

Using Natural Language Processing

techniques for automated code refactoring

Alan Barzilay

Thesis presented to the
Institute of Mathematics and Statistics

of the University of São Paulo
in partial fulfillment
of the requirements
for the degree of
Master of Science

Program: Computer Science

Advisor: Prof. Dr. Marcelo Finger

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível

Superior – Brasil (CAPES) – Finance Code 001. This study was also financed in part by the
grant #2020/02679-4 from the São Paulo Research Foundation (FAPESP).

São Paulo

September, 2023

Using Natural Language Processing

techniques for automated code refactoring

Alan Barzilay

This version of the thesis includes the

corrections and modifications suggested

by the Examining Committee during the

defense of the original version of the work,

which took place on September 1, 2023.

A copy of the original version is available

at the Institute of Mathematics and

Statistics of the University of São Paulo.

Examining Committee:

Prof. Dr. Eduardo Martins Guerra – UNIBZ

Prof. Dr. Maurício Finavaro Aniche – TU Delft

Prof. Dr. Aline Marins Paes Carvalho – UFF

I authorize the complete or partial reproduction and disclosure of this work by any

conventional or electronic means for study and research purposes, provided that the source is

acknowledged.

Ficha catalográfica elaborada com dados inseridos pelo(a) autor(a)
Biblioteca Carlos Benjamin de Lyra
Instituto de Matemática e Estatística

Universidade de São Paulo

Barzilay, Alan
Utilizando técnicas de processamento de linguagem natural

para refatoração automática de código / Alan Barzilay;
orientador, Marcelo Finger. - São Paulo, 2023.

117 p.: il.

Dissertação (Mestrado) - Programa de Pós-Graduação
em Ciência da Computação / Instituto de Matemática e
Estatística / Universidade de São Paulo.

Bibliografia
Versão original

1. Aprendizado de Máquina. 2. Refatoração. 3. Processamento
de Linguagem Natural. 4. Engenharia de Software. I.
Finger, Marcelo. II. Título.

Bibliotecárias do Serviço de Informação e Biblioteca
Carlos Benjamin de Lyra do IME-USP, responsáveis pela

estrutura de catalogação da publicação de acordo com a AACR2:
Maria Lúcia Ribeiro CRB-8/2766; Stela do Nascimento Madruga CRB 8/7534.

https://xkcd.com/114/
https://xkcd.com/114/

i

Agradecimentos

Gostaria de agradecer à minha família pelo apoio e sustento que me proporcionaram

ao longo dessa longa jornada como mestrando. Especialmente meu primo, David Barzilai,

que me acompanhou enquanto eu escrevia parte dessa tese e até me abrigou em sua casa

por uns dias enquanto eu terminava mais uma versão do texto.

Ainda sobre abrigo, gostaria de agradecer meu amigo Lucas Magno por sempre me

receber de portas abertas em sua sala. A vida acadêmica pode ser bem solitária, mas sempre

ter com quem bandejar certamente ajuda.

Gostaria também de agradecer meus amigos Mauricio, Zeca e a família deles1 por

sempre me receberem e me alimentarem quando eu ia passar o dia trabalhando lá. Não

sei o por que eles achavam tão razoável e normal eu ir lá com tanta frequência mas sou

muito grato por isso. Além de me receberem, eles auxiliaram essa tese de diversas formas

diretas e indiretas; por exemplo, o Zeca, a Lira e a Júlia Rissin me resgataram de carro uma

madrugada quando fiquei ilhado no meio do nada voltando da casa deles. E ainda quando

o Mauricio resgatou todos os dados perdidos do HD quando o disco sdb da máquina ratel

faleceu com o “tec-tec da morte”.

Falando na ratel, gostaria de agradecer ao Sergio Ricardo Milare e ao William Alexandre

Miura Gnann da seção de informática do IME pela ajuda com essa máquina e em recuperar

a última versão do meu código que eu tinha esquecido de dar git push. Tecnicamente a

ratel nem era responsabilidade deles então sou muito grato por sempre serem tão solícitos

e não só ignorarem nossos emails falando que eu quebrei a ratel de novo.

Gostaria de aproveitar para também agradecer a equipe dos restaurantes universitários,

equipes de limpeza da USP, responsáveis da sala do chá do IME, a secretaria da pós do IME,

o Renato Geh, Felipe "Sub" Serras e demais RDs e representantes do corpo estudantil, o

Nelson Lago, o professor Carlinhos (que me fez desistir das minhas ideias ruins e só entrar

no mestrado do IME logo) e todos os outros funcionários e professores do IME e da USP

1 Menos a gata Gigi

ii

que me proporcionaram as condições de desenvolver esse projeto.

Não posso deixar de agradecer meu querido orientador Marcelo Finger que sempre

me deu muita liberdade e apoio ao longo do projeto, sempre trazendo novas ideias e

oportunidades para mim.

Gostaria de agradecer a Júlia Rissin também pela ajuda com os gráficos, me salvando

de apresentar uma tese cheia de printscreens.

Gostaria também de agradecer todos os meus amigos e colegas que fizeram parte dessa

minha jornada do mestrado, como o Gabriel Morete, Lucas Arenstein, Thiago Lima, Rebecca

Helena, Pedro Souza (cara mais fascinado por git que eu já vi), Thiago Tarraf Varella,

Estêvão, Pedro Bruel, Rodrigo Berezovsky, Arieh Szafir Goldstein, Matheus Castello, Roger

Bravo, e meu colegas do LIAMF, por conta da pandemia nossa convivência foi curta mas

foi um prazer conhecer todos vocês.

Por fim gostaria de agradecer meu grande amigo Patrick Eli Catach. Por conta da

distância entre a Inglaterra e o Brasil as oportunidades de nos vermos são raras, mas isso

nunca o impediu de se interessar pelo meu trabalho — às vezes até mais do que eu — e

de sempre ser o primeiro a querer ler meus rascunhos incompletos. Seu apoio foi muito

importante para mim e para esse projeto, seja me recebendo nas suas raras visitas ao

Brasil ou quando ele veio me visitar na Holanda e passamos boa parte do tempo discutindo

meu projeto, silenciosamente trabalhando lado a lado ou até mesmo vindo me cobrar de

mandar minha tese para ele ler. Para ele, a maioria desses acontecimentos devem ter sido

corriqueiros e sem muito significado, mas para um amigo que mora tão longe e que poderia

ter facilmente acabado se afastando e perdendo o contato ao sair do país — como aconteceu

com tantos outros no meio desse êxodo acadêmico — sua dedicação e sinceridade foram

extremamente marcantes.

I would also like to thank Minaksie Ramsoekh for all the help in getting to Delft and

during my stay there.

They say science is built on-top of the shoulders of giants, however due to an archaic

publishing model and corporate greed most of the population has no access to these giants to

even attempt to climb on-top of them. That is why I would like to thank everyone involved in

the dissemination of free and open science and in particular to Alexandra Elbakyan and her

project Sci-Hub which was essential in the realization of this thesis.

Resumo

Alan Barzilay. Utilizando técnicas de processamento de linguagem natural para

refatoração automática de código. Dissertação (Mestrado). Instituto de Matemática e

Estatística, Universidade de São Paulo, São Paulo, 2023.

Técnicas de processamento de linguagem natural podem ser aplicadas aos mais diversos textos, não

somente àqueles redigidos em linguagens humanas como também àqueles redigidos em linguagens ditas

artificiais, como códigos escritos em linguagens de programação. Refatoração de código é uma técnica

fundamental em engenharia de software, sendo utilizada tanto como uma ferramenta para garantir a

qualidade do código como também como um passo importante na expansão de funcionalidades e depuração.

Nesse trabalho propomos um modelo para refatoração automática de código. Ao utilizar diretamente o código

fonte como entrada em nosso modelo de processamento de código nós obtemos automaticamente sugestões

de refatorações do tipo extração de função. O modelo proposto consiste em uma rede neural capaz de receber

uma representação vetorial do código a ser refatorado e gerar uma representação da refatoração sugerida.

Essa rede foi treinada com base numa lista de repositórios de código obtida através de uma colaboração com

a TU Delft na Holanda. Com base nessa lista foi criado o maior dataset de refatorações de extração de função

existente — até o momento da publicação dessa tese — sendo 60% maior do que o segundo maior dataset de

seu tipo. Além disso, nosso modelo final atingiu uma acurácia de teste de 0.7275.

Palavras-chave: Aprendizado de Máquina. Refatoração. Processamento de Linguagem Natural. Engenha-

ria de Software.

Abstract

Alan Barzilay. Using Natural Language Processing techniques for automated code

refactoring. Thesis (Master’s). Institute of Mathematics and Statistics, University of São

Paulo, São Paulo, 2023.

Natural Language Processing techniques can be applied to text in general, not only to human language

but also to artificial languages such as software code. Code refactoring is a fundamental software engineering

technique used both as a quality assurance tool and an important step in code correction and functionality

enhancement. In this work, we propose a novel code refactoring model. By utilizing source code as input

to our model we obtain automated suggestions of function extraction code refactoring in order to achieve

better readability and attain good practices in general. The proposed model consists of a neural network

that receives a vectorial representation of the source code and outputs a representation of the suggested

refactored code. This network was trained based on a list of repositories provided through a collaboration

with TU Delft Holland. Based on this list we created the biggest existing function extraction refactoring

dataset — as of the time this thesis was presented — being %60 bigger than the second biggest dataset of its

type. Furthermore, our final model achieved a test accuracy of 0.7275.

Keywords: Machine Learning. Code Refactoring. Natural Language Processing. Software Engineering.

vii

List of Abbreviations

NLP Natural Language Processing

ML Machine Learning

LSP Language Server Protocol

AST Abstract Syntax Tree

DFA Discrete Finite Automata

GloVe Global Vectors (for Word Representation)

SQuAD Stanford Question Answering Dataset

BERT Bidirectional Encoder Representations from Transformers

SBERT Sentence-BERT

RoBERTa Robustly optimized BERT approach

ALBERT A Lite BERT

QA Question Answering

dbmc1 distiluse-base-multilingual-cased-v1

Ptr-Net Pointer Network

RNN Recurrent Neural Network

LSTM Long Short-Term Memory

TPE Tree-structured Parzen Estimator

Acc Accuracy

Val Validation

IDE Integrated Development Environment

ORM Object Relational Mapping

FAPESP São Paulo Research Foundation (Fundação de Amparo à Pesquisa do Estado de São Paulo)

BEPE Grant for Research Abroad (Bolsa Estágio de Pesquisa no Exterior)

TUDelft Delft University of Technology (Technische Universiteit Delft)

SERG Software Engineering Research Group

ix

List of Figures

1.1 Pie graphs of two of the 20 questions about refactoring answered by a

group of 1,183 developers that were paying subscribers of IntelliJ Platform

based IDEs. (Golubev et al., 2021) . 2

1.2 One of the possible parse trees for the expression (𝑥 +𝑦) ×𝑥 − 𝑧 ×𝑦/(𝑥 +𝑥)

created from the production rules in Table 1.1. Image from Pat Hawks

(2018). 5

1.3 3 code snippets in esoteric languages. On the right the image that resembles

a painting from Piet Mondrian is a program in the Piet language that prints

the “Piet” string (Thomas Schoch, 2006b). On the upper left is a “Hello

World!” program written in brainfuck where only 8 characters (><+-.,[]) are

available and each correspond to a different pointer operation (Esolang

wiki, 2023a). Lastly, on the lower left we have a cat program (that does

not stop at EOF) written in Malbolge, a language designed to be as difficult

to program in as possible with a ternary system, self-altering code and,

once again, only 8 valid instructions (Esolang wiki, 2023b). 8

2.1 An instance of the “Combine Functions into Class” refactoring. Example

extracted from (Fowler, 1999). 12

2.2 An instance of the “Function Extraction” refactoring. Example extracted

from (Fowler, 1999). 14

2.3 Outline of our imaginary plugin broken down into three different parts. . 14

2.4 An illustration of the problem that LSP was designed to solve. Without

LSP we have M languages that need to have support implemented in N

different IDE’s, but with LSP’s we only need to implement support for a

language once and it can be re-used anywhere (Microsoft, 2021). 16

x

3.1 Table of a few Pokémon statistics representing its type as a (a) categorical

variable or as an (b) one-hot encoding. In this case, the Pokémon types of

a trainer could be represented by a bag-of-words by adding the one-hot

encodings. Base stats from Generation VI from Bulbapedia (2005) and

images from Juan Orozco Villalobos (2020). 20

3.2 The resulting vector from “king-man+woman” doesn’t exactly equal

“queen”, but “queen” is the closest word to it from the 400,000 word em-

beddings in this collection. Color coded cells based on their values (red

if they’re close to 2, white if they’re close to 0, blue if they’re close to -2).

(Jay Alammar, 2019) . 22

3.3 Illustration of some semantic and syntactic relations captured by word2vec

embeddings, vectors whose words have similar relationships (such as

gender or conjugation) tend to also have similar relations on the vector

space (Tensor Flow, 2020). This is nothing more than an illustration since

usual embeddings are of such a high order that visualization as a simple

3D plot becomes impossible, dimensionality reduction techniques (e.g.

PCA) albeit useful may lead to spurious relations, when searching for such

relations it is customary to use appropriate distance metrics such as the

cosine distance. 22

3.4 Example of a co-ocurrence matrix with a symmetrical window of size 1.

Corpus: I like deep learning. I like NLP. I enjoy flying. Dictionary: [’I’,

’like’, ’enjoy’, ’deep’, ’learning’, ’NLP’, ’flying’, ’.’] (Christopher Manning,

2020) . 23

3.5 An illustration of the LSTM architecture, image adapted fromChristopher

Olah (2015). 23

3.6 The encoder-decoder model, translating the sentence “she is eating a green

apple” to Chinese. The visualization of both encoder and decoder is unrolled

in time. (Weng, 2018) The context vector in gray is the intermediary

representation between the encoder and decoder that needs to hold all

the relevant information to successfully realize the translation without

referencing the original input in english. 24

3.7 Illustration (Unger et al., 2018) of a shallow autoencoder. 𝑣 and ⃗
�̂� represent

the input and output respectively of the network while the output from

layer 3 is responsible for the compact representation of the input on the

latent space. The encoder is composed of layers 1, 2 and 3 while the decoder

is composed of layers 4 and 5. 25

xi

3.8 Illustration (Bahdanau et al., 2014b) of an example attention matrix for a

sentence in english and it’s french translation. 25

3.9 A collage to illustrate the idea of attention and visual attention. Photo

obtained from mensweardog (2023). 26

3.10 Illustration of Galassi et al. (2021) general attention framework. The

“Value” component is not present in this illustration but could be used in a

subsequent step to process the attention scores to create a context vector. 26

3.11 Fig. 3.11a illustrates an encoder decoder model and Fig. 3.11b illustrate its

attention mechanism, both images extracted from Luong et al. (2015). . . 27

3.12 This illustration represents 2 different architectures used to find the convex

hull of a set of points (Vinyals et al., 2015). The left one is a normal encoder-

decoder while on the right we have a Ptr-Net. 28

3.13 This excerpt illustrates 3 different questions for a single paragraph of text,

for the first two questions the initial and final tokens overlap as the answer

is composed of a single word. On the third question the initial token would

be the word “within” and the final token would be “cloud” and the resulting

answer delimited by them would be “within a cloud”. Example extracted

from (Rajpurkar, Zhang, et al., 2016). 29

3.14 The Transformer - model architecture. (Vaswani et al., 2017) 30

3.15 (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists

of several attention layers running in parallel. (Vaswani et al., 2017) . . . 30

4.1 Illustration of a refactoring of the Rename Method type. Illustration adapted

from Martin Fowler (2023b). 33

4.2 AST of Listing 1. In an attempt to make the AST more intuitive and easier

to read for those that never worked with them, we colored the sub-trees

that correspond to the lines of the function body with one color per corre-

sponding line. AST printed through the dot utility and the JavaParser
package, the code utilized to print the AST is available at Appendix A as

Listing 2. 36

4.3 Illustration of the path-based attention model from code2vec. The width of

each colored path is proportional to the attention it was given (red 1: 0.23,

blue 2: 0.14, green 3: 0.09, orange 4: 0.07). (Alon, Zilberstein, et al., 2018) 37

xii

4.4 “Left: Sequence (Context) and AST (Structure) representation of an in-

put code snippet. Center: The CODE TRANSFORMER jointly leverages

the sequence of tokens and the Abstract Syntax Tree to learn expressive

representations of source code. In addition to the input token and node

embeddings the model uses different distances between the tokens, e.g.,

shortest paths on the AST or personalized PageRank, to reason about their

relative positions. The output embeddings can be used for downstream

tasks such as code summarization (right).” (Zügner et al., 2021) 38

5.1 Nested extract method refactorings mined from github.com/spring-projects/

spring-boot/commit/becce. There are 3 levels of nested extracted methods

with each extracted method calling the subsequent one. Image from

Tsantalis, Ketkar, et al. (2020). 44

5.2 A short visualization of the steps present in our data pipeline. 46

5.3 A Discrete Finite Automata that detects if any of the lines analyzed is not

a comment or blank line. For the sake of simplicity and illustration, let

us consider that symbols such as “//”, “/*”, “*/”, “\n” and “\s” are single

characters. Building a real DFA that breaks each of these “signals” into

their constituent characters would increase the complexity of the system

and loose its meaning as an illustration to clarify our data processing.

Following convention, Σ represents the alphabet of this DFA, i.e. the set

of all valid characters in the java language. State S represents blank lines,

the C state represents comments and L long comments, lastly the F state

represents a failure, once something that does not constitute a comment,

long comment or blank line is detected the process gets stuck in the F state

unable to ever reach the accepting state S. 47

6.1 Table of 13 embedding models available in the SBERT project and some

metrics regarding them. (Nils Reimers, Iryna Gurevych, 2022b) 51

6.2 Our model will receive the source code of a function definition that needs

to be refactored and will output the line span that needs to be extracted. In

this particular example the lines 5 to 7 of the printAccount() function

need to be extracted. 52

6.3 Once the line span of the extraction has been determined, the language

server is contacted and it will be responsible for realizing the extraction

and returning the refactored code. In this example the lines 5 to 7 are

refactored by the language server and become the function extracted(). 52

github.com/spring-projects/spring-boot/commit/becce
github.com/spring-projects/spring-boot/commit/becce

xiii

6.4 An illustration of how the model works, with green blocks representing

the encoder and the purple ones the decoder. Each 𝑥𝑖 value fed to the

encoder represents the embedding of a single line from the function being

analyzed. The decoder receives as an input the hidden state from the last

step (if available) and all the encoder hidden states, so to predict the last

line to be extracted the decoder will receive all the hidden states from the

encoder and the hidden state from last step that represents the first line to

be extracted. Lastly, the attention mechanism is represented by the arrows

pointing into the different encoder hidden states/inputs, the arrows may be

seen as the final output of the model after the attention scores go through

the softargmax function. So in this particular example being illustrated,

the function is composed of 7 lines and it should go through an extraction

of lines 1 through 4. 54

6.5 A visual representation of the jaccard index. Image from Adrian Rose-

brock (2016). 55

6.6 Optimization history plot of the 136 Optuna trials. 56

6.7 Loss and accuracy plots of the 196 Optuna trial runs. 57

6.8 Slice plot of 43 Optuna trial runs, since the GloVe embedding trained

with 840 billion parameters could achieve a better performance over it’s

counterpart trained with only 6 billion parameters we decided to exclude

the embedding choice from the search space from our subsequent runs, as

can be seen in Fig. 6.9. 58

6.9 Slice plot of the optimization results found through Optuna. From the 136

trials, 95 were pruned before completion and 39 were completed. The best

trial achieved a loss value of 6.446797407 with the following hyperparame-

ter values: batch size= 32, hidden size= 32, learning rate= 0.00231519996,

weight decay= 0.0001155681898 . 58

7.1 Train and validation binary accuracy score of the seven transformer based

models. 60

7.2 L1 training and validation loss of the seven transformer based models. . 60

7.3 Comparison of accuracy in validation and train sets between models dbmc1

and “distiluse-base-multilingual-cased-v2”. 61

7.4 Comparison of loss in validation and train sets between models dbmc1

and “distiluse-base-multilingual-cased-v2”. 61

7.5 Plots comparing the training and validation accuracy of four pointer net-

works trained with a GloVe embedding and 3 other transformer based

embedding. 62

xiv

7.6 Plots comparing the training and validation loss of four pointer networks

trained with a GloVe embedding and 3 other transformer based embedding. 62

7.7 Plots comparing the training and validation accuracy of our two architec-

tures trained with the dbmc1 embedding. 63

7.8 Plots comparing the training and validation loss of our two architectures

trained with the dbmc1 embedding. 63

7.9 Illustration of our final and best performing model. As previously men-

tioned, the hyper-parameters were chosen based on our Optuna experiments. 64

7.10 Training and testing plots of accuracy of our best performing model in

validation. Final accuracy value: 0.7275. 64

7.11 Training and testing plots of loss of our best performing model in validation.

Final loss value: 5.768. 65

C.1 Training loss plot over the training epochs of a pointer network model

for varying 𝛽 values. Training was done over only 10 data points in order

o explore the ability of the model to overfit, the initial rational was that

if a model cannot even overfit a minuscule dataset it is not suitable for

training with the entire dataset or that it may even be be broken. 80

xv

List of Tables

1.1 Production rules of a formal grammar for syntactically correct infix al-

gebraic expressions for three variables, namely x, y and z. In essence,

the grammar is defined by these 8 production rules forming the 𝑃 set,

{𝑥, 𝑦, 𝑧,+,−, (,), ×, /} as the terminal symbols set Σ, {𝑆} as the set of non-

terminal symbols 𝑁 and 𝑆 as the start symbol. Note that this grammar is

ambiguous so it has multiple possible parse trees. 5

4.1 The precision (Pr), recall (Re), and accuracy (Acc) of the different machine

learning models, when trained and tested in the entire dataset (Apache +

F-Droid + GitHub). Values range between [0,1] (Aniche et al., 2020). Table

reconstructed from the original paper. 40

4.2 Number of projects and commits per ecosystem and in total. 40

4.3 The number of instances of refactoring and non-refactoring classes used

in Aniche et al. (2020). Table reconstructed from the original paper, our

emphasis. 41

5.1 Precision and recall per refactoring type. Values calculated based on a

refactoring oracle of validated instances containing 7,226 true positives in

total, for 40 different refactoring types detected by one (minimum) up to

six (maximum) different tools. Table and caption from Tsantalis, Ketkar,

et al. (2020), our highlight. 45

5.2 Precision, recall and f-score results per method-level refactoring type.

Values calculated based on a refactoring oracle of validated instances from

Tsantalis, Ketkar, et al. (2020), containing 7,226 true positives in total

for 40 different refactoring types detected by one (minimum) up to six

(maximum) different tools. Table from Moghadam et al. (2021), our highlight. 45

xvi

7.1 Accuracy and Loss of the final epoch for the eight different transformer

based embeddings. Amongst the eight models “distiluse-base-multilingual-

cased-v2” achieved the lowest loss validation score at the third epoch with

a loss value of 6.334 followed by dbmc1 with a loss validation of 6.374 also

at the third epoch. 60

7.2 Accuracy and Loss of the final epoch for the eight different transformer

based embeddings and the GloVe based embedding. 62

7.3 Table of the final (fourth epoch) loss and accuracy in the training and

validation sets for our two different architectures. 63

7.4 Accuracy and loss of the final epoch in the training and test sets for the

final model, trained with the Ptr-Net architecture and the dbmc1 embedding. 64

xvii

List of Programs

1 Small Java script, its AST can be seen in Fig. 4.2. 35

2 Code utilized to print Java ASTs using the JavaParser package. 69

3 Small bash script used to clone all the repositories listed in ’repos.txt’. . . 71

4 Small bash script used to parallelize the mining of refactorings in all the

repositories previously cloned. 72

5 Python script used to process the JSON files into an actionable SQLite

database of function extraction refactorings and their metadata. 78

xix

Contents

1 Introduction 1

1.1 Goals . 8

1.2 Organization . 8

2 An imaginary function extraction plugin 11

2.1 Code Refactoring . 11

2.2 The Plugin . 13

2.2.1 Detecting Refactoring Opportunities 13

2.2.2 Refactoring Prediction . 16

2.2.3 Performing Refactorings . 16

3 NLP Techniques 19

3.1 Embeddings . 19

3.1.1 Word2vec . 21

3.2 LSTM . 22

3.3 Encoder-Decoder . 24

3.4 Attention . 24

3.5 Pointer Networks . 28

3.6 Transformer . 28

3.7 Typical seq2seq Metrics . 31

4 Automated Refactoring 33

4.1 Rename Method . 33

4.1.1 AST . 34

4.1.2 code2vec and code2seq . 37

4.1.3 Code Transformer . 37

4.2 Github Copilot X, Code Whisperer and Code Assistants 38

4.3 Machine learning based code refactoring prediction 39

4.3.1 DataSet . 39

xx

5 (Re)Building a Dataset 43

5.1 RefactoringMiner . 44

5.2 Pipeline . 46

5.3 Exploration of the dataset . 46

6 Models 49

6.1 Embeddings . 49

6.2 Architecture . 51

6.3 Metrics . 53

6.4 Hyper-parameter choice . 55

7 Results and experiments 59

7.1 Comparing transformer based embeddings 59

7.2 Adding GloVe to the comparison . 61

7.3 Comparing architectures . 62

7.4 Best Model . 63

7.4.1 Publication of results . 65

8 Conclusion 67

Appendixes

A AST Printer 69

B Data Scrapping Source Code 71

C 𝛽 impact on softargmax 79

References 81

1

Chapter 1

Introduction

What is the difference between computer science and software engineering? Both deal
with computers, right? Are they not the same thing?

Computer science is the field focused on the theoretical powers of computers and the
algorithms we write for them. Is this problem decidable? NP-complete? Can this thing be
considered a Turing machine? Is P=NP? What functions can be approximated by neural
networks? How can we color, with the minimal number of colors, the vertices of a graph
so that no two adjacent vertices have the same color? There are a myriad of important and
interesting questions posed in this large field of study, but they are all centered around
the computers and the theoretical.

This is where the computer science and software engineering fields differentiate
themselves. Whereas one field is centered around computers and algorithms, the other is
centered around the humans using these computers and implementing those algorithms, or
to be more precise the relation and interactions between programmers and their code.

Software engineering is the field concerned with more mundane and practical aspects
of programming, when we speak of code complexity we are talking about a more abstract
concept than the well defined time complexity so ubiquitous in computer science theory,
we are talking about the perceived complexity of a program1. How easy is it to maintain?
Is it readable? Can we easily test it for limit cases where bugs may be hiding? Is there code
duplication that could be simplified?

Software engineering is the field of study concerned with the efficiency of the pro-
grammers and their code, not simply their code. How can we decrease the implementation
time of a new feature and make developers more efficient? What are the bottlenecks in
development? How do the developers organize themselves? What if they are part of a
team? What about their code base? How do we measure the quality of a piece of code in
regards to the value it brings to our clients or even to our own developers?

When trying to add a new feature to an existing software, a common first step is the

1 This is not to say that software engineers have no interest in or knowledge of the theoretical aspects of
computer science or that the two fields are completely disjoint, the best developers would take into account
both the code’s time complexity and its perceived complexity when writing a program.

2

1 | INTRODUCTION

re-writting of existing code, not the creation of new code as one might expect (Fowler,
1999). The field of software engineering has a special name for this re-writting step, it is
called refactoring. To refactor a piece of code is to make simple and incremental changes in
order to make it easier to work with and to be expanded upon. A survey from Golubev et al.

(2021) shows that refactorings are a key element in the software development cycle. As
can be seen in Figs. 1.1, nearly four out of five developers in the 1,183 developers surveyed
indicated that they refactored code every week or even almost every day. Two-thirds of
these respondents said that they had refactoring sessions of an hour or longer during this
time.

(a) In the past month, how often have you performed

any code refactoring? (Out of 1,181 respondents)

(b) During this time, did you ever refactor code for an

hour or more in a single session? (Out of 1,145 respon-

dents)

Figure 1.1: Pie graphs of two of the 20 questions about refactoring answered by a group of 1,183

developers that were paying subscribers of IntelliJ Platform based IDEs. (Golubev et al., 2021)

As one might expect from such an integral part of the software development cycle,
extensive work (Golubev et al., 2021; Kim et al., 2014; Abid et al., 2020) has been done to
better understand how and when refactorings are done, or how to optimize and automate
this often manual and repetitive task. However, much of the work done is in order to
automate a refactoring after a developer detected an opportunity and it is mediated by said
developer. Let’s say we want to break a long function into smaller functions, the developer

1 | INTRODUCTION

3

has to go to the function and select the line span that they wish to extract. The onus of
refactoring the code is still on the developer, it is certainly faster than doing it manually
without the help of these small automations but there is still room for improvement.
Taking the same example as before, it would be even better if the IDE could suggest to
the programmer which functions could use a refactoring or even which lines should be
extracted. We posit that by making the refactoring process more automated and less reliant
on the developer, refactoring would become even more commonplace and make developers
in general more productive.

But how exactly could we achieve such automation? That is what we hope to answer
in detail in the following chapters of this thesis dissertation. We intend to leverage the
naturalness of programming languages to train a machine learning model based on existing
natural language processing techniques to automate refactorings of the function extraction
type.

One might ask what is the “naturalness of a programming language” and why should
we use NLP techniques in languages that are, by their very definition, non-natural but
first we need to address what even is a natural language.

The concept of natural language could be defined by what they are not: they are
not artificially constructed and they are not “rigid”. Let us take Hope C. Dawson (2016)
definition of natural languages:

All languages exhibit all nine design features [as defined by C. F. Hockett

and C. D. Hockett (1960): Mode of Communication, Semanticity, Prag-

matic Function, Interchangeability, Cultural Transmission, Arbitrariness,

Discreteness, Displacement, Productivity] any communication system

that does not is therefore not a language. Furthermore, as far as we know,

only human communication systems display all nine design features. [...]

Because all languages exhibit the nine design features, does this mean

that any communication system that exhibits all nine features should be

considered a language? For example, there are formal languages, such as

the formal logic used to write mathematical proofs and various computer

languages. While these formal languages display all of the design features,

they nevertheless differ in critical ways from languages such as English,

Spanish, Mandarin, and Apache. For example, no child could ever acquire a

computer language like C++ as his native language! Furthermore, a number

of people engage in constructing languages that imitate human language

as a hobby. There are many reasons that people might choose to do this.

For example, the created language could be used in some sort of fictional

universe, such as Klingon in the television series Star Trek or Dothraki and

Valyrian in the series Game of Thrones. Or it might be designed to facilitate

international communication, which was the goal of the designers of the

language Esperanto. Other people, such as J.R.R. Tolkien, have constructed

artificial languages just for fun.

Do we want to make a distinction between languages such as English,

Spanish, Mandarin, and Apache, on the one hand, and Esperanto, Elvish,

Dothraki, Valyrian, and Klingon, on the other? And how should we classify

4

1 | INTRODUCTION

‘formal’ languages? Although many of these questions are still open to debate

and research, we will make the following distinctions [...] we call natural

languages, those languages that have evolved naturally in a speech commu-

nity. The lexicon and grammar of a natural language have developed through

generations of native speakers of that language. A constructed language, on

the other hand, is one that has been specifically invented by a human and

that may or may not imitate all the properties of a natural language.

Hope C. Dawson (2016)

Essentially, natural languages are languages that changed and evolved naturally along-
side humans and are used for communication. That is not to say that a constructed language
cannot become a natural language, an example is Modern Hebrew which was reconstructed
and expanded from Ancient Hebrew (a liturgical and dead language) and then adopted by
a particular community2. We used non rigid to describe natural languages because of this
capacity to change and evolve as well as its semantical robustness, even if a text contains a
few mistakes its meaning may still be grasped while programming languages are brittle to
mistakes (e.g. typos in variable names or parameter order inversion can drastically change
the meaning of code or even break it).

Hope C. Dawson (2016) also brings us a sort of definition for formal languages:

The distinction between constructed languages and formal languages is that

formal languages are not the sort of system that a child can acquire naturally.

Hope C. Dawson (2016)

Although this is not wrong, most computer scientists would find it lacking as a defini-
tion. A more common formulation would be to define it as the set of all strings that can be
derived from a formal grammar. That is to say, a formal language is defined (or generated)
by its grammar and a piece of text can be identified as part of a formal language if it can be
“recognized” by its grammar (i.e. parsed). More formally, a generative grammar is defined
by a 4-tuple (𝑁 ,Σ, 𝑃 , 𝑆) where 𝑁 is the set of non-terminal symbols, Σ the set of terminal
symbols (disjoint of 𝑁), 𝑃 the set of production or generation rules and 𝑆 the sentence or
start symbol.

Table 1.1 depicts an example of the production rules part of a formal grammar for
syntactically correct infix algebraic expressions for three variables, namely x, y and z, and
depicts Fig 1.2 an example of a parse tree generated with these production rules for the
expression (𝑥 + 𝑦) × 𝑥 − 𝑧 × 𝑦/(𝑥 + 𝑥).

Formal languages, such as programming languages, can still change and evolve, how-
ever this happens as punctuated changes (e.g. the release of Python 3 to substitute Python
2 and the sub-sequential break of compatibility) and in contrast to natural languages
that work in a bottom up fashion through social dynamics (Croft, 2008), programming
languages are designed top-down by a few designers for many users.

These are not their only differences, another example is that it is not clear if it is feasible

2 The matter of Modern Hebrew’s “creation”, “revival” or “(Re)vernacularization”(Spolsky, 1995) and its
characterization as a constructed language is a point of contention, this discussion is out of the scope of
this work but we refer readers interested in a primer on the subject to Izre’el (2003).

1 | INTRODUCTION

5

Figure 1.2: One of the possible parse trees for the expression (𝑥 + 𝑦) × 𝑥 − 𝑧 × 𝑦/(𝑥 + 𝑥) created from

the production rules in Table 1.1. Image from Pat Hawks (2018).

𝑆 → 𝑥 𝑆 → 𝑆 + 𝑆

𝑆 → 𝑦 𝑆 → 𝑆 − 𝑆

𝑆 → 𝑧 𝑆 → 𝑆 × 𝑆

𝑆 → (𝑆) 𝑆 → 𝑆/𝑆

Table 1.1: Production rules of a formal grammar for syntactically correct infix algebraic expressions

for three variables, namely x, y and z. In essence, the grammar is defined by these 8 production rules

forming the 𝑃 set, {𝑥, 𝑦, 𝑧,+,−, (,), ×, /} as the terminal symbols set Σ, {𝑆} as the set of non-terminal

symbols 𝑁 and 𝑆 as the start symbol. Note that this grammar is ambiguous so it has multiple possible

parse trees.

to create a translation between natural languages such that the meaning is completely pre-
served3. However every mainstream4 programming language is Turing complete (Sipser,
2013) so it is always possible5 to exactly translate a piece of code from one language to
another.

Nevertheless machine translation between natural languages is an ever thriving re-
search topic. Furthermore, in recent years the area of NLP has seen explosive growth
together with new neural network architectures (GRU (Cho et al., 2014), Transformers
(Vaswani et al., 2017), ELMo (Peters et al., 2018), BERT (Devlin et al., 2018) to name
only a few recent ones) and a skyrocketing success reaching even mainstream popularity

3 And also highly dependent on the definition of meaning being used.
4 There are programming languages that are not developed with universal computation in mind, such as the

BlooP (Hofstadter, 1979) and Charity (The Charity Development Group, 1996) languages, however
they are not widely adopted in the industry nor posses a sizable user base.

5 Anyone who has worked in code translation may tell you that this can be “easier said than done”. Code
portability can be a challenging subject even if we ignore unusual Turing complete languages such as
Microsoft’s PowerPoint (Wildenhain, 2017).

6

1 | INTRODUCTION

through large language models such as GPT-4 (OpenAI, 2023) and LLaMA (Touvron et al.,
2023). On the other hand, the use and success of machine learning models for analogous
tasks in programming languages (e.g. translation between programming languages or
transpilation) has been comparatively moderate so far.

Despite having several differences, natural and programming languages also share
a series of particularly interesting commonalities that allow the application of models
and techniques originally devised for NLP tasks into analogous programming language
processing tasks.

This idea is succinctly defined in the naturalness hypothesis:

Naturalness Hypothesis. Software is a form of human communication;

software corpora have similar statistical properties to natural language cor-

pora; and these properties can be exploited to build better software engineering

tools.

Allamanis, Earl T Barr, et al. (2018)

This insight that programming may be seen as a form of human communication is
not by any means new and can be traced back to Donald E. Knuth concept of literate

programming from his titular work Literate Programming:

I believe that the time is ripe for significantly better documentation of

programs, and that we can best achieve this by considering programs to be

works of literature. Hence, my title: ‘Literate Programming.’

Let us change our traditional attitude to the construction of programs:

Instead of imagining that our main task is to instruct a computer what to do,

let us concentrate rather on explaining to human beings what we want a

computer to do.

The practitioner of literate programming can be regarded as an essayist,

whose main concern is with exposition and excellence of style. Such an

author, with thesaurus in hand, chooses the names of variables carefully and

explains what each variable means. He or she strives for a program that is

comprehensible because its concepts have been introduced in an order that

is best for human understanding, using a mixture of formal and informal

methods that reïnforce each other.

Knuth (1984)

Although the naturalness hypothesis may not seem surprising to some, it is worth
understanding the genesis of this naturalness.

As stated by Allamanis, Earl T Barr, et al. (2018) “naturalness of code seems to have

a strong connection with the fact that developers prefer to write (Allamanis, Earl T. Barr,

et al., 2014) and read (Hellendoorn et al., 2015) code that is conventional, idiomatic, and

familiar because it helps understanding and maintaining software systems”.

This leads to the idea that code artifacts may contain recurring and predictable patterns
that can be leveraged by machine learning models to perform a plethora of different tasks,

1 | INTRODUCTION

7

in a not dissimilar way to how recurring and predictable patterns in linguistic corpora
have been successfully utilized in NLP models.

Hindle et al. (2016) demonstrated that corpus-based statistical language models can
capture a high level of regularity in software, even more so than in english, and that
this is not an artifact of the programming language syntax but rather it arises from the
naturalness of the code.

They reason that, like natural languages, software is repetitive and predictable:

We begin with the conjecture that most software is also natural, in the sense

that it is created by humans at work, with all the attendant constraints and

limitations [...]

Programming languages, in theory, are complex, flexible and powerful, but

the programs that real people actually write are mostly simple and rather

repetitive, and thus they have usefully predictable statistical properties that

can be captured in statistical language models and leveraged for software

engineering tasks.

Hindle et al. (2016)

An important point raised was that most software is also natural, not all code ever
written. One could easily argue that the hypothesis of human communication can be
discarded when we are dealing with esoteric programming languages such as brainfuck
(Urban Müller, 1993), Piet (Thomas Schoch, 2006a) or Malbolge (Ben Olmstead, 1998),
aptly named after the 8th circle of Hell from Alighieri (130-). Fig. 1.3 presents three code
snippets to help clarify how convoluted and deliberately obtuse esoteric languages can
be designed to be. Being less extreme, not all code could be said to be “readable” or to be
clearly and well structured, e.g. an inexperienced programmer’s code6, may not conform
to best practices and contain confusing or out-write miss-leading function and variable
names. If this is sufficient to classify the code as not natural is a matter out of the scope of
this project, however we posit that those are rare instances in large successful projects that
usually have naming conventions, contributing guidelines and code quality metrics and as
such would not have a huge impact on data quality and training performance.

So far, this naturalness approach to programming languages has been shown to be
fruitful many times. Allamanis, Earl T Barr, et al. (2018) make an extensive review of
the literature compiling works that leverage in some way the ideas behind the naturalness
hypothesis, there are too many to list here so we encourage interested readers to seek the
original paper that is readily available online. Readers pressed for time may be interested
in inspecting the tables since they compile most of the surveyed work in a systematic
and well organized manner. It is important to note that this is not an exhaustive survey

6 Recent evidence actually suggests that the amateur nature of inexperienced programmers may actually be
beneficial for the corpus as was described in testimony given by Replit’s Head of AI in Latent Space (2023),
where they claim to have obtained a 50% increase in performance when fine tuning their model on the
replit codebase — which contains a lot of code from people still in the process of learning how to program.
However, our point stands that even if not all code could be considered natural it is likely relegated to a
small part of softwares at large and would end up as an issue of data quality the same way data quality is
an issue for NLP corpora.

8

1 | INTRODUCTION

Figure 1.3: 3 code snippets in esoteric languages. On the right the image that resembles a painting

from Piet Mondrian is a program in the Piet language that prints the “Piet” string (Thomas Schoch,

2006b). On the upper left is a “Hello World!” program written in brainfuck where only 8 characters

(><+-.,[]) are available and each correspond to a different pointer operation (Esolang wiki, 2023a).

Lastly, on the lower left we have a cat program (that does not stop at EOF) written in Malbolge, a

language designed to be as difficult to program in as possible with a ternary system, self-altering code

and, once again, only 8 valid instructions (Esolang wiki, 2023b).

since it was published in 2018 and this field of study has by no means stopped since then.
Two interesting and more recent works are the code2vec (Alon, Zilberstein, et al., 2018),
capable of abstracting the work done by a function by naming it based solely on information
obtained through its abstract syntax tree and code2seq (Alon, Brody, et al., 2018), not
only capable of predicting method names but also predicting natural language captions
given partial and short code snippets, and to even generate method documentation.

We believe these ideas and the results we obtained during the course of this project
serve as a proof of the soundness of our approach.

1.1 Goals

This project intends to accomplish two main goals:

• Understand if deep learning models are capable of predicting fine-grained refactor-
ings, i.e. where exactly the source code should be refactored.

• Create a model for automated function extraction.

1.2 Organization

The thesis is organized as follows: in Chapter 2 we define refactorings and propose
a theoretical IDE plugin to better illustrate our objectives as well as provide some soft-
ware engineering background; in Chapter 3 we present the theoretical background of
our models and other NLP and ML concepts; in Chapter 4 we present related work on
automating refactorings; in Chapter 5 we explain how we built our dataset; in Chapter 6

1.2 | ORGANIZATION

9

we define the building blocks of our model followed by our experiments with those blocks
in Chapter 7; and, finally, in Chapter 8 we give our concluding remarks and trace possible
future steps.

11

Chapter 2

An imaginary function extraction

plugin

Although every modern IDE has a series of tools for automating common simple code
refactorings, the automation of suggestions of refactorings is still lacking. E.g., renaming
a variable can be easily accomplished by tools that scan your program for instances of
this variable in the appropriate scope. But there is no efficient tool to our knowledge that
automatically detects the need to rename a variable and suggests a new name.

In this chapter we will propose the structure of how one could create an IDE plugin
that automates refactorings of the function extraction type and suggests instances of such
refactorings. Our objective is by no means the construction nor the implementation of
this imaginary plugin, as previously stated in our goals we only intend to create a model
that, given only a function definition, is capable of performing a function extraction. We
propose this plugin as a mental exercise to clarify some of the practical uses of the work
proposed in this project and as a way to introduce software engineering concepts that the
readers may need to fully comprehend to understand this project.

2.1 Code Refactoring

This project aims at automating refactorings but we never actually defined what
refactoring is, so let us look at some definitions starting with the one who coined the
term:

This thesis defines a set of program restructuring operations (refactorings)

that support the design, evolution and reuse of object-oriented application

frameworks. [...] The refactorings are defined to be behavior preserving, pro-

vided that their preconditions are met. Most of the refactorings are simple to

implement and it is almost trivial to show that they are behavior preserving.

Opdyke (1992)

Another simpler definition from another pioneer on the subject, Martin Fowler, could
be useful to those new to the term:

12

2 | AN IMAGINARY FUNCTION EXTRACTION PLUGIN

Refactoring (noun): a change made to the internal structure of software

to make it easier to understand and cheaper to modify without changing its

observable behavior.

Fowler (1999)

Refactoring (verb): to restructure software by applying a series of refactor-

ings without changing its observable behavior.

Fowler (1999)

From these definitions we can gather that ideally each refactoring would be a simple
and small step that a programmer could take in order to improve the perceived complexity
of a program and be more compliant with best practices. After taking a series of these
small steps a program will have an improved maintainability, being more readable and
easier to debug while behaving the same exact way. Fig. 2.1 shows an example of such an
operation, a refactoring categorized as Combine Functions into Class.

Figure 2.1: An instance of the “Combine Functions into Class” refactoring. Example extracted from

(Fowler, 1999).

However, in practice this definition of refactoring being a behavior-preserving code
transformation does not always hold true. It is not uncommon to use the term refactoring
in ways that defy its academic definition, Martin Fowler addresses this:

Over the years, many people in the industry have taken to use ‘refactoring’

to mean any kind of code cleanup—but the definitions above point

to a particular approach to cleaning up code. Refactoring is all about

applying small behavior-preserving steps and making a big change by

stringing together a sequence of these behavior-preserving steps. Each

individual refactoring is either pretty small itself or a combination of small

steps. As a result, when I’m refactoring, my code doesn’t spend much time

in a broken state, allowing me to stop at any moment even if I haven’t finished.

2.2 | THE PLUGIN

13

If someone says their code was broken for a couple of days while

they are refactoring, you can be pretty sure they were not refactoring.

Fowler (1999)

That is to say, colloquially refactoring is often used as something more generic and
less rigorous than Opdyke’s or Fowler’s definitions. A survey of 328 professional software
engineers at Microsoft found that developers do not necessarily consider that refactoring
is confined to behavior preserving transformations (Kim et al., 2014). Furthermore:

[...] 78% define refactoring as code transformation that improves some aspects

of program behavior such as readability, maintainability, or performance.

46% of developers did not mention preservation of behavior, semantics, or

functionality in their refactoring definition at all. [...] The following shows a

few examples of refactoring definitions by developers.

‘Rewriting code to make it better in some way.’

‘Changing code to make it easier to maintain. Strictly speaking, refactoring

means that behavior does not change, but realistically speaking, it usually is

done while adding features or fixing bugs.’

Kim et al. (2014)

Bearing in mind those different meanings, we will stick to Martin Fowler’s definition
unless stated otherwise. Martin Fowler (2023a) has a catalog where he defines many
different types of refactorings but we are interested in automating a specific type of
refactoring, the function extraction. When our hypothetical plugin suggests a function
extraction to its fictional user it will only suggest the extraction, no feature will be added
or subtracted. Further code improvements are out of the scope of this project and are left
as possible paths for future work.

Following Martin Fowler’s nomenclature system (Fowler, 1999), in this project we
will explore the function extraction refactoring in particular, where a long function that
does many tasks is broken down into smaller functions, that only do one simple task each,
being called one after the other. Each new function created from the larger original one
is an instance of a function extraction. It is not uncommon to have a series of function
extractions being applied sequentially to a single large function. Fig. 2.2 gives an example
of this refactoring.

2.2 The Plugin

With a clear definition of what is a refactoring and of our objectives we will explore
our theoretical plugin and how it could be built. Fig. 2.3 presents the outline of how this
plugin would work.

2.2.1 Detecting Refactoring Opportunities

As previously stated, code refactoring is not a new subject, extensive work has already
been done to classify different types of refactorings. Furthermore, there are no lack of
tools (Palomba et al., 2013; Tufano et al., 2015; Tsantalis, Chaikalis, et al., 2008; Daniel
et al., 2007) to identify code smells (Fowler, 1999), a common pattern that may serve

14

2 | AN IMAGINARY FUNCTION EXTRACTION PLUGIN

Figure 2.2: An instance of the “Function Extraction” refactoring. Example extracted from (Fowler,

1999).

Figure 2.3: Outline of our imaginary plugin broken down into three different parts.

as an indication of a deeper problem in the way the system is structured and the need
of refactoring. For example a really long function may indicate the need for a function
extraction refactoring.

There are many approaches one could take in order to identify refactoring opportunities.
One approach could be to leverage said code smells and their vast literature, another way
could be to construct heuristics utilizing a set of code complexity metrics.

There are quite a few metrics that aim at measuring the perceived complexity of a piece
of code — not in the sense of execution time complexity but in the sense of readability and

maintainability. By looking solely at the source code, without executing it, it is possible to
provide an estimation of the quality of the software. Some metrics can be more specific
and restrictive in their use, for example being tailored to a single programming paradigm
(e.g. this suite of metrics designed for Object Oriented programming (Chidamber and
Kemerer, 1994)). Other metrics may try to identify “code smells” or be specific to a single
programming language (gojp, 2023).

2.2 | THE PLUGIN

15

Which of these ideas is the best we cannot say without testing and the results would
ultimately be dependent on the implementation of the heuristics, but since we are dealing
with an imaginary plugin we are not concerned with such details. We will explore the
simple code complexity metric known as maintainability index in order to better illustrate
this piece of our imaginary plugin.

In section 4.3 we will see another possible approach that utilizes machine learning to
detect refactoring opportunities and the refactoring type to be used.

Cyclomatic complexity

The cyclomatic complexity proposed in 1976 (McCabe, 1976), may be defined as the
number of linearly independent paths within a piece of code. A program with no control
flow statements (such as loops and conditionals) will have a cyclomatic complexity of 1,
a program with one conditional statement 𝑖𝑓 will have cyclomatic complexity of 2, one
independent path for a True 𝑖𝑓 statement and another for a False 𝑖𝑓 statement. Cyclomatic
complexity may be used as a bound for the number of necessary unit tests for 100% code
coverage and a high cyclomatic complexity may be an indicative of complex nested flow
statements.

Halstead Metrics

The Halstead metrics where developed in 1977 (Maurice, 1977) as an attempt to define
and analyze static properties of a given software, trying to capture a measure of how
difficult it is to write or understand a given piece of code. They also estimate how many
bugs are present in a given snippet of code. Let,

𝜂1 = Number of distinct operators

𝜂2 = Number of distinct operands

𝑁1 = Total number of operators

𝑁2 = Total number of operands

Halstead defines volume, difficulty, effort and estimated number of bugs as:

𝑉 = (𝑁1 + 𝑁2) ∗ lg(𝜂1 + 𝜂2)

𝐷 =
𝜂1

2
∗

𝑁2

𝜂2

𝐸 = 𝐷 ∗ 𝑉

�̂� =
𝐸

2

3

3000

Maintainability Index

Throughout the years, the maintainability index formula has been tweaked and refined,
but on the original paper (Coleman et al., 1994) it was defined as:

𝑀𝐼 = 171 − 5.2 ∗ ln(𝑉) − 0.23 ∗ 𝐺 − 16.2 ∗ ln(𝐿𝑜𝐶)

16

2 | AN IMAGINARY FUNCTION EXTRACTION PLUGIN

Where 𝑉 is the Halstead Volume, 𝐺 is the Cyclomatic Complexity and 𝐿𝑜𝐶 is the total
number of lines of code. Typical values for the maintainability index range from 0 to 100
with 0 being a hard to maintain code and 100 being a well structured, small and easy to
maintain code.

2.2.2 Refactoring Prediction

This is the kernel of this plugin and also our main objective in this project. As such, let
us treat it as a black box model that simply works until we arrive at Chapter 6 where we
will present our attempts at solving this problem.

2.2.3 Performing Refactorings

Language Server Protocol (Microsoft, 2016), or LSP as it is commonly referred, was
introduced to address the duplication of effort and code across IDE’s and text editors. The
idea is to create a standard that allows a plugin for a given language (e.g. auto-completion
for python) to work in any development tool (e.g. a plugin designed for Atom will work in
VSCode) thus reducing the workload of language providers and tooling vendors. Fig 2.4
illustrates this idea.

Figure 2.4: An illustration of the problem that LSP was designed to solve. Without LSP we have M

languages that need to have support implemented in N different IDE’s, but with LSP’s we only need to

implement support for a language once and it can be re-used anywhere (Microsoft, 2021).

The goal of LSP is to allow the implementation and distribution of support for a
programming language without involving any particular text editor by standardizing the
interaction between the IDE’s and the servers that provide language specific features.

With the use of a language server the function extraction refactoring could be easily
accomplished by providing the line span to be extracted, in our particular case we could use
the Eclipse JDT Language Server (Eclipse Foundation, 2021) to potentially accomplish
this for the Java programming language. By describing a refactoring in terms of operations
done through the LSP the instructions generated by our model can be easily utilized in
any development environment capable of communicating with a language server. It is
important to note that function extractions are not always performed with a continuous set
of lines which could prove itself a limitation for currently implemented LSP instructions,
e.g. the Eclipse JDT Language Server expects a continuous line span. To perform more

2.2 | THE PLUGIN

17

complex function extractions there may be a need to expand current LSP instruction
sets.

19

Chapter 3

NLP Techniques

In this chapter we intend to present an overview of some of the NLP concepts, mostly
based on neural networks, which are relevant to comprehend this project. As previously
mentioned, we intend to leverage NLP techniques to perform the code processing technique
of automating function extractions. While some methods can be used as is, others can
barely be used at all. In further chapters their usage and limits for our use case will be
further explored, while in this chapter they are only going to be introduced to the readers
to better situate them.

3.1 Embeddings

When we are dealing with neural networks, we are essentially dealing with matrix
operations, so in order to apply NNs to NLP tasks one first needs to somehow transform
words and sentences into numbers.

A rudimentary approach would be an one-hot-encoding, where given a vocabulary
of size 𝑉 we have a vector of size 𝑉 with each word of the vocabulary being associated
to a specific index of our vector in a one-to-one fashion, where it is 0 at every index
except for the one corresponding to the word to be represented. Fig. 3.1 illustrates, with
categorical variables, the one-hot-encoding. Another similar concept is called bag of words,
a sentence representation obtained by adding the one-hot-encoding of the words in said
sentence.

However, these approaches are inefficient. Vocabularies tend to be huge, Merriam-
Webster’s Third New International Dictionary (Merriam-Webster, Inc., 2023) possesses
470, 000 different entries, but a typical sentence would not be longer than 100 words. This
leads to a sparse representation of sentences and also loses important information such as
the order of appearance of the words in the sentence.

Embeddings are an efficient approach to solve these problems; an embedding is a
low-dimensional space (in comparison to the huge size of typical vocabularies) into which
one can translate high-dimensional vectors. In essence, an embedding tries to project into
a lower dimensional space high-dimensional vectors in such a way that the ones that are
“similar” are closer in the embedding space. In the case of words, we are interested in the

20

3 | NLP TECHNIQUES

(a) Categorical representation of Pokémon types.

(b) One-hot encoding of Pokémon types.

Figure 3.1: Table of a few Pokémon statistics representing its type as a (a) categorical variable or

as an (b) one-hot encoding. In this case, the Pokémon types of a trainer could be represented by a

bag-of-words by adding the one-hot encodings
a
. Base stats from Generation VI from Bulbapedia (2005)

and images from Juan Orozco Villalobos (2020).

a Albeit it would be more of a “bag-of-types” than a bag-of-words

3.1 | EMBEDDINGS

21

semantic similarity between them but they may be similar in unexpected ways, depending
on the training method antonyms may be closer than synonyms because they are used in
similar ways.

Embeddings are not exclusive to natural language processing, they are used to deal with
the sparsity of adjacency graphs, in graph neural networks, to permit the use of graphs as
input for more conventional NNs (Grover and Leskovec, 2016) and may even be used
with any machine learning model that deals with too many features, being particularly
useful with boolean and categorical variables. They are also not exclusively used with
individual words, they may be used with entire sentences (Reimers and Gurevych, 2019),
paragraphs or even entire documents at once (Le and Mikolov, 2014).

Another benefit of embeddings is that they have high re-usability, it is not uncommon
to re-utilize them across different models and tasks. To further improve their performance
there are many transfer learning techniques that can be leveraged, but depending on the
application they may not even need fine tuning to achieve an acceptable performance.

We will now present an overview of an embedding called word2vec to better illustrate
embeddings and their uses.

3.1.1 Word2vec

Word2vec (Mikolov et al., 2013) is an algorithm that produces word embeddings. A
word embedding as previously mentioned is a mapping of words into a vector space ℝ𝑛, i.e.
each word can be represented as a vector of real numbers. The power of these embeddings
created by word2vec comes from its dense distributed representation, wherein ℝ

𝑛 is such
that 𝑛 is smaller than the number of distinct words in the corpus and is capable of capturing
some of the underlying syntactic and semantic structure of the language.

As an example of this structure we can take the vector representation for the words
𝑘𝑖𝑛𝑔 , 𝑞𝑢𝑒𝑒𝑛, 𝑚𝑎𝑛 and 𝑤𝑜𝑚𝑎𝑛 and calculate 𝑘𝑖𝑛𝑔 −𝑚𝑎𝑛+𝑤𝑜𝑚𝑎𝑛. This will provide us a new
vector that is closer to 𝑞𝑢𝑒𝑒𝑛 then any other word vector, as can be seen in the illustration
of Fig. 3.2. In Figure 3.3 we can see other examples of such relationships captured by
word2vec.

These relationships are obtained during its training process, at first each word is
assigned a word embedding composed of purely random numbers that will converge into a
meaningful embedding. The training process of this algorithm is based on the idea that one
may deduce the meaning of a word by its context, so by updating the embedding of a word
by using the embedding of its neighbors or vice-versa it is possible to capture semantic
and syntactic information from the language thus construing a meaningful embedding
space.

This idea of understating a word by its context is nothing new going at least as far as
1957:

You shall know a word by the company it keeps.

Firth (1957)

Word2vec was one of the first models to efficiently utilize this idea, being quickly

22

3 | NLP TECHNIQUES

Figure 3.2: The resulting vector from “king-man+woman” doesn’t exactly equal “queen”, but “queen”

is the closest word to it from the 400,000 word embeddings in this collection. Color coded cells based

on their values (red if they’re close to 2, white if they’re close to 0, blue if they’re close to -2). (Jay

Alammar, 2019)

Figure 3.3: Illustration of some semantic and syntactic relations captured by word2vec embeddings,

vectors whose words have similar relationships (such as gender or conjugation) tend to also have similar

relations on the vector space (Tensor Flow, 2020). This is nothing more than an illustration since

usual embeddings are of such a high order that visualization as a simple 3D plot becomes impossible,

dimensionality reduction techniques (e.g. PCA) albeit useful may lead to spurious relations, when

searching for such relations it is customary to use appropriate distance metrics such as the cosine

distance.

followed by GloVe (Pennington et al., 2014), a model that leverages the co-ocurrence
matrix of words to train its embedding, and many others. An example of a co-ocurrence
matrix can be seen in Fig. 3.4. Even though nowadays there are many embeddings more
powerful than those two, they are still useful for simpler applications as tried and tested
methods or even because of their relatively high computational efficiency.

3.2 LSTM

LSTM, or Long Short-Term Memory (Hochreiter and Schmidhuber, 1997), is a recur-
rent neural network architecture developed to tackle the problem of vanishing gradient
when dealing with long inputs in RNNs where the “gradient flow” would vanish, resulting

3.2 | LSTM

23

Figure 3.4: Example of a co-ocurrence matrix with a symmetrical window of size 1.

Corpus: I like deep learning. I like NLP. I enjoy flying.

Dictionary: [’I’, ’like’, ’enjoy’, ’deep’, ’learning’, ’NLP’, ’flying’, ’.’] (Christopher Manning, 2020)

Figure 3.5: An illustration of the LSTM architecture, image adapted from Christopher Olah (2015).

in stagnation during training and the inability to deal with long distance relationships
in, for example, long sentences or paragraphs. This inability to go beyond “short-term
memory”, was improved by introducing a better information flow in the network, giving
it the ability to learn when to “forget” and when to “update” accordingly. An illustration
of this architecture can be seen in Fig. 3.5, but it can be described by its three gates:

Forget gate: 𝑓𝑡 = 𝜎(𝑊𝑓 .[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)

Input gate: 𝑖𝑡 = 𝜎(𝑊𝑖.[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)

Output gate: 𝑜𝑡 = 𝜎(𝑊𝑜.[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)

The forget gate is responsible for “deciding” what to keep from earlier steps, the input
gate for what to keep from the current step and the output gate for the next hidden state
ℎ𝑡 . Another integral part of this model is the cell state 𝐶𝑡 and the candidate cell state �̃�𝑡 ,
responsible for “storing” the information on the network, being updated at each time step
based on the candidate cell state, the input gate and the forget gate:

24

3 | NLP TECHNIQUES

�̃�𝑡 = tanh(𝑊𝐶 .[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ �̃�𝑡

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡)

3.3 Encoder-Decoder

The idea behind the encoder-decoder neural network architecture is to use an encoding
layer to create an intermediary representation of the input that will subsequently be
transformed by the decoder layer into the desired target. Recurrent neural networks such
as LSTMs or GRUs (Cho et al., 2014) are commonly used as the encoding and decoding
layers to avoid the vanishing gradient problem. A common use of the encoder-decoder
architecture is machine translation through seq2seq (Sutskever et al., 2014). For example,
an english text can be used as an input to the encoder which will generate a latent space
vector, an abstract representation of the text, that will be used by the decoder to generate
a french translation of the original text. This process can be visualized in Fig. 3.6.

Figure 3.6: The encoder-decoder model, translating the sentence “she is eating a green apple” to

Chinese. The visualization of both encoder and decoder is unrolled in time. (Weng, 2018)

The context vector in gray is the intermediary representation between the encoder and decoder that

needs to hold all the relevant information to successfully realize the translation without referencing

the original input in english.

Another example of the encoder-decoder architecture are the autoencoders, where the
objective is to make the output predict the input. The existence of an intermediate state
outputted by the encoder forces the autoencoder to learn a compact representation of the
input and try to reconstruct it as the output, an illustration can be seen in Fig. 3.7.

3.4 Attention

Attention comes to address one of the main drawbacks of the encoder-decoder archi-
tectures, the informational bottleneck. By forcing the entire sequence of information to
be contained in a single vector it becomes increasingly difficult to capture long-range
relations and information presented at the beginning of long input sentences. Attention
provides a simple manner of capturing the relevant input tokens for each token of the

3.4 | ATTENTION

25

Figure 3.7: Illustration (Unger et al., 2018) of a shallow autoencoder. 𝑣 and
⃗
�̂� represent the input

and output respectively of the network while the output from layer 3 is responsible for the compact

representation of the input on the latent space. The encoder is composed of layers 1, 2 and 3 while the

decoder is composed of layers 4 and 5.

output, generating an attention matrix that represents the relevant context for each token
and improving interpretability.

Figure 3.8: Illustration (Bahdanau et al., 2014b) of an example attention matrix for a sentence in

english and it’s french translation.

This provides another counter-measure against the vanishing gradient problem by
connecting the entirety of the input to the training process, but the biggest insight of
attention is this idea of paying attention to a specific part of the input that is more relevant
to obtain our desired output. For example, given the obscured photo in Fig. 3.9a how would
one describe its content? We could guess about the gender, origins or facial expression of

26

3 | NLP TECHNIQUES

the depicted person, but we would most likely assume it depicts a human and not a dog
as can be seen in Fig. 3.9b, but how did we arrive at this conclusion? Which part of the
image implies the presence of a human? This is the essence of the idea behind attention,
where to look at to answer something.

(a) (b)

Figure 3.9: A collage to illustrate the idea of attention and visual attention. Photo obtained from

mensweardog (2023).

Galassi et al. (2021) generalized attention by breaking it into three swappable compo-
nents: the 3-tuple (key, query, value), the score function and the distribution function.

The tuple (key, query, value) are the input for the score function, the objects upon
which we desire to calculate the attention. The score function is used to calculate the
energy scores that will be subsequently passed through the distribution function to produce
the attention scores such as the softmax function that also normalizes the scores into a
probability distribution.

Fig. 3.10 illustrates this general framework and Fig. 3.11 gives an illustrative example
of one of the first attention implementations.

Figure 3.10: Illustration of Galassi et al. (2021) general attention framework. The “Value” component

is not present in this illustration but could be used in a subsequent step to process the attention scores

to create a context vector.

3.4 | ATTENTION

27

(a) Illustration of an encoder decoder model with atten-

tion, every decoder step decides the next token based on

the context vector and the last decoder hidden state. The

blue rectangles represent the encoder and the red ones

the decoder.

(b) To calculate the attention all encoder hidden states
̄
ℎ𝑠 (Keys)

a
and the current

decoder hidden state ℎ𝑡 (Query) are passed to the score function 𝑠𝑐𝑜𝑟𝑒(ℎ𝑡 ,
̄
ℎ𝑠) = ℎ

⊤

𝑡

̄
ℎ𝑠

to calculate the energy scores. Then the energy scores are passed to the distribution

function softmax 𝑎𝑡(𝑠) =
𝑒𝑥𝑝(𝑠𝑐𝑜𝑟𝑒(ℎ𝑡 ,

̄
ℎ𝑠))

∑
𝑠
′ 𝑒𝑥𝑝(𝑠𝑐𝑜𝑟𝑒(ℎ𝑡 ,

̄
ℎ
𝑠
′))

to generate the attention score. How to

use an attention score may vary between architectures and applications, in this

particular case Luong et al. (2015) takes the weighted average 𝑐𝑡 =
∑

𝑠

̄
ℎ𝑖𝑎𝑖

|𝑠|
of all

attention scores to create a context vector which will be used with the decoder hidden

state to predict the next word.

a In this case Key and Value are the same

Figure 3.11: Fig. 3.11a illustrates an encoder decoder model and Fig. 3.11b illustrate its attention

mechanism, both images extracted from Luong et al. (2015).

28

3 | NLP TECHNIQUES

3.5 Pointer Networks

Pointer Net (Vinyals et al., 2015), or Ptr-Net, is a neural architecture that learns the
conditional probability of an output sequence composed of index positions of the input
sequence. It is essentially an encoder-decoder architecture with attention, but the attention
mechanism is used at each step to determine an index of the input. Fig 3.12 illustrates the
difference from a normal encoder-decoder.

Figure 3.12: This illustration represents 2 different architectures used to find the convex hull of a set

of points (Vinyals et al., 2015). The left one is a normal encoder-decoder while on the right we have a

Ptr-Net.

The original paper explores the use of this architecture with geometric problems,
such as finding the convex hull as can be seen in Fig 3.12, but it can also be used for
other problems. Another use of Ptr-Nets are in Q&A tasks such as in the SQuAD dataset
(Rajpurkar, Zhang, et al., 2016) where a question is provided paired with a text that
contains the answer to this question. A common approach (S. Wang and Jiang, 2016) to
answer the question is to train a model that finds in the provided text an initial and a final
token that together delimit a minimal portion of the text that contains the answer. An
example of such a Q&A task can be seen on Fig. 3.13.

3.6 Transformer

The transformer (Vaswani et al., 2017) is another encoder-decoder architecture but
with a major difference: it shifts from the use of recurrent neural networks in favor of
attention. More precisely, the encoder uses word vectors as input and is composed of
a self-attention layer followed by a feed forward network. Self-attention is capable of
capturing strong semantic information, for example in the sentence “Marie bought a cookie
and ate it.” the self-attention model is capable of determining that the token “it” refers to
the token “cookie”.

The transformer starts by using self-attention on the word embeddings to aggregate

3.6 | TRANSFORMER

29

Figure 3.13: This excerpt illustrates 3 different questions for a single paragraph of text, for the first two

questions the initial and final tokens overlap as the answer is composed of a single word. On the third

question the initial token would be the word “within” and the final token would be “cloud” and the

resulting answer delimited by them would be “within a cloud”. Example extracted from (Rajpurkar,

Zhang, et al., 2016).

information from each token, creating a new context-rich representation for each word
simultaneously. The decoder on the other hand takes an iterative approach, instead of
outputting the entire translated sentence at the same time it generates one word at a time.
The decoder utilizes the final representation output by the encoder and every word it
already output to generate the next word until it predicts and < 𝐸𝑁𝐷 > tag. In essence it
will receive the sentence to be translated as input and will output the translated sentence
one word at a time. Figs. 3.14 and 3.15 illustrate the architecture of the transformer model
and the self attention mechanism.

The transformer architecture achieved state of the art performance in translation tasks
and, due to its focus in attention, it was able to be trained significantly faster than other
models centered around recurrent or convolutional layers. This led to a series of new
models based on the transformer architecture and the idea that attention is all you need,
one of its variants, a masked-language model composed of stacked Transformer encoders
called BERT (Devlin et al., 2018), quickly became the new baseline for NLP tasks such as
(Rogers et al., 2020), including classification tasks.

The BERT model is capable of considering the context of a word occurrence, differently
than the previously mentioned context-free embeddings word2vec an GloVe. For example,
the vector for “running” would have different embeddings in BERT for the phrases “He is
running the company into the ground.” and “He is running away” while word2vec would
produce the exact same embedding.

30

3 | NLP TECHNIQUES

Figure 3.14: The Transformer - model architecture. (Vaswani et al., 2017)

Figure 3.15: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several

attention layers running in parallel. (Vaswani et al., 2017)

3.7 | TYPICAL SEQ2SEQ METRICS

31

3.7 Typical seq2seq Metrics

BLEU (Papineni et al., 2002), or bilingual evaluation understudy, is a corpus wide NLP
metric frequently used for sequence to sequence tasks such as machine translation or text
summarization. This metric is a normalized score for n-grams overlap between the output
and reference outputs (e.g. reference translations in a machine translation task) with a
brevity penalty for shorter outputs.

Despite BLEU’s wide spread use, it has some flaws. Among the main problems pointed
out by the community are the metric’s inability to take meaning and sentence structure
into account, e.g. a rarer synonym could penalize a correct translation and a random shuffle
of words of a correct translation could have a similar BLEU score albeit being complete
nonsense (Callison-Burch et al., 2006).

Another famous benchmark is the previously mentioned SQuAD 1.X (Rajpurkar,
Zhang, et al., 2016) and its successor SQuAD 2.0 (Rajpurkar, Jia, et al., 2018), these are
reading comprehension datasets that consist of questions posed by crowdworkers on a
set of Wikipedia articles. The answers may or may not be contained in the corresponding
reading passage upon which the question is theoretically posed, SQuAD 2.0 being composed
of the questions from SQuAD 1.1 and 50,000 unanswerable ones written to look similar to
answerable questions.

33

Chapter 4

Automated Refactoring

The “code processing community”1 may be comparatively small to the NLP community,
but it is not by any means non-existent. This chapter will present related work to our
goal of automating function extractions, our objective is to situate the reader about recent
relevant developments and to explicitate how this project differs from recent and current
works in the area.

4.1 Rename Method

The rename method refactoring is one of the most commonly performed refactorings
(Aniche et al., 2020), an illustration of it can be seen in Fig. 4.1. Due to it essentially being
an act of naming something for humans to read, it is a task that can be greatly benefited
from natural language processing techniques and insights.

Figure 4.1: Illustration of a refactoring of the Rename Method type. Illustration adapted from Martin

Fowler (2023b).

In this section we will explore a few recent works that attained state of the art perfor-
mance in this task at the time of their publication. But since many of them utilize an AST
to achieve that, we will start by explaining what an AST is.

1 There does not seem to be a consensus for a name for the area, some common names are big code and
programming language processing.

34

4 | AUTOMATED REFACTORING

4.1.1 AST

For source code to become an executable program it needs to be translated into a
low level language capable of being run by the machine or into machine code directly. A
common approach is to write a compiler that will take the source code and compile it into
an executable binary that may be used any time. A compiler is composed of numerous
processing steps that can be somewhat separated into 2 categories: analysis and synthesis
Aho et al. (2007). The analysis part pre-processes the inputted code and generates an
intermediary representation of it to be used by the synthesis step. If during the analysis
the code is found to be grammatically incorrect (in respect to the programming language
formal grammar) or to have any other problem of lexical, syntactical or semantic nature it
will abort the compilation process and report to the user an error message. By the end
of a successful analysis step an intermediary representation of the source code will be
generated, e. g. an Abstract Syntax Tree.

The AST is created by taking its concrete counterpart the concrete parse tree, also
known as a parse tree, and removing any redundant or unnecessary information such as
idiosyncrasies related to the source language or precedence and punctuation tokens (such
as parenthesis in arithmetic expressions or “;” to denote the end of a statement) that are
made unnecessary once the parse tree is built. Or as it is succinctly described in the book
Modern Compiler Implementation in Java:

The abstract syntax tree conveys the phrase structure of the source program,

with all parsing issues resolved but without any semantic interpretation.

Appel (2004)

It is no surprise that ASTs are often selected as a starting point for code embeddings,
as it captures the structure of the source code that is not readily available when analyzing
solely the source code. An AST can be seen in Fig. 4.2 and its corresponding source code
in Listing 1.

4.1 | RENAME METHOD

35

1 class HelloWorld {
2 public static void main(String[] args) {
3 System.out.println("Hello, World!");
4 int a, b;
5

6 a = 3;
7 b = 4;
8 int c = a + b;
9

10 // Random comments for illustrative purposes
11 // private static int extracted(int a, int b) {
12 // int c = a + b;
13 // return c;
14 // }
15 }
16 }

Listing 1: Small Java script, its AST can be seen in Fig. 4.2.

3
6

4
|A

U
T

O
M

A
T

ED
R

EFA
C

T
O

R
IN

G

Figure 4.2: AST of Listing 1. In an attempt to make the AST more intuitive and easier to read for those that never worked with them, we colored the sub-trees

that correspond to the lines of the function body with one color per corresponding line
a
. AST printed through the dot utility and the JavaParser package, the

code utilized to print the AST is available at Appendix A as Listing 2.

a Since Java utilizes “;” to denote the end of a statement, multiple statements could be present in a single line of code but the AST would break down each line in its
composing statements with one sub-tree for each. The existence of different lines is simply syntactic sugar, all Java programs could be expressed in single lines

4.1 | RENAME METHOD

37

4.1.2 code2vec and code2seq

Code2vec (Alon, Zilberstein, et al., 2018) is an algorithm that generates code embed-
dings, i.e. distributed representation of code and similar in spirit to word2vec. A path-based
attention model was developed for learning embeddings of arbitrary-sized snippets of
code, which was done through the use of paths in the program’s abstract syntax tree as a
representation for code. The authors managed to leverage the underlying structure of the
programming language to develop a scalable and efficient code embedding generator.

Figure 4.3: Illustration of the path-based attention model from code2vec. The width of each colored

path is proportional to the attention it was given (red 1: 0.23, blue 2: 0.14, green 3: 0.09, orange 4: 0.07).

(Alon, Zilberstein, et al., 2018)

Similarly to word2vec, this representation was successful in learning syntactic and
semantic information, being able to generate analogies such as “𝑟𝑒𝑐𝑒𝑖𝑣𝑒 is to 𝑠𝑒𝑛𝑑 as
𝑑𝑜𝑤𝑛𝑙𝑜𝑎𝑑 is to: 𝑢𝑝𝑙𝑜𝑎𝑑”.

Furthermore, code2vec was shown to be capable of capturing the resulting effect
of two different function calls in succession, e.g. when given the embedding for the
functions “equals” and “toLower”, their sum is predicted to be equivalent to the function
“equalsIgnoreCase”, i.e. “𝑒𝑞𝑢𝑎𝑙𝑠 + 𝑡𝑜𝐿𝑜𝑤𝑒𝑟 ≈ 𝑒𝑞𝑢𝑎𝑙𝑠𝐼𝑔𝑛𝑜𝑟𝑒𝐶𝑎𝑠𝑒”.

Code2seq (Alon, Brody, et al., 2018) is another model created by the same group
that built code2vec, building upon their previous findings and successes working with
AST paths. It represents a code snippet as the set of compositional paths in its abstract
syntax tree and uses attention to select the relevant paths while decoding. This new
approach achieved better performance than code2vec, achieving a new state of the art
while expanding the abilities of their model. It is capable of performing code summarization,
caption and documentation.

4.1.3 Code Transformer

The code transformer model from Zügner et al. (2021) has a more holistic approach,
instead of utilizing the pure source code or the AST it chooses to do both. By utilizing

38

4 | AUTOMATED REFACTORING

what they define as context (source code) and structure (AST) they were able to combine
two facets of programs and obtain state-of-the-art performance on monolingual code
summarization in five languages and propose the first multilingual code summarization
model. This multilingual model substantially outperformed its mono-lingual variants on
all programming languages of the study.

The authors also noted that multilingual training only from context did not lead to
the same improvements, highlighting the benefits of combining structure and context. An
overview of the code transformer structure can be seen in Fig. 4.4.

Figure 4.4: “Left: Sequence (Context) and AST (Structure) representation of an input code snippet.

Center: The CODE TRANSFORMER jointly leverages the sequence of tokens and the Abstract Syntax

Tree to learn expressive representations of source code. In addition to the input token and node

embeddings the model uses different distances between the tokens, e.g., shortest paths on the AST or

personalized PageRank, to reason about their relative positions. The output embeddings can be used

for downstream tasks such as code summarization (right).” (Zügner et al., 2021)

4.2 Github Copilot X, Code Whisperer and Code

Assistants

In recent years there has been an influx of code assisting tools based on machine
learning models. Most of them are closed source with no details about their implementa-
tion, such as TabNine’s autocompleter (TabNine, 2020), Amazon’s CodeWhisperer code
assistant (Amazon, 2023) and Microsoft’s Copilot, or even platform specific such as Replit’s
Ghostwriter (Replit, 2023). With the release of Copilot X (GitHub, 2023), the latest itera-
tion of the GitHub Copilot project, some details were made available to the public about
its implementation but not that much is known besides the fact that they claim to use
GPT-4.

Another interesting experimental project by the GitHub Next (2023) team are the
code brushes , where the user can choose “brushes” to apply certain effects on code, such
as making it more readable, adding types or including debugging statements, among

4.3 | MACHINE LEARNING BASED CODE REFACTORING PREDICTION

39

other code transformations. Most of its brush operations are essentially refactorings, small
operations with the intent of making code more readable and maintainable without altering
its behavior. However, currently there is not a brush for function extractions.

These “AI” assisted tools have managed to achieve great popularity among developers,
however due to their closed source nature, wait lists and paywalls, it is difficult to even try
to compare them with the work developed in this project since we lack access to them and
the knowledge about what is going on under the hood. The more flexible systems based on
LLMs, such as Copilot X, could be tailored through prompts to attempt to realize function
extractions, but doing so in a programmatical manner to measure its performance would
be a challenge. We are still awaiting for the opportunity to test the Copilot X but even
if we had access to it and achieved a good performance in the function extraction task
there would be the doubt about the nature of this performance: is the model performing
well or is it simply overfitted? Since our training, validation and test sets come from Java
projects in GitHub, it would be hard to determine if the test files were never used during
the Copilot X training leading to data snooping.

For these reasons, there won’t be any comparisons between these tools and the mod-
els we developed, however we felt the need to mention them for the sake of complete-
ness.

4.3 Machine learning based code refactoring

prediction

Work from Aniche et al. (2020) has shown that supervised machine learning methods
are effective in predicting refactoring opportunities and, more importantly, such models
can accurately model the refactoring recommendation problem. For this task, process and
ownership metrics where shown to be essential for model creation, were the ownership
metrics correspond to the suite proposed by Bird et al. (2011) and the process metrics
are: quantity of commits, number of bug fixes, the sum of lines added, the sum of lines
removed, and number of previous refactoring operations.

Albeit an important milestone, it’s important to emphasize that the model proposed
on this work was only capable of predicting refactoring types and opportunities, not the
refactoring operations themselves. The models generated have also been shown to be
robust with context change, i.e. a model trained in one context (e.g. Apache projects)
can accurately predict refactoring opportunities on another context/project (e.g. F-droid
projects). In Table 4.1 we present the performance of the different models trained by
Aniche et al. (2020).

4.3.1 DataSet

Aniche et al. (2020) constructed a 40Gb dataset of source code from Java libraries,
their entire Git commits history and metrics calculated on each commit. This was built
upon 3 different ecosystems: Apache, F-droid and Github; an outline of the dataset can
be referenced in Table 4.2. The Apache ecosystem is composed of all Java-based Apache

40

4 | AUTOMATED REFACTORING

Logistic

Regression

SVM

(linear)

Naive Bayes

(gaussian)

Decision

Tree

Random

Forest

Neural

Network

Pr Re Acc Pr Re Acc Pr Re Acc Pr Re Acc Pr Re Acc Pr Re Acc

Class-level refactorings

Extract Class 0.78 0.91 0.82 0.77 0.95 0.83 0.55 0.93 0.59 0.82 0.89 0.85 0.85 0.93 0.89 0.80 0.94 0.85
Extract Interface 0.83 0.93 0.87 0.82 0.94 0.87 0.58 0.94 0.63 0.90 0.88 0.89 0.93 0.92 0.92 0.88 0.90 0.89
Extract Subclass 0.85 0.94 0.89 0.84 0.95 0.88 0.59 0.95 0.64 0.88 0.92 0.90 0.92 0.94 0.93 0.84 0.97 0.89
Extract Superclass 0.84 0.94 0.88 0.83 0.95 0.88 0.60 0.96 0.66 0.89 0.92 0.90 0.91 0.93 0.92 0.86 0.94 0.89
Move And Rename Class 0.89 0.93 0.91 0.88 0.95 0.91 0.69 0.94 0.76 0.92 0.95 0.94 0.95 0.95 0.95 0.88 0.94 0.91
Move Class 0.92 0.96 0.94 0.90 0.97 0.93 0.67 0.96 0.74 0.98 0.96 0.97 0.98 0.97 0.98 0.92 0.97 0.94
Rename Class 0.87 0.94 0.90 0.86 0.96 0.90 0.63 0.96 0.69 0.94 0.91 0.93 0.95 0.94 0.94 0.88 0.94 0.91
Method-level refactorings

Extract And Move Method 0.72 0.86 0.77 0.71 0.89 0.76 0.63 0.94 0.69 0.85 0.75 0.81 0.90 0.81 0.86 0.79 0.85 0.81
Extract Method 0.80 0.87 0.82 0.77 0.88 0.80 0.65 0.95 0.70 0.81 0.86 0.82 0.80 0.92 0.84 0.84 0.84 0.84
Inline Method 0.72 0.88 0.77 0.71 0.89 0.77 0.61 0.94 0.67 0.94 0.87 0.90 0.97 0.97 0.97 0.77 0.85 0.80
Move Method 0.72 0.87 0.76 0.71 0.89 0.76 0.63 0.93 0.70 0.98 0.87 0.93 0.99 0.98 0.99 0.76 0.84 0.78
Pull Up Method 0.78 0.90 0.82 0.77 0.91 0.82 0.68 0.95 0.75 0.96 0.88 0.92 0.99 0.94 0.96 0.82 0.87 0.84
Push Down Method 0.75 0.89 0.80 0.75 0.90 0.80 0.66 0.94 0.73 0.97 0.76 0.87 0.97 0.83 0.90 0.81 0.92 0.85
Rename Method 0.77 0.89 0.80 0.76 0.90 0.80 0.65 0.95 0.71 0.78 0.84 0.80 0.79 0.85 0.81 0.81 0.82 0.81
Variable-level refactorings

Extract Variable 0.80 0.83 0.82 0.80 0.83 0.82 0.62 0.94 0.68 0.82 0.83 0.82 0.90 0.83 0.87 0.84 0.89 0.86
Inline Variable 0.76 0.86 0.79 0.75 0.87 0.79 0.60 0.94 0.66 0.91 0.85 0.88 0.94 0.96 0.95 0.81 0.82 0.82
Parameterize Variable 0.75 0.85 0.79 0.74 0.86 0.78 0.59 0.94 0.65 0.88 0.81 0.85 0.93 0.92 0.92 0.80 0.83 0.81
Rename Parameter 0.79 0.88 0.83 0.80 0.88 0.83 0.65 0.95 0.71 0.99 0.92 0.95 0.99 0.99 0.99 0.82 0.87 0.84
Rename Variable 0.77 0.85 0.80 0.76 0.86 0.79 0.58 0.92 0.63 0.99 0.93 0.96 1.00 0.99 0.99 0.81 0.84 0.82
Replace Variable With Attribute 0.79 0.88 0.82 0.78 0.89 0.82 0.64 0.95 0.71 0.90 0.84 0.88 0.94 0.92 0.93 0.79 0.92 0.84

Table 4.1: The precision (Pr), recall (Re), and accuracy (Acc) of the different machine learning models,

when trained and tested in the entire dataset (Apache + F-Droid + GitHub). Values range between [0,1]

(Aniche et al., 2020). Table reconstructed from the original paper.

software projects supported by the Apache Software Foundation (2023) and the F-
droid (2023) ecosystem is a repository of FOSS Android mobile apps. Lastly, the GitHub
ecosystem is composed of the first 10,000 most starred Java projects hosted on GitHub
(removing duplicates of the Apache and F-Droid cohorts that are also hosted on GitHub as
mirrors).

Number of projects Total number of commits
Apache 844 1,471,203
F-Droid 1,233 814,418
GitHub 9,072 6,517,597
Total 11,149 8,803,218

Table 4.2: Number of projects and commits per ecosystem and in total.

By utilizing RefactoringMiner (Tsantalis, Ketkar, et al., 2020), the current state-of-
the-art tool for refactoring identification in Java, on only the production files they were
able to identify 20 different refactoring classes with varying number of occurrences, e.g.
the dataset contains 327, 493 instances of the Extract Method refactoring class but only 654
of Move and Rename Class. Table 4.3 presents an overview of each refactoring instance
obtained by different cohort and refactoring type.

At the same time that the refactoring instances were identified, non-refactoring in-
stances and metrics for both of them were also obtained.

4.3 | MACHINE LEARNING BASED CODE REFACTORING PREDICTION

41

All Apache GitHub F-Droid
Class-level refactorings

Extract Class 41,191 6,658 31,729 2,804
Extract Interface 10,495 2,363 7,775 357
Extract Subclass 6,436 1,302 4,929 205
Extract Superclass 26,814 5,228 20,027 1,559
Move And Rename Class 654 87 545 22
Move Class 49,815 16,413 32,259 1,143
Rename Class 3,991 557 3,287 147
Method-level refactorings
Extract And Move Method 9,723 1,816 7,273 634
Extract Method 327,493 61,280 243,011 23,202
Inline Method 53,827 10,027 40,087 3,713
Move Method 163,078 26,592 124,411 12,075
Pull Up Method 155,076 32,646 116,953 5,477
Push Down Method 62,630 12,933 47,767 1,930
Rename Method 427,935 65,667 340,304 21,964
Variable-level refactorings

Extract Variable 6,709 1,587 4,744 378
Inline Variable 30,894 5,616 23,126 2,152
Parameterize Variable 22,537 4,640 16,542 1,355
Rename Parameter 33,6751 61,246 261,186 14,319
Rename Variable 324,955 57,086 250,076 17,793
Replace Variable w/ Attr. 25,894 3,674 18,224 3,996
Non-refactoring instances

Class-level 10,692 1,189 8,043 1,460
Method-level 293,467 38,708 236,060 18,699
Variable-level 702,494 136,010 47,811 518,673

Table 4.3: The number of instances of refactoring and non-refactoring classes used in Aniche et al.

(2020). Table reconstructed from the original paper, our emphasis.

43

Chapter 5

(Re)Building a Dataset

Originally, this project was conceived as a partnership with the TUDelft where we
would build upon their previous work by training our models on the dataset they build in
Aniche et al. (2020) and that we previously presented in Section 4.3.1. However once we
received the full dataset we realized that it was not suitable for our needs. Since they did not
capture any information regarding which lines were extracted in the function extractions
nor any other more minute details about where and how exactly the refactorings occurred,
there was no way to train a supervised machine learning model. The dataset could still
be used for unsupervised approaches and other less granular tasks, however we decided
to collect our own dataset to be able to accomplish our original objectives. We briefly
explored the possibility of leveraging the existing dataset to obtain the extracted lines but
we reached the conclusion that scrapping them from scratch would be simpler and faster.
This heavily impacted our proposed timeline since there was a need to create an usable
dataset from scratch. Utilizing a list of over 40.000 Java repositories provided by SERG -
TUDelft, and made available at Refactoring.ai (2021), we created a data pipeline with a
tool called RefactoringMiner (Tsantalis, Ketkar, et al., 2020) at its core. In this chapter
we will detail how we constructed this dataset and the reasoning behind some of our
decisions, this new objective of creating a dataset instead of using a pre-built one led us to
a series of new decisions. The first of them being our decision to maintain our objective of
working with function extractions. If we reference Table 4.3 one might notice that the most
common refactoring was of the Rename Method type. Although they were not originally
published with this sole task or problem formulation in mind, code2vec, code2seq and
code transformer achieve an impressive performance in this task (Alon, Zilberstein,
et al., 2018; Alon, Brody, et al., 2018; Zügner et al., 2021). In contrast, the second most
common refactoring was of the type Extract Method and to the best of our knowledge
there is no model for automating this refactoring. Tackling this new and interesting task
was the biggest motivator behind our choice of working with function extractions instead
of other less common refactorings.

This leads us to the next decision in our data building task, what tool should we use to
obtain function extractions?

44

5 | (RE)BUILDING A DATASET

5.1 RefactoringMiner

To create a model for automatic function extraction our dataset needs to have examples
of function extractions with the lines extracted being appropriately tagged. Doing so by
hand would be error prone and time consuming, so tools crafted to “mine” git repositories
for such refactorings are commonly used.

One of such tools is RefactoringMiner 2.0. It can detect 40 different refactoring types
through rules based on statement mapping information and AST node replacements. In its
1.0 version (Tsantalis,Mansouri, et al., 2018) it attained a state of the art performance and,
maybe more importantly, introduced a refactoring oracle of validated refactoring instances,
providing a new rigorous benchmark for the field. RefactoringMiner 2.0 expanded this
oracle into 7,226 true positives in total, for 40 different refactoring types detected by one
(minimum) up to six (maximum) different tools. These refactorings were mined from 536
commits from 185 open-source Java projects hosted on GitHub. Another important feature
present in RefactoringMiner 2.0 is the ability to detect nested refactorings:

A refactoring operation that takes place in code resulting from the application

of another refactoring operation is a nested refactoring. For example, the

renaming or extraction of local variables inside the body of an extracted

method are nested refactoring operations[...].

Tsantalis, Ketkar, et al. (2020)

Fig. 5.1 shows a real case of nested extract method refactorings.

Figure 5.1: Nested extract method refactorings mined from github.com/spring-projects/ spring-boot/
commit/becce. There are 3 levels of nested extracted methods with each extracted method calling the

subsequent one. Image from Tsantalis, Ketkar, et al. (2020).

This tool is the same one utilized to create the dataset described in Section 4.3.1, so
when we were choosing a refactoring detection tool it was naturally considered. But with
the release of new tools and versions we were interested if RefactoringMiner could still
be considered the state of the art in all Java refactoring detections so we explored the
possibility of using other tools such as RefDiff (Silva et al., 2020) and RefDetect (Moghadam
et al., 2021). However, we found that specifically for function extractions RefactoringMiner

github.com/spring-projects/spring-boot/commit/becce
github.com/spring-projects/spring-boot/commit/becce

5.1 | REFACTORINGMINER

45

still outperforms its competitors, as can be seen in Tables 5.2 and 5.1.

Table 5.1: Precision and recall per refactoring type. Values calculated based on a refactoring oracle of

validated instances containing 7,226 true positives in total, for 40 different refactoring types detected

by one (minimum) up to six (maximum) different tools. Table and caption from Tsantalis, Ketkar,

et al. (2020), our highlight.

Table 5.2: Precision, recall and f-score results per method-level refactoring type. Values calculated

based on a refactoring oracle of validated instances from Tsantalis, Ketkar, et al. (2020), containing

7,226 true positives in total for 40 different refactoring types detected by one (minimum) up to six

(maximum) different tools. Table from Moghadam et al. (2021), our highlight.

With this, we also decided to utilize RefactoringMiner to build our dataset, but if in
future work we expand on the refactorings we deal with or the targeted programming
languages, RefDetect, a multilingual refactoring detection tool, may be a better pick:

RefDetect clearly outperformed R(efactoring)Miner in method and class

based refactorings, achieving f-scores respectively of 87.7% vs. 81.7% for

method-level refactorings and 92.1% vs. 86.9% for class-level refactorings.

Moghadam et al. (2021)

46

5 | (RE)BUILDING A DATASET

5.2 Pipeline

The overall structure of our pipeline is quite simple, as can be seen in Fig. 5.2. We start
by cloning over 40.000 repositories of Java projects, these projects come from a list curated
by the SERG group of the TUDelft university and available at Refactoring.ai (2021).
With the repositories cloned we can start mining refactorings with RefactoringMiner.
RefactoringMiner outputs one json file per mined repository, so our next step is to process
all these json files and filter only the relevant features into our SQLite database. For this
project we are only interested in function extraction refactorings, so we drop every other
refactoring found. Then we check if the function extraction found covers a continuous span
of lines, and if they are not continuous if maybe only blank lines or comments separate the
continuous chunks; Fig. 5.3 illustrates this process with a Discrete Finite Automata. Lastly,
we exclude any refactorings that happen at the same function in a same git commit. We
do so to simplify our model and training process, we believe keeping these refactorings
would negatively impact our performance and raise an issue of non determinism since
multiple predictions could be found to be correct.

Figure 5.2: A short visualization of the steps present in our data pipeline.

The entirety of the code utilized in the construction of this dataset is available in
Appendix B.

5.3 Exploration of the dataset

Even though we started with a list of 49,982 Java repositories, we only managed to
obtain function extractions from 19,936 of them. Many factors played a part in this, such as

5.3 | EXPLORATION OF THE DATASET

47

Figure 5.3: A Discrete Finite Automata that detects if any of the lines analyzed is not a comment or

blank line. For the sake of simplicity and illustration, let us consider that symbols such as “//”, “/*”,

“*/”, “\n” and “\s” are single characters. Building a real DFA that breaks each of these “signals” into

their constituent characters would increase the complexity of the system and loose its meaning as

an illustration to clarify our data processing. Following convention, Σ represents the alphabet of this

DFA, i.e. the set of all valid characters in the java language. State S represents blank lines, the C state

represents comments and L long comments, lastly the F state represents a failure, once something that

does not constitute a comment, long comment or blank line is detected the process gets stuck in the F
state unable to ever reach the accepting state S.

problematic encodings when processing the files, repositories not found due to renaming or
migration, RefactoringMiner limitations, only refactorings other than function extraction
found or even repositories that weren’t purely written in Java (some were mostly written
in Kotlin with just a few files in Java, for example).

However, even with all these issues we obtained 523,667 different instances of function
extraction, an increase of over 60% in comparison with the dataset we originally intended
to use from Aniche et al. (2020). Interestingly, over 80% of the function extractions found
are continuous, given the diverse range of Java projects used in this analysis we believe this
should be a good approximation to the real proportion of continuous function extractions in
relation to non-continuous. This further solidified our decision to focus on only continuous
extractions for our model, since they are not only simpler to train but also arguably a more
useful and actionable suggestion for developers.

49

Chapter 6

Models

In this chapter we will be exploring the different components of the models we devel-
oped and the motivation behind our decisions. Lastly the hyper-parameters choice and
the optimization of the different models trained will also be briefly explored.

6.1 Embeddings

To create our function extraction models we need to be able to calculate an embedding
for code functions. However, none of the previously explored code embeddings in Chapter 4
are granular enough for our needs, they expect whole functions while we need to be able to
at the very least create embeddings per line of code. Exploring the literature, in particular
Allamanis, Earl T Barr, et al. (2018) which presents a table of over 30 code embedding
generators for a diverse range of tasks, we were not able to find a fitting embedding. One
of our original objectives was to develop our own code embedding for this task, however
due to time constraints caused by the dataset delay this was no longer feasible.

So, once again leveraging the idea of naturalness of programming languages that
we introduced in Chapter 1 we opted to utilize embeddings for natural languages — in
particular english — to represent our code.

There were two main types of embeddings tested in this project: the more traditional
GloVe based embeddings and the transformer based embeddings that we had the oppor-
tunity of exploring during the semester abroad at TUDelft thanks to the FAPESP BEPE
program. Both embeddings are sentence embeddings, i.e. each line of code will have its
own vector embedding. Here we will give a short overview of how these embeddings work
and how they were built.

Transformer based

Following our initial goal of exploring the use of transformers for refactoring tasks we
arrived at two main approaches: utilizing transformers in our embedding and/or as our
model. However, due to our time constraints imposed by our need to create our dataset
from scratch, we focused on utilizing transformer based embeddings as the first step since

50

6 | MODELS

adapting the dataset to be compatible with training a transformer model would be an
extremely manual and time consuming process. Another relevant point is the maxim of
“garbage in garbage out”, that essentially states that if your data is bad your results will
also be bad. We concluded that it would be more beneficial to first make sure that we have
at least one reasonable embedding for our code before we start investing such a huge
amount of our scarce time in adopting this new architecture. Unfortunately, by the time
we finished exploring the use of transformer based embeddings, there was no feasible
way of training a transformer model in the remaining time of the BEPE project. Therefore,
in this section we will be exploring the use of transformer based embeddings and their
performance compared to more traditional embeddings.

Among the many embedding options available for our analysis we chose to utilize
the transformer based models of the SBERT project (Reimers and Gurevych, 2019). Until
recently this project was referred to as the state of the art in many tasks involving sentence
embeddings, furthermore it possesses embeddings trained through a diverse number of
transformer based architectures with most of them being more computationally efficient
when compared to other models such as BERT (Devlin et al., 2018) or RoBERTa (Liu et al.,
2019).

In Fig. 6.1, also available as an interactive table at Nils Reimers, Iryna Gurevych
(2022b), we can see the main 13 models of interest available in the SBERT project and
some metrics regarding them. Due to our time constraints we were forced to select only a
few of these embeddings for our experiment, since they may take an entire day to train a
single epoch. From this list we discarded all models solely trained on Q&A datasets since
they are too distinct from our real objective and other models that were too derivative of
another model already present in the list such as all-MiniLM-L6-v2 (half the layers of all-

MiniLM-L12-v2), distiluse-base-multilingual-cased-v2 (trained in an additional 35 languages
in comparison to distiluse-base-multilingual-cased-v1 but since most of our Java files are
believed to be written in english we don’t believe this would bring us significant gains
in performance) and paraphrase-multilingual-mpnet-base-v2 (a slow and more inefficient
version of all-mpnet-base-v2 that was trained in a smaller and more specific dataset).

After short-listing the available embeddings we were left with 7 embeddings to test
out:

• all-mpnet-base-v2 (Song et al., 2020) (Model Card)

• all-distilroberta-v1 (Liu et al., 2019; Sanh et al., 2019) (Model Card)

• all-MiniLM-L12-v2 (W. Wang et al., 2020) (Model Card)

• paraphrase-albert-small-v2 (Lan et al., 2019) (Model Card)

• paraphrase-multilingual-MiniLM-L12-v2 (W. Wang et al., 2020) (Model Card)

• paraphrase-MiniLM-L3-v2 (W. Wang et al., 2020) (Model Card)

• distiluse-base-multilingual-cased-v1 (Sanh et al., 2019) (Model Card)

https://huggingface.co/sentence-transformers/all-mpnet-base-v2
https://huggingface.co/sentence-transformers/all-distilroberta-v1
https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2
https://huggingface.co/sentence-transformers/paraphrase-albert-small-v2
https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L3-v2
https://huggingface.co/sentence-transformers/distiluse-base-multilingual-cased-v1

6.2 | ARCHITECTURE

51

Figure 6.1: Table of 13 embedding models available in the SBERT project and some metrics regarding

them. (Nils Reimers, Iryna Gurevych, 2022b)

GloVe

GloVe (Pennington et al., 2014) is a more traditional model that combines the advan-
tages of two model families, local context windows and global matrix factorization. The
model produces a vector space with meaningful sub-structure by leveraging statistical
information in an efficient manner when training only on the nonzero elements in a
word-word co-occurrence matrix, rather than on individual context windows in a large
corpus or on the entire sparse matrix.

At the time this method was published it attained state-of-the-art performance on the
word analogy task, and outperformed other methods (such as word2vec) on several word
similarity tasks.

By utilizing GloVe we also have an interesting counter-point to our transformer based
embedding, we are essentially comparing an older and well established model that is still
relevant even in this ever evolving field (the same cannot be said about bag-of-words for
example) to what is essentially the more recent and generally successful approach.

By taking the average of the word embeddings of a sentence it is possible to generate
an embedding for that sentence. This is what was done by Nils Reimers, Iryna Gurevych
(2022a) in order to generate two GloVe sentence embedding models, one trained with 6
billion parameters and the other with 840 billion parameters.

6.2 Architecture

An important issue to be addressed here comes from a fundamental difference between
natural languages and programming languages: even if a sentence in english has a gram-

52

6 | MODELS

matical mistake it is capable of transmitting meaning, of carrying a semantic value. The
same cannot be said about a grammatically incorrect piece of code. For this reason we
are not able to blindly apply seq2seq NLP models on source code, we need to ensure that
the code transformations we generate will not grammatically break the inputted code. To
ensure the grammatical correctness of our refactoring we briefly explored the possibility
of using language servers to intermediate our operations in Section 2.2.3.

Given this, our models simply needs to predict the line number of the start and end of
the extracted linespan.

Figure 6.2: Our model will receive the source code of a function definition that needs to be refactored

and will output the line span that needs to be extracted. In this particular example the lines 5 to 7 of

the printAccount() function need to be extracted.

Figure 6.3: Once the line span of the extraction has been determined, the language server is contacted

and it will be responsible for realizing the extraction and returning the refactored code. In this example

the lines 5 to 7 are refactored by the language server and become the function extracted().

In short, the model will be fed with the lines of a function one by one and it will
generate as an output 2 pointers, one indicating the first line to be extracted and a second
pointer indicating the last line to be extracted. Together these 2 pointers will define the
line span to be refactored. Fig 6.2 presents a general illustration of our models, working as
a black box, and Fig 6.3 illustrates the refactoring done through a language server with
the output of the black box model from Fig. 6.2.

Simple RNN

Our first architecture is extremely simple; it consists of a LSTM layer that receives the
embedded inputs and then passes on its hidden state to two different feedforward linear
layers which will predict the start and end lines of the function extraction. As for the loss
we chose the L1 distance function.

6.3 | METRICS

53

Pointer Network (Ptr-Net)

Pointer Networks (Vinyals et al., 2015) are a flexible encoder decoder model that utilizes
attention to select one of the inputs as an output at each decoding step. As mentioned in
Section 3.5, this model has been used in a variety of tasks that involve re-ordering and/or
selecting elements of the inputted data. This is particularly useful in our case since our
objective can be formulated as selecting which lines of an inputted function that need to
be extracted, in particular at which line the extraction begins and ends.

Our implementation of the pointer network utilizes a 1 layer LSTM as the encoder
and another 1 layer LSTM as the decoder with the additive attention mechanism from
Bahdanau et al. (2014a) tying them together. Lastly, to convert from the attention scores
into the predicted lines we apply the softargmax function in order to apply the argmax
function in a differentiable manner.

softargmax(𝑥) = ∑

𝑖

𝑒
𝛽𝑥𝑖

∑
𝑗
𝑒
𝛽𝑥𝑗

𝑖

𝛽 essentially controls how well this function approximate the argmax function, however
a high enough 𝛽 will approximate it so well that back-propagation will start to fail. In
Appendix C we present a brief exploration of the impact of 𝛽 on the model capability to
learn. Luckily, our experiments did not detect any significant increase in performance by
increasing 𝛽 over the value of 10, which is well below the point were back-propagation
starts to fail.

We opted to use this function instead of the more commonly utilized softmax function
in order to use the L1 loss instead of negative log likelihood loss. Since we are not predicting
simple classes as our output, the error from missing the start of a refactoring by one line
should be smaller than that of missing by 10 lines and this isn’t possible with negative log
likelihood. In Fig. 6.4 we can see an illustration of how this model works, particularly how
the attention mechanism “chooses” the start and end of a function extraction.

6.3 Metrics

When dealing with a well researched topic one is able to build upon previous knowledge
and conventions in the area. However, to the best of our knowledge, there is no previous
research that aims to automate the task of function extractions so we are faced with
the challenge of defining how to best evaluate the quality of a predicted refactoring. In
Section 3.7 we explored a few common seq2seq metrics of NLP and their limitations,
however none of the metrics presented are applicable for this particular use case, neither
are the other metrics we could find in the literature. They may not be applicable to our
particular use case but we may still take insights from them, such as BLEU’s limitations
that do not take into account if a sentence actually makes any semantic or grammatical
sense.

So without being able to resort to a readily available NLP metric we turned ourselves
to typical code quality metrics, such as the ones presented in Section 2.2.1. Albeit these

54

6 | MODELS

Figure 6.4: An illustration of how the model works, with green blocks representing the encoder and

the purple ones the decoder. Each 𝑥𝑖 value fed to the encoder represents the embedding of a single line

from the function being analyzed. The decoder receives as an input the hidden state from the last step

(if available) and all the encoder hidden states, so to predict the last line to be extracted the decoder will

receive all the hidden states from the encoder and the hidden state from last step that represents the

first line to be extracted. Lastly, the attention mechanism is represented by the arrows pointing into the

different encoder hidden states/inputs, the arrows may be seen as the final output of the model after

the attention scores go through the softargmax function. So in this particular example being illustrated,

the function is composed of 7 lines and it should go through an extraction of lines 1 through 4.

metrics can be useful in certain occasions we found them to be lacking for our needs. They
can present a score of the code quality but by their very nature they are subjective since
they try to give a concrete score to an abstract and subjective concept like code quality.
Simply deciding which metric to use can bring vastly different results since not all of
them are tailored towards the same issues and they do not operate on the same scales,
comparing the pure score of different code metrics is akin to comparing apples to oranges.
Apart from that, our model performs only function extractions, the only code operation
would be a transfer of code lines from an existing function to a newly created one, this
would not bring a big impact in most code quality metrics. We could directly measure the
size of functions instead of relying in more complicated code metrics but this would pose
a new problem on itself, fewer lines of code does not necessarily equate to a better piece
of code nor does a bigger extraction imply a better refactoring than a shorter one. Besides,
these metrics are not very actionable, they do not always present a clear path on how to
improve the refactoring to maximize them.

Another early idea was to leverage unit tests to verify code integrity, however it is not
guaranteed that all functions being refactored have unit tests nor that we would be able to
easily identify them in a programmatic manner. Also, unless the linespan breaks a loop or
some other flow control structure (which could be easily detected) the extraction would
necessarily be a code preserving transformation so code integrity is not a concern.

Lastly we turned to classic ML metrics, such as accuracy. We decided to utilize the

6.4 | HYPER-PARAMETER CHOICE

55

binary accuracy, which is essentially equivalent to jaccard score, to measure how close the
overlap between the predicted linespan and the ground truth is.

The jaccard coefficient is a measure of similarity between sets, defined as (Jaccard,
1912):

𝐽 (𝐴, 𝐵) =

|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|

An illustration of the jaccard index can be seen in Fig. 6.5.

Figure 6.5: A visual representation of the jaccard index. Image from Adrian Rosebrock (2016).

Lastly, if an IDE plugin were to be implemented there would be the possibility of
utilizing telemetry to evaluate user response to suggested refactorings. This would be a
way to grasp the quality of suggested refactorings and to better understand when and why
our model fails, however this is left for future work since such an endeavor was unfeasible
given the time constraints of this project.

6.4 Hyper-parameter choice

Many scientific fields currently suffer from a reproducibility crisis (Baker, 2016) and
machine learning is no exception (Heil et al., 2021; Hutson, 2018; Gibney, 2022; Kapoor
and Narayanan, 2022). So in the interest of transparency and reproducibility we in-
clude this section to explicitate how we arrived at our models hyper-parameters, i.e. the
motivation and constraints behind our choices and the techniques used.

Originally we intended to optimize every single one of our models to the best of our
ability in order to obtain the best performance possible, given our choices of architecture
and embeddings. However due to time constraints this was simply not feasible, for in-
stance training one epoch of some of the models that used transformer-based embeddings
could take more than a whole day of training. That’s why we had to compromise and
decide exactly what was feasible to optimize and what would bring the greatest chance of
improving the performance of our models.

56

6 | MODELS

We ended up deciding to optimize our pointer network models that utilized the GloVe
based embeddings and when applicable to extrapolate our findings into the other models.
More specifically we decided to optimize the following hyperparameters:

• Learning rate

• Weight decay

• Embedding

• Batch size

• Hidden size

To perform this optimization we split our dataset into training, validation and test and
then we utilized the Optuna library from Optuna team (2022) to optimize our model by
training many trial runs on the training set and testing their performance in the validation
set.

Figure 6.6: Optimization history plot of the 136 Optuna trials.

After a warm-up period this library is capable of pruning any given run that is not
achieving a satisfactory performance, by doing this it is capable of exploring the parameter
space in a more time efficient manner by only completing trial runs that have the possibility
of achieving a better performance.

There are many different samplers available in this toolbox, which essentially help
us explore the parameter space by sampling different parameter values, and between
all of them we chose to utilize the TPE (Tree-structured Parzen Estimator) (Bergstra
et al., 2011). An important point of note about this sampler is that it assumes that the
different hyperparameters are independent so it determines the value of a single parameter
without considering any relationship between parameters. If this assumption is false the
optimization process may take more time or in some cases even miss some opportunities

6.4 | HYPER-PARAMETER CHOICE

57

for further improvement when such hyperparameters have a strong relationship. We
hypothesize that the hyperparameters that we chose are independent or at the least have
a weak impact on one another but since we have never tested this hypothesis it is possible
that our model could be further optimized by simply picking a more robust sampler. Due
to our time constraints we were unable to further explore this point.

Fig. 6.6 presents the plot with the optimization history of our study and it’s 196 trial
runs and Fig. 6.7 presents the loss and accuracy plots of these trials.

Figure 6.7: Loss and accuracy plots of the 196 Optuna trial runs.

In Fig. 6.8 and Fig. 6.9 we are able to see the slice plots of our parameters. Originally we
were going to explore all parameters at the same time in a single study, but while we were
still learning how to use Optuna it became clear that the GloVe embedding trained with
840 billion parameters could achieve a better performance over it’s counterpart trained
with only 6 billion parameters so we decided to exclude the embedding choice from the
search space.

58

6 | MODELS

Figure 6.8: Slice plot of 43 Optuna trial runs, since the GloVe embedding trained with 840 billion

parameters could achieve a better performance over it’s counterpart trained with only 6 billion

parameters we decided to exclude the embedding choice from the search space from our subsequent

runs, as can be seen in Fig. 6.9.

Figure 6.9: Slice plot of the optimization results found through Optuna. From the 136 trials, 95 were

pruned before completion and 39 were completed. The best trial achieved a loss value of 6.446797407

with the following hyperparameter values: batch size= 32, hidden size= 32, learning rate= 0.00231519996,

weight decay= 0.0001155681898

59

Chapter 7

Results and experiments

In this chapter we will describe the experiments we performed to compare the different
building blocks for our model that we described in Chapter 6. To better understand the
options available to build the best model possible, we begin by analyzing the proposed
embeddings, first we compare the transformer based embeddings and then add GloVe to
the analysis. With the “best” embedding selected we compare both proposed architec-
tures and then lastly we train our definitive model based on the results of the previous
experiments.

7.1 Comparing transformer based embeddings

To compare the transformer embeddings, we trained 7 pointer networks to compute
the loss and accuracy graphs for these models in the validation and training datasets. In
general, after the fourth epoch of training we began to see signs of overfitting in all of our
models so here we only present training results up to the fourth epoch. In Fig 7.2 we can
see the L1 loss plots of training and validation. In both cases “paraphrase-albert-small-v2”
performed significantly worse than other models at all times. The best performing model
isn’t as clean cut as the worst but “distiluse-base-multilingual-cased-v1” — or dbmc1 as
we will call it from now on — was able to attain the lowest validation loss at the third
epoch.

Alongside the L1 loss we recorded the jaccard binary accuracy score of the predictions
at each epoch, which can be seen in Fig. 7.1 as the train and validation accuracy. Once
again “paraphrase-albert-small-v2” was the worst performing model and dbmc1 was the
best performing model.

Due to the unexpectedly great performance of dbmc1 we decided to test “distiluse-
base-multilingual-cased-v2” to validate if we were correct in our initial assumption that
including another 35 languages in the training process wouldn’t bring us much benefit. In
Fig. 7.3 and Fig. 7.4 we can see the results of their comparison. Against our expectations,
“distiluse-base-multilingual-cased-v2” was capable of obtaining a lower validation loss than
its predecessor at the third epoch, however its accuracy was consistently lower in both
training and validation. Since accuracy should better translate into real world performance

60

7 | RESULTS AND EXPERIMENTS

Embedding Acc train Acc val Loss train Loss val
distiluse-base-multilingual-cased-v1 0.7296 0.7263 5.485 6.423
all-mpnet-base-v2 0.7215 0.7172 5.596 6.407
all-distilroberta-v1 0.724 0.7178 5.554 6.442
all-MiniLM-L12-v2 0.7234 0.7121 5.549 6.494
paraphrase-albert-small-v2 0.709 0.6961 5.747 6.559
paraphrase-multilingual-MiniLM-L12-v2 0.7242 0.7102 5.546 6.496
paraphrase-MiniLM-L3-v2 0.7245 0.714 5.51 6.449
distiluse-base-multilingual-cased-v2 0.7271 0.7144 5.528 6.437

Table 7.1: Accuracy and Loss of the final epoch for the eight different transformer based embeddings.

Amongst the eight models “distiluse-base-multilingual-cased-v2” achieved the lowest loss validation

score at the third epoch with a loss value of 6.334 followed by dbmc1 with a loss validation of 6.374

also at the third epoch.

Figure 7.1: Train and validation binary accuracy score of the seven transformer based models.

Figure 7.2: L1 training and validation loss of the seven transformer based models.

we will be keeping dbmc1 as the best performing model overall with a validation accuracy
of 72.63%. Table 7.1 compiles the loss and accuracy results of these models.

7.2 | ADDING GLOVE TO THE COMPARISON

61

Figure 7.3: Comparison of accuracy in validation and train sets between models dbmc1 and “distiluse-

base-multilingual-cased-v2”.

Figure 7.4: Comparison of loss in validation and train sets between models dbmc1 and “distiluse-base-

multilingual-cased-v2”.

7.2 Adding GloVe to the comparison

In Fig. 7.6 and Fig. 7.5 we compare the pointer network models trained with transformer
based embeddings with their GloVe counterpart, which was the best performing model
we obtained through Optuna in section 6.4. In the interest of clarity we decided to omit
some of the transformer models from the graphs to avoid clutter, we plot only the best
performing transformer-based model and the two other that are adjacent in performance
to the GloVe-based model. The graph makes it clear that the GloVe-based model performed
consistently worse than all the transformer-based models, except for model “paraphrase-
albert-small-v2” which was the worst performing one. Table 7.2 compiles the final accuracy
and loss of all of the presented transformer models and the GloVe model.

62

7 | RESULTS AND EXPERIMENTS

Embedding Acc train Acc val Loss train Loss val
distiluse-base-multilingual-cased-v1 0.7296 0.7263 5.485 6.423
all-mpnet-base-v2 0.7215 0.7172 5.596 6.407
all-distilroberta-v1 0.724 0.7178 5.554 6.442
all-MiniLM-L12-v2 0.7234 0.7121 5.549 6.494
paraphrase-albert-small-v2 0.709 0.6961 5.747 6.559
paraphrase-multilingual-MiniLM-L12-v2 0.7242 0.7102 5.546 6.496
paraphrase-MiniLM-L3-v2 0.7245 0.714 5.51 6.449
distiluse-base-multilingual-cased-v2 0.7271 0.7144 5.528 6.437
glove.840B.300d 0.7123 0.7046 5.64 6.447

Table 7.2: Accuracy and Loss of the final epoch for the eight different transformer based embeddings

and the GloVe based embedding.

Figure 7.5: Plots comparing the training and validation accuracy of four pointer networks trained

with a GloVe embedding and 3 other transformer based embedding.

Figure 7.6: Plots comparing the training and validation loss of four pointer networks trained with a

GloVe embedding and 3 other transformer based embedding.

7.3 Comparing architectures

In Fig. 7.7 and Fig. 7.8 we compare our two architectures, the pointer network and our
so-called “simple RNN”. We trained both models with the best performing embedding we
found in previous sections, the dbmc1 embedding, and found that the Ptr-Net outperformed
the simple RNN in all 4 metrics as can be seen in Table 7.3.

7.4 | BEST MODEL

63

Figure 7.7: Plots comparing the training and validation accuracy of our two architectures trained

with the dbmc1 embedding.

Figure 7.8: Plots comparing the training and validation loss of our two architectures trained with the

dbmc1 embedding.

Architecture Acc train Acc val Loss train Loss val
Ptr-Net 0.7296 0.7263 5.485 6.423
Simple RNN 0.7105 0.7115 5.827 6.589

Table 7.3: Table of the final (fourth epoch) loss and accuracy in the training and validation sets for

our two different architectures.

7.4 Best Model

Taking into account all our previous findings we can conclude that the pointer network
architecture combined, with the dbmc1 embedding and the hyperparameters found by
Optuna form our best performing model, Fig. 7.9 illustrates succinctly this final model. In
Fig. 7.10 and Fig. 7.11 we present the accuracy and loss plots for this model in the training
and testing datasets and in Table 7.4 we compile its final accuracy and loss scores.

As an alternative, dbmc1 could be swapped by the GloVe embedding in the interest of
speeding up inference time. Albeit when doing a single prediction the inference time of
dbmc1 is greater than that of GloVe it is not as significant of an increase as when training
the models where the process takes multiple days for each transformer based embedding
over the few hours of GloVe based models. This decision should be taken case by case, for

64

7 | RESULTS AND EXPERIMENTS

Figure 7.9: Illustration of our final and best performing model. As previously mentioned, the hyper-

parameters were chosen based on our Optuna experiments.

Architecture Acc train Acc test Loss train Loss test
Ptr-Net and distiluse-base-
multilingual-cased-v1
(Best Model)

0.7274 0.7275 5.529 5.768

Table 7.4: Accuracy and loss of the final epoch in the training and test sets for the final model, trained

with the Ptr-Net architecture and the dbmc1 embedding.

Figure 7.10: Training and testing plots of accuracy of our best performing model in validation. Final

accuracy value: 0.7275.

some applications keeping the inference time as small as possible may be more important
than the 0.01% performance gain of using dbmc1.

Whatever choice is made in a hypothetical deployment aside, we believe this model
achieved the objectives we set. In conjunction with a language server it can easily execute

7.4 | BEST MODEL

65

Figure 7.11: Training and testing plots of loss of our best performing model in validation. Final loss

value: 5.768.

function extraction refactorings and in conjunction with a refactoring opportunity detector
these 3 components together could become a IDE plugin that automates the entirety of
the function extraction process.

7.4.1 Publication of results

The student is preparing to submit these results as a scientific paper to a peer reviewed
journal.

67

Chapter 8

Conclusion

In conclusion we believe we were able to achieve both of the goals set at the beginning
of this project, our results show that is indeed possible for a deep learning model to predict
fine-grained refactorings and we were successful in creating a number of models for
automated function extraction refactoring.

Our final model consisted of the pointer network architecture the “distiluse-base-
multilingual-cased-v1” embedding and the hyperparameter values obtained with Optuna,
with this model we achieved a test loss and a test accuracy of 5.768 and 0.7275 respectively.
We believe this results once again corroborate the hypothesis of naturality and show the
soundness of our approach.

However, the models we trained were always hovering an accuracy of around 70%.
Changing architectures, embeddings and hyperparameter values had a clear effect in the
performance of the models but always in an incremental fashion with small gains to
performance.

We hypothesize that to achieve significant gains in performance we would need to
explore embeddings that also leverage the source code itself (by, for example, utilizing
abstract syntax trees) instead of solely relying on natural language models. This is a
hypothesis that we are interested in pursuing in future work.

We were also able to develop a new Java code refactoring dataset for function extrac-
tions that was over 60% bigger than the biggest dataset of its type published at the moment
of elaboration of this report.

Through this we also hope to show that deep learning models are capable of predicting
fine-grained refactorings, that they are able to dictate how exactly a snippet of code should
be altered to obtain a successful refactoring.

69

Appendix A

AST Printer

The code utilized to print the AST present in Fig. 4.2 can be seen in Listing 2.

1 import com.github.javaparser.*;
2 import com.github.javaparser.ast.*;
3 import com.github.javaparser.printer.*;
4

5 import java.io.*;
6 import java.util.*;
7

8 public class ast_printer {
9

10 public static void main(String[] args) throws Exception {
11 String file_path = args[0];
12 CompilationUnit cu = StaticJavaParser.parse(new File(file_path));
13 DotPrinter printer = new DotPrinter(true);
14 try (FileWriter fileWriter = new FileWriter(file_path + "_ast.dot");
15 PrintWriter printWriter = new PrintWriter(fileWriter)) {
16 printWriter.print(printer.output(cu));
17 }
18 }
19 }

Listing 2: Code utilized to print Java ASTs using the JavaParser package.

71

Appendix B

Data Scrapping Source Code

In the interest of reproducibility and a higher scientific standard, we provide the source
code utilized to generate the dataset described in this work and most of its results.

1 #!/bin/bash
2 filename='repos.txt'
3

4 while read line; do
5 # reading each line
6

7 git clone $line
8

9 done < $filename
10

11 echo 'finished'

Listing 3: Small bash script used to clone all the repositories listed in ’repos.txt’.

72

APPENDIX B

1 #!/bin/bash
2 search_dir="cloned_repos"
3

4 function mine_repo(){
5 repo=$1
6 repo=$(basename "$repo")
7 if [[! -f "./jsons/$repo.json"]]; then
8 echo "mining $repo"
9 ./RefactoringMiner-2.1.0/bin/RefactoringMiner -a

./repos_clonados/$repo -json ./jsons/$repo.json↪

10 fi
11 }
12 export -f mine_repo
13

14

15 echo "Starting mining"
16 ls $search_dir | parallel mine_repo
17 echo "Everything mined - the end - acabou - finito"

Listing 4: Small bash script used to parallelize the mining of refactorings in all the repositories

previously cloned.

1 data_path="./jsons/"
2 import json
3 import subprocess
4 import glob
5 import pandas as pd
6

7 from tqdm.asyncio import tqdm
8 from asyncio import run
9 from sqlalchemy.orm import sessionmaker, declarative_base

10 from sqlalchemy.ext.asyncio import create_async_engine, AsyncSession
11 from sqlalchemy import Column, Integer, Text, String, Boolean
12

13 import logging
14

15 logger = logging.getLogger("processing_jsons")
16 logger.setLevel(logging.DEBUG)
17 f_handler = logging.FileHandler('processing_jsons.log')
18 f_handler.setFormatter(logging.Formatter('%(name)s - %(levelname)s -

%(message)s'))↪

19 logger.addHandler(f_handler)
20

21 def process_json(json_name):
22

23 results = []

B | DATA SCRAPPING SOURCE CODE

73

24 with open(f"{data_path}{json_name}", "r") as read_file:
25 try:
26 json_payload = json.load(read_file)
27 except json.JSONDecodeError as e:
28 logger.debug(f"Broken json - {json_name}")
29 return
30

31 if not json_payload["commits"]: #if is empty
32 logger.debug(f"Empty json - {json_name}")
33 return
34

35 repository = json_payload["commits"][0]['repository']
36

37 for commit in json_payload["commits"]:
38 for refactoring in commit["refactorings"]:
39 if refactoring["type"] == "Extract Method":
40 refactored_function =

refactoring["leftSideLocations"][0]↪

41 start = refactored_function['startLine']
42 end = refactored_function['endLine']
43

44 extracted_lines = get_lines(
45 refactoring["leftSideLocations"])
46

47 #if for some reason the extracted lines are not
being encompassed by the function,↪

48 #skip this refactoring
49 if not all([start <= i <= end for i in

extracted_lines]):↪

50 logger.debug(f"extracted lines are not being
encompassed by the function -
{json_name}")

↪

↪

51 continue
52

53 #if the body returns the empty string, lets skip
this refactoring↪

54 #because we had a decoding error
55 if not (refactored_function_body :=

get_function_body(↪

56 start, end, repository, commit['sha1'],
57 refactored_function['filePath'])):
58 continue
59

60 continuous_refac = check_continuous(
61 start, extracted_lines,

refactored_function_body)↪

74

APPENDIX B

62

63 results.append({
64 'repository':
65 repository,
66 'sha1':
67 commit['sha1'],
68 'url':
69 commit['url'],
70 #transform into string to insert it in the

sqlite db↪

71 "extracted_lines":
72 str(extracted_lines),
73 "shifted_extracted_lines":
74 str([i - start for i in extracted_lines]),
75 'refactoring_description':
76 refactoring['description'],
77 'file_path':
78 refactored_function['filePath'],
79 'func_startline':
80 start,
81 'func_endline':
82 end,
83 "shifted_extracted_lines_start":
84 extracted_lines[0]-start,
85 "shifted_extracted_lines_end":
86 extracted_lines[-1]-start,
87 'refactored_function_body':
88 refactored_function_body,
89 'continuous':
90 continuous_refac
91 })
92 return results
93

94

95 def get_lines(elements):
96 """
97 gets the specific line numbers of the lines extracted in the

refactoring and return them as a sorted list.↪

98 """
99 lines = set()

100 for element in elements[1:]:
101 if element['startLine'] == element['endLine']:
102 lines.add(element['startLine'])
103 else:
104 lines.update(range(element['startLine'],

element['endLine'] + 1))↪

B | DATA SCRAPPING SOURCE CODE

75

105

106 lines_list = list(lines)
107 lines_list.sort()
108 return lines_list
109

110

111 def get_function_body(start,
112 end,
113 repo,
114 commit_hash,
115 file_path,
116 path_gits="/disk1/barzilay/repos_clonados"):
117 """
118 use git to get the file and then extract only the function body
119 """
120 repo = repo.split("/")[-1]
121 cmd = subprocess.run(["git", "show",

f"{commit_hash}^:{file_path}"],↪

122 cwd=f"{path_gits}/{repo}",
123 capture_output=True)
124

125 try:
126 file_contents = cmd.stdout.decode("utf-8")
127 except UnicodeDecodeError as e:
128 logger.error(f"Decoding error at repo: {repo}", exc_info=True)
129 return ""
130 # java parser counts lines starting from 1 but python lists start

at 0↪

131 body = "\n".join(file_contents.split("\n")[start - 1:end])
132 return body
133

134

135 def check_continuous(start, lines, body):
136 """
137 check if the function extraction was continuous or if it is

composed of multiple line spans. Comments and blank lines are
treated as part of refactorings, i.e. if the lines of code
being extracted are continuous with the exception of comments
in the middle of said lines, the refactoring will be
considered continuous.

↪

↪

↪

↪

↪

138 """
139 interval = {i for i in range(lines[0], lines[-1] + 1)}
140 difference = interval - set(lines)
141 to_check = [i - start for i in difference]
142 to_check.sort()
143

76

APPENDIX B

144 body_lines = body.split("\n")
145 long_comment = False
146

147 for index in to_check:
148 line = body_lines[index].strip()
149

150 #if whitespace or comment
151 if not line or line[0:2] == "//":
152 continue
153

154 elif line[0:2] == "/*" or long_comment == True:
155 long_comment = True
156 #check if the long comment ended in this line and if there

is any code after it↪

157 end_long_comment = line.find("*/")
158 if end_long_comment != -1:
159 if end_long_comment + 2 != len(line): return False
160 long_comment = False
161 else:
162 return False
163

164 return True
165

166

167

168 Base = declarative_base()
169

170

171 class Refactoring(Base):
172 """
173 Refactoring class used for the ORM between our code base in SQLite

and our python objects obtained after processing the JSON
files.

↪

↪

174

175 This class and its methods were developed with Rafael S. Durelli.
176 """
177 __tablename__ = 'refactoring'
178 id = Column(Integer, primary_key=True)
179 repository = Column(String(1000))
180 sha1 = Column(String(43))
181 url = Column(String(1000))
182 extracted_lines = Column(String(10000))
183 shifted_extracted_lines= Column(String(10000))
184 refactoring_description = Column(String(3000))
185 file_path = Column(String(1000))
186 func_startline = Column(Integer)

B | DATA SCRAPPING SOURCE CODE

77

187 func_endline = Column(Integer)
188 continuous = Column(Boolean)
189 refactored_function_body = Column(Text())
190 shifted_extracted_lines_start= Column(Integer)
191 shifted_extracted_lines_end= Column(Integer)
192

193

194

195

196 def __repr__(self):
197 return f'<Refactoring> {self.id} {self.repository} {self.sha1}

{self.url} {self.extracted_lines}
{self.refactoring_description} {self.file_path}
{self.func_startline} {self.func_endline}
{self.refactored_function_body} '

↪

↪

↪

↪

198

199 @staticmethod
200 async def insert_refactoring_list(session, refactoring_list):
201 """
202 static method used to add a list of Refactoring python objects

into the SQLite database in an asynchronous fashion.↪

203 """
204 async with session() as s:
205 s.add_all([
206 Refactoring(**refactoring_to_insert)
207 for refactoring_to_insert in refactoring_list
208])
209 await s.commit()
210

211

212 db_url = 'sqlite+aiosqlite:///refactorings.db'
213 engine = create_async_engine(db_url)
214

215 session = sessionmaker(engine,
216 expire_on_commit=False,
217 future=True,
218 class_=AsyncSession)
219

220

221 async def create_database():
222 async with engine.begin() as conn:
223 await conn.run_sync(Base.metadata.drop_all)
224 await conn.run_sync(Base.metadata.create_all)
225

226

227

78

APPENDIX B

228 run(create_database())
229

230 jsons_list= glob.glob("*.json", root_dir=data_path)
231

232 with tqdm(jsons_list) as pbar:
233 async for json_file in pbar:
234 mined_refactorings=process_json(json_file)
235 if mined_refactorings:
236 await Refactoring.insert_refactoring_list(session,

mined_refactorings)↪

237

Listing 5: Python script used to process the JSON files into an actionable SQLite database of function

extraction refactorings and their metadata.

79

Appendix C

𝛽 impact on softargmax

Normally this discussion would be a part of the main thesis, however we feel that it
lacks in rigor to convince skeptic readers but simply discarding it would be omission on
our part. We wished to replicate this experiment in a matter to have statistical significance
to demonstrate our findings but due to time constraints and the somewhat out-of-scope
aspect of this experiment, training thousands of models for this was not feasible. So here
we present a simple snapshot of what trying to overfit a model over a reduced dataset
while varying the value of 𝛽 would look like, Fig. C.1 presents the training loss plot.

While we were performing this experiment we realized that there was too much
variability between runs with a same 𝛽 value to be able to precisely describe its impact.
However, some behaviors were found to be consistent: no model with a 𝛽 value of 1000 or
above was able to overfit the data, i.e. they were incapable of learning with an essentially
fixed loss across epochs. Higher values of 𝛽 lead to a better approximation of the argmax
function but when 𝛽 is to big it also starts approximating its discontinuity leading to a
broken gradient flow and making the model ability to learn to come to a halt. To better
understand this phenomenon and 𝛽 impact on learning more experiments to analyze the
spread of the loss function would be necessary.

80

APPENDIX C

Figure C.1: Training loss plot over the training epochs of a pointer network model for varying 𝛽

values. Training was done over only 10 data points in order o explore the ability of the model to overfit,

the initial rational was that if a model cannot even overfit a minuscule dataset it is not suitable for

training with the entire dataset or that it may even be be broken.

81

References

[Abid et al. 2020] Chaima Abid, Vahid Alizadeh, Marouane Kessentini, Thiago do
Nascimento Ferreira, and DannyDig. 30 Years of Software Refactoring Research:A

Systematic Literature Review. 2020. arXiv: 2007.02194 [cs.SE] (cit. on p. 2).

[Adrian Rosebrock 2016] Adrian Rosebrock. A visual equation for Intersection over

Union (Jaccard Index). pyimagesearch.com/2016/11/07/intersection-over-union-
iou-for-object-detection/. Accessed: 2023-05-13. 2016 (cit. on pp. xiii, 55).

[Aho et al. 2007] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman.
Compilers Principles, Techniques, & Tools Second Edition. 2007 (cit. on p. 34).

[Alighieri 130-] Dante Alighieri. La divina commedia. 130- (cit. on p. 7).

[Allamanis, Earl T Barr, et al. 2018] Miltiadis Allamanis, Earl T Barr, Premkumar
Devanbu, and Charles Sutton. “A survey of machine learning for big code and
naturalness”. ACM Computing Surveys (CSUR) 51.4 (2018), pp. 1–37 (cit. on pp. 6,
7, 49).

[Allamanis, Earl T. Barr, et al. 2014] Miltiadis Allamanis, Earl T. Barr, Christian
Bird, and Charles Sutton. “Learning natural coding conventions”. In: Proceedings

of the 22nd ACM SIGSOFT International Symposium on Foundations of Software

Engineering. ACM, 2014. doi: 10.1145/2635868.2635883. url: https://doi.org/10.
1145%5C%2F2635868.2635883 (cit. on p. 6).

[Alon, Brody, et al. 2018] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav.
“Code2seq: generating sequences from structured representations of code”. arXiv

preprint arXiv:1808.01400 (2018) (cit. on pp. 8, 37, 43).

[Alon, Zilberstein, et al. 2018] Uri Alon, Meital Zilberstein, Omer Levy, and Eran
Yahav. code2vec: Learning Distributed Representations of Code. 2018. arXiv: 1803.
09473 [cs.LG] (cit. on pp. xi, 8, 37, 43).

[Amazon 2023] Amazon. Amazon CodeWhisperer. aws.amazon.com/codewhisperer/.
Accessed: 2023-05-13. 2023 (cit. on p. 38).

https://arxiv.org/abs/2007.02194
pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/
https://doi.org/10.1145/2635868.2635883
https://doi.org/10.1145%5C%2F2635868.2635883
https://doi.org/10.1145%5C%2F2635868.2635883
https://arxiv.org/abs/1803.09473
https://arxiv.org/abs/1803.09473
aws.amazon.com/codewhisperer/

82

REFERENCES

[Aniche et al. 2020] Mauricio Aniche, Erick Maziero, Rafael Durelli, and Vinicius
Durelli. “The effectiveness of supervised machine learning algorithms in predict-
ing software refactoring”. arXiv preprint arXiv:2001.03338 (2020) (cit. on pp. xv, 33,
39–41, 43, 47).

[Apache Software Foundation 2023] Apache Software Foundation. Apache

Projects by language. projects .apache.org/projects .html?language. Accessed:
2023-05-13. 2023 (cit. on p. 40).

[Appel 2004] Andrew W. Appel. Modern Compiler Implementation in Java Second Edi-

tion. 2004 (cit. on p. 34).

[Bahdanau et al. 2014a] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.
Neural Machine Translation by Jointly Learning to Align and Translate. 2014. doi:
10.48550/ARXIV.1409.0473. url: https://arxiv.org/abs/1409.0473 (cit. on p. 53).

[Bahdanau et al. 2014b] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio.
“Neural machine translation by jointly learning to align and translate”. arXiv

preprint arXiv:1409.0473 (2014) (cit. on pp. xi, 25).

[Baker 2016] Monya Baker. “1,500 scientists lift the lid on reproducibility”. Nature

533.7604 (2016) (cit. on p. 55).

[Ben Olmstead 1998] Ben Olmstead. Malbolge. esolangs .org /wiki /Malbolge. Ac-
cessed: 2023-05-13. 1998 (cit. on p. 7).

[Bergstra et al. 2011] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs
Kégl. “Algorithms for hyper-parameter optimization”. Advances in neural infor-

mation processing systems 24 (2011) (cit. on p. 56).

[Bird et al. 2011] Christian Bird, Nachiappan Nagappan, Brendan Murphy, Harald
Gall, and Premkumar Devanbu. “Don’t touch my code! examining the effects
of ownership on software quality”. In: Proceedings of the 19th ACM SIGSOFT

symposium and the 13th European conference on Foundations of software engineering.
2011, pp. 4–14 (cit. on p. 39).

[Bulbapedia 2005] Bulbapedia. Bulbapedia, the community-driven Pokemon encyclo-

pedia. bulbapedia.bulbagarden.net/wiki/Main_Page. Accessed: 2023-01-15. 2005
(cit. on pp. x, 20).

[Callison-Burch et al. 2006] Chris Callison-Burch, Miles Osborne, and Philipp
Koehn. “Re-evaluating the role of Bleu in machine translation research”. In:
11th Conference of the European Chapter of the Association for Computational

Linguistics. Trento, Italy: Association for Computational Linguistics, Apr. 2006.
url: https://www.aclweb.org/anthology/E06-1032 (cit. on p. 31).

projects.apache.org/projects.html?language
https://doi.org/10.48550/ARXIV.1409.0473
https://arxiv.org/abs/1409.0473
esolangs.org/wiki/Malbolge
bulbapedia.bulbagarden.net/wiki/Main_Page
https://www.aclweb.org/anthology/E06-1032

REFERENCES

83

[Chidamber and Kemerer 1994] Shyam R Chidamber and Chris F Kemerer. “A met-
rics suite for object oriented design”. IEEE Transactions on software engineering

20.6 (1994), pp. 476–493 (cit. on p. 14).

[Cho et al. 2014] Kyunghyun Cho et al. “Learning phrase representations using rnn
encoder-decoder for statistical machine translation”. arXiv preprint arXiv:1406.1078

(2014) (cit. on pp. 5, 24).

[Christopher Manning 2020] Christopher Manning. Lecture 2: Word Vectors,Word

Senses, and Classifier Review - CS224N/Ling284. web.stanford.edu/class/archive/
cs/cs224n/cs224n.1204/slides/cs224n-2020-lecture02-wordvecs2.pdf. Accessed:
2023-01-15. 2020 (cit. on pp. x, 23).

[Christopher Olah 2015] Christopher Olah. Understanding LSTM Networks. colah.
github.io/posts/2015-08-Understanding-LSTMs/. Accessed: 2023-05-26. 2015
(cit. on pp. x, 23).

[Coleman et al. 1994] Don Coleman, Dan Ash, Bruce Lowther, and Paul Oman. “Us-
ing metrics to evaluate software system maintainability”. Computer 27.8 (1994),
pp. 44–49 (cit. on p. 15).

[Croft 2008] William Croft. “Evolutionary linguistics”. Annual review of anthropology

37 (2008), pp. 219–234 (cit. on p. 4).

[Daniel et al. 2007] Brett Daniel, Danny Dig, Kely Garcia, and Darko Marinov. “Au-
tomated testing of refactoring engines”. In: Proceedings of the the 6th Joint Meeting

of the European Software Engineering Conference and the ACM SIGSOFT Symposium

on The Foundations of Software Engineering. ESEC-FSE ’07. Dubrovnik, Croatia:
Association for Computing Machinery, 2007, pp. 185–194. isbn: 9781595938114.
doi: 10.1145/1287624.1287651. url: https://doi.org/10.1145/1287624.1287651
(cit. on p. 13).

[Devlin et al. 2018] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. “Bert: pre-training of deep bidirectional transformers for language
understanding”. arXiv preprint arXiv:1810.04805 (2018) (cit. on pp. 5, 29, 50).

[Eclipse Foundation 2021] Eclipse Foundation. Eclipse JDT Language Server. https:
//github.com/eclipse/eclipse.jdt.ls. Accessed: 2021-07-05. 2021 (cit. on p. 16).

[Esolang wiki 2023a] Esolang wiki. brainfuck. esolangs .org/wiki /Brainfuck. Ac-
cessed: 2023-05-13. 2023 (cit. on pp. ix, 8).

[Esolang wiki 2023b] Esolangwiki. Malbolge. esolangs.org/wiki/Malbolge. Accessed:
2023-05-13. 2023 (cit. on pp. ix, 8).

[F-droid 2023] F-droid. F-droid Website. f-droid.org/en/. Accessed: 2023-05-13. 2023
(cit. on p. 40).

web.stanford.edu/class/archive/cs/cs224n/cs224n.1204/slides/cs224n-2020-lecture02-wordvecs2.pdf
web.stanford.edu/class/archive/cs/cs224n/cs224n.1204/slides/cs224n-2020-lecture02-wordvecs2.pdf
colah.github.io/posts/2015-08-Understanding-LSTMs/
colah.github.io/posts/2015-08-Understanding-LSTMs/
https://doi.org/10.1145/1287624.1287651
https://doi.org/10.1145/1287624.1287651
 https://github.com/eclipse/eclipse.jdt.ls
 https://github.com/eclipse/eclipse.jdt.ls
esolangs.org/wiki/Brainfuck
esolangs.org/wiki/Malbolge
f-droid.org/en/

84

REFERENCES

[Firth 1957] John Firth. “A synopsis of linguistic theory, 1930-1955”. Studies in lin-

guistic analysis (1957), pp. 10–32 (cit. on p. 21).

[Fowler 1999] Martin Fowler. Refactoring: Improving the Design of Existing Code.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1999. isbn:
0-201-48567-2 (cit. on pp. ix, 2, 12–14).

[Galassi et al. 2021] Andrea Galassi, Marco Lippi, and Paolo Torroni. “Attention in
natural language processing”. IEEE Transactions on Neural Networks and Learning

Systems 32.10 (Oct. 2021), pp. 4291–4308. doi: 10.1109/tnnls.2020.3019893. url:
https://doi.org/10.1109%5C%2Ftnnls.2020.3019893 (cit. on pp. xi, 26).

[Gibney 2022] Elizabeth Gibney. “Could machine learning fuel a reproducibility crisis
in science?” Nature 608.7922 (2022), pp. 250–251. doi: 10.1038/d41586-022-02035-w.
url: https://doi.org/10.1038/d41586-022-02035-w (cit. on p. 55).

[GitHub 2023] GitHub. Introducing GitHub Copilot X. github.com/features/preview/
copilot-x. Accessed: 2023-05-13. 2023 (cit. on p. 38).

[GitHub Next 2023] GitHub Next. Code Brushes. githubnext.com/projects/code-
brushes/. Accessed: 2023-05-13. 2023 (cit. on p. 38).

[gojp 2023] gojp. Go Report Card. https://github.com/gojp/goreportcard. Accessed:
2023-05-03. 2023 (cit. on p. 14).

[Golubev et al. 2021] Yaroslav Golubev, Zarina Kurbatova, Eman Abdullah AlOmar,
Timofey Bryksin, and Mohamed Wiem Mkaouer. “One thousand and one stories:
a large-scale survey of software refactoring”. In: Proceedings of the 29th ACM

Joint Meeting on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering. 2021, pp. 1303–1313 (cit. on pp. ix, 2).

[Grover and Leskovec 2016] Aditya Grover and Jure Leskovec. node2vec: Scalable

Feature Learning for Networks. 2016. arXiv: 1607.00653 [cs.SI] (cit. on p. 21).

[Heil et al. 2021] Benjamin JHeil et al. “Reproducibility standards for machine learning
in the life sciences”. Nature Methods 18.10 (2021), pp. 1132–1135 (cit. on p. 55).

[Hellendoorn et al. 2015] Vincent J. Hellendoorn, Premkumar T. Devanbu, and
Alberto Bacchelli. “Will they like this? evaluating code contributions with lan-
guage models”. In: 2015 IEEE/ACM 12th Working Conference on Mining Software

Repositories. 2015, pp. 157–167. doi: 10.1109/MSR.2015.22 (cit. on p. 6).

[Hindle et al. 2016] Abram Hindle, Earl T Barr, Mark Gabel, Zhendong Su, and
Premkumar Devanbu. “On the naturalness of software”. Communications of the

ACM 59.5 (2016), pp. 122–131 (cit. on p. 7).

https://doi.org/10.1109/tnnls.2020.3019893
https://doi.org/10.1109%5C%2Ftnnls.2020.3019893
https://doi.org/10.1038/d41586-022-02035-w
https://doi.org/10.1038/d41586-022-02035-w
github.com/features/preview/copilot-x
github.com/features/preview/copilot-x
githubnext.com/projects/code-brushes/
githubnext.com/projects/code-brushes/
 https://github.com/gojp/goreportcard
https://arxiv.org/abs/1607.00653
https://doi.org/10.1109/MSR.2015.22

REFERENCES

85

[Hochreiter and Schmidhuber 1997] Sepp Hochreiter and Jürgen Schmidhuber.
“Long short-term memory”. Neural computation 9.8 (1997), pp. 1735–1780 (cit. on
p. 22).

[C. F. Hockett and C. D. Hockett 1960] Charles F Hockett and Charles D Hockett.
“The origin of speech”. Scientific American 203.3 (1960), pp. 88–97 (cit. on p. 3).

[Hofstadter 1979] Douglas R Hofstadter. “Gödel, escher, bach: an eternal golden
braid,” (1979) (cit. on p. 5).

[Hope C. Dawson 2016] Michael Phelan Hope C. Dawson. Language Files Materials

for an Introduction to Language and Linguistics. The Ohio State University Press,
2016 (cit. on pp. 3, 4).

[Hutson 2018] Matthew Hutson. Artificial intelligence faces reproducibility crisis. 2018
(cit. on p. 55).

[Izre’el 2003] Shlomo Izre’el. “The emergence of spoken israeli hebrew”. Corpus Lin-

guistics and Modern Hebrew: Towards the Compilation of the Corpus of Spoken Israeli

Hebrew (2003), pp. 85–104 (cit. on p. 4).

[Jaccard 1912] Paul Jaccard. “The distribution of the flora in the alpine zone. 1”. New

phytologist 11.2 (1912), pp. 37–50 (cit. on p. 55).

[Jay Alammar 2019] Jay Alammar. The Illustrated Word2vec. jalammar. github . io /
illustrated-word2vec/. Accessed: 2023-01-15. 2019 (cit. on pp. x, 22).

[Juan Orozco Villalobos 2020] Juan Orozco Villalobos. One-hot encoding with

Pokemon. www.brainstobytes.com/one-hot-encoding-with-pokemon/. Accessed:
2023-01-15. 2020 (cit. on pp. x, 20).

[Kapoor and Narayanan 2022] Sayash Kapoor and Arvind Narayanan. Leakage and

the Reproducibility Crisis in ML-based Science. 2022. arXiv: 2207.07048 [cs.LG]
(cit. on p. 55).

[Kim et al. 2014] Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan.
“An empirical study of refactoringchallenges and benefits at microsoft”. IEEE

Transactions on Software Engineering 40.7 (2014), pp. 633–649 (cit. on pp. 2, 13).

[Knuth 1984] Donald Ervin Knuth. “Literate programming”. The computer journal

27.2 (1984), pp. 97–111 (cit. on p. 6).

[Lan et al. 2019] Zhenzhong Lan et al. ALBERT: A Lite BERT for Self-supervised Learning

of Language Representations. 2019. doi: 10.48550/ARXIV.1909.11942. url: https:
//arxiv.org/abs/1909.11942 (cit. on p. 50).

[Latent Space 2023] Latent Space. Training a SOTA Code LLM in 1 week and Quanti-

fying the Vibes - with Reza Shabani of Replit. www.latent.space/p/reza-shabani.
Accessed: 2023-05-26. 2023 (cit. on p. 7).

jalammar.github.io/illustrated-word2vec/
jalammar.github.io/illustrated-word2vec/
www.brainstobytes.com/one-hot-encoding-with-pokemon/
https://arxiv.org/abs/2207.07048
https://doi.org/10.48550/ARXIV.1909.11942
https://arxiv.org/abs/1909.11942
https://arxiv.org/abs/1909.11942
www.latent.space/p/reza-shabani

86

REFERENCES

[Le and Mikolov 2014] Quoc V. Le and Tomás Mikolov. “Distributed representations
of sentences and documents”. CoRR abs/1405.4053 (2014). arXiv: 1405.4053. url:
http://arxiv.org/abs/1405.4053 (cit. on p. 21).

[Liu et al. 2019] Yinhan Liu et al. “Roberta: a robustly optimized bert pretraining ap-
proach”. arXiv preprint arXiv:1907.11692 (2019) (cit. on p. 50).

[Luong et al. 2015] Minh-Thang Luong, Hieu Pham, and Christopher D. Manning.
Effective Approaches to Attention-based Neural Machine Translation. 2015. arXiv:
1508.04025 [cs.CL] (cit. on pp. xi, 27).

[Martin Fowler 2023a] Martin Fowler. Catalog of Refactorings. https://refactoring.
com/catalog/. Accessed: 2023-01-15. 2023 (cit. on p. 13).

[Martin Fowler 2023b] Martin Fowler. Catalog: Change Function Declaration.
refactoring.com/catalog/changeFunctionDeclaration.html. Accessed: 2023-05-13.
2023 (cit. on pp. xi, 33).

[Maurice 1977] H Halstead Maurice. Elements of software science (operating and pro-

gramming systems series). 1977 (cit. on p. 15).

[McCabe 1976] Thomas J McCabe. “A complexity measure”. IEEE Transactions on

software Engineering 4 (1976), pp. 308–320 (cit. on p. 15).

[mensweardog 2023] mensweardog. Menswear Dog - Bodhi, The Most Stylish Dog

in the World. www.instagram.com/mensweardog/. Accessed: 2023-05-26. 2023
(cit. on pp. xi, 26).

[Merriam-Webster, Inc. 2023] Merriam-Webster, Inc. How many words are there

in English? www.merriam-webster.com/help/faq-how-many-english-words.
Accessed: 2023-01-15. 2023 (cit. on p. 19).

[Microsoft 2016] Microsoft. Language Server Protocol Specification. https://microsoft.
github.io/language-server-protocol/specifications/specification-current/. Ac-
cessed: 2021-07-05. 2016 (cit. on p. 16).

[Microsoft 2021] Microsoft. Language Server Extension Guide. https : / / code .
visualstudio.com/api/language-extensions/language-server-extension-guide.
Accessed: 2021-07-05. 2021 (cit. on pp. ix, 16).

[Mikolov et al. 2013] Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean.
“Efficient estimation of word representations in vector space”. arXiv preprint

arXiv:1301.3781 (2013) (cit. on p. 21).

[Moghadam et al. 2021] Iman Hemati Moghadam, Mel Ó Cinnéide, Faezeh Zarepour,
and Mohamad Aref Jahanmir. “Refdetect: a multi-language refactoring detection
tool based on string alignment”. IEEE Access 9 (2021), pp. 86698–86727 (cit. on
pp. xv, 44, 45).

https://arxiv.org/abs/1405.4053
http://arxiv.org/abs/1405.4053
https://arxiv.org/abs/1508.04025
https://refactoring.com/catalog/
https://refactoring.com/catalog/
refactoring.com/catalog/changeFunctionDeclaration.html
www.instagram.com/mensweardog/
www.merriam-webster.com/help/faq-how-many-english-words
 https://microsoft.github.io/language-server-protocol/specifications/specification-current/
 https://microsoft.github.io/language-server-protocol/specifications/specification-current/
 https://code.visualstudio.com/api/language-extensions/language-server-extension-guide
 https://code.visualstudio.com/api/language-extensions/language-server-extension-guide

REFERENCES

87

[Nils Reimers, Iryna Gurevych 2022a] Nils Reimers, Iryna Gurevych. SBERT pack-

age. https://www.sbert.net/. Accessed: 2022-11-22. 2022 (cit. on p. 51).

[Nils Reimers, Iryna Gurevych 2022b] Nils Reimers, Iryna Gurevych. SBERT pre-

trained models. https://www.sbert.net/docs/pretrained_models.html. Accessed:
2022-11-22. 2022 (cit. on pp. xii, 50, 51).

[Opdyke 1992] William F Opdyke. Refactoring object-oriented frameworks. University
of Illinois at Urbana-Champaign, 1992 (cit. on p. 11).

[OpenAI 2023] OpenAI. GPT-4 Technical Report. 2023. arXiv: 2303.08774 [cs.CL] (cit.
on p. 6).

[Optuna team 2022] Optuna team. Optuna website. https://optuna.org/. Accessed:
2022-11-22. 2022 (cit. on p. 56).

[Palomba et al. 2013] F. Palomba et al. “Detecting bad smells in source code using
change history information”. In: 2013 28th IEEE/ACM International Conference on

Automated Software Engineering (ASE). 2013, pp. 268–278. doi: 10.1109/ASE.2013.
6693086 (cit. on p. 13).

[Papineni et al. 2002] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu.
“Bleu: a method for automatic evaluation of machine translation”. In: Proceedings

of the 40th annual meeting on association for computational linguistics. Association
for Computational Linguistics. 2002, pp. 311–318 (cit. on p. 31).

[Pat Hawks 2018] Pat Hawks. An example parse tree. en.wikipedia .org/wiki/File :
Parse_Tree_1.svg. Accessed: 2023-05-26. 2018 (cit. on pp. ix, 5).

[Pennington et al. 2014] Jeffrey Pennington, Richard Socher, and Christopher D
Manning. “Glove: global vectors for word representation”. In: Proceedings of the

2014 conference on empirical methods in natural language processing (EMNLP). 2014,
pp. 1532–1543 (cit. on pp. 22, 51).

[Peters et al. 2018] Matthew E Peters et al. “Deep contextualized word representa-
tions”. arXiv preprint arXiv:1802.05365 (2018) (cit. on p. 5).

[Rajpurkar, Jia, et al. 2018] Pranav Rajpurkar, Robin Jia, and Percy Liang. Know

What You Don’t Know: Unanswerable Questions for SQuAD. 2018. arXiv: 1806.03822
[cs.CL] (cit. on p. 31).

[Rajpurkar, Zhang, et al. 2016] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev,
and Percy Liang. “Squad: 100,000+ questions for machine comprehension of text”.
arXiv preprint arXiv:1606.05250 (2016) (cit. on pp. xi, 28, 29, 31).

[Randall Munroe 2006] Randall Munroe. Computational Linguists. xkcd.com/114/.
Accessed: 2023-05-26. 2006.

https://www.sbert.net/
https://www.sbert.net/docs/pretrained_models.html
https://arxiv.org/abs/2303.08774
https://optuna.org/
https://doi.org/10.1109/ASE.2013.6693086
https://doi.org/10.1109/ASE.2013.6693086
en.wikipedia.org/wiki/File:Parse_Tree_1.svg
en.wikipedia.org/wiki/File:Parse_Tree_1.svg
https://arxiv.org/abs/1806.03822
https://arxiv.org/abs/1806.03822
xkcd.com/114/

88

REFERENCES

[Refactoring.ai 2021] Refactoring.ai. Data-Collection - Collect refactorings with met-

rics from java source code. github.com/refactoring-ai/Data-Collection. Accessed:
2023-05-26. 2021 (cit. on pp. 43, 46).

[Reimers and Gurevych 2019] Nils Reimers and Iryna Gurevych. Sentence-BERT: Sen-

tence Embeddings using Siamese BERT-Networks. 2019. doi: 10.48550/ARXIV.1908.
10084. url: https://arxiv.org/abs/1908.10084 (cit. on pp. 21, 50).

[Replit 2023] Replit. Meet Ghostwriter, your partner in code. replit.com/site/ghostwriter.
Accessed: 2023-05-19. 2023 (cit. on p. 38).

[Rogers et al. 2020] Anna Rogers, Olga Kovaleva, and Anna Rumshisky. “A primer in
BERTology: what we know about how BERT works”. Transactions of the Association

for Computational Linguistics 8 (2020), pp. 842–866. doi: 10.1162/tacl_a_00349.
url: https://aclanthology.org/2020.tacl-1.54 (cit. on p. 29).

[Sanh et al. 2019] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf.
DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. 2019. doi:
10.48550/ARXIV.1910.01108. url: https://arxiv.org/abs/1910.01108 (cit. on p. 50).

[Silva et al. 2020] Danilo Silva, Joao Paulo da Silva, Gustavo Santos, Ricardo Terra,
and Marco Tulio Valente. “Refdiff 2.0: a multi-language refactoring detection
tool”. IEEE Transactions on Software Engineering 47.12 (2020), pp. 2786–2802 (cit. on
p. 44).

[Sipser 2013] Michael Sipser. Introduction to the Theory of Computation. Cengage Learn-
ing, 2013 (cit. on p. 5).

[Song et al. 2020] Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu. MPNet:

Masked and Permuted Pre-training for Language Understanding. 2020. doi: 10 .
48550/ARXIV.2004.09297. url: https://arxiv.org/abs/2004.09297 (cit. on p. 50).

[Spolsky 1995] Bernard Spolsky. “Conditions for language revitalization: a com parison
of the cases of hebrew and maori”. Current Issues in Language & Society 2.3 (1995),
pp. 177–201 (cit. on p. 4).

[Sutskever et al. 2014] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. “Sequence to
sequence learning with neural networks”. In: Advances in neural information

processing systems. 2014, pp. 3104–3112 (cit. on p. 24).

[TabNine 2020] TabNine. TabNine HomePage. https://tabnine.com/. Accessed: 2020-
01-15. 2020 (cit. on p. 38).

[Tensor Flow 2020] Tensor Flow. Word representation tutorial. https : / / www .
tensorflow.org/tutorials/representation/word2vec. Accessed: 2020-01-15. 2020
(cit. on pp. x, 22).

github.com/refactoring-ai/Data-Collection
https://doi.org/10.48550/ARXIV.1908.10084
https://doi.org/10.48550/ARXIV.1908.10084
https://arxiv.org/abs/1908.10084
replit.com/site/ghostwriter
https://doi.org/10.1162/tacl_a_00349
https://aclanthology.org/2020.tacl-1.54
https://doi.org/10.48550/ARXIV.1910.01108
https://arxiv.org/abs/1910.01108
https://doi.org/10.48550/ARXIV.2004.09297
https://doi.org/10.48550/ARXIV.2004.09297
https://arxiv.org/abs/2004.09297
 https://tabnine.com/
 https://www.tensorflow.org/tutorials/representation/word2vec
 https://www.tensorflow.org/tutorials/representation/word2vec

REFERENCES

89

[The Charity Development Group 1996] The Charity Development Group. The

CHARITY Home Page. pll.cpsc.ucalgary.ca/charity1/www/home.html. Accessed:
2023-05-13. 1996 (cit. on p. 5).

[Thomas Schoch 2006a] Thomas Schoch. Piet - a language where the programs are

works of modern art. www.dangermouse.net/esoteric/piet.html. Accessed: 2023-
05-13. 2006 (cit. on p. 7).

[Thomas Schoch 2006b] Thomas Schoch. Piet-program printing "Piet", codel size 6.
retas.de/thomas/computer/programs/useless/piet/Piet/index.html. Accessed:
2023-05-13. 2006 (cit. on pp. ix, 8).

[Touvron et al. 2023] Hugo Touvron et al. LLaMA: Open and Efficient Foundation

Language Models. 2023. arXiv: 2302.13971 [cs.CL] (cit. on p. 6).

[Tsantalis, Chaikalis, et al. 2008] Nikolaos Tsantalis, T. Chaikalis, and A. Chatzi-
georgiou. “Jdeodorant: identification and removal of type-checking bad smells”.
In: 2008 12th European Conference on Software Maintenance and Reengineering.
2008, pp. 329–331. doi: 10.1109/CSMR.2008.4493342 (cit. on p. 13).

[Tsantalis, Ketkar, et al. 2020] Nikolaos Tsantalis, Ameya Ketkar, and Danny Dig.
“Refactoringminer 2.0”. IEEE Transactions on Software Engineering 48.3 (2020),
pp. 930–950 (cit. on pp. xii, xv, 40, 43–45).

[Tsantalis, Mansouri, et al. 2018] Nikolaos Tsantalis, Matin Mansouri, Laleh
Eshkevari, Davood Mazinanian, and Danny Dig. “Accurate and efficient
refactoring detection in commit history”. In: 2018 IEEE/ACM 40th International

Conference on Software Engineering (ICSE). IEEE. 2018, pp. 483–494 (cit. on p. 44).

[Tufano et al. 2015] M. Tufano et al. “When and why your code starts to smell bad”.
In: 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering.
Vol. 1. 2015, pp. 403–414. doi: 10.1109/ICSE.2015.59 (cit. on p. 13).

[Unger et al. 2018] Mohse Unger, Bracha Shapira, Lior Rokach, and Amit Livne.
“Inferring contextual preferences using deep encoder-decoder learners”. New

Review of Hypermedia and Multimedia (Sept. 2018). doi: 10.1080/13614568.2018.
1524934 (cit. on pp. x, 25).

[Urban Müller 1993] Urban Müller. brainfuck. esolangs.org/wiki/Brainfuck. Ac-
cessed: 2023-05-13. 1993 (cit. on p. 7).

[Vaswani et al. 2017] Ashish Vaswani et al. “Attention is all you need”. In: Advances

in neural information processing systems. 2017, pp. 5998–6008 (cit. on pp. xi, 5, 28,
30).

[Vinyals et al. 2015] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. “Pointer
networks”. arXiv preprint arXiv:1506.03134 (2015) (cit. on pp. xi, 28, 53).

pll.cpsc.ucalgary.ca/charity1/www/home.html
www.dangermouse.net/esoteric/piet.html
retas.de/thomas/computer/programs/useless/piet/Piet/index.html
https://arxiv.org/abs/2302.13971
https://doi.org/10.1109/CSMR.2008.4493342
https://doi.org/10.1109/ICSE.2015.59
https://doi.org/10.1080/13614568.2018.1524934
https://doi.org/10.1080/13614568.2018.1524934
esolangs.org/wiki/Brainfuck

90

REFERENCES

[S. Wang and Jiang 2016] Shuohang Wang and Jing Jiang. “Machine comprehension
using match-lstm and answer pointer”. arXiv preprint arXiv:1608.07905 (2016)
(cit. on p. 28).

[W. Wang et al. 2020] Wenhui Wang et al. MiniLM: Deep Self-Attention Distillation for

Task-Agnostic Compression of Pre-Trained Transformers. 2020. doi: 10.48550/ARXIV.
2002.10957. url: https://arxiv.org/abs/2002.10957 (cit. on p. 50).

[Weng 2018] Lilian Weng. “Attention? attention!” lilianweng.github.io (2018). url:
https://lilianweng.github.io/posts/2018-06-24-attention/ (cit. on pp. x, 24).

[Wildenhain 2017] Tom Wildenhain. “On the turing completeness of ms power-
point”. In: The Official Proceedings of the Eleventh Annual Intercalary Workshop

about Symposium on Robot Dance Party in Celebration of Harry Q Bovik’s. Vol. 2.
2017, pp. 102–106 (cit. on p. 5).

[Zügner et al. 2021] Daniel Zügner, Tobias Kirschstein, Michele Catasta, Jure
Leskovec, and Stephan Günnemann. Language-Agnostic Representation Learning

of Source Code from Structure and Context. 2021. arXiv: 2103.11318 [cs.LG] (cit. on
pp. xii, 37, 38, 43).

https://doi.org/10.48550/ARXIV.2002.10957
https://doi.org/10.48550/ARXIV.2002.10957
https://arxiv.org/abs/2002.10957
https://lilianweng.github.io/posts/2018-06-24-attention/
https://arxiv.org/abs/2103.11318

	Introduction
	Goals
	Organization

	An imaginary function extraction plugin
	Code Refactoring
	The Plugin
	Detecting Refactoring Opportunities
	Refactoring Prediction
	Performing Refactorings

	NLP Techniques
	Embeddings
	Word2vec

	LSTM
	Encoder-Decoder
	Attention
	Pointer Networks
	Transformer
	Typical seq2seq Metrics

	Automated Refactoring
	Rename Method
	AST
	code2vec and code2seq
	Code Transformer

	Github Copilot X, Code Whisperer and Code Assistants
	Machine learning based code refactoring prediction
	DataSet

	(Re)Building a Dataset
	RefactoringMiner
	Pipeline
	Exploration of the dataset

	Models
	Embeddings
	Architecture
	Metrics
	Hyper-parameter choice

	Results and experiments
	Comparing transformer based embeddings
	Adding GloVe to the comparison
	Comparing architectures
	Best Model
	Publication of results

	Conclusion
	AST Printer
	Data Scrapping Source Code
	 impact on softargmax
	References

