝑑)

𝐶 ⊏∼ 𝐸, 𝐷 ⊏∼ 𝐸
𝐶 ⊔ 𝐷 ⊏∼ 𝐸

(𝑂𝑟 ) |= 𝐶 ⊑ 𝐷, 𝐸 ⊏∼ 𝐶
𝐸 ⊏∼ 𝐷

(𝑅𝑊 ) 𝐶
⊏∼ 𝐷, 𝐶 ⊏∼ 𝐸
𝐶 ⊓ 𝐷 ⊏∼ 𝐸

(𝐶𝑀)

𝐶 ⊓ 𝐷 ̸⊏∼ 𝐸, 𝐶 ̸⊏∼ ¬𝐷
𝐶 ̸⊏∼ 𝐸

(𝑅𝑀)

Bonatti & Sauro (2017) discuss this translation by pointing out that the original KLM
postulates were meta-level properties, while the common translations to DLs internalize
the properties in the object-level. They suggest a non-internalized version that translates
the defeasible sequents ⊏∼ to the consequence relationship defined by some DKB, which
considers whole formulas instead of the concepts on the two sides of GCIs and DCIs, to be
considered alongside the internalized version.
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Exceptionality The reasoning procedure presented in [CS10] rests on the concept of
exceptionality, which paves the way for a stratification of the DBox by the generality of
its antecedents, respecting the principle of specificity. A DCI 𝐶 ⊏∼ 𝐷 is exceptional to some
(strict) KB K iff K |= 𝐶 ⊑ ⊥, i.e., if its antecedent is unsatisfiable in the KB. This concept
grounds the definition of a chain of more and more specific DCIs, which gives rise to a
stratification of the DBox by specificity.

Definition 4.6 (Exceptionality Chain). Let K = (A,T ,D) be a DKB. Then, its exception-
ality chain E0, . . . , E𝑛 is defined inductively by:

• E0 = D

• E𝑖+1 = {𝐶 ⊏∼ 𝐷 | (A,T) |= 𝐶 ⊓ E𝑖 ⊑ ⊥}

We say that K is well-separated when E𝑛 = ∅. When that is not the case, E𝑛 is the fixpoint
and E𝑛 = E𝑛+1.

A well-separated DKB is simply one that does not have any inconsistent antecedent. It
is possible to generate an equivalent well-separated DKB K′ from any DKB K by setting
T ′ = T ∪ {𝐶 ⊑ ⊥ | 𝐶 ⊏∼ 𝐷 ∈ E𝑛}. [Bri+13] Because DKBs are finite, 𝑛 ∈ N.

Exceptionality chains ground a proof-theoretical definition of ranks, contrasted to
Definition 4.2, which is based on semantics.

Definition 4.7 (Exceptionality-chain based rank). Let K = (A,T ,D) be a DKB and
E0, . . . , E𝑛 be its exceptionality chain. Let 𝐶 ⊏∼ 𝐷 be a DCI. The exceptionality-chain based
rank is given by:

• RankK (𝐶) = the smallest 𝑖 such that (A,T) ̸|= 𝐶 ⊓ E𝑖 ⊑ ⊥,

• RankK (𝐶 ⊏∼ 𝐷) = RankK (𝐶).

Materialization-based rational reasoning is defined by materializing E𝑖 in conjunction
with the 𝑖-ranked concept on the left-hand side of the checked DCI. Formally:

Definition 4.8 (Rational Consistent-selection Function and Closure). Let K = (A,T ,D)
be a DKB and 𝐶, 𝐷 ∈ 𝔏(L) be two concepts. Then, selK,rat(𝐶) = E𝑖 for RankK (𝐶) = 𝑖 .

We say that K entails a DCI𝐶 ⊏∼ 𝐷 by rational materialization-based reasoning, denoted
by K |=mat,rat 𝐶 ⊏∼ 𝐷 , iff K |= 𝐶 ⊓ selK,rat(𝐶) ⊑ 𝐷 .

Casini & Straccia (2010) show that this procedure defines an internalized rational
consequence relation. The algorithm had a problem later rectified in [Bri+21].

Rational closure has good computational and inferential properties. However, it does
not lend support to some reasonable conclusions. One of the most pressing problems is
the inheritance blocking problem. Consider the DKB illustrated in Figure 4.1.

Preserving as many defeasible inclusions as possible for atypical elements is desirable.
In the penguins-birds scenario, we would like to conclude that penguins have nice feathers
because they are birds, and having nice feathers is a typical property of birds that does
not conflict with any property of penguins. They cannot inherit all characteristics from
typical birds because flying is inconsistent with what we know of them; that is to say, they
do not fly. However, having nice feathers has nothing to do with that. It is presumed to
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Bird

Penguin

Flying

NiceFeathers

¬Flying

Figure 4.1: Straight arrows represent strict concept subsumptions. Dotted and dashed arrows represent
defeasible subsumptions. The two dotted arrows create a conflict for penguins, and the dashed one
could be inherited by it.

be independent from flying. Nonetheless, because the algorithmic procedure of rational
closure ranks inclusions by the generality of their antecedent, it is impossible to infer
Penguin ⊏∼ NiceFeathers from the DKB.

This problem was identified early by Lehmann, and there are several solutions to it in
the literature, such as the lexicographic closure [Leh95] and [CS12], the relevant closures
(basic and minimal) [Cas+14b], the skeptical closure [GG20], and the multipreferential
closure [Gli16], [GG19c], [GG19b].

Lexicographic Closure

Lexicographic Closure was originally proposed in [LM92] and was adapted to DLs in
[CS12]. It models presumptive reasoning, a reasoning pattern according to which objects
are assumed to be typical unless there is evidence to the contrary. The reasoning procedure
selects the subsets of D to be materialized by a lexicographic order based on the rank of
the DCIs in each subset of D.

Formally, let K = (A,T ,D) be a DKB and D𝑘 = {𝐶 ⊏∼ 𝐷 ∈ D | RankK (𝐶 ⊏∼ 𝐷) = 𝑘}
be the set of k-ranked defeasible inclusions in D. For everyU ⊆ D, let ⟨𝑛0, . . . , 𝑛𝑘⟩U be a
string of numbers where 𝑛0 = |U ∩ D𝑘 | and 𝑛𝑖 = |U ∩ D𝑘−𝑖 |, i.e., the number of 𝑖-ranked
conditionals inU. Precedence is given to the more specific concepts.4 Hence, a seriousness
ordering over subsets of D is defined by:

U ≺lex U′ if and only if ⟨𝑛0, . . . , 𝑛𝑘⟩U ′ < ⟨𝑛0, . . . , 𝑛𝑘⟩U

where < is a lexicographical order, i.e., ⟨𝑛0, . . . , 𝑛𝑘⟩ ≥ ⟨𝑚0, . . . ,𝑚𝑘⟩ if and only if (i) 𝑛𝑖 ≥ 𝑚𝑖

for every 0 ≤ 𝑖 ≤ 𝑘 or (ii) if 𝑛𝑖 < 𝑚𝑖 for an 𝑖 , 0 ≤ 𝑖 ≤ 𝑘 , then there exists a 𝑗 , 0 ≤ 𝑗 < 𝑖 ≤ 𝑘 ,
such that 𝑛 𝑗 > 𝑚 𝑗 .

Definition 4.9 (Lexicographic Consistent-selection Function and Closure). Let K =

(A,T ,D) be a DKB. Then,U ∈ selK,lex(𝐶) iffU ⊆ D is a maximal subset of D according
to ≺lex whose materialization is consistent with 𝐶 .

We say that K entails a DCI 𝐶 ⊏∼ 𝐷 by lexicographic materialization-based reasoning,

4 Specificity is a widely accepted reasoning principle, e.g., “ (...) we would like to infer that individuals have
the properties which are typical of the most specific concept to which they belong.” [Gio+07, p. 268]
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denoted by K |=mat,lex 𝐶 ⊏∼ 𝐷 , iff K |= 𝐶 ⊓U ⊑ 𝐷 , for everyU ∈ selK,lex(𝐶).

Unlike rational closure, which is based on a total order defined by the exceptionality
chain, the lexicographic ordering may select more than one subset ofD to materialize with
a given concept. The reasoning defined by this procedure is skeptical: it only considers
what follows from all the selected sets.

This reasoning procedure overcomes inheritance blocking as portrayed in Figure 4.1
by favoring the subsetU = {Penguin ⊏∼ ¬Flying,Bird ⊏∼ NiceFeathers}, represented by
⟨1, 1⟩U , overU′ = {Penguin ⊏∼ ¬Flying}, represented by ⟨1, 0⟩U ′ . The entailment relation
strengthens the rational closure [Cas+13, Prop. 3], as it preserves all its entailments.
However, its complexity is also higher, as it has to check several subsets of D to complete
the seriousness ordering through classical reasoning. The authors do not present a proof but
conjecture that its complexity is ExpTime for defeasibleALC DKBs, the same complexity
class for reasoning over strict ALC KBs.

MP-Closure

MP-Closure is the reasoning procedure for the multipreferential semantics presented
in section 4.2.2. Unlike rational closure, it does not correspond exactly to the satisfaction
forwarded by the semantics, as it is only sound but not complete for multipreferential se-
mantics. Its intuition is similar to lexicographic closure, sharing the same overall procedure.
It begins with the maximal subset determined by the rational closure and adding more
DCIs, giving preference to those related to more specific concepts. The main difference
between the two is that the comparison is not based on the number of DCIs (i.e., the
cardinality of the sets containing DCIs of a given rank), as in the lexicographic closure,
but rather on strict subset inclusion.

Formally, given sets of DCIsU andU′, stratified by rank byU𝑖 = U ∩𝐷𝑖 ,U′ ≺MP U
if and only if there is ℎ s.t.Uℎ ⊂ U′ℎ and (ii) for every 𝑗 > ℎ,U𝑗 ′ = U𝑗 [GG18, p. 12]. Then,
the inference relation is defined in the same way as the lexicographic case, i.e., by taking
the maximal subset of D according to this order

Definition 4.10 (MP Consistent-selection Function and MP-Closure). Let K = (A,T ,D)
be a DKB. Then,U ∈ selK,MP(𝐶) iffU ⊆ D is a maximal subset of D according to ≺MP-
maximal whose materialization is consistent with 𝐶 .

We say that K entails a DCI 𝐶 ⊏∼ 𝐷 by MP materialization-based reasoning, denoted by
K |=mat,MP 𝐶 ⊏∼ 𝐷 , iff K |= 𝐶 ⊓U ⊑ 𝐷 , for everyU ∈ selK,MP(𝐶).

It is easy to see that this procedure solves the inheritance blocking problem exemplified
in diagram 4.1 similarly to the lexicographic closure. What remains to be explained is
where the difference between the two resides. Figure 4.2 depicts a DKB adapted from
[GG19a] that highlights the locus of disagreement.

Lexicographic closure answers affirmatively to the query 𝐴 ⊏∼ 𝐻 , becauseU = {𝐴 ⊏∼
¬𝐵,𝐶 ⊏∼ 𝐺,𝐶 ⊏∼ 𝐹 } has more elements thanU′ = {𝐴 ⊏∼ ¬𝐵,𝐶 ⊏∼ 𝐷}. However, the setsU
andU′ are not comparable w.r.t. subset inclusion. Hence, MP-Closure answers the query
negatively, asU′ does not contain 𝐶 ⊏∼ 𝐺 , a link in the path leading from 𝐴 to 𝐻 .
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𝐴

𝐶 𝐵

𝐷

𝐹

𝐺𝐻

¬𝐵((¬𝐺 ⊓ ¬𝐹 ) ⊔ ¬𝐷)

Figure 4.2: Straight lines represent GCIs, and dashed lines represent DCIs.

Relevant Closure

Relevant reasoning is a strong form of defeasible reasoning based on justifications. It first
appeared in [Cas+14b] and subsequently showed up in other papers such as [PT18a] and
[GG19c]. Justifications are “minimal set of sentences responsible for a conflict” [Cas+14b,
p. 2]. The idea is to partition a DBox D by separating the subsumptions that contribute to
an inconsistency from those that do not and then applying the rational closure procedure
only to the relevant part. By doing this, the procedure preserves the rest from being
discarded.

Casini et al. (2014) propose two ways of defining this relevant part. The first leads
to basic relevant closure; the second, to minimal relevant closure, which is stronger than
the former. Given the set 𝑅 ⊆ D, which is the relevant part of D with respect to some 𝐶 ,
the DBox is partitioned into two by 𝑅𝑒𝑙𝑘 (𝑅) = (𝑅, 𝑅−), where 𝑅− = D \ 𝑅. The relevant
closure preserves the strict part, T , and the irrelevant (defeasible) one, 𝑅−. Entailment
is defined by running the rational closure algorithm on the remaining part to find some
𝑅′ ⊆ 𝑅 consistent with the query’s antecedent. Alternatively, it is possible to define it
directly by means of a consistent-selection function. We consider such function for the
two classes of relevant closures presented in (2014).

Given a concept 𝐶 and a DKB K = (A,T ,D), a subset J ⊆ D is a 𝐶−justification
with respect to K iff :

1. (A,T) |= 𝐶 ⊓ J ⊑ ⊥ and,

2. (A,T) ̸|= 𝐶 ⊓ J ′ ⊑ ⊥ for every J ′ ⊂ J .

Basic relevant closure defines the relevant part by taking all the axioms from every
justification. Everything that can generate a conflict may be eliminated, regardless of
specificity. Let Rel(𝐶) = {J | J is a 𝐶-justification} be the set of all the 𝐶-justifications
for some DKB K . Then, the relevant part of D for the basic relevant closure is defined as
R(𝐶) = ⋃

Rel(𝐶).

Minimal relevant closure favors specificity by taking the rank of the defeasible inclusions
into account. Let Jmin = {𝐷 ⊏∼ 𝐸 | RankK (𝐷) ≤ RankK (𝐹 ) for every 𝐹 ⊏∼ 𝐺 ∈ J} be
the minimally ranked DCIs of each justification J . Then, the relevant part for minimal
relevant closure is defined by Relmin(𝐶) =

⋃
J∈Rel(𝐶) Jmin, which is the union of the

minimal elements of each J .
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Definition 4.11 (Relevant Consistent-selection Function and Closure). LetK = (A,T ,D)
be a DKB and𝐶, 𝐷 be two concepts. Let 𝑅 ⊆ D and 𝑅− ⊆ D be the relevant and the irrelevant
parts of the DBox. Then, selK,relBa(𝐶) = D \ Rel(𝐶) and selK,relMin(𝐶) = D \ Relmin(𝐶).
The {basic, minimal} relevant closure are defined by:

K |=mat,relBa 𝐶 ⊏∼ 𝐷 if and only if K |= 𝐶 ⊓ selK,relBa(𝐶) ⊑ 𝐷
K |=mat,relMin 𝐶 ⊏∼ 𝐷 if and only if K |= 𝐶 ⊓ selK,relMin(𝐶) ⊑ 𝐷

To better compare the versions, let us consider yet another extension of the penguin
example in Figure 4.3.

Bird

Penguin

LittleBluePenguin

Flying

NiceFeathers

Black ¬Flying

¬Black

Figure 4.3: Straight lines represent GCIs, and dashed lines represent DCIs.

As already shown, rational closure suffers from inheritance blocking. Hence, when
considering a query whose antecedent is Penguin, it discards all the defeasible inclu-
sions stemming from its inconsistency-generating superclass, Bird. Basic relevant clo-
sure considers all the justifications: J1 = {Bird ⊏∼ Flying, Penguin ⊏∼ ¬Flying} and
J2 = {Penguin ⊏∼ Black, LittleBluePenguin ⊏∼ ¬Black}. Therefore, as an improvement of
rational closure, it overcomes inheritance blocking to yield Penguin ⊏∼ NiceFeathers, as
Bird ⊏∼ NiceFeathers is not in any justification.

This procedure can be refined even further if one takes out only a fraction of the
DCIs in each justification. Little Blue Penguin (Eudyptula minor) is a species of penguins
whose members are not black, contrary to the most typical penguins. As the species
name suggests, they are blue. However, they inherit other typical properties of penguins,
viz. inability to fly. Because Penguin ⊏∼ ¬Flying is deemed relevant to the query for
basic relevant closure, it may be discarded when performing reasoning. Queries with
LittleBluePenguin on the left-hand side discard all relevant DCIs whose rank is smaller
than one and therefore discard Penguin ⊏∼ ¬Flying. Minimal relevant closure solves this
by considering only minimal-ranked inclusions in justifications. Hence, in the example,
Relmin(LittleBluePenguin) = {Bird ⊏∼ Flying, Penguin ⊏∼ Black}, and Penguin ⊏∼ ¬Flying
will not be discarded, as desired.
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Although lexicographic and the two relevant closures are similarly motivated, they
yield different results. Giordano and Gliozzi (2019) compare some closure algorithms
adapted to DL. They present a slightly different version of the example depicted in Figure
4.4.

Bird

Penguin

Marine

∃eats.Fruit

NiceFeathers¬Flying

¬NiceFeathers ⊓ ¬∃eats.Fruit

Figure 4.4: Straight lines represent GCIs and DCIs are represented by dashed lines.

In this KB, both Bird and Marine have rank 0, as they have the same specificity
degree. Hence, relevant closures cannot distinguish between the elements of 𝐽1 =

{Bird ⊏∼ ∃eats.Fruit,Marine ⊏∼ ¬NiceFeathers ⊓ ¬∃eats.Fruit} and 𝐽2 = {Bird ⊏∼
NiceFeathers,Marine ⊏∼ ¬NiceFeathers ⊓ ¬∃eats.Fruit}. Therefore, neither Penguin ⊑
∃eats.Fruit, nor Penguin ⊑ ¬∃eats.Fruit follows from them. This does not happen in lexico-
graphic closure. LetU1 = {Bird ⊏∼ ∃eats.Fruit,Bird ⊏∼ NiceFeathers, Penguin ⊏∼ ¬Fly} and
U2 = {Marine ⊏∼ ¬NiceFeathers ⊓ ¬∃eats.Fruit, Penguin ⊏∼ ¬Flying}. Then, ⟨2, 1⟩U1 >

⟨1, 1⟩U2 , which entailsU1 ≺ U2. Hence, by the lexicographic closure, Penguin ⊏∼ eats.Fruit
undesirably follows from the KB.

Skeptical Closure

Giordano & Gliozzi (2020) introduced skeptical closure as a refinement of rational
closure that is weaker than lexicographic closure but also computationally lighter. The
algorithm makes a polynomial number of calls to the underlying classical reasoner. In
some closures that extend rational closure, this number is exponential [GG20].

This reasoning procedure is grounded in two different notions of compatibility between
concepts and DCIs: individual and global compatibility. Let K = (A,T ,D) be a DKB,
𝐶 be a concept such that RankK (𝐶) = 𝑘 , and E0, . . . , E𝑛 be the rational chain over K .
Then U𝐶 = {𝐸 ⊏∼ 𝐹 ∈ D | (A,T) ̸|= 𝐶 ⊓ E𝑘 ∪ {𝐸 ⊏∼ 𝐹 } ⊑ ⊥} is the set of defeasible
subsumptions that are individually compatible with𝐶 and the materialization of E𝑘 , which
is selected by the rational closure algorithm.5

However, this definition does not account for the interaction between the DCIs in
the set, which may render the final result inconsistent with 𝐶 . To account for this, the
authors introduce the notion of global compatibility. Two sets of DCIs 𝑆, 𝑆′ are globally
compatible with respect to 𝐶 if and only if their union is consistent with 𝐶: (A,T) ̸|=
𝐶 ⊓ E𝑘 ∪ 𝑆 ∪ 𝑆′ ⊑ ⊥. Let U𝐶

𝑖 = {𝐸 ⊏∼ 𝐹 ∈ U𝐶 | RankK (𝐸 ⊏∼ 𝐹 ) = 𝑖} be the restriction
of U𝐶 to 𝑖-ranked DCIs. The set of DCIs to be materialized in conjunction with 𝐶 is

5 The original formulation had T(𝐸) ⊑ 𝐹 instead of 𝐸 ⊏∼ 𝐹 . The adaptation of the definitions seen here serves
the purpose of facilitating the comparison of different reasoning methods.
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Bird

Penguin

Marine

∃eats.Fruit

NiceFeathers¬Flying

¬∃eats.Fruit

Figure 4.5: Straight lines represent GCIs, and dashed lines represent DCIs.

[GG20]:
𝑆𝑠𝑘,𝐶 = E𝑘 ∪ 𝑆𝐶𝑘−1 ∪ 𝑆

𝐶
𝑘−2 ∪ · · · ∪ 𝑆

𝐶
ℎ

where ℎ is the least 𝑗 such that 0 ≤ 𝑗 < 𝑘 and 𝑆𝐶𝑗 is globally compatible with𝐶 with respect
to 𝑆𝑠𝑘,𝐶 = E𝑘 ∪ 𝑆𝐶𝑘−1 ∪ 𝑆

𝐶
𝑘−2 ∪ · · · ∪ 𝑆

𝐶
𝑗+1.

Skeptical closure diverges from lexicographic closure because it runs out of DCIs to
select if the formulas are individually but not globally compatible with𝐶 . Consider the KB
depicted in Figure 4.5.

Penguin has rank 1 and both Marine and Bird have rank 0. When considering the
skeptical closure with regards to Penguin, we have only that 𝑆𝑠𝑘,Penguin = E1, which is
the same set selected by the rational closure. This happens because 𝑆Penguin

0 = {Bird ⊏∼
∃eats.Fruit,Bird ⊏∼ NiceFeathers,Marine ⊏∼ ¬∃eats.Fruit} is composed of DCIs that are in-
dividually compatible with Penguin but generate inconsistencies when put together.

Under the skeptical closure, the DKB does not imply Penguin ⊏∼ NiceFeathers, a
desirable conclusion entailed by stronger closures. In the lexicographic closure, the
sets 𝐷1 = {Penguin ⊏∼ ¬Flying,Bird ⊏∼ NiceFeathers,Bird ⊏∼ ∃eats.Fruit} and 𝐷2 =

{Penguin ⊏∼ ¬Flying,Bird ⊏∼ NiceFeathers,Marine ⊏∼ ¬∃eats.Fruit} correspond to ⟨1, 2⟩𝐷𝑖
,

while 𝑆𝑠𝑘,Penguin corresponds to ⟨1, 0⟩𝑆𝑠𝑘,Penguin . Henceforth, they dominate the latter ac-
cording to the lexicographical order, and both 𝐷1,2 ≺ 𝑆𝑠𝑘,Penguin, yielding Penguin ⊏∼
NiceFeathers.

Materialization-based Instance Checking

Instance checking is a reasoning task that checks if a given named individual from
the ABox belongs to some concept. The defeasible version of this task seeks to answer if
the individual is typically a concept member. An agent that knows that Tweety is a bird
should draw the defeasible conclusion that it flies, even though the KB does not entail this
conclusion strictly.

Lifting defeasible reasoning from the terminological to the assertional knowledge
is not trivial. The root of this difficulty is similar to quantification neglect. Individuals
incorporating defeasible information can affect each other through role connections.
Therefore, the order in which the defeasible information is applied to the individuals is
important, and ABoxes can have multiple incomparable closure extensions. The following
example is adapted from Casini & Straccia (2010):
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Example 4.12. LetK = (A,T ,D) be a DKB with T = ∅,A = {(𝑎, 𝑏) : 𝑅} andD = {⊤ ⊏∼
𝐴 ⊓ ∀𝑟 .¬𝐴}.

The DCI in D can be applied to any of the two individuals alone but not to both. It is
easy to see that if it is applied to 𝑎, it cannot be applied to 𝑏, and vice-versa.

A technique to overcome this obstacle consists in defining a preference order over the
individuals in the ABox and conditioning the entailment to this order. Let 𝑠 = (𝑎0, . . . , 𝑎𝑚)
be such an order. We define the rank of an individual 𝑎 as RankK (𝑎) = RankK (𝐶), for
the maximally ranked 𝐶 such that K |= 𝐶 (𝑎). Then, a rational expansion of the ABox is
defined by iteratively applying the DCIs to the individuals in A according to the order 𝑠 .
Notice that, at each step, a new A′ is defined, and the ranks of the individuals may have
to be recalculated.

Definition 4.13 (Ordered Defeasible Rational Instance Checking). Let K = (A,T ,D)
be a DKB and 𝑠 = (𝑎0, . . . , 𝑎𝑚) be a total order over the individuals in A. Let 𝑎 be some
individual in the ABox. Let K = K0, . . . ,K𝑚+1 be a series of ABoxs expansions respecting the
order 𝑠 . Then: K |=𝑠rat 𝐶 (𝑎) iff K𝑚+1 |= 𝐶 (𝑎).

Casini & Straccia (2010) show that the relation in Definition 4.13 satisfies the KLM
rationality postulates.

Eliminating the need for orders is made possible through the use of skeptical reasoning
techniques. Casini et al. (2013) define an entailment that is not conditioned to a single
order 𝑠 but to the intersection of all possible orders.

Definition 4.14 (Skeptical Defeasible Rational Instance Checking). LetK = (A,T ,D) be
a DKB and 𝑎 be some individual in the ABox. Then: K |=𝑆𝑘𝑒rat 𝐶 (𝑎) iff K |=𝑠rat 𝐶 (𝑎) for every
order 𝑠 over the individuals in A.

This technique has two shortcomings. On the one hand, the consequence relation
lacks rational monotonicity, which is present in the entailment relation conditioned to a
single order 𝑠 . On the other hand, it can increase the complexity of reasoning in practice,
while keeping the problem at the same complexity class. In the worst case, the ALC-
based algorithm has to perform 𝑛! ExpTime-complete decision procedures [Cas+13]. A
partial solution to this increase in complexity is limiting the order to individuals connected
by roles, as they are the only ones that can transfer defeasible information back and
forth. Casini et al. (2013) introduce clusters of individuals to this end. Clusters are sets of
individuals that inhabit the same connected parts of the graph whose nodes are individuals
and edges are role edges.

The reasoning procedures mentioned above are adaptations of the rational closure
reasoning procedure. However, there are also similar techniques lifted to stronger closures.
A version concerned with lexicographic closure is examined in [CS12].

4.3.2 Tableaux
Tableau-based reasoning algorithms are a popular reasoning method for DLs. They

work by reducing subsumption to concept unsatisfiability and are very useful for DLs
such as ALC and its extensions [Baa+03]. Formally, tableaux are trees whose nodes are
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constraint systems that model the expansion of the ABox by applying terminological
knowledge to its individuals. A node can branch when a disjunctive axiom is applied to
some individual, such as the axiom 𝐶 ⊑ 𝐷 ⊔ 𝐸 for some 𝑎 : 𝐶 , and it closes when an
open contradiction – 𝑎 : 𝐶 and 𝑎 : ¬𝐶 , or 𝑎 : ⊥ – is found in the expanded ABox. It is
possible to check concept subsumption 𝐶 ⊑ 𝐷 by introducing 𝑎 : ¬𝐶 ⊓ 𝐷 in the ABox
for a fresh individual 𝑎. Tableaux for DLs of typicality are built over the foundations of
the systems for standard DLs and have special modifications to keep track of DCIs or
typicality operators.

Biphasic Tableaux for DLs with Typicality Operators

Giordano et al. (2008) developed a tableaux system for the logics ALC + T and
ALC+Tmin. Their proposal is a biphasic system composed of two independent procedures,
TABALC+T

𝑃𝐻1 and TABALC+T
𝑃𝐻2 . The first procedure verifies if the checked instance has a

model that satisfies the KB. If such a model exists, the second system tries to minimize it in
terms of atypicality ascription formulas, 𝑥 : ¬□¬𝐶 , a definition in line with the semantics
for the T operator discussed in Section 4.2.1. Because the non-monotonic logicALC+Tmin
has a semantics based on a preferred set of models, the tableau procedure checks whether
(i) there are any models to the KB and, if there are, (ii) whether those models belong to the
set of preferred models.

The nodes in TABALC+T
𝑃𝐻1 are constraint systems with two components: 𝑆 and 𝑈 . The

first stores information on the individuals in the ABox. Namely, to which concepts and
roles they belong. The second garners terminological knowledge. It contains the TBox
axioms labeled with the set of individuals to which they were applied. Let 𝑎 ∈ sigI(A) be
an individual from the KB and 𝐿 ⊆ sigI(A) be a set of individuals from the KB such that
𝑎 ∉ 𝐿. The unfold rule exemplifies their interplay:

(𝑆 | 𝑈 ∪ {𝐶 ⊑ 𝐷𝐿})
(𝑆 ∪ {𝑎 : ¬𝐶 ⊔ 𝐷} | 𝑈 ∪ {𝐶 ⊑ 𝐷𝐿∪{𝑎}})

(𝑢𝑛𝑓 𝑜𝑙𝑑)

A supplementary order ≺ takes care of the chronological order in which the procedure
introduces new constants, which is necessary to ensure termination. The tableau procedure
deals with typicality through the interplay between the typicality operator and the modality
□. Besides the rules for standard ALC, there are four rules covering typicality, which we
discuss at a high level:

1. The rule (cut) branches the constraint system for every element 𝑎 that is neither
in □¬𝐶 , nor in ¬□¬𝐶 . Each one of the two branches covers one possibility. The
intuition is that the model should decide, for every element, whether it is minimal
or not for every concept.

2. The rule (□−) adds typical elements to a concept 𝐶 if there is no typical member
of 𝐶 , but there is an atypical one, 𝑥 . It creates 𝑛 branches, where 𝑛 is the number
of the elements occurring in 𝑆 including 𝑥 . Let those elements be 𝑥, 𝑣1, . . . , 𝑣𝑛−1. In
every new branch, 𝑣𝑖 will be the typical member of 𝐶 . Finally, there is an additional
branch with a new element 𝑦 as the typical member of 𝐶 . Notice that 𝑥 remains
as an atypical member of 𝐶 in all branches, as this was already a fact before the
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application of the rule.

3. The rule (𝑇 −) governs the negative interplay between the typicality operator and the
modality □. If an element 𝑥 belongs to ¬T(𝐶), the rule creates two new branches:
one in which 𝑥 : ¬𝐶 , and another in which 𝑥 : ¬□¬𝐶 . Either 𝑥 is not a member of 𝐶
or a non-minimal member of 𝐶 .

4. Finally, the rule (𝑇 +) governs the positive interplay between the typicality operator
and the modality. If an element 𝑥 belongs to T(𝐶), it also belongs to 𝐶 and □¬𝐶 , i.e.,
it is a minimal member of 𝐶 .

Given an ALC KB 𝐾 = (T ,A), the constraint system is initialized by: 𝑆 = {𝑎 : 𝐶 | 𝑎 :
𝐶 ∈ A} ∪ {(𝑎, 𝑏) : 𝑟 | (𝑎, 𝑏) : 𝑟 ∈ A} andU = {𝐶 ⊑ 𝐷∅ | 𝐶 ⊑ 𝐷 ∈ T }. When there are no
more rules to apply to some open branch, it gives rise to a model of K . If every branch
closes due to some contradiction, K is unsatisfiable.

Giordano et al. 2007 proved the system to be sound, complete, and to terminate. How-
ever, the model it outputs is not guaranteed to minimize the number of atypical instances
𝑥 : ¬□¬𝐶 . Minimizing this parameter is the purpose of TABALC+T

𝑃𝐻2 .

A preferred model is minimal for models sharing its domain. The tableau procedure
TABALC+T

𝑃𝐻2 operates on constraint systems taken from open branches from TABALC+T
𝑃𝐻1 .

The rules that introduced new elements – (□+), which accounts for typical elements, and
(∃+), which account for elements introduced by existential restrictions – are modified to
operate only on existent elements. The new system keeps track of the atypical elements by
counting 𝑥 : ¬□¬𝐶 formulas, which is kept in a third component of the constraint system,
𝐾 . This component is initialized with all the atypicality formulas in the open branch in
TABALC+T

𝑃𝐻1 . As those formulas arise in the new branch in TABALC+T
𝑃𝐻2 , they are removed

from 𝐾 . Two new clash rules cover the comparison between atypical individuals in the
original open branch and the new constraint system in TABALC+T

𝑃𝐻2 .

(𝑆 | 𝑈 | ∅) (Clash)∅
(𝑆 ∪ {𝑥 : ¬□¬𝐶} | 𝑈 | 𝐾) and 𝑥 : ¬□¬𝐶 ∉ 𝐾 (Clash)□−

The first rule covers comparable models. When all the atypicality formulas from the
original open branch are used, the new model is at least as atypical, and therefore cannot
be an improvement over it. The second rule deals with incomparable models. When an
atypicality formula not in the original branch is added, it closes the newTABALC+T

𝑃𝐻2 branch.
The complete dual query algorithm is sound and complete regarding ALC + Tmin entail-
ment relation, and its complexity is in CO-NEXPNP[Gio+08]. We summarize the complete
procedure as follows:

1. Let K = (A,T) be a KB in the language of ALC + T and 𝑄 = 𝑎 : 𝐶 be a query,

2. Define K′ = (A ∪ ¬𝑄,T),

3. Run TABALC+T
𝑃𝐻1 over K′,

4. Run TABALC+T
𝑃𝐻2 in every open branch for which there are no more rules to be

applied,
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5. If there is an open branch in TABALC+T
𝑃𝐻2 with no applicable rules,𝑄 does not follow

from K , as there is a preferred counterexample to it. Otherwise, if every branch
closes, 𝑄 follows from K .

Although this method is tailored toALC + Tmin, there are analogous systems to other
DLs such as EL⊥Tmin [Gio+11a] and DL-Lite𝑐Tmin [Gio+11b]. The overall strategy is the
same, but the complexity is

∏𝑝

2 for DL-Lite𝑐Tmin and the syntactical restricted Left Local
EL⊥Tmin KBs6.

There are differences in the dual tableaux systems for those logics when compared
to ALC + Tmin. In part, the new rules reflect divergences in the strict part of the logics,
as ALC is more expressive than both EL⊥ and DL-Lite𝑐 . However, the distinction also
impacts the rules dealing with typicality. The rule that introduces new individuals to
witness existential quantification is altered because those logics have the small model
property. Therefore, for each ∃𝑟 .𝐶 , there needs to be exactly one witness, denoted by 𝑥𝐶 .
The rule (□−), which introduces new individuals to account for typicality, is altered to
deal with more than one concept at a single step. This stronger version of the rule can
introduce a single new individual 𝑦 for 𝑛 concepts, 𝐶𝑖, . . . ,𝐶𝑛 . Finally, DL-Lite𝑐Tmin has
two additional rules for existential formulas to deal with inverse roles. However, those
formulas are limited to the form 𝑥 : ∃𝑟−.⊤.

Tableaux for DLs with concept and role typicality

There are tableaux for stronger non-monotonic DLs that are not direct adaptations
of the system in [Gio+08]. These logics include 𝑑SROIQ [BV17b], ALCH• [Var18],
and 𝑑ALC [BV19]. Both 𝑑SROIQ and ALCH• are considerably more expressive
than ALC + Tmin. These logics can represent role typicality, and their semantics are
based on bi-preferential models. Another difference is neither resorts to the intermediary
modality □ to characterize typicality. Instead, they deal with the minimization of atypical
individuals more directly. In ALCH•, this is done by two auxiliary relations, < and <<,
that correspond to individuals and roles, respectively. Those relations keep track of the
typicality of the individuals and edges introduced by tableaux expansion rules.

Just as in TAB𝐷𝐿+T
𝑃𝐻 {1,2}, the rules in this system expand a set storing assertional knowl-

edge. The rules for the classical operators are in line with standard DL tableaux, and it also
implements blocking to avoid unending loops. In addition to the assertional knowledge,
nodes also store two relations on individuals and pairs of individuals to account for
typicality. Those relations are denoted by < and <<, respectively.

Four rules address typicality. Two regulate the typicality of named individuals and the
remaining ones address the typicality of role edges.

1. The rule (
+
𝑐) ensures that any typical element 𝑎 : •𝐶 is the minimal member of 𝐶

according to <. Therefore, if there are elements 𝑏 such that 𝑏 < 𝑎, they are added to
¬𝐶 .

6 The subsumptions of the LL KB are of the form𝐶𝐿𝐿
𝐸
⊑ 𝐶𝑅 , where𝐶 := 𝐴 | ⊤ | ⊥ | 𝐶 ⊓𝐶 ,𝐶𝑅 := 𝐶 | 𝐶𝑅 ⊓𝐶𝑅 |

∃𝑅.𝐶 and 𝐶𝐿𝐿
𝐿

:= 𝐶 | 𝐶𝐿𝐿
𝐿
⊓𝐶𝐿𝐿

𝐿
| ∃𝑅.⊤ | T(𝐶) [Gio+11a, Def.1, Def. 6].
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2. The rule (
−
𝑐 ) takes care of atypical individuals 𝑎 : ¬ •𝐶 for concepts without typical

witness 𝑏 : 𝐶 , 𝑏 < 𝑎. If the constraint system does not guarantee that they are not in
𝐶 (i.e., 𝑎 : ¬𝐶 ∉ A), then the system creates two new branches. In the first one, the
element is put out of 𝐶 by 𝑎 : ¬𝐶 . In the second, a new element 𝑐 is added as the
typical witness: 𝑎 : 𝐶 , 𝑐 : 𝐶 with 𝑐 < 𝑎.

The rules (
+
𝑟 ) and (

−
𝑟 ) are analogous for roles and the order <<. Clashes occur when

there are open contradictions either in concept or role ascriptions. Just like before, a clash
closes its branch. If there are no more rules to be applied to an open branch, then the KB
is satisfiable, and the branch gives a possible model. The procedure to define a preferential
interpretation is more direct than the one for TAB𝐷𝐿+T

𝑃𝐻 {1,2} because a bi-ordering is already
given by < and <<.

This tableaux system is a sound decision procedure for the satisfiability of ALCH•
KBs [Var18]. There are no complexity results, although Varzinczak 2018 conjectures that
it is ExpTime.

Finally, Britz & Varzinczak (2017) present a tableaux system for the notably more
expressive DDL 𝑑SROIQ. Besides role hierarchies and typicality, it has several additional
constructors, both classical and defeasible (discussed briefly in Section 4.1.1). It has an
RBox that stores both classical and defeasible role inclusion axioms. Another feature is that
it can express defeasible and classical role axioms (e.g., 𝑆𝑦𝑚(𝑟 ) states that 𝑟 is symmetric,
and 𝑑𝑆𝑦𝑚(𝑟 ) states that it is usually symmetric). Concept-wise, it also supports defeasible
versions of value, existential, at-least, at-most, and self restrictions. It has a preferential
(ordered) semantics equipped with a single order on individuals, ≺O , and a collection
of orders on pairs of individuals, <<O := (<<O1 , . . . , <<O|NR |), where NR is the set of role
names.

The proposed tableaux system abandons constraint systems in favor of a more complex
structure to deal with the increased expressivity. The rules operate over a labeled comple-
tion graph, where nodes represent individuals and labels store information on concept
and role membership, and also concept and role normality. Let NR− = {𝑟− | 𝑟 ∈ NR} be
the set of inverse roles and NR = NR ∪ NR− . Formally, the completion graph is defined by
G := (𝑉 , 𝐸,𝑀,L,N ̸�), where:

• 𝑉 is a set of nodes that represent the individuals of the domain;

• 𝐸 ⊆ 𝑉 ×𝑉 is a set of edges, which will represent roles via labeling;

• 𝑀 ⊆ 𝐸 × 𝐸 is a relation on edges;

• L is the labeling function that assigns labels to nodes (i.e., the concepts to which
they belong) and edges (i.e., roles that include them);

• N ⊆ 𝐸 × NR, for which (𝑒, 𝑟 ) ∈ N only if 𝑟 ∈ L(𝑒), is a relation between edge pairs
and roles that signalizes edge-normality (i.e., a given edge is a normal instance of a
given role);

• ̸�⊆ 𝑉 ×𝑉 is a symmetric relation on nodes.

To check satisfiability of a concept 𝐶 , let 𝑜1, . . . , 𝑜𝑘 denote the nominals occurring in
𝐶 and set the completion graph G = ({𝑣0, . . . , 𝑣𝑘}, ∅, ∅,L, ∅, ∅), where L(𝑣0) := {𝐶} and
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L(𝑣𝑖) = {𝑜𝑖}, for 1 ≤ 𝑖 ≤ 𝑘 . Tableaux-like rules iteratively expand the graph following an
order that ensures termination. The expansion rules are equipped with blocking to ensure
termination and merging, which fuse nodes. A more comprehensive set of clash rules
closes branches that contain some contradiction. Besides usual contradictions dealing with
inconsistent concept membership, the conditions presented here also cover both strict and
defeasible role axioms, such as Dis(𝑟, 𝑠), which implies the disjointness of roles 𝑟 and 𝑠 .
If a clash appears, the expansion halts, and the concept is unsatisfiable. Otherwise, it is
satisfiable, and a model can be constructed from the graph. The resulting procedure is
sound and complete regarding𝑑SROIQ, but no complexity analysis exists. [BV17b]

4.4 Open problems
Research on DLs of typicality has been done consistently for more than a decade now.

Nevertheless, there are still important problems and unsatisfactory aspects in existing
solutions. We classify those problems into two broad classes. On the one hand, some affect
nonmonotonic reasoning in general. Those issues are carried over to DLs of typicality
because most of the methods are adaptations from techniques proposed to other frame-
works. It is unlikely that they will be solved in the context of DLs, although research in
this area can push the community to new horizons. One promising research program is
investigating the combination of defeasible reasoning and quantification, and DLs offer
good case studies due to their combination of first-order properties with decidability.

On the other hand, there are problems specific to DLs. As mentioned, many techniques
that deal with typicality within DLs are adaptations of solutions proposed in other contexts.
Because most of them originated within propositional logic, they fall short of dealing with
the quantificational aspect of DLs. Investigating those aspects is an important avenue of
research with several interesting problems.

We present a list of some of the most serious open problems concerning DLs of
typicality.

• Inheritance blocking. Inheritance blocking is probably the most widely reckoned
problem, and it is not limited to DLs that deal with typicality but is also present in
many defeasible reasoning systems. It is a flaw inherent to rational reasoning. It can
be described as the loss of defeasible information irrelevant to the inconsistencies
that arise from the KB, as depicted in Figure 4.1. Inheritance blocking is arguably the
most discussed problem within the community. Several solutions overcome it, such
as the lexicographic and relevant materialization-based reasoning methods discussed
in Section 4.3.1. The major downside of most of the solutions in the literature is
that they come with a great increase in complexity, something undesirable in the
context of DLs. Some approaches try to circumvent this increase in complexity while
avoiding inheritance blocking, such as skeptical closure covered in Section 4.3.1.
The extent to which they achieve this is better discussed in the referred section.

• Context and single preference orderings. Multiple solutions for dealing with
typicality and defeasible reasoning within DLs are based on preference orders over
domain elements. Extracting typicality information from a single order limits what
can be expressed by the underlying logic. In the real world, contextual information
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plays an active role in reasoning related to typicality. Something typical in one
context may not be in another one. Strategies to deal with this topic include semantics
equipped with multiple preference orderings, such as those presented in [Gli16],
[GG18], and [BV17a]. Multiple preferences are promising, but there still are open
questions w.r.t. them. There is no closure corresponding to the framework presented
by Gliozzi and Giordano (2018) – the MP-closure is just sound but is not complete
w.r.t. their multipreferential semantics. It is also not clear which kind of reasoning
problem they should tackle. Solving problems like the scenario described in Section
4.2.2 may require substantially weakening the consequence relation. The price of
this trade-off may be too high for a calculus aiming for tractability.

• Quantification neglect. One widely known shortcoming of defeasible DLs is that
several frameworks cannot push defeasible information through quantifiers. Hence, a
KB may entail the defeasible inclusion Bird ⊏∼ Flies, but not ∃eats.Bird ⊏∼ ∃eats.Flies.
The semantics based on typicality models that will be covered in Part III deals with
this problem for the defeasible version of the lightweight DL EL⊥. The technique
depends on the existence of canonical models and, therefore, cannot be extended to
DLs such as ALC. Even having the canonical model property may not be enough,
as the semantics rely on stronger properties, such as preserving the extension of
concepts over the subset relation defined over models. Recently, Câmara & Turhan
(2022) and (2023) proposed the first steps for a generalization for ELI⊥. How to
deal with this problem in more expressive DLs remains an open problem in need of
further investigation.

• Reasoning principles that include quantification. The KLM postulates are a
widely used set of principles to evaluate defeasible reasoning, including defeasible
DLs and those that represent typicality. Internalized and external versions of these
postulates were proposed to DLs several times, notably in [CS10]. However, as
previously stated, the nature of the principles is propositional, and, therefore, they do
not capture the behavior of defeasible information when combined with quantifiers.
Even though there are some suggestions for reasoning defeasibly in the presence of
quantifiers, there has yet to be a set of postulates to evaluate the results. Establishing
such principles is an important step in future research.

• Reasoning with data. Currently, most known approaches focus on the terminolog-
ical part of the KBs. Reasoning with data is left aside, which is not surprising, as the
problem is notoriously hard, mostly for the same reasons giving rise to quantification
neglect. The interaction of individuals (and elements) incorporating different levels
of defeasible information can create incompatible scenarios that need to be taken into
account by the underlying framework. One strategy to overcome this challenge is
conditioning expansions of the ABox to a preference order over individuals, as done
in [CS10]. This method places a burden on the knowledge engineers. On the other
hand, defining a skeptical consequence relation over all these orders can greatly
increase the complexity of the calculus. Besides instance checking, more complex
tasks such as query answering have yet to be approached from the perspective of
typicality DLs. Investigating those tasks could widen the possible applications of
DDLs.
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• Tools and datasets. As pointed out by [BS17], there is a lack of genuine DKBs,
mostly due to the absence of robust nonmonotonic inference technologies for DLs.
This status quo results in two problems that are the faces of a single coin. On the
one hand, there are no useful benchmarks against which to test possible implemen-
tations of the existing methods. Hence, researchers must develop artificial ones,
as in [Bon+15b] and [Gui20]. On the other hand, the lack of implementations is a
problem in itself. It is important for logics with a wide array of applications, such as
DLs, to have robust and working implementations. Another aspected pointed out by
[Bon+15b] is that most existing systems can only deal with moderate-sized DKBs.

4.5 Research landscape
This survey reported in this chapter analyzed roughly 230 papers from 231 authors.

We used Neo4J7 to create and plot a graph database of authorship and collaboration for
analyzing the research community behavior. In this section, we present a brief overview
of the analysis. We start with a plot of the full collaboration graph, depicted in Figure 4.6.
The graph has two types of nodes. Dark nodes represent authors, light nodes represent
papers, and edges represent authorship.

It is possible to partition the publications into two broad classes. On the one hand,
there are groups or researchers that published one (or a few) paper(s) appearing in the
survey. On the other hand, there are very active clusters of researchers with a considerable
number of relevant publications.

A possible way to further partition the papers in the first group is to separate them
into two more classes: applied and theoretical. The first class is comprised of research that
employs defeasible DLs to solve a particular practical problem instead of developing for-
malisms to deal with the shortcomings of DLs of typicality. Examples of this are [Med+16],
which uses defeasible DLs to create a conversational interface in the healthcare context,
and [GN18], which uses a defeasible DL to solve problems within access control. This is
an interesting avenue of research, especially considering that solid implementations are
still rare in the research landscape. Most logics covered in this survey were not tested in
real-world applications, and many do not have publicly available implementations.

The theoretical papers can be further separated into two groups. The first group
contains papers presenting the transposition of techniques from other research areas
to DLs of typicality. On the other hand, the second group has papers examining DLs of
typicality in their own terms. An example of a study in the former category is [GCS10], in
which the authors apply formal argumentation analysis techniques – which is the main
research area of their group – to inconsistent ontology handling. With a few exceptions,
research groups and individual researchers that published just a few papers on the subject
had less impact than those that made several contributions, which is not surprising.

The class of papers authored by groups of researchers very active in the area is spread
along some clusters of publications. There are at least four major clusters with some
uniformity regarding their authors and the content of their papers. The clusters are

7 https://neo4j.com/

https://neo4j.com/
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Figure 4.6: The plot of the full collaboration graph depicts a small number of big clusters of prolific
research groups and a wide array of lone papers published by small number of authors. The clusters
are outlined by dashed lines.

partially determined by geographic proximity, as researchers that work close to each other
have more opportunities to collaborate. However, geography is not the only factor that
comes into play. There is some cohesion in how the papers of each cluster deal with the
problems, something that can be seen as a school of thought. We give a brief overview of
the contributions of each group as follows:

(i) Typicality Operator: this cluster is composed of researchers from Italian universi-
ties. Most of its papers deal with DLs that are extended with typicality operators, a
technique first proposed in [Gio+07].

(ii) Circumscription and Overriding: this cluster is centered around the University of
Napoli, in Italy, although there are researches from other places, such as the United
Kingdom. The papers in it deal mostly with circumscription, introduced for DLs
in [BLW06]. Another follow up is the logics of overriding and 𝐷𝐿𝑁 , DLs with a
normality (i.e. typicality) operator whose semantics is related to circumscription.
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Although the number of the publications in this cluster is not so high as the other
three examined in this list, it contains several publications of high impact.

(iii) Defeasible DLs: this cluster is less geographically cohesive. It includes researchers
from several countries, including Germany, France, and South Africa. Even though
the strategies vary a little more than those of the first cluster, the predominant
approach is that of defeasible DLs. Another characteristic is the presence of several
variations of algorithmic materialization-based reasoning. Those DLs that have some
defeasible components in the KB, such as defeasible concept inclusions, defeasible
sequents or even defeasible constructors. Some papers such as [Var18] also deal
with typicality operators.

(iv) DL and Rules: this is the most diversified cluster emphasized in Figure 4.6. The
distribution of its authors is also more sparse than the others, containing several
authors that did not collaborate with each other. Most of its papers deal with a
combination of standard DLs and a logical programming inspired rule layer. This
integration is considered by some experts a vital enterprise for the semantic web
framework [Eit+06]. They appeared in this dissertation because these rules have a
nonmonotonic nature, partly because of their non-classical negation as failure. In
some cases, these formalisms can represent well-known nonmonotonic machinery
such as defaults, as in [KHM12]. However, because they are not primarily concerned
with typicality and differ substantially from the other approaches, we do not cover
them in detail in this survey.

A first analysis could favor the view that the clusters work in isolation without being
aware of the work being done elsewhere. However, this is not the case. This impression
is possible because we plotted only authorship and direct collaboration. Nonetheless, a
quick overview of the references section of each paper surveyed reveals that information
flows between different research groups. A more comprehensive analysis should take this
information into account as well, which could help establish the most influential papers
and the flow of ideas. Such an analysis surpasses the scope of the current work but remains
an interesting future work.
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Part III

Typicality Models for Defeasible
Description Logics
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Chapter 5

A Brief Introduction to Typicality
Models

S
emantics based on typicality models is a nonmonotonic semantics for DLs firstly
proposed by Pensel & Turhan in (2017), (2017), (2018), (2018) and Pensel (2019) to
alleviate quantification neglect for several nonmonotonic semantics defined for

the lightweight DDL EL⊥. In particular, it extends the capacities of materialization-based
reasoning procedures.

As the name suggests, the semantics is based on a special class of interpretations –
typicality interpretations. Those interpretation mirror the canonical models for the strict
version of its grounding DL. There are several types of semantics based on typicality
models (TM), which are defined by constraining the set of the models considered. The
different flavors are classified in two axis by the following parameters:

• strength of reasoning, denoted by s, points to the materialization-based entailment
backing the TM construction. In this dissertation, s ∈ {rat, rel, lex}, i.e., it includes
classes of models encompassing rational, relevant, and lexicographic closures.

• coverage of reasoning, denoted by c, corresponds to the depth to which defeasible
information is applied. In this dissertation, c ∈ {prop, nest}. The two model classes
represent propositional reasoning, in which defeasible information is not transmitted
through quantifiers, and nested reasoning, in which defeasible information spreads
through arbitrarily long quantification chains.

The elements of typicality interpretations represent concepts and individuals similarly
to the canonical model of the base DL being considered. This dissertation considers two
DDLs: EL⊥ and ELI⊥. As exposed in Section 2.5, the domains in those canonical models
are different. In EL⊥, the elements are 𝐶 ∈ 𝔏(EL⊥). On the other hand, in ELI⊥, the
elements are sets of named concepts and they represent the conjunction of those concepts.
The elements in a typicality domain have a second dimension representing sets of DCIs. We
call the part of an element representing concepts its concept set, and the part representing
DCIs its typicality set. The form of an arbitrary domain element is

XU
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where X is either a concept (in TMs for EL⊥) or a set of concepts (in TMs for ELI⊥),
andU is a set of DCIs. In canonical models for EL⊥ and ELI⊥, membership for concept
representatives aligns with subsumption for the same concept. The idea is the same for
typicality interpretations, but the elements represent a concept in conjunction with (the
materialization of) some defeasible information.

Typicality interpretations are built from typicality domains coupled with a special
definition of satisfaction for defeasible formulas. A typicality interpretation I satisfies
a defeasible inclusion 𝐶 ⊏∼ 𝐷 if the most typical instances of 𝐶 in the domain are in 𝐷I .
The degree of typicality is measured by the subset relation over the defeasible sets of the
elements.

The starting point of semantics based on typicality models is the minimal typicality
model, a canonical model construction for materialization-based reasoning semantics. The
minimal typicality model defines propositional coverage of strength s, which is proved to
be equivalent to s-materialization-based reasoning. One property of the minimal typicality
model is that individuals witnessing existential quantification are always atypical, i.e., they
are always of the formX∅, which is a concrete manifestation of quantification neglect.

Semantics based on typicality models addresses this shortcoming by propagating
defeasible information by means of two-stepped upgrades. The first step, called update,
amounts to adding new edges landing into more typical instances of the same concept.
Suppose an element had a successor X∅. In this case, a possible update would be XU , with
U ≠ ∅. We do not delve into detail now, as this procedure is considerably different for
EL⊥ and ELI⊥.

The second component of an upgrade procedure is fixing the interpretation in a
meaningful way to recover the model property. Unsurprisingly, altering the relational
structure of a model may create axiom violations, which need to be addressed. Solving
those violations is done through different techniques in each logic. In EL⊥, the algorithm
is called a model completion and, in ELI⊥, model recovery. The former only adds elements
to concepts and edges to the interpretation, while the latter can also delete edges.

Finally, iterating the upgrade procedure eventually halts when the model runs short
of viable update candidates. The result is a saturated typicality model, and the set of
such models characterizes nested coverage. The upgrade procedure may have divergent
upgrades. Therefore, a single minimal typicality model may give rise to a set containing
several saturated typicality models. Nested reasoning is done skeptically over this set. The
consequences of the semantics are the formulas valid through all models in the set.

The plan for the remainder of Part III is as follows:

• Chapter 6 develops semantics based on typicality models for the DDL EL⊥ and
parameters {rat, rel, lex} × {prop, nest};

• Chapter 7 develops semantics based on typicality models for the DDL ELI⊥ and
parameters {rat, rel, lex} × {prop, nest};

• Chapter 8 presents considerations on the inferential power of each of the presented
semantics, including a detailed comparison between them all.
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5.1 Materialization in the EL family
This short introduction made several mentions to materialization-based reasoning.

Typicality models are measured against materialization-based semantics, and are formu-
lated to solve a shortcoming common to all of then – quantification neglect. However,
materialization as defined in Section 4.3 is not compatible with the logics in the EL family.
As EL⊥ and ELI⊥ admit neither disjunction nor negation, the material implication is
realized by the use of new GCIs in the TBox. Materialization by TBox extension from
[PT18b] is oblivious to the DL in use and is used here for ELI⊥.

Definition 5.1 (Materialization). Let K = (T ,D) be a DKB and NC
𝑎𝑢𝑥 ⊆ NC be a set of

auxiliary concept names such that sig(K) ∩ NC
𝑎𝑢𝑥 = ∅. Then, let:

• 𝐸 ⊏∼ 𝐹 := 𝐴𝐸 ⊏∼ 𝐹 , with 𝐴𝐸 ⊏∼ 𝐹 ∈ NC
𝑎𝑢𝑥 .

• DBox materialization: D :=
.
(𝐸 ⊏∼ 𝐹 )∈D 𝐸

⊏∼ 𝐹 , and

• DKB materialization: K :=
(
T ∪ {(𝐸 ⊏∼ 𝐹 ⊓ 𝐸) ⊑ 𝐹 | 𝐸 ⊏∼ 𝐹 ∈ D}, ∅

)
The materialization of DBoxes is also used for sets of DCIs in general. In this case,

the same naming function is used, ensuring that the names 𝐸 ⊏∼ 𝐹 in the conjunctionU
are the same in D, whereU and D coincide, and therefore trigger the intended axioms.
Note that DKB materialization rewrites the DBox into the new TBox, where each DCI is
represented by a GCI that, intuitively, refers to the typical members of the concept on the
left-hand side. The DBox in K is always empty, thus referring to classical reasoning.
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Chapter 6

Typicality Models for EL⊥

T
he main results for semantics based on typicality models for EL⊥ were developed
by Pensel & Turhan in (2017), (2017), (2018), (2018) and Pensel (2019). This chapter
considers a summary of those results, although the notation and the ways of

defining certain concepts may differ in the presentation. The chapter also introduces some
new advancements to typicality models for EL⊥:

1. the development of a strength for the lexicographic closure, denoted by lex,

2. a comparison between different all entailments parametrized {prop, nest} ×
{rat, rel, lex}.

Lexicographic closure was previously not considered by typicality models, despite
being an influential and time-tested materialization-based semantic. Regarding the second
item, the comparisons that appeared in the literature were limited to fixed strengths,
i.e., for a given s, a comparison between |=prop,s and |=nest,s. Here, we extend them to all
combinations.

6.1 Preliminaries
The backbone of semantics based on typicality models is the domain. As outlined in

Chapter 5, typicality domains for EL⊥ are composed of two-dimensional elements 𝐶U ,
where 𝐶 ∈ 𝔏(EL⊥) andU is a set of DCIs. The concept set is taken from the context over
K denoted by C(K). The typicality set is defined according to the materialization-based
semantics s. Each semantics has its restrictions on what sets of DCIs should be in the
domain. For now, the only general restriction is U ⊆ D for every U in the typicality
set.

Definition 6.1 (Typicality Domains for EL⊥). LetK = (T ,D) and C(K) be a context over
K . A typicality domain for K , denoted by Δ𝑇 (K) , is characterized by Δ𝑇 (K) ⊆ C(K) × D s.t.
for every 𝐶 ∈ C(K), 𝐶∅ ∈ Δ𝑇 (K) .

A typicality domain is consistent with respect to K iff for every 𝐶U ∈ Δ𝑇 (K) , K ̸|=
𝐶 ⊓U ⊑ ⊥.
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From now on, we consider only consistent typicality domains. Typicality interpretations
are simply interpretations built on top of typicality domains.

Definition 6.2 (Typicality Interpretations for EL⊥). Let K = (T ,D) be a DKB. The
interpretation I = (ΔI, ·I) is a typicality interpretation for K iff ΔI is a typicality domain
for K .

Semantics based on typicality models are defined to capture strict and defeasible
subsumption. In order to do so, it couples the standard definition of GCI satisfaction with
additional criteria for the satisfaction of DCIs. To check the satisfaction of some DCI, we
restrict the elements being considered to the most typical instances of the concepts.

Definition 6.3 (Satisfaction). Let I = (ΔI, ·I) be a typicality interpretation and 𝐶, 𝐷 ∈
𝔏(EL⊥) be two concepts. We say that

• I |= 𝐶 ⊑ 𝐷 iff 𝐶I ⊆ 𝐷I , and

• I |= 𝐶 ⊏∼ 𝐷 iff 𝐶U ∈ 𝐷I for everyU ⊆ D such that �V ⊃ U with 𝐶V ∈ ΔI .

Typicality interpretations also have a particular definition of satisfying a DKB. Besides
the usual notion of satisfaction for strict axioms, they require that every element satisfies
the DCIs in its typicality set. The intuition is that an element 𝐶U represents the concept
𝐶 ⊓U. By complementing 𝐶 with the materialization of the DCIs inU, the interpretation
guarantees that it satisfies every 𝐸 ⊏∼ 𝐹 ∈ U.

Definition 6.4 (Model for K). Let I = (ΔI, ·I) be a typicality interpretation and K =

(T ,D). I is a model of K , denoted by I |= K , iff

• I |= 𝐶 ⊑ 𝐷 for every 𝐶 ⊑ 𝐷 , and

• If 𝐶U ∈ 𝐸I , then 𝐶U ∈ 𝐹I for every 𝐸 ⊏∼ 𝐹 ∈ U.

We want elements to represent the conjunction of the concept and the set of DCIs
from their name. An element 𝐶U should represent the concept 𝐶 combined with the
defeasible knowledge inU. To this end, we further restrict our attention to a special class
of typicality models: standard typicality models. The standard property simply requires
every 𝐶 representative to belong to 𝐶 , and that every existential restriction within the
context to be represented in the model by one edge with an atypical successor.

Definition 6.5 (Standard property). [Pen19] An typicality interpretation I = (ΔI, ·I)
defined over a context C(K) is standard iff:

1. 𝐶U ∈ 𝐶I , for every 𝐶U ∈ ΔI ,

2. If 𝐶U ∈ (∃𝑟 .𝐷)I and 𝐷 ∈ C(K), then (𝐶U, 𝐷∅) ∈ 𝑟I .

From now on, every time we speak of typicality models for a DKB K , we assume that
they are standard, unless specified otherwise. Example 6.6 depitcs a standard typicality
model for K .

Example 6.6 (Typicality Interpretation). Let K = (T ,D) be a DKB with T = {Deity ⊑
Being,Human ⊑ Being} andD = {Being ⊏∼ Mortal,Being ⊏∼ Corporeal,Deity⊓Mortal ⊏∼
⊥}. Figure 6.1 represents a fragment of I = (T I, ·I), a standard model of K .
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BeingD Being∅

HumanD Human∅

Deity∅

Mortal

Figure 6.1: Diagram representing a fragment of I = (ΔI, ·I). Elements are represented in the 𝐶U
format, and the dashed rectangle represents the extension of MortalI .

Notice that:

• I |= Human ⊏∼ Mortal, as the most typical instance of Human in I belongs to
MortalI ,

• Every 𝐶U satisfies the DCIs in its typicality set. For example, BeingD ∈ BeingI , and
therefore BeingD ∈ MortalI . On the other hand, Being∅ is not in MortalI .

• There is no instance of Deity combined with D, as this would yield an inconsistent
element belonging to Mortal and, therefore, to ⊥.

There is no requirement that elements satisfy only the concept inclusions required by
the DKB. An interpretation J that is exactly as the interpretation I from Example 6.6
except by Being∅ ∈ MortalI would still be a model. Although Being∅ is not required to be
a mortal, it could be one without generating a contradiction. Models whose membership is
interchangeable to subsumption for their concept representative are said to be canonical.
This canonicity must be defined for some entailment relation. In the following section, we
define the minimal typicality model, which is proven to be canonical for three different
strengths of materialization-based reasoning: rational, relevant, and lexicographic.

6.2 Minimal Typicality Model for EL⊥
The minimal typicality model is based on the canonical model for EL⊥ portrayed

in Definition 2.14. The minimal typicality model is essentially a multi-layered copy of
the canonical model, where the layers are subsets of D. Each element 𝐶 has several
representatives instead of only one, and each of those representatives is enriched with a
set of DCIs.

Combining concepts with sets of DCIs is the main idea of the materialization-based
semantics discussed in 4.3.1. This intuition makes it possible to represent different seman-
tics by carefully tailoring the domain to contain the correct elements according to some
materialization-based semantics s. Before delving into the particular strengths, we consider
a general definition of the minimal typicality model that covers all of them. Then, we
consider what it means for the minimal typicality model to be parametrized by a strength
s. Each strength defines a different minimal typicality model agreeing with the general
definition and corresponding to some materialization-based semantics. We examine each
construction and show their canonicity for the equivalent strength.
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Definition 6.7 (Minimal typicality model for EL⊥). Let K = (T ,D) be a DKB, C(K) be
the context ofK and Δ𝑇 (K) be a typicality domain defined over C(K). The minimal typicality
model IKmin = (Δ𝑇 (K), ·IKmin) is defined directly by setting:

𝐴I
K

min := {𝐶U ∈ Δ𝑇 (K) | K |= 𝐶 ⊓U ⊑ 𝐴}

𝑟I
K

min := {(𝐶U, 𝐷∅) | K |= 𝐶 ⊓U ⊑ ∃𝑟 .𝐷}

It is important to show that this construction is a model of K .

Lemma 6.8. Let K = (T ,D) be a DKB and IKmin be the minimal typicality model for a
typicality domain Δ𝑇 (K) . Then, IKmin |= K .

Proof. To show IKmin |= K we need to show that:

1. 𝐶U ∈ 𝐸I
K

min ⇒ 𝐶U ∈ 𝐹I
K

min , for every 𝐸 ⊑ 𝐹 ∈ T , and

2. 𝐶U ∈ 𝐸I
K

min ⇒ 𝐶U ∈ 𝐹I
K

min , for every 𝐸 ⊏∼ 𝐹 ∈ U.

(1) The proof is on the structure of 𝐹 . For the base, 𝐹 ∈ sigC(K). Then, the result follows by
the construction of the minimal typicality model. For the inductive step, suppose the result
holds for concepts 𝐹 with Size(𝐹 ) = 𝑖 .1 We show that it also holds for any 𝐺 ∈ 𝔏(EL⊥)
such that Size(𝐺) = 𝑖 + 1. Notice that there are only two ways to increase the size of a
formula in EL⊥:𝐺 ∈ {𝐻1 ⊓𝐻2, ∃𝑟 .𝐻 }. In the first case,K |= 𝐸 ⊑ 𝐺 = 𝐻1 ⊓𝐻2 implies that

K |= 𝐸 ⊑ 𝐻1 and K |= 𝐸 ⊑ 𝐻2. By the induction hypothesis, 𝐶U ∈ 𝐻
IKmin
1 and 𝐶U ∈ 𝐻

IKmin
2 ,

which together imply 𝐶U ∈ (𝐻1 ⊓ 𝐻2)I
K

min . For the second case, notice that 𝐻 ∈ C(K)
because 𝐻 ∈ 𝑄𝑐 (K). Then, 𝐻∅ ∈ Δ𝑇 (K) , (𝐶U, 𝐻∅) ∈ 𝑟I

K
min and 𝐻∅ ∈ 𝐻I

K
min . Therefore,

𝐶U ∈ (∃𝑟 .𝐻 )I
K

min .

(2) Let 𝐶U ∈ Δ𝑇 (K) be an arbitrary element in the typicality domain, 𝐸 ⊏∼ 𝐹 ∈ U,
and 𝐶U ∈ 𝐸I

K
min . The materialized DKB K contains 𝐸 ⊓ 𝐸 ⊏∼ 𝐹 ⊑ 𝐹 . By construction,

𝐶U ∈ (𝐸 ⊏∼ 𝐹 )I
K

min , because K |= 𝐶 ⊓U ⊑ 𝐸 ⊏∼ 𝐹 . Then, K |= 𝐶 ⊓U ⊑ 𝐹 . We can use the
same argument made in (1) because the extended DKB K determines membership in the
minimal typicality model. By induction over Size(𝐹 ), we conclude that 𝐶U ∈ 𝐹I

K
min . □

The general definition of the minimal typicality model covered by Definition 6.7
makes no requirements over the domain, except that it is a consistent typicality domain.
An additional requirement for each s secures canonicity for the correspondent minimal
typicality. After presenting this requirement, we present the role of the strength to the
semantics based on typicality models. This parameter serves to define the shape of the
typicality domain, namely, the elements that it contains.

Materialization-based reasoning of strength s defines entailment for DCIs by enriching
the concept on the left-hand side with the materialization of a subset of D selected by
the consistent-selection function selK,s(𝐶). On the other hand, typicality models satisfy

1 Intuitively, Size(𝐶) denotes the size of a concept, where Size(𝐶) = 1 if 𝐶 is a named concept or a constant,
Size(𝐶 ⊓ 𝐷) = Size(𝐶) + Size(𝐷) + 1, and Size(∃𝑟 .𝐶) = Size(∀𝑟 .𝐶) = Size(𝐶) + 1.
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DCIs by limiting subsumption to a subset of the elements in the extension of the left-hand
side concept: the most typical instances of the concept representative. To bridge those
two reasoning methods, we must ensure that the most typical instances of each concept
representative in the domain are exactly those in selK,s(𝐶).

Theorem 6.9 (Canonicity of IKmin). Let s ∈ {rat, rel, lex} be a strength,K = (T ,D) a DKB.
Let IKmin = (Δ𝑇 (K), ·IKmin) be a minimal typicality model of K such that for every 𝐶 ∈ C(K),
𝐶U is maximally typical in Δ𝑇 (K) iffU ∈ selK,s(𝐶). Then, for every 𝑀 ∈ ΔK :

1. K |=mat,s 𝐶 ⊑ 𝐷 with iff 𝐶∅ ∈ 𝐷I
K

min , and

2. K |=mat,s 𝐶 ⊏∼ 𝐷 iff 𝐶U ∈ 𝐷I
K

min for every maximally typical instance 𝐶U of 𝑀 .

Proof. (1) (⇒) by construction, 𝐶∅ ∈ 𝐶I
K

min . Then, Lemma 6.8 implies that 𝐶∅ ∈ 𝐷I
K

min . (⇐)
We show by induction on the structure of𝐷 . Base:𝐷 ∈ NC. Then,𝐶∅ ∈ 𝐷I

K
min iffK |= 𝐶 ⊑ 𝐷

iff K |=mat,s 𝐶 ⊑ 𝐷 . Inductive step: let Size(𝐷) = 𝑖 + 1. Then, 𝐷 ∈ {𝐸1 ⊓ 𝐸2, ∃𝑟 .𝐸}. In the

first case, 𝐶∅ ∈ (𝐸1 ⊓ 𝐸2)I
K

min iff 𝐶∅ ∈ 𝐸
IKmin
1 and 𝐶∅ ∈ 𝐸

IKmin
2 iff K |= 𝐶 ⊑ 𝐸1 and K |= 𝐶 ⊑ 𝐸2

iff K |= 𝐶 ⊑ 𝐷 iff K |=mat,s 𝐶 ⊑ 𝐷 . If 𝐷 = ∃𝑟 .𝐸, then 𝐶∅ ∈ (∃𝑟 .𝐸)I
K

min implies there is some
element 𝐹 ∈ ΔK such that (𝐶∅, 𝐹∅) ∈ 𝑟I

K
min and 𝐹 ∈ 𝐸IKmin . Therefore, K |= 𝐶 ⊑ ∃𝑟 .𝐹 and

K |= 𝐹 ⊑ 𝐸. These facts imply K |= 𝐶 ⊑ ∃𝑟 .𝐸 and K |=mat,s 𝐶 ⊑ ∃𝑟 .𝐸.

(2) K |=mat,s 𝐶 ⊏∼ 𝐷 iff K |= 𝐶 ⊓U, for everyU ∈ selK,s(𝐶). Note that, by hypothesis, the
maximally typical instances of 𝐶 , for every 𝐶 ∈ C(K), are 𝐶U , forU ∈ selK,s(𝐶). Then,
𝐶U ∈ 𝐷I

K
min and IKmin |= 𝐶 ⊏∼ 𝐷 . □

We employ the minimal typicality model for a given strength s to define typicality
models’ based concept subsumption of propositional coverage.

Definition 6.10 (Propositional coverage for defeasible EL⊥). Let s ∈ {rat, rel, lex} be a
strength, K = (T ,D) a DKB. Let IKmin = (Δ𝑇 (K), ·IKmin) be a minimal typicality model of K
such that for every 𝐶 ∈ C(K), 𝐶U is maximally typical in Δ𝑇 (K) iffU ∈ selK,s(𝐶).

K |=prop,s 𝐶 ⊏∼ 𝐷 iff IKmin |= 𝐶 ⊏∼ 𝐷
K |=prop,s 𝐶 ⊑ 𝐷 iff IKmin |= 𝐶 ⊑ 𝐷

Notice that, by the equivalence proved in Theorem 6.9, propositional reasoning of
strength s is equivalent to materialization-based reasoning defined over selK,s.

6.2.1 Domain Shapes
The minimal condition expressed by Theorem 6.9 is sufficient to model materialization-

based closure with typicality models. However, the purpose of those models is lifting
reasoning to transmit defeasible information through quantifiers. In order to do this, we
update the elements witnessing existential restrictions to more typical instances. An edge
(𝐶U, 𝐷∅) ∈ 𝑟I , which represents 𝐶 ⊓U ⊑ ∃𝑟 .𝐷 , may be upgraded to (𝐶U, 𝐷V) ∈ 𝑟I , for
someV ≠ ∅.
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However, including only the atypical and the maximally typical instances of every
concept according to selK,s is not sufficient to faithfully capture the partitioning of the
domain achieved by materialization-based reasoning. An individual may be incapable
of having a maximally typical successor 𝐷V , for V ∈ selK,s(𝐷), but may be consistent
with a successor of intermediate typicality 𝐷V ′, for V′ ⊂ V and V′ ≠ ∅. Choosing
those elements of intermediate typicality impacts the upgrade procedure that leads to
reasoning of nested coverage. In this subsection, we explore the construction of the domains
for s ∈ {rat, lex, rel}, which is shaped by the choice of those elements of intermediate
typicality.

Rational Domain
The rational domain is grounded on the intuition that the typicality sets are taken from

the exceptionality chain, as defined in 4.6. The partition of D used by rational reasoning
is a list of ever-decreasing subsets of D. The domain is then populated by having the
elements 𝐶E𝑖 such that Rank𝐶 (K) ≤ 𝑖 .

Definition 6.11 (Rational typicality domain). Let K = (T ,D) be a DKB and E0, . . . , E𝑛
be its exceptionality chain. Let C(K) be a context over K . The rational typicality domain of
K is:

Δ𝑇 (K)rat := {𝐶E𝑖 ∈ C(K) × {E0, . . . , E𝑛} | K ̸|= 𝐶 ⊓ E𝑖 ⊑ ⊥ for every 𝐶 ∈ C(K)}

Example 6.12. Let K = (T ,D) be the DKB portrayed in Example 6.6. The exceptionality
chain for this DKB is: E0 = D, E1 = {Deity ⊓Mortal ⊑ ⊥}, E2 = ∅. The rational typicality
domain for this DKB can be visualized as:

Being

Human

Deity

Mortal

E0 E1 ∅
DE1 D∅

HE0 HE1 H∅

BE0 BE1 B∅

ME0 ME1 M∅

Δ𝑇 (K)rat

Figure 6.2: Rational typicality domain for the DKB in Example 6.12. Concept representatives are
represented by the concept’s first letter. Colored elements are the most typical instances of their
representatives. The element DE0 is absent, as it is unsatisfiable.

Combining minimal typicality domains with the rational domains produces minimal
rational typicality domains.

Definition 6.13 (IKmin,rat, |=prop,rat). A rational minimal typicality model of a DKB K is a
minimal typicality model of a DKB K over the rational typicality domain Δ𝑇 (K)rat , defined as
IKmin,rat := (Δ

𝑇 (K)
rat , ·I

K
min,rat).

Semantics for rational strength, propositional coverage by typicality models, denoted
by |=prop,rat, is the combination of semantics of propositional coverage with s = rat.
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Example 6.14. Let K = (T ,D) be the DKB portrayed in Example 6.6 with an additional
strict axiom: Deity ⊑ ∃observes.Human. The exceptionality chain for this DKB is: E0 = D,
E1 = {Deity ⊓Mortal ⊑ ⊥}, E2 = ∅. The rational typicality domain for this DKB can be
visualized as:

Mortal

DE1 D∅

HE0 HE1 H∅

BE0 BE1 B∅

ME0 ME1 M∅

IKmin,rat

Figure 6.3: Minimal typicality domain with the rational model. The colored and dashed path represents
the extension of Mortal. The arrows represent edges for the role observes.

This definition ensures that the rational typicality model is canonical for
materialization-based rational reasoning.

Corollary 6.15 (Canonicity of IKmin,rat, equivalence of prop and mat). Let K be a DKB and
𝐶 ∈ C(K). Then:

K |=mat,rat 𝐶 ⊏∼ 𝐷 iff K |=prop,rat 𝐶 ⊏∼ 𝐷

Proof. The result follows directly from Theorem 6.9 (canonicity of IKmin) and Definition
6.11 (rational domain for EL⊥). For every 𝐶 ∈ C(K), 𝐶E𝑖 is the most typical instance
in the domain, where Rank𝐶 (K) = 𝑖 . Therefore, 𝐶 ∈ 𝐷I

K
min,rat iff K |=prop,rat 𝐶 ⊏∼ 𝐷 iff

K |=mat,rat 𝐶 ⊏∼ 𝐷 . □

Relevant and Lexicographic Domains
Relevant and lexicographic closures stratify the DCIs into finer sets to avoid prob-

lems such as inheritance blocking. The two consistent-selection functions achieve more
fine-grained selections while keeping the precedence of ranking. Therefore, the two
materialization-based closures extend rational reasoning by including every DCI from
selK,rat and possibly some more of lesser ranks.

In order to capture the finer detail of selK,rel and selK,lex, we move from a matrix-shaped
domain to the full lattice over D given by the subset relation. To populate the domain,
we take every maximally typical 𝐶U as selected by the consistent-selection function and
include 𝐶-representatives paired with all subsets ofU.

Definition 6.16 (Relevant typicality domain). Let K = (T ,D) be a DKB. The relevant
typicality domain of K is defined as:

Δ𝑇 (K)rel := {𝐶U ∈ C(K) × P(D) | U ⊆ selK,rel(𝐶) for every 𝐶 ∈ C(K)}
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Definition 6.17 (Lexicographic typicality domain). The lexicographic typicality domain
of K is defined as:

Δ𝑇 (K)lex := {𝐶U ∈ C(K) × P(D) | selK,lex(𝐶) = {U1, . . . ,U𝑛} and

U ⊆ U𝑖 for some 1 ≤ 𝑖 ≤ 𝑛 for every 𝐶 ∈ C(K)}

Example 6.18. Let K = (T ,D) be the same DKB defined in Example 6.12. We consider a
fragment of the relevant and lexicographic domains. The domains coincide for this DKB. The
fragment is depicted in Figure 6.4.

D
C ⊏∼ F
H D

B ⊏∼ M
B ⊏∼ C
H D

B ⊏∼ M
D ⊓M ⊏∼ ⊥
H D

B ⊏∼ C
D ⊓M ⊏∼ ⊥
H D

B ⊏∼ M
C ⊏∼ F
H D

B ⊏∼ C
D ⊓M ⊏∼ ⊥
H D

D ⊓M ⊏∼ ⊥
C ⊏∼ F
H D

∅
C ⊏∼ F
H D

Figure 6.4: Graphical representation of the relevant and lexicographic domains, which coincide in
this case. The lattice over D represents all possible typicality sets. Letters are the initial of the concepts
Being,Corporeal,Human,Mortal. Grey DCIs characterize each typicality set, and the colored letters
H and D are instances of the concepts Human and Deity, respectively.

Notice that the most typical instance of human remains HumanD , but the most typical
instance of deity becomes DeityU , for U = {Being ⊏∼ Corporeal,Deity ⊓Mortal ⊏∼ ⊥},
which is stronger than the most typical instance in the rational domain.

Once more, pairing rel, lex domains with the definition of minimal typicality model
generates minimal typicality models of rel, lex strength.

Definition 6.19 (IKmin,rel, |=prop,rel). Let K be a DKB and Δ𝑇 (K)rel be the relevant domain

defined over the context C(K). The relevant minimal typicality model of K over Δ𝑇 (K)rel is

denoted by IKmin,rel := (Δ
𝑇 (K)
rel , ·I

K
min,rel) and defined as the minimal typicality model with the

domain Δ𝑇 (K)rel . The semantics of propositional coverage with s = rel is defined by the relevant
minimal typicality model and is denoted by |=prop,rel.

Definition 6.20 (IKmin,lex, |=prop,lex). Let K be a DKB and Δ𝑇 (K)lex be the relevant domain

defined over the context C(K). The lexicographic minimal typicality model ofK over Δ𝑇 (K)lex
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is denoted by IKmin,lex := (Δ𝑇 (K)lex , ·I
K

min,lex) and defined as the minimal typicality model with

the domain Δ𝑇 (K)lex . The semantics of propositional coverage with s = lex is defined by the
relevant minimal typicality model and is denoted by |=prop,lex.

Finally, we show that the minimal relevant and lexicographic typicality models are
canonical for relevant and lexicographic materialization-based reasoning.

Corollary 6.21 (Canonicity of IKmin,rel and IKmin,lex, equivalence of prop and mat). Let K
be a DKB and 𝐶 ∈ C(K). Then:

K |=mat,rel 𝐶 ⊏∼ 𝐷 iff K |=prop,rel 𝐶 ⊏∼ 𝐷
K |=mat,lex 𝐶 ⊏∼ 𝐷 iff K |=prop,lex 𝐶 ⊏∼ 𝐷

Proof. The result follows directly from Theorem 6.9 (canonicity of IKmin) and Definitions
6.16 and 6.17 (relevant and lexicographic domains for EL⊥). For every 𝐶 ∈ C(K), the
most typical instances in the relevant and lexicographic domains are 𝐶U and 𝐶U ′ , where
U = selK,rel(𝐶) and U′ ∈ selK,lex(𝐶). Therefore, 𝐶U ∈ 𝐷I

K
min,rel iff K |=prop,rel 𝐶 ⊏∼ 𝐷 iff

K |=mat,rel 𝐶 ⊏∼ 𝐷 and 𝐶U ′ ∈ 𝐷I
K

min,lex iff K |=prop,lex 𝐶 ⊏∼ 𝐷 iff K |=mat,lex 𝐶 ⊏∼ 𝐷 . □

6.3 Upgrading Typicality Interpretations

Canonical models for EL⊥ represent existential restrictions by role edges. In any given
edge (𝐶, 𝐷) ∈ 𝑟I , 𝐶 is called the predecessor of the edge, and 𝐷 is the successor of the edge.
Due to the lack of inverse roles in EL⊥, edges always represent an existential requirement
of the predecessor, i.e., K |= 𝐶⊓ ⊑ ∃𝑟 .𝐷 , for a given KB K .

In the minimal typicality model, the successors of the edges are always atypical.
Hence, the corresponding edge for K |= 𝐶 ⊓ U ⊑ ∃𝑟 .𝐷 is (𝐶U, 𝐷∅) ∈ 𝑟I . This feature
preserves materialization-based reasoning’s incapacity to push defeasible information
through quantifiers. We update existing edges to more typical instances of the same
concept to overcome quantification neglect, as including more typical successors pushes
defeasible information through quantifiers by making the model satisfy new existential
restrictions.

Adding new edges can result in an interpretation that is not a model of the DKB.
Defining a repair procedure that fixes those violations while maintaining the equivalence
between concept membership and subsumption is necessary. In EL⊥, this can be done by
imbue the interpretation with new edges and increased its concept membership. There
is no need to subtract elements from the extension of concepts or edges, which makes
the procedure to reconquer the model property straightforward. In virtue of this additive
character, the procedure is called model completion.

This section introduces (i) a technique for selecting edge updates and updating a
typicality model and (ii) the model completion algorithm that restores the model property
after an update.
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6.3.1 Updating Typicality Interpretations

For a given DKB K , an existential requirement of the form K |= 𝐶 ⊓ U ⊑ ∃𝑟 .𝐷
is represented by the edge (𝐶U, 𝐷∅) ∈ 𝑟I . Pushing defeasible information through this
requirement means that 𝐶U should have a non-atypical 𝐷-successor, i.e., some 𝐷V , for
V ≠ ∅. Generally speaking, a possible update for an edge (𝐶U, 𝐷V) ∈ 𝑟I is an element
𝐷V ′ withV ⊂ V′. To select update candidates, we pick an existing 𝑟 -edge (𝑀U, 𝐷V) and
look to some 𝐷V ′ in the domain such thatV ⊂ V′. Finally, the new edge is added to the
updated interpretation.

We make the extra requirement that the predecessor – the element on the left-hand
side of the existential restriction – is also non-atypical. Atypical elements do not have
their successors updated. Those elements remain as the faithful representatives of the
plain concept that they name, without incoporate any defeasible information. As shown
by [Pen19, p. 103], admiting the upgrade of atypical predecessors can lead to strange
conclusions. Also, another technical motivation to keep thos elements intact is that the
atypical elements act like ideal representatives of strict subsumption within typicality
models. Therefore, K |= 𝐶 ⊑ 𝐷 iff 𝐶∅ ∈ 𝐷I

K
min to the minimal typicality model and its

descendants.

Definition 6.22 (Update Candidates, Updated Interpretation). Let I = (ΔI, ·I) be a
typicality interpretation. The set of 𝑟 -update candidates for I is:

UpCan𝑟 (I) := {(𝐶U, 𝐷V) ∈ ΔI × ΔI | (𝐶U, 𝐷V ′) ∈ 𝑟I ,V′ ⊂ V andU ≠ ∅}

The interpretation J = (ΔI, ·J ) is an 𝑟 -updated interpretation to I iff

𝐴J = 𝐴I

𝑟J = 𝑟I ∪ {(𝐶U, 𝐷V)} for one (𝐶U, 𝐷V) ∈ UpCan𝑟 (I)
𝑠J = 𝑠I for all 𝑠 ∈ sigR(K), 𝑠 ≠ 𝑟

An 𝑟 -update of I for the candidate (𝐶U, 𝐷V) ∈ UpCan𝑟 (I) is denoted by
UD𝑟 (I, (𝐶U, 𝐷V)).

The following example illustrates a typicality update.

Example 6.23. Let K = (T ,D) be the DKB and IKmin,rat be the typicality interpretation
from Example 6.14. The interpretation J , depicted in Figure 6.5, is an observer-update over
IKmin,rat. The new edge connects DE1 to HE0 . Because DE1 is the most typical instance of Deity,
the new interpretation satisfies J |= Deity ⊏∼ ∃observes.Mortal.

6.3.2 Recovering the Model Property
New edges can break the model property of an interpretation by giving rise to a

violation of an axiom ∃𝑟 .𝐸 ⊑ 𝐹 . A new edge can add an element 𝐶U to the extension of
∃𝑟 .𝐸, which may be outside the extension of 𝐹 . By satisfying this requirement – i.e., adding
𝐶U to 𝐹 – the new interpretation can break arbitrary violations 𝐷 ⊑ 𝐸, for any complex
𝐸 ∈ 𝔏(EL⊥).
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Mortal

DE1 D∅

HE0 HE1 H∅

BE0 BE1 B∅

ME0 ME1 M∅

J

Figure 6.5: The typicality interpretation J is an observe-updated interpretation to IKmin,rat. The new
edge adds a Mortal successor for DE1 . Therefore, J satisfies a DCI which was not satisfied by IKmin,rat.

Minimal model completion is a repair procedure that takes as an input an updated
model and returns an interpretation satisfying the DKB. It enacts the minimal amount of
change required for the input interpretation to satisfy the axioms. The algorithm is very
similar to the reasoning procedure for classic EL⊥ outlined in [Baa+17]. The most critical
difference between the two methods is that axioms are applied directly to the elements in
the minimal model completion, instead of an extended version of the KB that only induces
a (canonical) model, as it is for monotonic EL⊥. The current version of the algorithm we
present here is an adaptation of the algorithm presented in [Pen19, p. 119].

Definition 6.24 (Minimal model completion). [Pen19, p. 91] Let K = (T ,D) be a DKB,
and J be an update over a typicality model I defined over the context C(K). Let ⊲⊳∈ {⊑, ⊏∼}
be a generic inclusion operator. And consider that EL⊥ concepts can be represented by the
general form 𝐹 = 𝐴1⊓· · ·⊓𝐴𝑛⊓∃𝑟1.𝐺1⊓· · ·⊓∃𝑟𝑚 .𝐺𝑚 , with𝐴𝑖 ∈ NC∪{⊥,⊤} for 1 ≤ 𝑖 ≤ 𝑛
and 𝐺𝑖 ∈ 𝔏(EL⊥), for 1 ≤ 𝑗 ≤ 𝑚.

Repeat until J |= K or the algorithm returns 𝑐𝑙𝑎𝑠ℎ.

1. For every 𝐶U ∈ ΔI and every 𝐸 ⊲⊳ 𝐹 ∈ T ∪U:

2. If 𝐶U ∈ 𝐸J \ 𝐹J , for 𝐹 = 𝐴1 ⊓ · · · ⊓𝐴𝑛 ⊓ ∃𝑟1.𝐺1 ⊓ · · · ⊓ ∃𝑟𝑚 .𝐺𝑚 :

(a) Add 𝐶U to 𝐴J
𝑖

, for 1 ≤ 𝑖 ≤ 𝑛.

(b) Add (𝐶U, 𝐸 𝑗 ∅) to 𝑟J
𝑗

, for 1 ≤ 𝑗 ≤ 𝑚.

(c) If ⊥ ∈ {𝐴1, . . . , 𝐴𝑛,𝐺1, . . . ,𝐺𝑚}, return 𝑐𝑙𝑎𝑠ℎ

(d) For every 𝐻 ∈ C(K):

• If 𝐶U ∈ (∃𝑟 .𝐻 )I and (𝐶U, 𝐻∅) ∉ 𝑟I , add (𝐶U, 𝐻∅) to 𝑟I .

We denote the minimal model completion of J by mmc(J ,K).

Step (𝑑) is called standarization and builds the additional edges to guarantee that
the algorithm’s output has the standard property. By construction, 𝐸 𝑗 ∅ ∈ ΔI , for every
𝐸 𝑗 occuring in an existential restriction from the DKB. Notice that 𝐹 ∈ C(K), and 𝐸 𝑗 ∈
𝑄𝑐 (C(K)). Finally every typicality domain Δ over a contextC(K) satisfies Δ ⊆ C(K)×{∅}
by definition. This ensures that the addition of role edges is always fulfilled if 𝐸 is a
satisfiable concept.

The minimal model completion always terminates, outputting either a model extending
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the input interpretation or 𝑐𝑙𝑎𝑠ℎ. The algorithm saturates a finite domain interpretation
guided by terminological knowledge which is also finite. Therefore, there is a hard limit for
the procedure. The algorithm would necessarily halt when 𝐴I = Δ for every 𝐴 ∈ sigC(K)
and 𝑟I = Δ × Δ for every 𝑟 ∈ sigR(K).

Lemma 6.25 (Termination of the minimal model completion). Let K = (T ,D) be a DKB
and I = (ΔI, ·I) be a typicality interpretation whose domain is defined over C(K). The
minimal model completion algorithm for K and I terminates.

Proof. Let | Δ |= 𝑘 and | T ∪ D |= 𝑙 , for 𝑘, 𝑙 ∈ N. Each 𝐹 such that 𝐸 ⊲⊳ 𝐹 ∈ T ∪ D is of
the form 𝐹 = 𝐴1 ⊓ · · · ⊓𝐴𝑛 ⊓∃𝑟1.𝐺1 ⊓ · · · ⊓ ∃𝑟𝑚 .𝐺𝑚 , for 𝑛,𝑚 ∈ N. Let an addition operation
be the operations (a), (b), and (d) performed by the algorithm.

Every loop of the minimal model completion selects one element 𝑒 and one 𝐸 ⊲⊳ 𝐹 ∈
T ∪ D. It applies at most 𝑛 +𝑚+ | C(K) | addition operations to 𝑒2. After that, it is
impossible for 𝑒 to violate 𝐸 ⊲⊳ 𝐹 , as 𝑒 ∈ 𝐹I and the algorithm does not decrease extensions.
Therefore, the hard bound on the number of passes over the main loop is 𝑘𝑙 , and each pass
executes at most 𝑛 +𝑚+ | C(K) | operations. After every pass, the number of possible
executions decreases by one. The algorithm cannot run out of executions without running
into a clash and resulting in an interpretation I that does not satisfy K . If this were the
case, there would still be a violation pointing to some element 𝑒 ∈ 𝐸I \ 𝐹I , and there
would be at least one more pass available to the algorithm. □

To meaningfully compare models of a DKB, we introduce set-theoretical inclusion
for interpretations. Given two interpretations I,J over the same domain Δ, we say that
I ⊆ J iff 𝐴I ⊆ 𝐴J for every 𝐴 ∈ NC and 𝑟I ⊆ 𝑟J for every 𝑟 ∈ NR. The output of
minimal model completion is correct. It returns the least model of K extending the input
interpretation I when there is at least one extension of I modeling K , and returns 𝑐𝑙𝑎𝑠ℎ
otherwise.

Lemma 6.26. LetK = (T ,D) be a DKB and I = (ΔI, ·I) be an update over some standard
typicality model of K .

1. For every standard interpretation J ⊇ I sharing the domain ΔI such that J |= K ,
J ⊆ mmc(I,K).

2. If mmc(I,K) = 𝑐𝑙𝑎𝑠ℎ, then �J ⊇ I such that J |= K .

Proof. Let 𝐴𝑑𝑑1, . . . , 𝐴𝑑𝑑𝑘 be the addition operations transforming I into mmc(I,K). We
denote I𝑖 as I𝑖−1 after𝐴𝑑𝑑𝑖 is applied, and I0 = I. Any extension interpretation J of I can
arise from I by a similar series of additions, which we denote by 𝐴𝑑𝑑∗1, . . . , 𝐴𝑑𝑑

∗
𝑙
. For (1),

we show by induction on 𝑖 that 𝐴𝑑𝑑𝑖 ∈ {𝐴𝑑𝑑∗1, . . . , 𝐴𝑑𝑑∗𝑙 }, for 1 ≤ 𝑖 ≤ 𝑘 . For the base case,
consider that 𝐴𝑑𝑑1 is triggered by a violation 𝐶U ∈ (𝐷 \ 𝐸)I , with 𝐷 ⊲⊳ 𝐸 ∈ T ∪U and
𝐷 = 𝐴1 ⊓ . . . 𝐴𝑛 ⊓∃𝑟1.𝐹1 ⊓ · · · ⊓ ∃𝑟𝑚 .𝐹𝑚 . The addition operation is either adding𝐶U to 𝐴I

𝑗
,

1 ≤ 𝑗 ≤ 𝑛 or adding (𝐶U, 𝐹 𝑗 ′∅) to 𝑟I
𝑗 ′ , for 1 ≤ 𝑗 ′ ≤ 𝑚. The interpretation J extends I and

is a model of K . Therefore, 𝐶U ∈ 𝐴 𝑗 , for 1 ≤ 𝑗 ≤ 𝑛. Since J is standard, (𝐶U, 𝐹 𝑗 ′∅) ∈ 𝑟
J
𝑗 ′ ,

for 1 ≤ 𝑗 ′ ≤ 𝑚.

2 The C(K) being the possible standardization steps.
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For the induction step, consider that 𝐴𝑑𝑑 𝑗 ∈ {𝐴𝑑𝑑∗1, . . . , 𝐴𝑑𝑑∗𝑙 } for 1 ≤ 𝑗 ≤ 𝑖 < 𝑘 .
We show that 𝐴𝑑𝑑𝑖+1 ∈ {𝐴𝑑𝑑∗1, . . . , 𝐴𝑑𝑑∗𝑙 }. Let I𝑖 be the intermediate model generated
from I by applying 𝐴𝑑𝑑1, . . . , 𝐴𝑑𝑑𝑖 . Then, 𝐴𝑑𝑑𝑖+1 is triggered by a violation of the form
𝐶U ∈ (𝐷 \ 𝐸)I𝑖 , with 𝐷 ⊲⊳ 𝐸 ∈ T ∪U and 𝐸 = 𝐴1 ⊓ . . . 𝐴𝑛 ⊓ ∃𝑟1.𝐹1 ⊓ · · · ⊓ ∃𝑟𝑚 .𝐹𝑚 . Notice
that, by induction hypothesis, 𝐶U ∈ (𝐷 \ 𝐸)J . Then, the same argument from the base
case holds here. Either 𝐴𝑑𝑑𝑖+𝑖 adds 𝐶U to 𝐴I𝑖

𝑗
, 1 ≤ 𝑗 ≤ 𝑛, or it adds (𝐶U, 𝐹∅) to 𝑟I𝑖 . Those

additions have to hold for J because it is a standard model of K .

(2) We show by contradiction that, in this case, there is no standard model J of K .
Suppose, by absurd, that there is such a J . We denote the additions to transform I
into J by 𝐴𝑑𝑑∗1 . . . 𝐴𝑑𝑑

∗
𝑙
. Consider the path 𝐴𝑑𝑑1, . . . , 𝐴𝑑𝑑𝑘 that leads I into 𝑐𝑙𝑎𝑠ℎ in

the minimal model completion algorithm. As before, we can conclude, by induction,
that 𝐴𝑑𝑑𝑖 ∈ {𝐴𝑑𝑑∗1, . . . , 𝐴𝑑𝑑∗𝑙 }, for 1 ≤ 𝑖 ≤ 𝑘 . Notice that 𝑐𝑙𝑎𝑠ℎ is triggered by some
𝐶U ∈ 𝐷I𝑘 such that 𝐷 ⊲⊳ 𝐸 ∈ T ∪ U, with 𝐸 = 𝐴1 ⊓ · · · ⊓ 𝐴𝑛 ⊓ ∃𝑟1.𝐹1 ⊓ ∃𝑟𝑚 .𝐹𝑚 ,
⊥ ∈ {𝐴1, . . . , 𝐴𝑛, 𝐹1, . . . , 𝐹𝑚}. But 𝐶U ∈ 𝐷J ; therefore, J is not a model of K . □

6.3.3 Upgrade Steps
The goal of the upgrade procedure is saturating a typicality model with defeasible

information. Each pass of a typicality update and subsequent minimal model completion
is another step towards this goal. To characterize a procedure that goes from the minimal
typicality model to a saturated typicality model, we must define an iterable operator
that bind updates and completions. However, the order in which the available updates
are applied at any given point impacts the final result. Some updates are incompatible
between themselves, which is not surprising, as they bring new information into the model.
Consider the following example.

Example 6.27. Let K = (T ,D) be a DKB where T = {𝐴 ⊑ ∃𝑟 .𝐵,𝐴 ⊑ ∃𝑟 .𝐶, ∃𝑟 .(𝐸 ⊓ 𝐷) ⊑
⊥} and D = {𝐵 ⊏∼ 𝐷,𝐶 ⊏∼ 𝐸}. Let I be the standard model of K depicted below. There are

𝐴D 𝐵∅

𝐵D

𝐶∅

𝐶D

𝐷𝐸

Figure 6.6: Diagram representing a typicality interpretation with two update candidates for the role
𝑟 : (𝐴D,𝐶D) and (𝐴D, 𝐵D). Dashed rounded rectangles represent the extension of the concepts they
delimit and straight arrows are edges in 𝑟 I .

two incompatible update paths to take. If I is updated with the edge (𝐴D,𝐶U) ∈ 𝑟I , the it
loses the other update candidate, (𝐴D, 𝐷D) ∈ 𝑟I , and vice-versa.

We need a typicality upgrade operator that takes sets of typicality models as input to
deal with multiple incompatible upgrade paths. To that end, we define an operator that
receives a single standard typicality model and outputs either

• a set of models when it is possible to upgrade the input, or

• the input itself when there is no possible upgrade.
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The existence of viable upgrades is called typicality extensibility. We say that I is typicality
extensible for K iff there is some (𝑑, 𝑒) ∈ UpCan𝑟 (I) for some 𝑟 ∈ sigR(K) such that
mmc(UD𝑟 (I, (𝑑, 𝑒)),K) ≠ 𝑐𝑙𝑎𝑠ℎ.

A more general version of the operator is defined for sets by applying the single-
concept operator to each set member and outputting the union of each of the outputs. We
define a saturation pipeline that starts with the singleton of the minimal typicality model,
{IKmin,s}, and ends in a set of saturated typicality models.

Definition 6.28 (Typicality Upgrade Operator). LetK = (T ,D) be a DKB, I be a standard
typciality model ofK , and 𝑆 = {I1, . . . ,I𝑛} be a set of standard typicality models ofK sharing
the domain ΔI over the context C(K). A typicality upgrade for I and K and a role is

TU(I,K) :=
{
I if I is not typicality extensible
{mmc(UD𝑟 (I, (𝑑, 𝑒)),K) | (𝑑, 𝑒) ∈ UpCan𝑟 (I) and 𝑟 ∈ sigR(K)} otherwise

A typicality upgrade over the set 𝑆 of typicality models is given by

TU(𝑆,K) :=
⋃
I𝑖∈𝑆

TU(I𝑖,K)

Example 6.29. Let K be a DKB and I be an arbitrary standard typicality model for K .
Figure 6.7 depicts the pipeline that characterizes a full typicality upgrade step over I, i.e. a
single application of TU(I,K).

I
J1
...

J𝑛

mmc(J1,K)
...

mmc(J𝑛,K)

(𝑑1, 𝑒1)

(𝑑𝑛, 𝑒𝑛)

TU(I,K)(𝑑𝑖 , 𝑒𝑖 ) ∈ UpCan𝑟 (I)
for some 𝑟 ∈ sigR (K)

update completion

Figure 6.7: Diagram representing the pipeline of a full typicality upgrade step with a typicality model
I for a DKB K as inputs.

In order to saturate a standard typicality model I with defeasible information from the
DKB K , the upgrade operator is applied iteratively to one input until it reaches a fixpoint
denoted by TUmax(I,K). The fixpoint is a set of standard typicality models lacking update
candidates that can be successfully incorporated into the models. There may be remaining
update candidates, but after their addition, it is impossible to regain the model property
through model completion. Those models extend the minimal typicality model, and we call
them saturated typicality models. We define nested reasoning over this class of preferred
models.

To formally define this framework, we start with a definition of the fixpoint set and
a proof that applying the typicality operator iteratively, beginning with the minimal
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typicality model for a strength s ∈ {rat, rel, lex} eventually comes to a halt. After this, we
characterize nested reasoning and discuss its properties.

Lemma 6.30 (Termination of the upgrade procedure). Let K = (T ,D) be a DKB and
IKmin,s be the minimal typicality model for a strength s ∈ {rat, rel, lex}. Applying the upgrade
operator iteratively to IKmin,s eventually reaches a fixpoint TUmax(IKmin,s,K) = {J1, . . . ,J𝑛}
such that TU(TUmax(IKmin,s,K),K) = TUmax(IKmin,s,K).

IKmin,s

J 1
1

J 2
1

𝑐𝑙𝑎𝑠ℎ

𝑐𝑙𝑎𝑠ℎ

J 1
2

J 2
2 J 3

2

Figure 6.8: Tree representing the upgrade procedure starting from IKmin,s. The colored leafs are the
elements of TUmax(IKmin,s,K).

Proof. The argument rests on two fundamental considerations:

1. All the models share a single domain, Δ𝑇 (K) .

2. An upgrade step only increases the extensions of its input.

The iteration of the upgrade procedure can be visualized as a tree. Each node is a standard
typicality model J giving rise to 𝑛 =

∑
𝑟∈sigR (K) | UpCan𝑟 (J) | branches. Each level of

the tree is defined by the addition of one new edge to the model. Therefore, the maximum
depth is | sigR(K) | ×Δ𝑇 (K) × Δ𝑇 (K) , as the procedure does not remove edges. When a
node (i) has no update candidates or (ii) has only candidates whose addition leads to a
𝑐𝑙𝑎𝑠ℎ in the model completion (i.e., is not typicality extensible), it remains in the set.

This tree is finite by definition, as both the branches per node and the depth have hard
limits. Each upgrade step generating a new branch is based on procedures that terminate
(update and model completion). Therefore, the procedure is guaranteed to terminate. □

The termination of the upgrade procedure ensures that the set of saturated typicality
models is computable and well-defined. Formally, for a given minimal typicality model
IKmin,s for the DKB K and strength s, we define the set of saturated typicality models as
TUmax(IKmin,s,K). This class of preferred models characterizes the reasoning of nested
coverage.
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6.3.4 Nested Reasoning
Nested reasoning is essentially a reasoning coverage grounded on a set of preferred

models. In practice, defeasible information is pushed through quantifiers by upgrading the
typicality of the edges in a typicality model. The edges stand on a one-on-one relation
with defeasible subsumption; therefore, upgrading the edges may augment the set DCIs
satisfied by the model.

Reasoning based on typicality models of propositional coverage is rooted in the minimal
typicality model, a canonical model construction for materialization-based reasoning. The
result of saturating this model with defeasible information is a strengthening of the initial
consequences of the DKB under strength s. Note, however, that the final output is a set
of models. The reasoning of nested coverage is defined skeptically over this set, as we
want to consider only the information common to all possible upgrades. Alternatively, the
necessity for skeptical reasoning could be overcome if an order over edges (i.e., upgrade
candidates) were adopted. This would be equivalent to considering a single path from the
root to one leaf in the upgrade tree.

Definition 6.31 (Reasoning of nested coverage). Let s ∈ {rat, rel, lex} be a strength,
K = (T ,D) a DKB. Let IKmin,s = (Δ

𝑇 (K), ·I
K

min,s) be a minimal typicality model ofK such that
for every 𝐶 ∈ C(K), 𝐶U is maximally typical in Δ𝑇 (K) iffU ∈ selK,s(𝐶).

K |=nest,s 𝐶 ⊏∼ 𝐷 iff J |= 𝐶 ⊏∼ 𝐷 for every J ∈ TUmax(I,K)
K |=nest,s 𝐶 ⊑ 𝐷 iff J |= 𝐶 ⊑ 𝐷 for every J ∈ TUmax(I,K)

Example 6.32. Consider the DKB and the minimal rational model presented in 6.14. As all
the possible updates are compatible between themselves, there is just one saturated model in
TUmax(IKmin,rat,K). Figure 6.9 depicts the fragment of IKmin,rat that changes with the upgrade.
The element DeityE1 has new outgoing edges. The update to more typical humans causes it to
have a mortal successor. The standard property then extends this edge to Mortal∅, and this
new edge is further updated.

Mortal

DE1 D∅

HE0 HE1 H∅

ME0 ME1 M∅

TUmax(IKmin,rat,K)

Figure 6.9: Fragment of the saturated typicality models of rational strength. There is only one fully
saturated model for this particular DKB and its IKmin,rat. As before, arrows represent edges of the role
observe.

Notice that this example effectively solves quantification neglect in this particular
scenario. The DKB entails Human ⊏∼ Mortal and Deity ⊑ ∃observes.Human. However,
the minimal typicality model does not satisfy Deity ⊏∼ ∃observes.Mortal, despite there
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being no obstacle to reaching such a conclusion. On the other hand, all the typicality
saturated models satisfy Deity ⊏∼ ∃observes.Mortal, as DeityE1∈ (∃observes.Mortal)J , for
every J ∈ TUmax(IKmin,rat,K).

This result extends to the same DKB and s ∈ {rel, lex}. The new domains do not
introduce any obstacle to the upgrade described for Example 6.32. Therefore the saturated
models satisfy the same formula, and nested reasoning for these strengths satisfies the
same DCI. However, because those domains have more elements of intermediate typicality
and there are more edges in the final product. This impacts the number of upgrades needed
to reach the fixpoint that defines nested reasoning.

As a final characterization of nested reasoning, we show that it effectively extends the
entailment of DCIs of propositional coverage. Despite this extension of entailment, nested
reasoning preserves strict entailment, as expected. Any GCI derived from propositional
and nested reasoning can be derived by classical DL reasoning over the TBox alone.

Theorem 6.33. Let K be a DKB and s ∈ {rat, rel, lex}.

1. K |=prop,s 𝐶 ⊑ 𝐷 ⇔ K |=nest,s 𝐶 ⊑ 𝐷

2. K |=prop,s 𝐶 ⊏∼ 𝐷 ⇒ K |=nest,s 𝐶 ⊏∼ 𝐷

3. K |=prop,s 𝐶 ⊏∼ 𝐷 ⇍ K |=nest,s 𝐶 ⊏∼ 𝐷

Proof. (1) By Theorem 6.9 (canonicity of IKmin,s) and the definition of propositional rea-

soning, K |=prop,s 𝐶 ⊏∼ 𝐷 iff 𝐶∅ ∈ 𝐷I
K

min,s . Notice that atypical instances are not updated
by definition and only updated elements change their membership during an upgrade.
Therefore, 𝐶∅ ∈ 𝐷I

K
min,s iff 𝐶∅ ∈ 𝐷J , for 𝐽 ∈ TUmax(IKmin,s,K). Moreover, 𝐶∅ is the least

member of 𝐶 considering membership. Every other member of 𝐶 belongs to at least the
same concepts as 𝐶∅, and possibly more. Suppose there were some element 𝑑 such as
𝑑 ∈ (𝐶 \ 𝐷)J . However, K |= 𝐶 ⊑ 𝐷 , and therefore J would not be a model of K . Hence,
𝐶J ⊆ 𝐷J , for every 𝐽 ∈ TUmax(IKmin,s,K), and K |=nest,s 𝐶 ⊑ 𝐷 .

(2) Entailment of defeasible subsumptions of the form 𝐶 ⊏∼ 𝐷 is decided by concept
membership of the most typical instances of𝐶 . During the upgrade procedure, no element
is removed from the extension of any concept. Then, K |=prop,s 𝐶 ⊏∼ 𝐷 iff 𝐶U ∈ 𝐷I

K
min,s , for

every maximally typical 𝐶U ∈ Δ𝑇 (K)s iff 𝐶U ∈ 𝐷J , for every J ∈ TUmax(IKmin,s,K) and

every maximally typical 𝐶U ∈ Δ𝑇 (K)s iff K |=nest,s 𝐶 ⊏∼ 𝐷 .

(3) Consider Example 6.32 and further commentary on relevant and lexicographic strengths
for the same DKB. □

6.3.5 Comparing Semantics for EL⊥
This section presents a wide panorama comparing the semantics based on typicality

models for all the combinations of {rat, rel, lex} × {prop, nest} for the DL EL⊥. Prior
research considered only the contrast between propositional and nested reasoning of the
same (rational or relevant) strength [PT18b], [PT18a], [Pen19]. The relationship presented
here covers the newly introduced lexicographic strength, as shown by Theorem 6.33. The
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result establishes that the reasoning of nested coverage effectively extends the reasoning
of propositional coverage for the three strengths considered. Moreover, as materialization-
based reasoning is equivalent to the reasoning of propositional coverage, nested coverage
also extends it.

To compare different strengths whithin propositional coverage, we can travel an indi-
rect route. Because every reasoning of propositional coverage and strength s is equivalent
to s-materialization-based reasoning, we can draw upon the comparisons already present
in the materialization-based literature. In particular, [Cas+14a] states that |=mat,lex > |=mat,rel
> |=mat,rat. Therefore, |=prop,lex > |=prop,rel > |=prop,rat.

A reasonable expectation is that the reasoning hierarchy mentioned above is preserved
under nested coverage. After all, it holds in propositional coverage, and the reasoning of
nested coverage is proven to extend it. It could be argued that, more than probable, this
is even desirable, as the original purpose of the stronger closures was to extend rational
reasoning [Leh95]. However, this is surprisingly not the case.

As it turns out, |=nest,rat, |=nest,rel, and |=nest,lex are incomparable between themselves.
The hierarchy established in propositional reasoning holds for the entailment of some
DCIs. However, having larger and finer domains can also negatively impact the entailment.
For example, suppose that an upgrade (𝑑1, 𝑑2) is present in all typicality saturated models
of rational strength. Relevant strength introduces more elements and enables another
update, (𝑒1, 𝑒2). As seen before, updates can block other previously available updates. In
this case, suppose that (𝑒1, 𝑒2) blocks (𝑑1, 𝑑2). Then, there are two branches in the relevant
upgrade procedure; one with (𝑑1, 𝑑2), and the other with (𝑒1, 𝑒2). A conclusion derived in
the rational paradigm can be dissolved in the larger TUmax(IKmin,rel,K). We illustrate this
point with concrete examples.

Example 6.34. Let K = (T ,D) be the DKB specified as follows: T = {𝐴 ⊑ ∃𝑟 .𝐵,𝐴 ⊑
∃𝑟 .𝐶, 𝐵 ⊑ 𝐷, ∃𝑟 .𝐹 ⊓ ∃𝑟 .𝐺 ⊑ ⊥} and D = {𝐵 ⊓ 𝐸 ⊏∼ ⊥,𝐶 ⊏∼ 𝐺,𝐷 ⊏∼ 𝐸, 𝐷 ⊏∼ 𝐹 }. The
exceptionality chain for K is E0 = D, E1 = {𝐵 ⊓ 𝐸 ⊏∼ ⊥}, E2 = ∅.

Figure 6.10 illustrates how increasing the domain can dissolve some entailments obtained
skeptically. The models in TUmax(IKmin,rat,K) satisfy 𝐴 ⊏∼ ∃𝑟 .𝐺 because the most typical
instances of 𝐴, 𝐴D , belong to (∃𝑟 .𝐺)J . The larger, more fine-grained, relevant domain
enables a new upgrade path by including 𝐵U .3 The saturated models resulting from this path
lack the edge (𝐴D,𝐶D) ∈ 𝑟J , and therefore do not satisfy 𝐴 ⊏∼ ∃𝑟 .𝐺 . Even if the path is still
available for the relevant domain, it is not common to all upgrade branches, and the DCI is
not entailed anymore. Notice that the relevant saturated models are also stronger than the
rational ones in certain aspects. For example, they entail 𝐵 ⊏∼ 𝐹 through 𝐵U ∈ 𝐹J . This is
a “propositional” defeasible inclusion, as it occurs in the depth 0 of quantification. However,
similar effects can be obtained to quantified concepts that serve as witness of existential
restrictions.

The same effect is verified when comparing nested relevant and lexicographic strengths.
Materialization-based lexicographic reasoning is stronger than relevant reasoning. There-
fore, lexicographic reasoning of propositional coverage may entail some DCIs not entailed

3 The effect discussed here for this particular example extends to the lexicographic strength as well.
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IKmin,s

Δ𝑇 (rel)

Δ𝑇 (rat)

𝐴D 𝐵∅

𝐵E1

𝐵U

𝐶∅

𝐶D

𝐺

𝐹

TUmax(IKmin,rat,K)

𝐴D 𝐵∅

𝐵E1

𝐵U

𝐶∅

𝐶D

𝐺∅𝐺

𝐹

TUmax(IKmin,rel,K)

𝐴D 𝐵∅

𝐵E1

𝐵U

𝐶∅

𝐶D

𝐺∅ 𝐹∅𝐺

𝐹

Figure 6.10: Series of three diagrams representing (i) the minimal typicality models for rat and rel; (ii)
the common part of rational saturated typicality models; (iii) two distinct and incomparable parts of
the relevant saturated typicality models. Arrows are edges of the role 𝑟 . Dashed black squares represent
concept extensions. The colored dashed squares in the first diagram represent the rational and relevant
domains. In the last diagram, dotted and dashed arrows represent two incompatible upgrade paths.

by relevant reasoning of the same coverage. Those entailments are preserved in nested
semantics and exemplify situations where lexicographic is stronger than relevant nested
reasoning.

However, increasing the domain that ensures the domination of relevant by lexico-
graphic reasoning within propositional coverage may also dissolve some conclusions
attainable by relevant reasoning. We may reproduce the same effect by carefully curating
an example where an element is only present in the lexicographic domain and upgrading
an edge to this element blocks an upgrade taken by all saturated relevant typicality
models.

Example 6.35. Let K = (T ,D) be the DKB specified as follows: T = {𝐴 ⊑ ∃𝑟 .𝐵,𝐴 ⊑
∃𝑟 .𝐶, 𝐵 ⊓ 𝐹1 ⊓ 𝐹3 ⊑ ⊥, 𝐵 ⊓ 𝐹2 ⊓ 𝐹3 ⊑ ⊥, ⊑ ⊥, 𝐵 ⊑ 𝐷, ∃𝑟 .𝐹1 ⊓ ∃𝑟 .𝐺 ⊑ ⊥} and D = {𝐵 ⊓ 𝐸 ⊏∼
⊥,𝐶 ⊏∼ 𝐺, 𝐷 ⊏∼ 𝐸, 𝐷 ⊏∼ 𝐹1, 𝐷 ⊏∼ 𝐹2, 𝐷 ⊏∼ 𝐹3}. The exceptionality chain for K is E0 = D,
E1 = {𝐵 ⊓ 𝐸 ⊏∼ ⊥}, E2 = ∅.

The visualization is the same as in Picture 6.10. The only difference is that, instead of
𝐵U ∈ 𝐹 , we have 𝐵U ∈ 𝐹1,2 in the lexicographic typicality models, and 𝐵E𝑖 is the most typical
instance of 𝐵 in the relevant ones.

Let s ∈ {rat, rel, lex}. The results presented in this section are summarized by:

• Materialization-based s reasoning is equivalent to typicality models-based s-
propositional reasoning;

• For both materialization-based reasoning and typicality models-based propositional
reasoning, lex > rel > rat;

• Nested reasoning extends propositional reasoning for any given s;

• Nested reasonings of different strengths are incomparable between themselves.
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EL⊥

MatBas. rat MatBas. rel MatBas. lex

Prop. rat Prop. rel Prop. lex

Nest. rat Nest. rel Nest. lex

===

>>

>>>

≠≠
≠

Figure 6.11: Diagram with the strength comparison between materialization-based and typicality-
models-based defeasible subsumption checking of all strengths and coverages. The > and = relations
are transitive.

Figure 6.11 depicts these results graphically. A deeper discussion of the issues concerning
the reasoning of nested coverage is found in Chapter 8.

6.4 Epilogue: Rational defeasible instance
checking

Until now, we considered only reasoning tasks related to subsumption, whether strict
or defeasible. This last section briefly outlines a technique for incorporating assertional
knowledge into the DKB and performing defeasible instance checking. The motivation
for this section is to pave the way for instance checking for ELI⊥, discussed in Chapter
7.

Pensel and Turhan (2018) propose a method to bring defeasible instance checking to
semantics based on typicality models. This method departs from a DKB with an ABox
K = (A,T ,D). The contextC(K) is increased byC(K) := C(K)∪sigI(A). The procedure
has two main stages. The first one defines an augmented minimal typicality model with
individuals. To accomplish this, we must characterize an augmented typicality domain
incorporating individual representatives. The extended minimal typicality model allows
defining defeasible instance checking of propositional coverage. In the second step, we
define nested reasoning by simply saturating the augmented minimal typicality model
as before. The introduction of individuals does not compromise or alter the upgrade
procedure.

Before delving into the definitions, we must adapt the EL family materialization from
Definition 5.1 to DKBs with ABoxes. For a terminological DKB K = (T ,D), K is defined
as K :=

(
T ∪ {(𝐸 ⊏∼ 𝐹 ⊓ 𝐸) ⊑ 𝐹 | 𝐸 ⊏∼ 𝐹 ∈ D}, ∅

)
. The defeasible terminological

knowledge is transferred to the augmented TBox. For a full DKB K = (A,T ,D), the idea
remains fundamentally the same, as the materialization procedure does not impact the
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ABox. Therefore, when we refer to the materialization of such a DKB, we are referring to
K =

(
A,T ∪ {(𝐸 ⊏∼ 𝐹 ⊓ 𝐸) ⊑ 𝐹 | 𝐸 ⊏∼ 𝐹 ∈ D}, ∅).

We start by defining the new domain. The structure of individual representatives is the
same as the one for concept representatives. An element 𝑎U – 𝑎 ∈ sigI(K) andU ⊆ D
– represents the individual 𝑎 satisfying the DCIs in U. The main difference between
individual and concept representatives is that only one representative per individual exists
in the domain. Therefore, each individual representative is already maximally typical. To
choose the setU to be materialized with 𝑎 we follow the iterative expansion of the ABox
proposed in [CS10]. This construction relies in a preference order 𝑜 over individuals, and
the entailment relation that is defined is associated with this order.

For simplifying the construction, we consider only simple ABoxes. A simple ABox A
is an ABox s.t. for every axiom 𝐶 (𝑎) ∈ A, 𝐶 ∈ NC. It is possible to transform any EL⊥ (or
ELI⊥) by introducing auxiliary concepts. So, given a complex 𝐷 such that 𝐷 (𝑎) is in the
ABox, we (i) remove 𝐷 (𝑎) from A; (ii) add 𝐴𝑢𝑥𝐷 (𝑎) to the new ABox; (iii) and 𝐴𝑢𝑥𝐷 ⊑ 𝐷
to an augmented TBox.

Definition 6.36 (Rational consistent-selection function for individuals). Let K =

(A,T ,D) be a DKB and A be a simple ABox. Let 𝑜 = (𝑎1, . . . , 𝑎𝑛) be a total order over
sigI(A). Let E1, . . . , E𝑚 be the exceptionality chain over K . We say that E𝑖 is consistent
with 𝑎 w.r.t. A iff (A ∪ {𝐸 ⊏∼ 𝐹 (𝑎) | 𝐸 ⊏∼ 𝐹 ∈ E𝑖}, (T ,D)) ̸|= ⊥(𝑎). In other words, if 𝑎 is
satisfiable under the materialization of the terminological part of the DKB, the axioms in A,
and the axioms in E𝑖 . Then, the chainA0 ⊆ A1 ⊆ · · · ⊆ A𝑛 = A∗ is a set of ABoxes defined
by:

A0 = A
A 𝑗 = A 𝑗−1 ∪ {𝐸 ⊏∼ 𝐹 (𝑎) | 𝐸 ⊏∼ 𝐹 ∈ E𝑖 and E𝑖 is consistent with 𝑎}

selK,rat,𝑜 (𝑎 𝑗 ) = E𝑖 , where 𝑖 is the smallest index such that E𝑖 is consistent with 𝑎 𝑗 in A 𝑗 . We
abbreviate selK,rat,𝑜 (𝑎 𝑗 ) by EK𝑜

𝑎 𝑗

Notice thatA𝑖 remains simple for any 𝑖 > 0, because 𝐸 ⊏∼ 𝐹 ∈ NC. Building the enriched
minimal typicality model is done by the following steps.

1. Enrich A according to an order over individuals 𝑜 as specified in Definition 6.36.

2. The result,A∗, induces an interpretation IA∗,T . This interpretation will embody the
information on individuals in A∗. Although it is not necessarily a model, it will be
when united with the terminalogical canonical model.

3. Finally, define a minimal typicality model by taking the union of the minimal typi-
cality model and IA∗,T .

We start by detailing the inner workings of step 2. The construction of IA∗,T is as fol-
lows:

Definition 6.37 (ABox Interpretation). [PT18b] Let K = (A∗,T ,D) be a DKB expanding
(A,T ,D) as described in 6.36 according to the order over individuals 𝑜 . Then IA∗,K =
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(ΔIA∗,K , ·IA∗,K ) with:

ΔIA∗,K = {𝑎 𝑗EK𝑜𝑎𝑗

| 𝑎 𝑗 ∈ sigI(A)} ∪ {𝐸∅ | 𝐸 ∈ 𝑄𝑐 (K)}

𝑎
IA∗,K
𝑗

= 𝑎 𝑗EK𝑜𝑎𝑗

𝐴IA∗,K = {𝑎 𝑗EK𝑜𝑎𝑗

∈ ΔIA∗,K | K |= 𝐴(𝑎 𝑗 )}

𝑟IA∗,K = {𝑟 (𝑎 𝑗EK𝑜𝑎𝑗

, 𝑎𝑘EK𝑜𝑎𝑘

) ∈ A∗} ∪ {(𝑎, 𝐸∅) | K |= (∃𝑟 .𝐸) (𝑎)}

Membership of concept representatives (e.g. 𝐸∅) is not covered in IA∗,T , as it is entirely
covered by the minimal typicality model IKmin. The only way in which the addition of
individuals can break the resulting model is by introducing them as predecessors in role
edges. Existential restrictions on the left-hand side of terminological axioms can represent
value restrictions for the inverse role by the equivalence ∃𝑟 .𝐶 ⊑ 𝐷 ≡ 𝐶 ⊑ ∀𝑟−.𝐷 . Axioms
with this form cannot be violated in this construction, as (∃𝑟 .𝐶) (𝑎) ∈ A and ∃𝑟 .𝐶 ⊑ 𝐷 ∈ T
together imply (T ,A) |= 𝐷 (𝑎), and, therefore, 𝑎 𝑗EK𝑜𝑎𝑗

∈ 𝐷IA∗,K .

We make two important remarks on IA∗,T . In the first place, it is not (necessarily) a
model of K . Furthermore, it is quasi-disjoint with the minimal typicality model IKmin. The
first one is explained by the absence of consideration for the concept membership of concept
representatives. The second guarantees we can take the union of the two interpretations
without undesirable consequences. We can take unions of two interpretations I ∪ J by
setting the domain to ΔI ∪ ΔJ and the concept extensions to 𝐶I∪J = 𝐶I ∪𝐶J .

Informally, quasi-disjointness means that even though IA∗,K shares some domain
elements with the minimal typicality model (i.e. the atypical concept representatives
in 𝑄𝑐 (K)), there is no real information on these shared elements in IA∗,K . They do
not belong to the extension of any concept, nor have successors. Their presence serves
solely as existential witnesses for the individual representatives, and all the concept
membership information will come from the minimal typicality model. The property of
quasi-disjointness ensures that it is possible to unite both interpretations. Formally,

Definition 6.38 (Quasi-disjointness). [PT18b, p. 33] Let I = (ΔI, ·I), J = (ΔJ , ·J ) be
two interpretations. We say that I is quasi-disjoint from J iff

1. ∀𝐴 ∈ NC, 𝐴I ∩ ΔJ = ∅; and

2. ∀𝑟J ∈ NR ∩ (ΔI × (ΔI ∪ ΔJ )) = ∅.

For I quasi-disjoint from J , for any EL⊥ concept 𝐶 , 𝐶I∪J ∩ ΔJ = 𝐶J [PT18b,
p. 33]. This property does not hold for ELI⊥ concepts. Fortunately, it is possible to show
comparable, weaker properties that will serve our purposes. Pensel and Turhan (2018)
employ it to prove the two following properties of IA∗,K :

1. K |=mat,rat,𝑜 𝐶 (𝑎) iff IKmin ∪ IA∗,K |= 𝐶 (𝑎),

2. IKmin ∪ IA∗,K |= (A,T).

The first one states that the model resulting from the union of the minimal typicality
model and the ABox interpretation is canonical for instance checking for an order 𝑜 . The
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second states that it is indeed a model.

As a last remark, the introduction of individuals does affect the upgrade procedure. Let
𝑎U, 𝑏V bet two individual representatives in the domain of IA∗,K . There are three kinds of
role edges to any given individual 𝑎U :

1. 𝑟 (𝑎U, 𝑏V),

2. 𝑟 (𝑏V, 𝑎U),

3. 𝑟 (𝑎U,𝐶U).

Edges restricted to individuals, such as (1) and (2), are not upgradeable, as every individual
has exactly one representative in any given typicality interpretation. Edges with concept
representatives as successors can be upgraded, and the upgrade has the potential to spread
change throughout the model. It is true that, due to the lack of inverse roles and universal
quantification in EL⊥, information only travels backward through roles, as there may be
axioms such as ∃𝑟 .𝐹 ⊑ 𝐸, which is equivalent to 𝐹 ⊑ ∀𝑟−.𝐸. However, model completions
affecting the predecessors (e.g. including it in the extension of 𝐸) can block upgrades that
would be feasible otherwise. Consider the following example:

Example 6.39. Let I = (ΔI, ·I) be a typicality interpretion partially depicted in Figure
6.12, and a TBox containing the axioms 𝐶 ⊑ ∀𝑟−.𝐸, ∃𝑟 .𝐸 ⊓ ∃𝑟 .𝐹 ⊑ ⊥, and 𝐷 ⊑ ∀𝑟−.𝐹 .

𝐷

𝐶
𝑎V

𝐴1∅

𝐴1U

𝐴2∅

𝐴2U

𝐵1∅

𝐵1U

𝐵2∅

𝐵2U

Figure 6.12: A diagram representing the fragment of an upgradable model with individual represen-
tatives. The arrows represent edges of the role 𝑟 .

This fragment of the interpretation has the following possible 𝑟 -updates:
(𝑎V, 𝐴1U), (𝑎V, 𝐵1U), (𝐴1U, 𝐴2U), and (𝐵2U, 𝐵2U). However, it is not possible to enact
all of them. In fact, considering only this fragment of the interpretation depicted in the
diagram, it is possible to choose exactly three updates.

The upgrades of 𝐴1U and 𝐵1U successors increase their concept membership (after
the minimal model completion). In light of those changes, it is impossible to accommodate
them simultaneously as successors to 𝑎. If, on the other hand, the 𝑎 upgrades are done
before, then the upgrades to 𝐴1U and 𝐵1U are blocked, which is how the introduction of
individuals affect the upgrade procedure even for concepts.
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Chapter 7

Typicality Models for ELI⊥

T
he minimal requirement for a successfully defining typicality models for a given
DDL is the canonical model property, as typicality models are themselves multi-
layered canonical models. This makes Horn-DLs as ideal candidates for the task.

Those class of DLs can be very expressive while maintaining the canonical model property,
as they brush away unlimited negation and disjunction. They are successfully employed
in more complex reasoning tasks, such as query answering [ORS11], which would also be
an interesting improvement for semantics based on typicality models.

However, this minimal requirement of having the canonical model property is far
from being sufficient to characterize semantics based on typicality models. The model-
theoretic presentation of typicality models in [Pen19] relies on several properties from EL⊥
that are absent from more expressive DLs, such as the preservation under intersection
for models. For this reason, the presentation here focuses on the algorithmic view of
earlier publications, such as [PT17a], that defined actual upgrade procedures instead of
preferences between models. The increase in expressivity brought by the inclusion of
inverse roles, which can represent limited forms of universal restrictions, undermines the
whole procedure. We list some of the most crucial issues:

• The standard property is not attainable in canonical models for ELI⊥.

• A same edge (𝐶, 𝐷) can represent two different existential restrictions: 𝐶 ⊑ ∃𝑟 .𝐷 or
𝐷 ⊑ ∃𝑟−.𝐶 .

• Violations involving universal restrictions may require the removal of edges, harming
one of the main tenets of the minimal model completion algorithm.

In adapting typicality models to this hostile territory, we will keep the general idea of
canonical models composed of pairwise elements representing concepts and a set of DCIs
and the idea of updating the roles to increase typicality and push defeasible information
through quantifiers. However, the technicalities of how to achieve this are entirely novel,
and the machinery required to lift the semantics to ELI⊥ is considerably heavier. As the
idiom goes, the devil is in the details.

This chapter presents what is intended to be a first step into the realm of semantics
based on typicality models for more expressive DLs. It presents techniques that hopefully
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will be useful in adapting formulating typicality models for Horn-DLs, as it addresses
several of the difficulties introduced by those logics.

7.1 Foundations of ELI⊥ Typicality Models
Typicality models are extending canonical models for monotone DLs. The goal is to

develop typicality models that are also canonical models, i.e. allow to check entailments
by satisfaction in this model. In particular, both strict and defeasible subsumption are
indicated by concept membership of particular domain elements. Typicality models for
defeasible ELI⊥ are built from canonical models for standard ELI⊥, and the latter depend
on normalized KBs. Therefore, we need to extend the normalization to encompass the
knowledge component exclusive to defeasible ELI⊥, i.e. DBoxes.

7.1.1 Normal form for ELI⊥ DKBs
The computation of canonical models requires a DKB K = (T ,D) to be in normal

form, which is achieved in two steps. The first normalizes the DBox D and augments the
TBox. The second is the TBox normalization from Definition 2.17 applied to the augmented
TBox.

Definition 7.1 (DKB normal form). Let K = (T ,D) be a DKB. For every 𝐶 ⊏∼ 𝐷 ∈ D, let
𝐴𝐶, 𝐴𝐷 ∈ NC \ sigC(K) be concept names. Then:

NF(D) := {𝐴𝐶 ⊏∼ 𝐴𝐷 | 𝐶 ⊏∼ 𝐷 ∈ D}
Taux := {𝐶 ⊑ 𝐴𝐶 | 𝐴𝐶 ⊏∼ 𝐴𝐷 ∈ NF(D)} ∪

{𝐴𝐷 ⊑ 𝐷 | 𝐴𝐶 ⊏∼ 𝐴𝐷 ∈ NF(D)}
NF(T ) := T-NF(T ∪ Taux)

and NF(K) := (NF(T ),NF(D)) is the DKB in normal form.

The normalization introduces names for complex concepts, i.e. the DBox only contains
DCIs for names and the TBox associates these names to the complex concepts.

Materialization-based defeasible reasoning uses the rank of concepts and inclusions.
We show that the proposed normalization keeps the same rank for the “proxy” DCIs.
More precisely, we show that, for every 𝑘-ranked 𝐶 in some DCI 𝐶 ⊏∼ 𝐷 ∈ D, the
corresponding auxiliar concept 𝐴𝐶 is also 𝑘-ranked. This result is intuitive and expected,
as DKB normalization just introduces fresh names for complex concepts in DCIs.

Lemma 7.2. LetK = (T ,D) be a DKB andD = E0, E0 ⊃ E1 ⊃ · · · ⊃ E𝑛 its exceptionality
chain. For NF(K) let F0 ⊃ F1 ⊃ · · · ⊃ F𝑚 be its exceptionality chain. Then, 𝐶 ⊏∼ 𝐷 ∈ E𝑖 if
and only if 𝐴𝐶 ⊏∼ 𝐴𝐷 ∈ F𝑖 for all 0 ≤ 𝑖 ≤ 𝑛 and 𝑛 =𝑚.

Proof. The proof is by induction on the index 𝑖 of the exceptionality chain of K .

Base: 𝑖 = 0. Since E0 = D and NF(E0) = NF(D), by construction, 𝐶 ⊏∼ 𝐷 ∈ D if and only
if 𝐴𝐶 ⊏∼ 𝐴𝐷 ∈ NF(D) holds.
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Inductive step. We prove the contra-positive for each implication.

(=⇒) Let 𝐶 ⊏∼ 𝐷 ∈ D and 𝐶 ⊏∼ 𝐷 ∉ E𝑖+1. This means that K ̸|= 𝐶 ⊓ E𝑖 ⊑ ⊥, and, thus,
there exists a model I = (ΔI, ·I) of K such that ∃𝑒 ∈ ΔI and 𝑒 ∈ (𝐶 ⊓ E𝑖)I . From I we
construct an interpretation J such that J |= NF(K) and J ̸|= 𝐴𝐶 ⊓ F𝑖 ⊑ ⊥. We define J
by extending I to the concepts introduced by normalization. Let J = (ΔI, ·J ) with:

𝐴J := 𝐴I for every 𝐴 ∈ sigC(K)
𝐴𝐶
J := 𝐶I for every 𝐴𝐶 ∈ sigC(NF(K)) \ sigC(K)

(𝐴𝐶 ⊏∼ 𝐴𝐷)J := (𝐶 ⊏∼ 𝐷)I for every 𝐴𝐶 ⊏∼ 𝐴𝐷 ∈ sigC(NF(K)) \ sigC(K)

We need to show that (1) J |= NF(K) and (2) J ̸|= 𝐴𝐶 ⊓ F𝑖 ⊑ ⊥. To show (1): the names
in sigC(K) have the same extensions in I and J and satisfy the axioms inK . Names from
sigC(NF(K)) \ sigC(K) occur in three types of axioms:

1. 𝐶 ⊑ 𝐴𝐶 ,

2. 𝐴𝐷 ⊑ 𝐷 , and

3. 𝐴𝐶 ⊓𝐴𝐶 ⊏∼ 𝐴𝐷 ⊑ 𝐴𝐷 .

Axioms of the first two forms are satisfied in J , as𝐶I = 𝐶J ⊆ 𝐴𝐶J , and𝐴𝐷J ⊆ 𝐷J = 𝐷I .
For the third from, consider some 𝑒 ∈ (𝐴𝐶 ⊓𝐴𝐶 ⊏∼ 𝐴𝐷)J . This implies that 𝑒 ∈ 𝐴𝐶J and
𝑒 ∈ (𝐴𝐶 ⊏∼ 𝐴𝐷)J . Then, 𝑒 ∈ 𝐶I and 𝑒 ∈ (𝐶 ⊏∼ 𝐷)I . Since I |= K , 𝑒 ∈ 𝐷I holds, and thus
𝑒 ∈ 𝐷J implying 𝑒 ∈ 𝐴𝐷J .

To show (2) we consider 𝑒 ∈ (𝐶 ⊓E𝑖)I . By construction, 𝑒 ∈ 𝐴𝐶J and 𝑒 ∈ (𝐴𝐸 ⊏∼ 𝐴𝐹 )J

for every 𝐸 ⊏∼ 𝐹 ∈ E𝑖 . Therefore, by induction hypothesis, 𝑒 ∈ F𝑖
J

and J ̸|= 𝐴𝐶 ⊓ F𝑖 ⊑ ⊥.
Hence, 𝐴𝐶 ⊏∼ 𝐴𝐷 ∉ F𝑖+1.

(⇐=) Let 𝐴𝐶 ⊏∼ 𝐴𝐷 ∈ NF(D) and 𝐴𝐶 ⊏∼ 𝐴𝐷 ∉ F𝑖+1, which together imply that NF(K) ̸|=
𝐴𝐶 ⊓ F𝑖 ⊑ ⊥. Then, there is some model I |= NF(K) and some element 𝑒 ∈ ΔI such that
𝑒 ∈ (𝐴𝐶 ⊓ F𝑖)I . We construct an interpretation J from I as follows: define (𝐺 ⊏∼ 𝐻 )J :=
(𝐴𝐺 ⊏∼ 𝐴𝐻 )I for all𝐴𝐺 ⊏∼ 𝐴𝐻 ∈ NF(D) and set𝐶J := 𝐶I∪{𝑒}. For the remaining concepts
𝐴 shared by both signatures, set 𝐴J := 𝐴I . We show that:

1. J |= K , and

2. J ̸|= 𝐶 ⊓ E𝑖 ⊑ ⊥.

The only GCIs in K \ NF(K) are of the form 𝐸 ⊓ 𝐸 ⊏∼ 𝐹 ⊑ 𝐹 . Suppose 𝑒′ ∈ (𝐸 ⊓ 𝐸 ⊏∼ 𝐹 )J .
Then, 𝑒′ ∈ 𝐸I holds, implying 𝑒′ ∈ 𝐴𝐸I and 𝑒′ ∈ (𝐴𝐸 ⊏∼ 𝐴𝐹 )I . Because I |= NF(K),
𝑒′ ∈ 𝐴𝐹I which implies 𝑒′ ∈ 𝐹I , and 𝑒′ ∈ 𝐹J . For (2), by induction hypothesis, we have

𝐴𝐸 ⊏∼ 𝐴𝐹 ∈ F𝑖 iff 𝐸 ⊏∼ 𝐹 ∈ E𝑖 . Then, by construction of J , 𝑒 ∈ F𝑖
I ⇒ 𝑒 ∈ E𝑖

J
and, finally,

𝑒 ∈ (𝐶 ⊓ E𝑖)J . □

Corollary 7.3. LetK = (T ,D) be a DKB and𝐶 be a concept occurring in the left-hand side
of some DCI in D. Then, 𝑟K (𝐶) = 𝑟NF(K) (𝐴𝐶), where 𝐶 ⊑ 𝐴𝐶 ∈ Taux.
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Proof. (Sketch) Let F0 ⊃ F1 ⊃ · · · F𝑛 be the exceptionality chain of NF(K). Furthermore,
let 𝑟K (𝐶) = 𝑖 . To show that 𝑟NF(K) (𝐴𝐶) = 𝑖 , we show that:

1. NF(K) ̸|= 𝐴𝐶 ⊓ F𝑖 ⊑ ⊥.

2. NF(K) |= 𝐴𝐶 ⊓ F𝑖−1 ⊑ ⊥, if 𝑖 > 0.

For (1), note that 𝐶 ⊓ E𝑖 is satisfiable. For a model I |= K s.t. (𝐶 ⊓ E𝑖)I ≠ ∅, we
build a model J |= NF(K) using the same construction as in the proof of Lemma 7.2.
Because 𝐴𝐶J = 𝐶I and (𝐴𝐶 ⊏∼ 𝐴𝐷)J = (𝐶 ⊏∼ 𝐷)I , for every 𝐴𝐶 ⊏∼ 𝐴𝐷 ∈ F𝑖 , we have
(𝐴𝐶 ⊓ F𝑖)J ≠ ∅.

We show (2) by contradiction. Let 𝑖 > 0 and suppose that 𝐴𝐶 was consistent with F𝑖−1
w.r.t. NF(K). Then, there would be a model I |= NF(K) s.t. (𝐴𝐶 ⊓ F𝑖−1)I ≠ ∅. By the
same technique from the last proof, we could build an interpretation J s.t. J |= K and
(𝐶 ⊓ E𝑖)J ≠ ∅. In this case, 𝑖 would not be the lesser index for which E𝑖 is consistent with
𝐶 and 𝑟K (𝐶) ≠ 𝑖 . □

These results show that neither the exceptionality construction nor the exceptionality
chain are affected by the normalization of the DKB.

7.1.2 Typicality models for ELI⊥
We assume from now on that we want to test for K = (T ,D) whether K |= 𝐶 ⊏∼ 𝐷

holds and that T contains 𝐴 ⊑ 𝐶, 𝐵 ⊑ 𝐷 for 𝐴, 𝐵 ∈ NC and that K is in DKB normal
form.

The basis for the domain of typicality interpretations is the representative domain of a
DKB, which collects named concepts and all concepts occurring in the scope of quantifiers.
The set of quantified concepts (2.3) of a DBox captures concepts nested within quantifiers
similarly to the TBox, but operating over DCIs instead of GCIs. Formally,

𝑄𝑐 (𝐶 ⊏∼ 𝐷) := 𝑄𝑐 (𝐶 ⊑ 𝐷)
𝑄𝑐 (D) :=

⋃
𝐶⊏∼𝐷∈D

𝑄𝑐 (𝐶 ⊏∼ 𝐷)

The basis of typicality domains for ELI⊥ is the representative domain (Definition 2.19).
Notice that our DKBs (i) have a DBox and (ii) do not have ABoxes. The definition remains
the same, except for the Abox, that goes away. Formally, ΔK = {{𝐴} | 𝐴 ∈ sigC(T ∪D)}∪
P(𝑄𝑐 (T ∪ D))

Typicality interpretations have two-dimensional domains as their elements 𝑀U are
pairs, where𝑀 ∈ ΔK is the concept set andU is a typicality set, i.e. a subset ofD. Intuitively,
such an element represents the instances of concept 𝐶 that conform with the DCIs in
U. For example, the element {Bird}∅ represents atypical birds, while {Bird}{Bird ⊏∼ Flies}
represents more typical birds satisfying Bird ⊏∼ Flies.

Definition 7.4 (Typicality domain, typicality interpretation). Let K = (T ,D) be a DKB
and ΔK be its representative domain. A typicality domain Δ𝑇 (K) of K is defined as Δ𝑇 (K) ⊆
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ΔK × P(D) s.t. ∀𝑀 ∈ ΔK , 𝑀∅ ∈ Δ𝑇 (K) . An interpretation I = (ΔI, ·I) is a typicality
interpretation if and only if ΔI is a typicality domain.

The maximally typical instances of are defined in the same way as in EL⊥. The max-
imally typical instances of ⌈𝑀⌉ in a typicality interpretation I = (ΔI, ·I) are those
𝑀U ∈ ΔI s.t. there is no {𝑀}V ∈ ΔI withU ⊂ V . Intuitively, satisfaction of ⌈𝑀⌉ ⊏∼ 𝐴
holds in I if the most typical instances of ⌈𝑀⌉ satisfy belong to𝐴. While maximally typical
instances of a concept are unique in rational and relevant typicality domains, this need
not be for lexicographic domains, which are compatible with several maximally typical
elements for a single concept.

Definition 7.5 (Satisfaction, Typicality Model). Let 𝐶, 𝐷 be concepts, 𝐴, 𝐵 ∈ NC and
I = (ΔI, ·I) a typicality interpretation. Then

• I |= 𝐶 ⊑ 𝐷 iff 𝐶I ⊆ 𝐷I ,

• I |= 𝑀 ⊏∼ 𝐴 iff 𝑀U ∈ 𝐴I for every maximally typical instance of 𝑀 in ΔI .

I is a model of a (normalized) DKB K = (T ,D) if and only if

• 𝐶I ⊆ 𝐷I for all (𝐶 ⊑ 𝐷) ∈ T and

• 𝑀U ∈ 𝐴I implies 𝑀U ∈ 𝐵I for all (𝐴 ⊏∼ 𝐵) ∈ U.

While the strength is accommodated by the shape of the domain, the coverage is
captured by minimal typicality models in case of propositional and by saturated typicality
models in case of nested semantics—as for defeasible EL⊥.

7.2 Minimal Typicality Models

We extend the minimal typicality models for EL⊥ to inverse roles to define the seman-
tics of propositional coverage and strength s ∈ {𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙, 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡, 𝑙𝑒𝑥𝑖𝑐𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐}. The
goal is devising canonical models for defeasible reasoning under propositional coverage
and the chosen strength.

In this section, we start with a general definition of the minimal typicality model
for an undefined strength s. We show that such general structures are indeed models of
K and that they are canonical in the sense that (defeasible) subsumption relations can
be read-off from the concept memberships of the elements. Lastly, we define kinds of
typicality domains that then realize the strength of reasoning.

The starting point are the canonical models used to decide subsumption in monotone
ELI⊥. These models have subsets from sigC(T ) as their domain elements. The domain
of typicality models for defeasible ELI⊥ is two-dimensional as its elements are pairs
of concept and typicality sets. In canonical models for monotone ELI, the relational
structure is such that an element is connected to those other elements that are maximal
(subset relation) 𝑟 -successors. The idea is that the element {𝐴1, . . . , 𝐴𝑛} represents exactly
the conjunction of the concepts 𝐴1, . . . , 𝐴𝑛 . In addition, for typicality interpretations, each
element satisfies the DCIs from its typicality set.
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During the upgrade procedure, elements are added to new concepts. As a result, their
prime successors can change. To keep track of these changes and ensure primeness, we
introduce the concept of NC-type.

Definition 7.6 (NC-type). Let K be a DKB and I = (ΔI, ·I) an interpretation. For 𝑑 ∈ ΔI ,
the NC-type of 𝑑 w.r.t. K and I is defined as NC-typeK (𝑑,I) := {𝐴 ∈ sigC(K) | 𝑑 ∈ 𝐴I}.

We use the NC-type of an element to redefine primeness for typicality interpretations,
adapting Definition 2.20. With this concept, we identify the prime 𝑟 -successors of a given
element according to the concepts to which it belongs in the interpretation. Primeness is
defined for concepts. In typicality interpretations, primeness is defined w.r.t. the NC-type
of the element.

Definition 7.7 (Prime successor). Let K = (T ,D) be a DKB, I = (Δ𝑇 (K), ·I) a typicality
interpretation, and 𝑟 ∈ {𝑠, 𝑠−} with 𝑠 ∈ sigR(K). Then, 𝑁V ∈ Δ𝑇 (K) with 𝑁 ∈ ΔK is a prime
𝑟 -successor of 𝑀U in I iff

1. K |= ⌈NC-typeK (𝑀U,I)⌉ ⊓ U ⊑ ∃𝑟 .⌈𝑁 ⌉, and

2. There is no 𝑁 ′ ∈ ΔK s.t.

(a) 𝑁 ⊂ 𝑁 ′, and

(b) K |= ⌈NC-typeK (𝑀U,I)⌉ ⊓ U ⊑ ∃𝑟 .⌈𝑁 ′⌉

As in the minimal typicality domain for EL⊥, all the role-successors in minimal typ-
icality models for ELI⊥ are atypical elements, i.e., elements with ∅ as their typicality
set.

Definition 7.8 (Minimal Typicality Model). Let K = (T ,D) be a DKB and Δ𝑇 (K) a
typicality domain of K . The minimal typicality model IKmin = (Δ𝑇 (K), ·IKmin) is defined as:

𝐴I
K

min :={𝑀U | K |= ⌈𝑀⌉ ⊓ U ⊑ 𝐴}

𝑟I
K

min :={(𝑀U, 𝑁∅) | 𝑁 is a prime 𝑟 -successor for 𝑀U in IKmin} ∪
{(𝑁∅, 𝑀U) | 𝑁 is a prime 𝑟−-successor for 𝑀U in IKmin}

It still needs to be shown that the structures just defined are indeed models of the DKB
K . To do so, we (1) show that IKminsatisfies GCIs in K and, (2) show that every element
𝑀U satisfies all DCIs in its typicality setU.

Lemma 7.9. Let K = (T ,D) be a DKB and IKmin = (Δ𝑇 (K), ·IKmin) its minimal typicality
model. Then, 𝐶I

K
min ⊆ 𝐷IKmin for every 𝐶 ⊑ 𝐷 ∈ K .

Proof. Since K is in normal form, there are four kinds of GCIs in K to consider.

Case 1:𝐴 ⊑ 𝐵. Let𝑀U ∈ 𝐴I
K

min . Then,K |= ⌈𝑀⌉⊓U ⊑ 𝐴, which impliesK |= ⌈𝑀⌉⊓U ⊑ 𝐵,
thus 𝑀U ∈ 𝐵I

K
min .
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Case 2: 𝐴1 ⊓ 𝐴2 ⊑ 𝐵. 𝑀U ∈ (𝐴1 ⊓ 𝐴2)I
K

min implies 𝑀U ∈ 𝐴
IKmin
1 and 𝑀U ∈ 𝐴

IKmin
2 , which

implies K |= ⌈𝑀⌉ ⊓ U ⊑ 𝐵, thus 𝑀U ∈ 𝐵I
K

min .

Case 3: 𝐴 ⊑ ∃𝑟 .𝐵. There are two cases two consider: 𝑟 ∈ NR and 𝑟 ∈ NR
− \ NR.

1. 𝑟 ∈ NR. Let 𝑀U ∈ 𝐴I
K

min . Then, K |= ⌈𝑀⌉ ⊓ U ⊑ 𝐴, and thus K |= ⌈𝑀⌉ ⊓ U ⊑ ∃𝑟 .𝐵.
Note that 𝐵 ∈ 𝑄𝑐 (K) implies {𝐵} ∈ ΔK and {𝐵}∅ ∈ Δ𝑇 (K) . This guarantees the
existence of a 𝑁 ∈ ΔK s.t. 𝐵 ∈ 𝑁 and K |= ⌈𝑀⌉ ⊓ U ⊑ ∃𝑟 .⌈𝑁 ⌉ and 𝑁 is a prime
𝑟 -successor for ⌈𝑀⌉ ⊓ U in IKmin. By construction, (𝑀U, 𝑁∅) ∈ 𝑟I

K
min and 𝑁 ∈ 𝐵IKmin ,

which imply 𝑀U ∈ (∃𝑟 .𝐵)I
K

min .

2. If 𝑟 ∈ NR
− \ NR, the proof is the same as in the last case with 𝑟 and 𝑟− exchanged.

Case 4: 𝐴 ⊑ ∀𝑟 .𝐵. Once again, 𝑟 ∈ NR or 𝑟 ∈ NR
− \ NR.

1. 𝑟 ∈ NR. Let 𝑀U ∈ 𝐴I
K

min . Suppose that there is some 𝑁U ′ s.t. (𝑀U, 𝑁U ′) ∈ 𝑟I
K

min . We
show that 𝑁U ′ ∈ 𝐵I

K
min . There are two possible origins for this edge. First, suppose

that K |= ⌈𝑀⌉ ⊓ U ⊑ ∃𝑟 .⌈𝑁 ⌉, and 𝑁 is a prime 𝑟 -successor of 𝑀U . By definition of
IKmin, we haveU′ = ∅ and 𝐵 ∈ 𝑁 . Now, 𝐵 ∈ 𝑁 and K |= ⌈𝑁 ⌉ ⊑ 𝐵 imply 𝑁∅ ∈ 𝐵I

K
min .

Second, if K |= ⌈𝑁 ⌉ ⊓ U′ ⊑ ∃𝑟−.⌈𝑀⌉ and 𝑀 is a prime 𝑟−-successor for 𝑁U ′. To
showK |= ⌈𝑁 ⌉ ⊓U′ ⊑ 𝐵 by contradiction, assume there exists a model J ofK with
some 𝑑 ∈ ΔJ s.t. 𝑑 ∈ (⌈𝑁 ⌉ ⊓ U′)J and 𝑑 ∉ 𝐵J . Due to K |= ⌈𝑁 ⌉ ⊓ U′ ⊑ ∃𝑟−.⌈𝑀⌉,
there must be some 𝑒 ∈ ⌈𝑀⌉J s.t. (𝑒, 𝑑) ∈ 𝑟J . Now K |= ⌈𝑀⌉ ⊑ 𝐴 implies𝑚 ∈ 𝐴J ,
which violates the GCI 𝐴 ⊑ ∀𝑟 .𝐵 from K , contradicting the assumption that J is a
model.

2. 𝑟 ∈ NR
− \ NR. The proof is analogous. This follows from the construction of the

domain. Roles are built from two sets – one for required successors and the other for
required predecessors. For the axiom with a named role, we examine members of
the first set by considering that they were prime 𝑟 -successors and therefore maximal.
For the edges originating in the second set, we showed by contradiction that they
must be subsumed by 𝐵. We employ the same arguments inverting the sets for the
axiom 𝐴 ⊑ ∃𝑟−.𝐵.

□

Now, we show that the elements satisfy the DCIs in their typicality sets.

Lemma 7.10. Let K = (T ,D) be a DKB and IKmin = (Δ𝑇 (K), ·IKmin) its minimal typicality
model. Then, for every 𝑀U ∈ Δ𝑇 (K) and for every 𝐴 ⊏∼ 𝐵 ∈ U, it follows that 𝑀U ∈ 𝐴I

K
min ⇒

𝑀U ∈ 𝐵I
K

min .

Proof. Suppose that 𝑀U ∈ 𝐴I
K

min for some 𝐴 ⊏∼ 𝐵 ∈ U, then K |= ⌈𝑀⌉ ⊓ U ⊑ 𝐴 by
definition of IKmin. Since 𝐴 ⊏∼ 𝐵 is a conjunct inU, we have that K |= ⌈𝑀⌉ ⊓ U ⊑ 𝐴 ⊏∼ 𝐵.
By definition of K , we have K |= 𝐴 ⊏∼ 𝐵 ⊓𝐴 ⊑ 𝐵, which implies that K |= ⌈𝑀⌉ ⊓ U ⊑ 𝐵,
and thus 𝑀U ∈ 𝐵I

K
min . □
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Together, the last two lemmas imply that minimal typicality models are indeed models,
i.e. that IKmin |= K holds.

Next, we show that minimal typicality models are canonical if they fulfill a condition on
their typicality domain. In typicality models, DCIs are satisfied if all most typical instances
of a concept satisfy it. Therefore, to make a minimal typicality model a canonical model
for s, the maximally typical instances of the concepts in the representative domain must
be exactly the ones selected by the consistent selection function for s. More formally, the
typicality domain must (i) contain all the elements 𝑀U , whereU is the set of DCIs to be
materialized with𝑀 in s, and (ii) do not contain any maximally typical instance of𝑀 ,𝑀U ′ ,
s.t.U′ ∉ selK,s(⌈𝑀⌉).

Theorem 7.11 (Canonicity of IKmin). Let s ∈ {rat, rel, lex} be a strength, K = (T ,D) a
DKB, and 𝐴 ∈ sigC(K). Let IKmin = (Δ𝑇 (K), ·IKmin) be a minimal typicality model of K s.t.
for every 𝑀 ∈ ΔK , 𝑀U is maximally typical in Δ𝑇 (K) iffU is selected by selK,s(⌈𝑀⌉) to be
materialized with ⌈𝑀⌉. Then, for every 𝑀 ∈ ΔK :

1. K |=mat,s ⌈𝑀⌉ ⊑ 𝐴 with iff 𝑀∅ ∈ 𝐴I
K

min , and

2. K |=mat,s ⌈𝑀⌉ ⊏∼ 𝐴 iff 𝑀U ∈ 𝐴I
K

min for every maximally typical instance 𝑀U of 𝑀 .

Proof. Claim 1. By construction, K |=mat,s ⌈𝑀⌉ ⊑ 𝐴 iff 𝑀∅ ∈ 𝐴I
K

min .

Claim 2. K |=mat,s ⌈𝑀⌉ ⊏∼ 𝐴 holds iff𝑀U ∈ 𝐴I
K

min for every maximally typical instance of𝐴,
where𝐴 ∈ Δ𝑇 (K) . Thus, by the requirement on the maximal instances in the theorem,U is
selected by selK,s(⌈𝑀⌉) to be materialized with 𝑀 and thus we have 𝑀U ∈ 𝐴I

K
min for every

U selected by s. By the definition of satisfaction (Def. 7.5), this yields IKmin |= 𝑀 ⊏∼ 𝐴. □

We define propositional coverage by minimal typicality models equipped with particular
domains. We speak about those domains by referring to their shape, which we explore in
the next subsection. The shapes covering rat, rel, and lex, are roughly equivalent to their
EL⊥ counterparts. The typicality sets are combined with concept representatives in the
same way. The domains differ in how they choose those concept representatives. In EL⊥,
they are defined by the context over K , while, in ELI⊥, they come from the relevant
domain.

Definition 7.12 (Semantics of propositional coverage). Let K = (T ,D) be a DKB, s be a
strength, and Δ𝑇 (K)s be the domain for s.

1. K |=prop,s ⌈𝑀⌉ ⊑ 𝐴 iff IKmin |= ⌈𝑀⌉ ⊑ 𝐴

2. K |=prop,s ⌈𝑀⌉ ⊏∼ 𝐴 iff IKmin |= ⌈𝑀⌉ ⊏∼ 𝐴

7.2.1 Domain Shapes Determine Strength of Reasoning
The minimal requirements for a typicality model domain for a DKB K and strength

s are to contain (i) atypical instances for every concept set in the relevant domain, (ii)
all combinations of 𝑀U selected by selK,s(⌈𝑀⌉) and those instances being exactly the
maximally typical instances of 𝑀 in the domain. Intuitively, for each concept set, the
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presence of the atypical and the most typical elements is sufficient. These requirements
already ensure that a minimal typicality model is a canonical model for materialization-
based reasoning of strength s, as shown in Theorem 7.11. Sometimes, it is advantageous
to admit elements of “intermediate” typicality also to achieve reasoning of a particular
strength. We examine materialization-based reasoning, in regard of the domain shapes
that achieve reasoning of rational, relevant, and lexicographic strengths.

Rational Domain

Intuitively, the rational domain uses as the second dimension the exceptionality chain
(cf. 4.6) of the DKB. For every domain element 𝑀 there is a maximal set E𝑖 (of minimal
𝑖) consistent with 𝑀 . Since E 𝑗 ⊆ E𝑖 , for any 0 ≤ 𝑖 < 𝑗 , 𝑀 is also consistent with E 𝑗 .
Therefore, a rational domain can contain all pairs 𝑀E 𝑗 s.t. 0 ≤ 𝑖 ≤ 𝑗 ≤ 𝑛. In this case, 𝑗 = 𝑛
defines the atypical instance 𝑀∅.

Definition 7.13 (Rational typicality domain). Let K = (T ,D) be a DKB and E0, . . . , E𝑛
be its exceptionality chain. The rational typicality domain of K is:

Δ𝑇 (K)rat := {𝑀E𝑖 ∈ ΔK × {E0, . . . , E𝑛} | K ̸|= ⌈𝑀⌉ ⊓ E𝑖 ⊑ ⊥}

With the rational domain, we can define rational minimal typicality models.

Definition 7.14 (IKmin,rat, |=prop,rat). A rational minimal typicality model of a DKB K is a
minimal typicality model of a DKB K over the rational typicality domain Δ𝑇 (K)rat , defined as
IKmin,rat := (Δ

𝑇 (K)
rat , ·IKmin).

Semantics based on typicality models with rational strength and propositional coverage is
denoted by |=prop,rat and defined as the semantics of propositional coverage with s = rat.

Example 7.15. Let K = (T ,D) be a DKB with

T ={Deity ⊑ Being,Human ⊑ Being,Human ⊑ ∃worships.Deity,

Human ⊑ ∀worships.Powerful, Immortal ⊓Mortal ⊑ ⊥} and
D ={Being ⊏∼ Mortal,Being ⊏∼ Corporeal,Deity ⊏∼ Immortal}.

The exceptionality chain forK is: E0 = D, E1 = {Deity ⊏∼ Immortal} and E2 = ∅. Figure 7.1
depicts the domain Δ𝑇 (K)rat for K with the same matrix structure of the rational domain for
EL⊥. In this case, the matrix is the Cartesian product between ΔK and the exceptionality
chain. A difference regarding the EL⊥ version is the existence of {Deity, Powerful} instances
representing combinations of concepts occurring within quantifiers. In this example, this
combination is needed to witness the worship successor for instances of Human.

The rational domain still fulfills the requirement for canonicity.

Lemma 7.16 (Canonicity of IKmin,rat). Let K be a DKB, 𝑀 ∈ ΔK and 𝐴 ∈ sigC(K).

K |=mat,rat ⌈𝑀⌉ ⊏∼ 𝐴 iff K |=prop,rat ⌈𝑀⌉ ⊏∼ 𝐴

Proof. The result follows directly from Theorem 7.11 and the construction of Δ𝑇 (K)rat . For
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Being

Human

Deity, Powerful

Mortal

E0 E1 ∅

DE1 D∅

HE0 HE1 H∅

D,PE1 D,P∅

ME0 ME1 M∅

Δ𝑇 (K)rat

Figure 7.1: Minimal rational typicality domain for ELI⊥. The green dashed area represents the
extension of the concept Mortal in the model. The major differences w.r.t. the EL⊥ counterpart are the
concept sets and the primeness requirment for role edges.

every 𝑀 ∈ ΔK , 𝑀E𝑖 is a maximally typical instance of 𝑀 for the largest E𝑖 in the excep-
tionality chain consistent with ⌈𝑀⌉. For the minimal typicality model, K |= ⌈𝑀⌉ ⊓ E𝑖 ⊏∼
𝐴 iff 𝑀E𝑖 ∈ 𝐴

IKmin,rat . □

Relevant and Lexicographic Domains

The relevant and lexicographic domains are also built from the same intuition of their
counterparts for EL⊥, and the difference rests on the concept set. Instead of populating
the full lattice over D with conceps in a context C(K), the relevant and lexicographic
domains for ELI⊥ populate the same lattice with the sets in the representative domain
ΔK . Specifically, for every 𝑀 ∈ ΔK , the typicality domain contains the maximal pair(s)
selected by the strength s, 𝑀U , and also every 𝑀U ′ withU′ ⊂ U. The relevant and the
lexicographic strengths differ in the selection ofU.

Definition 7.17 (Relevant typicality domain, lexicographic typicality domain). Let K =

(T ,D) be a DKB. The relevant typicality domain of K is defined as:

Δ𝑇 (K)rel := {𝑀U ∈ ΔK × P(D) | U ⊆ selK,rel(⌈𝑀⌉)}

Definition 7.18. The lexicographic typicality domain of K is defined as:

Δ𝑇 (K)lex := {𝑀U ∈ ΔK × P(D) | selK,lex(⌈𝑀⌉) = {U1, . . . ,U𝑛}
andU ⊆ U𝑖 for some 1 ≤ 𝑖 ≤ 𝑛}

Definition 7.19 (IKmin,rel, I
K

min,lex, |=prop,rel, |=prop,lex). The minimal typicality model of a
DKB K over a

• domain Δ𝑇 (K)rel , is a relevant minimal typicality model of K , defined as IKmin,rel :=

(Δ𝑇 (K)rel , ·IKmin).

• domain Δ𝑇 (K)lex , is a lexicographic minimal typicality model ofK , defined as IKmin,lex :=

(Δ𝑇 (K)lex , ·IKmin).

Semantics based on typicality models with propositional coverage and strength
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• s = rel is denoted by |=prop,rel.

• s = lex is denoted by |=prop,lex.

Again, concept membership of domain elements of intermediate typicality does not
impact the model’s canonicity.

Lemma 7.20 (Canonicity of IKmin,reland of IKmin,lex). Let K be a DKB, 𝑀 ∈ ΔK and 𝐴 ∈
sigC(K). Then

1. K |=mat,rel ⌈𝑀⌉ ⊏∼ 𝐴 iff K |=prop,rel ⌈𝑀⌉ ⊏∼ 𝐴.

2. K |=mat,lex ⌈𝑀⌉ ⊏∼ 𝐴 iff K |=prop,lex ⌈𝑀⌉ ⊏∼ 𝐴.

Proof. Both claims follow directly from Theorem 7.11 and the definitions of Δ𝑇 (K)rel and

Δ𝑇 (K)lex . The element 𝑀selK,rel (⌈𝑀⌉) and the elements 𝑀U𝑖
, 1 ≤ 𝑖 ≤ 𝑛, for selK,lex(⌈𝑀⌉) =

{U1, . . . ,U𝑛} are the most typical instances of 𝑀 in their respective domains. Hence,
K |= ⌈𝑀⌉ ⊓ selK,rel(⌈𝑀⌉) ⊑ 𝐴 iff 𝑀selK,rel (⌈𝑀⌉) ∈ 𝐴

IKmin,rel and K |= ⌈𝑀⌉ ⊓ U𝑖 ⊑ 𝐴 for every
1 ≤ 𝑖 ≤ 𝑛 iff 𝑀U𝑖

∈ IKmin,lex. □

In this section we have devised minimal typicality models for defeasible ELI⊥. The
computation of the minimal typicality model for the chosen strength gives a reasoning
method for defeasible subsumption for propositional coverage for that strength. Further-
more, should the DBox of a DKB be empty, the typicality domains would contain only the
atypical elements 𝑀∅ and thus minimal typicality models would essentially coincide with
the canonical models for monotonic ELI⊥.

7.3 Saturated Typicality Models
In minimal typicality models the role successors required by an existential restriction

are all atypical, i.e. have empty typicality sets and need not to satisfy any DCI. A stronger
form of typicality model is needed if defeasible information is to be applied to these
elements. In this section, we develop saturated typicality models for ELI⊥ extending
those for EL⊥ from [PT18b; Pen19]. Intuitively, saturated typicality models “saturate”
all required role successors with defeasible information and thereby maximize typicality
of these elements. We first describe how saturated typicality models can be computed
and then describe the entailment defined over them, reasoning of nested coverage. We
show that nested reasoning successfully tackles quantification neglect for each strength
s ∈ {rat, rel, lex}.

7.3.1 Computation of Saturated Typicality Models
The general approach to compute a saturated typicality model of a given DKB K (and

strength s) is to:

1. Compute a minimal typicality model IKmin.

2. Perform model upgrades exhaustively. Each upgrade has the following two parts:
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(a) model update: for an edge in the current model, introduce a new edge to an
element of the same concept set and a larger typicality set, i.e. increase the
number of DCIs that the role successor must satisfy.

(b) model recovery: introduce and remove the minimal amount of information
necessary to ensure that the resulting interpretation is a (canonical) model.

Clearly, an upgrade can lead to a set of different models as the update step can have different
results. Thus, the construction of saturated typicality models works with sets of models.
Some updated interpretations may be unrecoverable through the model recovery procedure.
Such interpretations are then discarded and only effectively recovered interpretations –
i.e. models satisfying some properties – are upgraded further.

The computation method for saturated typicality models for EL⊥ from Chapter 6 relies
on two properties of EL⊥:

1. EL⊥ axioms can require successors only for named roles, but not for inverse roles.

2. Recovery of the model property can be achieved by increasing the extensions of
concepts and roles.

These properties do not hold for ELI⊥. In ELI⊥, axioms can additionally require succes-
sors of inverse roles. So, an edge between elements in ELI⊥ models can be “initiated” by
the successor or the predecessor of a named role or even from both elements independently.
Thus an edge (𝑀U, 𝑁V) ∈ 𝑟I cannot indicate whether K entails ⌈𝑀⌉ ⊓ U ⊑ ∃𝑟 .⌈𝑁 ⌉ or
⌈𝑁 ⌉ ⊓ V ⊑ ∃𝑟−.⌈𝑀⌉ and it is unclear during model upgrades whether to update 𝑀U or
𝑁V . While model updates for EL⊥ always target the successor of a named role, they can
also affect the predecessor in ELI⊥. To address this problem, we introduce a formalism
to record, for each edge in a typicality interpretation, which of its end-point(s) initiated
it.

We notice a similar effect of the introduction of value restrictions in the model recovery
step. When an 𝑟 -edge (𝑀U, 𝑁V) violates a value restriction, say 𝐴 ⊑ ∀𝑟 .𝐵, there are two
ways to handle this. Either 𝑁V can be added to the extension of 𝐵 or the edge can be
moved to 𝑁 ∪ {𝐵}V . The correct choice to recover the model depends on which existential
requirement the edge represents in the interpretation.

Model recovery in ELI⊥ may have to remove edges from an interpretation. Consider
an element 𝑑 added to 𝐴I during model update. Axioms such as 𝐴 ⊑ ∀𝑟 .𝐵 can force
moving all existing 𝑟 -edges starting at 𝑑 from 𝑀U to 𝑀 ∪ {𝐵}U . So, merely completing
extensions as in EL⊥ is not enough.1 We propose a new method for recovering the model
property that accounts for the removal of edges and also accommodates the requirement
of primeness for role successors. This method is called model recovery.

Updating Typicality Interpretations

The update step identifies an edge in the given typicality interpretation that comports
a more typical successor and adds a new edge s.t. one of the endpoints is shared with
the original edge and the other one is a more typical representative of the element in

1 Model recovery for EL⊥ is even called model completion.
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the original edge’s other endpoint. For example, for an edge (𝑑, 𝑒) ∈ 𝑟I , the update may
add (𝑑′, 𝑒) ∈ 𝑟I ′ , where 𝑑′ is a more typical representative of the concept represented by
𝑑 .

To do so, an update has to identify for each edge which of the two elements initiates
the edge to have the other as its prime successor. To do so, an update has to identify
which of the edge’s two elements initiates it. The other element should be a required prime
successor of the initiator. For example, suppose an edge (𝑑, 𝑒). If 𝑒 initiates this edge, then
element 𝑑 is to be updated. We introduce a labeling of edges in an interpretation to keep
track of which elements initiate each edge.

Definition 7.21 (Initiator labeling). Let I = (ΔI, ·I) be a typicality interpretation and K
be a DKB. For 𝑟 ∈ NR an edge (𝑀U, 𝑁V) ∈ 𝑟I is

• p-initiated if K |= ⌈NC-typeK (𝑀U,I)⌉ ⊑ ∃𝑟 .⌈𝑁 ⌉, 𝑁 is a prime 𝑟 -successor w.r.t. K ,
and ⌈NC-typeK (𝑀U,I)⌉.

• s-initiated if K |= ⌈NC-typeK (𝑁V,I)⌉ ⊑ ∃𝑟−.⌈𝑀⌉ and 𝑀 is a prime 𝑟−-successor
w.r.t. K , and ⌈NC-typeK (𝑁V,I)⌉.

An initiator labeling for I w.r.t. K is a function InitI : ΔI × sigR(K) × ΔI → P({s, p})
respecting the following conditions:

1. If p ∈ InitI (𝑑, 𝑟, 𝑒), then (𝑑, 𝑒) ∈ 𝑟I is p-initiated,

2. If s ∈ InitI (𝑑, 𝑟, 𝑒), then (𝑑, 𝑒) ∈ 𝑟I is s-initiated,

3. InitI (𝑑, 𝑟, 𝑒) = ∅ iff (𝑑, 𝑒) ∉ 𝑟I .

We call the pair (I, InitI) a labeled interpretation.

Note that generally there can be several initiator labeling functions for the same pair
of a DKB and an interpretation. For (𝑑, 𝑒) ∈ 𝑟I and 𝑟 ∈ NR, we abbreviate p ∈ InitI (𝑑, 𝑟, 𝑒)
by (𝑑, 𝑒) ∈ 𝑟Ip and s ∈ InitI (𝑑, 𝑟, 𝑒) by (𝑑, 𝑒) ∈ 𝑟Is .

Example 7.22. Let K = (T , ∅) be a DKB with T = {𝐴 ⊑ ∃𝑟 .𝐵, 𝐵 ⊑ ∃𝑟−.𝐴}. Consider the
typicality interpretation I = (ΔI, ·I) s.t. {𝐴}, {𝐵} are in the representative domain of K .
Figure 7.2 depicts a fragment of I with InitI restricted to 𝑟 . Edges may be labeled with p, s,
or both. The dashed edge is a possible update that can be either labeled with p, if the element
{𝐴}U was updated, or with s, if the update was on the element {𝐵}U .

{𝐴}∅

{𝐴}U

{𝐵}∅{𝐵}U {s, p}{s}

{p}

Figure 7.2: Fragment of I, with 𝑟 -edges labeled by InitI .

Generally the initiator labeling needs not be unique for an interpretation. However, it is
for minimal typicality models, which are the initial input to model upgrades. The labeling
InitIKmin

can be determined from the DKB and the structure of IKmin, since all required role
successors are represented by atypical elements.
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Definition 7.23 (Init-minIKmin
). Let IKmin = (Δ𝑇 (K),ΔIKmin) be a minimal typicality model for

some DKBK . The initiator labeling for IKmin is the function Init-minIKmin
: Δ𝑇 (K) × sigR(K) ×

Δ𝑇 (K) → P({s, p}) that maps each (𝑀U, 𝑟 , 𝑁V) to the set containing:

• p, if (𝑀U, 𝑁V) ∈ 𝑟I
K

min is p-initiated andV = ∅ and

• s, if (𝑀U, 𝑁V) ∈ 𝑟I
K

min is s-initiated andU = ∅.

We show that this construction satisfies Definition 7.21 and that it captures the correct
labels according to the minimal typicality model intuition that concept representatives
witnessing existential restrictions must be atypical.

Lemma 7.24. Let IKmin be a minimal typicality model for K and Init-minIKmin
its initiator

labeling. Then Init-minIKmin
is an initiator labeling function.

Proof. By construction,

1. Every edge in IKminis is p-initiated or s-initiated.

2. For every edge (𝑀U, 𝑁V) ∈ 𝑟
IKmin
p ,V = ∅.

3. For every edge (𝑀U, 𝑁V) ∈ 𝑟
IKmin
s ,U = ∅.

Conditions 1-3 here guarantee that the labels p and s correspond to p-initiated and s-
initiated edges, respectively. This covers Conditions 1 and 2 of Definition 7.21 (initiator
labeling functions). The definition of Init-minIKmin

maps p to p-initiated edges, and similarly
for s. For Condition 3 of the initiator labeling, note that, for every 𝑟 and every pair
(𝑀U, 𝑁V) ∈ Δ𝑇 (K) × Δ𝑇 (K) , InitIKmin

(𝑀U, 𝑟 , 𝑁V) is non-empty only when the edge is p-
initiated andV = ∅ or the edge is s-initiated andU = ∅. However, in every edge of the
minimal typicality model, eitherU orV are ∅. Then, all edges (and only them) have a
label s or p (or both). □

One of the fundamental properties of the minimal typicality model is that existential
requirements are witnessed by atypical instances of the successor. IfK |= ⌈𝑀⌉ ⊓U ⊑ ⌈𝑁 ⌉,
for a prime successor 𝑁 , the corresponding edge will be (𝑀U, 𝑁∅) ∈ 𝑟I

K
min . The initiator

labeling function for the minimal typicality model captures this intuition correctly by
labeling the edges with their intended initiators. IfU ≠ ∅, the edge (𝑀U, 𝑁∅) ∈ 𝑟I

K
min is

labeled with {p} even in the case where K |= ⌈𝑁 ⌉ ⊑ ∃𝑟−.⌈𝑀⌉, for a prime 𝑟− successor
𝑀 .

An update candidate for a typicality model I is pair consisting of a domain element
𝑑 and an edge including 𝑑 . This edge can be added to I to increase the typicality of a
successor of 𝑑 already present in I. We define a function that returns a set of update
candidates for any labeled interpretation (I, InitI).

Definition 7.25 (Update candidates). Let I = (ΔI, ·I) be a typicality interpretation and
InitI an initiator labeling. Let 𝑑,𝑀U, 𝑀V ∈ ΔI and 𝑟 ∈ NR. The set of 𝑟 -update candidates
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for (I, InitI) is:

UpCan𝑟 (I, InitI) :={((𝑑,𝑀U), 𝑑) | (𝑑,𝑀V) ∈ 𝑟Ip andV ⊂ U} ∪
{((𝑀U, 𝑑), 𝑑) | (𝑀V, 𝑑) ∈ 𝑟Is andV ⊂ U}.

Element 𝑑 is called update root and the other element from the edge is the update target.

A model update augments a given typicality interpretation by performing an update,
i.e., it adds the edge connecting update root and target, and updates the initiator labeling
accordingly. Observe that such a change preserves the concept set of the successor. There-
fore, the update target is a prime successor iff the successor that it supersedes is a prime
successor.

Definition 7.26 (Typicality Model Update). Let I = (ΔI, ·I) be a typicality model, InitI
an initiator labeling, 𝑟 ∈ NR, and ((𝑑1, 𝑑2), 𝑑𝑖) ∈ UpCan𝑟 (I, InitI) an update candidate for
some root 𝑑𝑖 ∈ {𝑑1, 𝑑2}. A typicality model 𝑟 -update is

UD𝑟 (I, InitI, (𝑑1, 𝑑2), 𝑑𝑖) := (J , InitJ )

where J = (ΔI, ·J ) with

𝐴J :=𝐴I

𝑟J :=𝑟I ∪ {(𝑑1, 𝑑2)}
𝑠J :=𝑠I , for all 𝑠 ∈ NR, 𝑠 ≠ 𝑟

init := p if 𝑑𝑖 = 𝑑1, and init := s if 𝑑𝑖 = 𝑑2; and InitJ is the following mapping:

InitJ (𝑑1, 𝑟 , 𝑑2) :=InitI (𝑑1, 𝑟 , 𝑑2) ∪ {init}
InitJ (𝑒1, 𝑟 , 𝑒2) :=InitI (𝑒1, 𝑟 , 𝑒2) if 𝑒1 ≠ 𝑑1 or 𝑒2 ≠ 𝑑2

InitJ :=InitI , for all 𝑠 ≠ 𝑟

It is easy to see that InitJ is a initiator labeling of J . Note that InitJ differs from the
initiator labeling InitI by one additional edge label. Let this labeled edge be (𝑀U, 𝑁V) ∈ 𝑟J .
Suppose, without loss of generality, that the root of the update is 𝑀U . Because the pair
is part of an update candidate, there must be some 𝑁V ′ s.t. V′ ⊂ V and (𝑀U, 𝑁V ′) ∈
𝑟Ip , which means that the edge is p-initiated. Since the NC-type of the elements do not
change between I and J , this also holds for J . More formally, NC-typeK (𝑀U,I) =
NC-typeK (𝑀U,J) and K |= ⌈NC-typeK (𝑀U,I)⌉ ⊓ U ⊑ ∃𝑟 .⌈𝑁 ⌉, for a prime 𝑁 , imply
K |= ⌈NC-typeK (𝑀U,J)⌉ ⊓ U ⊑ ∃𝑟 .⌈𝑁 ⌉, with 𝑁 prime.

The semantics of saturated typicality models considers exhaustively all upgrades of the
minimal typicality model for some strength s. Since some choices of update candidates can
block updates of other candidates, it is necessary to consider all of candidates in parallel.
Let (I, InitI) be a labeled typicality interpretation and K a DKB. The set of all typicality
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interpretation updates of (I, InitI) w.r.t. K is :

UpdK (I, InitI) :=
⋃
𝑟∈sigR (K)

{
(J , InitJ ) ∈ UD𝑟 (I, InitI, (𝑑1, 𝑑2), 𝑑𝑖) |
((𝑑1, 𝑑2), 𝑑𝑖) ∈ UpCan𝑟 (I, InitI)

}
.

7.3.2 Model Recovery
After an update, an interpretation may fail to be a model ofK . A new edge (𝑀U, 𝑁V) ∈

𝑟I , with 𝑁V ∈ 𝐴I , can violate axioms of the form 𝐴 ⊑ ∀𝑟−.𝐵, if 𝑀U ∉ 𝐵I . Axioms that
cover the transmission of information in the other direction of the new edge – e.g., from
𝑀U to 𝑁V – will not threaten the model property at first. By construction, successors are
already prime regarding their concept set. For a root 𝑀U and an updated interpretation
I, if K |= ⌈NC-typeK (𝑀U,I)⌉ ⊓ U ⊑ ∀𝑟 .𝐵, then any 𝑁V neighboring the root would be
such that 𝐵 ∈ 𝑁 and, henceforth, 𝑁V ∈ 𝐵I .

To solve such violations, one needs to add the root to the extension of the required
concept, increasing its NC-type. In the example above, this means adding 𝑀U to 𝐵. How-
ever, this simple action opens Pandora’s box and triggers all kinds of violations. The
reader should remember that the left-hand side of terminological axioms in normalized
TBoxes is always either a named concept or a conjunction of two named concepts. Adding
some element to the extension of some named concept can trigger any terminological
axiom. Now, we will investigate how to address these violations to recover the model
property.

Violations concerning named concept inclusions – i.e., 𝐴 ⊑ 𝐵 and 𝐴1 ⊓𝐴2 ⊑ 𝐵 – are
simple to solve. Adding the element belonging to the concept(s) on the left-hand side to
the extension of the right-hand side concept fixes them. Existential requirements are also
relatively straightforward to correct. Solving a violation of 𝐴 ⊑ ∃𝑟 .𝐵 is done by creating a
new edge to the prime superset of 𝐵 required by the NC-type of the triggered element. For
a prime 𝑁 ∋ 𝐵, the edge lands on 𝑁∅.

The strategies examined so far saturate the interpretation, i.e., they add elements to new
extensions and create new edges between elements. Some violations dealing with value
restrictions can be solved by altering any of the two elements connected by a given edge.
Therefore, one has to choose which element to change to address the problem. Let I be a
typicality interpretation with (𝑀U, 𝑁V) ∈ 𝑟I s.t. 𝑀U ∈ 𝐴, 𝑁V ∉ 𝐵I and 𝐴 ⊑ ∀𝑟 .𝐵 ∈ T .
One way of solving this violation would be to add 𝑁V to the extension of 𝐵. Another way
to address it is to substitute the edge (𝑀U, 𝑁V) for (𝑀U, 𝑁 ∪ {𝐵}V), which does not only
correct the violation, because 𝑁 ∪ {𝐵}U ∈ 𝐵, but it also ensures that this role successor is
again a prime successor, as 𝑁 ∪ {𝐵}. As it turns out, both fixes are necessary for different
situations.

The difference lies in which element initiates the edge, which is coded in the initiator
labeling. The initiator lays out which existential restriction creates the edge, and a success-
ful solution to a violation of value restriction should take this into account. Elements that
initiate an edge cannot be cut off from it because they represent concepts whose required
existential restrictions are represented by the edge. Therefore, if the initiator causes the
violation, it needs to be changed to solve it. On the other hand, if the other element is
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the cause of the violation, the edge may be moved to a more inclusive successor without
major issues. The edge only incidentally landed on the element, and it does not represent
an existential restriction to it. Moving the edge to a more inclusive successor ensures
primeness of required successors.

Coming back to the example previously stated, if 𝑀U owns the edge and requires
that every 𝑟 -successor is a 𝐵, then this information should be reflected in the successor.
The solution is moving the edge to (𝑀U, 𝑁 ∪ {𝐵}V), preserving the primeness of the
successors. On the other hand, if the edge is initiated by 𝑁V , the violation should be solved
by adding it to the extension of 𝐵. In this case, there is a back-and-forth dynamic between
the two elements: 𝑁V requires a predecessor, which requires that every successor is of
some kind, as illustrated in Figure 7.3.

𝑀U 𝑁V
𝑟s

requires the predecessor

∀𝑟 .𝐵

Figure 7.3: Illustration of the back-and-forth dynamics between two elements connected by an edge.
𝑁V requires the predecessor 𝑀U , which requires its successors to be 𝐵.

In the model recovery procedure, the NC-types of an element increases in only two
scenarios. If the NC-type was previously upgraded with some concept𝐴, then it can trigger
axioms 𝐴 ⊑ 𝐵 and 𝐴1 ⊓𝐴2 ⊑ 𝐵 and be further increased. The other situation that governs
an increase in the NC-types is an increase in the NC-types of a neighbor. However, this
change in the neighborhood can only affect an element when the element itself initiates the
edge. Therefore, change is kept in a connected part of the edge initiator’s graph represented
by the initiator labeling.

To formally characterize this notion, we introduce the concepts of role causation
path and dependency set. The first captures a chain of elements connected by edges that
they initiate, and the second is defined for elements 𝑒 and captures the set of all elements
connected to 𝑒 by such chains. Intuitively, those concepts can show that the model recovery
procedure is repairing only problems either in the root of the upgrade or in elements that
depend on the root. The change that a model recovery brings is limited to the dependency
set of the root of the update.

Definition 7.27 (Edge Owner Path, Dependency Set). Let (I, InitI) be a labeled typicality
interpretation for some K . Let 𝑑0, . . . , 𝑑𝑛 ∈ ΔI and the roles 𝑟0, . . . , 𝑟𝑛 ∈ sigR(K). The
sequence 𝑑0, . . . , 𝑑𝑛 is an initiator path iff (𝑑𝑖, 𝑑𝑖+1) ∈ 𝑟 I𝑖 p or (𝑑𝑖+1, 𝑑𝑖) ∈ 𝑟 I𝑖 s , for every 0 ≤ 𝑖 ≤
𝑛 − 1.

The dependency set of an element 𝑑 ∈ ΔI is:

DS(𝑑) := {𝑒 ∈ ΔI | 𝑒0 . . . , 𝑒𝑛 is an initiator path, 𝑒 = 𝑒0, 𝑒𝑛 = 𝑑}

The dependency set collects all the elements that depend on its input. This dependency
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is defined as a series of labeled edges. It can be understood, inductively, by acknowledging
that an element 𝑑 depends on itself. Then, all the elements that require 𝑑 either as a
successor or predecessor depend on it. As a next step, all the elements that depend on
those that depend on 𝑑 , and so forth.

A model recovery should:

1. address all violations of GCIs fromK caused directly or indirectly by the last update
and change the interpretation only minimally;

2. preserve the concept set of prime successors;

3. only change the NC-types of elements in the dependency set of the upgrade’s root.

A fix of a violation can give rise to other violations. Furthermore, an update or a fix can
result in an interpretation that cannot be recovered—in that case it contains a clash.

Definition 7.28 (Clash). Let (I, InitI) be a labeled interpretation, where I = (ΔI, ·I) and
𝑀U, 𝑁V ∈ ΔI . I contains a

• direct clash, if {𝐶 ⊑ ⊥,𝐶 ⊑ ∃𝑟 .⊥} ∩ K ≠ ∅ for some concept 𝐶 , 𝑀U ∈ 𝐶I .

• successor clash, if 𝐴 ⊑ ∀𝑟 .⊥ ∈ K , 𝑀U ∈ 𝐴I , and 𝐴 ∈ (∃𝑟 .⊤)I .

• successor domain clash, if 𝐴 ⊑ ∀𝑟 .𝐵 ∈ K , (𝑀U, 𝑁V) ∈ 𝑟Ip , 𝐵 ∉ 𝑁 , and 𝑁 ∪ {𝐵}V ∉

ΔI .

• predecessor domain clash, if 𝐴 ⊑ ∀𝑟−.𝐵 ∈ K , (𝑁V, 𝑀U) ∈ 𝑟Is , 𝐵 ∉ 𝑁 , and
𝑁 ∪ {𝐵}V ∉ ΔI .

We define model recovery as the result of a series of individual fixes, which are controlled
changes caused by the violation of an axiom. There is one fix rule for each normalized GCI
besides the ones containing value restrictions. Those can be amended by two different
procedures depending on edge ownership.

Definition 7.29 (Fix rules). Let (I′, Init′I) be a typicality model of some DKB K = (T ,D)
and its initiator labeling and let (I, InitI) ∈ UpdK (I′, InitI ′) with I = (ΔI, ·I),𝑀U, 𝑁V ∈
ΔI , and let 𝑙 ∈ {p, s}.

To remove (𝑀U, 𝑁U ′) from 𝑟I
𝑙

results in

1. InitI (𝑀U, 𝑟 , 𝑁V) := InitI (𝑀U, 𝑟 , 𝑁V) \ {𝑙} and

2. if InitI (𝑀U, 𝑟 , 𝑁V) = ∅, then 𝑟I := 𝑟I \ {(𝑀U, 𝑁V)}.

The fix rules for (I, InitI) and K are the following:

(R⊑) If 𝐴 ⊑ 𝐵 ∈ K , 𝑀U ∈ 𝐴I , and 𝑀U ∉ 𝐵I , then add 𝑀U to 𝐵J .

(R⊓) If 𝐴1 ⊓𝐴2 ⊑ 𝐵 ∈ K , 𝑀U ∈ (𝐴1 ⊓𝐴2)I , and 𝑀U ∉ 𝐵I , then add 𝑀U to 𝐵J .

(R∃) If 𝐴 ⊑ ∃𝑟 .𝐵 ∈ K , 𝑀U ∈ 𝐴I , and �𝑁 .𝐵 ∈ 𝑁 , and (𝑀U, 𝑁V) ∈ 𝑟Ip , for anyV ⊆ D,
then add (𝑀U, {𝐵}∅) to 𝑟Jp .
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(R∃−) If 𝐴 ⊑ ∃𝑟−.𝐵 ∈ K , 𝑀U ∈ 𝐴I , and �𝑁 .𝐵 ∈ 𝑁 and (𝑁V, 𝑀U) ∈ 𝑟Is , for anyV ⊆ D,
then add ({𝐵}∅, 𝑀U) to 𝑟Js .

(R∀R) If 𝐴 ⊑ ∀𝑟 .𝐵 ∈ K , 𝑀U ∈ 𝐴I and ∃𝑁,V .(𝑀U, 𝑁V) ∈ 𝑟Ip , 𝐵 ∉ 𝑁 , and 𝑁 ∪ {𝐵}V ∈
ΔI , then replace in 𝑟Jp the edge (𝑀U, 𝑁V) by (𝑀U, 𝑁 ∪ {𝐵}V).

(R∀R−) If𝐴 ⊑ ∀𝑟−.𝐵 ∈ K ,𝑀U ∈ 𝐴I and ∃𝑁,V .(𝑁V, 𝑀U) ∈ 𝑟Is , 𝐵 ∉ 𝑁 , and𝑁 ∪ {𝐵}V ∈
ΔI , then replace in 𝑟Js the edge (𝑁V, 𝑀U) by (𝑁 ∪ {𝐵}V, 𝑀U).

(R∀C) If 𝐴 ⊑ ∀𝑟 .𝐵 ∈ K , 𝑀U ∈ 𝐴I , 𝑁V ∉ 𝐵I , and (𝑀U, 𝑁V) ∈ 𝑟Is , then add 𝑁V to 𝐵J .

(R∀C−) If 𝐴 ⊑ ∀𝑟−.𝐵 ∈ K , 𝑀U ∈ 𝐴I , 𝑁V ∉ 𝐵I , and (𝑁V, 𝑀U) ∈ 𝑟Ip , then add 𝑁V to
𝐵J .

We illustrate the different effects of the fix rules for violated value restrictions.

Example 7.30 (Application of fix rules). Let (I, InitI) be an updated interpretation for a
DKB K and 𝑀U be the root of the update. Let 𝐴 ⊑ ∀𝑟−.𝐵, 𝐵 ⊑ ∀𝑟 .𝐶 ∈ K . Figure 7.4 shows
two subsequent applications of the fix rules: first (R∀C−) results in I1 and the application of
(R∀R) results in I2.

I0 I1 I2

(R∀C−) (R∀R)

𝐴

𝑀U 𝑁V𝑟p

𝐴𝐵

𝑀U 𝑁V𝑟p

𝐴𝐵

𝐶

𝑀U 𝑁V

𝑁 ∪ {𝐶}V

𝑟p

K = {𝐴 ⊑ ∀𝑟−.𝐵
𝐵 ⊑ ∀𝑟 .𝐶, . . . }

Figure 7.4: Diagrams representing a series of three interpretations. I𝑖+1 is a fix of I𝑖 .

Each fix rule addresses a single violation, but may also create new ones. Thus these
rules are applied exhaustively to an updated interpretation and the final result is a model
recovery.

Definition 7.31 (Model Recovery). Let (I′, Init′I) be a typicality model of some DKB K =

(T ,D) and its initiator labeling and let (I, InitI) ∈ UpdK (I′, InitI ′) with I = (ΔI, ·I).
The pair (J , InitJ ) of an interpretation and its initiator labeling is a model recovery of
(I, InitI) iff it is the result of applying the fix rules to (I, InitI) exhaustively and does not
contain a clash. The set of all model recoveries for (I, InitI) w.r.t. K is denoted by:

ModRecK (I, InitI) := {(J , InitJ ) | J is a model recovery of (I, InitI) w.r.t.K}

A model recovery is indeed a model.
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Lemma 7.32. Let (I, InitI) be a pair of an updated typicality model and its initiator labeling.
Then, J |= K for all (J , InitJ ) ∈ ModRecK (I, InitI).

Proof. Since K ⊆ K , any axiom from K that may be violated is contained in K . We
consider the four GCI types in a normalized DKB:

𝐴 ⊑ 𝐵, 𝐴1 ⊓𝐴2 ⊑ 𝐵, 𝐴 ⊑ ∃𝑟 .𝐵, 𝐴 ⊑ ∀𝑟 .𝐵 .

For the first three, any 𝑀U ∈ 𝐴J (or (𝐴1 ⊓𝐴2)J ) is included in 𝐵J or (∃𝑟 .𝐵)J , because
the rules (R⊑), (R⊓), (R∃), and (R∃−) have been applied exhaustively. If 𝐵 = ⊥ for any of
these GCIs, then J is not a model recovery because J would contain a (direct) clash.

Now, we consider axioms of the form𝐴 ⊑ ∀𝑟 .𝐵. For every (𝑀U, 𝑁V) ∈ 𝑟J , the labeling
InitJ (𝑀U, 𝑟 , 𝑁V) is non-empty by definition. If (𝑀U, 𝑁V) ∈ 𝑟Jp and 𝑀U ∈ 𝐴J , the
violation can trigger (R∀R) in case 𝑁 ∪ {𝐵}V ∈ ΔJ . If 𝑁 ∪ {𝐵}V ∉ ΔJ , then J contains
a successor domain clash and J is not a model recovery. In the case where (𝑀U, 𝑁V) ∈ 𝑟Js
and 𝑀U ∈ 𝐴J , then 𝑁V is added to 𝐵J by rule (R∀C).

Note that, in the dual case where 𝑟 ∈ NR
−, the argument is the same, except the

rules applied are (R∀R−) and (R∀C−) and the possible clash is a predecessor instead of a
successor domain clash. □

Besides being a model, a model recovery preserves the property of canonical models,
i.e. subsumption can be read-off from concept membership and role edges represent prime
existential restrictions for at least one of its elements.

There may be several ways of fixing an interpretation because moving edges can
inadvertently solve more than one violation at a time. This effect occurs due to the non-
monotonic nature of defeasible information. In a monotonic context, all the axioms that
hold for the representative of some𝑀 also have to hold for representatives of𝑀′ s.t.𝑀 ⊂ 𝑀′.
However, this property does not hold for defeasible axioms. In some cases, defeasible
axioms may hold only for less specific elements, e.g., birds fly, while penguins, which
are also birds, do not. Therefore, moving an edge from 𝑀 to 𝑀′ can alleviate violations
triggered by concepts to which 𝑀 belongs, but 𝑀′ does not. The order of the fixes can
impact the final product, as different orders may have to address different problems, leading
to distinct outcomes. We consider the following example:

Example 7.33 (Multiple model recoveries). Let (I, InitI) be an updated typicality inter-
pretation and its initiator labeling, and K = (T ,D) be a DKB. Let 𝑀U be the root of the
update. The normalized DKB K contains the following axioms:

𝐴1 ⊑ ∀𝑟−.𝐴2, 𝐴2 ⊑ ∀𝑟 .𝐶, 𝐵1 ⊑ ∀𝑟−.𝐵2, 𝐵2 ⊑ ∀𝑟 .𝐷.

Consider the fragment of I depicted by Figure 7.5. The initial configuration presents two
axiom violations: Ax1 and Ax4. They are solved by adding 𝑀U to 𝐴2 and 𝐵2, respectively.
The first fix creates a new violation of Ax2, and the second one creates a violation of Ax3.
However, it is important to notice that solving Ax2 before addressing Ax4 will eliminate the
violation of Ax4, as the solution is moving the 𝑟 edges from {𝐴}U1

and {𝐵}U2
to {𝐴,𝐶}U1
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𝐴1 𝐵1

𝐴1 ⊑ ∀𝑟−.𝐴2 (Ax1)
𝐴2 ⊑ ∀𝑟 .𝐶 (Ax2)

𝐵1 ⊑ ∀𝑟−.𝐵2 (Ax4)
𝐵2 ⊑ ∀𝑟 .𝐷 (Ax3)

𝑀U{𝐴}U1
{𝐵}U2

{𝐴,𝐶}U1
{𝐴, 𝐷}U1

{𝐴,𝐶, 𝐷}U1
{𝐵,𝐶, 𝐷}U2

{𝐵, 𝐷}U2
{𝐵,𝐶}U2

𝑟p 𝑟p

Figure 7.5: Initial configuration of an interpretation to be recovered. At this stage, it violates two
axioms: Ax1 and Ax2. Solving any of them will yield new violations, and the order in which those
violations are solved results in a different outcome.

and {𝐵,𝐶}U1
, and those elements do not belong to 𝐵1. Similarly, solving Ax3 before Ax1 will

eliminate the violation of the later axiom.

Hence, according to the definition, this configuration has three distinct model recoveries,
depending on the order of the fixes. The three orders are given by solving the violations in the
following orders:

1. Ax1, Ax2.

2. Ax4, Ax3.

3. Ax1, Ax4 and {Ax2,Ax3} in any order.

𝐴1 𝐵1𝐴2

𝐴1 ⊑ ∀𝑟−.𝐴2 (Ax1)
𝐴2 ⊑ ∀𝑟 .𝐶 (Ax2)

𝐵1 ⊑ ∀𝑟−.𝐵2 (Ax4)
𝐵2 ⊑ ∀𝑟 .𝐷 (Ax3)

𝑀U{𝐴}U1
{𝐵}U2

{𝐴,𝐶}U1
{𝐴, 𝐷}U1

{𝐴,𝐶, 𝐷}U1
{𝐵,𝐶, 𝐷}U2

{𝐵, 𝐷}U2
{𝐵,𝐶}U2

𝑟p 𝑟p

Figure 7.6: A possible outcome of the model recovery. In this case, the order of the fixes is Ax1, Ax2.

Now, we show two important features of the model recovery: (1) it preserves a funda-
mental property of canonical models for ELI⊥ and (2) that it only increases the NC-types
of the elements and does so only to elements in the dependency set of the root. The rest of
the elements remain intact.

The first property is important because it guarantees that the structure of the model
aligns concept and role membership with subsumption. In the minimal typicality model,
concept membership for named concepts is equivalent to subsumption w.r.t. the concepts
and the DKB, and each edge is required and prime w.r.t. to one of its elements. Besides,
each prime existential restriction required by the DKB has a corresponding edge in the
model. Property 2. ensures that the procedure does not throw away membership (and
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therefore subsumption) in order to fix the model, and also that changes affect only the
updated element and elements connected to it.

Definition 7.34 (Quasi-canonicty). Let (I, InitI) be a typicality interpretation and its
initiator labeling. Let K = (T ,D) be a DKB. The pair (I, InitI) is quasi-canonical w.r.t. K
iff the following conditions hold:

1. If K |= ⌈NC-typeK (𝑀U,I)⌉ ⊓ U ⊑ ∃𝑟 .⌈𝑁 ⌉ for a prime 𝑟 -successor 𝑁 , then ∃𝑁V ∈
ΔI s.t.

• (𝑀U, 𝑁V) ∈ 𝑟Ip , if 𝑟 ∈ NR and

• (𝑁V, 𝑀U) ∈ 𝑟−Is , if 𝑟 ∈ NR
−.

2. If (𝑀U, 𝑁V) ∈ 𝑟Il , for some non-empty l ⊆ {p, s}, then

• K |= ⌈NC-typeK (𝑀U,I)⌉ ⊓ U ⊑ ∃𝑟 .⌈𝑁 ⌉ and 𝑁 is a prime 𝑟 -successor of 𝑀U ,
if p ∈ l and

• K |= ⌈NC-typeK (𝑁V,I)⌉ ⊓ V ⊑ ∃𝑟−.⌈𝑀⌉ and 𝑀 is a prime 𝑟−-successor of
𝑁V , if s ∈ l.

Now, we show that quasi-canonicity holds in model recoveries.

Lemma 7.35. Let (J , InitJ ) be a model recovery of (I, InitI) w.r.t. the DKB K = (T ,D)
and let (I, InitI) be quasi-canonical. Then, (J , InitJ ) is quasi-canonical.

Proof. We start with property (1). Without loss of generality, we consider only the case in
which 𝑟 ∈ NR. The proof is symmetrical for inverse roles. LetK |= ⌈NC-typeK (𝑀U,J)⌉ ⊓
U ⊑ ∃𝑟 .⌈𝑁 ⌉, for a prime 𝑟 -successor 𝑁 , for some 𝑀U ∈ ΔI . There are two cases to
examine: (i) if there is some edge (𝑀U, 𝑁 ′V) ∈ 𝑟Ip s.t. 𝑁 ′ ⊂ 𝑁 , or (ii) if there is no edge
like this.

In the first case, becauseJ is a model recovery ofI, (𝑀U, 𝑁V) ∈ 𝑟Jp . Otherwise, the fix
rule (R∀R) would be applicable to it. In the second case, (𝑀U, 𝑁∅) ∈ 𝑟Jp , because the fix rule
(R∃) would be applicable to J for some 𝐵′ ∈ 𝑁 s.t.K |= ⌈NC-typeK (𝑀U,I)⌉⊓U ⊑ ∃𝑟 .𝐵′.
Then, every 𝐶 ∈ 𝑁 , 𝐶 ≠ 𝐵′, would lead to one application of (R∀R), resulting in the edge
(𝑀U, 𝑁∅) ∈ 𝑟Jp . If 𝑟 ∈ NR

−, then the argument is the same, but the rules are (R∀R−) and
(R∃−).

For property (2), suppose (𝑀U, 𝑁V) ∈ 𝑟Jp . We consider two scenarios. The first is
when the same edge is also in I, and the second is when it is new.

If (𝑀U, 𝑁V) ∈ 𝑟Ip , then K |= ⌈NC-typeK (𝑀U,I)⌉ ⊓ U ⊑ ∃𝑟 .⌈𝑁 ⌉ and 𝑁 is a prime

𝑟 -successor. If 𝑁 were not a prime 𝑟 -successor for ⌈NC-typeK (𝑀U,J)⌉ ⊓U – i.e., if there
was some 𝑁 ′ ⊃ 𝑁 s.t. K |= ⌈NC-typeK (𝑀U,I)⌉ ⊓ U ⊑ ∃𝑟 .⌈𝑁 ′⌉ – then the rule (R∀R)
would be applicable to J , which would not be a model recovery.

On the other hand, if (𝑀U, 𝑁V) ∉ 𝑟Ip , the fix rules added the edge. Let 𝑅0, . . . , 𝑅𝑛 be
the rules applied to I generate J . Consider the rule 𝑅𝑖 s.t. I before its application is
(𝑀U, 𝑁V) ∉ 𝑟Ip , but after its application is (𝑀U, 𝑁V) ∈ 𝑟Ip . Two rules can add edges:
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(R∃) and (R∀R). If (R∃) was applied with the axiom 𝐴 ⊑ ∃𝑟 .𝐵, and {𝐵} ⊂ 𝑁 , then
there would be a further application of (R∀R) rules moving the exge (𝑀U, {𝐵}∅) ∈ 𝑟Ip to
(𝑀U, {𝐵 ∪ {𝐵′}}∅) ∈ 𝑟Ip , for every axiom 𝐴 ⊑ ∀𝑟 .𝐵′. When there is no more (R∀R) left to
apply, the resulting edge (𝑀U, 𝑁∅) ∈ 𝑟Jp will be a prime 𝑟 -successor. Note that, in this
case,V = ∅.

If, on the other hand, the edge is introduced by (R∀R), we note that (i) the edge
(𝑀U, 𝑁 \ {𝐵}V) ∈ 𝑟Ip that triggered the rule is required, but 𝑁 \ {𝐵} is not a prime 𝑟 -
successor, as there is an axiom 𝐴 ⊑ ∀𝑟 .𝐵 triggering the rule. Then, either 𝑁 is a prime
successor, or there is another axiom 𝐴′ ⊑ ∀𝑟 .𝐵′ that triggers the rule again. This cannot be
the case, as no rule is applicable to J , and therefore 𝑁 is a prime 𝑟 -successor. □

We have shown that the model recovery preserves the canonical structure of the edges,
namely, that they represent all required prime successors by edges. Now, we show that the
changes realized to recover the model property after a typicality update affect primarily
the root of the update and, secondarily, the elements that are causally connected to the
root. No other element is affected by the recovery.

Lemma 7.36. Let (J , InitJ ) be a model recovery of (I, InitI) w.r.t. the DKB K = (T ,D).
Let 𝑀U be the root of the recovery and DS(𝑀U) be its dependency set. Then:

1. NC-typeK (𝑁V,I) ⊆ NC-typeK (𝑁V,J) for every 𝑁V ∈ DS(𝑀U);

2. NC-typeK (𝑁V,I) = NC-typeK (𝑁V,J) for every 𝑁V ∉ DS(𝑀U).

Proof. We prove that the properties hold by examining the series of fixes leading to the
recovered model J . Let 𝑅0, . . . , 𝑅𝑛 be the set of rules leading from I to J . We denote the
series of intermediate labeled interpretations by (I, InitI) = (I0, InitI0), . . . , (I𝑛, InitI𝑛 ) =
(J , InitJ ). Every (I𝑖, InitI𝑖 ) results from the application of the fix rule𝑅𝑖−1 to (I𝑖−1, InitI𝑖−1),
for 1 ≤ 𝑖 ≤ 𝑛.

First, notice that no fix rule removes elements from the extension of a named concept.
Therefore, NC-types can only increase. We prove by induction on 𝑖 that the eventual
increase satisfies properties (1) and (2).

For the base case, consider that the only fix rules applicable to (I0, InitI0) are (R∀C)
and (R∀C−), which increase the NC-type of the root, i.e., add it to the extension of some
concept. That is because the only difference between I and the model whose update
gave rise to it is the new edge initiated by the root. All the other fixes are triggered by
membership to a named concept 𝐴 (or, similarly, to two named concepts 𝐴1, 𝐴2). No
violation of this kind can exists in I because concept extention is unaltered in the update
and the original interpretation that gave rise to (I, InitI) through the update is a model.

For the inductive step, consider that properties (1) and (2) hold for I𝑖 . Hence, the only
NC-type increases w.r.t. previous interpretations are in DS(𝑀U). The first two rules that
increase the NC-type of a given element – (R⊑) and (R⊓) – can only be applied to elements
in DS(𝑀U), as they are themselves triggered by the increase in the NC-type of their target
element. The remaining rules that increase the NC-type of an element are (R∀C) and
(R∀C−). Notice, however, that those rules are triggered by the increase of the NC-type of
the element on the other endpoint of an edge. For some element 𝑁1U1 to be affected by
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such rules, it should be connected by an edge to some 𝑁2U2 that had its NC-type increased.
This connection should be either (𝑁1U1, 𝑁2U2) ∈ 𝑟

I𝑖
p or (𝑁2U2, 𝑁1U1) ∈ 𝑟

I𝑖
s . By hypothesis,

𝑁2U2 belongs to DS(𝑀U), as it NC-type increased. Then, the roles that could trigger the
rule imply that 𝑁1U1 ∈ DS(𝑀U) as well. □

A full upgrade step has two parts: interpretation update and model recovery. The initial
input is a pair (I, InitI). The procedure computes all the possible update candidates for
this pair and generates a set containing all possible updates. Model recovery is applied
to each one of these interpretations. Notice that, for a single labeled interpretation, there
may be

• more than one model recovery; or

• no model recovery, if every possible sequence of fix rule’s application to a clash.

In the latter case, the procedure outputs the input model, i.e., the update is ignored. The
final product is a set (J1, InitJ1), . . . , (J𝑛, InitJ𝑛 ) of labeled models extending (I, InitI).
With a slight abuse of notation, we define this procedure over sets of interpretations
instead of single interpretations, enabling iteration.

Definition 7.37 (Full upgrade step). Let (I, InitI) be a labeled typicality model of the DKB
K = (T ,D). A full upgrade step over (I, InitI) and K is defined by:

TU(I, InitI,K) =
⋃

(J ,InitJ )∈UpdK (I,InitI)
ModRecK (J , InitJ )

With a slight abuse of notation, we define the full upgrade step to a set 𝑆 =

{(I0, InitI0), . . . , (I𝑛, InitI𝑛 )} of interpretations and their initiator labelings by

TU(𝑆,K) =
𝑛⋃
𝑖=0

TU(I𝑖, InitI𝑖 ,K)

Example 7.38. Let K be a DKB and I be an arbitrary typicality model for K . Figure 6.7
depicts the pipeline that characterizes a full typicality upgrade step over I, i.e. a single
application of TU(I,K).

The pipeline is similar to EL⊥’s pipeline. The main differences are that (i) it operates over
labeled interpretations, (ii) the individual steps (update and recovery) are different, although
defined in the same spirit, and (iii) the recovery procedure also branches.

We show that iterating the upgrade steps terminates in a fixpoint when the initial
input is a minimal typicality model.

Theorem 7.39 (Termination of the upgrade steps). Let (IKmin, InitIKmin
) be the minimal

typicality model over some typicality domain and its initiator labeling for a DKBK = (T ,D).
Iterating the TU operator reaches a fixpoint denoted by TUmax(I, InitI,K).

Proof. First, we notice that when adding an edge does not break the model property,
the resulting interpretation is the only model recovery of itself. Notice that the minimal
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𝑖
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( (𝑑𝑛1 , 𝑑𝑛2 ), 𝑑𝑛1 )

TU(I, InitI,K)

ModRecK (J1, InitJ1 )

ModRecK (J𝑛, InitJ𝑛 )

((𝑑𝑖1, 𝑑𝑖2), 𝑑𝑖𝑖 ) ∈ UpCan𝑟 (I, InitI)
for some 𝑟 ∈ sigR (K)

update recovery

Figure 7.7: Diagram representing the pipeline of a full typicality upgrade step with a labeled typicality
model (I, InitI) for a DKB K as inputs.

typicality interpretation satisfies all the model recovery requirements, and every model
recovery does the same. Hence, by adding an edge, the only rules that can be triggered
are (R∀C) and (R∀C−), which are only triggered when the interpretation is not a model.
Therefore, the upgrade step returns the same set if no updates exist.

Now, we should establish that adding edges comes to a halt. This is not obvious prima
facie because the procedure removes edges besides adding them. Therefore, it is necessary
to show that no endless loops add and remove the same edges indefinitely.

Partial orders can be defined by the subset relation over the two sets (concept and
typicality) that make up the elements, and both orders have a single supremum. The
concept set goes from singletons to the collection of all names in the signature. The
typicality set starts from the empty set and moves up to D. The granularity of the middle
elements depends on the strength of the domain.

It is possible to visualize a role edge starting from an element 𝑀U as a connection
between the element itself and a set 𝑁 of named concepts supplemented with a series of
sets of defeasible inclusions ∅,U1, . . . ,U𝑛 . Notice that the update only adds a newU𝑖 to
this list, which is finite. For example, if (𝑀U, 𝑁∅) ∈ 𝑟Ip , a possible update is (𝑀U, 𝑁U) ∈ 𝑟Ip ,
for someU ⊆ D,U ≠ ∅. The original edge to the atypical successor remains there.

The swapping of edges that can occur during the model recovery moves this edge
upwards on the partial order over the concept set, as it is motivated by primeness. Hence,
it blocks all lesser elements from being added in the future and carries all the already
present components from the typicality set. Continuing the example, if the 𝑁 ′ is the new
prime successor, with 𝑁 ⊂ 𝑁 ′, then the edges (𝑀U, 𝑁∅) and (𝑀U, 𝑁U) are removed from
𝑟Ip , and new edges (𝑀U, 𝑁 ′∅) and (𝑀U, 𝑁 ′U) are added.

Both stages of the upgrade – the update and the model recovery – have hard limits.
For the update, saturation occurs when everyU ⊆ D is added to a certain role. For the
model recovery, it occurs when the prime successor is sigC(K). At each step, the updated
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role moves over the partial order towards these hard limits, guaranteeing termination. The
diagram in Figure 7.8 illustrates the behavior of the upgrade. □

Update Model recovery

𝑀U {𝐴}

{𝐴, 𝐵}

...

sigC(K) D

...

{U1}

{∅}𝑟
𝑀U {𝐴}

{𝐴, 𝐵}

...

sigC(K) D

...

{U1}

{∅}𝑟

Figure 7.8: Diagram representing the two steps of an upgrade with 𝑀U as the root. The elements
were broken down into two columns. The dashed lines represent changes during each step, and the
colored dotted edge symbolizes an edge being removed. During update stage, the procedure saturates
the second component of the successor. In this case, it adds the edge to {𝐴}U1

. On the model recovery, it
moves the edges upwards in the first column. In this example, it moves the edges pointing to elements
with {𝐴} as its first component to {𝐴, 𝐵}.

7.4 Nested Reasoning
The minimal typicality model highlights that materialization-based reasoning does

not generally push information through roles. Hence, all required successors are atypical.
The upgrade procedure we presented intends to remedy this by upgrading edges when
possible, and possibility is bounded by consistency and adequacy to the quasi-canonical
behavior of concept and role memberships.

The intuition backing nested reasoning is that a typicality upgrade for a role successor
should be done except when it cannot be made compatible with the rest of the typicality
model. Formally, this reasoning coverage is defined by the reasoning emerging from a
preferred set of models – those in TUmax(IKmin, InitIKmin

,K), for the minimal typicality model

IKmin and some strength s over the DKBK . Limiting the considered models to those ensure
that every role successor has been made as typical as possible.

Definition 7.40 (Nested Reasoning). Let K be a DKB; 𝐴 ∈ sigC(K) and 𝑀 ∈ ΔK be a set
of named concepts in the representative domain. Let s be a strength and (IKmin, InitIKmin

) the
labeled minimal typicality model for s. We define s nested entailment by:

K |=nest,s ⌈𝑀⌉ ⊑ 𝐴 iff ⌈𝑀⌉I ⊆ 𝐴I , for every I ∈ TUmax(IKmin, InitIKmin
,K)

K |=nest,s ⌈𝑀⌉ ⊏∼ 𝐴 iff 𝑀U ∈ 𝐴I for every maximally typical instance of 𝑀

in the domain, for every I ∈ TUmax(IKmin, InitIKmin
,K)

Nested reasoning presents some interesting properties. It extends propositional defea-
sible reasoning, preserving all its entailments. For the strict part, both the propositional
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and the nested coverages are equivalent to the standard entailment, making them supra-
classical.

Lemma 7.41. Let K be a DKB and s be a strength, 𝐴 ∈ sigC(K) and 𝑀 ∈ ΔK be a set of
named concepts in the representative domain. Then:

1. K |=prop,s ⌈𝑀⌉ ⊏∼ 𝐴⇒ K |=nest,s ⌈𝑀⌉ ⊏∼ 𝐴;

2. K |= ⌈𝑀⌉ ⊑ 𝐴⇔ K |=prop,s ⌈𝑀⌉ ⊑ 𝐴⇔ K |=nest,s ⌈𝑀⌉ ⊑ 𝐴.

Proof. (1). The maximally typical instances of any 𝑀 ∈ ΔK are the same in the minimal
typicality model and any extension emerging from the upgrade procedure, as they share the
same domain. To establish the claim, it suffices to notice that (i) defeasible subsumption is
established by membership w.r.t. named concepts of the maximally typical representatives,
and (ii) the upgrade procedure only increases the NC-type of the elements. Hence, if
𝑀U ∈ 𝐴I

K
min , 𝑀U ∈ 𝐴I , for any I ∈ TUmax(IKmin, InitIKmin

,K).

(2). We show the property by proving monotone reasoning⇒ propositional typicality-models
based reasoning⇒ nested typicality-models based reasoning⇒ monotone reasoning. We
consider a generic strength s.

Suppose that K |= ⌈𝑀⌉ ⊑ 𝐴. For every element 𝑁V ∈ ΔI
s

min s.t. 𝑁V ∈ ⌈𝑀⌉I
s

min ,
K |= ⌈𝑁 ⌉ ⊓ V ⊑ ⌈𝑀⌉, and therefore K |= ⌈𝑁 ⌉ ⊓ V ⊑ 𝐴. Hence, 𝑁V ∈ 𝐴I

s
min , establishing

the first claim.

For the second, notice that the NC-types of the elements only increase during the
upgrade procedure. Therefore, a counterexample to the strict subsumption could only
arise from an element added to the extension of ⌈𝑀⌉ during the upgrade procedure. Let
𝑁V be such an element. However, every I ∈ TUmax(IKmin, InitIKmin

,K) is a model of K , and

K |= ⌈𝑀⌉ ⊑ 𝐴. Hence, 𝑁V ∈ 𝐴I , for every I ∈ TUmax(IKmin, InitIKmin
,K).

For the last part, notice that the atypical representative of 𝑀 , 𝑀∅, is defined for the
minimal typicality model as only belonging to the concepts 𝐴 s.t. K |= ⌈𝑀⌉ ⊑ 𝐴, and it is
not upgraded during the upgrade procedure. Hence, for every I ∈ TUmax(IKmin, InitIKmin

,K),
NC-typeK (𝑀∅,I) = NC-typeK (𝑀∅,Ismin). Therefore, 𝑀∅ is the minimal member of the
concept ⌈𝑀⌉, and 𝑀∅ ∈ 𝐴I iff K |= ⌈𝑀⌉ ⊑ 𝐴, completing the proof.

Notice also that typicality models allow checking strict subsumptions ⌈𝑀⌉ ⊑ 𝐴 by
looking at concept membership of 𝑀 atypical instances, i.e. 𝑀∅. □

To put nested reasoning in perspective, we delve into the domain shapes explored
in this dissertation. We show that each of the three strengths – rational, relevant, and
lexicographic – extend their propositional counterpart, dealing with quantification neglect.
Then, we compare nested reasoning for each of the strengths in the same spirit as the
analogous comparison for EL⊥ in Section 6.3.5.
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7.4.1 Nested Rational Reasoning

Definition 7.42 (Nested Rational Reasoning). Let K be a DKB; 𝐴 ∈ sigC(K) and 𝑀 ∈ ΔK
be a set of named concepts in the representative domain. Let (IKmin,rat, InitIKmin,rat

) be the labeled
minimal typicality domain for rat. We define rational nested entailment by:

K |=nest,rat ⌈𝑀⌉ ⊑ 𝐴 iff ⌈𝑀⌉I ⊆ 𝐴I , for every I ∈ TUmax(IKmin,rat, InitIKmin,rat
,K)

K |=nest,rat ⌈𝑀⌉ ⊏∼ 𝐴 iff 𝑀E ∈ 𝐴I for every maximally typical instance

of 𝑀 in the domain,∀I ∈ TUmax(IKmin,rat, InitIKmin,rat
,K)

Example 7.43. Consider the DKB described in Example 7.15. Suppose we want to test whether
K |=nest,rat Human ⊏∼ ∃worships.Immortal. First, we introduce an auxiliary concept 𝐴𝑢𝑥
and the GCI ∃worships.Immortal ⊑ 𝐴𝑢𝑥 to the TBox. Notice that this GCI is equivalent to
Immortal ⊑ ∀worships−.𝐴𝑢𝑥 . We test whetherK |=nest,rat Human ⊏∼ 𝐴𝑢𝑥 . The most typical
instance of Human is {Human}E0 , for E0 = D.

In the minimal typicality model, ({Human}E0, {Deity}∅) ∈ worshipsI
K

min,rat and
{Human}E0 ∉ 𝐴𝑢𝑥

IKmin,rat . However, this edge can be upgraded to end in {Deity}E1 , and
this upgrade does not interfere with any other possible upgrades, i.e. it is present in all
upgrade paths. The model recovery adds {Human}E0 to 𝐴𝑢𝑥 , and therefore, for every
I ∈ TUmax(IKmin, InitIKmin

,K), {Human}E0 ∈ 𝐴𝑢𝑥I , as illustrated in Figure 7.9.

Being

Human

Deity, Powerful

Immortal

E0 E1 ∅

DE1 D∅

HE0 HE1 H∅

D,PE1 D,P∅

Δ𝑇 (K)rat

Figure 7.9: Diagrams representing a fragment shared by all the models in TUmax(IKmin, InitIKmin
,K).

The new edge (HumanE0, {Deity, Powerful}E1) ∈ worshipsI results in HumanE0 ∈ 𝐴𝑢𝑥I .

Now, we can establish the relationship between rational nested and propositional
reasonings. By consequence of Lemma 7.16, this relationship also characterizes the rela-
tionship between nested rational and materialization-based rational reasonings.

Theorem 7.44. Let K be a DKB, 𝑀 ∈ ΔK be a set of named concepts in the representative
domain, and 𝐴 ∈ sigC(K) be a name. Then:

1. K |=prop,rat ⌈𝑀⌉ ⊏∼ 𝐴⇒ K |=nest,rat ⌈𝑀⌉ ⊏∼ 𝐴,

2. K |=prop,rat ⌈𝑀⌉ ⊏∼ 𝐴 ⇍ K |=nest,rat ⌈𝑀⌉ ⊏∼ 𝐴

Proof. Claim 1 is a special case of the Lemma 7.41, 1. Example 7.43 ensures claim 2. □
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Nested rational reasoning solves the problem of quantification neglect by upgrading
role successors whenever it is possible. However, it does so in a domain shaped by the
exceptionality chain, which means that the granularity of the defeasible information is too
coarse to capture some subtleties. It can extend defeasible information to role successors,
but this defeasible information is still affected by problems such as inheritance blocking.
Although nested rational reasoning entails humans typically worship immortals, as shown
by Example 7.43, it does not entail that humans typically worship corporeal beings, even
though deities are beings and beings are typically corporeal. We introduce nested reasoning
of relevant and lexicographic strengths to address this shortcoming.

7.4.2 Nested Relevant and Lexicographic Reasoning

Definition 7.45 (Nested Relevant Reasoning). Let K be a DKB; 𝐴 ∈ sigC(K) and 𝑀 ∈ ΔK
be a set of named concepts in the representative domain. Let (IKmin,rel, InitIKmin,rel

) be the minimal
labeled typicality model for rel strength. We define relevant nested entailment by:

K |=nest,rel ⌈𝑀⌉ ⊑ 𝐴 iff ⌈𝑀⌉I ⊆ 𝐴I , for every I ∈ TUmax(IKmin,rel, InitIKmin,rel
,K)

K |=nest,rel ⌈𝑀⌉ ⊏∼ 𝐴 iff 𝑀U ∈ 𝐴I for every maximally typical instance

of 𝑀 in the domain,∀I ∈ TUmax(IKmin,rel, InitIKmin,rel
,K)

Definition 7.46 (Nested Relevant Reasoning). Let K be a DKB; 𝐴 ∈ sigC(K) and 𝑀 ∈ ΔK
be a set of named concepts in the representative domain. Let (Ilexmin,lex, InitIKmin,lex

) be the minimal
labeled typicality model for lex strength. We define lexicographic nested entailment by:

K |=nest,lex ⌈𝑀⌉ ⊑ 𝐴 iff ⌈𝑀⌉I ⊆ 𝐴I , for every I ∈ TUmax(IKmin,lex, InitIKmin,lex
,K)

K |=nest,lex ⌈𝑀⌉ ⊏∼ 𝐴 iff 𝑀U ∈ 𝐴I for every maximally typical instance

of 𝑀 in the domain,∀I ∈ TUmax(IKmin,lex, InitIKmin,lex
,K)

Nested relevant and lexicographic reasonings tackle inheritance blocking and quantifi-
cation neglect simultaneously. Inheritance blocking is solved by increasing the granularity
of the typicality set, while the upgrade procedure propagates typical information through
role edges. Example 7.47 illustrates this feature.

Example 7.47. Consider the DKB described in Example 7.15. Let s ∈ {rel, lex}.

We want to test whether K |=nest,s Human ⊏∼ ∃worships.Corporeal. First, we introduce
an auxiliary concept 𝐴𝑢𝑥 and the GCI Corporeal ⊑ ∀worships−.𝐴𝑢𝑥 (which is equivalent to
∃worships.Corporeal ⊑ 𝐴𝑢𝑥) to the TBox. Then, we test whether K |=nest,s Human ⊏∼ 𝐴𝑢𝑥 .
The most typical instance of Human in the relevant domain is {Human}D .

The minimal typicality relevant model has the worships edge ({Human}D, {Deity, Powerful}∅),
which connects the most typical instance of Human to the atypical powerful
deity. The most typical successor attainable by the upgrade procedure connects
({Human}D, {Deity, Powerful}U), where U = {Being ⊏∼ Corporeal,Deity ⊏∼ Immortal}.
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This is not incompatible with any other upgrade, and therefore {Human}D ∈ 𝐴𝑢𝑥I for every
I ∈ TUmax(IKmin,s, InitIKmin,s

,K). Hence, K |=nest,s Human ⊏∼ 𝐴𝑢𝑥 , which is equivalent to
K |=nest,s Human ⊏∼ ∃worships.Corporeal. This configuration is represented in Figure 7.10.

D
C ⊏∼ F
H D, P

B ⊏∼ M
B ⊏∼ C
H D, P

B ⊏∼ M
D ⊏∼ I
H D, P

B ⊏∼ C
D ⊏∼ I
H D, P

B ⊏∼ M
C ⊏∼ F
H D, P

B ⊏∼ C
D ⊏∼ I
H D, P

D ⊏∼ I
C ⊏∼ F
H D, P

∅
C ⊏∼ F
H D, P

Figure 7.10: Common fragment of all interpretations in TUmax(IKmin, InitIKmin
,K). The thick ar-

row connecting HumanD to {Deity, Powerful}U to {Deity, Powerful}U , where U = {Being ⊏∼
Corporeal,Deity ⊏∼ Immortal} is an edge of the role worships that is common to all saturated
typicality models.

As with nested rational reasoning, nested relevant and lexicographic reasonings extends
their propositional counterparts and, therefore, they also extend their materialization-based
counterparts. The argument is the same as before.

Theorem 7.48. Let K be a DKB, 𝑀 ∈ ΔK be a set of named concepts in the representative
domain, 𝐴 ∈ sigC(K) be a name, and s ∈ {rel, lex}. Then:

1. K |=prop,s ⌈𝑀⌉ ⊏∼ 𝐴⇒ K |=nest,s ⌈𝑀⌉ ⊏∼ 𝐴,

2. K |=prop,s ⌈𝑀⌉ ⊏∼ 𝐴 ⇍ K |=nest,s ⌈𝑀⌉ ⊏∼ 𝐴

Proof. Claim 1 is a special case of the Lemma 7.41, 1. Example 7.47 ensures claim 2. □

7.5 Comparing Semantics for ELI⊥
The hierarchy of defeasible semantics is established for materialization-based reason-

ing. Both relevant and lexicographic strengths extend rational reasoning [Cas+14a], and
lexicographic is stronger than the relevant closure [Cas+14a]. These results transfer to
typicality-models semantics of propositional coverage. However, as in EL⊥, the same
order is not preserved under nested coverage. We already showed how nested coverage
of any strength extends its propositional counterpart. Now, we compare the different
strengths, laying out a complete hierarchy of typicality-models based reasoning of nested
coverage.
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Rational compared to relevant and lexicographic strengths First, we show that the
rational strength is not comparable to relevant and lexicographic strengths in the nested
coverage.

Theorem 7.49. Let K = (T ,D) be a DKB, 𝑀 ∈ ΔK be a set of named concepts in the
representative domain, and 𝐴 ∈ sigC(K) be a concept name.

1. K |=nest,rat ⌈𝑀⌉ ⊏∼ 𝐴 ⇏ K |=nest,rel ⌈𝑀⌉ ⊏∼ 𝐴;

2. K |=nest,rat ⌈𝑀⌉ ⊏∼ 𝐴 ⇍ K |=nest,rel ⌈𝑀⌉ ⊏∼ 𝐴;

3. K |=nest,rat ⌈𝑀⌉ ⊏∼ 𝐴 ⇏ K |=nest,lex ⌈𝑀⌉ ⊏∼ 𝐴;

4. K |=nest,rat ⌈𝑀⌉ ⊏∼ 𝐴 ⇍ K |=nest,lex ⌈𝑀⌉ ⊏∼ 𝐴.

Proof. We prove the claims by specifying a DKB in which rational nested reasoning
diverges from both relevant and lexicographic nested reasonings.

Let K = (T ,D) be the DKB defined as2:

T ={𝐴 ⊑ ∃𝑟 .𝐵, 𝐵 ⊑ ∃𝑟 .𝐶, 𝐵 ⊑ 𝐷,𝐺0 ⊑ ∀𝑟−𝐺1,

𝐺1 ⊑ ∀𝑟−.𝐺2,𝐺2 ⊓ ∃𝑟 .𝐹 ⊑ ⊥, 𝐷 ⊓ ∃𝑟 .𝐺0 ⊑ ⊥}
D ={𝐵 ⊓ 𝐸 ⊏∼ ⊥, 𝐷 ⊏∼ 𝐸, 𝐷 ⊏∼ 𝐹,𝐶 ⊏∼ 𝐺0}

The exceptionality chain for this DKB is given by E0 = D, E1 = {𝐵 ⊓ 𝐸 ⊏∼ ⊥}. The setU
such that selK,rel(𝐵) = U and selK,lex(𝐵) = {U} isU = {𝐵 ⊓ 𝐸 ⊏∼ ⊥,𝐶 ⊏∼ 𝐺0, 𝐷 ⊏∼ 𝐹 }.

The most typical instance of 𝐴 in all domains is {𝐴}D . It the rational domain, it can
upgrade its 𝐵 𝑟 -successor to {𝐵}E1 , which can upgrade its 𝐶 successor to {𝐷}D . Hence, in
all upgrade paths, 𝐴 ends up with in ∃𝑟 .∃𝑟 .𝐺0, which is equivalent to 𝐺2.

However, in both the lexicographic and the relevant domains, there is an alternative
path incompatible with the first one. Upgrading 𝐴’s 𝐵 𝑟 -successor to {𝐵}U creates an im-
passe: unlike its less typical counterpart, {𝐵}U cannot upgrade its𝐶 𝑟 -successor. However,
the rational path is not achievable once𝐴 gets this successor, as {𝐶}D would push𝐺2 back
to𝐴, which is not consistent with 𝐷 successors. Figure 7.11 depicts this effect, highlighting
both upgrade paths.

Notice that, in this example:

• K |=nest,rat 𝐴 ⊏∼ 𝐺2, K ̸|=nest,rel 𝐴 ⊏∼ 𝐺2, and K ̸|=nest,lex 𝐴 ⊏∼ 𝐺2,

• K ̸|=nest,rat 𝐵 ⊏∼ 𝐹 , K |=nest,rel 𝐵 ⊏∼ 𝐹 , and K |=nest,lex 𝐵 ⊏∼ 𝐹 .

□

In this case, the stronger part of the relevant and rational strengths comes from the
propositional framework. However, this is not the only way in which lexicographic and
relevant strengths can be stronger under nested coverage. These strengths can extend

2 We use a non-normalized DKB to make the example more intuitive. The effect would be the same in a
normalized DKB.
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Δ𝑇 (K)rat

Δ𝑇 (K)rel 𝐹

𝐺0

𝐴D 𝐵∅

𝐵E1

𝐵U

𝐶∅

𝐶D

Figure 7.11: Diagram representing an overlapping fragment of the upgrade possibilities in the rational
domain and in the lexicographic/relevant domains. green arrows represent a complete upgrade path
only available to the relevant and lexicographic domains. The purple path is available to all the domain
shapes.

rational reasoning by tackling inheritance blocking nested within quantifiers. Therefore,
their entailment relations are truly incomparable in nested coverage.

Comparison between relevant and lexicographic The comparison between relevant
and lexicographic strengths is the only one left. It was established by [Cas+14a] that
lexicographic trumps relevant in the materialization-based setting, and this result transfers
to typicality-models based reasoning of propositional strength via Lemma 7.20. This
hierarchy is not imported to the nested coverage, and both strengths define incomparable
entailment relations.

The effect is very similar to what generated incomparability w.r.t. the rational strength:
lexicographic is stronger in the propositional setting, which means it has a larger domain.
A large domain may give rise to new entailments by allowing upgrades to more typical
required successors. On the other hand, this increase in domain size can also undermine
some conclusions by virtue of the skeptical nature of nested reasoning. An upgrade that
was the only path in some strength, therefore leading to some conclusion, can be dissolved
in a larger domain that introduces other incompatible paths. The models corresponding
to the entailment are still there, but they are not the only ones in the set of preferred
models.

Theorem 7.50. Let K = (T ,D) be a DKB, 𝑀 ∈ ΔK be a set of named concepts in the
representative domain, and 𝐴 ∈ sigC(K) be a concept name.

1. K |=nest,rel ⌈𝑀⌉ ⊏∼ 𝐴 ⇏ K |=nest,lex ⌈𝑀⌉ ⊏∼ 𝐴;

2. K |=nest,rel ⌈𝑀⌉ ⊏∼ 𝐴 ⇍ K |=nest,lex ⌈𝑀⌉ ⊏∼ 𝐴.
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Proof. The proof relies on the DKB that shows both items of the theorem. LetK′ = (T ′,D′)
be defined from the DKB K = (T ,D) from Example 7.49 as follows:

T ′ = T \ {𝐹 ⊓ ∃𝑟 .𝐺0 ⊑ ⊥}
∪ {𝐵 ⊓ 𝐹1 ⊓ 𝐹3 ⊑ ⊥, 𝐵 ⊓ 𝐹2 ⊓ 𝐹3 ⊑ ⊥, 𝐹1 ⊓ ∃𝑟 .𝐺0 ⊑ ⊥}

D2 = (D \ {𝐷 ⊏∼ 𝐹 })
∪ {𝐷 ⊏∼ 𝐹1, 𝐷 ⊏∼ 𝐹2, 𝐷 ⊏∼ 𝐹3}

Intuitively, 𝐹 is broken down into 𝐹1, 𝐹2, and 𝐹3. Taken together, they are not compatible
with 𝐵. However, 𝐹1 and 𝐹2 can be applied 𝐵, as does 𝐹3 alone. This partitioning highlights
the difference between lexicographic closure, which “counts” the number of DCIs, and
relevant, which wipes same-ranked DCIs leading to inconsistency.

The exceptionality chain for this DKB is given by E0 = D, E1 = {𝐵 ⊓ 𝐸 ⊏∼ ⊥}.
The set U s.t. selK,lex(𝐵) = {U} is U = D \ {𝐷 ⊏∼ 𝐸, 𝐷 ⊏∼ 𝐹3}. All upgrade paths

starting from the minimal typicality relevant model upgrade ({𝐴}D, {𝐶}∅) ∈ 𝑟
IKmin,rel to

({𝐴}D, {𝐶}D) ∈ 𝑟I , and therefore, have {𝐴}D ∈ 𝐺I2 . Hence, K |=nest,rel 𝐴 ⊏∼ 𝐺2. However,

the minimal lexicographic model has a possible upgrade from ({𝐴}D, {𝐵}∅) ∈ 𝑟
IKmin,lex to

({𝐴}D, {𝐵}U) ∈ 𝑟I that blocks the aforementioned upgrade path, resulting in K ̸|=nest,lex
𝐴 ⊏∼ 𝐺2.

Notice, however, that the more typical 𝐵 instance in the domain brings some additional
conclusions to the preferred models from lexicographic strength, as {𝐵}U ∈ 𝐹2. Therefore,
K |=nest,lex 𝐵 ⊏∼ 𝐹2, while K ̸|=nest,rel 𝐵 ⊏∼ 𝐹1.

□

To summarize the comparison, the materialization-based hierarchy between rational,
relevant, and propositional strengths holds on typicality-models semantics of propositional
coverage. Furthermore, the nested coverage of each strength extends its propositional
(and, therefore, its materialization-based) counterpart. However, the hierarchy does not
hold between different strengths in typicality-models based reasoning of nested coverage.
The different strengths examined in this dissertation are not comparable in this coverage.
These results are analogous to the ones for EL⊥ and are summarized in Figure 7.12.

7.6 Epilogue: Lifting rational defeasible instance
checking based on typicality models to ELI⊥

The epilogue of Chapter 6 presented a procedure to extend instance checking for
semantics based on rational models of rational strength for EL⊥. This section presents a
strategy to port this technique to the typicality models framework for ELI⊥.

The introduction of inverse roles changes the representation of individuals in two ways.
First, it introduces a fourth type of edge: (𝐶U, 𝑎V), where 𝑎 ∈ sigI(K) is an individual. In
EL⊥, individuals only appeared on the left-hand side of roles. In ELI⊥, they can also be
featured on the right-hand side due to the occurrence of inverse roles.
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ELI⊥

MatBas. rat MatBas. rel MatBas. lex

Prop. rat Prop. rel Prop. lex

Nest. rat Nest. rel Nest. lex

===

<<

<<<

≠≠
≠

Figure 7.12: Diagram with the strength comparison between materialization-based and typicality-
models-based defeasible subsumption checking of all strengths and coverages. The < and = relations
are transitive.

The second novelty is that value restrictions can cover both directions of any edge. In
EL⊥, they were limited to the predecessors, as they were expressed through the equivalence
∃𝑟 .𝐴 ⊑ 𝐷 ≡ 𝐴 ⊑ ∀𝑟−.𝐷 . Therefore, ELI⊥ is compatible with axioms of the form 𝐶 ⊑
∀𝑟 .𝐷 , which also affects the elements representing individuals in typicality domains. This
increase in expressivity is reflected in the construction of the domain and in the upgrade
procedure.

7.6.1 Building the minimal typicality model with individuals
The construction of the enriched ABox according to some order 𝑜 remains unchanged.

The original algorithm was devised to ALC, which is more expressive than ELI⊥. How-
ever, the interpretation induced by the ABox proposed for EL⊥ in 7.51 has to undergo
some changes to account for the changes in the domain’s structure. Formally, the new
definition is given by:

Definition 7.51 (ABox Interpretation for ELI⊥). LetK = (A∗,T ,D) be a DKB expanding
(A,T ,D) as described in 6.36 according to the order over individuals 𝑜 . With IA∗,K =

(ΔIA∗,K , ·IA∗,K ). Then:

ΔIA∗,K = {𝑎 𝑗EK𝑜𝑎𝑗

| 𝑎 𝑗 ∈ sigI(A)} ∪ {𝑀∅ | 𝑀 ∈ P(sig(T ))}

𝑎
IA∗,K
𝑗

= 𝑎 𝑗EK𝑜𝑎𝑗

𝐴IA∗,K = {𝑎 𝑗EK𝑜𝑎𝑗

∈ ΔIA∗,K | K |= 𝐴(𝑎 𝑗 )}

𝑟IA∗,K = {𝑟 (𝑎 𝑗EK𝑜𝑎𝑗

, 𝑎𝑘EK𝑜𝑎𝑘

) ∈ A∗}

∪ {(𝑎 𝑗EK𝑜𝑎𝑗

, 𝑀∅) | K |= (∃𝑟 .⌈𝑀⌉)(𝑎 𝑗 ) for a prime 𝑀 𝑟 -successor for 𝑎 𝑗 in K}

∪ {(𝑀∅, 𝑎 𝑗EK𝑜𝑎𝑗

) | K |= (∃𝑟−.⌈𝑀⌉)(𝑎 𝑗 ) for a prime 𝑀 𝑟−-successor for 𝑎 𝑗 in K}
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We show two fundamental properties of this new version of ABox interpretation. First,
we show that the concept membership of the individuals in the interpretation coincides
perfectly with what is entailed by rational materialization-based instance checking. Second,
we show that the union of this interpretation with the minimal typicality model is a model
of K .

Lemma 7.52. Let K = (A,T ,D) be a DKB, 𝑜 be a total order over sigI(A), and IA∗,K be
an ABox interpretation as defined in Definition 7.51. Let 𝐴 ∈ sigC(K). Then:

K |=mat,rat,𝑜 𝐴(𝑎) iff IA∗,K ∪ IKmin |= 𝐴(𝑎)

Proof. This follows directly from the definition. Materialization-based instance checking
is defined by selecting a E𝑖 by iteratively expanding the ABox according to the order
𝑜 . For a given 𝑎 𝑗 , this set is EK𝑜

𝑎 𝑗 . Then, K |=mat,rat,𝑜 𝐴(𝑎 𝑗 ) iff (A∗, (T ,D)) |= 𝐴(𝑎 𝑗 ) iff

𝑎 𝑗EK𝑜𝑎𝑗

∈ 𝐴IA∗,K∪I
K

min,rat iff IA∗,K ∪ IKmin,rat |= 𝐴(𝑎). □

Now, we show that IA∗,K ∪ IKmin,rat is indeed a model of the DKB.

Theorem 7.53. Let K = (A,T ,D) be a DKB and 𝑜 an order over the individuals in A. Let
IA∗,T be an ABox interpretation as defined in Definition 7.51. It follows that

IKmin,rat ∪ IA∗,K |= K

Proof. Lemma 7.9 shows that IKmin,rat |= 𝐶 ⊑ 𝐷 for every 𝐶 ⊑ 𝐷 ∈ (T ,D). The interpreta-
tion IA∗,T is quasi-disjoint to IKmin,rat. Hence, all information on concept representatives
comes from IKmin,rat, and IKmin,ratis a model of K . What remains to be shown is that the
individuals introduced by IA∗,T D do not break the model property. In principle, those
individuals could break the model property in two ways.

The first is by directly violating an axiom, e.g. 𝑎U ∈ (𝐴I
K

min,rat∪IA∗,K \ 𝐵I
K

min,rat∪IA∗,K ) for
some𝐴 ⊑ 𝐵 ∈ T . The second is by violating a value restriction by being connected to some
concept representative, e.g., (𝑎U, 𝑀∅) ∈ 𝑟I

K
min,rat∪IA∗,K , 𝐴 ⊑ ∀𝑟−.𝐵 ∈ T , 𝑀∅ ∈ 𝐴I

K
min,rat∪IA∗,K ,

and 𝑎U ∉ 𝐵
IKmin,rat∪IA∗,K .

None of these conditions hold. To show it, we proceed by cases. First, we check
whether the individuals respect all the axioms in K . Then, we check whether the role
edges connecting individuals and concept representatives violate something required by
K . We recall that the terminological knowledge is normalized, and the ABox is simple.
Therefore, there are four forms of axioms. We proceed by cases. Let 𝑎U ∈ 𝐴I

K
min,rat∪IA∗,K (or,

for the conjunctive axiom, 𝑎U ∈ 𝐴
IKmin,rat∪IA∗,K
1 and 𝑎U ∈ 𝐴

IKmin,rat∪IA∗,K
2 ). Notice that K is an

extension of K . Therefore, K |= 𝐶 ⊑ 𝐷 implies K |= 𝐶 ⊑ 𝐷 .

Case 1: 𝐴 ⊑ 𝐵 and 𝐴1 ⊓𝐴2 ⊑ 𝐵. The hypothesis 𝑎U ∈ 𝐴I
K

min,rat∪IA∗,K implies K |= 𝐴(𝑎). But
K |= 𝐴 ⊑ 𝐵, therefore, K |= 𝐵(𝑎), and 𝑎U ∈ 𝐵I

K
min,rat∪IA∗,K . The argument for 𝐴1 ⊓𝐴2 ⊑ 𝐵

is identical, with one extra step going from 𝐴1 ⊓𝐴2 to 𝐴1 and 𝐴2.
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Case 2: 𝐴 ⊑ ∃𝑟 .𝐵. Remember that, by construction, K |= 𝐴(𝑎). This fact implies K |=
(∃𝑟 .𝐵) (𝑎). Notice also that 𝐵 ∈ 𝑄𝑐 (K), therefore {𝐵}∅ ∈ Δ𝑇 (K) and there is some 𝑀 ⊇
{𝐵} that is the prime 𝑟 -successor for 𝑎 in K . Then, (𝑎U, 𝑀∅) ∈ 𝑟I

K
min,rat∪IA∗,K and 𝑀∅ ∈

𝐵
IKmin,rat∪IA∗,K . Notice that the argument stays the same if 𝑟 is an inverted role.

Case 3: 𝐴 ⊑ ∀𝑟 .𝐵. From the hypothesis, we have K |= (∀𝑟 .𝐵) (𝑎). Suppose that there is
some element 𝑒 in the domain s.t. (𝑎, 𝑒) ∈ 𝑟I

K
min,rat∪IA∗,K . The element 𝑒 may be a concept

or an individual representative. If it is a concept representative 𝑀∅, we know that K |=
(∃𝑟 .⌈𝑀⌉)(𝑎), for a prime𝑀 . The primeness of𝑀 implies 𝐵 ∈ 𝑀 , otherwise𝑀 would not be
prime, as K |= (∃𝑟 .⌈𝑀 ∪ {𝐵}⌉)(𝑎). Therefore, 𝑀∅ ∈ 𝐵I

K
min,rat∪IA∗,TD . On the other hand, if 𝑒

is an individual representative – 𝑏 ∈ sigI(K) – then (𝑎, 𝑏) : 𝑟 ∈ A∗. This, in conjunction
with K |= 𝐴(𝑎), imply K |= (𝐵) (𝑏). Therefore, 𝑏 ∈ 𝐵I

K
min,rat∪IA∗,K .

Case 4: 𝐴(𝑎) ∈ A∗. This follows directly from the construction of IA∗,K .

Now, we proceed to investigate the edges between individuals and concept representa-
tives. Suppose3 (𝑎U, 𝑀∅) ∈ 𝑟I

K
min,rat∪IA∗,K ,𝑀∅ ∈ 𝐴I

K
min,rat∪IA∗,K , and𝐴 ⊑ ∀𝑟−.𝐵 ∈ T . Consider

the following two facts.

(A) (𝑎,𝑀∅) ∈ 𝑟I
K

min,rat∪IA∗,K implies (A∗,T) |= (∃𝑟 .𝑀) (𝑎), with a maximal 𝑀 .

(B) 𝑀∅ ∈ 𝐴I
K

min,rat∪IA∗,K implies (A∗,T) |= ⌈𝑀⌉ ⊑ 𝐴.

Taken together, (A) and (B) yield (A∗,T) |= 𝐵(𝑎), which, in turn, implies 𝑎 ∈ 𝐵I
K

min,rat∪IA∗,K .

Once again, if the situation is inverted and the edge is (𝑀∅, 𝑎U) ∈ 𝑟I
K

min,rat∪IA∗,K , the
argument is the same. □

7.6.2 A commentary on the upgrade procedure

We have shown that the expanded minimal typicality model IKmin,rat∪IA∗,K is canonical
regarding instance checking for materialization-based rational reasoning. Now, we consider
the effect of this increase in the input model in the upgrade procedure. We do not rebuild
the whole upgrade but instead merely comment on why the extended model does not spoil
it.

In general, individual representatives behave as special cases of concept representatives.
This means that their introduction increases the number of upgrade paths, as the order of
upgrades now includes edges containing individuals. Other than that, the fundamental idea
behind the algorithm remains the same. Let us consider some remarks on the idiosyncrasy
of individual representatives in the upgrade procedure:

1. Upgrades of edges initiated by individuals can block upgrades of concept represen-
tatives.

2. Individuals initiate every edge to which they belong. From this fact, it follows that:

3 Notice that, by construction, all edges between individuals and concept representatives land on atypical
concept representatives.
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(a) Let 𝑎 be an individual and 𝑀U be a concept representative. If an edge
(𝑎V, 𝑀U) ∈ 𝑟I or (𝑀U, 𝑎V) ∈ 𝑟I breaks the model property due to the vio-
lation of some value restriction from 𝑀U , the solution is always moving the
endpoint 𝑀U to a suitable 𝑀′U , 𝑀 ⊂ 𝑀′. If, on the other hand, the violation
is in 𝑎, then the solution is always adding 𝑎V to the extension of the missing
concept.

(b) Let 𝑎, 𝑏 be individuals. If an edge (𝑎V, 𝑏U) breaks the model property (due to
the violation of some value restriction), the solution is adding 𝑎V or 𝑏U to the
extension of the missing concept.

The first remark is not exclusive to ELI⊥. Upgrades may add an individual repre-
sentative to some concept, which may block other upgrades of concepts connected to
this particular individual representative. This flow of information depends on axioms
with existential restrictions on the left-hand side, i.e. value restrictions over the inverted
role. The following interpretation exemplifies this property. This remark only highlights
that the introduction of individuals does indeed amplify the upgrade branches leading to
saturated typicality models.

Now, we consider the second remark. Edge labels stem from existential restrictions.
Edges are labeled by InitI regarding the elements whose concept (or individual) requires the
other concept as a prime existential witness. Because ELI⊥ lacks nominals, requirements
involving individuals are limited to (i) (∃𝑟 .𝐴) (𝑎) ∈ A∗ and (ii) 𝑟 (𝑎, 𝑏) ∈ A∗. The first
one, in conjunction with the rest of the DKB, implies the existence of some maximal
𝑀 ⊇ {𝐴} such thatK |= (∃𝑟 .⌈𝑀⌉)(𝑎). Therefore, the corresponding edge is labeled with p,
belonging to the representative of 𝑎. For the second kind of requirement, the edge is labeled
with {s, p}, as it belongs to both individual representatives. Every violation arising from an
edge connecting two individuals can only be fixed by adding the violating representatives
to the extension of the missing concepts.

There are three kinds of violations involving individuals. They are characterized by
the elements in the edge that give rise to the violation. They are individual–individual,
individual–concept, and concept-individual (the first element is the one that breaks some
axiom or consequence of the KB).

𝐴 ⊑ ∀𝑟−.𝐵

𝑎V 𝑀U

𝐴

𝑎V

𝐵

𝑀U

𝐴

Figure 7.13: A concept representative may be added to some concept 𝐴, imposing restrictions on its
neighbors. When the neighbor is an individual representative, it is added to the extension of the missing
concept because it will always initiate the edge.

To conclude the discussion, we show that this expansion of typicality models deals
with quantification neglect in the rational case. Consider the following example.

Example 7.54. Let K = (A,T ,D) be the DKB defined in 7.15 with the additional ABox
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𝐴 ⊑ ∀𝑟 .𝐵

𝑎V

𝑀U

𝑀 ∪ {𝐵}𝑈

𝐴

𝑎V

𝐴
𝑀U

𝑀 ∪ {𝐵}𝑈

Figure 7.14: An individual representative may be added to some concept 𝐶 , which may impose
restrictions on its neighbors. When those neighbors are concept representatives, the individual owns
the edge. Hence, the repair consists in moving the edge to a more inclusive concept representative.

𝐴 ⊑ ∀𝑟−.𝐵

𝑎U 𝑏V

𝐴

𝑎U

𝐵

𝑏V

𝐴

Figure 7.15: Edges between two individuals are labeled with {≺, s}. Moving them is impossible, as
individuals have only one representative per domain. Hence, the solution is to add the individual to the
extension of the missing concept.

A = {Human(hector)}. Figure 7.16 represent the minimal typicality model fragments and
the common part of all saturated models.

IKmin,rat ∪ IA∗,K Tmax(K)

hectorE0

{D, P}∅

{D, P}E𝑖
Immortal

hectorE0

{D, P}∅

{D, P}E𝑖
Immortal

Figure 7.16: The left figure depicts a fragment of the augmented minimal typicality model, while the
left one depicts a common part to all saturated models. Arrows represent the role worship.

The individual hector is a human and therefore worships powerful deities. However, deities
are only typically immortal, a piece of information not transmitted to his worship successors.
The upgrade procedure connects Hector with the more typical representative of a powerful
deity, and therefore we may conclude that Hector worships immortals. As a matter of fact,
some of them sided with him in the Trojan War, although this was not enough to spare him
from his tragic destiny.
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Chapter 8

Discussion

C
hapters 5, 6 and 7 presented semantics based on typicality models for the DDLs
EL⊥, and ELI⊥, focusing on the problem of defeasible subsumption. We defined
semantics of strength s and propositional coverage, which are proved to be

equivalent to s materialization-based reasoning, and a machinery to saturate the models
with defeasible information and define s reasoning of nested coverage, which solves the
problem of quantification neglect. Even though the upgrade procedures that lead to the
saturated models are different, they are based more or less on the same intuitions.

In this chapter, we discuss some issues common to the two frameworks. More specifi-
cally, we shed light on the comparison between all the parametrized strengths for EL⊥
and ELI⊥ depicted in 6.11 and 7.12, respectively. Different strengths are incomparable
within nested coverage, which is an unexpected property, since they are hierarchically
stacked in propositional coverage. Discussing these properties is a preliminary foray into
the difficulties of reasoning defeasibly in first-order logic.

Until now, there was no explicit comparison between semantics of different strengths
on nested coverage for EL⊥. Pensel & Turhan (2018) and Pensel (2019) compared different
coverages under the same strength. The incomparability results presented in this disserta-
tion for ELI⊥ nested semantics also extends to the less expressive EL⊥. In this case, the
minimum expressivity for creating incompatible upgrade branches requires only value
restrictions for inverse roles, which are already expressible in the language of EL⊥ by the
equivalence ∃𝑟 .𝐴 ⊑ 𝐵 ≡ 𝐴 ⊑ ∀𝑟−.𝐵. The DKB used to exemplify the incomparability effect
in Example 7.43 is written in the language of EL⊥.

There is a straightforward explanation for this effect. Given the skeptical nature of
nested reasoning, introducing more elements may drown conclusions that were unan-
imous in smaller domains. This may seem strange, but it is grounded on a shortcom-
ing of materialization-based reasoning for DLs. When applying defeasible information,
materialization-based reasoning treats the concepts as isolated atoms. A penguin can
be more or less typical, have or not have feathers, but this will not affect any other
concept of the DKB. However, in nested coverage, defeasible information flows between
different concepts through their representatives. Hence, if a penguin is deemed to have
feathers, all other beings related to penguins are now related to animals that have feathers.
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This is significant, as reasoning with defeasible information is nonmonotonic in nature.
Hence, information has a negative aspect. Being related to a penguin with feathers can
hinder other defeasible conclusions otherwise reachable to a particular concept. Stronger
materialization-based paradigms create more detailed depictions of the world, ultimately
resulting in the withdrawal of conclusions drawn from less inclusive representative do-
mains.

Considering this explanation, it is possible to argue that more inclusive strengths, such
as relevant and lexicographic, are improvements over rational nested reasoning, even if
they are not strictly stronger. Compared to rational reasoning, the consequences they
gain solve shortcomings stemming from a too-coarse partition of the defeasible part of a
DKB. On the other hand, the information derived only by rational strength results from
its “lack of imagination”. The limited nature of rational domains makes rational nested
reasoning derive some consequences by being unable to depict suitable counterexamples.
The idea that rational reasoning may be too strong to represent defeasible reasoning in
DLs is not new. Giordano et al. (2010) defended it at the propositional level. However,
reasoning power is not the only important feature when judging knowledge representation
systems, and rational reasoning is still attractive due to its nice computational properties
and well-behavedness.

An opposing perspective is that nested coverage should keep the hierarchy between
rational, relevant, and lexicographic reasoning intact. Keeping the hierarchy would align
with the original presentations of the materialization-based presentations of these meth-
ods, which introduced them as strict improvements over rational reasoning. In this case,
nested semantics has to be adapted. Swapping the skeptical reasoning procedure for a
credulous one is one possibility. Strengths such as relevant and lexicographic generate
larger typicality domains. Hence, all upgrade paths available to rational reasoning are also
in them, and a brave reasoning procedure would inherit them. However, a pure credulous
reasoning procedure would also be prone to deriving inconsistent conclusions, as it would
take the information from incompatible upgrade paths.

A middle ground is conditioning the entailment relation to an upgrade order. Pensel
(2019) suggested something similar to this. If the initial section of the order is a full upgrade
path for the rational domain, the full order for stronger domains would effectively extend
rational strength even for the nested coverage. This approach is analogous to the method
for defeasible instance checking originally developed in [CS10]. The parallels between
the two procedures are unsurprising, as both problems – reasoning with individuals and
pushing defeasible information through quantifiers – stem from what is fundamentally
the same complication: defeasible information flows through role edges, and no element is
an island.

A slightly different approach is to initially input the upgrade procedure for relevant or
lexicographic strengths with the output of the upgrade procedure of the rational domain,
where both domains coincide. This procedure still characterizes a skeptical semantics,
but it limits the final models to those that augment rational reasoning by starting the
upgrade procedure from models that already have all the information derived from rational
strength. Although this procedure works, it has an ad-hoc flavor, as there is no theoretical
justification basing it except the motivation to keep the entailments generated by rational
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reasoning.

Overall, this scenario highlights the challenges for reasoning defeasibly in a first-
order setting. Nonmonotonic reasoning is a notoriously difficult problem, and researchers
have been searching for solutions for decades. In the context of DDLs, the leading frame-
works have a propositional nature and are grounded in the KLM (propositional) hierarchy.
Propositional methods to defeasible reasoning are often limited in scope, as they isolate
elements from each other and do not consider the complex interaction between elements
mediated by n-ary relations. First-order approaches attempt to address this limitation
but must account for the interaction between elements of differing typicalities, which
is a difficult problem conceptually and computationally. Isolating elements from each
other can be good from a computational point of view, but it is difficult to find a strong
epistemological foundation for this option. After all, if the language allows for expressing
relations between individuals, those related elements are expected to vary in their level of
typicality. Reasoning gets more accurate as we expand the degree of typicality individuals
can attain. The conclusions lost in this process reflect a weakness of the more coarse
domains.
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Chapter 9

Conclusions and Future Work

I
n this dissertation, we investigated the representation and reasoning based on
typicality within description logics. More specifically, we dealt with the problem
of incorporating first-order properties into existing defeasible semantics for DLs,

taking advantage of their full expressivity. The solution presented here is a semantics based
on a special class of models – typicality models – which are two-dimensional canonical
models tailored for the logics EL⊥ and ELI⊥. Those models represent satisfaction of
DCIs through preferred concept representatives as measured by their second dimension,
typicality sets. Semantics based on typicality models is shown to tackle quantification
neglect for several different materialization-based semantics. The logic ELI⊥ was chosen
as an intermediary and hopefully a useful middle step to broaden the typicality models
framework to the more expressive class of Horn-DLs. The introduction of inverted roles
results in a powerful increase in expressibility and greatly increases complexity. We
summarize the main results and contributions.

• Chapter 4 presents an extensive overview of the most relevant literature dealing
with typicality and description logics. To the best of our knowledge, the academic
literature lacked such a survey. Our intention was to collect the most pressing results,
put them in perspective, measure their advantages and shortcomings, and identify
critical challenges.

• Chapter 6 covers typicality models for the EL⊥. This framework was originally
presented in [PT17a], [PT18a], [Pen19] and is repackaged in this chapter with some
new results. In particular, we

– present the new strength lex, which extends the semantics based on typicality
models to lexicographic materialization-based reasoning, a well-established
and powerful framework for defeasible reasoning. This introduction gives
rise to two new semantics, |=prop,lex and |=nest,lex, the first which is shown to
be equivalent to lexicographic materialization-based reasoning (Theorem 6.9)
and the second which is shown to extend it, tackling quantification neglect
(Theorem 6.33).

– develop a full comparison of all existing semantics, showing the unintuitive
result of breaking the hierarchy in the context of nested semantics.
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• Chapter 7 develops a new framework for typicality models in the logic ELI⊥.
Those new typicality models defined six different semantics for defeasible ELI⊥,
parametrized along the two axes {prop, nest} × {rat, rel, lex}. This framework is
roughly inspired by the original formulation for EL⊥, but has considerable differ-
ences. We highlight the main technical constructs:

– new definition of typicality domains and satisfaction, which transforms the
concept set of the original typicality models.Typicality domains for EL⊥ are
defined through contexts, which pick arbitrary concepts to represent. Typicality
domains for ELI⊥ drop those arbitrary concepts in favor of sets of named
concepts representing their conjunction. This choice aims to handle challenges
brought by the introduction of value restrictions. The new typicality domain
leads to a new definition for a notion of satisfaction based on named concepts
only, which can be extended to arbitrary concepts by the introduction of
auxiliary names;

– a new definition of minimal typicality domains based on the insights from
canonical models for ELI⊥. This definition abandons the standard property
and restricts edges to maximal successors, which we call prime;

– the introduction of initiator labelings, a formal machinery to keep track of what
a given edge represents. Put together with an interpretation, this machinery
gives rise to labeled interpretations, which are the main ingredient of the upgrade
procedure for ELI⊥;

– a new definition of typicality update that takes initiator labelings into account
in order to decide which element to update, and that updates the labels as well;

– model recovery, which is a tableaux-inspired procedure to recover the model
property when it is lost after an update. Model recovery is considerably more
complex than its EL⊥ counterpart, model completion, because it is not limited
to adding edges to the interpretation and elements to the concept extension. It
has to remove some edges to maintain the primeness of successors and operates
with the initiator labeling to accomplish this.

– a sketch of the technical apparatus needed to incorporate assertional reasoning
into defeasible ELI⊥ through ABox interpretations.

• Finally, we presented a preliminary discussion of the nature and challenges of
defeasible reasoning in a first-order setting.

9.1 Future Work

The dissertation is but an exploratory foray into a large an yet to be explored the forest.
There are several topics to be addressed, some of which we initially hoped to include
here. We present some of the most important open problems and future work suggestions,
ranked subjectively by difficulty.
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Low-hanging fruits

• Define strengths for other materialization-based reasoning semantics, such as MP-
Closure;

Some of the materialization-based semantics presented in Section 4.3.1 are
not yet covered by typicality models. Studying and developing domains for those
semantics is an interesting way of emphasizing the generality of the typicality
models framework.

• Check nested semantics against the KLM principles;

We discussed the shortcomings of analyzing DDLs with the KLM hierarchy.
However, a first-order set of principles is still unavailable, and the principles are
widely used. Therefore, evaluating semantics based on typicality models against
those principles and positioning the entailment relations in the hierarchy is an
interesting endeavor.

Medium difficulty

• Instance checking for other strengths;

In Chapter 7, we presented a sketch of how to incorporate assertional knowledge
and instance checking to typicality models for ELI⊥ for rational strength. We did
not consider stronger semantics, such as rel and lex. We conjecture that there is
no insurmountable obstacle to this. In fact, Pensel (2019) sketches a procedure for
relevant strength for EL⊥.

• Study the complexity of subsumption checking for defeasible ELI⊥ under nested
s-semantics;

Pensel (2019) presents some preliminary results for nested reasoning in EL⊥.
Specifically, skeptical, rational nested reasoning is shown to be co-NP-complete,
and relevant nested reasoning is shown to be in co-NExp [Pen19, p. 153]. Ut to this
date, there are no established results for nested reasoning for ELI⊥, although we
have some reasons to expect a considerable increase, namely: the increase of the do-
main, potentially exponential, and the complexity of the recovery procedure, which
allows for multiple recoveries, contrasting to the single minimal model completion
developed for EL⊥.

• Examine the possibility of extending the results from ELI⊥ to Horn-ALC;

One of the initial goals of our exploration was to lift the typicality models
framework to the class of Horn-DLs, which posed more difficulties than we expected.
There is a reason to suspect that the step to Horn-ALC is not insurmountable.
Sabellek (2019) presents normalized Horn-ALC Tboxes whose axioms have the
same forms as normalized ELI⊥ axioms. We conjecture that this points to the
existence of a viable solution.

• Develop efficient implementations for the current existing algorithms.
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There are no currently usable implementations for the algorithms described
here. Implementing them would put the usefulness of our results to test.

Hard difficulty

• Extend typicality models to expressive Horn-DLs;

Besides Horn-ALC, there is no self-evident path to lift the ELI⊥ machinery to
more expressive Horn-DLs, such as Horn-SHOIQ and Horn-SROIQ. Investigating
this is a promising avenue of research.

• Adapt typicality models machinery to more complex reasoning tasks, such as query
answering;

One of the motivations to lift typicality models for the Horn fragments of DLs
is to perform more complex reasoning tasks with defeasible information. One of
those tasks is query answering, as developed in [ORS11]. There are some technical
challenges to this task. Traditionally, query answering is done over possibly infinite
tree-shaped models. Our upgrade procedure, however, is iterative and depends on
finiteness to ensure termination. There is no obvious solution to this dilemma.

Aspirational

• Develop a new set of KLM-like postulates to benchmark first-order defeasible logics;

Throughout this dissertation, we made several allusions to the limitations of
applying the KLM postulates to DLs. In short, the postulates are propositional and
fall short of modeling first-order defeasible information. To this date, however, there
is no widely set of postulates for defeasible reasoning encompassing quantifiers. To
the best of our judgment, developing such principles is a crucial step to the area’s
progress.

• Develop techniques for defeasible reasoning with quantifications that apply to non-
Horn-DLs;

We pointed to the possibility of extending typicality models to a wide array
of Horn-DLs. This choice is based on the fact that those logics have the canonical
model property, a necessary but insufficient condition to develop typicality models.
However, this property is lost due to disjunctive-like combinations of constructors
featured in non-Horn DLs. It is impossible to represent the requirement 𝐴 ⊑ 𝐵 ⊔𝐶
by a single membership. Therefore, typicality models are insufficient for developing
defeasible reasoning for a wider class of DLs. However, we believe that this method’s
insights can be propagated to different approaches. One of the main intuitions is that
preference relations over models should take edges into account as well. Preferential
semantics for DLs usually limit their preference relation to elements in isolation.
Incorporating edges – i.e. pairs of elements – into this formalism can be a first step
toward a more general solution.



143

References

[Ada65] Ernest Adams. “The logic of conditionals”. In: Inquiry 8.1-4 (1965), pp. 166–197
(cit. on p. 28).

[Ash+00] Michael Ashburner, Catherine A Ball, Judith A Blake, David Botstein, Heather
Butler, J Michael Cherry, Allan P Davis, Kara Dolinski, Selina S Dwight, Janan
T Eppig, et al. “Gene ontology: tool for the unification of biology”. In: Nature
genetics 25.1 (2000), pp. 25–29 (cit. on p. 9).

[AW97] Grigoris Antoniou and Mary-Anne Williams. Nonmonotonic reasoning. MIT
Press, 1997. isbn: 978-0-262-01157-0 (cit. on p. 26).

[Baa+03] Franz Baader, Diego Calvanese, Deborah McGuinness, Peter Patel-Schneider,
Daniele Nardi, et al. The description logic handbook: Theory, implementation
and applications. Cambridge University Press, 2003 (cit. on p. 56).

[Baa+17] Franz Baader, Ian Horrocks, Carsten Lutz, and Uli Sattler. An Introduction
to Description Logic. Cambridge: Cambridge University Press, 2017 (cit. on
pp. 15, 18, 83).

[BBL05] Franz Baader, Sebastian Brandt, and Carsten Lutz. “Pushing the EL Envelope”.
In: IJCAI-05, Proceedings of the Nineteenth International Joint Conference on
Artificial Intelligence. Ed. by Leslie Pack Kaelbling and Alessandro Saffiotti.
Professional Book Center, 2005, pp. 364–369. url: http://ijcai.org/Proceedings/
05/Papers/0372.pdf (cit. on p. 15).

[BE16] Franz Baader and Andreas Ecke. “Reasoning with Prototypes in the Descrip-
tion Logic ALC ALC Using Weighted Tree Automata”. In: Language and
Automata Theory and Applications - 10th International Conference, LATA 2016,
Prague, Czech Republic, March 14-18, 2016, Proceedings. Ed. by A.H. Dediu, J.
Janousek, C. Martin-Vide, and B. Truthe. Vol. 9618. Lecture Notes in Computer
Science. Springer, 2016, pp. 63–75 (cit. on p. 40).

[BFS10] Piero A. Bonatti, Marco Faella, and Luigi Sauro. “EL with Default Attributes
and Overriding”. In: The Semantic Web - ISWC 2010 - 9th International Semantic
Web Conference, ISWC 2010, Shanghai, China, November 7-11, 2010, Revised
Selected Papers, Part I. Ed. by Peter F. Patel-Schneider, Yue Pan, Pascal Hitzler,
Peter Mika, Lei Zhang, Jeff Z. Pan, Ian Horrocks, and Birte Glimm. Vol. 6496.
Lecture Notes in Computer Science. Springer, 2010, pp. 64–79 (cit. on pp. 44,
45).

[BFS11a] Piero A. Bonatti, Marco Faella, and Luigi Sauro. “Adding Default Attributes
to 𝐸𝐿++”. In: Proceedings of the Twenty-Fifth AAAI Conference on Artificial
Intelligence, AAAI 2011, San Francisco, California, USA, August 7-11, 2011.
Ed. by Wolfram Burgard and Dan Roth. AAAI Press, 2011 (cit. on p. 44).

http://ijcai.org/Proceedings/05/Papers/0372.pdf
http://ijcai.org/Proceedings/05/Papers/0372.pdf


144

REFERENCES

[BFS11b] Piero A. Bonatti, Marco Faella, and Luigi Sauro. “Defeasible Inclusions in
Low-Complexity DLs”. In: Journal Artificial Intelligence Research 42 (2011),
pp. 719–764. doi: 10.1613/jair.3360. url: https://doi.org/10.1613/jair.3360
(cit. on pp. 44, 46).

[BG17] Franz Baader and Oliver Fernandez Gil. “Decidability and complexity of
threshold description logics induced by concept similarity measures”. In:
Proceedings of the Symposium on Applied Computing, SAC 2017, Marrakech,
Morocco, April 3-7, 2017. Ed. by Ahmed Seffah, Birgit Penzenstadler, Carina
Alves, and Xin Peng. ACM, 2017, pp. 983–988 (cit. on p. 40).

[BH95] Franz Baader and Bernhard Hollunder. “Embedding defaults into terminologi-
cal knowledge representation formalisms”. In: Journal of Automated Reasoning
14.1 (1995), pp. 149–180 (cit. on p. 38).

[BHM09] Katarina Britz, Johannes Heidema, and Thomas Meyer. “Modelling object
typicality in description logics”. In: Australasian Joint Conference on Artificial
Intelligence. Springer. 2009, pp. 506–516 (cit. on p. 36).

[BLB08] Franz Baader, Carsten Lutz, and Sebastian Brandt. “Pushing the EL Envelope
Further.” In: OWLED (Spring) 496 (2008) (cit. on p. 15).

[BLW06] Piero A. Bonatti, Carsten Lutz, and Frank Wolter. “Description Logics with Cir-
cumscription”. In: Proceedings, Tenth International Conference on Principles of
Knowledge Representation and Reasoning, Lake District of the United Kingdom,
June 2-5, 2006. Ed. by Patrick Doherty, John Mylopoulos, and Christopher A.
Welty. AAAI Press, 2006, pp. 400–410 (cit. on pp. 3, 37, 44, 64).

[BLW09] Piero A. Bonatti, Carsten Lutz, and Frank Wolter. “The Complexity of Cir-
cumscription in DLs”. In: Journal of Artificial Intelligence Research 35 (2009),
pp. 717–773. doi: 10.1613/jair.2763. url: https://doi.org/10.1613/jair.2763
(cit. on pp. 3, 37, 44, 46).

[BMV11] Katarina Britz, Thomas Meyer, and Ivan Varzinczak. “Semantic foundation for
preferential description logics”. In: Australasian Joint Conference on Artificial
Intelligence. Springer. 2011, pp. 491–500 (cit. on p. 37).

[BNM16] Ouarda Bettaz, Boustia Narhimene, and Aicha Mokhtari. “Dynamic Dele-
gation Based on Temporal Context”. In: Knowledge-Based and Intelligent
Information & Engineering Systems: Proceedings of the 20th International Con-
ference KES-2016, York, UK, 5-7 September 2016. Ed. by Robert J. Howlett,
Lakhmi C. Jain, Bogdan Gabrys, Carlos Toro, and Chee Peng Lim. Vol. 96.
Procedia Computer Science. Elsevier, 2016, pp. 245–254 (cit. on p. 37).

[Bon+15a] Piero A. Bonatti, Marco Faella, Carsten Lutz, Luigi Sauro, and Frank Wolter.
“Decidability of Circumscribed Description Logics Revisited”. In: Advances in
Knowledge Representation, Logic Programming, and Abstract Argumentation -
Essays Dedicated to Gerhard Brewka on the Occasion of His 60th Birthday. Ed. by
Thomas Eiter, Hannes Strass, Miroslaw Truszczynski, and Stefan Woltran.
Vol. 9060. Lecture Notes in Computer Science. Springer, 2015, pp. 112–124
(cit. on pp. 3, 43, 44, 46).

[Bon+15b] Piero A. Bonatti, Marco Faella, Iliana M. Petrova, and Luigi Sauro. “A new
semantics for overriding in description logics”. In: Artificial Intelligence 222
(2015), pp. 1–48 (cit. on p. 63).

https://doi.org/10.1613/jair.3360
https://doi.org/10.1613/jair.3360
https://doi.org/10.1613/jair.2763
https://doi.org/10.1613/jair.2763


REFERENCES

145

[Bon19] Piero A Bonatti. “Rational closure for all description logics”. In: Artificial
Intelligence 274 (2019), pp. 197–223 (cit. on p. 3).

[Bra04] Sebastian Brandt. “Polynomial Time Reasoning in a Description Logic with
Existential Restrictions, GCI Axioms, and - What Else?” In: Proceedings of
the 16th Eureopean Conference on Artificial Intelligence, ECAI’2004, including
Prestigious Applicants of Intelligent Systems, PAIS 2004, Valencia, Spain, August
22-27, 2004. Ed. by Ramón López de Mántaras and Lorenza Saitta. IOS Press,
2004, pp. 298–302 (cit. on p. 15).

[Bre87] Gerhard Brewka. “The Logic of Inheritance in Frame Systems”. In: Proceedings
of the 10th International Joint Conference on Artificial Intelligence. Milan, Italy,
August 23-28, 1987. Ed. by John P. McDermott. Morgan Kaufmann, 1987,
pp. 483–488 (cit. on p. 44).

[Bre91] Gerhard Brewka. Nonmonotonic reasoning - logical foundations of common-
sense. Vol. 12. Cambridge tracts in theoretical computer science. Cambridge
University Press, 1991. isbn: 978-0-521-38394-3 (cit. on p. 26).

[Bri+13] Katarina Britz, Giovanni Casini, Thomas Meyer, Kody Moodley, and Ivan
Varzinczak. Ordered interpretations and entailment for defeasible description
logics. Tech. rep. Technical report, CAIR, CSIR Meraka and UKZN, South
Africa, 2013 (cit. on p. 49).

[Bri+21] Katarina Britz, G. Casini, T. Meyer, K. Moodley, U. Sattler, and I. Varzinczak.
“Principles of KLM-style Defeasible Description Logics”. In: ACM Transactions
on Computational Logic 22.1 (2021), pp. 1–46 (cit. on p. 49).

[BS17] Piero A Bonatti and Luigi Sauro. “On the logical properties of the nonmono-
tonic description logic DLN”. In: Artificial Intelligence 248 (2017), pp. 85–111
(cit. on pp. 37, 44, 48, 63).

[BV16] Katarina Britz and Ivan Varzinczak. “Introducing role defeasibility in de-
scription logics”. In: European Conference on Logics in Artificial Intelligence.
Springer. 2016, pp. 174–189 (cit. on p. 36).

[BV17a] Katarina Britz and Ivan José Varzinczak. “Context-based defeasible subsump-
tion for 𝑑SROIQ”. In: Proceedings of the Thirteenth International Symposium
on Commonsense Reasoning, COMMONSENSE 2017, London, UK, November
6-8, 2017. Ed. by Andrew S. Gordon, Rob Miller, and György Turán. Vol. 2052.
CEUR Workshop Proceedings. CEUR-WS.org, 2017 (cit. on pp. 36, 42, 62).

[BV17b] Katarina Britz and Ivan José Varzinczak. “Towards Defeasible SROIQ”. In:
Proceedings of the 30th International Workshop on Description Logics, Mont-
pellier, France, July 18-21, 2017. Ed. by Alessandro Artale, Birte Glimm, and
Roman Kontchakov. Vol. 1879. CEUR Workshop Proceedings. CEUR-WS.org,
2017 (cit. on pp. 36, 59–61).

[BV18] Katarina Britz and Ivan José Varzinczak. “Rationality and Context in Defea-
sible Subsumption”. In: Foundations of Information and Knowledge Systems
- 10th International Symposium, FoIKS 2018, Budapest, Hungary, May 14-18,
2018, Proceedings. Ed. by Flavio Ferrarotti and Stefan Woltran. Vol. 10833.
Lecture Notes in Computer Science. Springer, 2018, pp. 114–132 (cit. on pp. 3,
36).



146

REFERENCES

[BV19] Katarina Britz and Ivan Varzinczak. “Preferential Tableaux for Contextual
Defeasible ALC”. In: Automated Reasoning with Analytic Tableaux and Re-
lated Methods - 28th International Conference, TABLEAUX 2019, London, UK,
September 3-5, 2019, Proceedings. Ed. by Serenella Cerrito and Andrei Popescu.
Vol. 11714. Lecture Notes in Computer Science. Springer, 2019, pp. 39–57
(cit. on p. 59).

[Cas+13] Giovanni Casini, Thomas Meyer, Ivan José Varzinczak, and Kodylan Moodley.
“Nonmonotonic Reasoning in Description Logics: Rational Closure for the
ABox”. In: Informal Proceedings of the 26th International Workshop on De-
scription Logics, Ulm, Germany, July 23 - 26, 2013. Ed. by Thomas Eiter, Birte
Glimm, Yevgeny Kazakov, and Markus Krötzsch. Vol. 1014. CEUR Workshop
Proceedings. CEUR-WS.org, 2013, pp. 600–615 (cit. on pp. 51, 56).

[Cas+14a] Giovanni Casini, Thomas Meyer, Kodylan Moodley, and Riku Nortje. “Rele-
vant Closure: A New Form of Defeasible Reasoning for Description Logics”.
In: Logics in Artificial Intelligence - 14th European Conference, JELIA 2014,
Funchal, Madeira, Portugal, September 24-26, 2014. Proceedings. Ed. by Eduardo
Fermé and João Leite. Vol. 8761. Lecture Notes in Computer Science. Springer,
2014, pp. 92–106 (cit. on pp. 3, 90, 126, 128).

[Cas+14b] Giovanni Casini, Thomas Meyer, Kodylan Moodley, and Riku Nortje. “Rele-
vant Closure: A New Form of Defeasible Reasoning for Description Logics”.
In: Logics in Artificial Intelligence - 14th European Conference, JELIA 2014,
Funchal, Madeira, Portugal, September 24-26, 2014. Proceedings. Ed. by Eduardo
Fermé and João Leite. Vol. 8761. Lecture Notes in Computer Science. Springer,
2014, pp. 92–106 (cit. on pp. 50, 52).

[CS10] Giovanni Casini and Umberto Straccia. “Rational closure for defeasible de-
scription logics”. In: European Workshop on Logics in Artificial Intelligence.
Springer. 2010, pp. 77–90 (cit. on pp. 3, 4, 36, 47–49, 55, 56, 62, 93, 136).

[CS12] Giovanni Casini and Umberto Straccia. “Lexicographic closure for defeasible
description logics”. In: Proc. of Australasian Ontology Workshop. Vol. 969.
Citeseer. 2012, pp. 28–39 (cit. on pp. 3, 50, 56).

[CT22a] Igor de Camargo e Souza Câmara and Anni-Yasmin Turhan. Deciding Defea-
sible Subsumption in ELI⊥ — Extending Typicality Models to Inverse Roles.
LTCS-Report 22-02. available from https://tu-dresden.de/ing/informatik/thi/
lat/forschung/technische-berichte. Dresden, Germany: Chair of Automata
Theory, Inst. of TCS, TU Dresden, 2022 (cit. on p. 5).

[CT22b] Igor de Camargo e Souza Câmara and Anni-Yasmin Turhan. “Rational Defea-
sible Subsumption in DLs with Nested Quantifiers: the Case of ELI⊥”. In:
Proceedings of the 20th International Workshop on Non-Monotonic Reasoning,
NMR 2022, Part of the Federated Logic Conference (FLoC 2022), Haifa, Israel,
August 7-9, 2022. Ed. by Ofer Arieli, Giovanni Casini, and Laura Giordano.
Vol. 3197. CEUR Workshop Proceedings. CEUR-WS.org, 2022, pp. 159–162.
url: https://ceur-ws.org/Vol-3197/short6.pdf (cit. on pp. 5, 62).

https://tu-dresden.de/ing/informatik/thi/lat/forschung/technische-berichte
https://tu-dresden.de/ing/informatik/thi/lat/forschung/technische-berichte
https://ceur-ws.org/Vol-3197/short6.pdf


REFERENCES

147

[CT23] Igor de Camargo e Souza Câmara and Anni-Yasmin Turhan. “Deciding Defea-
sible Subsumption in ELI⊥ — Extending Typicality Models to Inverse Roles”.
In: 18th edition of the European Conference on Logics in Artificial Intelligence
(JELIA). Ed. by Vanina Martinez and Magdalena Ortiz. to appear. 2023 (cit. on
pp. 5, 62).

[Eit+06] Thomas Eiter, Giovambattista Ianni, Axel Polleres, Roman Schindlauer, and
Hans Tompits. “Reasoning with Rules and Ontologies”. In: Reasoning Web,
Second International Summer School 2006, Lisbon, Portugal, September 4-8,
2006, Tutorial Lectures. Ed. by Pedro Barahona, François Bry, Enrico Franconi,
Nicola Henze, and Ulrike Sattler. Vol. 4126. Lecture Notes in Computer Science.
Springer, 2006, pp. 93–127 (cit. on p. 65).

[Fro+14] Débora Farias Frota, Ana Teresa Martins, João Alcântara, and Luis Henrique
Bustamante. “An ALC Description Default Logic with Exceptions-First”.
In: 2014 Brazilian Conference on Intelligent Systems. IEEE. 2014, pp. 172–179
(cit. on p. 38).

[Gär00] Peter Gärdenfors. Conceptual spaces: The Geometry of Thought. Vol. 4. Cam-
bridge, Massachusetts: MIT Press, 2000, p. 185. doi: 10.1007/s001970050015
(cit. on pp. 2, 40).

[GCS10] Sergio Alejandro Gómez, Carlos Iván Chesñevar, and Guillermo Ricardo
Simari. “Reasoning with Inconsistent Ontologies through Argumentation”.
In: Applied Artificial Intelligence 24.1&2 (2010), pp. 102–148 (cit. on p. 63).

[GD18] Laura Giordano and Daniele Theseider Dupré. “Defeasible Reasoning in
SROEL: from Rational Entailment to Rational Closure”. In: Fundamenta
Informaticae 161.1-2 (2018), pp. 135–161 (cit. on p. 37).

[GG18] Laura Giordano and Valentina Gliozzi. “Reasoning about multiple aspects in
DLs: Semantics and Closure Construction”. In: CoRR abs/1801.07161 (2018).
arXiv: 1801.07161. url: http://arxiv.org/abs/1801.07161 (cit. on pp. 42, 51, 62).

[GG19a] Laura Giordano and Valentina Gliozzi. “A reconstruction of the multiprefer-
ence closure”. In: CoRR abs/1905.03855 (2019). url: http://arxiv.org/abs/1905.
03855 (cit. on p. 51).

[GG19b] Laura Giordano and Valentina Gliozzi. “Reasoning About Exceptions in On-
tologies: An Approximation of the Multipreference Semantics”. In: Symbolic
and Quantitative Approaches to Reasoning with Uncertainty, 15th European
Conference, ECSQARU 2019, Belgrade, Serbia, September 18-20, 2019, Proceed-
ings. Ed. by Gabriele Kern-Isberner and Zoran Ognjanovic. Vol. 11726. Lecture
Notes in Computer Science. Springer, 2019, pp. 212–225 (cit. on p. 50).

[GG19c] Laura Giordano and Valentina Gliozzi. “Strengthening the Rational Closure
for Description Logics: An Overview”. In: Proceedings of the 34th Italian
Conference on Computational Logic, Trieste, Italy, June 19-21, 2019. Ed. by
Alberto Casagrande and Eugenio G. Omodeo. Vol. 2396. CEUR Workshop
Proceedings. CEUR-WS.org, 2019, pp. 68–81 (cit. on pp. 50, 52, 54).

[GG20] Laura Giordano and Valentina Gliozzi. “Reasoning about exceptions in ontolo-
gies: from the lexicographic closure to the skeptical closure”. In: Fundamenta
Informaticae 176.3-4 (2020), pp. 235–269 (cit. on pp. 3, 50, 54, 55).

https://doi.org/10.1007/s001970050015
https://arxiv.org/abs/1801.07161
http://arxiv.org/abs/1801.07161
http://arxiv.org/abs/1905.03855
http://arxiv.org/abs/1905.03855


148

REFERENCES

[Gio+07] Laura Giordano, Valentina Gliozzi, Nicola Olivetti, and Gian Luca Pozzato.
“Preferential Description Logics”. In: Logic for Programming, Artificial Intelli-
gence, and Reasoning, 14th International Conference, LPAR, 2007, Proceedings.
Ed. by Nachum Dershowitz and Andrei Voronkov. Vol. 4790. LNCS. Springer,
2007, pp. 257–272 (cit. on pp. 3, 37, 41, 43, 50, 58, 64).

[Gio+08] Laura Giordano, Valentina Gliozzi, Nicola Olivetti, and Gian Luca Pozzato.
“Reasoning about typicality in preferential description logics”. In: European
Workshop on Logics in Artificial Intelligence. Springer. 2008, pp. 192–205 (cit. on
pp. 3, 37, 43, 57–59).

[Gio+09] Laura Giordano, Nicola Olivetti, Valentina Gliozzic, and Gian Luca Pozzato.
“ALC + T: a preferential extension of description logics”. In: Fundamenta
Informaticae 96.3 (2009), pp. 341–372 (cit. on pp. 3, 37).

[Gio+10] Laura Giordano, Valentina Gliozzi, Nicola Olivetti, and Gian Luca Pozzato.
“Preferential vs Rational Description Logics: which one for Reasoning About
Typicality?” In: ECAI 2010 - 19th European Conference on Artificial Intelligence,
Lisbon, Portugal, August 16-20, 2010, Proceedings. Ed. by Helder Coelho, Rudi
Studer, and Michael J. Wooldridge. Vol. 215. Frontiers in Artificial Intelligence
and Applications. IOS Press, 2010, pp. 1069–1070 (cit. on p. 136).

[Gio+11a] Laura Giordano, Valentina Gliozzi, Nicola Olivetti, and Gian Luca Pozzato.
“A Tableau Calculus for a Nonmonotonic Extension of EL⊥”. In: Automated
Reasoning with Analytic Tableaux and Related Methods - 20th International
Conference, TABLEAUX 2011, Bern, Switzerland, July 4-8, 2011. Proceedings. Ed.
by Kai Brünnler and George Metcalfe. Vol. 6793. Lecture Notes in Computer
Science. Springer, 2011, pp. 180–195 (cit. on p. 59).

[Gio+11b] Laura Giordano, Valentina Gliozzi, Nicola Olivetti, and Gian Luca Pozzato. “A
Tableau Calculus for a Nonmonotonic Extension of the Description Logic𝐷𝐿−
𝐿𝑖𝑡𝑒𝑐𝑜𝑟𝑒”. In: AI*IA 2011: Artificial Intelligence Around Man and Beyond - XIIth
International Conference of the Italian Association for Artificial Intelligence,
Palermo, Italy, September 15-17, 2011. Proceedings. Ed. by Roberto Pirrone and
Filippo Sorbello. Vol. 6934. Lecture Notes in Computer Science. Springer,
2011, pp. 164–176. url: https://doi.org/10.1007/978-3-642-23954-0%5C_17
(cit. on p. 59).

[Gio+13] Laura Giordano, Valentina Gliozzi, Nicola Olivetti, and Gian Luca Pozzato. “A
non-monotonic description logic for reasoning about typicality”. In: Artificial
Intelligence 195 (2013), pp. 165–202 (cit. on pp. 3, 37, 43).

[Gli16] Valentina Gliozzi. “Reasoning about Multiple Aspects in Rational Closure for
DLs”. In: AI*IA 2016: Advances in Artificial Intelligence - XVth International
Conference of the Italian Association for Artificial Intelligence, Genova, Italy,
November 29 - December 1, 2016, Proceedings. Ed. by Giovanni Adorni, Ste-
fano Cagnoni, Marco Gori, and Marco Maratea. Vol. 10037. Lecture Notes in
Computer Science. Springer, 2016, pp. 392–405 (cit. on pp. 42, 50, 62).

[GN18] Khalida Guesmia and Boustia Narhimene. “OrBAC from access control model
to access usage model”. In: Appl. Intell. 48.8 (2018), pp. 1996–2016 (cit. on
p. 63).

[Gui20] Ricardo Ferreira Guimarães. “Modularity in belief change of description logic
bases”. PhD thesis. University of São Paulo, 2020 (cit. on p. 63).

https://doi.org/10.1007/978-3-642-23954-0%5C_17


REFERENCES

149

[KHM12] Matthias Knorr, Pascal Hitzler, and Frederick Maier. “Reconciling OWL and
Non-monotonic Rules for the Semantic Web”. In: ECAI 2012 - 20th Euro-
pean Conference on Artificial Intelligence. Including Prestigious Applications of
Artificial Intelligence (PAIS-2012) System Demonstrations Track, Montpellier,
France, August 27-31 , 2012. Ed. by Luc De Raedt, Christian Bessiere, Didier
Dubois, Patrick Doherty, Paolo Frasconi, Fredrik Heintz, and Peter J. F. Lucas.
Vol. 242. Frontiers in Artificial Intelligence and Applications. IOS Press, 2012,
pp. 474–479 (cit. on p. 65).

[KLM90] Sarit Kraus, Daniel Lehmann, and Menachem Magidor. “Nonmonotonic Rea-
soning, Preferential Models and Cumulative Logics”. In: Artif. Intell. 44.1-2
(1990), pp. 167–207 (cit. on pp. vii, 3, 26–29, 36, 47, 48).

[KPK06] Vladimir Kolovski, Bijan Parsia, and Yarden Katz. “Implementing OWL De-
faults”. In: Proceedings of the OWLED*06 Workshop on OWL: Experiences
and Directions, Athens, Georgia, USA, November 10-11, 2006. Ed. by Bernardo
Cuenca Grau, Pascal Hitzler, Conor Shankey, and Evan Wallace. Vol. 216.
CEUR Workshop Proceedings. CEUR-WS.org, 2006. url: http://ceur-ws.org/
Vol-216/submission%5C_22.pdf (cit. on p. 38).

[Leh95] Daniel Lehmann. “Another perspective on default reasoning”. In: Annals of
mathematics and artificial intelligence 15.1 (1995), pp. 61–82 (cit. on pp. 26, 30,
50, 90).

[LM92] Daniel Lehmann and Menachem Magidor. “What does a Conditional Knowl-
edge Base Entail?” In: Artificial Intelligence 55.1 (1992), pp. 1–60. doi: 10.1016/
0004-3702(92)90041-U. url: https://doi.org/10.1016/0004-3702(92)90041-U
(cit. on pp. 26, 30, 50).

[LW10] Carsten Lutz and Frank Wolter. “Deciding inseparability and conservative
extensions in the description logic EL”. In: Journal of Symbolic Computation
45.2 (2010), pp. 194–228. doi: 10.1016/j.jsc.2008.10.007. url: https://doi.org/10.
1016/j.jsc.2008.10.007 (cit. on pp. 15, 16).

[McC80] John McCarthy. “Circumscription – A Form of Non-Monotonic Reasoning”.
In: Artificial Intelligence 13.1-2 (1980), pp. 27–39 (cit. on p. 44).

[Med+16] Georgios Meditskos, Efstratios Kontopoulos, Stefanos Vrochidis, and Yiannis
Kompatsiaris. “Ontology-Driven Context Interpretation and Conflict Reso-
lution in Dialogue-Based Home Care Assistance”. In: Proceedings of the 9th
International Conference Semantic Web Applications and Tools for Life Sciences,
Amsterdam, The Netherlands, December 5-8, 2016. Ed. by Adrian Paschke,
Albert Burger, Andrea Splendiani, M. Scott Marshall, and Paolo Romano.
Vol. 1795. CEUR Workshop Proceedings. CEUR-WS.org, 2016 (cit. on p. 63).

[MR10] Boris Motik and Riccardo Rosati. “Reconciling Description Logics and Rules”.
In: Journal of the ACM 57.5 (2010), 30:1–30:62 (cit. on p. 38).

[ORS11] Magdalena Ortiz, Sebastian Rudolph, and Mantas Simkus. “Query answering
in the Horn fragments of the description logics SHOIQ and SROIQ”. In: IJCAI
Proceedings-International Joint Conference on Artificial Intelligence. Vol. 22. 1.
2011, p. 1039 (cit. on pp. 97, 142).

http://ceur-ws.org/Vol-216/submission%5C_22.pdf
http://ceur-ws.org/Vol-216/submission%5C_22.pdf
https://doi.org/10.1016/0004-3702(92)90041-U
https://doi.org/10.1016/0004-3702(92)90041-U
https://doi.org/10.1016/0004-3702(92)90041-U
https://doi.org/10.1016/j.jsc.2008.10.007
https://doi.org/10.1016/j.jsc.2008.10.007
https://doi.org/10.1016/j.jsc.2008.10.007


150

REFERENCES

[Pen19] Maximilian Pensel. “A Lightweight Defeasible Description Logic in Depth -
Quantification in Rational Reasoning and Beyond”. PhD thesis. TU Dresden,
Germany, 2019 (cit. on pp. 5, 15, 16, 69, 73, 74, 82, 83, 89, 97, 107, 135, 136, 139,
141).

[PG88] Judea Pearl and Hector Geffner. Probabilistic semantics for a subset of default
reasoning. Tech. rep. Technical Report CSD-8700XX, R-93-III. Department of
Computer Science, UCLA, 1988 (cit. on p. 28).

[Por+19] Daniele Porello, Oliver Kutz, Guendalina Righetti, Nicolas Troquard, Pietro
Galliani, and Claudio Masolo. “A Toothful of Concepts: Towards a Theory
of Weighted Concept Combination”. In: Proceedings of the 32nd International
Workshop on Description Logics, Oslo, Norway, June 18-21, 2019. Ed. by Mantas
Simkus and Grant E. Weddell. Vol. 2373. CEUR Workshop Proceedings. CEUR-
WS.org, 2019 (cit. on p. 39).

[Poz15] Gian Luca Pozzato. “Preferential description logics meet sports entertain-
ment: cardinality restrictions and perfect extensions for a better royal rumble
match”. In: 30° Convegno Italiano di Logica Computazionale. Vol. 1459. CEUR
Workshop Proceedings. 2015, pp. 159–174 (cit. on p. 38).

[Poz16] Gian Luca Pozzato. “Reasoning about surprising scenarios in description
logics of typicality”. In: Conference of the Italian Association for Artificial
Intelligence. Springer. 2016, pp. 418–432 (cit. on p. 38).

[Poz17] Gian Luca Pozzato. “Reasoning in description logics with typicalities and
probabilities of exceptions”. In: European Conference on Symbolic and Quanti-
tative Approaches to Reasoning and Uncertainty 107 (2017), pp. 409–420 (cit. on
pp. 3, 38).

[Poz18] Gian Luca Pozzato. “On probabilities of exceptions in description logics of
typicality”. In: CEUR Workshop Proceedings 2214 (2018), pp. 60–74 (cit. on
pp. 3, 38).

[PT17a] Maximilian Pensel and Anni-Yasmin Turhan. “Including Quantification in
Defeasible Reasoning for the Description Logic EL⊥”. In: Proceedings of
the 14th International Conference on Logic Programming and Nonmonotonic
Reasoning - LPNMR. Ed. by Marcello Balduccini and Tomi Janhunen. Springer,
2017, pp. 78–84. doi: https://doi.org/10.1007/978-3-319-61660-5_9 (cit. on
pp. 3, 5, 69, 73, 97, 139).

[PT17b] Maximilian Pensel and Anni-Yasmin Turhan. “Making Quantification Rele-
vant Again - the Case of Defeasible EL⊥”. In: Proceedings of the 4th Interna-
tional Workshop on Defeasible and Ampliative Reasoning (DARe-17) co-located
with the 14th International Conference on Logic Programming and Nonmono-
tonic Reasoning (LPNMR 2017), Espoo, Finland, July 3, 2017. Ed. by Richard
Booth, Giovanni Casini, and Ivan José Varzinczak. Vol. 1872. CEUR Workshop
Proceedings. CEUR-WS.org, 2017, pp. 44–57 (cit. on pp. 69, 73).

[PT18a] Maximilian Pensel and Anni-Yasmin Turhan. “Computing Standard Infer-
ences under Rational and Relevant Semantics in Defeasible EL⊥”. In: Pro-
ceedings of the 31st International Workshop on Description Logics co-located
with 16th International Conference on Principles of Knowledge Representation
and Reasoning (KR 2018), Tempe, Arizona, US, October 27th - to - 29th, 2018.
2018 (cit. on pp. 5, 52, 69, 73, 89, 139).

https://doi.org/https://doi.org/10.1007/978-3-319-61660-5_9


REFERENCES

151

[PT18b] Maximilian Pensel and Anni-Yasmin Turhan. “Reasoning in the Defeasible
Description Logic EL⊥—Computing Standard Inferences under Rational and
Relevant Semantics”. In: International Journal of Approximate Reasoning (IJAR)
103 (2018), pp. 28–70. doi: https://doi.org/10.1016/j.ijar.2018.08.005 (cit. on
pp. 5, 15, 69, 71, 73, 89, 92–94, 107, 135).

[Rec+95] Alan L Rector, W Danny Solomon, W Anthony Nowlan, TW Rush, PE Zanstra,
and WMA Claassen. “A terminology server for medical language and medical
information systems”. In: Methods of information in medicine 34.01/02 (1995),
pp. 147–157 (cit. on p. 9).

[Rei80] Raymond Reiter. “A logic for default reasoning”. In: Artificial intelligence
13.1-2 (1980), pp. 81–132 (cit. on p. 38).

[Ros78] Eleanor Rosch. “Principles of Categorization”. In: Cognition and Categoriza-
tion. Ed. by Eleanor Rosch and B. B. Lloyd. Hillsdale: Erlbaum, 1978, pp. 28–49
(cit. on p. 1).

[Sab19] Leif Sabellek. “Ontology-Mediated Querying with Horn Description Logics”.
PhD thesis. University of Bremen, Germany, 2019. url: http://elib.suub.uni-
bremen.de/edocs/00107695-1.pdf (cit. on p. 141).

[Var18] Ivan Varzinczak. “A note on a description logic of concept and role typicality
for defeasible reasoning over ontologies”. In: Logica Universalis 12.3-4 (2018),
pp. 297–325 (cit. on pp. 3, 37, 38, 42, 59, 60, 65).

[Wit09] Ludwig Wittgenstein. Philosophical investigations. John Wiley & Sons, 2009
(cit. on p. 1).

https://doi.org/https://doi.org/10.1016/j.ijar.2018.08.005
http://elib.suub.uni-bremen.de/edocs/00107695-1.pdf
http://elib.suub.uni-bremen.de/edocs/00107695-1.pdf




153

Index

C
Captions, see Legendas
Código-fonte, see Floats

E
Equações, see Modo matemático

F
Figuras, see Floats
Floats

Algoritmo, see Floats, ordem
Fórmulas, see Modo matemático

I
Inglês, see Língua estrangeira

P
Palavras estrangeiras, see Língua es-

trangeira

R
Rodapé, notas, see Notas de rodapé

S
Subcaptions, see Subfiguras
Sublegendas, see Subfiguras

T
Tabelas, see Floats

V
Versão corrigida, see Tese/Dissertação,

versões
Versão original, see Tese/Dissertação,

versões


	Introduction
	I Background
	Description Logics
	Syntax
	Semantics
	Representing Knowledge with DLs
	Reasoning Tasks
	The EL family
	EL
	ELI


	Nonmonotonic Reasoning
	The KLM Framework for NMR systems
	Extensions of the KLM Framework: Rational and Lexicographic Closures


	II Description Logics of Typicality
	A Survey of Description Logics of Typicality
	Representing Typicality in DLs
	Defeasible Inclusions
	Typicality Operators
	Reiter-like Defaults
	Weighted Concept Combination

	Semantics
	Preferential Semantics
	Multipreferentiality
	Role Preferentiality
	Non-monotonic Consequence and Semantics
	Circumscription

	Reasoning Methods
	Materialization-Based Reasoning
	Tableaux

	Open problems
	Research landscape


	III Typicality Models for Defeasible Description Logics
	A Brief Introduction to Typicality Models
	Materialization in the EL family

	Typicality Models for EL
	Preliminaries
	Minimal Typicality Model for EL
	Domain Shapes

	Upgrading Typicality Interpretations
	Updating Typicality Interpretations
	Recovering the Model Property
	Upgrade Steps
	Nested Reasoning
	Comparing Semantics for EL

	Epilogue: Rational defeasible instance checking

	Typicality Models for ELI
	Foundations of ELI Typicality Models
	Normal form for ELI DKBs
	Typicality models for ELI

	Minimal Typicality Models
	Domain Shapes Determine Strength of Reasoning

	Saturated Typicality Models
	Computation of Saturated Typicality Models
	Model Recovery

	Nested Reasoning
	Nested Rational Reasoning
	Nested Relevant and Lexicographic Reasoning

	Comparing Semantics for ELI
	Epilogue: Lifting rational defeasible instance checking based on typicality models to ELI
	Building the minimal typicality model with individuals
	A commentary on the upgrade procedure


	Discussion
	Conclusions and Future Work
	Future Work

	References
	Index


