
Finding Maxima of Gaussian

Sum-Product Networks

Tiago Madeira

Thesis presented to the Institute of Mathematics

and Statistics of the University of São Paulo in

partial fulfillment of the requirements for the

degree of Master of Science.

Program: Computer Science

Advisor: Prof. Denis Deratani Mauá

São Paulo

July, 2023

Finding Maxima of Gaussian

Sum-Product Networks

Tiago Madeira

This version of the thesis includes the corrections and

modifications suggested by the Examining Committee

during the defense of the original version of the work,

which took place on July 21, 2023.

A copy of the original version is available at the Institute of

Mathematics and Statistics of the University of São Paulo.

Examining Committee:

Professor Denis Deratani Mauá (Chair) – IME-USP

Professor Alessandro Antonucci – IDSIA

Professor Fabio Gagliardi Cozman – EP-USP

I hereby authorize the total or partial reproduction and publication of

this work for educational or research purposes, as long as properly cited.

Acknowledgements

My pursuit of a master’s degree was a challenging part-time undertaking that began in

2018 and lasted over five years. During this time, the world encountered a global crisis of

capitalism and the widespread COVID-19 pandemic, which had a significant impact on

everyone. I switched jobs, and at times, I contemplated abandoning this study. However, I

am very lucky for the support of many individuals who made it possible for me to complete

this endeavor.

First, I express my gratitude to my advisor, Prof. Denis Mauá, for providing me with in-

valuable guidance and motivation throughout my academic journey. Our numerous lengthy

meetings were filled with insights, recommendations of research papers, ideas for experi-

ments and constructive feedback on my work. I am thankful for his understanding of my

time constraints and his dedication to throughly reviewing my work.

Furthermore, I extend my thanks to Prof. Denis’ students — Heitor Ribeiro, Julissa

Llerena, and Renato Geh — for generously sharing their texts and codes with me. Their

contributions were instrumental in enhancing my comprehension of probabilistic models

and facilitating the experiments conducted in this study.

I would like to express my appreciation to Prof. Alessandro Antonucci and Prof. Fabio

Cozman for accepting the invitation to compose this work’s examining commitee, and to

Prof. Glauber de Bona and Prof. Marcelo Queiroz for their feedback during my qualifying

exam.

A special thank you to my friend, Prof. David Kohan, for providing me with constant

academic encouragement. Our coffee meetings over random mathematical puzzles and the

annoying question “How is the master’s going?” were crucial for me to complete this work,

as well as an invitation to write a paper on a different topic a couple of years ago.

I am very grateful for the exceptional education I received from the Institute of Math-

ematics and Statistics at the University of São Paulo (IME-USP), a public institution

where I have been a student for almost 15 years.

Without music and friends nothing would make sense. Big thanks to two great mu-

iii

iv

sicians of our time, Kiko Horta and Toninho Ferragutti, for the accordion lessons, which

were a key fuel to living through the past years, as were the musical meetings of Forró da

Varanda and many others.

Finally, I express my heartfelt gratitude to Juliana for the everyday partnership, and

to my parents, Amarildo and Márcia, and my brothers, Bruno and Lucas, for their lifelong

love and support.

Abstract

MADEIRA, Tiago. Finding Maxima of Gaussian Sum-Product Networks. Thesis

(Masters). Institute of Mathematics and Statistics, University of São Paulo, São Paulo,

2023.

This thesis is about finding maxima of Sum-Product Networks (SPNs). SPNs are ex-

pressive statistical deep models that efficiently represent complex probability distribu-

tions. They encode context-specific independence among random variables and enable

exact marginal and conditional probability inference in linear time.

The research explores Gaussian SPNs (GSPNs), which are continuous SPNs with Gaus-

sian distributions at their leaves. GSPNs provide compact representations of Gaussian

Mixture Models (GMMs) with many components. The relationship between GSPNs and

GMMs has been largely unexplored in the literature, particularly regarding mode-finding

techniques. The problem of finding modes in Gaussian mixtures is challenging, and existing

techniques involve hill-climbing algorithms. However, there is limited research discussing

modes in the context of SPNs.

The objective of this work is to investigate and establish a framework for identifying

modes in GSPNs. This is accomplished by developing an algorithm that employs an EM-

style fixed-point iteration method for mode finding in GSPNs. The algorithm is presented

in detail, accompanied by a formal proof of its correctness. Two applications for it are dis-

cussed: Maximum-A-Posteriori inference and modal clustering. Some experimental results

are provided to evaluate the effectiveness of the proposed approach.

Keywords: Sum-Product Networks; Gaussian Mixture Models; Mode Finding; Proba-

bilistic Models; Machine Learning.

v

Resumo

MADEIRA, Tiago. Encontrando Máximos de Redes Soma-Produto Gaussianas.

Dissertação (Mestrado). Instituto de Matemática e Estat́ıstica, Universidade de São Paulo,

São Paulo, 2023.

Esta dissertação é sobre busca de máximos de Redes Soma-Produto (SPNs, do inglês

Sum-Product Networks). As SPNs são modelos estat́ısticos profundos expressivos que re-

presentam eficientemente distribuições de probabilidade complexas. Elas codificam inde-

pendência contextual espećıfica entre variáveis aleatórias e permitem inferência exata de

probabilidade marginal e condicional em tempo linear.

A pesquisa explora as SPNs Gaussianas (GSPNs), que são SPNs cont́ınuas com distri-

buições Gaussianas em suas folhas. As GSPNs fornecem representações compactas de Mo-

delos de Misturas Gaussianas (GMMs) com muitos componentes. A relação entre GSPNs

e GMMs tem sido pouco explorada na literatura, especialmente no que diz respeito a

técnicas de busca de modas. O problema de encontrar modas em misturas Gaussianas é

desafiador e as técnicas existentes envolvem algoritmos de escalada. No entanto, há pouca

pesquisa discutindo modas no contexto de SPNs.

O objetivo deste trabalho é investigar e estabelecer uma abordagem para encontrar

modas em GSPNs. Isso é alcançado através do desenvolvimento de um algoritmo que uti-

liza um método de iteração de ponto fixo no estilo EM (Expectativa-Maximização) para

encontrar modas em GSPNs. O algoritmo é apresentado em detalhes, acompanhado de

uma prova formal de sua corretude. Duas aplicações para ele são discutidas: inferência de

Máximo-A-Posteriori e clusterização modal. Alguns resultados experimentais são forneci-

dos para avaliar a eficácia da abordagem proposta.

Palavras-chave: Redes Soma-Produto; Modelos de Misturas Gaussianas; Busca de Mo-

das; Modelos Probabiĺısticos; Aprendizagem de Máquina.

vii

Lists

List of Abbreviations

DAG Directed Acyclic Graph

EM Expectation-Maximization

GMM Gaussian Mixture Model

GSPN Gaussian Sum-Product Network

KBT K-Best Tree

MAP Maximum-A-Posteriori

MPE Most Probable Explanation

PDF Probability Density Function

PGM Probabilistic Graphical Model

RV Random Variable

SPN Sum-Product Network

List of Algorithms

3.1 Marginal inference in SPNs . 16

3.2 LearnSPN schema . 19

3.3 MAP2MAX . 22

3.4 Max-Product . 23

4.1 Modal EM for GSPNs . 26

List of Definitions

2.1 Definition (Univariate Gaussian) . 5

2.2 Definition (Multivariate Gaussian) . 5

2.3 Definition (Gaussian Mixture) . 7

2.4 Definition (Mode) . 7

ix

x

3.1 Definition (Sum-Product Network) . 13

3.2 Definition (Gaussian Sum-Product Network) 14

3.3 Definition (MAP Inference) . 20

List of Figures

1.1 Sample face completions . 3

2.1 Plot of Gaussian distributions and GMM 6

2.2 Bivariate GMMs with more modes than components 8

3.1 A GSPN and a plot of its PDF . 14

3.2 Marginal inference in a GSPN . 16

3.3 SPN as a mixture of induced trees . 17

3.4 LearnSPN schema . 19

3.5 Illustration of Max-Product . 24

4.1 Univariate GSPN in which Max-Product can not find MAP 32

5.1 Hierarchical clustering of MNIST-0 dataset 37

5.2 Images used for segmentation (Flower, Easter Bunny, The Family, Land-

scape with Bull) . 38

5.3 Image segmentation using GSPNs vs. k-means (Flower and Easter Bunny) . 40

5.4 Image segmentation using GSPNs vs. k-means (The Family and Landscape

with Bull) . 41

List of Tables

3.1 Lower and upper bounds on the approximation threshold for a polynomial-

time algorithm for MAP inference in discrete SPNs 21

5.1 SPNs learned from MNIST-0 training set 36

5.2 Information about SPNs learned for image segmentation 39

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Goal and methodology . 3

1.3 Contributions . 4

1.4 Organization . 4

2 Gaussian Mixture Models 5

2.1 Gaussian distribution . 5

2.2 Mixture models . 6

2.3 Number of modes . 7

2.4 Finding modes of GMMs . 9

3 Sum-Product Networks 13

3.1 Fundamentals . 13

3.2 Inference in SPNs . 15

3.3 SPNs as mixture models . 16

3.4 Learning SPNs . 18

3.5 MAP inference . 20

3.5.1 Reduction from MAP to MAX . 21

3.5.2 Approximation algorithms . 23

4 Modal EM for GSPNs 25

4.1 The algorithm . 25

4.2 Proof of correctness . 28

4.3 Applications . 31

4.3.1 MAP inference . 31

4.3.2 Modal clustering . 33

xi

xii CONTENTS

5 Experiments 35

5.1 Hierarchical clustering . 35

5.2 Image segmentation . 37

6 Final considerations 43

6.1 Summary . 43

6.2 Future work . 44

Bibliography 47

Chapter 1

Introduction

The focus of this research is on finding modes of Sum-Product Networks with Gaussian

leaves, which are compact representations of Gaussian Mixture Models. This introductory

chapter presents the motivation and rationale for this study (Section 1.1), describes the

objectives and methodology (Section 1.2), summarizes the contributions (Section 1.3), and

outlines the structure of the document (Section 1.4).

1.1 Motivation

Sum-Product Networks (SPNs; Poon and Domingos, 2011) are a relatively recent class of

expressive statistical models, that exploit the use of arithmetic circuits (Darwiche, 2003;

Rooshenas and Lowd, 2014) to efficiently represent complicated probability distributions.

Their graphical structure encodes context-specific independence among random vari-

ables (RVs), which makes them a form of probabilistic graphical models (PGMs; Koller

and Friedman, 2009). However, SPNs differ from other PGMs from an important compu-

tational perspective: unlike Bayesian Networks and Markov Networks, exact marginal and

conditional probability inference in SPNs is tractable, taking linear time with respect to

the size of the network.

SPNs share similarities with neural networks, as they are defined by a directed acyclic

computation graph in which each node computes a function of its input (Hsu et al., 2017).

However, there are important differences between SPNs and other neural networks. For

example, the structure of an SPN naturally delivers a principled probabilistic represen-

tation where each sub-network represents a joint distribution, and standard probabilistic

operations such as marginalization and conditioning can be efficiently derived by message-

passing through the structure. Moreover, SPNs can be learned online (Lee et al., 2013;

Jaini et al., 2016) and in a distributed fashion (Rashwan et al., 2016).

1

2 INTRODUCTION 1.1

The ability to capture a rich set of independences and produce reliable and fast infer-

ence has rendered SPNs a competitive approach for many challenging machine learning

tasks (Poon and Domingos, 2011; Llerena and Maua, 2017; Peharz et al., 2014; Cheng

et al., 2014; Amer and Todorovic, 2016).

Although SPNs can be defined over discrete or continuous RVs, most works to date fo-

cus on SPNs over categorical RVs. In spite of that, many real-world applications are better

modeled by continuous variables (Jaini et al., 2016). While marginal inference works the

same way for discrete and continuous SPNs (except that discrete SPNs compute probabil-

ity masses, whereas continuous SPNs compute densities), certain algorithms that operate

on discrete SPNs do not function with continuous SPNs and vice versa.

The focus of this study is on a specific class of continuous SPNs named Gaussian SPNs

(GSPNs), which have Gaussian distributions at their leaves. GSPNs are efficient represen-

tations of Gaussian Mixture Models (GMMs) with numerous components. Specifically,

they encode GMMs with a number of components that is exponential on the size of the

network.

GMMs themselves are an expressive class of models for density estimation, widely ap-

plied in both statistics and machine learning. GMMs are convex combinations of Gaussian

densities and inherit some of the advantages of them, such as being analytically tractable

for many computations. However, even with few components they exhibit a quite complex

behavior. In fact, the family of Gaussian mixtures is a universal approximator for contin-

uous densities (Titterington et al., 1985). To our knowledge, the relation between GSPNs

and GMMs has been so far unexplored in the literature, and, in particular, there is no

prior research that links techniques for locating modes of GMMs to those of GSPNs.

The problem of finding maxima (modes) of Gaussian mixtures has been long studied.

Despite this, it remains a challenging problem to identify the number of modes that a

mixture of k Gaussians in d dimensions can have (Améndola et al., 2019). The most

commonly used techniques for finding modes involve hill-climbing algorithms from several

points such as Mean-Shift (Fukunaga and Hostetler, 1975; Carreira-Perpiñán, 2015) and

Gradient Ascent (Murphy, 2012). To the extent of our knowledge, there are no prior works

discussing modes in the context of SPNs.

Finding modes has many applications, and this work focuses on two of them: Maximum-

A-Posteriori (MAP) inference and cluster analysis.

MAP inference, the problem of finding the most probable values for a set of variables

according to a probability distribution, is a valuable tool for a variety of tasks, particularly

those involving data reconstruction. An example of such application is image completion,

1.2 GOAL AND METHODOLOGY 3

Figure 1.1: Sample face completions. Source: Poon and Domingos (2011).

as demonstrated in Figure 1.1, which depicts the results of completing the left halves of

unseen faces using various algorithms (Poon and Domingos, 2011). The first row dislpays

the original images, the second row shows results obtained by MAP inference in an SPN,

and the remaining rows show results obtained by other methods (from top to bottom:

deep Boltzmann machines, deep belief networks, principal component analysis, and nearest

neighbor).

Due to the NP-Hardness of MAP inference in SPNs, various greedy approximation

algorithms have been proposed, along with, more recently, some exact methods. However,

these approaches have primarily focused on discrete SPNs, with only a few being extend-

able to continuous domains. Moreover, their experiments have not included continuous

data. Finally, these methods typically search only for points corresponding to the modes

of a specific component of the mixture, resulting in solutions of uncertain quality that are

unable to guarantee even local optimality. Finding the modes of an SPN can help finding

solutions to MAP inference.

Regarding cluster analysis, clustering can be approached by considering a density that

represents the distribution of data in a given problem, and then taking its modes as

representative of clusters. This approach has been successful in several applications; one

example is image segmentation (Cheng, 1995; Comaniciu and Meer, 2002; Li et al., 2007).

We believe that finding modes of GSPNs can allow performing modal clustering with a

class of densities that is more expressive and efficient than GMMs. Additionally, clustering

is a valuable method for model analysis and model compression.

1.2 Goal and methodology

Our goal is to develop a framework for locating modes of Gaussian Sum-Product Networks.

4 INTRODUCTION 1.4

To achieve this, we will examine the connection between GSPNs and GMMs, survey

literature concerning the modes of such models, and explore approaches for detecting them.

We will propose an algorithm that adapts an EM-style fixed-point iteration method, known

as Modal EM, to identify local maxima of GSPNs.

To validate our algorithm, we will carry out experiments on clustering.

1.3 Contributions

The main contribution of this work is Modal EM for GSPNs, an algorithm designed to find

modes of densities represented by Gaussian Sum-Product Networks. While this contribu-

tion has already been published during the author’s postgraduate studies in proceedings of

a conference (Madeira and Mauá, 2022), this work offers a more comprehensive description

of the algorithm and provides a formal proof of its correctness. In addition, we observe

the relationship between Modal EM, a fixed-point iterative schema proposed by Carreira-

Perpiñán (2000) and Mean-Shift. Furthermore, this thesis provides more context about

the problem and reports additional experimental results. A paper about modal clustering

with GSPNs containing some of the experiments of image segmentation reported in this

document has been published in a workshop (Madeira and Mauá, 2023).

1.4 Organization

The remaining chapters of this document are structured as follows.

Chapter 2 provides an overview of Gaussian Mixture Models and establishes the prob-

ability notations used throughout the thesis. We also review the literature related to the

number of modes of GMMs and the techniques for mode-finding.

Chapter 3 introduces Sum-Product Networks and explains how they are used for prob-

abilistic reasoning. We discuss their relationship with mixture models, common methods

to learning them from data, and the literature on Maximum-A-Posteriori (MAP) inference

in discrete SPNs, which is closely related to finding the global maximum of the model.

Chapter 4 details Modal EM for GSPNs, which is an adaptation of a method for

locating maxima of GMMs to find modes of GSPNs. We describe the construction of the

algorithm, prove its correctness and runtime complexity, and discuss some applications.

Chapter 5 presents experimental results obtained by using Modal EM for GSPNs in

the aforementioned applications.

Finally, Chapter 6 concludes the work, provides some final thoughts and ideas for

future research.

Chapter 2

Gaussian Mixture Models

In this chapter, we will review fundamental concepts of Gaussian Mixture Models (GMMs)

and introduce some notations that will be used throughout this dissertation (Sections 2.1

and 2.2). We will then discuss the literature on the number of modes (local maxima) in

GMMs (Section 2.3) and, finally, approaches to find such modes (Section 2.4).

We assume some basic knowledge of probabily theory; gentle introductions are found

in the works of Jaynes (2003) and Kadane (2011).

2.1 Gaussian distribution

We will use uppercase letters to denote random variables (RVs) and lowercase letters to

denote assignments of RVs.

Definition 2.1 (Univariate Gaussian). An RV X has a univariate Gaussian distri-

bution with mean µ and variance σ2, denoted X ∼ N
(
µ, σ2

)
, if it has the probability

density function

p(x) =
1√
2πσ

e−
(x−µ)2

2σ2 . (2.1)

We will use p(·) to denote probability density functions (PDFs). Figure 2.1(a) shows the

PDFs of three univariate Gaussian distributions.

Gaussian distributions are extended to the multivariate case:

Definition 2.2 (Multivariate Gaussian). A random vector X = (X1, · · · , Xn) is said to

have a multivariate Gaussian distribution with mean µ (a n-dimensional vector) and

covariance matrix Σ (to not be confused with summation sign), X ∼ N (µ,Σ), if:

p(x) = 2π−n
2 det (Σ)

1
2 e−

1
2
(x−µ)TΣ−1(x−µ) . (2.2)

5

6 GAUSSIAN MIXTURE MODELS 2.2

−2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

(a)

−2 0 2 4 6 8

5 · 10−2

0.1

0.15

0.2

(b)

Figure 2.1: (a) Plot of the PDFs of three Gaussian distributions: N (0, 1) (solid line),
N (2, 5) (dashed line) and N (5, 2) (dotted line). (b) Plot of the PDF of a univariate
Gaussian mixture model, X ∼ 0.5N (0, 1) + 0.2N (2, 5) + 0.3N (5, 2).

We will denote random vectors using bold uppercase letters and assignments of random

vectors using bold lowercase letters. Random vectors and sets of random variables will be

used interchangeably for the sake of simplicity in notation.

Σ is a symmetric n × n matrix and the value Σi,j is, by definition, the covariance

between variables Xi and Xj , Cov[Xi, Xj]:

Σi,j := Cov[Xi, Xj] = E [(Xi − µi)(Xj − µj)] . (2.3)

In general, RVs may be uncorrelated but statistically dependent. In the case of multi-

variate Gaussian distributions, two or more variables are uncorrelated if and only if they

are independent. The product of PDFs of independent Gaussian RVs is a multivariate

Gaussian distribution with a diagonal covariance matrix.

A Gaussian distribution is said to be isotropic (or spherical) if its covariance matrix

is diagonal and all variables have the same variance. Formally, a distribution in Rd is

isotropic if Σ = σ2Id for some σ ∈ R, where Id is the identity matrix of size d.

2.2 Mixture models

A finitemixture model is a distribution formed by a convex combination of distributions.

Formally, if p1(X), · · · , pn(X) are densities over a random vector X, we can define a finite

mixture model p(X) of components p1, · · · , pn by choosing weights w1, · · · , wn ≥ 0 such

that
∑n

z=1wz = 1 and making:

p(x) =
n∑

z=1

wzpz(x) . (2.4)

2.3 NUMBER OF MODES 7

We can interpret the mixture coefficients wz as a categorical latent variable (usually

denoted Z) such that p(z) = wz, p(x | z) = pz(x), and

p(z,x) = p(z)p(x | z) . (2.5)

Variables in X are called observable variables in contrast to latent variables. Then,

computing p(x) consists in marginalizing the variable z:

p(x) =

n∑
z=1

p(z)p(x, z) (2.6)

=
n∑

z=1

wzpz(x) . (2.7)

Definition 2.3 (Gaussian Mixture). A Gaussian Mixture Model (GMM) is a mixture

model of Gaussian distributions.

Figure 2.1(b) depicts a univariate GMM, but in this work, we will mainly deal with

multivariate GMMs.

A GMM is said to be homoscedastic if it has equal covariance matrices for all its

components, and is said to be isotropic if its components are isotropic.

2.3 Number of modes

The modes, or local maxima, of a density in d dimensions are the points of the PDF at

which it achieves a local maximum value.

Definition 2.4 (Mode). A point x⋆ ∈ Rd is a mode of f(x) if there exists a neighborhood1

of x⋆ such that f(x⋆) ≥ f(x) for all x within that neighborhood.

While a probability distribution can have multiple modes (for example, uniform distri-

butions have infinitely many modes), a Gaussian distribution has only one mode, namely,

its mean. At first glance, one might assume that the number of modes of a GMM would

be small and easy to determine, since it is a combination of a finite number of Gaussian

components. However, the number of modes that a mixture of k Gaussians in Rd can pos-

sess is surprisingly unknown, not proven to be finite, and identifying such modes remains

a challenging problem.

1Given a δ > 0, a neighborhood of x⋆ is the set of points x ∈ Rd which satisfy ||x⋆ − x||2 < δ.

8 GAUSSIAN MIXTURE MODELS 2.3

(a) (b) (c)

Figure 2.2: Bivariate GMMs with more modes than components. Component means are
represented by + (black crosses) and GMM modes are represented by • (red bullets). (a)
2 components and 3 modes. (b) 3 isotropic components and 4 modes. (c) 3 components
and 6 modes. Source: Améndola et al. (2019).

Let m(d, k) denote the maximal number of modes for d-dimensional Gaussian mixtures

with k components. As previously stated, m(d, 1) = 1, because a GMM with one compo-

nent is simply a Gaussian distribution. Numerous studies have examined the lower and

upper bounds of m(d, k) for greater values of d and k, and we will briefly review some of

the most recent ones, such as the ones by Carreira-Perpiñán and Williams (2003b), Ray

and Ren (2012), and Améndola et al. (2019).

While Carreira-Perpiñán and Williams (2003a) proved that the number of modes of

univariate GMMs is limited by its number of components (m(1, k) = k), the result does

not hold in higher dimensions. Figure 2.2(a) presents a counterexample that shows the

mixture of two Gaussians in two dimensions, X1 ∼ N (µ1,Σ1) and X2 ∼ N (µ2,Σ2),

where µ1 = (1, 0), Σ1 = [(1, 0), (0, 0.1)], µ2 = (0, 1), and Σ2 = [(0.1, 0), (0, 1)], with

coefficients w1 = w2 = 1
2 . The mixture has two modes near the original means at (1, 0)

and (0, 1), and a third mode near the origin.

In a conjecture, the same article suggested that the number of modes of an isotropic

GMM could not exceed its number of components. However, a counterexample presented

by J. J. Duistermaat (Carreira-Perpiñán andWilliams, 2003b) proved that conjecture to be

false. The counterexample, shown in Figure 2.2(b), consists of an homoscedastic isotropic

GMM with three components positioned at the vertices of an equilateral triangle and four

modes. The mixture is formed by X1 ∼ N
(
(1, 0), σ2I2

)
, X2 ∼ N

((
−1

2 ,
√
3
2

)
, σ2I2

)
, and

X3 ∼ N
((
−1

2 ,−
√
3
2

)
, σ2I2

)
, where σ2 = 0.53, I2 is the identity matrix of size 2× 2, and

w1 = w2 = w3 =
1
3 .

Ray and Ren (2012) proved that one can get as many as d+1 modes from a Gaussian

mixture of two components in Rd and that is always possible to find a GMM of only two

components with d + 1 modes in d dimensions, therefore m(d, 2) = d + 1. GMMs with

2.4 FINDING MODES OF GMMS 9

more components can get much more complex. To give an example, Figure 2.2(c) shows a

GMM in R2 with 3 components and 6 modes, demonstrating that m(2, 3) ≥ 6.

To date, the most stringent lower and upper bounds for m(d, k) were established by

Améndola et al. (2019). They demonstrate that, given integers k, d ≥ 2, there exists a

mixture of k Gaussians in d dimensions with at least
(
k
d

)
+k modes, i.e., m(d, k) ≥

(
k
d

)
+k.

Additionally, they prove that the number of non-degenerate stationary points for a GMM

with k components in d dimensions is bounded by 2d+(
k
2)(5 + 3d)k. That means that,

assuming that every mixture of k Gaussians in Rd has finitely many modes, then

(
k

d

)
+ k ≤ m(d, k) ≤ 2d+(

k
2) (5 + 3d)k . (2.8)

That result shows that the lower bound for the number of modes in a GMM is unex-

pectedly large, especially for mixtures with many components. For instance, this bound

implies that there exists a GMM with 100 components in R50 with more than 1029 modes,

a fact that seems counterintuitive.

It is also surprising that there is still no conclusive evidence as to whether the number

of modes of a GMM is always finite. Although it may seem intuitive that a finite mixture

of Gaussians would not contain non-degenerate critical points, the lack of proof leaves the

possibility that there may not exist a finite upper bound for m(k, d).

Nevertheless, it is important to note that in real-life scenarios, the number of modes of

GMMs does not seem to explode, at least when the components are isotropic. According

to Carreira-Perpiñán and Williams (2003b), it is very rare to find GMMs with more modes

than components in such cases.

2.4 Finding modes of GMMs

The results regarding the number of modes of GMMs provide insight into the intricate

nature of the modes landscape. In this study, we investigate how to find modes of GMMs,

and two fundamental initial questions are: (1) where are the modes located, and (2) which

specific modes we aim to find.

On the question of where are the modes located, for isotropic GMMs it is proven that

the modes lie inside the convex hull of the component centroids (Améndola et al., 2019).

However, this property does not hold for non-isotropic GMMs, as illustrated by a counter-

example in R2 shown in 2.2(a).

As an exercise of imagination, we propose the conjecture that, in general, the modes

of a GMM reside within the hyperrectangle formed by the minimum and maximum values

10 GAUSSIAN MIXTURE MODELS 2.4

of each coordinate in the component centroids. Even if that is not always true, we can

argue that such modes have greater practical relevance: the primary applications of finding

modes of GMMs are either finding probable values of a model or, notably, clustering in

domains such as data analysis, pattern recognition and image processing. In this context,

a mode is considered a representative of a cluster, and a mode located outside the space

between the centroids may not be a suitable representative for a cluster.

As for which specific modes we aim to find, it is usually not crucial to identify all

the modes of a model, but rather the most probable one or modes to which data points

converge. That led us to investigate two problems: finding global maxima and finding

modes starting from points.

Starting with global maxima, seeking such mode has applications such as real-time ob-

ject tracking in computer vision (Shen et al., 2005) and has been investigated by Pulkkinen

(2014) in his PhD thesis.

Pulkkinen et al. (2013) introduced a method for smoothing a given GMM using Gaus-

sian convolution. This technique effectively eliminates undesired local maxima while pre-

serving the fundamental structure of the GMM. The convolved Gaussian mixture has been

shown to be strictly concave under mild assumptions, and therefore has a unique maxi-

mum. Notably, their proposed method operates globally, meaning it is not dependent on

the starting point, and has the ability to identify a significant mode, although not neces-

sarily the maximum one. In the same paper, the authors argued that finding the global

mode of a Gaussian kernel density estimate, which is a special case of a Gaussian mixture,

is a difficult global optimization problem.

Finding multiple modes starting from points is usually done using hill-climbing meth-

ods, which are designed to iteratively ascend from any initial point. We will briefly review

Gradient Ascent, Mean-Shift and Modal EM.

Gradient ascent

For differentiable functions, Gradient Ascent (Murphy, 2012) is a popular iterative

optimization algorithm to find a mode. At each step, the algorithm computes the gradient

of the function at the current point (x(r)) and updates the point in the direction of the

gradient: x(r+1) ← x(r) + γ∇f
(
x(r)

)
. However, a major issue with this method is that

it heavily relies on the choice of a step size parameter, γ ∈ R+, which must be carefully

selected to ensure that f
(
x(r+1)

)
≥ f

(
x(r)

)
for all r. Finding an appropriate step size can

be a difficult and costly process, as it often requires multiple iterations of its own. This

2.4 FINDING MODES OF GMMS 11

can make Gradient Ascent slow to converge.

Mean-Shift

In the field of cluster analysis, a common technique to locate the modes of a density is

Mean-Shift and its variants (Fukunaga and Hostetler, 1975; Carreira-Perpiñán, 2015).

Traditionally, the Mean-Shift algorithm does not take a model (density function) as input.

Instead, it works directly with data points by defining a kernel density estimate, making

it suitable for clustering since the input is similar to that of other clustering algorithms

such as k-means (except for not requiring a k parameter). The algorithm iteratively shifts

a point to the average of data points in its neighborhood until the point does not change.

Formally, let data be a finite set S = {sn}Nn=1 ⊂ Rd, so that a s ∈ S corresponds to a

single data point in Rd. Let x(0) be a point in Rd. The sample mean at x is defined as:

m (x) :=

∑
s∈SK (s− x) s∑
s∈SK (s− x)

, (2.9)

where K(x) is a kernel function that comprises a bandwidth parameter λ. Commonly, flat

kernels and Gaussian kernels have been used. A flat kernel is the characteristic function

F of the λ-ball in Rd:

F (x) :=

1 if ||x|| ≤ λ ,

0 if ||x|| > λ ,
(2.10)

and a Gaussian kernel is defined as:

G(x) := e−
||x||2

2λ2 . (2.11)

(In this case the parameter λ is the standard deviation of the Gaussian function, normally

denoted as σ).

The difference m(x)−x is called mean shift vector and, at each step, the Mean-Shift

algorithm updates the point in its direction, making x(r+1) ← m
(
x(r)

)
.

Mean-Shift has been re-discovered, adapted and modified for various density functions

in several studies (Cheng, 1995; Carreira-Perpiñán, 2000; Comaniciu and Meer, 2002). The

algorithm was extended to use mixture components instead of kernel density estimation

from data points. In the case of Gaussian Mixture Models, it has been demonstrated that

the Mean-Shift algorithm is equivalent to a Expectation-Maximization method named

Modal EM (Carreira-Perpiñán, 2007; Chacón, 2019), which we will describe next.

12 GAUSSIAN MIXTURE MODELS 2.4

Modal EM

Carreira-Perpiñán (2000) proposed another fixed-point iterative schema as follows. Given

a GMM p(x) =
∑n

z=1wzpz(x) and a point x(r),

x(r+1) ←
∑n

z=1wzpz
(
x(r)

)
Σ−1

z µz∑n
z=1wzpz

(
x(r)

)
Σ−1

z

. (2.12)

This algorithm has some advantages over Gradient Ascent, such as not requiring any ad-

ditional parameters. Additionally, it was shown to be a Expectation-Maximization (EM)

method, which facilitates its convergence analysis. As such, it approaches a mode from al-

most any initial point and monotonically increases the density value or leaves it unchanged:

p(x(r+1)) ≥ p(x(r)), and x(r+1) ̸= x(r) ⇒ p(x(r+1)) > p(x(r)).

Independently, Li et al. (2007) introduced an EM-style method named Modal EM

which is equivalent to the schema proposed by Carreira-Perpiñán (2000) for GMMs, as

we will observe in Chapter 4. To apply Modal EM, one starts with a mixture density of

τ components, p(x) =
∑τ

k wkp
k(x), and an initial point x(0). The method then alternates

between the following two steps, starting with r = 0:

Expectation: Let qk =
wkp

k
(
x(r)

)
p
(
x(r)

) , for k = 1, · · · , τ . (2.13)

Maximization: Compute x(r+1) = argmax
x

τ∑
k

qk log p
k (x) . (2.14)

Chapter 3

Sum-Product Networks

In this chapter, we review some literature about SPNs. We will begin by introducing the

definition and fundamental concepts of SPNs (Section 3.1) and showing how an SPN is

evaluated (Section 3.2). Then, we will leverage the relation between SPNs and mixture

models, and, particularly, the relation between GSPNs and GMMs (Section 3.3). Next,

we will show how SPNs are learned from data (Section 3.4). Finally, we will review the

literature on performing Maximum-A-Posteriori inference in SPNs, which is equivalent to

finding a global maximum (Section 3.5).

Assuming the reader’s familiarity with standard definitions of graph theory (Bondy and

Murty, 2008), we proceed to use them throughout this work without further elaboration.

3.1 Fundamentals

We define the scope of a Sum-Product Network as the set of variables that appear in it,

and we define Sum-Product Network (SPN) recursively (Gens and Domingos, 2013).

Definition 3.1 (Sum-Product Network). A Sum-Product Network is defined as follows:

• Any tractable univariate distribution is an SPN.

• Any product of SPNs with disjoint scopes is an SPN.

• Any weighted sum of SPNs with the same scope and nonnegative weights adding up

to 1 is an SPN.

• Nothing else is an SPN.

SPNs are commonly represented as rooted directed acyclic graphs with three types of

nodes:

13

14 SUM-PRODUCT NETWORKS 3.1

+

× × ×

X1 X1 X2 X2

N (2, 18) N (11, 8) N (3, 10) N (−4, 7)

4
20

9
20

7
20

(a)

0
10

−5

00

5

·10−3

x1

x2

p
S
(x

1
,x

2
)

(b)

Figure 3.1: (a) A SPN S with Gaussian leaves. (b) Plot of the PDF of the distribution
S.

• A univariate distribution is represented as a leaf.

• A product of SPNs is represented as an internal product node (denoted by ×) with
nonweighted edges to the SPNs which it multiplies.

• A weighted sum of SPNs is represented as an internal sum node (denoted by +) with

weighted edges to the SPNs which it sums.

The recursive construction of an SPN, as defined above, ensures that every node in the

network readily represents a probability distribution over its scope. Specifically, leaves are

distributions by definition, product nodes represent distributions under the assumption

of independence among their children distributions, and sum nodes represent mixture

distributions (Peharz, 2015).

SPNs can be constructed using discrete, continuous, or hybrid (mixed) variables. Al-

though many studies have been conducted on SPNs based on categorical random variables,

there are many real-world applications that are better suited to continuous variables (Jaini

et al., 2016). In this study, we concentrate on SPNs that use continuous RVs (learned from

continuous data), particularly SPNs with univariate Gaussian distributions at their leaves.

We refer to these networks as Gaussian Sum-Product Networks (GSPNs).

Definition 3.2 (Gaussian Sum-Product Network). A Gaussian Sum-Product Network is

a Sum-Product Network with only univariate Gaussian distributions at their leaves.

Figure 3.1(a) displays an example of a GSPN, and 3.1(b) depicts its probability density

function. Although marginal inference works the same way for discrete and continuous

SPNs (except that discrete SPNs compute probability masses, whereas continuous SPNs

3.2 INFERENCE IN SPNS 15

compute densities), certain algorithms that operate on discrete SPNs may not function

with continuous SPNs and vice versa.

3.2 Inference in SPNs

The process of performing reasoning in probabilistic models is called inference. SPNs

allow performing marginal inference and conditional inference in linear time in the size of

the network.

Given an SPN S, we denote its probability distribution function as S(·). To perform

marginal inference, that is, to compute the probability of a valuation x of RVs X in the

SPN S, S(X = x), we traverse the graph in reverse topological order. For a node u in an

SPN S, let u(x) denote the value of the node u in the SPN given the valuation X = x

restricted to the RVs in the scope of u and let ch(u) denote the children of u in the DAG.

Then,

1. If u is a leaf, u(x) is the density of x of its corresponding univariate distribution over

X.

2. If u is a product node, u(x) is the product of its children:

u(x) =
∏

v∈ch(u)

v(x) . (3.1)

3. If u is a sum node, u(x) is the weighted sum of its children:

u(x) =
∑

v∈ch(u)

w(u, v)v(x) . (3.2)

The distribution of an SPN is the distribution of its root node. A pseudocode of marginal

inference in an SPN is given in Algorithm 3.1.

Example 3.1. Let S be the GSPN represented in Figure 3.1. Then

S(x1, x2) =
4

20
N (x1; 2, 18)N (x2; 3, 10) +

9

20
N (x1; 2, 18)N (x2;−4, 7)

+
7

20
N (x1; 11, 8)N (x2;−4, 7), (3.3)

where N (x;µ, σ2) is a shorthand to represent the density of x in the Gaussian distribution

N (µ, σ2). If x1 = 11 and x2 = −4, then

16 SUM-PRODUCT NETWORKS 3.3

Algorithm 3.1 Marginal inference in SPNs

Input: an SPN S over X and an assignment x
Output: S(X = x)

1: ▷ Let V be a mapping from SPN nodes to values, initially empty.
2: for all node u of S in reverse topological order do
3: if u is a leaf then
4: Vu ← u(x)
5: else if u is a product node then
6: Vu ←

∏
v∈ch(u) Vv

7: else if u is a sum node then
8: Vu ←

∑
v∈ch(u)wvVv

9: end if
10: end for
11: return Vu

+

× × ×

X1 X1 X2 X20.00991 0.14105 0.01089 0.15079

0.00011 0.00149 0.02127

0.00814

N (2, 18) N (11, 8) N (3, 10) N (−4, 7)

4
20

9
20

7
20

Figure 3.2: Inference of S(11,−4) in the SPN represented in Figure 3.1. The approximate
values of the nodes, computed in a bottom-up fashion, are on the right side of each node.

S(x1, x2) ≈
4

20
× 0.00991× 0.01089 +

9

20
× 0.00991× 0.15079

+
7

20
× 0.14105× 0.15079

≈ 0.00814 .

The inference process is illustrated in Figure 3.2.

3.3 SPNs as mixture models

Zhao et al. (2015) showed that any SPN is equivalent to a mixture of trees where each tree

corresponds to a product of univariate distributions. Given an SPN S over X1, · · · , Xn,

let T = (VT , ET) be a subgraph of S. T is called an induced tree1 from S if it can

1This notion has been used in the literature under different terms, e.g. induced tree by Zhao et al. (2015),

3.3 SPNS AS MIXTURE MODELS 17

+

× × ×

X1 X1 X2 X2

w1 w2
w3

= w1

+

×

X1 X2

+w2

+

×

X1 X2

+w3

+

×

X1 X2

Figure 3.3: An SPN as a mixture of induced trees. Source: Zhao et al. (2015).

be constructed recursively, starting from the root node and then including all children

of product nodes and exactly one child of sum nodes (with the corresponding edges). As

proved by Zhao et al. (2015, Theorems 1 and 2), an induced tree T is an SPN, therefore

T (X) represents a probability distribution. The density function of such distribution is

given by:

T (x) =
∏

(u,v)∈ET

w(u, v)
n∏

j=1

Tj(xj) , (3.4)

where w(u, v) is the weight of the edge (u, v) ∈ ET if u is a sum node or 1 if u is a product

node; Tj(Xj) is the probability distribution of a leaf of T (T contains n leaves, one for

each variable).

Let τS denote the number of unique induced trees from S, namely, its network cardi-

nality, and T i denote the i-th unique induced tree of S. Then (Zhao et al., 2015, Theorem

4),

S(x) =
τS∑
i=1

T i(x) . (3.5)

This result is illustrated in Figure 3.3. The network cardinality of S depends on its struc-

ture and is exponential in the height of the SPN.

Given an SPN S, from equations 3.4 and 3.5 we have:

S(x) =
τS∑
i=1

wiT
i(x) , (3.6)

where wi :=
∏

(u,v)∈ETi
w(u, v) and T i(x) :=

∏n
j=1 T

i
j (xj) for all i = 1, · · · , τS (we are just

splitting Ti).

Let Z be the latent variable that corresponds to the mixture, i.e., S(x | z) = T z(x),

and let xk, · · · , xl be values of RVs in X. Then, for all z ∼ Z,

parse tree by Mei et al. (2018), complete subnetwork by Desana and Schnörr (2016), complete sub-circuit
by Chan and Darwiche (2006); Dennis and Ventura (2015).

18 SUM-PRODUCT NETWORKS 3.4

S(xk, · · · , xl | z) = T z(xk, · · · , xl) (3.7)

=
n∏

j=1

T z
j (xk, · · · , xl) (3.8)

= T z
k (xk) · · ·T z

l (xl) (3.9)

= S(xk | z) · · · S(xl | z) , (3.10)

which implies that the (observable) variables are independent given the mixture.

If S is a GSPN, then T z(X) is a PDF formed by the product of the PDFs of indepen-

dent Gaussian RVs. Thus, T z(X) is a multivariate Gaussian distribution with a diagonal

covariance matrix. Therefore, a GSPN represents a GMM, where in each component the

variables are uncorrelated.

However, GSPNs have an exponential network cardinality (with respect to the height

of the network); therefore, they represent GMMs with a huge number of components.

Despite the components share some parameters, this makes GSPNs much more expressive

than typical learned GMMs while still remaining computationally tractable.

3.4 Learning SPNs

SPNs are typically learned from data, and there exist various methods to accomplish this

(Peharz, 2015). While recently, a variety of random methods that waive the necessity of

structure learning have gained popularity (Peharz et al., 2020; Geh and Mauá, 2021),

in this section, we will focus on reviewing the most classical one – LearnSPN. Our aim

is not to delve too deeply into the topic of learning SPNs, but rather to gain a better

understanding of the structure of the SPNs used in our experiments and the influence of

learning parameters on these SPNs.

LearnSPN, the most classical schema used to learn SPNs (Gens and Domingos, 2013),

operates through a top-down divide-and-conquer approach that can learn both the struc-

ture (the underlying graph) and the parameters (weights and distributions at the leaves)

of an SPN. To achieve this, it recursively splits the training set matrix into matrices with

fewer instances or fewer variables, as shown in Figure 3.4. A high-level summary of the

LearnSPN algorithm is presented in Algorithm 3.2.

The specificities for partitioning a variable set V into approximately independent sub-

sets Vj (line 4) and partitioning a dataset D into subsets of similar instances Di (line 8)

3.4 LEARNING SPNS 19

Figure 3.4: Illustration of LearnSPN algorithm. Source: Gens and Domingos (2013).

Algorithm 3.2 LearnSPN schema

Input: set of instances D and set of variables V
Output: an SPN representing a distribution over V learned from D

1: if |V | = 1 then
2: return univariate distribution estimated from the variable’s values in D
3: else
4: ▷ Try to partition V into approximately independent subsets Vj .
5: if partition is successful then
6: return product node pointing to all LearnSPN(D,Vj)
7: else
8: ▷ Partition D into subsets of similar instances Di.
9: return sum node pointing to all LearnSPN(Di, V) with weights |Di|

|D|
10: end if
11: end if

were intentionally left vague by Gens and Domingos (2013), making LearnSPN more of a

schema than a single algorithm.

It is important to highlight that LearnSPN exclusively learns tree-shaped SPNs. Con-

sequently, the resulting structures tend to be larger than if they were not constrained

to trees. Furthermore, this implies that there is likely a considerable number of leaves

associated with each variable.

There are different approaches to accomplish partitioning the dataset. One common

method for finding approximately independent subsets of variables is the G-test (Gens

and Domingos, 2013). However, different implementations may employ different indepen-

dence tests. For instance, the open-source library SPFlow (Molina et al., 2019) utilizes the

20 SUM-PRODUCT NETWORKS 3.5

Randomized Dependence Coefficient (Lopez-Paz et al., 2013) as its default independence

test.

To split instances, clustering methods can be employed, such as k-means (MacQueen,

1967) and GMM clustering. Each of these methods requires specific hyperparameters. In

LearnSPN implementations, it is typical to specify a threshold for determining variable in-

dependence, a minimum number of instances for partitioning, a desired number of clusters,

and, in the case of learning GSPNs, a minimum variance for the Gaussian distributions in

the leaves to prevent the learning of degenerate GSPNs.

The choice of hyperparameters has a significant impact on the size of learned SPNs.

3.5 MAP inference

SPNs are often built to solve structured prediction problems, where a solution is found by

performing Maximum-A-Posteriori (MAP) inference in the model. MAP inference aims

to find the most probable values for a set of RVs according to a probability distribution,

and it is closely related to finding a global maximum in SPNs.

Definition 3.3 (MAP Inference). Given a probability density function2 p(X), disjoint

sets Xq, X0, Xm such that X = Xq ∪ X0 ∪ Xm, and an evidence x0 on X0, MAP in-

ference consists of finding the most probable configuration for X1 given x0 and ignoring

(marginalizing) the RVs in Xm, that is:

MAP
(
p,Xq,x0,Xm

)
:= argmax

xq∈R|Xq |
p
(
xq | x0

)
. (3.11)

MAP inference is a generalization of Most Probable Explanation (MPE) inference,

which consists in finding the most probable configuration for a set of RVs Xq given an

evidence x0 (without a set of RVs to marginalize), and is inherently harder than it in clas-

sical probabilistic graphical models (PGMs) like Bayesian Networks and Markov Networks

(Park and Darwiche, 2004).

Equation 3.11 implies that:

MAP
(
p,Xq,x0,Xm

)
= argmax

xq∈R|Xq |
p
(
xq,x0

)
(3.12)

= argmax
xq∈R|Xq |

∫
R
· · ·
∫
R
p
(
xq,x0, xm1 , · · · , xmk

)
dxm1 · · · dxmk .(3.13)

2We are assuming continuous RVs, but in the case of discrete RVs the definition is similar but uses a
probability mass function instead of a probability density function.

3.5 MAP INFERENCE 21

Height Lower bound Upper bound

1 1 1
2 (m− 1)ϵ m− 1
≥ 3 2s

ϵ
2s

Table 3.1: Lower and upper bounds on the approximation threshold for a polynomial-time
algorithm for MAP inference in discrete SPNs: s denotes the size of the instance, m is the
number of internal nodes, ϵ is a non-negative number less than 1. Source: Conaty et al.
(2017).

The valuation MAP(·) is named MAP assignment and the conditional probability

p(MAP(·) | x0) is named MAP value. In this work, we refer to the problem of performing

MAP inference as MAP problem.

Although marginal and conditional inference take linear time in SPNs, MAP inference

is computationally difficult. In fact, it is proven to be NP-Hard in discrete SPNs; dis-

tinct proofs are found in (Peharz, 2015), (Peharz et al., 2016) and (Conaty et al., 2017).

Moreover, Conaty et al. (2017) proved the non-approximability of MAP inference within

a sublinear factor in discrete SPNs of height 2, as well as the non-approximability within

any factor 2f(m) for any sublinear function f of the input size m in discrete SPNs of

height ≥ 3, even if there is no evidence and if their structure is a tree. Their results are

summarized in Table 3.1.

3.5.1 Reduction from MAP to MAX

MAP inference splits the set of RVs X in three parts Xq, X0, Xm such that X = Xq ∪
X0 ∪Xm. Mei et al. (2018) proved that every MAP problem can be reduced to a special

case of MAP inference without evidence and RVs to marginalize (X0 = ∅, Xm = ∅) in

linear time in the size of the SPN. Formally, this reduced problem, which they called MAX

inference, consists in computing:

MAX(p) := argmax
x

p(x) , (3.14)

that is, to find the global maximum of a PDF.

The transformation of a MAP problem to a MAX problem in linear time implies that

any efficient algorithm for solving MAX inference can be used to efficiently solve MAP

inference.

Given a MAP problem Xq,x0,Xm over an SPN S, the MAP2MAX algorithm devel-

oped by Mei et al. (2018) returns a new SPN S ′ over Xq such that S ′(xq) = S(xq,x0) for

22 SUM-PRODUCT NETWORKS 3.5

all xq ∈ R|Xq |, which implies MAX(S ′) = MAP(S,Xq,x0,Xm). A pseudocode is given in

Algorithm 3.3. It is slightly modified from the one in the original paper because Mei et al.

(2018) considers SPNs with RV indicators at their leaves.

Algorithm 3.3 MAP2MAX

Input: an SPN S over X, an evidence x0, and a set Xm of RVs to marginalize
Output: an SPN S ′ over Xq such that S ′(xq) = S(xq,x0)

1: ▷ Let A be an auxiliary mapping from SPN nodes to real values.
2: for all node u of S in reverse topological order do
3: if u is a leaf with scope Xi then
4: if Xi ∈ Xe then
5: Au ← u(xei)
6: else
7: Au ← −∞
8: end if
9: else if u is a product node then

10: Au ←
∏

v∈ch(u)Av

11: else if u is a sum node then
12: for all v ∈ ch(u) do
13: w(u, v)← w(u, v)Av

14: end for
15: if scope(u) ⊆ Xe ∪Xm then
16: Au ←

∑
v∈ch(u)w(u, v)

17: else
18: Au ← 1
19: end if
20: end if
21: end for
22: for all node u of S do
23: if scope(u) ⊆ Xe ∪Xm then
24: ▷ Remove u and the arcs/weights associated with u.
25: end if
26: end for
27: return S

To be precise, the SPN resulting from MAP2MAX algorithm is not “normalized,” as

the weights of arcs from sum nodes do not necessarily add up to 1 and therefore the

resulting probability distribution is not normalized. However, SPNs can be normalized

efficiently in linear time, as shown by Peharz (2015), and the normalization simply divides

densities by a constant, not affecting the semantic of the model and its modes.

Since MAP inference can be reduced to MAX in linear time, we will assume, without

loss of generality, that MAP inference in SPNs is seeking the solution to the MAX problem,

which consists in simply finding a global maximum of a given distribution.

3.5 MAP INFERENCE 23

3.5.2 Approximation algorithms

Table 3.1 shows that MAP inference in SPNs is not only hard to perform exactly, but also

hard to approximate. Since the introduction of SPNs, different approximation algorithms

have been proposed; first Max-Product (Poon and Domingos, 2011), and then adaptations

such as ArgMax-Product (Conaty et al., 2017) and K-Best Tree (Mei et al., 2018).

Max-Product is a greedy algorithm that runs in linear time and consists of, given an

SPN S:

1. Build a Max-Product NetworkM from S by replacing all sum nodes with max nodes

(which selects the maximum values among its children). Replace each leaf with the

global maximum of its distribution.

2. Compute the values of all nodes inM by visiting all nodes starting from the leaves,

similar to the process of performing marginal inference in an SPN as seen in Algo-

rithm 3.1.

The pseudocode for Max-Product is given in Algorithm 3.4.

Algorithm 3.4 Max-Product

Input: an SPN S over X
Output: a valuation x for X that is an approximation of argmaxx S(x)

1: ▷ For any node u, let Au denote a mapping from RVs to values (initially empty).
2: for all node u of S in reverse topological order do
3: if u is a leaf over Xi then
4: Au ← {Xi : argmaxx u(x)} ▷ e.g. for u ∼ N (µ, σ2), argmaxx u(x) = µ
5: Mu ← u(Au[Xi])
6: else if u is a product node then
7: Au ← ∪v∈ch(u)Av

8: Mu ←
∏

v∈ch(u) Vv

9: else if u is a sum node then
10: v∗ ← argmaxv∈ch(u)wvMv

11: Au ← Av∗

12: Mu ← wv∗Mv∗

13: end if
14: end for
15: return Aroot

Figure 3.5 illustrates Max-Product algorithm finding a MAP assignment in the GSPN

shown in Figure 3.1.

This algorithm is called Best Tree by Mei et al. (2018) because it actually finds the

induced tree of the SPN with the largest MAP value. Peharz et al. (2016) proved that it

24 SUM-PRODUCT NETWORKS 3.5

+

× × ×

X1 X1 X2 X2(2,) (11,) (, 3) (,−4)

(2, 3) (2,−4) (11,−4)

(11,−4)

N (2, 18) N (11, 8) N (3, 10) N (−4, 7)

4
20

9
20

7
20

Figure 3.5: Max-Product algorithm in the GSPN shown in Figure 3.1. On the right of
each node v, the value of map2(v) as computed by Max-Product. The algorithm outputs
the configuration X1 = 11, X2 = −4.

finds the exact solution of MAP inference in the subclass of selective SPNs3, but that is

not useful in the context of GSPNs which are not selective.

Conaty et al. (2017) proposed a slightly modified version of Max-Product algorithm

which they called ArgMax-Product. In the worst case scenario it achieves the same

result of Max-Product, but reportedly perform significantly better in average. The idea

is, for each sum node u, to compute the value of the sub-SPN rooted in u for each of the

possible MAP assignments obtained by its children. Instead of just choosing the maximum

value of w(u, v)Av for all v ∈ ch(u) (line 10), it actually computes the entire value of v

for all the sets of values of RVs that arise from its children. The trade-off is complexity:

ArgMax-Product does | ch(v)| bottom-up evaluations of the SPN on every sum node v in

the SPN, so it has quadratic time complexity.

Mei et al. (2018) noted that, given an SPN S, Max-Product algorithm finds the induced

tree with the largest MAX value. Motivated by their empirical finding that in several cases

the exact MAX solution is an induced tree with a large value, although not necessarily the

largest, they proposed an algorithm to find the K induced trees of S with the largest value

— namely, K-Best Tree (KBT). The algorithm is similar to Max-Product, but, instead of

propagating up the maximum value from each node, it propagates the top K. The overall

time complexity of KBT is O(|S|K logK). If K = 1, KBT reduces to Max-Product.

3A sum node u is selective if for all choices of weights w and all possible x it holds that at most one
child of u is non-zero. An SPN is selective if all its sum nodes are selective.

Chapter 4

Modal EM for GSPNs

The direct application of Modal EM, as discussed in Chapter 2, to SPNs is intractable due

to the large number of components in the mixture, which corresponds to the number of

induced trees in the SPN. To address this limitation, we devised an adaptation of Modal

EM that leverages the recursive nature of SPNs.

Our contribution has been published in a conference (Madeira and Mauá, 2022), but

we have revised the notation to present it with more clarity in this chapter. Additionally,

we will provide a proof of the ascending property of the algorithm (Theorem 4.1) which

was not included in the paper.

In this chapter, we will first introduce Modal EM for GSPNs algorithm and show how

it was constructed (Section 4.1), then we will prove its correctness (Section 4.2). Next, we

will discuss two applications: MAP inference and clustering (Section 4.3).

4.1 The algorithm

Modal EM for GSPNs traverses the network from bottom to top, and each node

propagates 2n values. Each iteration of it takes Θ (n|S|), where n is the number of RVs,

and |S| is the number of nodes in the GSPN. The pseudo-code is presented in Algorithm

4.1.

We will now show how we constructed the algorithm. If S(x) is the density of a GSPN,

then T k(x) (k = 1, · · · , τ) corresponds to the multiplication of the densities in the leaves

of its k-th induced tree, as seen in Section 3.1. Let T k
i (xi) be the density of the leaf with

scope Xi, Xi ∼ N
(
µki , σ

2
ki

)
, in the k-th induced tree. Then:

T k(x) =
n∏
i

T k
i (xi) , (4.1)

25

26 MODAL EM FOR GSPNS 4.1

Algorithm 4.1 Modal EM for GSPNs

Input: a GSPN S over X1, · · · , Xd and a point x(r) ∈ Rd

Output: a point x(r+1) ∈ Rd such that S
(
x(r+1)

)
≥ S

(
x(r)

)
1: for all node u of S in reverse topological order do
2: if u is a leaf then
3: ▷ Let Xi be the RV in the scope of u;
4: ▷ Let µ and σ be the parameters of the Gaussian of u.

5: Nu
i ←

u
(
x
(r)
i

)
µ

σ2 , Du
i ←

u
(
x
(r)
i

)
σ2

6: for all RV Xj ̸= Xi do

7: Nu
j ← Du

j ← u
(
x
(r)
i

)
8: end for
9: else if u is a product node then

10: for all RV Xi do
11: Nu

i ←
∏

v∈ch(u)N
v
i

12: Du
i ←

∏
v∈ch(u)D

v
i

13: end for
14: else if u is a sum node then
15: for all RV Xi do
16: Nu

i ←
∑

v∈ch(u)w(u, v)N
c
i

17: Du
i ←

∑
v∈ch(u)w(u, v)D

v
i

18: end for
19: end if
20: end for
21: return Nroot

Droot

where n is the number of RVs in the SPN. Therefore, starting from Equation 2.14, we

have:

x(r+1) = argmax
x

∑
k

qk

(
log
∏
i

T k
i (xi)

)
(4.2)

= argmax
x

∑
k

qk

(∑
i

log T k
i (xi)

)
(4.3)

= argmax
x

∑
k

∑
i

(
qk log T

k
i (xi)

)
(4.4)

= ×i argmax
xi

∑
k

(
qk log T

k
i (xi)

)
. (4.5)

The last equation above states that each coordinate of the x(r+1) vector is obtained

separately, by maximizing only over the corresponding dimension x
(r+1)
i . Hence, for a fixed

i, we only need to find xi that maximizes g(xi) :=
∑

k qk log T
k
i (xi).

The logarithm of the probability density function f(x) of a univariate Gaussian distri-

bution with mean µ and variance σ2 is:

4.2 THE ALGORITHM 27

l(x) = log f(x) = − log(σ)− 1

2
log(2π)− (x− µ)2

2σ2
. (4.6)

The first and second derivatives of that function are, respectively:

l′(x) =
µ− x

σ2
, and l′′(x) = − 1

σ2
. (4.7)

That implies that g(xi) is a sum of quadratic functions with negative second derivative,

therefore it has exactly one maximum. Its derivative is:

g′(xi) =
τ∑
k

(
qk

µki − xi
σ2
ki

)
. (4.8)

Thus, to compute x
(r+1)
i = argmaxxi g(xi) we can calculate the point where it is zero. By

solving g′(xi) = 0, using Equation 2.13 to find the value of qk, we get:

x
(r+1)
i =

∑τ
k

qkµki

σ2
ki∑τ

k
qk
σ2
ki

=

∑τ
k

wkT
k(x(r))µki

S(x(r))σ2
ki∑τ

k

wkTk(x(r))
S(x(r))σ2

ki

=

∑τ
k

µki

σ2
ki

wkT
k
(
x(r)

)
∑τ

k
1

σ2
ki

wkT k
(
x(r)

) . (4.9)

Note that this equation is equivalent to Equation 2.12 (just indexed by i), demonstrating

the equivalence of the iterative schema proposed by Carreira-Perpiñán (2000) and Modal

EM as proposed by Li et al. (2007). This iterative scheme has been shown to be equivalent

to a generalized Mean-Shift algorithm by Chacón (2019), establishing a relation between

Modal EM and Mean-Shift.

We aim to efficiently compute the value of each i-th random variable in the GSPN using

our algorithm. Note that the numerator and denominator of the fraction in Equation 4.9

are similar to the evaluation of the GSPN in x(r), which can be expressed as S(x(r)) =∑τ
k wkT

k(x(r)). However, there is a constant factor multiplying wk in both cases, which

depends on the parameters of the leaf node of the i-th random variable in the k-th induced

tree. This factor is
µki

σ2
ki

for the numerator and 1
σ2
ki

for the denominator.

So, to compute the value of each RV, our algorithm performs a bottom-up evaluation

of the GSPN and propagates 2n values for each node. For each random variable, one value

is computed for the numerator (stored in N) and other for the denominator (stored in D)

of Equation 4.9. Finally, we divide the vectors (N by D) to get x(r+1).

28 MODAL EM FOR GSPNS 4.2

4.2 Proof of correctness

We will now demonstrate, in Theorem 4.1, that our algorithm implements Modal EM and,

therefore, is ascending. To accomplish that we will use Lemma 4.1, which formalizes the

argument given in the end of the construction of the algorithm in Section 4.1.

Lemma 4.1. For any node u and any RV Xi of a GSPN, Algorithm 4.1 assigns the

following values for Nu
i and Du

i :

• If Xi is in the scope of u:

Nu
i =

τu∑
k

µki

σ2
ki

wkT
k
u

(
x(r)

)
, and Du

i =

τu∑
k

1

σ2
ki

wkT
k
u

(
x(r)

)
, (4.10)

where τu denotes the number of induced trees of the SPN rooted on u and T k
u (x

(r))

denotes the density of the assignment x(r) in the k-th induced tree of the SPN rooted

on u.

• If Xi is not in the scope of u:

Nu
i = Du

i = u
(
x(r)

)
. (4.11)

Proof. Let u be a node of a GSPN S. Then u must be either a univariate Gaussian node,

a sum node or a product node. Proceed by cases.

Case 1: Assume that u is the univariate Gaussian distribution N (µ, σ2) over the RV Xi.

Then, τu = 1, w1 = 1 and T 1
u

(
x(r)

)
= u

(
x
(r)
i

)
. Let j be the index of RV Xj in the

scope of S. If j = i, then line 5 of the algorithm makes:

Nu
i ←

u
(
x
(r)
i

)
µ

σ2 =

τu∑
k

µ

σ2
wkT

k
u

(
x(r)

)
, and (4.12)

Du
i ←

u
(
x
(r)
i

)
σ2 =

τu∑
k

1

σ2
wkT

k
u

(
x(r)

)
, (4.13)

and if j ̸= i, then line 7 of the algorithm makes:

Nu
j ← Du

j ← u
(
x(r)

)
, (4.14)

as we wanted to show.

4.2 PROOF OF CORRECTNESS 29

Case 2: Assume that u is a product node pointing to nodes v ∈ ch(u). Assume, by

induction, that the result holds for all v. The loop in line 10 of the algorithm assigns,

for all Xi:

Nu
i ←

∏
v∈ch(u)

Nv
i , and Du

i ←
∏

v∈ch(u)

Dv
i . (4.15)

Fix a variable Xi. Then Xi is in the scope of u or not. If it is, it is in the scope of

one (and only one) v ∈ ch(u) (recall that, by definition, a product node points to

nodes with disjoint scopes).

If Xi is in not in the scope u, then, by induction:

Nu
i ←

∏
v∈ch(u)

v
(
x(r)

)
= u

(
x(r)

)
, (4.16)

as we wanted to show. If Xi is in the scope of a v∗ ∈ ch(u), fix v∗. Then, again by

induction:

Nu
i ←

∏
v∈ch(u)\{v∗}

v
(
x(r)

)(τv∗∑
k

µki

σ2
ki

wkT
k
v∗

(
x(r)

))
. (4.17)

By the definition of induced tree (Equation 3.6), we can untangle v(x(r)) to get:

Nu
i ←

∏
v∈ch(u)\{v∗}

(
τv∑
k

wkT
k
v

(
x(r)

))(τv∗∑
k

µki

σ2
ki

wkT
k
v∗

(
x(r)

))
. (4.18)

This combination of the induced trees of all children of u produces:

Nu
i ←

τu∑
k

µki

σ2
ki

wkT
k
u

(
x(r)

)
. (4.19)

The arguments for Dk
i are analogous and are omitted for brevity.

Case 3: Assume that u is a sum node pointing to nodes v ∈ ch(u). Assume, by induction,

that the result holds for all v. The loop in line 15 of the algorithm assigns, for all

Xi:

Nu
i ←

∑
v∈ch(u)

w(u, v)Nv
i , and Du

i ←
∑

v∈ch(u)

w(u, v)Dv
i . (4.20)

30 MODAL EM FOR GSPNS 4.2

Suppose that Xi is in the scope of u. Then, by definition, it is in the scope of v for

all v ∈ ch(u). By induction, we have:

Nu
i ←

∑
v∈ch(u)

(
w(u, v)

τv∑
k

µki

σ2
ki

wkT
k
v

(
x(r)

))
. (4.21)

By the definition of induced tree, that means:

Nu
i ←

τu∑
k

µki

σ2
ki

wkT
k
u

(
x(r)

)
, (4.22)

as we wanted to show.

Now suppose that Xi is not in the scope of u. Then, it is also not in the scope of v

for all v ∈ ch(u) and, by induction, we have:

Nu
i ←

∑
v∈ch(u)

w(u, v)v
(
x(r)

)
, (4.23)

which, by definition, is equal to:

Nu
i ← u

(
x(r)

)
. (4.24)

The arguments for Dk
i are analogous and are omitted for brevity.

Theorem 4.1. Modal EM for GSPNs (Algorithm 4.1) computes x(r+1) from x(r) such

that S
(
x(r+1)

)
> S

(
x(r)

)
, unless x(r) corresponds to a local maximum, in which case we

have S
(
x(r+1)

)
= S

(
x(r)

)
.

Proof. Fix r. The algorithm (line 21) returns x(r+1) = Nroot

Droot . By Lemma 4.1,

N root
i =

τ∑
k

µki

σ2
ki

wkT
k
(
x
(r)
i

)
, and Droot

i =
τ∑
k

1

σ2
ki

wkT
k
(
x
(r)
i

)
. (4.25)

Hence, it returns the following coordinates for x(r+1):

x
(r+1)
i =

∑τ
k

µki

σ2
ki

wkT
k
(
x
(r)
i

)
∑τ

k
1

σ2
ki

wkT k
(
x
(r)
i

) . (4.26)

4.3 APPLICATIONS 31

The construction depicted from Equation 4.2 to Equation 4.9 shows that this value

is equal to the one in Equation 2.14. Therefore, the algorithm computes the same value

of Modal EM as developed by Li et al. (2007). By the proof in Appendix A of (Li et al.,

2007), S
(
x(r+1)

)
≥ S

(
x(r)

)
. By Theorem 1 of (Wu, 1983), the algorithm converges to a

local maximum.

In Section 4.3, we will discuss some applications of Modal EM for GSPNs. In Chapter

5, we will show it performs in practice.

4.3 Applications

In this section, we will explore some potential applications of finding the modes of GSPNs

in Maximum-A-Posteriori (MAP) Inference and modal clustering.

4.3.1 MAP inference

The greedy algorithms for MAP inference in SPNs discussed in Chapter 3 are restricted

to considering solutions derived solely from the modes of the distributions at the leaves.

Consequently, these algorithms are not well-suited for accurately locating maxima of con-

tinuous SPNs, especially when the SPN contains maxima that are not maxima of the

components of the mixture. Examples of such mixtures are depicted in Figures 2.2 and

3.1. This limitation persists even in one dimension, as demonstrated by constructing a

straightforward univariate GSPN comprising three nodes:

Example 4.1. Consider a univariate GMM X ∼ 0.5N (1, 9) + 0.5N (3, 9). The PDF of

such distribution is depicted in Figure 4.1(a). An SPN representing this distribution can

be constructed by connecting a sum root with two Gaussian leaves with weights 0.5 for

both arcs, as shown in Figure 4.1(b). The maximum of this PDF is located at X = 2

(p(2) ≈ 0.125), which cannot be found by the approximation algorithms presented above

that only explore solutions arising from the modes of the distributions at the leaves. These

algorithms can only find X = 1 or X = 3 (p(1) = p(3) ≈ 0.119).

A common approach to enhance the approximate solutions obtained by these algo-

rithms in discrete SPNs is to perform a local search in the space of possible assignments

(Mauá et al., 2020). This method involves iteratively modifying individual variable assign-

ments to improve an existing solution. While this approach is straightforward for variable

indicators or categorical random variables, adapting it to continuous SPNs, like GSPNs,

could involve employing a hill-climbing method such as Modal EM. To illustrate this,

Example 4.2 shows the application of Modal EM to the SPNs in Figures 4.1 and 3.1.

32 MODAL EM FOR GSPNS 4.3

−4 −2 0 2 4 6 8

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

0.12

0.14

(a)

+

N (1, 9) N (3, 9)

0.5

0.5

(b)

Figure 4.1: (a) Plot of the PDFs of three distributions: X ∼ N (1, 9) (dashed line);
X ∼ N (3, 9) (dotted line);X ∼ 0.5N (1, 9)+0.5N (3, 9) (solid line). (b)GSPN representing
the distribution plotted as a solid line in (a). The approximation algorithms based on Max-
Product, seen in Section 3.5.2, are unable to find its unique mode, X = 2.

Example 4.2. (a) Consider the univariate GSPN shown in Figure 4.1. Suppose an ap-

proximation algorithm has found the MAP solution X = 1, denoted as x(0). By applying

Modal EM iteratively, we can observe its convergence towards the mode of the model, the

value X = 2:

x(0) = 1 ;

x(1) ← 1.88934389 ;

x(2) ← 1.98770550 ;

x(3) ← 1.99863394 ;

x(4) ← 1.99984822 ;

x(5) ← 1.99998314 ;

x(6) ← 1.99999813 ;

x(7) ← 1.99999979 .

(b) Now consider the bivariate GSPN shown in Figure 3.1. Applying Modal EM starting

from the solution found by the Max-Product illustration in Figure 3.5, X = (11,−4), we
get:

x(0) = (11,−4) ;

x(1) ← (10.6418764,−3.9869965) ;

x(2) ← (10.5730441,−3.9844986) ;

x(3) ← (10.5580160,−3.9839568) ;

x(4) ← (10.5546503,−3.9838357) ;

x(5) ← (10.5538923,−3.9838086) ;

x(6) ← (10.5537214,−3.9838023) ;

x(7) ← (10.5536829,−3.9838009) .

Another possible strategy to perform MAP inference in GSPNs is to run Modal EM

starting from multiple initial points, aiming to identify the highest mode among several

local modes. However, this approach would face challenges due to the large number of

modes typically present in a GSPN, as discussed in Chapter 2.

4.3 APPLICATIONS 33

4.3.2 Modal clustering

Clustering techniques play a crucial role in various data analysis domains, finding applica-

tions in areas such as pattern recognition, image analysis, and machine learning. Typically,

a cluster is considered a high-density region within the sample space that is well separated

from other high-density regions.

The majority of clustering methods categorizes points in a dataset by mean of a dis-

tance function. Such methods proceed by selecting a partition of the dataset that optimizes

a chosen objective function that favors small intra-cluster distance and large inter-cluster

distance. For instance, the classical k-means algorithm repeatedly identifies k cluster cen-

ters and assigns data points to the nearest cluster center, with the aim of minimizing the

squared distances from the clusters (MacQueen, 1967).

More recently, an increasing number of researchers have emphasized the importance of

more explicitly incorporating density modeling into clustering procedures (Carlsson and

Mémoli, 2013). In this direction, Chacón (2019) conducted a comparative study of two dis-

tinct density-based clustering approaches: mixture model clustering and clustering based

on high-density regions. In the case of mixture model clustering, clusters are associated

with mixture components centered at their centroids, as inferred from the learned mixture

model. On the other hand, clustering based on high-density regions associates clusters with

the local maxima of the mixture density, focusing on regions of elevated density within

the mixture.

Mixture model clustering offers the ability to explore more complex scenarios com-

pared to modal clustering when the true density aligns with the assumed class of mixture

densities. However, when mixture modeling is primarily employed to approximate any

density within the dense space of mixture densities, as is often the case with SPNs, the

association between clusters and mixture components becomes less reliable, and in that

sense modal clustering is a promising approach.

While LearnSPN utilizes hierarchical clustering to construct the network’s structure,

cluster analysis on learned SPNs remains a largely unexplored field. Modal EM allows us

to perform clustering via mode identification using GSPNs by ascending from any given

point to a mode, which is considered to be the representative (center) of a cluster.

Chapter 5

Experiments

In this chapter, we will present the experimental results obtained through the implemen-

tation of the algorithms discussed in this thesis.

Modal EM for GSPNs has been made open source and is available within Julia’s

RPCircuits.jl package1. Furthermore, all the code utilized for conducting the experiments

presented in this chapter can be found publicly at https://github.com/tmadeira/gspn.

To learn SPNs from data, we utilized the LearnSPN implementation provided by the

SPFlow library2 (Molina et al., 2019). Instance splitting was performed using GMM clus-

tering, while variable splitting was accomplished using the Randomized Dependence Co-

efficient (Lopez-Paz et al., 2013).

We will commence by presenting the outcomes of hierarchical clustering experiments

carried out on the MNIST dataset (Section 5.1), which were previously published in the

proceedings of a conference (Madeira and Mauá, 2022). Following that, we will illustrate

image segmentation experiments (Section 5.2), which constitute an expanded version of

what was presented in a workshop (Madeira and Mauá, 2023).

5.1 Hierarchical clustering

In their work, Li et al. (2007) introduced Modal EM as a method to performing semi-

parametric clustering in GMMs. Recognizing the presence of multiple modes in GMMs,

they extended the approach to hierarchical clustering by iteratively learning models from

the modes discovered in previous iterations. The models they use are kernel density esti-

mators with increasing bandwidths.

Building upon this concept, we demonstrated the application of hierarchical clustering

1Available at https://github.com/RenatoGeh/RPCircuits.jl.
2Available at https://github.com/SPFlow/SPFlow.

35

https://github.com/tmadeira/gspn
https://github.com/RenatoGeh/RPCircuits.jl
https://github.com/SPFlow/SPFlow

36 EXPERIMENTS 5.1

Iteration Instances Nodes Clusters Log Avg. Likelihood

1 5,923 74,556 201 7,707
2 201 7,851 10 3,438

Table 5.1: SPNs learned from MNIST-0 training set at iteration 1 and modes found in the
first iteration at iteration 2. For each iteration, the tables show the number of instances
used to learn the model, the network size (given by the number of nodes in the SPN),
the number of clusters as found by running Modal EM starting from every point in the
training set, and the log of the average likelihood for the test set in the learned SPN.
Source: Madeira and Mauá (2022).

to GSPNs in a published paper (Madeira and Mauá, 2022), where we presented empirical

results showcasing the iterative learning of new GSPNs from the modes identified by Modal

EM in the preceding models. This iterative schema allows us to progressively construct

simpler and smaller models using the modes of previously learned models, which can serve

as a representative summary of both the data and the model. The approach is particularly

relevant in the contexts of model compression. In this section we reproduce these results.

To illustrate the method, we utilized the widely-known MNIST database of handwrit-

ten digits. The dataset consists of 60,000 grayscale images of size 28x28, representing the

digits 0–9 in the training set, along with 10,000 images in the test set. Each pixel in the

images is represented by an integer value ranging from 0 to 255. In our experiments, we

focused solely on the images corresponding to the digit 0 from the MNIST database, form-

ing a subset referred to as MNIST-0. This subset comprises 5,923 images in the training

set and 980 images in the test set.

Initially, we trained a GSPN using the MNIST-0 dataset. Subsequently, we applied

our Modal EM algorithm to each data point in the training set, generating a collection

of representative summaries which correspond to modes of the model. Data points that

“converge” to the same mode are grouped into the same cluster. These modes form a

new dataset, from which we learn a new GSPN. This iterative process continues until the

number of modes reaches an acceptably small value. In our experiments, we observed that

two iterations were adequate to obtain a reduced set of models/clusters.

The results are shown in Table 5.1, which includes information about the size of the

network and the logarithm of the average likelihood of the test set in the learned SPN.

These metrics provide insights into the model’s capability to accurately represent the

examples in the test set. In Figure 5.1, we visualize the hierarchical clustering obtained

through the iterative process applied to the MNIST-0 dataset. For clarity, we omit the

initial 5,923 instances from the training dataset and only display the modes identified

by Modal EM in the first and second iterations. Remarkably, even in a network that

5.2 IMAGE SEGMENTATION 37

Figure 5.1: Hierarchical clustering: Modes (representatives of the clusters) found in 2
iterations of Modal EM in GSPNs learned from MNIST-0 dataset. The smaller images
correspond to the modes found in the first GSPN, the bigger ones correspond to the
modes found in the second GSPN (learned from the modes from the first GSPN). Modes
from the first GSPN are connected to their modes in the second GSPN. Source: Madeira
and Mauá (2022).

is approximately 10% of the size of the original network, the modes appear to be good

representatives of the dataset’s diversity.

As noted in the paper, a limitation of this approach is that it tends to underrepre-

sent high-density regions (large clusters) while overrepresenting low-density regions (small

clusters) in the new dataset. To address this issue, one potential solution is to optimize

for weighted log-likelihood in the structural and parametric learning algorithms. Another

approach is to adjust the representation of models by over/undersampling them based on

the density of their respective regions.

5.2 Image segmentation

As another preliminary and visual investigation of the effectiveness of modal clustering

on GSPNs, we performed some experiments with segmentation of the images depicted in

Figure 5.2.

We generated datasets consisting of 5 variables by considering the RGB intensity values

and x and y locations of each pixel from various images. The datasets were then used to

learn GSPNs from data. We ran Modal EM starting from all the points in the dataset,

finding the modes for which they converge. We considered that a cluster is formed by

points that converge to the same mode. We then re-colored the image using the average

color of the points in the cluster.

We experimented with different GSPNs by varying the minimum number of instances

required for slicing in the learning process (s). Table 5.2 shows the number of nodes,

38 EXPERIMENTS 5.2

(a) (b)

(c) (d)

Figure 5.2: Images used for segmentation. (a) Flower (200x155). (b) Easter Bunny
(200x144). (c) Tarsila do Amaral’s The Family (200x158). (d) Tarsila do Amaral’s Land-
scape with Bull (200x158).

network height and the number of clusters obtained for each GSPN when we vary s. One

sees the great dependence between those quantities, as well as the quick increase in the

number of modes when s is smaller.

Figures 5.3 and 5.4 display a visual comparison of image segmentation by Modal EM

in GSPNs and by the k-means algorithm as implemented by the scikit-learn library3,

where k is set to the number of clusters identified by Modal EM trained with different s

hyperparameters.

Our results have shown satisfactory performance comparable to the widely-used k-

means algorithm. However, visually, we observed that image segmentation using k-means

with k equivalent to the number of modes in the SPN yields more detailed segmentation

results.

We conjecture that GSPN’s slightly worse performance is due to a lack of fit to the

model, which could be mitigated by changing the structure learning algorithm, performing

fine-tuning of parameters or even using k-means solution as a initial model for refinements.

It is worth noting that image segmentation may not be the optimal application domain

for SPNs, and also that GSPN modal clustering offers several advantages over traditional

clustering techniques like k-means. It can effectively handle missing values, detect outliers

3Available at https://scikit-learn.org.

https://scikit-learn.org

5.2 IMAGE SEGMENTATION 39

Dataset Parameter s Nodes Height Clusters

Easter Bunny 20,000 13 3 6
Easter Bunny 15,000 19 3 7
Easter Bunny 10,000 25 3 10
Easter Bunny 5,000 50 5 31
Easter Bunny 2,000 132 5 68
Easter Bunny 500 528 7 398
Easter Bunny 200 1,267 9 676

Flower 20,000 13 3 2
Flower 15,000 19 3 5
Flower 10,000 25 3 8
Flower 5,000 61 3 27
Flower 2,000 155 5 79
Flower 500 595 5 228
Flower 200 1,457 7 609

The Family 20,000 13 3 4
The Family 15,000 25 3 5
The Family 10,000 31 3 8
The Family 5,000 61 3 19
The Family 2,000 163 3 43
The Family 500 603 7 187
The Family 200 1,504 7 555

Landscape with Bull 20,000 13 3 6
Landscape with Bull 15,000 25 3 12
Landscape with Bull 10,000 31 3 15
Landscape with Bull 5,000 55 3 24
Landscape with Bull 2,000 145 3 38
Landscape with Bull 500 563 7 255
Landscape with Bull 200 1,427 7 508

Table 5.2: Information about SPNs learned for image segmentation.

based on probability thresholds, and easily scale up to handle more complex and high-

dimensional domains.

40 EXPERIMENTS 5.2

GSPN k-means

s = 20000
k = 2

s = 10000
k = 8

s = 2000
k = 79

s = 500
k = 228

(a)

GSPN k-means

s = 20000
k = 6

s = 10000
k = 10

s = 2000
k = 68

s = 500
k = 398

(b)

Figure 5.3: Image segmentation using GSPNs vs. k-means. (a) Flower. (b) Easter Bunny.

5.2 IMAGE SEGMENTATION 41

GSPN k-means

s = 20000
k = 4

s = 10000
k = 8

s = 2000
k = 43

s = 500
k = 187

(a)

GSPN k-means

s = 20000
k = 6

s = 10000
k = 15

s = 2000
k = 38

s = 500
k = 255

(b)

Figure 5.4: Image segmentation using GSPNs vs. k-means. (a) The Family. (b) Landscape
with Bull.

Chapter 6

Final considerations

In this chapter, we will present the concluding remarks for this research. Section 6.1 offers

a concise summary of our work, emphasizing our contributions. Following that, Section

6.2 outlines potential avenues for future research in this domain.

6.1 Summary

This work investigated the problem of finding maxima of Gaussian Sum-Product Networks.

We reviewed literature about Gaussian Mixture Models, the number of local maxima

in their probability density function, and techniques to find them. Additionally, we re-

viewed literature on Sum-Product Networks, their relationship with mixture models, and

the challenges in finding optimal Maximum-A-Posteriori inference solutions in continuous

SPNs.

We adapted the Modal EM schema from GMMs to GSPNs, creating a tractable fixed-

point iteration algorithm capable of finding a mode in a GSPN from any arbitrary initial

point. To the extent of our knowledge, this algorithm represents the first method specif-

ically designed for mode-finding in GSPNs, making this work a modest but pioneering

contribution in the study of modes in SPNs.

The correctness of the algorithm was proved, the time complexity was analyzed, and

an implementation of it was released as open source in the RPCircuits.jl package.

After presenting the algorithm, we discussed some practical applications in MAP in-

ference and cluster analysis. For MAP inference, we argued that Modal EM can be used

to improve the solution of any existing algorithm, leading to an approach which provably

finds a local optimum, a property most current algorithms lack.

For clustering, we performed illustrative examples on hierarchical clustering and im-

age segmentation. For hierarchical clustering, we presented empirical results of iteratively

43

44 FINAL CONSIDERATIONS 6.2

learning smaller models starting from the training set of a digit from the MNIST dataset,

and described how the approach can be used to categorize, explore or compress data. For

image segmentation, we showed how the learning hyperparameters highly influence the

number of clusters found by Modal EM in four different datasets, and visually compared

its results with the segmentation obtained by the classical k-means algorithm.

While image segmentation may not be the optimal application domain for SPNs, our

experiments have demonstrated the applicability of clustering techniques for SPN model

analysis. The number of modes in a density distribution serves as an indicator of the

complexity of the underlying model, providing valuable insights into its representation

capabilities.

Modal EM for GSPNs, along with the experiment on hierarchical clustering, were

published in the proceedings of a conference (Madeira and Mauá, 2022). Additionally, a

paper on modal clustering with GSPNs containing the image segmentation experiments

has been published in a workshop (Madeira and Mauá, 2023), further contributing to the

dissemination of this research.

6.2 Future work

We acknowledge that this study represents only an initial exploration of mode finding in

SPNs, and there is significant potential for future research to expand upon our work. The

following list presents some promising avenues for future investigation, although it is by

no means exhaustive.

1. Although Chapter 2 cited the work by Pulkkinen (2014) about finding global (or

significant) maxima of GMMs, the problem of finding global maxima of GSPNs was

not investigated and is left for future research.

2. MAP inference is likely hard in continuous SPNs, but there is no proof of that in the

existing literature. We cited results on the complexity of MAP inference in discrete

SPNs (Peharz, 2015; Peharz et al., 2016; Conaty et al., 2017) that can possibly be

adapted for continuous SPNs.

3. In Chapter 4 we showed how the existing approximation algorithms for MAP infer-

ence in SPNs are unfit to guarantee local optimality in GSPNs and how Modal EM

could improve the solutions they find, but did not run experiments to evaluate how

it performs in practice.

FUTURE WORK 45

4. As observed in Chapter 5, our approach to hierarchical clustering tends to under-

represent high-density regions while overrepresenting low-density regions in the new

dataset. Potential solutions to this limitation are to either optimize for weighted

log-likelihood in the learning algorithms or to adjust the representation of models

by over/undersampling them based on the density of their respective regions. This

is left for future work.

5. The experimental results of the image segmentation task did not meet our expec-

tations, and we attribute this outcome to a potential lack of model fit. We believe

that exploring alternative methods for learning SPNs, such as the random structure

learning approaches investigated by Peharz et al. (2020); Geh and Mauá (2021),

may yield improved results. Further investigation into applying Modal EM cluster

analysis to SPNs learned using different methods remains an area for future research.

6. Image segmentation might not be the most suitable domain for applying clustering

with SPNs, as SPNs typically excel in higher dimensions and scenarios involving

missing values. Exploring modal clustering in alternative domains and conducting

comprehensive empirical comparisons with state-of-the-art methods are important

areas for future investigation, as outlined by Madeira and Mauá (2023).

7. Although this work focused specifically on Gaussian SPNs, there is potential for the

adaptation of Modal EM to other types of SPNs, including discrete ones, as observed

by Madeira and Mauá (2022).

We hope this work can serve as a modest contribution to stimulate further research in

the fascinating realm of tractable probabilistic models.

Bibliography

Amer and Todorovic(2016) Mohamed R. Amer and Sinisa Todorovic. Sum Prod-

uct Networks for Activity Recognition. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 38:800–813.

Améndola et al.(2019) Carlos Améndola, Alexander Engström and Christian Haase.

Maximum Number of Modes of Gaussian Mixtures. Information and Inference: A Jour-

nal of the IMA.

Bondy and Murty(2008) John Adrian Bondy and Uppaluri Siva Ramachandra Murty.

Graph Theory. Springer-Verlag London, 1 edition.

Carlsson and Mémoli(2013) Gunnar Carlsson and Facundo Mémoli. Classifying Clus-

tering Schemes. Foundations of Computational Mathematics, 13:221–252. ISSN 1615-

3375. doi: 10.1007/s10208-012-9141-9.

Carreira-Perpiñán(2000) Miguel Á Carreira-Perpiñán. Mode-finding for mixtures of

Gaussian distributions. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 22:1318–1323.

Carreira-Perpiñán(2007) Miguel Á Carreira-Perpiñán. Gaussian mean-shift is an EM

algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29:767–

776.

Carreira-Perpiñán(2015) Miguel Á Carreira-Perpiñán. Clustering methods based on

kernel density estimators: Mean-shift algorithms, pgs. 383–418. CRC/Chapman and

Hall.

Carreira-Perpiñán and Williams(2003a) Miguel Á Carreira-Perpiñán and Christo-

pher K.I. Williams. On the number of modes of a Gaussian mixture. In Lewis D. Griffin

and Martin Lillholm, editors, Scale Space Methods in Computer Vision, volume 2695,

pgs. 625–640. Springer Berlin Heidelberg.

47

48 BIBLIOGRAPHY

Carreira-Perpiñán and Williams(2003b) Miguel Á Carreira-Perpiñán and Christo-

pher K.I. Williams. An isotropic Gaussian mixture can have more modes than compo-

nents. Institute for Adaptive and Neural Computation, 4.

Chacón(2019) José E. Chacón. Mixture model modal clustering. Advances in Data Anal-

ysis and Classification, 13:379–404. ISSN 1862-5347. doi: 10.1007/s11634-018-0308-3.

Chan and Darwiche(2006) Hei Chan and Adnan Darwiche. On the robustness of

most probable explanations. In Proceedings of the 22nd Conference on Uncertainty in

Artificial Intelligence, UAI 2006, pgs. 63–71.

Cheng et al.(2014) Wei Chen Cheng, Stanley Kok, Hoai Vu Pham, Hai Leong Chieu

and Kian Ming A. Chai. Language modeling with sum-product networks. In Proceed-

ings of the Annual Conference of the International Speech Communication Association,

INTERSPEECH, pgs. 2098–2102.

Cheng(1995) Yizong Cheng. Mean Shift, mode seeking, and clustering. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, 17:790–799. ISSN 01628828. doi:

10.1109/34.400568.

Comaniciu and Meer(2002) Dorin Comaniciu and Peter Meer. Mean shift: A robust

approach toward feature space analysis. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 24:603–619.

Conaty et al.(2017) Diarmaid Conaty, Denis D. Mauá and Cassio P. de Campos. Ap-

proximation Complexity of Maximum A Posteriori Inference in Sum-Product Networks.

In Gal Elidan and Kristian Kersting, editors, Proceedings of the Thirty-Third Conference

on Uncertainty in Artificial Intelligence, pg. 322–331. AUAI Press.

Darwiche(2003) Adnan Darwiche. A differential approach to inference in Bayesian net-

works. Journal of the ACM, 50:280–305.

Dennis and Ventura(2015) Aaron Dennis and Dan Ventura. Greedy structure search

for sum-product networks. In IJCAI International Joint Conference on Artificial Intel-

ligence, pgs. 932–938. AAAI Press.

Desana and Schnörr(2016) Mattia Desana and Christoph Schnörr. Learning Arbitrary

Sum-Product Network Leaves with Expectation-Maximization.

Fukunaga and Hostetler(1975) K. Fukunaga and L. Hostetler. The estimation of the

gradient of a density function, with applications in pattern recognition. IEEE Transac-

tions on Information Theory, 21:32–40.

BIBLIOGRAPHY 49

Geh and Mauá(2021) Renato Geh and Denis Mauá. Fast And Accurate Learning

of Probabilistic Circuits by Random Projections. In The 4th Workshop on Tractable

Probabilistic Modeling.

Gens and Domingos(2013) Robert Gens and Pedro Domingos. Learning the structure

of sum-product networks. In Sanjoy Dasgupta and David McAllester, editors, Proceed-

ings of the 30th International Conference on Machine Learning, pgs. 873–880. PMLR.

Hsu et al.(2017) Wilson Hsu, Agastya Kalra and Pascal Poupart. Online Structure

Learning for Sum-product Networks with Gaussian Leaves. Iclr, pgs. 1–10.

Jaini et al.(2016) Priyank Jaini, Abdullah Rashwan, Han Zhao, Yue Liu, Ershad Banija-

mali, Zhitang Chen and Pascal Poupart. Online Algorithms for Sum-Product Networks

with Continuous Variables. In Alessandro Antonucci, Giorgio Corani and Cassio Polpo

Campos, editors, Proceedings of the Eighth International Conference on Probabilistic

Graphical Models, pgs. 228–239. PMLR.

Jaynes(2003) Edwin Thompson Jaynes. Probability Theory: The logic of science. Cam-

bridge University Press.

Kadane(2011) Joseph Born Kadane. Principles of Uncertainty. Chapman and Hall.

Koller and Friedman(2009) Daphne Koller and Nir Friedman. Probabilistic Graphical

Models: Principles and Techniques.

Lee et al.(2013) Sang-Woo Lee, Min-Oh Heo and Byoung-Tak Zhang. Online Incremental

Structure Learning of Sum–Product Networks, volume 8227, pgs. 220–227.

Li et al.(2007) Jia Li, Surajit Ray and Bruce G Lindsay. A Nonparametric Statistical

Approach to Clustering via Mode Identification. Journal of Machine Learning Research,

8:1687–1723.

Llerena and Maua(2017) Julissa Villanueva Llerena and Denis Deratani Maua. On

Using Sum-Product Networks for Multi-label Classification. In 2017 Brazilian Confer-

ence on Intelligent Systems (BRACIS), pgs. 25–30. IEEE. ISBN 978-1-5386-2407-4. doi:

10.1109/BRACIS.2017.34.

Lopez-Paz et al.(2013) David Lopez-Paz, Philipp Hennig and Bernhard Schölkopf. The

Randomized Dependence Coefficient. In Proceedings of the 26th International Confer-

ence on Neural Information Processing Systems - Volume 1, pgs. 1–9. Curran Associates

Inc.

50 BIBLIOGRAPHY

MacQueen(1967) J B MacQueen. Some Methods for Classification and Analysis of

MultiVariate Observations. In L M Le Cam and J Neyman, editors, Proc. of the fifth

Berkeley Symposium on Mathematical Statistics and Probability, volume 1, pgs. 281–297.

University of California Press.

Madeira and Mauá(2022) Tiago Madeira and Denis Mauá. Tractable Mode-Finding

in Sum-Product Networks with Gaussian Leaves. In Anais do XIX Encontro Nacional

de Inteligência Artificial e Computacional, pgs. 497–508. SBC. doi: 10.5753/eniac.2022.

227582.

Madeira and Mauá(2023) Tiago Madeira and Denis Mauá. On Modal Clustering

with Gaussian Sum-Product Networks. In The 6th Workshop on Tractable Probabilistic

Modeling.

Mauá et al.(2020) Denis Deratani Mauá, Heitor Reis Ribeiro, Gustavo Perez Katague

and Alessandro Antonucci. Two Reformulation Approaches to Maximum-A-Posteriori

Inference in Sum-Product Networks. In Manfred Jaeger and Thomas Dyhre Nielsen,

editors, Proceedings of the Tenth International Conference on Probabilistic Graphical

Models, volume 138, pgs. 293–304. PMLR.

Mei et al.(2018) Jun Mei, Yong Jiang and Kewei Tu. Maximum A Posteriori Inference

in Sum-Product Networks. In AAAI Conference on Artificial Intelligence.

Molina et al.(2019) Alejandro Molina, Antonio Vergari, Karl Stelzner, Robert Peharz,

Pranav Subramani, Nicola Di Mauro, Pascal Poupart and Kristian Kersting. SPFlow:

An Easy and Extensible Library for Deep Probabilistic Learning using Sum-Product

Networks, 2019.

Murphy(2012) Kevin Patrick Murphy. Machine Learning: A Probabilistic Perspective.

The MIT Press.

Park and Darwiche(2004) James D. Park and Adnan Darwiche. Complexity results

and approximation strategies for MAP explanations. Journal of Artificial Intelligence

Research, 21:101–133.

Peharz(2015) Robert Peharz. Foundations of Sum-Product Networks for Probabilistic

Modeling.

Peharz et al.(2014) Robert Peharz, Georg Kapeller, Pejman Mowlaee and Franz

Pernkopf. Modeling speech with sum-product networks: Application to bandwidth ex-

BIBLIOGRAPHY 51

tension. In ICASSP, IEEE International Conference on Acoustics, Speech and Signal

Processing - Proceedings, pgs. 3699–3703. IEEE.

Peharz et al.(2016) Robert Peharz, Robert Gens, Franz Pernkopf and Pedro Domingos.

On the Latent Variable Interpretation in Sum-Product Networks. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 39:2030–2044.

Peharz et al.(2020) Robert Peharz, Antonio Vergari, Karl Stelzner, Alejandro Molina,

Xiaoting Shao, Martin Trapp, Kristian Kersting and Zoubin Ghahramani. Random

Sum-Product Networks: A Simple and Effective Approach to Probabilistic Deep Learn-

ing. In Ryan P Adams and Vibhav Gogate, editors, Proceedings of The 35th Uncertainty

in Artificial Intelligence Conference, volume 115, pgs. 334–344. PMLR.

Poon and Domingos(2011)Hoifung Poon and Pedro Domingos. Sum-product networks:

A new deep architecture. In 2011 IEEE International Conference on Computer Vision

Workshops (ICCV Workshops), pgs. 689–690. IEEE.

Pulkkinen(2014) Seppo Pulkkinen. Efficient Optimization Algorithms for Nonlinear

Data Analysis.

Pulkkinen et al.(2013) Seppo Pulkkinen, Marko Mikael Mäkelä and Napsu Karmitsa.

A continuation approach to mode-finding of multivariate Gaussian mixtures and kernel

density estimates. Journal of Global Optimization, 56:459–487. ISSN 0925-5001. doi:

10.1007/s10898-011-9833-8.

Rashwan et al.(2016) Abdullah Rashwan, Han Zhao and Pascal Poupart. Online and

distributed Bayesian moment matching for parameter learning in sum-product networks.

In Proceedings of the 19th International Conference on Artificial Intelligence and Statis-

tics, AISTATS 2016, pgs. 1469–1477.

Ray and Ren(2012) Surajit Ray and Dan Ren. On the upper bound of the number of

modes of a multivariate normal mixture. Journal of Multivariate Analysis, 108:41–52.

ISSN 0047259X. doi: 10.1016/j.jmva.2012.02.006.

Rooshenas and Lowd(2014) Amirmohammad Rooshenas and Daniel Lowd. Learning

sum-product networks with direct and indirect variable interactions. In 31st Interna-

tional Conference on Machine Learning, ICML 2014, pgs. I–710–I–718. JMLR.org.

Shen et al.(2005) Chunhua Shen, M.J. Brooks and A. van den Hengel. Fast global kernel

density mode seeking with application to localization and tracking. In Tenth IEEE

52 BIBLIOGRAPHY

International Conference on Computer Vision (ICCV’05) Volume 1, pgs. 1516–1523

Vol. 2. IEEE. ISBN 0-7695-2334-X. doi: 10.1109/ICCV.2005.94.

Titterington et al.(1985) D M Titterington, A F M Smith and U E Makov. Statistical

Analysis of Finite Mixture Distributions. Wiley. ISBN 9780471907633.

Wu(1983) C. F. Jeff Wu. On the Convergence Properties of the EM Algorithm. The

Annals of Statistics, 11. ISSN 0090-5364. doi: 10.1214/aos/1176346060.

Zhao et al.(2015) Han Zhao, Mazen Melibari and Pascal Poupart. On the Relationship

between Sum-Product Networks and Bayesian Networks. In ICML’15 Proceedings of

the 32nd International Conference on International Conference on Machine Learning -

Volume 37, pgs. 116–124. JMLR.org.

	Introduction
	Motivation
	Goal and methodology
	Contributions
	Organization

	Gaussian Mixture Models
	Gaussian distribution
	Mixture models
	Number of modes
	Finding modes of GMMs

	Sum-Product Networks
	Fundamentals
	Inference in SPNs
	SPNs as mixture models
	Learning SPNs
	MAP inference
	Reduction from MAP to MAX
	Approximation algorithms

	Modal EM for GSPNs
	The algorithm
	Proof of correctness
	Applications
	MAP inference
	Modal clustering

	Experiments
	Hierarchical clustering
	Image segmentation

	Final considerations
	Summary
	Future work

	Bibliography

