
Semantics modulo satisfiability with
applications: function representation,

probabilities and game theory

Sandro Márcio da Silva Preto

Thesis submitted
to the

Institute of Mathematics and Statistics
of the

University of São Paulo
in fulfillment of the requirements

for the degree
of

Doctor of Science

Program: Computer Science
Advisor: Prof. Dr. Marcelo Finger

This study was financed in part by the Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001

São Paulo, June 2021

Semantics modulo satisfiability with
applications: function representation,

probabilities and game theory

This version of the thesis contains the corrections and changes
suggested by the Examination Committee during the work’s

original version defence, which occurred on the 4th of June, 2021.

A copy of the original version is available at the
Institute of Mathematics and Statistics of the University of São Paulo.

Examination Committee:

• Prof. Dr. Marcelo Finger (advisor) – IME-USP

• Prof. Dr. Fábio Gagliardi Cozman – Poli-USP

• Prof. Dr. Marcelo Esteban Coniglio – Unicamp

• Prof. Dr. João Marcos de Almeida – UFRN

• Prof. Dr. Eduardo Leopoldo Fermé – U. Madeira

To the memory of my father

Agradecimentos∗

“Oi, pai, tudo bem?” “Tudo, Sandro, e por aí, como vão as coisas?” “Tudo bem também. Eu tô
ligando pra dizer que saiu a minha bolsa!” “Nossa, mas essa é a melhor notícia do ano! Parabéns!” E
foi mais ou menos assim que comemorei a boa notícia pelo telefone com o meu pai alguns dias depois
de me mudar para São Paulo para começar meu doutorado. Infelizmente, não podemos comemorar
juntos a conclusão desta jornada, mas deixo registrada esta gostosa lembrança da nossa relação, de
que tanto tenho saudades, como uma pequena homenagem.

À minha mãe e ao meu pai, Rúbia e Marcio, sou profundamente grato. Toda conquista minha,
inclusive esta tese, devo a eles por fazerem de mim quem sou, por seu entusiasmo, sua torcida, sua
luta, seus sacrifícios e, principalmente, seu amor.

Agradeço também à minha irmã e à sua família. Núbia e Rafael, que sempre me proporcionam
muito agradáveis momentos em minhas visitas à Guaranésia, e meus sobrinhos Afonso, a melhor e
mais divertida companhia, e Otávio, ainda um bebê e que só é motivo de alegrias.

À minha namorada Fernanda, uma das melhores surpresas que a vida me proporcionou neste
período, agradeço por todo carinho que me dedica, hoje essencial ao meu dia-a-dia, e também pelo
apoio e pela compreensão, mesmo nos momentos um tanto angustiantes que compõem o doutorado.

Ao professor Marcelo, além da impecável dedicação à minha orientação, agradeço por ensinar
que o bom trabalho pode ser feito de forma prazerosa e divertida e, mais que isso, por ser o necessário
tipo de professor com sensibilidade e verdadeira preocupação com seus alunos. Deixo aqui também
o meu apreço aos meus professores e aos servidores do IME-USP, cuja dedicação exemplifica as
causas da excelência da universidade brasileira.

Por fim, agradeço a todos os meus amigos, antigos e novos, que de alguma forma fizeram parte
deste trabalho. Pelas visitas em São Paulo, pelas caronas à Guaranésia, pelas trocas de mensagens no
WhatsApp, pelas video-chamadas na pandemia, pelos bons momentos no laboratório, o LIAMF, ou
nas mesas dos botecos, por me ouvirem, por me ensinarem, por sempre ampliarem meus horizontes,
obrigado e gracias.

∗Acknowledgments. Although it is quite reasonable to write a doctoral thesis in the lingua franca of science, I
address those to whom I am grateful in our mother tongue (or, in some cases, even in their mother tongue).

i

ii

Resumo

Sandro Márcio da Silva Preto. Semântica módulo satisfatibilidade com aplicações: repre-
sentação de funções, probabilidades e teoria dos jogos. Tese (Doutorado). Instituto de
Matemática e Estatística, Universidade de São Paulo, São Paulo, 2021.

No contexto das lógicas proposicionais, aplicamos semânticas módulo satisfatibilidade — uma
semântica restrita que contempla somente valorações que satisfazem algum conjunto específico de
fórmulas — com o objetivo de resolver de forma eficiente algumas tarefas computacionais. Três
destas possíveis aplicações são desenvolvidas.

Começamos estudando a possibilidade de representar implicitamente funções racionais de Mc-
Naughton na Lógica Infinito-valorada de Łukasiewicz por meio de semânticas módulo satisfatibili-
dade. Investigamos teoricamente algumas abordagens para este conceito de representação, chamado
representação módulo satisfatibilidade, e descrevemos um algoritmo polinomial que constrói repre-
sentações no sistema recém-introduzido. Uma implementação do algoritmo, resultados de testes e
formas de gerar aleatoriamente funções racionais de McNaughton para os testes são apresentados.
Mais que isso, propomos uma aplicação destas representações à verificação formal de propriedades
de redes neurais através do ferramental de inferência da Lógica Infinito-valorada de Łukasiewicz.

Então, passamos a investigar a satisfatibilidade da atribuição conjunta de probabilidades a fór-
mulas da Lógica Infinito-valorada de Łukasiewicz, um problema sabidamente NP-completo. Fornece-
mos um algoritmo exato de decisão derivado da combinação de métodos de álgebra linear com
semânticas módulo satisfatibilidade. Fornecemos também uma implementação para tal algoritmo
para o qual o fenômeno da transição de fase é empiricamente detectado.

Por último, estudamos a situação em teoria dos jogos dos chamados jogos observáveis, que são
jogos que sabidamente alcançam um equilíbrio de Nash, entretanto, um observador externo não
conhece qual o exato perfil de ações que ocorre em uma instância específica; então, tal observador
atribui probabilidades subjetivas às ações do jogadores. Estudamos o problema de decisão de
determinar se um conjunto dessas restrições probabilísticas é coerente reduzindo-o aos problemas
de satisfatibilidade de atribuições probabilísticas a fórmulas lógicas tanto na Lógica Proposicional
Clássica quanto na Lógica Infinito-valorada de Łukasiewicz dependendo se somente equilíbrios
puros são permitidos ou, também, equilíbrios mistos. Tais reduções dependem das propriedades
das semânticas módulo satisfatibilidade. Oferecemos discussões sobre complexidade e algoritmos
para o problema de coerência e, também, para o problema de computar restrições probabilísticas
maximal e minimal sobre ações que preservem a coerência.

Palavras-chave: Semânticas de valoração, lógicas proposicionais, lógica infinito-valorada de
Łukasiewicz, funções racionais de McNaughton, funções lineares por partes, representação de

iii

iv

funções, métodos formais, redes neurais, probabilidades não clássicas, satisfatibilidade proba-
bilística, equilíbrio de Nash, jogos com incerteza, restrições probabilísticas, coerência de restrições.

Abstract

Sandro Márcio da Silva Preto. Semantics modulo satisfiability with applications: function
representation, probabilities and game theory. Thesis (Doctorate). Institute of Mathematics
and Statistics, University of São Paulo, São Paulo, 2021.

In the context of propositional logics, we apply semantics modulo satisfiability — a restricted
semantics which comprehends only valuations that satisfy some specific set of formulas — with the
aim to efficiently solve some computational tasks. Three possible such applications are developed.

We begin by studying the possibility of implicitly representing rational McNaughton functions in
Łukasiewicz Infinitely-valued Logic through semantics modulo satisfiability. We theoretically inves-
tigate some approaches to such representation concept, called representation modulo satisfiability,
and describe a polynomial algorithm that builds representations in the newly introduced system. An
implementation of the algorithm, test results and ways to randomly generate rational McNaughton
functions for testing are presented. Moreover, we propose an application of such representations
to the formal verification of properties of neural networks by means of the reasoning framework of
Łukasiewicz Infinitely-valued Logic.

Then, we move to the investigation of the satisfiability of joint probabilistic assignments to
formulas of Łukasiewicz Infinitely-valued Logic, which is known to be an NP-complete problem. We
provide an exact decision algorithm derived from the combination of linear algebraic methods with
semantics modulo satisfiability. Also, we provide an implementation for such algorithm for which
the phenomenon of phase transition is empirically detected.

Lastly, we study the game theory situation of observable games, which are games that are known
to reach a Nash equilibrium, however, an external observer does not know what is the exact profile
of actions that occur in a specific instance; thus, such observer assigns subjective probabilities
to players’ actions. We study the decision problem of determining if a set of these probabilistic
constraints is coherent by reducing it to the problems of satisfiability of probabilistic assignments
to logical formulas both in Classical Propositional Logic and Łukasiewicz Infinitely-valued Logic
depending on whether only pure equilibria or also mixed equilibria are allowed. Such reductions
rely upon the properties of semantics modulo satisfiability. We provide complexity and algorithmic
discussion for the coherence problem and, also, for the problem of computing maximal and minimal
probabilistic constraints on actions that preserves coherence.

Keywords: Valuation semantics, propositional logics, Łukasiewicz infinitely-valued logic, rational
McNaughton functions, piecewise linear functions, function representation, formal methods, neural
networks, non-classical probabilities, probabilistic satisfiability, Nash equilibrium, uncertain games,
probabilistic constraints, coherence of constraints.

v

vi

Contents

List of Abbreviations ix

List of Symbols xi

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Publications . 3
1.2 Thesis Structure . 4

2 Preliminaries 5
2.1 Logic and Semantics Modulo Satisfiability . 5
2.2 Propositional Logics . 7

2.2.1 Classical Propositional Logic . 9
2.2.2 Łukasiewicz Infinitely-Valued Logic . 9

2.3 Classical Probability Theory . 10
2.4 Useful Mathematical Techniques . 12

3 Efficient Representation of Piecewise Linear Functions into Logic 15
3.1 The Traditional Way . 16
3.2 Representation Modulo Satisfiability . 17

3.2.1 The Formula-Based Approach . 17
3.2.2 The Function-Based Approach . 18
3.2.3 Formula-Based versus Function-Based Approaches 20

3.3 Representation Theorems via Hat Functions . 21
3.4 An Efficient Algorithm for Building Representations 24

3.4.1 Regional Format of Rational McNaughton Functions 24
3.4.2 A Particular Case: Truncated Linear Functions 30
3.4.3 The General Case . 37
3.4.4 Pre-Regional Format and a Literature Review 40

3.5 Implementation and Results . 42
3.5.1 Classes of Rational McNaughton Functions and Experiments 43

3.6 An Application to the Formal Analysis of Neural Networks 49
3.6.1 Verifying a Rain Forecast Neural Network . 53

vii

viii CONTENTS

3.7 Modulo Satisfiability versus Traditional Representation 55

4 Probabilities over Łukasiewicz Infinitely-Valued Logic 59
4.1 Łukasiewicz Probabilities and Coherence . 60
4.2 Algebraic Formulation of ŁIPSAT . 62

4.2.1 A Normal Form for ŁIP-Assignments . 63
4.2.2 Algebraic Methods for Normal Form ŁIP-Assignments 64

4.3 A ŁIPSAT-Solving Algorithm . 65
4.4 Implementation and Results . 69

4.4.1 Phase Transition for Ł∞-Solvers . 70
4.4.2 Phase Transition for ŁIPSAT . 71

5 Probabilistic Constraints on Nash Equilibria 73
5.1 Motivation on Observable Games . 74
5.2 Observable Games and Coherence . 75

5.2.1 Classes of Games . 77
5.2.2 Computing Pure Nash Equilibria via CPL-SAT 78

5.3 From PCE-Coherence to PSAT . 80
5.3.1 An Algorithm for PCE-Extension . 82
5.3.2 Generalized Constraints on Equilibria . 85

5.4 Coherence Allowing Mixed Equilibria . 85
5.4.1 Classes of Games Allowing Mixed Equilibria 87
5.4.2 Computing Mixed Nash Equilibria via Ł∞-SAT 88

5.5 From PCE-Coherence to ŁIPSAT . 91
5.5.1 PCE-Extension Allowing Mixed Equilibria 93

5.6 Some Thoughts on Game-Theoretic Modeling . 94

6 Conclusions 97
6.1 Future Work . 98

Bibliography 99

List of Abbreviations

SAT Satisfiability Problem, a computational problem
CPL Classical Propositional Logic, a logical system
CNF Conjunctive Normal Form
PSAT Probabilistic Satisfiability Problem, a computational problem
P Polynomial Class, a computational complexity class
NP Nondeterministic Polynomial Class, a computational complexity class
ŁIP Łukasiewicz Infinitely-valued Probabilistic
ŁIPSAT Łukasiewicz Infinitely-valued Probabilistic Satisfiability Problem,

a computational problem
PCE Probabilistic Constraints on Equilibria
iff “if, and only if”

ix

x LIST OF ABBREVIATIONS

List of Symbols

L A logical system
L A logical language
|= A logical consequence relation
V A set of truth values
D A set of designated truth values
Val A (valuation) semantics
ValΦ A (valuation) semantics modulo satisfiability of the set Φ

Th(Γ) A logical theory with axioms in set Γ

P The set of propositional variables
Var(Φ) Set of propositional variables occurring in the formulas in set Φ

Xn Set of propositional variables {X1, . . . , Xn}
ValP A semantics of partial valuations over propositional variables in set P
ValPΦ Semantics ValP modulo satisfiability of the set Φ

L-SAT Satisfiability problem over logical system L

CPL The logical system of Classical Propositional Logic
Ł∞ The logical system of Łukasiewicz Infinitely-valued Logic
∨ CPL-disjunction or Ł∞-maximum
∧ CPL-conjunction or Ł∞-minimum
¬ CPL- or Ł∞-negation
→ CPL- or Ł∞-implication
↔ CPL- or Ł∞-bi-implication
⊕ Ł∞-disjunction
� Ł∞-conjunction
nX Ł∞-disjunctions of n-fold repetitions of the propositional variable X
0 Defined formula in Ł∞ with constant value 0

1 Defined formula in Ł∞ with constant value 1

PSAT Probabilistic Satisfiability Problem over CPL
Ω◦ Topological interior of set Ω

cl(Ω) Topological closure of set Ω

∂Ω Topological boundary of set Ω

conv(Ω) Convex hull of set Ω

P The complexity class of polynomial problems
NP The complexity class of nondeterministic polynomial problems

xi

xii LIST OF SYMBOLS

Ł∞-MODSAT System for function representation modulo satisfiability
ŁIPSAT Probabilistic Satisfiability Problem over Ł∞
PCE-Coherence The problem of deciding coherence of a set of PCE
PCE-Extension The problem of computing maximum or minimum values

of a probabilistic assignment to an action
GNPsk GNP-class of games whose players have at most s actions

and k neighbors
GNPk GNP-class of games whose players have at most k neighbors
2GNP GNP-class of 2-player games allowing mixed equilibria
2G Class of 2-player games allowing mixed equilibria
|A| Cardinality of set A
A∗ Number set A without number 0

A+ Number set A without negative numbers
bxc Floor of number x
dxe Ceil of number x
x2 Number x written in binary notation
n! Factorial of number n
log n Logarithm base 2 of number n
O(f(n)) Big O notation applied to function f(n)

List of Figures

3.1 Continuous one-variable function approximated by rational McNaughton functions . 16
3.2 Graphs of functions fϕ and f〈ϕ,Φ〉 and of set D〈ϕ,Φ〉 in Example 2, for fixed x3 = 1

2 . 19
3.3 Graphs of examples of one-variable hat functions H0, Hi, for i = 1, . . . , n− 1, and Hn 23
3.4 Graph of rational McNaughton function with three linear pieces over [0, 1]2 26
3.5 Some possible region configurations for function f in Example 4 26
3.6 Graph and region configuration of function fCE in Example 5 41
3.7 Representation builder performance, randomly gen. instances: n = 1 to n = 50 43
3.8 Simple-region and cubic-region configurations in dimension n = 3 45
3.9 Representation builder performance running on simple-region piecewise linear func-

tions, randomly gen. instances: r = 1 to r = 20 . 45
3.10 Graphical representation of neural network fR . 54

4.1 Ł∞-solvers performance, randomly gen. instances: n = 100, m = 20 to 780 71
4.2 Phase transition for ŁIPSAT solver: k = 20, n = 100 and m = 20 to 780 71

xiii

xiv LIST OF FIGURES

List of Tables

3.1 Regions Ωi for function f in Example 4 . 26
3.2 Representations as in (3.10) for functions p#

1 , p#
2 and p#

3 , where functions p1, p2 and
p3 are from Example 4 . 32

3.3 Representations as in (3.13) for functions p#
1 , p#

2 and p#
3 , where functions p1, p2 and

p3 are from Example 4 . 35
3.4 Representation as in (3.15) for function f from Example 4 38
3.5 Regions Ωi for function f in Example 5 . 41
3.6 Number of tests by class of rational McNaughton functions 42
3.7 Representation builder performance running on cubic-region piecewise linear functions 48
3.8 Properties of neural network fR inferred through formal verification methods 55

5.1 Utility functions for Alice and Bob . 76
5.2 Utility functions for players a, b and c, respectively 78
5.3 Iterations for solving PCE-Extension in Example 15 85

xv

xvi LIST OF TABLES

Chapter 1

Introduction

Applications of logical systems often explore the evaluations of logical formulas by means of a valu-
ation semantics. However, in this thesis we investigate a restricted evaluation of formulas that takes
into account only a part of the whole set of valuations, which is constrained to the satisfiability of a
specific set of formulas; as the set of all valuations is called the semantics of the logical system, we say
that such kind of restricted evaluation takes place in a semantics modulo satisfiability. The broader
objective of this work is to identify and develop computationally efficient applications of seman-
tics modulo satisfiability; e.g. in the representation of piecewise linear functions into Łukasiewicz
Infinitely-valued Logic, which we further apply to the formal analysis of neural networks.

First considering standard semantic evaluation, on the one hand, valid formulas or tautologies
— i.e. formulas satisfied by every valuation — are some of the main concerns in the study of logical
systems; on the other hand, non-valid formulas may play important roles in contexts where it is
also necessary for their evaluations to take non-designated truth values; for instance, such formulas
may represent functions into a logical system. This is the case of the known property of formulas of
Classical Propositional Logic that represent Boolean functions; this is because semantic evaluation
of these representative formulas have the property of matching the values of Boolean functions when
their propositional variables are associated with the function variables. There are formal verification
techniques that depend on the representation of Boolean functions into logic.

The standard semantic evaluation also arises on probability assignment to logical formulas.
When grounding a probability theory on a logical system — both classical and non-classical —,
it is usual for probability distributions over its semantics to induce probabilities to formulas in
the language of the system. In this way, the probability of a formula may be computed as the
probabilistic average of the evaluations of such formula weighed by the probability distribution
over the semantics. Of course, non-valid formulas may have nonzero probability, which makes their
probability computation to consider evaluations with non-designated truth values.

Together with valid formulas, logical consequence — i.e. the relation between a set of formulas
called premises and another formula called conclusion which is satisfied by all valuations that
also satisfy the premises — is a leading concept in logical systems. Indeed, a logical system may
be seen as a pair comprehending a language and a logical consequence relation; fixing a set of
formulas called axioms, a logical theory of all the formulas which are logical consequences from those
axioms is determined. Analogous to non-valid formulas, we claim that non-logical consequences
are also important for the semantic properties of non-conclusions when evaluated according to
valuations that satisfy a set of premises. Properly used, non-logical consequences may lead to

1

2 INTRODUCTION 1.0

efficient computational treatment of many problems. Such evaluation of formulas in accordance
with a set of premises or a logical theory is done within a semantics modulo satisfiability.

We may identify an algorithmic use of semantics modulo satisfiability by Finger and De Bona
(2015) in the context of the Probabilistic Satisfiability Problem, which consists in attesting the
coherence of probabilistic assignments to formulas within the framework of Classical Propositional
Logic, that is to check the existence of a probability distribution over the semantics that induces the
assignment under concern. State-of-the-art solvers for such problem focus on specific instances —
in the so-called atomic normal form — where only maximum probability may be assigned to non-
atomic formulas; such assignment forces the probability distribution over semantics to only assign
nonzero probabilities to valuations that satisfy these non-atomic formulas. Thus, the computation
of the probabilities of the atomic formulas must take into account their values only according to
valuations satisfying the non-atomic ones. As a consequence, the mentioned solvers operate by
searching for valuations in a semantics modulo satisfiability.

In this work, we tackle problems about function representation, probabilistic satisfiability and
game theory by means of semantics modulo satisfiability. Let us take an overview of them.

In contrast to the direct representation of Boolean functions into Classical Propositional Logic,
we present a way to implicitly represent continuous piecewise linear functions into Łukasiewicz
Infinitely-valued Logic — the representation modulo satisfiability — which is performed by evalu-
ating the representative formula within a semantics modulo satisfiability. As continuous piecewise
linear functions may approximate any continuous function — by Weierstrass-like approximations
—, representing them in some logical system is a preparation step for the application of formal
verification and automated reasoning techniques to the study of systems modeled by these func-
tions. Then, we apply such representation system to formally verify neural networks that compute
piecewise linear functions regarding the properties of reachability and robustness.

Continuous piecewise linear functions may be directly represented in many logical systems.
However, our approach brings together some features which we are unaware to have been jointly
considered in the existing literature.

• There is a polynomial algorithm that generates the representation of continuous piecewise
linear functions given in a suitable encoding.

• It takes place in Łukasiewicz Infinitely-valued Logic, which is a logical system whose main
associated computational problems are classified in reasonable complexity classes; for instance,
satisfiability is “only” NP-complete (Mundici, 1987).

• There already exists extensive literature on solvers for Łukasiewicz Infinitely-valued Logic
and, in a practical view, some solvers have been tested and the empirical phase transition
phenomenon has been identified in them (Bofill et al., 2015).

In another application of semantics modulo satisfiability, we study the problem of deciding coher-
ence of probabilistic assignments to formulas of Łukasiewicz Infinitely-valued Logic; such problem
has been theoretically studied and shown to be NP-complete by Bova and Flaminio (2010). How-
ever, a deterministic algorithm for solving it was still missing; thus, in analogy to the aforementioned
algorithm for the Probabilistic Satisfiability Problem, we establish an atomic normal form of prob-
abilistic assignments which leads to an algorithm that works by searching valuations in a semantics

1.1 PUBLICATIONS 3

modulo satisfiability. We also present the empirical detection of the phase transition phenomenon
in an implementation of such algorithm.

At last, we propose and study some problems in game theory related to observable games, which
are problems that arise when a game reaches a Nash equilibrium, however there is uncertainty about
which exact equilibrium this is; such uncertainty is put in terms of probabilistic assignments to the
actions the players may perform. We model this scenario by probabilistic assignments to atomic for-
mulas that may only be computed from probability distributions over valuations representing Nash
equilibria, which, in turn, are valuations in a specific semantics modulo satisfiability. Two settings
are considered: first, allowing only pure Nash equilibria, which are modeled over Classical Propo-
sitional Logic; second, also allowing mixed Nash equilibria, which are modeled over Łukasiewicz
Infinitely-valued Logic. Thus, we are able to establish the decision problem of coherence of the
probabilistic assignments to actions as NP-complete and provide algorithms for it by means of re-
ductions to problems of coherence of probabilistic assignments to formulas in an adequate logic.
From the decision problem, we also derive algorithms for the Extension Problem, which is that
of computing the maximum and minimum values an unconstrained action may take in an already
coherent setting.

1.1 Publications

Part of this thesis’ results, as well as related research done by the author during his doctoral studies,
has appeared in workshops, conferences and journals.

• Preto and Finger (2020) Sandro Preto and Marcelo Finger. An efficient algorithm for repre-
senting piecewise linear functions into logic. Electronic Notes in Theoretical Computer Science,
351:167-186. ISSN 1571-0661. doi: 10.1016/j.entcs.2020.08.009. URL http://doi.org/10.1016/
j.entcs.2020.08.009. Proceedings of LSFA 2020, the 15th International Workshop on Logical
and Semantic Frameworks, with Applications (LSFA 2020).

• Finger and Preto (2020) Marcelo Finger and Sandro Preto. Probably partially true: Satisfia-
bility for Łukasiewicz infinitely-valued probabilistic logic and related topics. Journal of Au-
tomated Reasoning, 64(7):1269-1286. ISSN 1573-0670. doi: 10.1007/s10817-020-09558-9. URL
http://doi.org/10.1007/s10817-020-09558-9.

• Preto and Finger (2019) Sandro Preto and Marcelo Finger. Representing rational Mc-
Naughton functions via MODSAT relativisation. In Cezar Augusto Mortari, Ricardo Silvestre,
Ítala Maria Loffredo D’Ottaviano, Leandro Suguitani and Petrucio Viana, editors, 19th Brazil-
ian Logic Conference EBL 2019: Book of Abstracts, page 183. Mídia Gráfica e Editora Ltda,
UFCG-EDUFCG.

• Salvatore et al. (2019) Felipe Salvatore, Sandro Preto, Marcelo Finger and Roberto Hirata Jr.
Using neural models to perform inference. In Derek Doran, Artur d’Avila Garcez and Freddy
Lecue, editors, Proceedings of the 2019 International Workshop on Neural-Symbolic Learning
and Reasoning.

http://doi.org/10.1016/j.entcs.2020.08.009
http://doi.org/10.1016/j.entcs.2020.08.009
http://doi.org/10.1007/s10817-020-09558-9

4 INTRODUCTION 1.2

• Finger and Preto (2018) Marcelo Finger and Sandro Preto. Probably half true: Probabilistic
satisfiability over Łukasiewicz infinitely-valued logic. In Didier Galmiche, Stephan Schulz and
Roberto Sebastiani, editors, Automated Reasoning. IJCAR 2018, volume 10900 of Lecture
Notes in Computer Science, pages 194-210, Cham. Springer International Publishing. ISBN
978-3-319-94205-6.

Furthermore, the following papers, which are also related to this thesis, have been submitted to
journals and are currently under review.

• Sandro Preto and Marcelo Finger. Efficient representation of piecewise linear functions into
Łukasiewicz logic modulo satisfiability.

• Sandro Preto and Marcelo Finger. Proving properties of binary classification neural networks
via Łukasiewicz logic.

• Sandro Preto, Eduardo Fermé and Marcelo Finger. Coherence of probabilistic constraints on
Nash equilibria.

1.2 Thesis Structure

In Chapter 2 we introduce the central concept of semantics modulo satisfiability together with all
reasoning tools that are used in the thesis: general logical systems, two propositional logics — Clas-
sical Propositional Logic and Łukasiewicz Infinitely-valued Logic — and classical probability theory.
We also include notation and references for the auxiliary mathematical subjects that are needed
for approaching the problems: topology, convex geometry, linear programming and computational
complexity. Then, the next three chapters deal with the main contributions of this work.

Chapter 3 presents the technique of representation modulo satisfiability, which is used to effi-
ciently represent, in an implicit way, a class of continuous piecewise linear functions — the rational
McNaughton functions — in Łukasiewicz Infinitely-valued Logic. It also discusses an implemen-
tation of the representation building routine and an application to the formal analysis of neural
networks.

Chapter 4 studies the probabilistic reasoning over Łukasiewicz Infinitely-valued Logic; it brings a
theoretical investigation with the proposal of the atomic normal form as input format for the decision
problem of the satisfiability of probabilistic assignments. A solving algorithm, its implementation
and discussion are also introduced.

Chapter 5 initially deviates from the logical and probabilistic settings and proposes problems
in game theory related to observable games. Such problems are approached via reductions to the
previously addressed problems of satisfiability of probabilistic assignments to logical formulas. The
chapter also has complexity analyses and proposals of algorithms for the studied problems.

In Chapter 6, we draw some conclusions about the use of semantics modulo satisfiability in
general, the particular matters treated in the central chapters and the use of semantics modulo
satisfiability in those particular matters. We also propose some possible future work departing from
this thesis.

Chapter 2

Preliminaries

Semantics modulo satisfiability underlie all the techniques we propose in this work; thus, first we
define this concept encompassed in a general framework of logical systems in Section 2.1. Then, we
introduce propositional logics and, in particular, the systems of Classical Propositional Logic and
Łukasiewicz Infinitely-valued Logic in Section 2.2. In Section 2.3, we introduce classical probabili-
ties defined over Classical Propositional Logic. Finally, we give references for other mathematical
subjects that underlie this work in Section 2.4.

2.1 Logic and Semantics Modulo Satisfiability

A logical system, or simply a logic, is a pair L = 〈L, |=〉, where L is a set of formulas, called the
language of the system, and |= is a (logical) consequence relation in ℘(L) × L; if Γ |= ϕ holds,
where Γ ⊆ L and ϕ ∈ L, the formulas in Γ are the premises and ϕ is the conclusion of the logical
consequence. In this work we will only consider logical systems defined through valuation semantics;
thus, besides a language L, we need a set of truth values V and a set of designated truth values
D ⊆ V among them. A (valuation) semantics for the logical system is a set of valuations denoted
by Val; a valuation is a function v : L → V that assigns a value in V to each formula in L; to
evaluate a formula ϕ ∈ L according to a valuation v means to compute the value v(ϕ).

We say that a valuation v ∈ Val satisfies a formula ϕ ∈ L if v(ϕ) ∈ D and that it satisfies a
set of formulas Γ ⊆ L if it satisfies all formulas ϕ ∈ Γ; we denote both cases by v |= ϕ and v |= Γ,
respectively. A formula or a set of formulas is satisfiable if there is some valuation that satisfies it;
otherwise, it is unsatisfiable. Now, we may define the consequence relation and write, for ϕ ∈ L and
Γ ⊆ L,

Γ |= ϕ,

if, for every valuation v ∈ Val such that v |= Γ, we also have that v |= ϕ; ϕ is said to be a logical
consequence from Γ. A valid formula or tautology is a formula ϕ which is a logical consequence of
the empty set; we write

|= ϕ

instead of ∅ |= ϕ and note that a formula ϕ is valid if, and only if, v |= ϕ, for all v ∈ Val.
In a logical system defined through valuation semantics, tautologies have a prominent place due

to their property of being always true. Nevertheless, non-valid formulas may be of great interest for
their values according to the semantics. We give some examples.

5

6 PRELIMINARIES 2.1

• By the Cook-Levin Theorem (Cook, 1971), the decision problems belonging to the complexity
class NP — which constitute several of the problems of practical interest (see Section 2.4 for
references) — have instances that may be translated into formulas of the Classical Propo-
sitional Logic, which are Yes-instances, if there is a valuation that satisfies its associated
formula, or No-instances, otherwise. Such formulas are not tautologies in general and the
semantics of Classical Propositional Logic provide a proof system for the Yes-instances.

• By means of their possible evaluations according to the semantics, formulas may represent
(multivariate) functions which have arguments and take values in the set of truth values V.
In general, such formulas are also not tautologies and they may be part of other larger for-
mulas that state properties about the represented functions; in turn, for such larger formulas,
one might be concerned whether it is a tautology. This is the case, for instance, of Boolean
functions, which may be represented by formulas of Classical Propositional Logic and might
model the behavior of electronic circuits; in this way, Classical Propositional Logic reasoning
may be used to verify whether such circuits are in accordance with specifications also codified
in the language of such logical system (McFarland, 1993).

• A non-valid formula does not necessarily stand for an impossibility, however, one might not
be sure whether such formula is true or not in some context. Thus, it is natural to assign
a probability value to such formula. Assigning probabilities to formulas of a logical system
gives rise to a probability theory and such assignments are expected to be in agreement with
the (not necessarily designated) evaluations of such formulas in the system semantics (see
Section 2.3 for a classical probability theory).

Together with tautologies, logical consequences have central role in the study of logic. In this
way, we define a logical theory determined by a set of formulas Γ ⊆ L, called axioms, with 〈L, |=〉
as underlying logical system, by the set

Th(Γ) =
{
ϕ ∈ L

∣∣∣ Γ |= ϕ
}
.

Likewise our considerations about non-valid formulas, we claim that, in the context of logical the-
ories, there might be interest in formulas which are not logical consequences from the axioms. Of
course, the values of such (non-logical consequence) formulas must be in accordance with the the-
ory. Thereby, they only should be evaluated by valuations that satisfy the axioms, which leads to a
constraining to the semantics of the logical system in question. With this motivation, we establish
semantics modulo satisfiability as a part of the semantics of a logical system comprehending the
valuations constrained to the satisfiability of some set of formulas.

Definition 1 Let Φ ⊆ L be a set of formulas, a semantics modulo satisfiability is the set

ValΦ =
{
v ∈ Val

∣∣∣ v |= Φ
}
.

If set Φ = {ϕ} is a singleton, we write Valϕ. 2

In a model-theoretic point of view, a semantics modulo satisfiability ValΦ is the set of the
models of the logical theory Th(Φ); model theory focuses on the relations between logical theories
and their models, so formulas satisfied by models are the ones primarily regarded in such context.

2.2 PROPOSITIONAL LOGICS 7

On the other hand, our main goal in this work is to exploit the evaluations of formulas in general
through semantics modulo satisfiability in order to obtain efficient computational performance in
diversified tasks.

All the concepts related to a logical system 〈L, |=〉 with semanticsVal defined in this section may
be reformulated in terms of semantics modulo satisfiability by the following equivalent definitions.

• A formula ϕ is satisfiable if Valϕ 6= ∅.

• A logical consequence Γ |= ϕ holds if ValΓ ⊆ Valϕ.

• A formula ϕ is valid if Val = Valϕ.

• A logical theory Th(Γ) is the set {ϕ ∈ L | ValΓ ⊆ Valϕ}.

These equivalent definitions show that constraining a semantics is not an alien procedure, on the
contrary, it is implicit in many traditional logical concepts. The novelty in this work is the unusual
importance given to the evaluation of formulas which assume any truth value, and not necessarily
designated ones, by constrained valuations in a semantics modulo satisfiability with the aim to
achieve efficiency gains in computational tasks.

2.2 Propositional Logics

In this work, we employ logical systems L = 〈L, |=〉 which are propositional logics and whose
languages are generated from a countable set of propositional variables or atoms P. The formulas
in L are finite sequences of symbols which may be propositional variables in P, a unary operator 2,
a binary operator 3 or parentheses. Let L0 = P and

Li = Li−1 ∪
{
2ϕ

∣∣∣ ϕ ∈ Li−1

}
∪
{

(ϕ3ψ)
∣∣∣ ϕ,ψ ∈ Li−1

}
,

for i = N∗; then, the propositional language is given by

L =
⋃
i∈N
Li.

Moreover, L is said to be freely generated from P by the operators 2 and 3 because the functions
F2 : L → L, given by F2(ϕ) = 2ϕ, and F3 : L×L → L, given by F3(ϕ,ψ) = (ϕ3ψ), have ranges
disjoint from each other and from P and they are both one-to-one.

All operators in the logical systems employed in this work are truth-functional, that means that
there are functions f2 : V → V and f3 : V × V → V associated to the unary and binary operators
2 and 3 such that, for a valuation v ∈ Val and formulas ϕ,ψ ∈ L, we have:

v(2ϕ) = f2(v(ϕ)); (2.1)

v(ϕ3ψ) = f3(v(ϕ), v(ψ)). (2.2)

Thus, one may just give a function vP which maps propositional variables to a truth value in V and
extend this function to a valuation by obeying (2.1) and (2.2); because L is freely generated from
P by 2 and 3, this extension is uniquely defined by such assignment to the variables in P given by

8 PRELIMINARIES 2.2

vP. For a detailed treatment of the constructions so far in this section, we refer the reader to the
book of Enderton (2001).

We might define other operator symbols as abbreviations in terms of the basic unary and binary
ones. Also, we often omit parentheses in formulas (with or without abbreviations) when there is no
danger of ambiguity according to the following conventions:

• The outermost parentheses are omitted.

• When a binary operator is used multiple times, grouping is to the right.

Operator symbols defined in terms of the basic ones are obviously also truth-functional; so, note
that probabilities are not operators.

We denote propositional variables mostly by Latin capital letters with occasional subscripts or
superscripts — e.g. X, X1, X2, Y , Z, Zp1

2 — and sometimes by the Greek lowercase letter ξ also
with subscripts or superscripts. Let Φ ⊆ L be a set of formulas; we denote by Var(Φ) the set of all
propositional variables that occur in all formulas ψ ∈ Φ; if Φ = {ϕ} is a singleton, we denote such
set by Var(ϕ). We also use the notation Xn = {X1, . . . , Xn} for such set of propositional variables.

In practical situations, it is usual to only consider some particular set of formulas Φ ⊆ L such
that Var(Φ) ⊆ P ⊆ P, where P is a finite set of propositional variables. Therefore, in such situations,
we are only concerned with the values that a valuation in Val assigns to the propositional variables
in P; due to truth-functionality of operators, from these values we easily determine the value of a
formula ϕ such that Var(ϕ) ⊆ P. We call partial valuations (over P) those functions that assign
truth values in V to propositional variables in P ⊆ P and to formulas ϕ with Var(ϕ) ⊆ P; let us
denote by ValP the set of all such partial valuations. Partial valuations over P may be seen as the
valuations of the logical system〈

{ϕ ∈ L | Var(ϕ) ⊆ P} , {〈Γ, ϕ〉 | Γ |= ϕ and Var(Γ) ∪Var(ϕ) ⊆ P}
〉
.

In this way, ValP is a semantics and we have semantics modulo satisfiability in total analogy to
the previous section denoted by ValPΦ , where Φ ⊆ L is a set of formulas such that Var(Φ) ⊆ P.

Note that any single partial valuation v ∈ ValP may be seen as the restriction of infinitely many
valuations ṽ ∈ Val to the set of formulas {ϕ ∈ L | Var(ϕ) ⊆ P} ⊆ L. Thus, a partial valuation
over P ⊆ P may be extended to infinitely many distinct valuations in Val. Let ϕ ∈ L and Γ ⊆ L
be such that Var(ϕ)∪Var(Γ) ⊆ P; some properties of these formulas defined by means of Val have
equivalents only in terms of ValP .

• The formula ϕ is satisfiable if, and only if, there is a valuation v ∈ ValP such that v(ϕ) ∈ D.

• The logical consequence Γ |= ϕ holds if, and only if, for any valuation v ∈ ValP such that
v(γ) ∈ D, for all γ ∈ Γ, it is also the case that v(ϕ) ∈ D.

The Satisfiability Problem — denoted SAT— is the problem of deciding whether a given formula
ϕ ∈ L is satisfiable; that is whether there is a valuation ṽ ∈ Val such that ṽ(ϕ) ∈ D or, equivalently,
whether there is a valuation v ∈ ValP such that Var(ϕ) ⊆ P and v(ϕ) ∈ D. We might indifferently
refer to the Satisfiability Problem as the problem of deciding if a set of formulas Φ ⊆ L is satisfiable
and we write L-SAT when referring to the Satisfiability Problem of a specific logic L. Also, we

2.2 PROPOSITIONAL LOGICS 9

call L-solver a routine that computes a satisfying partial valuation for an instance of L-SAT or,
alternatively, states that such an instance is unsatisfiable.

2.2.1 Classical Propositional Logic

Classical Propositional Logic, denoted by CPL = 〈LCPL, |=CPL〉 is probably the most known logical
system. It has a 2-valued semantics with the set of truth values VCPL = {0, 1} and only one
designated truth value in the set DCPL = {1}. CPL-SAT was the first problem shown to be NP-
complete independently by Cook (1971) and Levin (1973).

The basic CPL-language LCPL is freely generated from the countable set of propositional vari-
ables P by the unary negation ¬ and the binary disjunction ∨ CPL-operators. For the semantics
CPL-Val, define a CPL-valuation as a function v : LCPL → {0, 1}, such that, for ϕ,ψ ∈ LCPL:

v(¬ϕ) = 1− v(ϕ);

v(ϕ ∨ ψ) = max(v(ϕ), v(ψ)).

From the basic CPL-operators we derive the following ones:

Conjunction: (ϕ ∧ ψ) =def ¬(¬ϕ ∨ ¬ψ) v(ϕ ∧ ψ) = min(v(ϕ), v(ψ))

Implication: (ϕ→ ψ) =def ¬ϕ ∨ ψ v(ϕ→ ψ) = min(1, 1− v(ϕ) + v(ψ))

Bi-implication: (ϕ↔ ψ) =def (ϕ→ ψ) ∧ (ψ → ϕ) v(ϕ↔ ψ) = 1− |v(ϕ)− v(ψ)|

In order to omit parentheses, we add to the already established conventions an order of operators
where ¬ has precedence over ∨ and ∧, which have precedence over → and ↔.

CPL-solvers are usually designed to have as input CPL-formulas in conjunctive normal form
(CNF), that is CPL-formulas in the format

C1 ∧ · · · ∧ Cn,

where each Ci, for i = 1, . . . , n, is a clause in the format

l1 ∨ · · · ∨ lki ,

where lj , for j = 1, . . . , ki, is a literal, that is either a negated (¬X) or a non-negated (X) proposi-
tional variable X ∈ P. Deciding the satisfiability of the set of clauses {Ci} is equivalent to deciding
the satisfiability of the CNF CPL-formula

∧
Ci. A CPL-formula may be translated in polynomial

time into a CNF CPL-formula which is satisfiable if, and only if, the original one also is.

2.2.2 Łukasiewicz Infinitely-Valued Logic

Łukasiewicz Infinitely-valued Logic, denoted by Ł∞ = 〈LŁ∞ , |=Ł∞〉, is arguably one of the best
studied many-valued logics (Cignoli et al., 2000). Being a many-valued logic means that the set of
truth values of this system VŁ∞ = [0, 1] has more than two elements; however, the set of designated
truth values DŁ∞ = {1} is as the one of CPL.

Łukasiewicz Infinitely-valued Logic is amenable to computational treatment; for instance, Ł∞-
SAT is NP-complete (Mundici, 1987), which is a reasonable complexity for a Satisfiability Problem.

10 PRELIMINARIES 2.3

Thus, it is widely used in the literature to model situations that require the notion of “partial
truth”1; the setting studied in Chapter 4 being an example.

The basic Ł∞-language LŁ∞ is freely generated from the countable set of propositional variables
P by the unary negation ¬ and the binary disjunction ⊕ Ł∞-operators. For the semantics Ł∞-Val,
define a Ł∞-valuation as a function v : LŁ∞ → [0, 1], such that, for ϕ,ψ ∈ LŁ∞ :

v(¬ϕ) = 1− v(ϕ); (2.3)

v(ϕ⊕ ψ) = min(1, v(ϕ) + v(ψ)). (2.4)

From the basic Ł∞-operators we derive the following ones:

Conjunction: (ϕ� ψ) =def ¬(¬ϕ⊕ ¬ψ) v(ϕ� ψ) = max(0, v(ϕ) + v(ψ)− 1)

Maximum: (ϕ ∨ ψ) =def ¬(¬ϕ⊕ ψ)⊕ ψ v(ϕ ∨ ψ) = max(v(ϕ), v(ψ))

Minimum: (ϕ ∧ ψ) =def ¬(¬ϕ ∨ ¬ψ) v(ϕ ∧ ψ) = min(v(ϕ), v(ψ))

Implication: (ϕ→ ψ) =def ¬ϕ⊕ ψ v(ϕ→ ψ) = min(1, 1− v(ϕ) + v(ψ))

Bi-implication: (ϕ↔ ψ) =def (ϕ→ ψ) ∧ (ψ → ϕ) v(ϕ↔ ψ) = 1− |v(ϕ)− v(ψ)|

In order to omit parentheses, we add to the already established conventions an order of operators
where ¬ has precedence over ⊕ and �, which have precedence over ∨ and ∧, which have precedence
over → and ↔.

Note that v(ϕ → ψ) = 1 iff v(ϕ) ≤ v(ψ); similarly, v(ϕ ↔ ψ) = 1 iff v(ϕ) = v(ψ). Let X be
a propositional variable, then, v(X � ¬X) = 0, for any v ∈ Ł∞-Val; we define the constant 0 by
X � ¬X and the constant 1 by ¬0. We also define 0ϕ =def 0, nϕ =def ϕ ⊕ · · · ⊕ ϕ, n times, for
n ∈ N∗, and

⊕
i∈∅ ϕi =def 0.

Ł∞ is said to have CPL as limit case because regarding only truth values 0 and 1, the Ł∞-
operators behave just like their analogous CPL-operators denoted with same symbols. Moreover,
Ł∞-operators ⊕ and � behave as CPL-operators ∨ and ∧, respectively.

2.3 Classical Probability Theory

Probability theory may be grounded in a logical system by assigning probabilities to the formulas
of such system in a way that takes into account its underlying logical structure. The original
formulation of such a mix of Classical Propositional Logic and (discrete) probabilities is due to
George Boole who, in his seminal work introducing what is now known as Boolean algebras, already
discussed the problem (Boole, 1854).

Probability values assigned to a CPL-formula α, such that Var(α) ⊆ P ⊆ P, for some finite
set P, are induced by a probability distribution π : CPL-ValP → [0, 1] over the 2|P| CPL-partial
valuations in CPL-ValP that maps every CPL-partial valuation to a probability in the real interval
[0, 1] in a way that ∑

v∈CPL-ValP

π(v) = 1.

1By the term “partial truth” we refer to the concept usually referred in the literature as “degree of truth”, not to
be confused with partial valuations or models.

2.3 CLASSICAL PROBABILITY THEORY 11

The probability of a CPL-formula α, with Var(α) ⊆ P, according to probability distribution π is
given by

Pπ(α) =
∑{

π(v)
∣∣∣ v(α) = 1, v ∈ CPL-ValP

}
.

The problem of deciding whether there is a probability distribution π that jointly satisfies
given probabilistic assignments to formulas is called Probabilistic Satisfiability Problem — de-
noted PSAT. PSAT has been extensively discussed in the literature (Georgakopoulos et al., 1988;
Hansen and Jaumard, 2000; Nilsson, 1986) and has recently received a lot of attention due to the
improvements in CPL-solving and linear programming techniques, having generated a variety of
algorithms, for which the empirical phenomenon of phase transition (see Section 2.4 for references)
is by now established (Finger and Bona, 2011; Finger and De Bona, 2015).

A PSAT instance is an expression of the form

Σ =
{
P (αi) ./i pi

∣∣∣ pi ∈ [0, 1] ∩Q, 1 ≤ i ≤ K
}
,

where α1, . . . , αk are CPL-formulas for which Var(αi) ⊆ P, for i = 1, . . . ,K, where |P| = n ∈
N∗, and which are restricted by probability assignments P (αi) ./i pi, ./i ∈ {=,≤,≥}, for i =

1, . . . ,K. The Probabilistic Satisfiability Problem consists in determining if that set of constraints
Σ is consistent.

A linear algebraic formulation of PSAT is provided by Nilsson (1986), it consists of a K × 2n

matrix A = [aij] such that aij = vj(αi). The Probabilistic Satisfiability Problem is, thus, to decide
if there is a probability vector π of dimension 2n that obeys the PSAT restriction:

Aπ ./ p∑
πj = 1 (2.5)

π ≥ 0

If there is a probability distribution π that solves (2.5), we say π satisfies Σ. In such a setting, we
define a PSAT instance Σ as satisfiable if (2.5) is such that there is a π that satisfies it. Clearly, the
conditions in (2.5) ensure π is a probability distribution. Usually the first two conditions of (2.5)
are joined, A is a (k + 1) × 2n matrix with 1’s at its last line, p1 = k + 1 in vector p(k+1)×1, so
./k+1-relation is “=”.

We often use in this work the following version of Carathéodory’s Theorem (Brøndsted, 1983)
to prove that satisfiable (or coherent) probabilistic assignments are induced by “small” probability
distributions.

Proposition 1 (Carathéodory’s Theorem) If x ∈ Rk can be written as a combination

x = λ1x1 + · · ·+ λlxl,

where x1, . . . ,xl ∈ Rk, λ1, . . . , λl ∈ R, λ1, . . . , λl ≥ 0 and λ1 + · · · + λl = 1 — that is x is a
convex combination of x1, . . . ,xl —, then x can be written as a convex combination of at most
k + 1 elements among x1, . . . ,xl. 2

As consequence of Carathéodory’s Theorem, Georgakopoulos et al. (1988) showed that if a
PSAT instance Σ = {P (αi) ./i pi | 1 ≤ i ≤ k} has a solution π satisfying (2.5), then there is

12 PRELIMINARIES 2.4

a solution π′ also satisfying (2.5) such that π′j > 0 for at most k + 1 elements; the remaining ele-
ments of π′ are 0. The existence of such a small witness serves as an NP-certificate for a satisfiable
instance, so PSAT is in NP. Furthermore, note that by making all probabilities 1 in (2.5), the
problem becomes CPL-SAT, so PSAT is NP-hard. It follows that PSAT is NP-complete.

Probability theories, and classical probability theory in particular, are examples of where non-
valid formulas play a nontrivial role, since they may have positive probabilities; tautologies are
guaranteed to have probability 1. Analogously, let us discuss the role that non-logical consequences
may have in classical probability theory when taking into account a classical propositional theory.

Let P (γ) = 1 be a satisfiable probabilistic assignment for every CPL-formula γ ∈ Γ ⊆ LCPL,
where Var(γ) ⊆ P ⊆ P, for all γ ∈ Γ, and P is a finite set; then, there must be an underlying
probability distribution π : ValP → [0, 1] that assigns nonzero probability π(v) > 0 only to CPL-
valuations v ∈ ValPΓ . In order to other added probabilistic assignments P (α) ./ p to maintain
satisfiability of the original ones, the underlying probability distribution also must assign nonzero
probabilities only to CPL-valuations v ∈ ValPΓ . We refer to this situation saying that the probability
distribution π and the probabilistic assignments P (α) ./ p agree or are in accordance with the clas-
sical propositional theory Th(Γ). Observe that semantics modulo satisfiability is in the background
for assigning probabilities to formulas in a way that agrees with a logical theory.

The state-of-the-art PSAT-solving algorithms presented by Finger and De Bona (2015) take
as input instances in atomic normal form 〈Γ,Ψ〉, where Γ is a set of formulas and Ψ is a set
of probabilistic assignments to atomic formulas. Let Var(Γ) ∪ Var(Ψ) ⊆ P, where P is a finite
set; the atomic normal form instance 〈Γ,Ψ〉 is satisfiable if, and only if, there is a probability
distribution π : ValPΓ → [0, 1] that satisfies the assignments in Ψ. Thus, the mentioned algorithm
works by searching for a probability distribution over the semantics modulo satisfiability ValPΓ .
PSAT instances Σ may be put in atomic normal form in polynomial time and the mentioned
algorithms have the empirical phenomenon of phase transition detected.

2.4 Useful Mathematical Techniques

Up to this moment, we have introduced many reasoning frameworks which are necessary either for
placing or modeling the problems we approach throughout this work. Nevertheless, tackling and
discussing those problems also requires some notions of topology, geometry, linear programming
and computational complexity. In this section we limit ourselves to establish the notation we use
and refer the reader to reference works on those subjects.

Let Ω ⊆ [0, 1]n; we denote by Ω◦ its interior, by cl(Ω) its closure and by ∂Ω its boundary in the
usual topology of [0, 1]n. The book of Munkres (2000) is a comprehensive guide to these topological
concepts as well as limits, continuous functions and open, closed, dense, connected and compact
sets. We denote by conv(Ω) the convex hull of Ω ⊆ [0, 1]n. Such geometrical concept together with
affine spaces, polyhedra and simplices and also the Carathéodory’s Theorem (Proposition 1) are
dealt with in the book of Brøndsted (1983).

The problem of computing the maximum of minimum value or a linear function that takes val-
ues over a polyhedron lies within the scope of linear programming. A comprehensive study of such
problem that provides algorithms — as the famous simplex algorithm — and their complexity anal-
ysis may be found in the books of Bertsimas and Tsitsiklis (1997) and Papadimitriou and Steiglitz

2.4 USEFUL MATHEMATICAL TECHNIQUES 13

(1998). The book of Borgward (1986) brings a probabilistic complexity analysis of the simplex
method.

We denote by P the class of decision problems for which there is a (deterministic) polynomial
decision algorithm and by NP the class of decision problems for which there is a nondeterministic
polynomial decision algorithm. Some treatments for such classes and others as well as a theoretical
approach to algorithms, decision and search problems, reductions and the NP-completeness theory
are found in the books of Goldreich (2008) and Papadimitriou (1994). The phenomenon of phase
transition is presented by Cheeseman et al. (1991); we briefly introduce it in Section 4.4.

14 PRELIMINARIES 2.4

Chapter 3

Efficient Representation of Piecewise
Linear Functions into Logic

The ability to represent real continuous functions of real variables by logical formulas might allow
us to apply automated reasoning techniques to the study of real systems whose behavior is modeled
by these functions; however, the fact that there are uncountable many such functions frustrates
the possibility to represent them in a computable formal language. This issue may be circumvented
by representing the functions within an enumerable class which is dense in the class of continuous
functions one desires to represent; this way, we have approximate representations of such continuous
functions. It is also important for such representational ability to be effective that there exist efficient
ways to generate the formulas in a target logic in which reasoning is not exceedingly complex.

In this chapter, we are concerned with the representation of rational McNaughton functions, that
are continuous [0, 1]-valued piecewise linear functions with rational coefficients over [0, 1]n. Rational
McNaughton functions may approximate any [0, 1]-valued continuous function over [0, 1]n as stated
by the following Weierstrass-like results (Aguzzoli and Mundici, 2001, 2003; Amato and Porto,
2000) and depicted in Figure 3.1.

Proposition 2 (Variation of Weierstrass Approximation Theorem) Let f : [0, 1]n → [0, 1]

be a continuous function and ε > 0. Then there is a rational McNaughton function f̃ : [0, 1]n → [0, 1]

such that |f(x)− f̃(x)| < ε, for all x ∈ [0, 1]n. �

We introduce an implicit kind of function representation based on semantics modulo satisfiability
— the representation modulo satisfiability — with the aim to enlarge the representational capacity
of Łukasiewicz Infinitely-valued Logic in order to also encompass rational McNaughton functions;
we call the developed framework the Ł∞-MODSAT system. For such system, we are able to provide
a polynomial algorithm that builds a representation of a rational McNaughton function given in
the regional format, an input format we determine.

Furthermore, we show how representation in Ł∞-MODSAT combined with the possibilities of
expression in Ł∞ may be used to perform formal analysis of neural networks that compute rational
McNaughton functions regarding the properties of accessibility and robustness. We also employ the
introduced techniques in the analysis of a neural network trained to predict whether it will rain
tomorrow in Australia.

In Section 3.1, we introduce the traditional way of representing functions in Ł∞, in Section 3.2,
we carry out a theoretical investigation of representation modulo satisfiability and, in Section 3.3,

15

16 EFFICIENT REPRESENTATION OF PIECEWISE LINEAR FUNCTIONS INTO LOGIC 3.1

f(x)

x

f̃1(x)

x

f̃2(x)

x

Figure 3.1: Continuous one-variable function approximated by rational McNaughton functions

we show that rational McNaughton functions may be represented in this way. In Section 3.4, we
describe a polynomial algorithm for building representations of rational McNaughton functions in
Ł∞-MODSAT and, in Section 3.5, we discuss an implementation of our algorithm and present
some experimental results. In Section 3.6, we apply representation in Ł∞-MODSAT to the formal
analysis of neural networks. Finally, we discuss the related work on logical representation of rational
McNaughton functions in Section 3.7.

In this entire chapter, we refer to Ł∞-formulas, Ł∞-valuations, Ł∞-partial valuations and the
semantics Ł∞-Val as formulas, valuations, partial valuations and Val.

3.1 The Traditional Way

In the traditional way of representing functions by logical formulas, we recursively associate to a
given formula ϕ, with Var(ϕ) ⊆ Xn, a function fϕ : [0, 1]n → [0, 1] by:

(i) fXj (x1, . . . , xn) = xj , for j = 1, . . . , n;

(ii) f¬ϕ(x1, . . . , xn) = 1− fϕ(x1, . . . , xn);

(iii) fϕ′⊕ϕ′′(x1, . . . , xn) = min(1, fϕ′(x1, . . . , xn) + fϕ′′(x1, . . . , xn)).

Note that the definition of fϕ depends on n. It follows that fϕ enjoys the property:

fϕ(v(X1), . . . , v(Xn)) = v(ϕ), for any v ∈ Val. (3.1)

And, then, we say that formula ϕ represents function f . A McNaughton function f : [0, 1]n → [0, 1]

is a function that satisfies the following conditions:

• f is continuous with respect to the usual topology of [0, 1] as an interval of the real number
line;

• There are linear polynomials p1, . . . , pm over [0, 1]n with integer coefficients such that, for
each point x ∈ [0, 1]n, there is an index i ∈ {1, . . . ,m} for which f(x) = pi(x). Polynomials
p1, . . . , pm are the linear pieces of f .

3.2 REPRESENTATION MODULO SATISFIABILITY 17

For any formula ϕ, fϕ is a McNaughton function and reciprocally, McNaughton’s Theorem states
that every McNaughton function f may be represented by some formula ϕ (McNaughton, 1951).

In analogy to this representational framework, the formulas of other logics may represent other
classes of functions. For instance, the formulas of Classical Propositional Logic represent all the
Boolean functions. Moreover, there are many logics whose formulas represent the aforementioned
rational McNaughton functions, which are generalized McNaughton functions whose linear pieces
coefficients may also be rational numbers; see Section 3.7.

Our enterprise is to develop a new way of function representation which enables rational Mc-
Naughton functions to be represented in the very Ł∞.

3.2 Representation Modulo Satisfiability

Although formulas of Ł∞ only represent (integer) McNaughton functions, we might use semantics
modulo satisfiability in order to implicitly represent rational McNaughton functions in a way we
call representation modulo satisfiability. By this method, a (not necessarily rational McNaughton)
function f is represented by a pair 〈ϕ,Φ〉, where ϕ is a formula that semantically acquires values
f(x), for x ∈ [0, 1]n, from valuations in ValΦ, where Φ is a set of formulas. Next, we propose
two different definitions for such a representation concept, which highlight different aspects of the
intended technique; then we compare both of them.

3.2.1 The Formula-Based Approach

We start by analyzing the property which is a crux for the possibility that logical formulas represent
functions in the traditional way: the value of a formula ϕ according to some valuation v is determined
only by the values associated to a finite set of propositional variablesX such that Var(ϕ) ⊆ X. Thus,
if X is semantically identified to the domain of a function, formula ϕ may semantically provide the
values such function take. Let us generalize this notion.

Definition 2 Let ϕ be a formula and let Φ be a set of formulas. We say that a set of propositional
variables Xn determines ϕ modulo Φ-satisfiable if:

• For any 〈x1, . . . , xn〉 ∈ [0, 1]n, there exists at least one valuation v ∈ ValΦ, such that v(Xj) =

xj , for j = 1, . . . , n;

• For any pair of valuations v, v′ ∈ ValΦ such that v(Xj) = v′(Xj), for j = 1, . . . , n, we have
that v(ϕ) = v′(ϕ) — i.e. valuations in ValΦ are truth-functional on variables in Xn. 2

For instance, for any formula ϕ such that Var(ϕ) ⊆ Xn, Xn determines ϕ modulo ∅-satisfiable, by
truth-functionality and the fact that Val∅ = Val. Then, representation modulo satisfiability in the
formula-based approach is defined in a way that retrieves property (3.1).

Definition 3 Let f : [0, 1]n → [0, 1] be a function and 〈ϕ,Φ〉 be a pair where ϕ is a formula and
Φ is a set of formulas. We say that ϕ represents f modulo Φ-satisfiable or that 〈ϕ,Φ〉 represents f
(in the system Ł∞-MODSAT) if:

• Xn determines ϕ modulo Φ-satisfiable;

• f(v(X1), . . . , v(Xn)) = v(ϕ), for all v ∈ ValΦ. 2

18 EFFICIENT REPRESENTATION OF PIECEWISE LINEAR FUNCTIONS INTO LOGIC 3.2

The definition of representation modulo satisfiability in the formula-based approach adapts the
aforementioned property of formulas that makes them suitable for representing functions to the
context of the semantics modulo satisfiability. The next example should clarify the usage of such
property.

Example 1 The function f : [0, 1] → [0, 1], given by f(x1) = x1
2 , may be represented by 〈Z1,Φ〉,

where
Φ =

{
Z1 ⊕ Z1 ↔ X1, Z 1

2
↔ ¬Z 1

2
, Z1 → Z 1

2

}
.

Propositional variable X1 is intended to take values in the domain of function f and Z1 is intended
to take half the value of X1; it is also necessary to define constant 1

2 by propositional variable Z 1
2

and assure Z1 takes at most value 1
2 . Observe that X1 determines ϕ = Z1 modulo Φ-satisfiable since,

if one associates a value x1 in the domain of function f to propositional variable X1 — making
x1 = v(X1) —, the value v(Z1) of formula Z1 is uniquely determined modulo satisfiability of Φ,
i.e. assuming that valuation v satisfies Φ. Moreover, the pair 〈Z1,Φ〉 represents function f , since
f(x1) = v(Z1). 2

3.2.2 The Function-Based Approach

Another definition of representation modulo satisfiability may be achieved by recognizing the im-
plicit representation of a function inside the traditional representation of another function with
constrained domain.

We extend the notion of associating functions to formulas, given a pair 〈ϕ,Φ〉, where ϕ is a
formula and Φ is a set of formulas, with Var(ϕ) ∪ Var(Φ) ⊆ Xm, as follows. First, let the function
domain be

D〈ϕ,Φ〉 =
{
〈x1, . . . , xm〉 ∈ [0, 1]m

∣∣∣ fψ(x1, . . . , xm) = 1, for all ψ ∈ Φ
}
.

Then we inductively define function f〈ϕ,Φ〉 : D〈ϕ,Φ〉 → [0, 1] by the following clauses in total analogy
to (i)-(iii) in the beginning of Section 3.1:

(i) f〈Xj ,Φ〉(x1, . . . , xm) = xj , for j = 1, . . . ,m;

(ii) f〈¬ϕ,Φ〉(x1, . . . , xm) = 1− f〈ϕ,Φ〉(x1, . . . , xm);

(iii) f〈ϕ′⊕ϕ′′,Φ〉(x1, . . . , xm) = min(1, f〈ϕ′,Φ〉(x1, . . . , xm) + f〈ϕ′′,Φ〉(x1, . . . , xm)).

The definitions of D〈ϕ,Φ〉 and f〈ϕ,Φ〉 depend on m. In the function-based approach, we have the
following definition.

Definition 4 Let f : [0, 1]n → [0, 1] be a function and 〈ϕ,Φ〉 be a pair where ϕ is a formula and
Φ is a set of formulas. We say that ϕ functionally represents f modulo Φ-satisfiable or that 〈ϕ,Φ〉
functionally represents f (in the system Ł∞-MODSAT) if Var(ϕ)∪Var(Φ) = Xm, m ≥ n, and there
exist m− n functions zj : [0, 1]n → [0, 1], j = 1, . . . ,m− n, such that:

• For any 〈x1, . . . , xm〉 ∈ D〈ϕ,Φ〉, xn+j = zj(x1, . . . , xn), j = 1, . . . ,m− n;

• For any 〈x1, . . . , xn〉 ∈ [0, 1]n,
f(x1, . . . , xn) = f〈ϕ,Φ〉(x1, . . . , xn, z1(x1, . . . , xn), . . . , zm−n(x1, . . . , xn)).

3.2 REPRESENTATION MODULO SATISFIABILITY 19

We write x = 〈x1, . . . , xn〉 and z = 〈xn+1, . . . , xm〉. 2

In the functional representation modulo satisfiability, a pair 〈ϕ,Φ〉 functionally represents a
function f : [0, 1]n → [0, 1] when formula ϕ is the traditional representation of another function
fϕ : [0, 1]m → [0, 1] whose domain [0, 1]m has possibly higher dimension — m ≥ n — and can
be constrained to D〈ϕ,Φ〉 ⊆ [0, 1]m in order to be identified with the domain [0, 1]n of the original
function f ; elements x ∈ [0, 1]n are identified to elements 〈x, z〉 ∈ D〈ϕ,Φ〉 and it must hold that
f(x) = f〈ϕ,Φ〉(x, z). Note that the constraining from [0, 1]m to D〈ϕ,Φ〉 is a disguised application
of semantics modulo satisfiability since 〈x1, . . . , xm〉 ∈ D〈ϕ,Φ〉 if, and only if, there is a valuation
v ∈ ValΦ such that v(X1) = x1, . . . , v(Xm) = xm.

Example 2 The representation for function f : [0, 1] → [0, 1], given by f(x1) = x1
2 , in Example 1

is almost a functional representation for it; we only need to replace Z1 and Z 1
2
by X2 and X3 to fit

the definition, which results in 〈X2,Φ〉, where

Φ =
{
X2 ⊕X2 ↔ X1, X3 ↔ ¬X3, X2 → X3

}
.

In this case, we have n = 1, m = 3 and

D〈ϕ,Φ〉 =
{
〈x1, x2, x3〉 ∈ [0, 1]3

∣∣∣ x1 ∈ [0, 1], x2 =
x1

2
, x3 =

1

2

}
.

Then, there are functions z1 : [0, 1]→ [0, 1] and z2 : [0, 1]→ [0, 1], given by:

• z1(x1) = x1
2 ;

• z2(x1) = 1
2 .

And we have that
f(x1) =

x1

2
= z1(x1) = f〈ϕ,Φ〉(x1, z1(x1), z2(x1)).

Note that function fϕ : [0, 1]3 → [0, 1] is given by fϕ(x1, x2, x3) = x2. Figure 3.2 has graphs of the
functions fϕ and f〈ϕ,Φ〉 and of the set D〈ϕ,Φ〉. 2

0

10.5
0

0.5

1

D〈ϕ,Φ〉

f〈ϕ,Φ〉

fϕ

x1

x2

Figure 3.2: Graphs of functions fϕ and f〈ϕ,Φ〉 and of set D〈ϕ,Φ〉 in Example 2, for fixed x3 = 1
2

20 EFFICIENT REPRESENTATION OF PIECEWISE LINEAR FUNCTIONS INTO LOGIC 3.2

3.2.3 Formula-Based versus Function-Based Approaches

We have seen two attempts to formalize a concept of representation modulo satisfiability. Each
approach has the virtue of elucidating some different aspects of the technique that provides a pair
〈ϕ,Φ〉, where ϕ is a representative formula and Φ is a set of constraining formulas. In this way, one
might wonder whether they formalize the same concept; despite the similarity, the function-based
presentation is a bit more restrictive than the formula-based one: the former constrains the values
of xn+j , for j = 1, . . . ,m− n, to be functions zj(x1, . . . , xn), for any 〈x1, . . . , xm〉 ∈ D〈ϕ,Φ〉, so that
the set D〈ϕ,Φ〉 is minimal.

Example 3 At the same time that the pair 〈X2 ⊕X3,Φ〉, where

Φ =
{
X2 ↔ ¬X3

}
,

is a representation (in the formula-based approach) for the constant function f : [0, 1] → [0, 1],
given by f(x1) = 1, it is not a functional representation for it. Note that, for a given α ∈ [0, 1],
it is not possible to determine a unique element 〈x1, x2, x3〉 ∈ D〈ϕ,Φ〉 such that x1 = α, since
〈α, β, 1− β〉 ∈ D〈ϕ,Φ〉, for any β ∈ [0, 1]. 2

In order to make both presentations equivalent we should restrict the formula-based one by
adding to Definition 2 the following items:

• Var(ϕ) ∪Var(Φ) = Xm, m ≥ n;

• For any pair of valuations v, v′ ∈ ValΦ such that v(Xj) = v′(Xj), for j = 1, . . . , n, we have
that v(Xj) = v′(Xj), for j = n+ 1, . . . ,m.

The first item above only standardizes propositional variables to appear in ϕ and Φ; such stan-
dardization was intended to ease the recursive process of associating functions to formulas in the
formula-based approach. The second item constrains, for valuations in ValΦ, the values of propo-
sitional variables in Xm \ Xn as functions of the values of propositional variables in Xn; this is
stronger than the original definition which only constrains the value of ϕ — indeed these new items
yield that the value of ϕ is invariant — and is the counterpart to the constraints to elements in
D〈ϕ,Φ〉 by functions z1, . . . , zm−n. We refer to the more restrictive form of Definition 2 as strong
determination modulo satisfiability and to the consequent more restrictive form of Definition 3 as
strong representation modulo satisfiability.

Theorem 1 A pair 〈ϕ,Φ〉 strongly represents a function f : [0, 1]n → [0, 1] (in the formula-based
approach) if, and only if, it functionally represents f (in the function-based approach). 2

Proof Let 〈ϕ,Φ〉 be a strong representation for f (in the formula-based approach); then Var(ϕ)∪
Var(Φ) = Xm. For any x = 〈x1, . . . , xn〉 ∈ [0, 1]n and j = 1, . . . ,m − n, we set zj(x) = vx(Xn+j),
where vx ∈ ValΦ is such vx(Xj) = xj , for j = 1, . . . , n. This way, for any 〈x1, . . . , xm〉 ∈ D〈ϕ,Φ〉,
ψ ∈ Φ and valuation v, with v(Xj) = xj , for j = 1, . . . ,m, we have that v(ψ) = fψ(x1, . . . , xm) = 1;
then v ∈ ValΦ and xn+j = v(Xn+j) = v〈x1,...,xn〉(Xn+j) = zj(x1, . . . , xn), for j = 1, . . . ,m − n.
Finally, for any 〈x1, . . . , xn〉 ∈ [0, 1]n, there is a v ∈ ValΦ such that v(Xi) = xi, for i =

1, . . . , n. Therefore, 〈v(X1), . . . , v(Xm)〉 ∈ D〈ϕ,Φ〉, f(x1, . . . , xn) = f(v(X1), . . . , v(Xn)) = v(ϕ) =

3.3 REPRESENTATION THEOREMS VIA HAT FUNCTIONS 21

f〈ϕ,Φ〉(v(X1), . . . , v(Xm)) = f(x1, . . . , xn, z1(x1, . . . , xn), . . . , zm−n(x1, . . . , xn)) and 〈ϕ,Φ〉 is a func-
tional representation for f (in the function-based approach). Conversely, let 〈ϕ,Φ〉 be a func-
tional representation for f (in the function-based approach); then Var(ϕ) ∪ Var(Φ) = Xm.
Since for any x = 〈x1, . . . , xn〉 ∈ [0, 1]n there are values zj(x), j = 1, . . . ,m − n, such that
〈x, z1(x), . . . , zm−n(x)〉 ∈ D〈ϕ,Φ〉, then, for all ψ ∈ Φ, v(ψ) = fψ(x, z1(x), . . . , zm−n(x)) = 1,
for a valuation v ∈ ValΦ, where v(X1) = x1, . . . , v(Xn) = xn, v(Xn+1) = z1(x), . . . , v(Xm) =

zm−n(x). For v, v′ ∈ ValΦ, where x = 〈v(X1), . . . , v(Xn)〉 = 〈v′(X1), . . . , v′(Xn)〉, we have
〈x, v(Xn+1), . . . , v(Xm)〉, 〈x, v′(Xn+1), . . . , v′(Xm)〉 ∈ D〈ϕ,Φ〉, then v(Xn+j) = zj(x) = v′(Xn+j),
for j = 1, . . . ,m − n, and v(ϕ) = f〈ϕ,Φ〉(x, z1(x), . . . , zm−n(x)) = v′(ϕ); therefore, Xn strongly de-
termines ϕ modulo Φ-satisfiable. Also, f(x) = f〈ϕ,Φ〉(x, z1(x), . . . , zm−n(x)) = v(ϕ), for v ∈ ValΦ,
and 〈ϕ,Φ〉 is a strong representation for f (in the formula-based approach). �

Among all the versions of representation modulo satisfiability we have investigated, we choose
to deal (from now on) with the formula-based approach as we deem it a clearer and less restrictive
definition. Moreover, we will only refer to its original version presented in Section 3.2.1 as fixing the
value of ϕ modulo Φ-satisfiable is enough for establishing a satisfactory concept of representation.
However, all the constructions of representations to follow also fix the values of the additional
propositional variables (other than the ones in Xn) modulo Φ-satisfiable; thus, for them to be
strong representations, only the standardization of the propositional variables is missing.

3.3 Representation Theorems via Hat Functions

We will establish a representation result stating that all rational McNaughton functions may be
represented in Ł∞-MODSAT. For that, we adapt the proof of McNaughton’s Theorem — which
states that all McNaughton functions may be represented in Ł∞ — in the work of Mundici (1994).
Such proof is constructive and makes use of Schauder hats, that are functions which we slightly
modify into hat functions.

First, we remark a feature of representation modulo satisfiability: constants 1
d , with d ∈ N∗,

may be represented by the pair

〈ϕ,Φ〉 =
〈
Z 1
d
,
{
Z 1
d
↔ ¬(d− 1)Z 1

d

}〉
,

where formula ϕ is only one propositional variable — from now on denoted by Z 1
d
— and set Φ is

a singleton comprehending formula Z 1
d
↔ ¬(d− 1)Z 1

d
— from now on denoted by ϕ 1

d
. In fact, for

any valuation v ∈ Valϕ 1
d

, v(Z 1
d
) = 1

d . Moreover, we have the following result.

Lemma 1 Given a rational number c ∈ [0, 1], there is a set Φ of formulas, with Zc ∈ Var(Φ), such
that, for any valuation v ∈ ValΦ, we have v(Zc) = c. 2

Proof The result already holds in Ł∞ for c = 0 and c = 1; also, it was established for c = 1
b , with

b ∈ N∗, in previous discussion. Let c = a
b , with a, b ∈ Z and 0 < a < b, and ϕc = Zc ↔ aZ 1

b
. If

ϕ 1
b
, ϕc ∈ Φ, any valuation v ∈ ValΦ makes v(Zc) = c. �

Our next step is to show that truncated linear functions are representable in Ł∞-MODSAT. Let

22 EFFICIENT REPRESENTATION OF PIECEWISE LINEAR FUNCTIONS INTO LOGIC 3.3

g : [0, 1]n → [0, 1] be a function and x ∈ [0, 1]n, we write its truncated version by

g#(x) = min
(

1,max
(
0, g(x)

))
.

Lemma 2 Let g : [0, 1]n → R be a linear function with rational coefficients,

g(x) =
a1

b1
x1 + · · ·+ an

bn
xn + c,

where ai ∈ Z, bi ∈ Z∗+ and c ∈ Q. Then, g# is representable in Ł∞-MODSAT. 2

Proof We proceed by induction on a = |a1| + · · · + |an|. If a = 0, the result follows by
Lemma 1. For a > 0, assume the lemma holds for a − 1 and, with no loss of generality, that
|a1| = max(|a1|, . . . , |an|).

Let us consider first the case where a1 > 0. Let h = g − x1
b1
, such that

h(x) =
a1 − 1

b1
x1 + · · ·+ an

bn
xn + c.

By induction hypothesis, there are 〈ϕh,Φh〉 and 〈ϕh+1,Φh+1〉 which represent h# and (h + 1)#,
respectively. We define

Φ = Φh ∪ Φh+1 ∪
{
Z 1
b1

↔ ¬(b1 − 1)Z 1
b1

, b1Z1 ↔ X1, Z1 → Z 1
b1

}
,

and claim that 〈ϕ,Φ〉, with ϕ =def (ϕh ⊕Z1)�ϕh+1, represents g#. Note that, with the three new
formulas added to Φ, the pair 〈Z 1

b1

,Φ〉 defines the constant 1
b1

and the pair 〈Z1,Φ〉 defines function
x1
b1
, depending on the value of x1 = v(X1); this remark together with the induction hypothesis

and by truth-functionality yield that Xn determines ϕ modulo Φ-satisfiable. Let v ∈ ValΦ and
x = 〈v(X1), . . . , v(Xn)〉 ∈ [0, 1]n. When x is such that h(x) ∈ [0, 1],

g#(x) =
(
h(x) +

x1

b1

)#
= v(ϕh ⊕ Z1) = v((ϕh ⊕ Z1)� 1) = v(ϕ).

When x is such that h(x) ∈ [−1, 0],

g#(x) =
(
h(x) +

x1

b1

)#
= max

(
0, h(x) +

x1

b1

)
= max

(
0,
x1

b1
+ h(x) + 1− 1

)
=

= v(Z1 � ϕh+1) = v(ϕ).

The cases where h(x) > 1 and h(x) < −1 are trivial; then, ϕ represents g# modulo Φ-satisfiable.
For the case where a1 < 0, it is sufficient to apply the same reasoning to 1−g. As 1− (1−g)# =

g#, the lemma follows. �

Next, we prove a version of our representation theorem for the simpler case of rational Mc-
Naughton functions with one variable; the simplification is intended to better illustrate the role of
hat functions.

Theorem 2 Let f : [0, 1] → [0, 1] be a one-variable rational McNaughton function. Then, f is
representable in Ł∞-MODSAT. 2

3.3 REPRESENTATION THEOREMS VIA HAT FUNCTIONS 23

Proof The domain [0, 1] of f may be partitioned into [αi, αi+1], i = 0, . . . , n − 1, such that each
restriction f |[αi,αi+1] is a linear piece that constitutes f ; let βi = f(αi).

We define the hat functions Hi : [0, 1]→ [0, 1], i = 0, . . . , n, by:

• H0 has as graph the segments from 〈α0, β0〉 to 〈α1, 0〉 and from 〈α1, 0〉 to 〈αn, 0〉;

• Hi has as graph the segments from 〈α0, 0〉 to 〈αi−1, 0〉, from 〈αi−1, 0〉 to 〈αi, βi〉, from 〈αi, βi〉
to 〈αi+1, 0〉 and from 〈αi+1, 0〉 to 〈αn, 0〉, i = 1, . . . , n− 1;

• Hn has as graph the segments from 〈α0, 0〉 to 〈αn−1, 0〉, from 〈αn−1, 0〉 to 〈αn, βn〉.

The hat functions has graphs as in Figure 3.3; such functions are only different from the Schauder
hats in Mundici (1994) on the values βi ∈ Q.

By Lemma 2, hat functions H0 and Hn are easily representable in Ł∞-MODSAT since they
may be written as a function g#, where g is linear. The other hat functions Hi, i = 1, . . . , n − 1,
may be represented by pairs 〈ϕ1 ∧ ϕ2,Φ1 ∪ Φ2〉, where 〈ϕ1,Φ1〉 and 〈ϕ2,Φ2〉 represent g#

1 and g#
2 ,

respectively, where g1 and g2 are linear. Note that the variables Z1 associated to the variable x1,
with intention to have value x1

b1
as in Lemma 2, must be different for each representation 〈ϕ1,Φ1〉

and 〈ϕ2,Φ2〉.
Let 〈ϕHi ,ΦHi〉 be a representation of Hi. Then, f is representable in Ł∞-MODSAT by the pair

〈ϕH1 ⊕ · · · ⊕ ϕHn ,ΦH1 ∪ · · · ∪ ΦHn〉. The same note about variables Z1 in the former paragraph
also applies here. �

y

x
H0

y

x
Hi

y

x
Hn

Figure 3.3: Graphs of examples of one-variable hat functions H0, Hi, for i = 1, . . . , n− 1, and Hn

In the following, we prove the main result of this section which generalizes Theorem 2 to the
multivariate case; its proof uses constructions from the literature (see Section 2.4 for references)
and subsume the use of hat functions above.

Theorem 3 Let f : [0, 1]n → [0, 1] be a (multivariable) rational McNaughton function. Then, f is
representable in Ł∞-MODSAT. 2

Proof The domain of f may be decomposed as follows (Cignoli et al., 2000, Section 3.3). Let
p1, . . . , pm be an exhaustive list of distinct linear pieces constituents of f , each pair pi and pk of
these constituents defines two closed half-spaces H+ and H− such that pi(x) ≥ pk(x) for x ∈ H+

24 EFFICIENT REPRESENTATION OF PIECEWISE LINEAR FUNCTIONS INTO LOGIC 3.4

and pk(x) ≥ pi(x) for x ∈ H−. Thus, for any permutation ρ of the set {1, . . . ,m}, we define

Pρ =
{
x ∈ [0, 1]n

∣∣∣ pρ(1)(x) ≥ · · · ≥ pρ(m)(x)
}
,

which is a closed convex polyhedron, since it is an intersection of [0, 1]n and a finite set of closed
half-spaces. As the pi’s have rational coefficients, the vertices of Pρ have rational coordinates. Let
W be the set of simplices (also with rational coordinates) arising from some triangulation of n-
dimensional polyhedra Pρ; the union of W is the cube [0, 1]n, the intersection of a pair of elements
in W is either a common face between them or empty and, for each S ∈ W, there is an index
uS ∈ {1, . . . ,m} such that, restricted to S, f |S = puS .

For each vertex v of some simplex in W, we define the hat function Hv : [0, 1]n → [0, 1] so that:

• Hv(v) = f(v);

• Hv(u) = 0 for each vertex u of a simplex in W different from v;

• Hv is linear over each simplex in W.

As in the one-variable case, the hat functions may be represented in Ł∞-MODSAT by a pair 〈ϕ,Φ〉
where ϕ is a (

∨∧
)-combination of the hat function linear pieces given by Lemma 2 (Cignoli et al.,

2000, Proposition 9.1.4). Thus, f may be represented by 〈
⊕

v ϕHv ,
⋃

v ΦHv〉. �

The representations built in Theorems 2 and 3 are said to be in disjunctive normal form since
they are disjunctions (⊕) of hat functions, which empowers the modulo satisfiability technique
to increase the expressivity of Ł∞. Moreover, since they are constructive proofs, we might be
tempted to derive algorithms for building representations in Ł∞-MODSAT from them. However,
such representations could be unnecessarily complex for the following reasons.

• For m distinct linear pieces, there may be m! n-dimensional polyhedra Pρ in the worst case.

• The number of simplices in a minimum-cardinality decomposition of the n-dimensional unit
cube may be too high; for instance, for [0, 1]7 it is at least 1175 (Hughes and Anderson, 1996).

• Besides that, the representations of truncated linear functions in Lemma 2 are already expo-
nential in the binary representation of their coefficients, since they are inductively built on
a = |a1|+ · · ·+ |an|.

3.4 An Efficient Algorithm for Building Representations

We have showed that the coupling of representation modulo satisfiability with hat functions enables
the constructive representation of rational McNaughton functions in Ł∞-MODSAT. However, we
need to produce a less complex representation in order to derive an efficient algorithm that actually
builds it; this is our aim in this section.

3.4.1 Regional Format of Rational McNaughton Functions

In representation via hat functions, a rational McNaughton function is first seen as a partition
of its domain in subsets Pρ in a way that, in each subset, the function is identical to one of its

3.4 AN EFFICIENT ALGORITHM FOR BUILDING REPRESENTATIONS 25

linear pieces. For our algorithm, we standardize an encoding of rational McNaughton functions that
encompasses this format, however is more general.

A rational McNaughton function f : [0, 1]n → [0, 1] is in regional format if it is given by m (not
necessarily distinct) linear pieces

pi(x) = γi0 + γi1x1 + · · ·+ γinxn, (3.2)

for x = 〈x1, . . . , xn〉 ∈ [0, 1]n, γij ∈ Q and i = 1, . . . ,m, with each linear piece pi identical to f over
a convex set Ωi ⊆ [0, 1]n called region such that:

•
⋃m
i=1 Ωi = [0, 1]n;

• Ω◦i′ ∩ Ω◦i′′ = ∅, for i′ 6= i′′;

• Regions Ωi are given in such a way that there is a polynomial procedure to determine whether
or not a linear piece pk is above other linear piece pi over region Ωi, that is whether or not
pk(x) ≥ pi(x), for all x ∈ Ωi;

• Such setting of linear pieces and regions satisfy the lattice property, that is, for i 6= j, there is
k such that linear piece pi is above linear piece pk over region Ωi and linear piece pk is above
linear piece pj over region Ωj .

Note that in the regional format encoding we allow the repetition of linear pieces so that there is a
one-to-one correspondence between regions and them. In this format, the size of a function is the
sum of the number of bits necessary to represent its linear pieces coefficients as fractions a

b plus
the space necessary for representing its regions in some assumed encoding. We discuss the regional
format further at the end of this section.

Example 4 Rational McNaughton function f with graph in Figure 3.4 may be given by the linear
pieces:

• p1(x1, x2) = 4
9 + 2

3x2;

• p2(x1, x2) = 5
6 −

1
2x2;

• p3(x1, x2) = 4
3 − x1.

Regions Ωi associated to each linear piece are depicted in Figure 3.5a and described in Table 3.1;
we soon tackle the problem of deciding if a linear piece is above another. The polyhedra Pρ in the
representation of f via hat functions (Section 3.3) are depicted in Figure 3.5b; note that, for such
representation, these polyhedra still need a further decomposition into triangles (2-simplices). 2

Let us deal with the encoding of regions. First, we characterize them in next result.

Lemma 3 Closures of regions in regional format of rational McNaughton functions are polyhedra.2

Proof Let Ω be a region of a rational McNaughton function in regional format. Since cl(Ω) is a
convex compact set, it is the convex hull of its extreme points. Suppose cl(Ω) has infinitely many
extreme points and let E be the set comprehending the infinitely many extreme points which are
in the interior of [0, 1]n. Let U =

⋃
{Ωi | Ωi 6= Ω}; we have that E ⊆ ∂U and, since U is a finite

26 EFFICIENT REPRESENTATION OF PIECEWISE LINEAR FUNCTIONS INTO LOGIC 3.4

0

1
0

1

x1

x2

Figure 3.4: Graph of rational McNaughton function with three linear pieces over [0, 1]2

x1

x2

Ω1 Ω2

Ω3

(a) Config. with 3 regions

x1

x2

P321 P312

P231 P132

P213 P123

(b) Config. with 6 regions

Figure 3.5: Some possible region configurations for function f in Example 4

Ω1 Ω2 Ω3

8− 9x1 − 6x2 ≥ 0
1
3 − x2 ≥ 0

x1 ≥ 0

x2 ≥ 0

1− 2x1 + x2 ≥ 0

−1
3 + x2 ≥ 0

x1 ≥ 0

1− x2 ≥ 0

−8 + 9x1 + 6x2 ≥ 0

−1 + 2x1 − x2 ≥ 0

1− x1 ≥ 0

x2 ≥ 0

Table 3.1: Regions Ωi for function f in Example 4

3.4 AN EFFICIENT ALGORITHM FOR BUILDING REPRESENTATIONS 27

union of regions Ωi, there exists an infinite set E′ ⊆ E, such that E′ ⊆ ∂Ω′ ⊆ cl(Ω′), for some
Ω′ = Ωi 6= Ω. Let En+1 ⊆ E′ be a set with n + 1 points; as cl(Ω) and cl(Ω′) are convex sets, we
have that conv(En+1) ⊆ cl(Ω)∩ cl(Ω′). Also, as Ω and Ω′ are convex sets, we have that Ω◦ = cl(Ω)◦

and Ω′◦ = cl(Ω′)◦. Finally, since conv(En+1) is an n-simplex, it follows that Ω◦ ∩Ω′◦ 6= ∅, contrary
to the definition of regional format. Therefore, cl(Ω) is a polyhedron. �

Since the closure cl(Ω) of region Ω is a polyhedron, it may be entirely described as the finite
intersection of half-spaces given by linear inequalities as

cl(Ω) =
{
x ∈ [0, 1]n

∣∣∣ ωj0 + ωj1x1 + · · ·+ ωjnxn ≥ 0, j = 1, . . . , λΩ

}
. (3.3)

We show a polynomial procedure for deciding if a linear piece pk is above another linear piece pi
over region Ωi that takes polyhedron cl(Ωi) given by (3.3) as input. Let pk and pi be given by

pk(x) = γk0 + γk1x1 + · · ·+ γknxn,

pi(x) = γi0 + γi1x1 + · · ·+ γinxn,

where x = 〈x1, . . . , xn〉. In order to decide if pk is above pi over Ωi, Algorithm 1 analyzes the
optimal value of the maximization linear program:

max pi − pk
subject to cl(Ωi)

We call MAX(f, P) the routine that computes maximum value of an objective function f over
polyhedron P . It is known that such linear programming problem may be solved in polynomial
time (see Section 2.4 for references).

Algorithm 1 ABOVE-MAX: decides if a linear piece is above another one over a region
Input: Linear pieces pk and pi given by their coefficients γk0, . . . , γkn,. . . ,γi0, . . . , γin and polyhedron
cl(Ωi).
Output: True, if pk is above pi over Ωi. Or False, otherwise.
1: M := MAX(pi − pk, cl(Ωi));
2: if M ≤ 0 then
3: return True;
4: else
5: return False;
6: end if

Theorem 4 Given linear pieces pk and pi and a polyhedron cl(Ωi), Algorithm 1 decides in polyno-
mial time whether or not pk is above pi over Ωi. 2

Proof We have that pk(x) ≥ pi(x), for x ∈ Ωi if, and only if,

pi(x)− pk(x) ≤ 0, (3.4)

for x ∈ Ωi. Let M be the maximum value of the objective function pi(x)− pk(x) in cl(Ωi) and let
xM ∈ cl(Ωi) be an argument where the objective function has value M . In case M ≤ 0, then (3.4)

28 EFFICIENT REPRESENTATION OF PIECEWISE LINEAR FUNCTIONS INTO LOGIC 3.4

is satisfied by all x ∈ Ωi ⊆ cl(Ωi). In case M > 0, then, either xM ∈ Ωi fails to fulfill (3.4) or, if
xM ∈ ∂Ωi, there is some x ∈ Ωi which fails to do so, by the continuity of the objective function.
The correctness of Algorithm 1 follows from these remarks and, as MAX is a polynomial routine,
it terminates in polynomial time. �

In view of Theorem 4, it is enough to encode regions Ω in such a way that there is a polynomial
procedure to compute cl(Ω) as in (3.3). Moreover, from continuity of rational McNaughton function
f , we have that f(x) = pi(x), for any x ∈ cl(Ωi), so a natural standardization is to consider regions
that are already polyhedra given by (3.3). We say that functions given this way are in closed regional
format ; this is the case in Example 4.

We should establish that any rational McNaughton function may be put in (closed) regional for-
mat; let f : [0, 1]n → [0, 1] be a rational McNaughton function with distinct linear pieces p1, . . . , pm̄.
As in representation via hat functions in Section 3.3, for each permutation ρ of the set {1, . . . , m̄},
we define the polyhedron

Pρ =
{
x ∈ [0, 1]n

∣∣∣ pρ(1)(x) ≥ · · · ≥ pρ(m̄)(x)
}
. (3.5)

Let C be the set of n-dimensional polyhedra Pρ, for some permutation ρ.

Theorem 5 The set C has the following properties.

(a)
⋃
C = [0, 1]n.

(b) For polyhedron P ∈ C and indexes i′, i′′ ∈ {1, . . . , m̄} with i′ 6= i′′, pi′(x) 6= pi′′(x), for any
x ∈ P ◦.

(c) P ′◦ ∩ P ′′◦ = ∅, for P ′, P ′′ ∈ C such that P ′ 6= P ′′.

(d) For each polyhedron P ∈ C, there is an index iP ∈ {1, . . . , m̄} such that f(x) = piP (x), for
x ∈ P .

(e) For polyhedra P ′, P ′′ ∈ C, there is an index k ∈ {1, . . . , m̄} such that piP ′ is above pk over P ′

and pk is above piP ′′ over P
′′. 2

Proof (a) For any x ∈ P ∈ C, x ∈ [0, 1]n. On the other hand, for any x ∈ [0, 1]n, there is a
permutation ρ for which Pρ is n-dimensional and x ∈ Pρ.

(b) Let x ∈ P ◦ and let i′, i′′ ∈ {1, . . . , m̄} be indexes such that i′ 6= i′′. Since pi′ and pi′′ are distinct
linear pieces, if pi′(x) = pi′′(x), for some x ∈ P ◦, there would be points x1,x2 ∈ P ◦ in a
neighborhood of x such that pi′(x1) < pi′′(x1) and pi′′(x2) < pi′(x2), contrary to the definition
of P .

(c) Let x ∈ P ′◦ ∩ P ′′◦. Then, by definitions of P ′ and P ′′, there are i′, i′′ ∈ {1, . . . , m̄} such that
pi′(x) = pi′′(x), contrary to item (b).

(d) Let {i1, . . . , ik} ⊆ {1, . . . , m̄} be a non-singleton set of indexes such that for any l ∈ {1, . . . , k},
there is a x ∈ P ◦, such that f(x) = pil(x). Let Uil = {x ∈ P ◦ | f(x) = pil(x)} 6= ∅, for
l = 1, . . . , k; we have that ∪kl=1Uil = P ◦ and, by item (b), Uil′ ∩ Uil′′ = ∅, for l′ 6= l′′. As

3.4 AN EFFICIENT ALGORITHM FOR BUILDING REPRESENTATIONS 29

P ◦ is a connected set, there are distinct i′, i′′ ∈ {i1, . . . , ik} and b ∈ P ◦ such that b ∈ ∂Ui′

and b ∈ Ui′′ . As pi′ restricted to Ui′ ∪ {b} is continuous, for any sequence {bn} ⊆ Ui′ such
that limbn = b (which exists since b ∈ ∂Ui′), we have that lim f(bn) = lim pi′(bn) = pi′(b).
However, f(b) = pi′′(b) 6= pi′(b), by item (b), contrary to the continuity of f . Therefore, there
is only one iP ∈ {1, . . . , m̄} such that f(x) = piP (x), for x ∈ P ◦ and, by continuity of f , for all
x ∈ P .

(e) If piP ′ is not above piP ′′ over P
′′, there is b ∈ P ′′◦ such that piP ′ (b) ≤ piP ′′ (b). Let a ∈ P ′◦ and

A,B ∈ [0, 1]n+1 be such that A = 〈a, f(a)〉 and B = 〈b, f(b)〉; also, let g be the restriction of
f to the line segment [a,b] = {(1 − λ)a + λb | λ ∈ [0, 1]}. There is a point a′ ∈ [a,b] \ {a},
such that g coincides with piP ′ over [a,a′]; since the graph of g lies strictly below [A,B] over
[a,a′] \ {a}, among all c ∈ [a,b] \ {a} such that 〈c, g(c)〉 ∈ [A,B], there is one point d nearest
to a (possibly b). Let k ∈ {1, . . . , m̄} be such that g(d) = pk(d) and g coincides with pk on a
nonempty line segment [d′,d] ⊆ [a,d]; the restriction of the graph of pk to [d′,d] \ {d} must
be strictly below [A,B]. Then, pk(a) < piP ′ (a), which makes piP ′ to be above pk over P ′. We
also have that piP ′′ (b) < pk(b), which makes pk to be above piP ′′ over P

′′. �

Polyhedra in C may play the role of regions in regional format since they are convex sets with the
properties above; note that the same linear piece pi may be associated to many distinct polyhedra.
Determining whether a linear piece pk is above other linear piece pi over P ∈ C boils down to
comparing their values for some point x ∈ P ◦. Thus, any rational McNaughton function may
be encoded in regional format. Figure 3.5b shows the permutation-based configuration C for the
function in Example 4.

The regional format assures sufficient conditions and information about the ordering of linear
pieces over its region configuration which are required for a lattice representation, i.e. a representa-
tion that comes from the application of lattice operations to the linear pieces of a given continuous
piecewise linear function. For instance, Mundici (1994) uses a lattice representation for represent-
ing McNaughton functions in Ł∞ — which we adapted in Section 3.3 for representing rational
McNaughton functions in Ł∞-MODSAT — that requires conditions and information from the re-
gion configuration given by the decomposition in simplices of the polyhedra Pρ in C; this path has
also been followed in the literature for representing continuous piecewise linear functions in other
Ł∞-based logical systems; see Section 3.7.

As already noticed, the setback with describing a rational McNaughton function using the
set C of polyhedra is that, in the worst case, |C| = m̄!; the situation may be even worse when
decompositions in simplices are considered. However, in many cases, regional format is able to
encompass sufficient conditions and information for lattice representation with a smaller set of
regions; Figure 3.5 shows such contrast related to Example 4 and it may also be seen in the classes of
functions in Section 3.5. This feature does not interfere with the complexity of the general algorithm
in Section 3.4.3, since it only amounts to a possible reduction of the input size, but it might yield a
gain in the complexity of the representation of inputs and make some applications viable. Of course,
if a more compact encoding of rational McNaughton functions is provided, a side effect might be
an inefficient translation from such encoding to the regional format. However, we are unaware of
methods that perform representations in a Ł∞-based logical system which require less conditions
or information than the provided by regional format or do not apply lattice representations.

30 EFFICIENT REPRESENTATION OF PIECEWISE LINEAR FUNCTIONS INTO LOGIC 3.4

3.4.2 A Particular Case: Truncated Linear Functions

In Lemma 2, we have a constructive representation of truncated linear functions — which are
particular cases of rational McNaughton functions — in Ł∞-MODSAT; unfortunately, this is an
exponential construction as it is based on a unary representation of ai. We show next another
possibility for representing these functions and provide a polynomial algorithm for computing them.

Let p : [0, 1]n → R be a nonzero linear polynomial given by

p(x) =
a0

b0
+
a1

b1
x1 + · · ·+ an

bn
xn, (3.6)

for x = 〈x1, . . . , xn〉 ∈ [0, 1]n, aj ∈ Z and bj ∈ Z∗+. We want to build a representation for the
function p# : [0, 1]n → [0, 1] given by

p#(x) = min
(

1,max
(
0, p(x)

))
. (3.7)

We have that p#(x) = 0, if p(x) < 0; p#(x) = 1, if p(x) > 1; and p#(x) = p(x), otherwise. In order
to rewrite expression (3.6), we define:

αj = aj , for j ∈ P ;

αj = −aj , for j ∈ N ;

βj = β · bj , for j = 0, . . . , n;

where j ∈ P , if aj > 0, and j ∈ N , if aj < 0, with P ∪N ⊆ {0, . . . , n}, and β is the least integer
greater than or equal to

max

∑
j∈P

aj
bj
, −

∑
j∈N

aj
bj

 .

We have that αj ∈ Z+ and βj ∈ Z∗+, for j = 0, . . . , n. Let x0 = 1 and define functions pP : [0, 1]n → R
and pN : [0, 1]n → R, for x = 〈x1, . . . , xn〉 ∈ [0, 1]n, by:

pP (x) =
∑
j∈P

αj
βj
xj ; pN (x) =

∑
j∈N

αj
βj
xj . (3.8)

Lemma 4 Functions p, pP and pN in (3.6) and (3.8) have the following properties, for x ∈ [0, 1]n:

(a) p(x) = β ·
(
pP (x)− pN (x)

)
;

(b) 0 ≤ pP (x), pN (x) ≤ 1. 2

Proof By elementary algebraic manipulation. �

The lemma above decomposes function p in terms of pP and pN . Let us represent the latter ones.
Let Zpj , Z 1

βj

∈ P; for a set of indexes J ∈ {P,N}, define:

ϕ̃J =
⊕

j∈J\{0}

αjZ
p
j ; Φ̃J =

⋃
j∈J\{0}

{
ϕ 1
βj

, βjZ
p
j ↔ Xj , Zpj → Z 1

βj

}
.

3.4 AN EFFICIENT ALGORITHM FOR BUILDING REPRESENTATIONS 31

And then, define:

ϕ̄J = ϕ̃J , Φ̄J = Φ̃J , if 0 /∈ J ;
ϕ̄J = α0Z 1

β0

⊕ ϕ̃J , Φ̄J = Φ̃J ∪ {ϕ 1
β0

}, otherwise.
(3.9)

Lemma 5 Functions pP and pN in (3.8) may respectively be represented by 〈ϕ̄P , Φ̄P 〉 and 〈ϕ̄N , Φ̄N 〉
in (3.9). 2

Proof Let J ∈ {P,N}. If J = ∅, then 〈ϕ̄J , Φ̄J〉 = 〈0,∅〉 represents pJ . For 〈x1, . . . , xn〉 ∈ [0, 1]n,
define a valuation v ∈ Val such that v(Xj) = xj and v(Zpj) =

xj
βj
, for j ∈ J \ {0}, and v(Z 1

βj

) = 1
βj
,

for j ∈ J . We have that v ∈ ValΦ̄J . Now, let v, v
′ ∈ ValΦ̄J such that v(Xj) = v′(Xj), for j =

1, . . . , n. By rational constant representation, v(Z 1
βj

) = v′(Z 1
βj

) = 1
βj
, for j ∈ J . Thus v(Zpj) ≤ 1

βj

and v′(Zpj) ≤ 1
βj
, which implies that βj ·v(Zpj) = v(βjZ

p
j) = v(Xj) = v′(Xj) = v′(βjZ

p
j) = βj ·v′(Zpj)

and, then, v(Zpj) = v′(Zpj), for j ∈ J \{0}. Therefore, v(ϕ̄J) = v′(ϕ̄J) and Xn determines ϕ̄J modulo
Φ̄J -satisfiable. Finally, suppose v ∈ ValΦ̄J . In the case where 0 ∈ J ,

pJ(v(X1), . . . , v(Xn)) = α0 · v(Z 1
β0

) +
∑

j∈J\{0}

αj · v(Zpj) = v(ϕ̄J),

by Lemma 4 and aforementioned equations v(Z 1
β0

) = 1
β0

and βj · v(Zpj) = v(Xj). The case where

0 /∈ J is similar. �

For the final step towards a representation for p#, we define:

ϕ̄p = β[¬(ϕ̄P → ϕ̄N)], Φ̄p = Φ̄P ∪ Φ̄N . (3.10)

Theorem 6 Function p# in (3.7) may be represented by 〈ϕ̄p, Φ̄p〉 in (3.10). 2

Proof For 〈x1, . . . , xn〉 ∈ [0, 1]n, there exists v ∈ ValΦ̄p such that v(Xj) = xj as in the proof of
Lemma 5 with J = P ∪ N . Now, let v, v′ ∈ ValΦ̄p such that v(Xj) = v′(Xj), for j = 1, . . . , n. In
particular, v, v′ ∈ ValΦ̄J and, by Lemma 5, v(ϕ̄J) = v′(ϕ̄J), for J ∈ {P,N}. Therefore, v(ϕ̄p) =

v′(ϕ̄p) and Xn determines ϕ̄p modulo Φ̄p-satisfiable. Finally, suppose v ∈ ValΦ̄p . In particular,
v ∈ ValΦ̄P and v ∈ ValΦ̄N . If p(v(X1), . . . , v(Xn)) ≤ 0, by Lemma 4, pP (v(X1), . . . , v(Xn)) ≤
pN (v(X1), . . . , v(Xn)). Therefore, by Lemma 5, v(ϕ̄P) ≤ v(ϕ̄N) and, then, v(ϕ̄p) = 0. On the other
hand, if p(v(X1), . . . , v(Xn)) ≥ 0, by Lemma 4, pP (v(X1), . . . , v(Xn)) ≥ pN (v(X1), . . . , v(Xn)).
Therefore, by Lemma 5, v(ϕ̄P) ≥ v(ϕ̄N) and, then, v(¬(ϕ̄P → ϕ̄N)) = 1 − min(1, 1 − v(ϕ̄P) +

v(ϕ̄N)) = v(ϕ̄P)− v(ϕ̄N). Finally, by Lemmas 4 and 5, p(v(X1), . . . , v(Xn)) = β · (v(ϕ̄P)− v(ϕ̄N)),
hence p#(v(X1), . . . , v(Xn)) = v(ϕ̄p) in any case. �

Table 3.2 shows how functions in Example 4 can be represented as in Theorem 6.
In order to set up a polynomial algorithm for computing a representation 〈ϕp,Φp〉 for p#, we

analyze more closely expressions nψ, which show up in ϕ̄p and in formulas in Φ̄p. These expressions
are exponential in the binary representation of n since they denote n-fold repetitions of a formula
ψ. We deviate from this situation by using blog nc+1 new propositional variables ξ0

ψ, ξ
1
ψ, . . . , ξ

blognc
ψ

32 EFFICIENT REPRESENTATION OF PIECEWISE LINEAR FUNCTIONS INTO LOGIC 3.4

ϕ̄p1 :
¬
(
Z 1

18
⊕ Z 1

18
⊕ Z 1

18
⊕ Z 1

18
⊕ Zp1

2 ⊕ Z
p1
2 → 0

)
⊕¬

(
Z 1

18
⊕ Z 1

18
⊕ Z 1

18
⊕ Z 1

18
⊕ Zp1

2 ⊕ Z
p1
2 → 0

)
Φ̄p1 :

Z 1
18
↔ ¬

(
Z 1

18
⊕ Z 1

18
⊕ Z 1

18
⊕ Z 1

18
⊕ Z 1

18
⊕ Z 1

18
⊕ Z 1

18
⊕ Z 1

18
⊕ Z 1

18

⊕ Z 1
18
⊕ Z 1

18
⊕ Z 1

18
⊕ Z 1

18
⊕ Z 1

18
⊕ Z 1

18
⊕ Z 1

18
⊕ Z 1

18

)
Z 1

6
↔ ¬

(
Z 1

6
⊕ Z 1

6
⊕ Z 1

6
⊕ Z 1

6
⊕ Z 1

6

)
Zp1

2 ⊕ Z
p1
2 ⊕ Z

p1
2 ⊕ Z

p1
2 ⊕ Z

p1
2 ⊕ Z

p1
2 ↔ X2

Zp1
2 → Z 1

6

ϕ̄p2 : ¬
(
Z 1

6
⊕ Z 1

6
⊕ Z 1

6
⊕ Z 1

6
⊕ Z 1

6
→ Zp2

2

)
Φ̄p2 : Z 1

6
↔ ¬

(
Z 1

6
⊕ Z 1

6
⊕ Z 1

6
⊕ Z 1

6
⊕ Z 1

6

)
Z 1

2
↔ ¬Z 1

2

Zp2
2 ⊕ Z

p2
2 ↔ X2

Zp2
2 → Z 1

2

ϕ̄p3 : ¬
(
Z 1

6
⊕ Z 1

6
⊕ Z 1

6
⊕ Z 1

6
→ Zp3

1

)
⊕ ¬

(
Z 1

6
⊕ Z 1

6
⊕ Z 1

6
⊕ Z 1

6
→ Zp3

1

)
Φ̄p3 : Z 1

6
↔ ¬

(
Z 1

6
⊕ Z 1

6
⊕ Z 1

6
⊕ Z 1

6
⊕ Z 1

6

)
Z 1

2
↔ ¬Z 1

2

Zp3
1 ⊕ Z

p3
1 ↔ X1

Zp3
1 → Z 1

2

Table 3.2: Representations as in (3.10) for functions p#
1 , p#

2 and p#
3 , where functions p1, p2 and p3 are

from Example 4

3.4 AN EFFICIENT ALGORITHM FOR BUILDING REPRESENTATIONS 33

and replacing every occurrence of nψ, where n ∈ N \ {0, 1}, with the formula

ξnψ =def

blognc⊕
k=0
nk=1

ξkψ, (3.11)

where nk ∈ {0, 1} comes from the binary representation
∑blognc

k=0 2knk of n, and by adding the
following formulas to Φ̄p:

ξ0
ψ ↔ ψ;

ξkψ ↔ ξk−1
ψ ⊕ ξk−1

ψ , for k = 1, . . . , blog nc.
(3.12)

These formulas define the propositional variables ξkψ and we call Ξnψ the set that comprehends
them. In this way we avoid exponential blow up as shown in Theorem 7.

Lemma 6 Let n ∈ N \ {0, 1}, ψ be a formula and ξnψ and Ξnψ be respectively a formula as in
(3.11) and a set as in (3.12) built from n and ψ. For any valuation v ∈ ValΞnψ , v(nψ) = v(ξnψ).2

Proof For v ∈ ValΞnψ and k = 0, . . . , blog nc, v(ξkψ) = min(1, 2kv(ψ)). Then,

v(nψ) = min

1,

blognc∑
k=0

2knkv(ψ)

= min

1,

blognc∑
k=0

v(ξkψ)nk

 = v

⊕
nk=1

ξkψ

 = v(ξnψ),

where nk ∈ {0, 1} in the binary representation n =
∑blognc

k=0 2knk. �

Theorem 7 Let n ∈ N \ {0, 1}, ψ be a formula and 〈ϕp,Φp〉 be a pair defined from representation
〈ϕ̄p, Φ̄p〉 in (3.10) by replacing any occurrence of nψ in ϕ̄p and Φ̄p with ξnψ in (3.11) and by
adding formulas in set Ξnψ in (3.12) to Φ̄p. Then, 〈ϕp,Φp〉 is also a representation for p# in (3.7).
Furthermore, 〈ϕp,Φp〉 is a representation for p# if it is defined by multiple suitable replacements of
expressions nlψl, for l = 1, . . . , L. 2

Proof For 〈x1, . . . , xn〉 ∈ [0, 1]n, define a valuation v such that v(Xj) = xj and v(Zpj) =
xj
βj
, for

j = 1, . . . , n, v(Z 1
βj

) = 1
βj
, for j = 0, . . . , n, v(ξ0

ψ) = v(ψ) and v(ξkψ) = min(1, v(ξk−1
ψ) + v(ξk−1

ψ)),

for k = 1, . . . , blog nc. Note that v ∈ ValΦ̄p and v ∈ ValΞnψ , then, by Lemma 6, as Ξnψ ⊆ Φp, we
have that v ∈ ValΦp . Still, for any v ∈ Φp, we have that v ∈ ValΞnψ and, by Lemma 6, v ∈ Φ̄p.
Therefore, again by Lemma 6, for v, v′ ∈ Φp such that v(Xj) = v′(Xj), for j = 1, . . . , n, it follows
that v(ϕp) = v′(ϕp), Xn determines ϕp modulo Φp-satisfiable and p#(v(X1), . . . , v(Xn)) = v(ϕp).
This argument still holds when considering multiple replacements. �

We set 〈ϕp,Φp〉 from 〈ϕ̄p, Φ̄p〉 in (3.10) by properly replacing all occurrences of nlψl as stated in
the above theorem. By construction, 〈ϕp,Φp〉 is given by

ϕp = β[¬(ϕP → ϕN)]; Φp = ΦP ∪ ΦN ; (3.13)

34 EFFICIENT REPRESENTATION OF PIECEWISE LINEAR FUNCTIONS INTO LOGIC 3.4

where ϕP , ϕN , ΦP and ΦN are properly defined from their barred correspondents in (3.9). Table
3.3 shows how functions in Example 4 can be represented as in Theorem 7.

Algorithm 2 BINARY-F: computes formula ξnψ in (3.11) or 0 or ψ
Input: A natural number n and a formula ψ.
Output: Formula ξnψ.
1: if n = 0 then
2: return 0;
3: else if n = 1 then
4: return ψ;
5: end if
6: q := n, nk := 0, ξnψ := 0;
7: for k = 0, . . . , blog nc do
8: nk := remainder from division of q by 2;
9: q := quotient from division of q by 2;

10: if nk = 1 then
11: ξnψ := ξkψ ⊕ ξnψ;
12: end if
13: end for
14: return ξnψ;

Algorithm 3 BINARY-S: computes set Ξnψ in (3.12) or ∅
Input: A natural number n and a formula ψ.
Output: Set Ξnψ.
1: if n = 0 or n = 1 then
2: return ∅;
3: end if
4: Ξnψ := {ξ0

ψ ↔ ψ};
5: for k = 1, . . . , blog nc do
6: Ξnψ := Ξnψ ∪ {ξkψ ↔ ξk−1

ψ ⊕ ξk−1
ψ };

7: end for
8: return Ξnψ;

Algorithms 2 and 3 compute the representation of nψ in Ł∞-MODSAT. Algorithm 2 returns 0
and ψ in the limit cases n = 0 and n = 1 (lines 1 to 5); when n ∈ N \ {0, 1}, it returns formula ξnψ
in (3.11) by building it in line 6 plus a blog nc + 1 iteration loop (lines 7 to 13) where the nk’s in
the binary representation of n are calculated by the routine in lines 8 and 9. Algorithm 3 returns
∅ in the limit cases n = 0 and n = 1 (lines 1 to 3); when n ∈ N \ {0, 1}, it returns set Ξnψ that
comprehends formulas (3.12) by building it in line 4 plus a blog nc iteration loop (lines 5 to 7). Both
algorithms terminate in time O(log n) assuming propositional variables are all represented with a
constant size.

Algorithm 4 computes a representation of p# in Ł∞-MODSAT. It returns 〈0,∅〉 in the limit
case a0 = · · · = an = 0 (lines 1 to 3); otherwise it returns representation 〈ϕp,Φp〉 given in (3.13).
From line 4 to line 15, the algorithm sets all P , N , αj , βj and β, for j = 0, . . . , n, which are used to
rewrite function p in terms of pP and pN as in Lemma 4. From line 16 to line 26, it writes formulas
ϕP and ϕN and adds formulas in ΦP and ΦN to Φp. For J ∈ {P,N}, it works throughout a |J |
iteration loop where each iteration takes a coefficient aj

bj
into account, where it treats a0

b0
(lines 18

3.4 AN EFFICIENT ALGORITHM FOR BUILDING REPRESENTATIONS 35

ϕp1 : ξ1
¬(ξ2

Z 1
18

⊕ξ1

Z
p1
2

→0)

Φp1 : Z 1
18
↔ ¬

(
ξ4
Z 1

18

⊕ ξ0
Z 1

18

)
ξ0
Z
p1
2
↔ Zp1

2

ξ0
Z 1

18

↔ Z 1
18

ξ1
Z
p1
2
↔ ξ0

Z
p1
2
⊕ ξ0

Z
p1
2

ξ1
Z 1

18

↔ ξ0
Z 1

18

⊕ ξ0
Z 1

18

ξ2
Z
p1
2
↔ ξ1

Z
p1
2
⊕ ξ1

Z
p1
2

ξ2
Z 1

18

↔ ξ1
Z 1

18

⊕ ξ1
Z 1

18

ξ0
Z 1

6

↔ Z 1
6

ξ3
Z 1

18

↔ ξ2
Z 1

18

⊕ ξ2
Z 1

18

ξ1
Z 1

6

↔ ξ0
Z 1

6

⊕ ξ0
Z 1

6

ξ4
Z 1

18

↔ ξ3
Z 1

18

⊕ ξ3
Z 1

18

ξ2
Z 1

6

↔ ξ1
Z 1

6

⊕ ξ1
Z 1

6

Z 1
6
↔ ¬

(
ξ2
Z 1

6

⊕ ξ0
Z 1

6

)
ξ0
¬(ξ2

Z 1
18

⊕ξ1

Z
p1
2

→0)
↔ ¬

(
ξ2
Z 1

18

⊕ ξ1
Z
p1
2
→ 0

)
ξ2
Z
p1
2
⊕ ξ1

Z
p1
2
↔ X2 ξ1

¬(ξ2
Z 1

18

⊕ξ1

Z
p1
2

→0)
↔ ξ0

¬(ξ2
Z 1

18

⊕ξ1

Z
p1
2

→0)
⊕ ξ0
¬(ξ2

Z 1
18

⊕ξ1

Z
p1
2

→0)

Zp1
2 → Z 1

6

ϕp2 : ¬
(
ξ2
Z 1

6

⊕ ξ0
Z 1

6

→ Zp2
2

)
Φp2 : Z 1

6
↔ ¬

(
ξ2
Z 1

6

⊕ ξ0
Z 1

6

)
ξ1
Z 1

6

↔ ξ0
Z 1

6

⊕ ξ0
Z 1

6

Z 1
2
↔ ¬Z 1

2
ξ2
Z 1

6

↔ ξ1
Z 1

6

⊕ ξ1
Z 1

6

ξ1
Z
p2
2
↔ X2 ξ0

Z
p2
2
↔ Zp2

2

Zp2
2 → Z 1

2
ξ1
Z
p2
2
↔ ξ0

Z
p2
2
⊕ ξ0

Z
p2
2

ξ0
Z 1

6

↔ Z 1
6

ϕp3 : ξ1
¬(ξ2

Z 1
6

→Zp31)

Φp3 : Z 1
6
↔ ¬

(
ξ2
Z 1

6

⊕ ξ0
Z 1

6

)
Zp3

1 → Z 1
2

ξ0
Z 1

6

↔ Z 1
6

ξ0
Z
p3
1
↔ Zp3

1

ξ1
Z 1

6

↔ ξ0
Z 1

6

⊕ ξ0
Z 1

6

ξ1
Z
p3
1
↔ ξ0

Z
p3
1
⊕ ξ0

Z
p3
1

ξ2
Z 1

6

↔ ξ1
Z 1

6

⊕ ξ1
Z 1

6

ξ0
¬(ξ2

Z 1
6

→Zp31)
↔ ¬

(
ξ2
Z 1

6

→ Zp3
1

)
Z 1

2
↔ ¬Z 1

2
ξ1
¬(ξ2

Z 1
6

→Zp31)
↔ ξ0

¬(ξ2
Z 1

6

→Zp31)
⊕ ξ0
¬(ξ2

Z 1
6

→Zp31)

ξ1
Z
p3
1
↔ X1

Table 3.3: Representations as in (3.13) for functions p#
1 , p#

2 and p#
3 , where functions p1, p2 and p3 are

from Example 4

36 EFFICIENT REPRESENTATION OF PIECEWISE LINEAR FUNCTIONS INTO LOGIC 3.4

Algorithm 4 REPRESENT-TL: computing representations for truncated linear functions
Input: A linear function p given by its rational coefficients a0

b0
, a1
b1
, . . . , anbn .

Output: A representation 〈ϕp,Φp〉 for the truncated function p#.
1: if a1 = · · · = an = 0 then
2: return 〈0,∅〉;
3: end if
4: P := ∅, N := ∅;
5: for j := 0, . . . , n do
6: if aj > 0 then
7: P := P ∪ {j}, αj := aj ;
8: else if aj < 0 then
9: N := N ∪ {j}, αj := −aj ;

10: end if
11: end for
12: β := least integer greater than or equal to max{

∑
j∈P

aj
bj
, −

∑
j∈N

aj
bj
};

13: for j ∈ P ∪N do
14: βj := β · bj ;
15: end for
16: ϕP := 0, ϕN := 0, Φp := ∅;
17: for J = P,N do
18: if 0 ∈ J then
19: ϕJ := ϕJ ⊕ BINARY-F(α0, Z 1

β0

);

20: Φp := Φp ∪{Z 1
β0

↔ ¬BINARY-F(β0− 1, Z 1
β0

)}∪BINARY-S(α0, Z 1
β0

)∪
BINARY-S(β0 − 1, Z 1

β0

);
21: end if
22: for j ∈ J \ {0} do
23: ϕJ := ϕJ ⊕ BINARY-F(αj , Z

p
j);

24: Φp := Φp ∪ {Z 1
βj

↔ ¬BINARY-F(βj − 1, Z 1
βj

), BINARY-F(βj , Z
p
j) ↔

Xj , Zpj → Z 1
βj

} ∪ BINARY-S(αj , Z
p
j) ∪ BINARY-S(βj − 1, Z 1

βj

) ∪

BINARY-S(βj , Z
p
j);

25: end for
26: end for
27: ϕp := BINARY-F(β,¬(ϕP → ϕN));
28: Φp := Φp ∪ BINARY-S(β,¬(ϕP → ϕN));
29: return 〈ϕp,Φp〉;

3.4 AN EFFICIENT ALGORITHM FOR BUILDING REPRESENTATIONS 37

to 21) separately from the others (lines 22 to 25). In lines 27 and 28 it finally writes formula ϕp
and completes set Φp.

Theorem 8 Given a rational linear function p by its coefficients, a representation 〈ϕp,Φp〉 for p#

may be computed in polynomial time by Algorithm 4. 2

Proof Algorithm 4 builds representation 〈ϕp,Φp〉 in (3.13). So, its correctness follows from The-
orem 7. Let [0, 1]n be the domain of p and M the maximum size of a binary representation for
numbers among aj and bj ; then the input size of p is at most 2(n+ 1)M . The algorithm first calcu-
lates in polynomial time all β, αj and βj ; let µ be the maximum size of a binary representation for
numbers among β, αj and βj . Then, it proceeds to writing the representation which is made up of
at most 3(n+1) propositional variables of the type Xj , Z

p
j and Z 1

βj

and 2(n+1)µ+µ propositional

variables of the type ξkψ, a quantity polynomially proportional to the size of the input; thus, the
size of the representation for each propositional variable may be assumed to be a constant π also
polynomially proportional to the size of the input. The algorithm calculates formulas ϕP and ϕN
and sets ΦP and ΦN in n + 1 steps; in each one it calculates the part associated to a coefficient
αi
βi
. For each part, computation takes polynomial time on π and at most six executions of routines

BINARY-F (Algorithm 3) and BINARY-S (Algorithm 2) with argument 〈ν, P 〉, where ν is αi, βi
or βi − 1, which are already or may be quickly computed, and P is a propositional variable. In
these cases BINARY-F and BINARY-S run in polynomial time on µ and π. The algorithm finishes
calculating ϕp and Φp by running BINARY-F and BINARY-S with argument 〈β,¬(ϕP → ϕN)〉.
Now, BINARY-F runs in polynomial time on µ and π and BINARY-S runs in polynomial time on
µ, π and the size of ¬(ϕP → ϕN). After all, Algorithm 5 terminates in polynomial time. �

We call REPRESENT-TL-F and REPRESENT-TL-S the routines that separately compute ϕp
and Φp, respectively. Both may be easily derived from routine REPRESENT-TL in Algorithm 4.

3.4.3 The General Case

We can finally tackle the general case by means of a lattice representation. Let f : [0, 1]n → [0, 1]

be a rational McNaughton function in regional format with linear pieces:

pi(x) =
ai0
bi0

+
ai1
bi1
x1 + · · ·+ ain

bin
xn, (3.14)

for x = 〈x1, . . . , xn〉 ∈ [0, 1]n, aij ∈ Z, bij ∈ Z∗+ and i = 1, . . . ,m, with each piece identical to f
in region Ωi, for i = 1, . . . ,m. We call ABOVE(pk,pi) the polynomial time routine that decides if
linear piece pk is above a different linear piece pi over Ωi.

Let 〈ϕpi ,Φpi〉 be the representation for p#
i given by Theorem 7, for i = 1, . . . ,m. We define

ϕ =
m∨
i=1

ϕΩi , with ϕΩi =
∧

k∈KΩi

ϕpk ; Φ =

m⋃
i=1

Φpi ; (3.15)

where k ∈ KΩi iff pk is above pi over Ωi.

Lemma 7 Let f be a rational McNaughton function in regional format with linear pieces given by
(3.14) and let ϕΩj be a formula and Φ a set as in (3.15). Then, v(ϕΩj) ≤ f(v(X1), . . . , v(Xn)), for
v ∈ ValΦ. 2

38 EFFICIENT REPRESENTATION OF PIECEWISE LINEAR FUNCTIONS INTO LOGIC 3.4

ϕ: (ϕp1 ∧ ϕp2 ∧ ϕp3) ∨ (ϕp1 ∧ ϕp2 ∧ ϕp3) ∨ (ϕp1 ∧ ϕp2 ∧ ϕp3)

Φ: Φp1 ∪ Φp2 ∪ Φp3

Table 3.4: Representation as in (3.15) for function f from Example 4

Proof Let v ∈ ValΦ and x0 = 〈v(X1), . . . , v(Xn)〉. In particular, v ∈ ValΦpk , for k ∈ KΩi and, by
Theorem 7,

v(ϕΩj) = min
k∈KΩj

p#
k (x0).

If x0 ∈ Ωj , then v(ϕΩj) ≤ p
#
j (x0) = pj(x0) = f(x0). On the other hand, if x0 /∈ Ωj , there is some i

such that x0 ∈ Ωi. By the lattice property of regional format, there is k0 such that pi is above pk0

over Ωi and pk0 is above pj in Ωj , then k0 ∈ KΩj and

v(ϕΩj) ≤ p
#
k0

(x0) ≤ p#
i (x0) = pi(x0) = f(x0).

�

Theorem 9 Any rational McNaughton function may be represented by 〈ϕ,Φ〉 in (3.15). 2

Proof First note that any rational McNaughton function may be put in regional format as showed
in Section 3.4.1. For 〈x1, . . . , xn〉 ∈ [0, 1]n, define a valuation v ∈ ValΦ such that v(Xj) = xj

and v(Zpij) =
xj
βij

, for i = 1, . . . ,m, j = 1, . . . , n, v(Z 1
βij

) = 1
βij

, for i = 1, . . . ,m, j = 0, . . . , n,

v(ξ0
ψ) = v(ψ) and v(ξkψ) = min(1, v(ξk−1

ψ) + v(ξk−1
ψ)), for k = 1, . . . , blog nc, for any nψ that occurs

in ϕ and Φ. Now, let v, v′ ∈ ValΦ such that v(Xj) = v′(Xj), for j = 1, . . . , n. In particular,
v, v′ ∈ ValΦpi , for i = 1, . . . ,m, and, by Theorem 7, v(ϕpi) = v′(ϕpi), for i = 1, . . . ,m. Therefore,
v(ϕ) = v′(ϕ) and Xn determines ϕ modulo Φ-satisfiable. Finally, suppose v ∈ ValΦ. There is some
k0 ∈ K such that 〈v(X1), . . . , v(Xn)〉 ∈ Ωk0 . Note that v(ϕΩk0

) = f(v(X1), . . . , v(Xn)). Therefore,

f(v(X1), . . . , v(Xn)) = max
i=1,...,m

v(ϕΩi) = v(ϕΩk0
),

by Lemma 7. �

Table 3.4 shows how function f in Example 4 can be represented as in Theorem 9.
Algorithm 5 returns representation 〈ϕ,Φ〉 for function f with linear pieces given in (3.14). From

line 1 to line 13, the algorithm writes formulas ϕΩi and the set Φ: it first computes formulas ϕpi (lines
2 to 5) by means of routine REPRESENT-TL-F and then it writes ϕΩi (lines 7 to 11) by means of
routine ABOVE. It writes set Φ computing each Φpi by means of routine REPRESENT-TL-S (line
12). In line 14 it writes formula ϕ.

Theorem 10 Given a rational McNaughton function f in regional format, a logical representation
for it may be computed in polynomial time on the size of f by Algorithm 5. 2

Proof Algorithm 5 builds representation 〈ϕ,Φ〉 in (3.15). So, the algorithm correctness follows
from Theorem 9. The size of f is the space necessary to storage the coefficients of its m linear pieces
p1, . . . , pm and the regions Ω1, . . . ,Ωm. The algorithm first calculates m representative formulas ϕpi
by REPRESENT-TL-F, which takes polynomial time on the size of f by Theorem 8. Then, it

3.4 AN EFFICIENT ALGORITHM FOR BUILDING REPRESENTATIONS 39

Algorithm 5 REPRESENT: computing representations for rational McNaughton functions
Input: A rational McNaughton function f in regional format given by its linear pieces coefficients
a10
b10
, . . . , a1n

b1n
,. . . , am0

bm0
, . . . , amnbmn

and regions Ω1, . . . ,Ωm.
Output: A representation 〈ϕ,Φ〉 for the rational McNaughton function f .
1: Φ := ∅;
2: for i = 1, . . . ,m do
3: ϕpi := REPRESENT-TL-F(ai0bi0 , . . . ,

ain
bin

);
4: ϕΩi := ϕpi ;
5: end for
6: for i = 1, . . . ,m do
7: for k = 1, . . . , i− 1, i+ 1, . . . ,m do
8: if ABOVE(pk, pi) = true then
9: ϕΩi = ϕΩi ∧ ϕpk ;

10: end if
11: end for
12: Φ := Φ ∪ REPRESENT-TL-S(ai0bi0 , . . . ,

ain
bin

);
13: end for
14: ϕ := ϕΩ1 ∨ · · · ∨ ϕΩm ;
15: return 〈ϕ,Φ〉;

builds formulas ϕΩi from the already built representative formulas in m2 steps; in each of these
steps it runs routine ABOVE in assumed polynomial time. Along with the above computation, the
algorithm also builds set Φ in m steps; in each one it calculates set Φpi by REPRESENT-TL-S,
which takes polynomial time on the size of f by Theorem 8. Finally, the algorithm calculates ϕ
from formulas ϕΩi already computed. After all, Algorithm 5 terminates in polynomial time. �

Summarizing, while the representation of a rational McNaughton function f via hat functions
has a disjunction of hat functions in its representative formula ϕ⊕, the representation just presented
has a (

∨∧
)-combination of linear pieces in its representative formula ϕ∨∧.

Let f with m̄ distinct linear pieces; on the one hand, ϕ⊕ is a disjunction of as many hat functions
as vertices in the decompositions in simplices of the polyhedra in C; regarding that the size of set
C is m̄! in the worst case, this representation might be highly complex. On the other hand, for
an encoding of f in regional format with m ≥ m̄ regions and also m associated linear pieces —
that are allowed to repeat in such encoding —, ϕ∨∧ is a

∨
-combination of

∧
-combinations of the

m linear pieces; so there may be at most m2 occurrences of representative formulas ϕpi of linear
pieces. Despite of the possibility of having m = m̄!, we have already remarked that, for many cases,
it is possible to find a region configuration for which m is significantly smaller than m̄!; again, as
in Example 4 and in the classes of functions in Section 3.5.

It is worth mentioning that the representation of hat functions in Section 3.3 was also done by
means of a (

∨∧
)-combination of linear functions representative formulas. However, in that context,

linear functions are represented in Ł∞-MODSAT by the exponential representation in Lemma 2;
replacing this representation by the one in Section 3.4.2 makes representations of hat functions
smaller.

40 EFFICIENT REPRESENTATION OF PIECEWISE LINEAR FUNCTIONS INTO LOGIC 3.4

3.4.4 Pre-Regional Format and a Literature Review

The presented algorithm for building representations in Ł∞-MODSAT comprehends two distin-
guished steps: the representation of the truncated version of linear pieces and the representation of
the entire rational McNaughton function by means of a lattice representation. The second step is
grounded on Lemma 7 and Theorem 9, where the encoding of the input function in regional format
is required to comply with the lattice property. In the following, we discuss the necessity of the
lattice property in such encoding in order to the built representation to be correct.

We say that a rational McNaughton function is in pre-regional format if it satisfies the first
three items of the definition of regional format in Section 3.4.1, but it does not necessarily satisfy
the lattice property; thus, functions in regional format are also in pre-regional format, however
the converse is not necessarily true. The following example shows that the encoding of a rational
McNaughton function in pre-regional format is not enough to assure that an actual representation
in Ł∞-MODSAT is built by the algorithm proposed in the previous section.

Example 5 Rational McNaughton function fCE with graph in Figure 3.6a may be given in pre-
regional format by the linear pieces:

• p1(x1, x2) = p4(x1, x2) = x2;

• p2(x1, x2) = 1− x1;

• p3(x1, x2) = x1;

• p5(x1, x2) = 1
4 + 1

2x2.

Regions Ωi associated to each linear piece are depicted in Figure 3.6b and described in Table 3.5.
The intersection of hyperplane given by p5 with the hyperplanes given by p2 and p3 are depicted
by the dotted lines in Figure 3.6b.

Note that such encoding of fCE does not have the lattice property since there is no linear piece
pk such that p3 is above pk over Ω3 and pk is above p5 in Ω5. Let 〈ϕ,Φ〉 be a pair as in (3.15) with
intention to be a representation for fCE and let x0 = 〈0.6, 0.9〉 ∈ Ω◦3; we have KΩ3 = {1, 3, 4} and
KΩ5 = {5} and, then, for v ∈ ValΦ such that x0 = 〈v(X1), v(X2)〉, we have

fCE(x0) = p3(x0) = 0.6 < 0.7 = v(ϕΩ5) ≤ v(ϕ).

Therefore, 〈ϕ,Φ〉 cannot be a representation for function fCE and the lattice property cannot be
dropped from regional format in order to perform such representation.

Function fCE may be put in regional format by taking as regions the polyhedra Pρ ∈ C in (3.5); in
this case, we have a representation with |C| = 9 regions. On the other hand, it may be put in regional
format from the encoding above by only splitting region Ω5 in two regions Ω′5 = Ω5 ∩ {pi ≥ 0} and
Ω′′5 = Ω5 ∩ {pi ≤ 0}, for some i ∈ {2, 3}, adding only one more region to the encoding. 2

The results in (Tarela et al., 1990, Theorem 7), (Tarela and Martínez, 1999, Theorem 4.2) and,
more recently, in (Xu and Wang, 2019, Theorem 1) propose a lattice representation of piecewise
linear functions analogous to the one we derived in Lemma 7 and Theorem 9, where ϕ is a (

∨∧
)-

combination of formulas ϕpk ; they are presented in a more general context of piecewise linear
functions over more general domains and codomains and do not refer to a specific formal language.

3.4 AN EFFICIENT ALGORITHM FOR BUILDING REPRESENTATIONS 41

0

1
0

1

x1

x2

(a) Graph

x1

x2

Ω4

Ω3

Ω2

Ω1

Ω5

(b) Region configuration

Figure 3.6: Graph and region configuration of function fCE in Example 5

Ω1 Ω2 Ω3 Ω4 Ω5

1− x1 − x2 ≥ 0

x1 ≥ 0

−1
2 + x2 ≥ 0

−1 + x1 + x2 ≥ 0
1
2 − x1 ≥ 0

1− x2 ≥ 0

−x1 + x2 ≥ 0

−1
2 + x1 ≥ 0

1− x2 ≥ 0

x1 − x2 ≥ 0

1− x1 ≥ 0

−1
2 + x2 ≥ 0

1− x1 ≥ 0
1
2 − x2 ≥ 0

x1 ≥ 0

x2 ≥ 0

Table 3.5: Regions Ωi for function f in Example 5

However, those results do not require that the configuration of regions and linear pieces in the
function description have the lattice property; thus, rational McNaughton functions only in pre-
regional format would be enough for applying such results in our context. Unfortunately, despite
being a less restrictive hypothesis, it is not actually suitable for our kind of representation, as
Example 5 demonstrates. Nevertheless, this less restrictive approach is suitable for one-variable
piecewise linear functions in pre-regional format due to the fact that functions in such encoding
already have the lattice property.

Theorem 11 One-variable rational McNaughton functions in pre-regional format have the lattice
property; i.e., they are also in regional format. 2

Proof With no loss of generality, we may consider the regions of a one-variable rational Mc-
Naughton function in pre-regional format f : [0, 1] → [0, 1] to be nonempty closed intervals
[a, b] ⊆ [0, 1]. Let Ωi = [ai, bi] and Ωj = [aj , bj] be regions such that bi ≤ aj . If neither pi
is above pj over Ωi nor pi is above pj over Ωj (then, bi < aj), let Pσ, Pς ∈ C be polyhe-
dra as in (3.5) such that there are α, β ∈ [0, 1] in a way that [α, bi] ⊆ Pσ, [aj , β] ⊆ Pς and
(α, bi) 6= ∅ 6= (aj , β). For α′ ∈ (α, bi) and β′ ∈ (aj , β), let X = 〈α′, f(α′)〉, Y = 〈β′, f(β′)〉 and
[X,Y] = {(1 − λ)A + λB | λ ∈ [0, 1]} be a line segment in [0, 1]2. By our assumptions about pi
and pj , pi is strictly below [X,Y] over (α′, bi) and pj is strictly above [X,Y] over (aj , β

′). Then,
among all c ∈ (bi, aj) such that 〈c, f(c)〉 ∈ [A,B], there is some d nearest to α′ (which cannot be
β′); let pk be a linear piece such that 〈d, f(d)〉 = 〈d, pk(d)〉 ∈ [X,Y] and f coincides with pk on
some nonempty interval (d′, d). For x < d, pk(x) is strictly below [X,Y] and, for x > d, pk(x) is
strictly above [X,Y] and, then, pi is above pk over Ωi and pk is above pj over Ωj . Therefore, f has

42 EFFICIENT REPRESENTATION OF PIECEWISE LINEAR FUNCTIONS INTO LOGIC 3.5

Class of functions Tested functions Evaluations per function Evaluations

Truncated linear 5.000 100 500.000

Normalized linear 5.000 100 500.000

Simple-region piecewise linear 1.000 100 100.000

Cubic-region piecewise linear 990 100 99.000

Total 11.990 100 1.199.000

Table 3.6: Number of tests by class of rational McNaughton functions

the lattice property and it is given in regional format. The result is analogous for the case where
bj ≤ ai. �

3.5 Implementation and Results

We have developed a C++-implementation of Algorithms 4 and 5 for building representations of
functions; it consists of two main modules. One module builds a representation for the truncated
linear function p# as in (3.7) from a given linear function as in (3.6). The other module encompasses
the first one and builds a representation for a piecewise linear function f in closed regional format
given by linear pieces as in (3.6) which are identical to f in given polyhedral regions as in (3.3).
The routine for deciding whether linear piece pk is above linear piece pi over region Ωi is the one
in Algorithm 1 which was implemented using the C++ interface to the SoPlex linear programming
solver (Gamrath et al., 2020).

We ran the implementation through experiments in order to measure its execution time and
to give evidence for its correctness. The totality of a finite set of tests does not prove correctness,
however, in large amounts, it may provide some evidence in favor of it.

In each experiment, the implementation was fed with a piecewise linear function f of n variables.
Its execution time was measured and, with output 〈ϕ,Φ〉, for random values x1, . . . , xn ∈ [0, 1], a
valuation v ∈ ValΦ was computed such that v(X1) = x1, . . . , v(Xn) = xn. Finally, it was attested
whether v(ϕ) = f(x1 . . . , xn) by separately evaluating ϕ and the original function f . Valuations v
were computed using a Ł∞-solver based on the one by Ansótegui et al. (2012); it was written in the
SMT-LIB language (Barrett et al., 2016) and ran in the Yices SMT solver (Dutertre, 2014).

We ran four batteries of experiments, each one comprehending functions belonging to a class of
rational McNaughton functions which were randomly generated according to a specification; in any
case, each function was evaluated in 100 combinations of random values x1, . . . , xn ∈ [0, 1], which
were uniformly chosen over the interval [0, 1]. Table 3.6 summarizes the experiments.

All the experiments in this section were run in a UNIX machine with two E5645 CPUs @
2.40GHz with 12 processors. The source code for the implementation and the experiments are
publicly available.1

1http://github.com/spreto/pwl2limodsat

http://github.com/spreto/pwl2limodsat

3.5 IMPLEMENTATION AND RESULTS 43

(a) Running on truncated linear functions (b) Running on normalized linear functions

Figure 3.7: Representation builder performance, randomly gen. instances: n = 1 to n = 50

3.5.1 Classes of Rational McNaughton Functions and Experiments

Following, we describe the classes of functions we used in each battery of experiments and the
specifications according to which random functions in these classes were generated. Before that, we
state a result on continuous piecewise linear functions which we assume in the constructions in the
latter classes.

Theorem 12 Let f : Rn → R be a continuous piecewise linear function identical to p1 : Rn → R
and p2 : Rn → R over R1 ⊆ Rn and R2 ⊆ Rn, respectively. If p1 and p2 have rational coefficients
and

R1 ∩R2 =
{
〈x1, . . . , xn〉 ∈ Rn

∣∣∣ xj0 = ξ, αj ≤ xj ≤ βj , for j = 1, . . . , j0 − 1, j0 + 1, . . . , n
}
,

for ξ, αj , βj ∈ Q, with ξ 6= 0 and αj < βj, for j = 1, . . . , j0 − 1, j0 + 1, . . . , n, then, there is q ∈ Q,
such that

p1(x)− p2(x) = q · (xj0 − ξ) ,

for x ∈ Rn. 2

Proof Let
pi(x) = γi0 + γi1x1 + · · ·+ γinxn,

for i = 1, 2 and x = 〈x1, . . . , xn〉 ∈ Rn. Since p1(x0) = p2(x0), for any x0 ∈ R1 ∩R2, we must have
that γ1j = γ2j , for j = 2, . . . , j0 − 1, j0 + 1, . . . , n, and (γ10 − γ20) + (γ1j0 − γ2j0)ξ = 0. The result
follows by letting

q =
γ20 − γ10

ξ
.

�

Truncated linear functions. A function p# : [0, 1]n → [0, 1] in this class is a truncated linear
function in (3.7) defined from a linear function p in (3.6). Function p# has range in [0, 1] and is
continuous over [0, 1]n.

In the experiments, for each dimension n = 1, . . . , 50, one hundred functions p# were generated
from functions p for which, for each coefficient aj

bj
, aj was randomly chosen among integers from

−100 to 100 and bj was randomly chosen among integers from 1 to 100. The execution time for
building the representations in Ł∞-MODSAT was up to 0.03 second. In Figure 3.7a, we see the
results of the representation builder running on truncated linear functions.

44 EFFICIENT REPRESENTATION OF PIECEWISE LINEAR FUNCTIONS INTO LOGIC 3.5

Normalized linear functions. A function p′ : [0, 1]n → [0, 1] in this class is defined from a
linear function p in (3.6) by the following normalization process performed over D = [0, 1]n by

p′(x) =
p(x) + A

b0

B
, (3.16)

for x ∈ [0, 1]n, where A is the least positive integer such that A
b0
≥ |minx∈D p(x)|, if minx∈D p(x) <

0, and A = 0, otherwise; and B is the least integer greater than or equal to maxx∈D p(x) + A
b0
, if

maxx∈D p(x) + A
b0
> 1, and B = 1, otherwise. Function p′ has range in [0, 1] and is continuous over

[0, 1]n.
In the experiments, for each dimension n = 1, . . . , 50, one hundred functions p′ were generated

from functions p for which, for each coefficient aj
bj
, aj was randomly chosen among integers from

−100 to 100 and bj was randomly chosen among integers from 1 to 100. The execution time for
building the representations in Ł∞-MODSAT was up to 0.04 second. In Figure 3.7b, we see the
results of the representation builder running on normalized linear functions.

Simple-region piecewise linear functions. A function f : [0, 1]n → [0, 1] in this class is
defined to be identical to linear pieces pi over (simple-)regions

Ωi =
{
x = 〈x1, . . . , xn〉 ∈ [0, 1]n

∣∣∣ i− 1

r
≤ x1 ≤

i

r
, 0 ≤ xj ≤ 1, for j = 2, . . . , n

}
,

for i = 1, . . . , r. Figure 3.8a depicts a simple-region configuration with four regions for n = 3 and
r = 4.

Linear piece p1 is defined by p′ from a linear function p in (3.6) by the normalization process in
(3.16) performed over D = Ω1.

The other linear pieces pi, for i = 2, . . . , r, are defined by

pi(x) = pi−1(x) + qi ·
(
x1 −

i− 1

r

)
,

with qi ∈ [−mi · r, (1−Mi) · r], for

mi = min
x∈Ωi

s.t. x1= i
r

pi−1(x) and Mi = max
x∈Ωi

s.t. x1= i
r

pi−1(x).

These linear pieces and, therefore, function f have range in [0, 1]; also, function f is continuous over
[0, 1]n. Theorem 13 below states that such encoding of function f has the lattice property.

In the experiments, for each dimension n = 1, . . . , 50 and each number of regions r = 1, . . . , 20,
one function f was generated with linear piece p1 defined from a function p for which, for each
coefficient aj

bj
, aj was randomly chosen among integers from −100 to 100 and bj was randomly

chosen among integers from 1 to 100; and with linear pieces pi defined from linear pieces pi−1 and
values qi uniformly chosen over the intervals [−mi · r, (1 −Mi) · r], for i = 2, . . . , r. The execution
time for building the representations in Ł∞-MODSAT was up to 1 second. In Figure 3.9, we see
the results of the representation builder running on simple-region piecewise linear functions with
dimensions n = 25 and n = 50.

Cubic-region piecewise linear functions. A function f ′ : [0, 1]n → [0, 1] in this class is

3.5 IMPLEMENTATION AND RESULTS 45

0

1
0

1

x1

x2

x
3

(a) Simple-region config.

0

1
0

1

x1

x2
x

3

(b) Cubic-region config.

Figure 3.8: Simple-region and cubic-region configurations in dimension n = 3

(a) Dimension n = 25 (b) Dimension n = 50

Figure 3.9: Representation builder performance running on simple-region piecewise linear functions, ran-
domly gen. instances: r = 1 to r = 20

46 EFFICIENT REPRESENTATION OF PIECEWISE LINEAR FUNCTIONS INTO LOGIC 3.5

defined from a function f : [0, 1]n → R by the following normalization process performed by

f ′(x) =
f(x) + γ

Γ
,

for x ∈ [0, 1]n, where γ = |minx∈[0,1]n f(x)|, if minx∈[0,1]n f(x) < 0, and γ = 0, otherwise; and Γ

is the least integer greater than or equal to maxx∈[0,1]n f(x) + γ, if maxx∈[0,1]n f(x) + γ > 1, and
Γ = 1, otherwise. Function f ′ has range in [0, 1].

Function f : [0, 1]n → R is defined to be identical to linear pieces p〈i1,...,in〉 over (cubic-)regions

Ω〈i1,...,in〉 =
{
x = 〈x1, . . . , xn〉 ∈ [0, 1]n

∣∣∣ ij − 1

r
≤ xj ≤

ij
r
, for j = 1, . . . , n

}
,

for ij = 1, . . . , r, for j = 1, . . . , n. Figure 3.8b depicts a cubic-region configuration with eight regions
for n = 3 and r = 2.

Linear piece p〈1,...,1〉 is defined by p′ from a linear function p in (3.6) by the normalization process
in (3.16) performed over D = Ω〈1,...,1〉.

The linear pieces p〈i1,...,in〉, for which i1 = · · · = ij−1 = ij+1 = · · · = in = 1 and ij 6= 1, are
defined by

p〈i1,...,in〉(x) = p〈i1,...,ij−1,ij−1,ij+1,...,in〉(x) + q
ij
j ·
(
xj −

ij − 1

r

)
, (3.17)

with qijj ∈ [−m〈i1,...,in〉 · r, (1−M〈i1,...,in〉) · r], for

m〈i1,...,in〉 = min
x∈Ω

p〈i1,...,ij−1,ij−1,ij+1,...,in〉(x) and M〈i1,...,in〉 = max
x∈Ω

p〈i1,...,ij−1,ij−1,ij+1,...,in〉(x),

where
Ω =

{
x = 〈x1, . . . , xn〉 ∈ Ω〈i1,...,in〉

∣∣∣ xj =
ij
r

}
.

These linear pieces already have range in [0, 1] and function f is continuous over Ω〈i1,...,in〉 ∩
Ω〈i1,...,ij−1,ij−1,ij+1,...,in〉.

The other linear pieces p〈i1,...,in〉, for which i1 = · · · = ij−1 = ij+1 = · · · = ik−1 = 1 and
ij 6= 1 6= ik, are also defined by (3.17) with the same qijj . These linear pieces are not guaranteed
to have range in [0, 1]; however function f is continuous over Ω〈i1,...,in〉 ∩Ω〈i1,...,ij−1,ij−1,ij+1,...,in〉. It
is also continuous over Ω〈i1,...,in〉 ∩ Ω〈i1,...,il−1,il−1,il+1,...,in〉, for l ≥ k; indeed, there is a value q such
that

p〈i1,...,in〉(x) = p〈i1,...,ij−1,ij−1,ij+1,...,in〉(x) + q
ij
j ·
(
xj −

ij − 1

r

)
= p〈i1,...,ij−1,ij−1,ij+1,...,il−1,il−1,il+1,...,in〉(x) + q ·

(
xl −

il − 1

r

)
+ q

ij
j ·
(
xj −

ij − 1

r

)
and, since

p〈i1,...,il−1,il−1,il+1,...,in〉(x) = p〈i1,...,ij−1,ij−1,ij+1,...,il−1,il−1,il+1,...,in〉(x) + q
ij
j ·
(
xj −

ij − 1

r

)
,

3.6 IMPLEMENTATION AND RESULTS 47

we are able to write

p〈i1,...,in〉(x) = p〈i1,...,il−1,il−1,il+1,...,in〉(x) + q ·
(
xl −

il − 1

r

)
.

Thus, functions f and f ′ are continuous over [0, 1]n. Theorem 13 below states that such encoding
of function f ′ has the lattice property.

In the experiments, for each dimension n = 1, . . . , 9 and each regional parameter r = 1, . . . , 7−
(n− 1), if n ≤ 5, and r = 1, 2, otherwise, thirty functions f ′ were generated from functions f with
linear piece p〈1,...,1〉 defined from a function p for which, for each coefficient aj

bj
, aj was randomly

chosen among integers from −30 to 30 and bj was randomly chosen among integers from 1 to 30;
and with linear pieces p〈i1,...,in〉, for which i1 = · · · = ij−1 = ij+1 = · · · = in = 1 and only ij 6= 1,
defined from linear pieces p〈i1,...,ij−1,ij−1,ij+1,...,in〉 and values q〈i1,...,in〉 uniformly chosen over the
intervals [−m〈i1,...,in〉 · r, (1 −M〈i1,...,in〉) · r]. In Table 3.7, we see the results of the representation
builder running on cubic-region piecewise linear functions.

Theorem 13 Simple-region and cubic-region piecewise linear functions in the presented encoding
have the lattice property. 2

Proof Let Ωi and Ωj be simple-regions of a simple-region piecewise linear function f . Fixing
x2 = ξ2 ∈ [0, 1], . . . , xn = ξn ∈ [0, 1], we define the restriction of f to g : [0, 1] → [0, 1] given by
g(x1) = f(x1, ξ2, . . . , ξn), which is a piecewise liner function with the lattice property by Theorem 11.
Since, by Theorem 12, linear pieces of simple-region piecewise linear functions intercept each other
over domain points in some set {x ∈ [0, 1]n | x1 = K ∈ R}, f also has the lattice property. Now,
let Ω〈i1,...,in〉 and Ω〈I1,...,In〉 be cubic-regions of a cubic-region piecewise linear function f ′; since the
normalization process from f to f ′ does not interfere with the lattice property, we only need to
show that f has the lattice property. Analogous to the previous argument for simple-regions, for
j = 1, . . . , n, there is kj , for which min{ij , Ij} ≤ kj ≤ max{ij , Ij}, such that

p〈i1,...,in〉(x) ≥ p〈i1,...,ij−1,kj ,ij+1,...,in〉(x),

for x ∈ Ω〈i1,...,in〉, and

p〈i1,...,ij−1,kj ,ij+1,...,in〉(x) ≥ p〈i1,...,ij−1,Ij ,ij+1,...,in〉(x),

for x ∈ Ω〈i1,...,ij−1,Ij ,ij+1,...,in〉. Then, from the general formula for linear pieces

p〈i1...,in〉(x) = p〈1,...,1〉(x) +

n∑
j=1

ij∑
ι=2

qιj

(
xj −

ι− 1

r

)
,

it follows that

p〈i1,...,in〉(x) ≥ p〈k1,...,kn〉(x), for x ∈ Ω〈i1,...,in〉, and p〈k1,...,kn〉(x) ≥ p〈I1,...,In〉(x), for x ∈ Ω〈I1,...,In〉.

Therefore, f has the lattice property. �

48 EFFICIENT REPRESENTATION OF PIECEWISE LINEAR FUNCTIONS INTO LOGIC 3.6

n r
Average
time (s)

Minimum
time (s)

Maximum
time (s) n r

Average
time (s)

Minimum
time (s)

Maximum
time (s)

1 1 0 0 0 3 5 3.2877 2.64 6.4

1 2 0 0 0 4 1 0 0 0

1 3 0 0 0 4 2 0.0607 0.04 0.08

1 4 0 0 0 4 3 1.4173 1.08 1.92

1 5 0.001 0 0.01 4 4 15.5163 13.17 25.38

1 6 0.0013 0 0.01 5 1 0 0 0

1 7 0.0043 0 0.01 5 2 0.2423 0.17 0.4

2 1 0 0 0 5 3 15.284 11.55 27.38

2 2 0 0 0 6 1 0 0 0

2 3 0.0103 0 0.02 6 2 1.004 0.74 2.09

2 4 0.0463 0.03 0.08 7 1 0 0 0

2 5 0.1213 0.08 0.15 7 2 4.47 3.4 7.93

2 6 0.2427 0.19 0.32 8 1 0 0 0

3 1 0 0 0 8 2 19.4273 15.01 46.63

3 2 0.01 0 0.02 9 1 0 0 0

3 3 0.1473 0.11 0.19 9 2 85.9193 67.39 169.99

3 4 0.8707 0.67 1.05

Table 3.7: Representation builder performance running on cubic-region piecewise linear functions

3.6 AN APPLICATION TO THE FORMAL ANALYSIS OF NEURAL NETWORKS 49

3.6 An Application to the Formal Analysis of Neural Networks

Neural networks are computational models that aim to generalize a pattern found in a dataset
from which they are modeled; for our purposes, we identify neural networks with the computable
functions they determine. For instance, given a dataset with observations on the weather conditions
of a day together with the information of whether in the next day it rains or not, we are able to
define — or train, in the jargon of the field —, based on these data, a neural network that, given
today’s weather conditions, predicts whether it will rain tomorrow; such defining procedure is done
by means of the so-called learning algorithms (Goodfellow et al., 2016). Unfortunately, a drawback
in these models — and in automated learning methods in general — is the impossibility to directly
inspect the learned information; it is thus desirable to come up with methods to formally analyze
some aspects of them, such as reachability of a given state or robustness (Finger, 2020).

Neural networks are notorious examples of functions that may be approximated within the Ł∞-
MODSAT system; in fact, a neural network, depending on its class of activation functions, can be
seen either as a piecewise linear function or as a continuous function that can be approximated
by one (Leshno et al., 1993). In this way, properties of neural networks might be translated into
properties of Ł∞, which paves the way for their formal verification. We next show some ways to
formally verify reachability and robustness via properties of Ł∞ for the particular cases of neural
networks that are exactly rational McNaughton functions.

Let f : [0, 1]n → [0, 1] be a neural network which is a rational McNaughton function and that,
according to an input x ∈ [0, 1]n, induces prediction Yes, if f(x) ≥ 0.5, and No, if f(x) < 0.5 — for
instance, for answering the question of whether it will rain tomorrow —; f(x) may be interpreted
as the probability of the answer being Yes. Unless stated otherwise, whenever we refer to a neural
network in this section, we are referring to a neural network of the type we have just defined.

The reachability of a given state in our context may be seen as the problem of determining
if a neural network f : [0, 1]n → [0, 1] reaches a specific probability π = a

b ∈ [0, 1] ∩ Q, that is
determining whether there is some x ∈ [0, 1]n for which f(x) = π, or as the problem of determining
if f reaches at least probability π = a

b ∈ [0, 1] ∩ Q, that is determining whether there is some
x ∈ [0, 1]n for which f(x) ≥ π. Such properties may be modeled in terms of the satisfiability of a
Ł∞-formula. Let 〈ϕ,Φ〉 be a representation of f ; we claim that f reaches probability π = a

b if, and
only if, formula (∧

Φ
)
∧ ϕ 1

b
∧ aZ 1

b
↔ ϕ (3.18)

is satisfiable and that f reaches at least probability π = a
b if, and only if, formula(∧

Φ
)
∧ ϕ 1

b
∧ aZ 1

b
→ ϕ (3.19)

is satisfiable.

Theorem 14 Let f : [0, 1]n → [0, 1] be a neural network which is a rational McNaughton function
and 〈ϕ,Φ〉 be its representation. Then, f reaches (at least) probability π = a

b ∈ [0, 1] ∩ Q if, and
only if, formula (3.18) (formula (3.19)) is satisfiable. 2

Proof If a valuation v ∈ Val satisfies formula (3.18), then v ∈ ValΦ and v(Z 1
b
) = 1

b . Thus,
since v(aZ 1

b
↔ ϕ) = 1, it follows that π = a

b = f(v(X1), . . . , v(Xn)); i.e. f reaches probability π.

50 EFFICIENT REPRESENTATION OF PIECEWISE LINEAR FUNCTIONS INTO LOGIC 3.6

Reciprocally, if f reaches probability π, there is x ∈ [0, 1]n for which f(x) = π and, since 〈ϕ,Φ〉
represents f , there is a valuation v ∈ ValΦ, such that x = 〈v(X1), . . . , v(Xn)〉; we may assume
without any loss of generality that v(Z 1

b
) = 1

b . Therefore, v(aZ 1
b
) = π = v(ϕ) and v satisfies (3.18).

The argument is analogous according to formula (3.19) for determining whether f reaches at least
probability π. �

Corollary 1 The problem of deciding if a neural network given by a rational McNaughton function
in regional format reaches (at least) probability π = a

b ∈ [0, 1] ∩Q is in NP. 2

Proof By Theorem 14, these problems may be reduced to the satisfiability of formulas (3.18) and
(3.19). By Lemma 6, the formulas

(∧
Φ
)
∧
(∧

Ξ(b−1)Z 1
b

)
∧
(∧

ΞaZ 1
b

)
∧ Z 1

b
↔ ¬ξ(b−1)Z 1

b

∧ ξaZ 1
b

↔ ϕ (3.20)

and (∧
Φ
)
∧
(∧

Ξ(b−1)Z 1
b

)
∧
(∧

ΞaZ 1
b

)
∧ Z 1

b
↔ ¬ξ(b−1)Z 1

b

∧ ξaZ 1
b

→ ϕ (3.21)

are satisfiable if, and only if, formulas (3.18) and (3.19) are respectively satisfiable. By Theorem 10
and by the observations about Algorithms 2 and 3, the above formulas may be computed in poly-
nomial time from a neural network given by a rational McNaughton function in regional format
and a given probability π. The result follows as Ł∞-SAT is a problem in NP (Mundici, 1987). �

Algorithm 6 MaxProbability-BS: Computes value Π via Binary Search
Input: A neural network which is a rational McNaughton function and a precision δ > 0.
Output: Value Π with precision δ.
1: Build expression Λ(1

1);
2: if Λ(1

1) is satisfiable then
3: vmin := 1;
4: else
5: k := d| log δ|e;
6: j := 1, vmin := 0;
7: while j ≤ k do
8: vmax := vmin + 1

2j
;

9: Build expression Λ(vmax);
10: if Λ(vmax) is satisfiable then
11: vmin := vmax;
12: end if
13: j++;
14: end while
15: end if
16: return vmin;

It is possible to determine, according to a precision δ = 2−k, the maximum probability Π which
a neural network reaches by means of a binary search through the possible values in the binary
representation of Π. Algorithm 6 presents such procedure; Λ(π) stands for (3.19) or (3.21) with
highlighted value π. First iteration consists of verifying if Λ(1

1) is satisfiable; if it is, Π = 1, if not,

3.6 AN APPLICATION TO THE FORMAL ANALYSIS OF NEURAL NETWORKS 51

Π = 0 with precision 20 = 1. In case the former iteration was unsatisfiable, the second iteration
consists of verifying if Λ(1

2) is satisfiable; if it is the case, Π = 1
2 , if it is not, Π = 0, both cases

with precision 2−1 = 1
2 . One more iteration will give precision 2−2 = 1

4 and it consists of verifying
the satisfiability of Λ(3

4) in case the former iteration had positive answer, or of Λ(1
4) in case it was

negative. The process continues until the precision desired and it takes | log δ|+ 1 = k+ 1 iterations
to be completed.

Theorem 15 Given a precision δ > 0, maximum probability Π that a neural network which is a
rational McNaughton function reaches may be computed with O(| log δ|) checks of Λ(π) in (3.19) or
(3.21). 2

Neural networks in general are said to be robust if they maintain their predictions even when
inputs are stricken by small perturbations. The literature provides examples of deep neural networks
(that are not necessarily rational McNaughton functions) which perform well at the task of image
recognition and, nonetheless, are susceptible to adversarial examples, that is, images with small
perturbations which were originally classified properly and, still, had the prediction changed after
the perturbation (Szegedy et al., 2014).

We want to verify whether a neural network which is a rational McNaughton function is robust
when predicting Yes with respect to a fixed “small” perturbation limit ε = α

β ∈ Q and to a “big”
probability π = a

b ∈ [0, 1] ∩ Q such that π ≥ 1
2 , that is whether f(x + p) ≥ 0.5, for all x ∈ [0, 1]n

and p = 〈p1, . . . , pn〉 ∈ Rn such that f(x) ≥ π, |pi| ≤ ε, for i = 1, . . . , n, and x + p ∈ [0, 1]n.
We model such concept of robustness by an instance of logical consequence in Ł∞. Let 〈ϕ,Φ〉 be a
representation of f for which Xn determines ϕ modulo Φ-satisfiable; for each propositional variable
X ∈ Var(ϕ)∪Var(Φ), we introduce a new variable X ′ and for each propositional variable Xi ∈ Xn,
we introduce a new variable Pi. Define the pair 〈ϕ′,Φ′〉, where all occurrences of variables X in ϕ
or Φ are replaced by X ′ in order to obtain ϕ′ and Φ′. We claim that robustness of f with respect
to perturbation limit ε = α

β and to probability π = a
b is equivalent to the validity of the logical

consequence

Φ, Φ′, ϕ 1
β
, ϕ 1

b
, ϕ 1

2
,

P1 → αZ 1
β
, . . . , Pn → αZ 1

β
,

(X ′1 ↔ X1 ⊕ P1) ∨ (X ′1 ↔ ¬(X1 → P1)),

. . . ,

(X ′n ↔ Xn ⊕ Pn) ∨ (X ′n ↔ ¬(Xn → Pn)),

aZ 1
b
→ ϕ |=Ł∞ Z 1

2
→ ϕ′.

(3.22)

Theorem 16 Let f : [0, 1]n → [0, 1] be a neural network which is a rational McNaughton function
and 〈ϕ,Φ〉 be its representation from which 〈ϕ′,Φ′〉 is defined as in previous discussion. Then, f is
robust with respect to ε = α

β ∈ Q and π = a
b ∈ [0, 1] ∩Q if, and only if, (3.22) holds. 2

Proof First note that letting X ′i play the role of Xi, for i = 1, . . . , n, 〈ϕ′,Φ′〉 represents f by
construction. Assume f is robust and let v ∈ Val satisfy all premises in (3.22); in particular,
v ∈ ValΦ ∩ValΦ′ . Let xi = v(Xi) and

pi =

{
min{v(Pi), 1− v(Xi)}, if v(X ′i ↔ Xi ⊕ Pi) = 1

−min{v(Pi), v(Xi)}, if v(X ′i ↔ ¬(Xi → Pi)) = 1

52 EFFICIENT REPRESENTATION OF PIECEWISE LINEAR FUNCTIONS INTO LOGIC 3.6

for i = 1, . . . , n; then, x+p ∈ [0, 1]n, |pi| ≤ v(Pi) ≤ v(αZ 1
β

) ≤ ε, for i = 1, . . . , n, and π = v(aZ 1
b
) ≤

v(ϕ) = f(x). Since v(X ′i) = xi + pi, for i = 1, . . . , n, by the robustness of f , we have that

v(Z 1
2
) = 0.5 ≤ f(x + p) = f(v(X ′1), . . . , v(X ′n)) = v(ϕ′).

It follows that (3.22) holds. On the other hand, assume that (3.22) holds and let x ∈ [0, 1]n and
p ∈ Rn be such that x + p ∈ [0, 1]n, |pi| ≤ ε, for i = 1, . . . , n, and f(x) ≥ π. It is easy to see that
there is a valuation v ∈ ValΦ∩ValΦ′ such that v(Xi) = xi and v(X ′i) = xi+pi, for i = 1, . . . , n, and,
also, such that v(ϕ 1

β
) = v(ϕ 1

b
) = v(ϕ 1

2
) = 1 and v(Pi) = |pi|, for i = 1, . . . , n. By the assumptions

on x and p, we have that v(Pi → αZ 1
β

) = v((X ′i ↔ Xi ⊕ Pi) ∨ (X ′i ↔ ¬(Xi → Pi))) = 1, for
i = 1, . . . , n, and v(aZ 1

b
→ ϕ) = 1. Therefore, 0.5 = v(Z 1

2
) ≤ v(ϕ′) = f(x + p) and f is robust. �

Corollary 2 The problem of deciding if a neural network given by a rational McNaughton function
in regional format is robust with respect to ε = α

β ∈ Q and π = a
b ∈ [0, 1] ∩Q is in coNP. 2

Proof First dealing with the possibly exponential formulas ϕ 1
β
, ϕ 1

b
, αZ 1

β
and aZ 1

b
through

Lemma 6, similarly as done in the proof of Corollary 1, the result follows as the decision of validity
of logical consequences in Ł∞ is a problem in coNP (Aguzzoli and Ciabattoni, 2000, Theorem 17).�

Algorithm 7 MaxPerturb-BS: Computes value E via Binary Search
Input: A neural network which is a rational McNaughton function, a probability π ≥ 1

2 and a
precision δ > 0.
Output: Value E with precision δ.
1: Build expression Γ(1

1);
2: if Γ(1

1) holds then
3: vmin := 1;
4: else
5: k := d| log δ|e;
6: j := 1, vmin := 0;
7: while j ≤ k do
8: vmax := vmin + 1

2j
;

9: Build expression Γ(vmax);
10: if Γ(vmax) holds then
11: vmin := vmax;
12: end if
13: j++;
14: end while
15: end if
16: return vmin;

Again, we can determine, according to a precision δ = 2−k, the maximum perturbation limit
E for which a neural network remains robust with respect to a fixed probability π by means of a
binary search through the possible values in the binary representation of E. Algorithm 7 presents
such procedure; Γ(ε) stands for (3.22) with highlighted value ε. Analogous to Algorithm 6, the
iterations in Algorithm 7 verify if an expression Γ(ε) holds and each new iteration refines the
precision of value E.

3.6 AN APPLICATION TO THE FORMAL ANALYSIS OF NEURAL NETWORKS 53

Theorem 17 Given a precision δ > 0, the maximum perturbation limit E of a neural network
which is a rational McNaughton function with respect to a fixed probability π may be computed with
O(| log δ|) checks of Γ(ε) in (3.22). �

The burden in Algorithms 6 and 7 falls on verifying properties of Ł∞ — satisfiability and logical
consequence — and on building logical expressions Λ(π) and Γ(ε). Nevertheless, the biggest role in
these expressions is played by representation 〈ϕ,Φ〉 of a rational McNaughton function f , whose
building procedure is studied in Sections 3.4.2 and 3.4.3, that are devoted to efficiently performing
such task.

3.6.1 Verifying a Rain Forecast Neural Network

As an experiment, we actually perform formal verification of a neural network that predicts whether
it will or not rain tomorrow in Australia, given today’s rainfall, humidity at 3:00 PM, pressure at
9:00 AM and whether it rained today. These four latter separate data — usually called features —
are codified as entries in a tuple 〈x1, x2, x3, x4〉 ∈ [0, 1]4 in order to constitute the input for our
neural network.

Given measures x̄1, x̄2 and x̄3 of rainfall, humidity and pressure, respectively — which we assume
to be between min(x̄j) and max(x̄j), the minimum and maximum values in the training data —,
we calculate

xj =
x̄j −min(x̄j)

max(x̄j)−min(x̄j)
∈ [0, 1],

for j = 1, 2, 3; whether it rained today is already a binary value x4 ∈ {0, 1}. The output of our
neural network fR(x1, x2, x3, x4) ∈ [0, 1] is interpreted as the probability of raining tomorrow and
induces answer Yes, for values at least 0.5, and answer No, otherwise.

We trained a feedforward neural network fR : [0, 1]4 → [0, 1] with one hidden layer with four
nodes, that means function fR is given by

fR(x) = τ

(
o
(
ρ
(
h1(x)

)
, ρ

(
h2(x)

)
, ρ

(
h3(x)

)
, ρ

(
h4(x)

)))
,

where the hidden layer is composed of linear functions hj : [0, 1]4 → R, for j = 1, . . . , 4, which
are transformed by the rectified linear unit function ρ : R → R, given by ρ(x) = max(0, x); the
output layer is composed of a linear function o : R4 → R, which is transformed by the truncation
function τ : R→ [0, 1], given by τ(x) = min(1,max(0, x)). Figure 3.10 graphically depicts the neural
network. The training of the neural network2 consists exactly of the definition of the parameters in
functions hj , for j = 1, . . . , 4.

The training data we used comprehends daily observations of about ten years in several cities in
Australia3 on rainfall, humidity at 3:00 PM, pressure at 9:00 AM, whether it rained that day and
whether it rained in the next day, which is also given by a binary variable and is the information
our neural network is intended to predict, called the target variable.

2The neural network we discuss was trained using the PyTorch 1.5.0 library in Python 3.7.3 with the optimizer
Adam, optimization criterion BCELoss and learning rate 0.0001.

3These data were curated by Joe Young and are publicly available at www.kaggle.com/jsphyg/
weather-dataset-rattle-package.

www.kaggle.com/jsphyg/weather-dataset-rattle-package
www.kaggle.com/jsphyg/weather-dataset-rattle-package

54 EFFICIENT REPRESENTATION OF PIECEWISE LINEAR FUNCTIONS INTO LOGIC 3.6

Input
layer

Hidden
layer

Output
layer

x1 ρ ◦ h1

x2 ρ ◦ h2

τ ◦ o

x3 ρ ◦ h3

x4 ρ ◦ h4

Figure 3.10: Graphical representation of neural network fR

Neural network fR is exactly a rational McNaughton function and may be encoded in pre-
regional format with 48 regions given by

Ω〈i1,i2,i3,i4,ω〉 =
{
x ∈ [0, 1]4

∣∣∣ hj(x) ./j 0, for j = 1, . . . , 4
}
∩ Ω′〈i1,i2,i3,i4,ω〉,

for i1, i2, i3, i4 ∈ {0, 1} and ω ∈ {0, 1, 2}, where ./j is the symbol ≤, if ij = 0, and the symbol ≥, if
ij = 1. Let

χj(x) =

{
0, if ij = 0

hj(x), if ij = 1
;

for ω ∈ {0, 1}, define

Ω′〈i1,i2,i3,i4,ω〉 =
{
x ∈ [0, 1]4

∣∣∣ o(χ1(x), χ2(x), χ3(x), χ4(x)
)
./ ω

}
,

where ./ is the symbol ≤, if ω = 0, and the symbol ≥, if ω = 1; for ω = 2, define

Ω′〈i1,i2,i3,i4,ω〉 =
{
x ∈ [0, 1]4

∣∣∣ 0 ≤ o
(
χ1(x), χ2(x), χ3(x), χ4(x)

)
≤ 1
}
.

For x ∈ Ω〈i1,i2,i3,i4,ω〉,

fR(x) = p〈i1,i2,i3,i4,ω〉(x) =

0, if ω = 0

1, if ω = 1

o
(
χ1(x), χ2(x), χ3(x), χ4(x)

)
, if ω = 2

.

All regions in this encoding are closed, so we were able to verify that it has the lattice property
by means of exhaustive searches where decisions about whether a linear piece is above another one
over some polyhedron were made by a routine based on Algorithm 1. Therefore, the encoding is
actually in closed regional format.

3.7 MODULO SATISFIABILITY VERSUS TRADITIONAL REPRESENTATION 55

Property Precision Maximum value

Reachability δ = 2−5 Π ≈ 17
32 = 0.53125

Reachability δ = 2−10 Π ≈ 275
512 = 0.537109375

Robustness for π = 1
2 δ = 2−5 E ≈ 0

Robustness for π = 51
100 δ = 2−5 E ≈ 0

Robustness for π = 52
100 δ = 2−5 E ≈ 1

32

Robustness for π = 53
100 δ = 2−5 E ≈ 1

32

Robustness for π = 17
32 δ = 2−5 E ≈ 1

32

Robustness for π = 275
512 δ = 2−5 E ≈ 1

16

Table 3.8: Properties of neural network fR inferred through formal verification methods

Using Algorithms 6 and 7, we were able to determine properties of the neural network fR;
its representation in Ł∞-MODSAT was built by means of our implementation of Algorithm 5
(Section 3.5). Verification of satisfiability and logical consequence in Ł∞ were made by a Ł∞-
solver and a Ł∞-theorem prover based on the one by Ansótegui et al. (2012); it was written in
the SMT-LIB language (Barrett et al., 2016) and ran in the Yices SMT solver (Dutertre, 2014).
This experiment was run on a shared UNIX machine with two E5645 CPUs @ 2.40GHz with 12
processors. Although the real elapsed time for building the representation of fR in Ł∞-MODSAT
was less than one second, for robustness verifications it was up to two months; such performance
may be credited to the lack of known suitable techniques for deciding on the validity of logical
consequence in Ł∞. The results of our experiments are summarized in Table 3.8 and the source
code for them is publicly available.4

3.7 Modulo Satisfiability versus Traditional Representation

The representation modulo satisfiability has as important motivation the advantageous time com-
plexity involved in building representations, which is polynomial time for rational McNaughton
functions in regional format as showed in this chapter, and in the tasks related to Ł∞, for which,
for instance, Ł∞-SAT is NP-complete as showed by Mundici (1987). More than that, Ł∞-solvers
have already been studied to the point of having the phenomenon of phase transition established
(Bofill et al., 2015).

On the other hand, there are propositional logics whose formulas represent rational McNaughton
functions in the traditional way as in Section 3.1. In the following, we present and discuss some of
the most relevant traditional approaches.

• Logic ŁΠ1
2 extends Ł∞ with a product operator, its residuum and a constant expressing

the truth value 1
2 , not directly expressible in Ł∞ (Esteva et al., 2001). That logic not only

allows for the expressivity of rational McNaughton functions but also expresses piecewise
polynomials; as a consequence satisfiability over ŁΠ1

2 requires finding roots of polynomials of
n-degree making its complexity extremely high.

4http://github.com/spreto/NNverificationViaLukasiewiczLogic

http://github.com/spreto/NNverificationViaLukasiewiczLogic

56 EFFICIENT REPRESENTATION OF PIECEWISE LINEAR FUNCTIONS INTO LOGIC 3.7

• Logic ∃Ł also expresses rational McNaughton functions (Aguzzoli and Mundici, 2001, 2003);
it extends Ł∞ and introduces rational numbers by providing a restricted form of propositional
quantification whose semantic counterpart is the maximization of a set of Ł∞-valuations of a
formula. The satisfiability problem in that logic is in the complexity class Σp

2, which is also a
high complexity.

• Rational Łukasiewicz Logic extends Ł∞ with division operators δn that induces division by
n ∈ N∗ in its semantics, i.e. v(δnϕ) = v(ϕ)

n , where v is a valuation of Rational Łukasiewicz
Logic (Gerla, 2001); its associated tautology problem is coNP-complete, which is a reasonable
complexity for this task. This logic expresses all rational McNaughton functions, however
there is no known algorithm to build the representative formulas and an attempt to derive
one from the results of Gerla (2001) would lead to the problem of representing McNaughton
functions in Ł∞; it is known that this task may be done in polynomial time on the coefficients
of some specific functions (Aguzzoli, 1998), however these methods lead to exponential time
complexity if binary representation of the coefficients is used.

• Logic RŁ extends Ł∞ with constant multiplication operators ∇r that induce multiplica-
tion by r ∈ [0, 1] in its semantics, i.e. v(∇rϕ) = r · v(ϕ), where v is a RŁ-valuation
(Di Nola and Leus,tean, 2011, 2014). This logic expresses all continuous [0, 1]-valued piece-
wise linear functions over [0, 1]n; in particular, it expresses all rational McNaughton functions,
however its language is uncountable, thus it is not computable. We are unaware of computa-
tional considerations so far about the fragment of RŁ that comprehends only operators ∇q,
for q ∈ [0, 1] ∩Q.

Let us explore the connections between representation modulo satisfiability and Rational
Łukasiewicz Logic. The McNaughton-like theorem in the work of Gerla (2001) establishes a one-
to-one correspondence between equivalence classes modulo equi-provability of formulas of Rational
Łukasiewicz Logic and rational McNaughton functions. According to this result, a rational Mc-
Naughton function f : [0, 1]n → [0, 1] is represented by a class of (equi-provable) formulas of
Rational Łukasiewicz Logic which has among them the formula in special format

ϕ =
s−1⊕
i=0

δsϕi, (3.23)

where s is some integer for which the linear pieces of s · f have integer coefficients and ϕi are
representations in Ł∞ for the McNaughton functions fi : [0, 1]n → [0, 1] given, for x ∈ [0, 1]n, by

fi(x) = max
(

min
(
s · f(x)− i, 1

)
, 0
)
.

In a sense, the following result says that operators δn may be represented in Ł∞-MODSAT.

Theorem 18 Let ϕ be a formula with Var(ϕ) ⊆ Xn and s ∈ N∗. Then, function

1

s
· fϕ : x ∈ [0, 1]n 7→ fϕ(x)

s

is representable in Ł∞-MODSAT. 2

3.7 MODULO SATISFIABILITY VERSUS TRADITIONAL REPRESENTATION 57

Proof With new variables W and Z 1
s
, we define

Φ =
{
ϕ 1
s
, sW ↔ ϕ, W → Z 1

s

}
and, analogous to the proofs of Lemmas 2 and 5, we have that 〈W,Φ〉 represents 1

s · fϕ. �

By Theorem 18 and special format (3.23), we may say that any class of equi-provable formulas of
Rational Łukasiewicz Logic is representable in Ł∞-MODSAT: let ϕ be the formula in such class as
in (3.23), then the representation is given by the pair 〈ϕ,Φ〉, where

ϕ =

s−1⊕
i=0

Wi

and

Φ =
{
ϕ 1
s

}
∪

s−1⋃
i=0

{
sWi ↔ ϕi, Wi → Z 1

s

}
.

Of course, since such classes are identified with rational McNaughton functions, that was already a
consequence of Theorem 3.

Part of this chapter’s results has appeared in the following publications.

• Preto and Finger (2020) Sandro Preto and Marcelo Finger. An efficient algorithm for repre-
senting piecewise linear functions into logic. Electronic Notes in Theoretical Computer Science,
351:167-186. ISSN 1571-0661. doi: 10.1016/j.entcs.2020.08.009. URL http://doi.org/10.1016/
j.entcs.2020.08.009. Proceedings of LSFA 2020, the 15th International Workshop on Logical
and Semantic Frameworks, with Applications (LSFA 2020).

• Finger and Preto (2020) Marcelo Finger and Sandro Preto. Probably partially true: Satisfia-
bility for Łukasiewicz infinitely-valued probabilistic logic and related topics. Journal of Au-
tomated Reasoning, 64(7):1269-1286. ISSN 1573-0670. doi: 10.1007/s10817-020-09558-9. URL
http://doi.org/10.1007/s10817-020-09558-9.

• Preto and Finger (2019) Sandro Preto and Marcelo Finger. Representing rational Mc-
Naughton functions via MODSAT relativisation. In Cezar Augusto Mortari, Ricardo Silvestre,
Ítala Maria Loffredo D’Ottaviano, Leandro Suguitani and Petrucio Viana, editors, 19th Brazil-
ian Logic Conference EBL 2019: Book of Abstracts, page 183. Mídia Gráfica e Editora Ltda,
UFCG-EDUFCG.

Furthermore, the following papers, which are also related to this chapter, have been submitted
to journals and are currently under review.

• Sandro Preto and Marcelo Finger. Efficient representation of piecewise linear functions into
Łukasiewicz logic modulo satisfiability.

• Sandro Preto and Marcelo Finger. Proving properties of binary classification neural networks
via Łukasiewicz logic.

http://doi.org/10.1016/j.entcs.2020.08.009
http://doi.org/10.1016/j.entcs.2020.08.009
http://doi.org/10.1007/s10817-020-09558-9

58 EFFICIENT REPRESENTATION OF PIECEWISE LINEAR FUNCTIONS INTO LOGIC 3.7

Chapter 4

Probabilities over Łukasiewicz
Infinitely-Valued Logic

There are situations where, instead of classical truth values, a gradation of truth may be closer to
the perceptions of the agents involved. More than that, by departing from the classical probabilistic
setting and instead employing Łukasiewicz Infinitely-valued Logic as underlying logic, we enlarge
our probabilistic reasoning capacity in order to comprehend such situations. A sound probability
theory over such a many-valued context that includes a notion of coherent probabilities in line with
de Finetti’s was developed by Mundici (2006). The following example illustrates such setting.

Example 6 Three friends have the habit of going to a bar to watch their soccer team’s matches.
Staff at the bar claims that at every such match at least two of the friends come to the premises,
but if you ask them, they will say that each of them comes to watch at most 60% of the games.

In classical terms, the claims of the staff and of the three friends are in contradiction. In fact, if
there are always two of the three friends present at matches, someone must attend to least two-thirds
of the team’s matches.

However, one may allow someone to arrive for the second half of the match and consider his
attendance only “partially true”,1 say, a truth value of 0.5 in that case. Then it may well be the case
that staff and customers are both telling the truth, that is, their claims are jointly satisfiable. �

Despite the above example being unsatisfiable according to classical probability theory, it is
satisfiable in a probability theory grounded on Łukasiewicz Infinitely-valued Logic. In this chapter,
we deal with the problem of deciding whether a set of probabilistic assignments over Ł∞ is coherent,
the ŁIPSAT problem. Our goal is to explore equivalent formulations and algorithmic ways to solve
it and, as it is an NP-complete problem (Bova and Flaminio, 2010), study the existence of a phase
transition in the empirical behavior of such solutions.

We propose a ŁIPSAT-solving algorithm where semantics modulo satisfiability is combined
with techniques from linear programming in order to solve instances given in a normal form which,
analogous to the classical case in Section 2.3, represents probabilistic assignments in agreement with
a Ł∞-propositional theory. This algorithm needs to solve several instances of Ł∞-SAT, for which
there are some implementations discussed in the literature (Bofill et al., 2015), but there are many
implementation options with considerable efficiency differences which we analyze.

1See footnote no. 1, p. 10.

59

60 PROBABILITIES OVER ŁUKASIEWICZ INFINITELY-VALUED LOGIC 4.1

In Section 4.1 we establish a non-classical probability theory grounded on Ł∞ and its correspond-
ing notion of coherent probability assignment. In Section 4.2 we study the theoretical relationship
between linear algebraic methods, semantics modulo satisfiability and the solution of the ŁIPSAT
problem. In Section 4.3 we develop a column generation algorithm for ŁIPSAT-solving and show
its correctness. Finally, we discuss implementation issues and the phase transition behavior of the
solvers in Section 4.4.

Throughout this chapter, we refer to Ł∞-formulas, Ł∞-valuations, Ł∞-partial valuations and
the semantics Ł∞-Val simply as formulas, valuations, partial valuations and Val.

4.1 Łukasiewicz Probabilities and Coherence

The same way Classical Propositional Logic serves as basis for classical probability theory (see
Section 2.3), Łukasiewicz Infinitely-valued Logic serves as basis for a non-classical probability theory
(Mundici, 2011). Fix a set of propositional variables P ⊆ P and define a convex combination over a
finite set of partial valuations v1, . . . , vm ∈ ValP as a function on formulas ϕ, with Var(ϕ)⊆P, into
[0, 1] such that

C(ϕ) = λ1v1(ϕ) + · · ·+ λmvm(ϕ), (4.1)

where λi ≥ 0 and
∑m

i=1 λi = 1. So a Ł∞-probability distribution λ = [λ1, · · · , λm]′ is a vector of
coefficients that form the convex combination of partial valuations. To distinguish Ł∞-probabilities
from classical ones, we use the notation C(·), following Mundici (2011); note that classical discrete
probabilities are also convex combinations of CPL-partial valuations.

This notion of probability is intrinsically discrete and associates nonzero values only to a finite
number of partial valuations, the remaining ones being assumed to have value zero.2 Since we
are interested in deciding the existence of convex combinations of the form (4.1), given a set of
constraints, and there are infinitely many possible partial valuations, the search space is a priori
infinite.

It follows immediately from the definition that C(ϕ) = 1 if the underlying convex combination
over v1, . . . , vm is such that vi(ϕ) = 1, 1 ≤ i ≤ m.

Lemma 8 C(α→ β) = 1 iff C(α) ≤ C(β). 2

Proof From the fact that v(ϕ→ ψ) = 1 iff v(ϕ) ≤ v(ψ). �

Now, define a Łukasiewicz Infinitely-valued Probabilistic (ŁIP) assignment as an expression of
the form

Σ =
{
C(αi) = qi

∣∣∣ qi ∈ [0, 1] ∩Q, 1 ≤ i ≤ k
}
. (4.2)

Since we are concerned with computational problems, we consider only probabilities in [0, 1] ∩Q.
As a foundational view of probabilities, it is possible to define a coherence criterion over ŁIP-

assignments, in analogy to the classical notion of coherent assignment of probabilities due to
2Such notion is thus more restrictive than the full class of states of an MV-algebra, in the sense of Mundici (2011),

which we do not discuss in this work.

4.1 ŁUKASIEWICZ PROBABILITIES AND COHERENCE 61

de Finetti (1931, 1937, 2017). Thus, we define the Ł∞-coherence of a ŁIP-assignment {C(αi) =

qi | 1 ≤ i ≤ k} in terms of a bet between two players, Alice the bookmaker and Bob the bet-
tor; the outcome on which the players bet is a partial valuation v ∈ ValP , with Var(αi) ⊆ P,
i ≤ 1 ≤ k, describing an actual “possible world”. For each formula αi, Alice states her betting odd
C(αi) = qi ∈ [0, 1] and Bob chooses a “stake” σi ∈ Q; Bob pays Alice

∑k
i=1 σi · C(αi) with the

promise that Alice will pay back
∑k

i=1 σi · v(αi) if the outcome is the partial valuation (or “possible
world”) v. As in the classical case, the chosen stake σi is allowed to be negative, in which case Alice
pays Bob |σi| · C(αi) and gets back |σi| · v(αi) if the world turns out to be v. Alice’s total balance
in the bet is

k∑
i=1

σi(C(αi)− v(αi)).

We say that there is a ŁIP-Dutch Book against Alice’s ŁIP-assignment if there is a choice of stakes
σi such that, for every possible outcome v, Alice’s total balance is always negative, indicating a bad
choice of betting odds made by Alice.

Definition 5 Given a probability assignment to propositional formulas {C(αi) = qi | 1 ≤ i ≤ k},
the ŁIP-assignment is coherent if there are no Dutch Books against it. 2

While the coherence of an assignment provides a foundational view to deal with Ł∞-probabilities,
a more computational view is possible, based on the satisfiability of assignments. Such a view will
allow a more operational way of dealing with Ł∞-probabilistic assignments.

Definition 6 A ŁIP-assignment is satisfiable if there exists a convex combination C over a finite
set of partial valuations that jointly verifies all restrictions in it. 2

Example 7 Consider again Example 6, let X1, X2, X3 be variables representing the presence at
the bar of each of the three friends. The probabilistic constraint expressing that each friend comes
at most 60% of the games can be expressed as

C(X1) = C(X2) = C(X3) ≤ 0.6, (*)

and the fact that at least two of them are present is expressed by the constraints

C(X1 ⊕X2) = C(X1 ⊕X3) = C(X2 ⊕X3) = 1 (**)

which means that no two of them are simultaneously absent. There are infinitely many ways of
obtaining a convex combination of partial valuations that satisfy all six conditions, the simplest
of which is achieved with a single partial valuation v, v(X1) = v(X2) = v(X3) = 0.6; in fact,
v(X1 ⊕X2) = v(X1 ⊕X3) = v(X2 ⊕X3) = 1, so we can attribute 100% of probability mass to v.

A similar result can be obtained with three “classical” partial valuations vi(Xi) = 0, vi(Xj) =

vi(Xk) = 1, for pairwise distinct i, j, k ∈ {1, 2, 3} and a fourth partial valuation v4(X1) = v4(X2) =

v4(X3) = 0.5. Note all four partial valuations satisfy the formulas in (**). The Ł∞-probability
distribution that assigns 0.2 to v1, v2, v3 and 0.4 to v4 satisfies all constraints (*) and (**). 2

The following result is the characterization of coherence for ŁIP-assignments.

62 PROBABILITIES OVER ŁUKASIEWICZ INFINITELY-VALUED LOGIC 4.2

Proposition 3 (Mundici (2006)) Given a ŁIP-assignment Σ = {C(αi) = qi | 1 ≤ i ≤ k}, the
following are equivalent:

(a) Σ is a coherent ŁIP-assignment.

(b) Σ is a satisfiable ŁIP-assignment. 2

Proposition 3 asserts that deciding ŁIP-coherence is the same as determining ŁIP-assignment
satisfiability — we denote such problem by ŁIPSAT. This result is the Ł∞ analogous to de Finetti’s
characterization of coherence of classical probabilistic assignment as equivalent to the probabilistic
satisfiability of the assignment (PSAT), which was shown to be an NP-complete problem that can
be solved using linear algebraic methods (Georgakopoulos et al., 1988; Nilsson, 1986). It has also
been shown by Bova and Flaminio (2010) that deciding the coherence of ŁIP-assignments is an
NP-complete problem.

Our goal is to explore efficient ways to decide the coherence of ŁIP-assignments. In analogy
to the algorithms used for deciding PSAT (Finger and Bona, 2011; Finger and De Bona, 2015), we
explore a linear algebraic formulation of the problem based on semantics modulo satisfiability.

4.2 Algebraic Formulation of ŁIPSAT

We consider an extended version of ŁIP-assignments of the form

Σ =
{
C(αi) ./i qi

∣∣∣ qi ∈ [0, 1] ∩Q, ./i∈ {=,≤,≥}, 1 ≤ i ≤ k
}
. (4.3)

Extended ŁIP-assignments may have both inequalities and equalities. Such an assignment is sat-
isfiable if there is a Ł∞-probability distribution λ that verifies all inequalities and equalities in
it. Given an extended ŁIP-assignment Σ = {C(αi) ./i qi}, let q = [q1, . . . , qk]

′ be the vector of
probabilities in Σ and ./ the “vector” of (in)equality symbols. Suppose we are given partial val-
uations v1, . . . , vm ∈ ValP , with Var(αi) ⊆ P, 1 ≤ i ≤ k, and let λ = [λ1, . . . , λm]′ be a vector
of convex weights; consider the k × m matrix A = [aij] where aij = vj(αi). Then, an extended
ŁIP-assignment of the form (4.3) is satisfiable if there are v1, . . . , vm and λ such that the set of
algebraic constrains (4.4) has a solution.

A · λ ./ q∑
λj = 1 (4.4)

λ ≥ 0

The condition
∑
λj = 1 can be incorporated as an all-1 row k + 1 in matrix A, q = [q1, . . . , qk, 1]′

and ./k+1 is “=”. Note that the number m of columns in A is in principle unbounded, but by
Carathéodory’s Theorem (Proposition 1), if a set of restrictions of the form (4.4) has a solution,
then it has a “small” solution in which at most k + 1 elements of λ are nonzero.

Given the algebraic formulation in (4.4) for a regular ŁIP-assignment as in (4.2), based on the
proof by Bova and Flaminio (2010) of ŁIPSAT NP-completeness, we can assure that there exists
a polynomial size witness consisting of A and λ in (4.4) for a reasonable encoding of a satisfiable
ŁIP-assignment in (4.2) — that is an encoding with a size that is polynomial in k, in the number

4.2 ALGEBRAIC FORMULATION OF ŁIPSAT 63

of occurrences of operators in αi and in the binary representation of qi, for i = 1, . . . , k. That is
so because, given such a satisfiable ŁIP-assignment with encoding size η, first, there is a matrix
A whose entries are rational numbers with polynomial binary representation of size at most 2η2;
second, by Carathéodory’s Theorem (Proposition 1), we can assume such matrix A to have at
most k + 1 rows; also, the solution λ for the linear constraints Aλ ./ q has polynomial size in the
representations of A and q.

Note also that, since deciding the satisfiability of a ŁIP-assignment of the form {C(αi) = 1 | 1 ≤
i ≤ k} is equivalent to deciding if the Ł∞-SAT instance {α1, . . . , αk} is satisfiable, which is an NP-
complete problem (Mundici, 1987), it follows that ŁIPSAT is NP-hard and so NP-complete.

Proposition 4 (Bova and Flaminio (2010)) The problem of deciding the satisfiability of a ŁIP-
assignment is NP-complete. 2

Before applying linear algebraic methods to efficiently solve ŁIPSAT, we first provide a normal
form for it based on the framework of semantics modulo satisfiability.

4.2.1 A Normal Form for ŁIP-Assignments

An extended assignment may seem more expressive than regular ŁIP-assignments, but we show
that no expressivity is gained by this extension. In fact, we define an (atomic) normal form ŁIP-
assignment as a pair 〈Γ,Θ〉, where Γ is a set of formulas and Θ is a set of ŁIP-assignments over
propositional variables of the form

Θ =
{
C(Pi) = qi

∣∣∣ qi ∈ [0, 1] ∩Q, Pi ∈ P, 1 ≤ i ≤ k
}
. (4.5)

The formulas γ ∈ Γ represent ŁIP-assignments of the form C(γ) = 1, that is, a set of hard constrains
in the form of formulas which must be satisfied by all partial valuations in the convex combination
that compose a Ł∞-probability distribution. In terms of semantics modulo satisfiability, partial
valuations v1, . . . , vm in (4.1) must be in ValPΓ ; thus, a normal form ŁIP-assignment comes down to
probabilistic assignments in Θ that should be in accordance with propositional theory Th(Γ), just
like normal form instances of PSAT (Section 2.3).

A normal form assignment 〈Γ,Θ〉 is satisfiable if there are partial valuations v1, . . . , vm ∈
ValPΓ , with Var(Γ) ⊆ P and Pi ∈ P, 1 ≤ i ≤ k, and there is a Ł∞-probability distribution
λ = [λ1, · · · , λm]′, such that for each assignment C(Pi) = qi ∈ Θ,

∑m
j=1 λj · vj(Pi) = qi. The

satisfiability of extended ŁIP-assignments reduces to that of normal form ones as follows.

Theorem 19 (Atomic Normal Form) For every extended ŁIP-assignment Σ there exists a nor-
mal form ŁIP-assignment 〈Γ,Θ〉 such that Σ is satisfiable iff 〈Γ,Θ〉 is; the normal form assignment
can be built from Σ in linear time. 2

Proof Given Σ, first transform it into Σ′ in which all assignments are of the form C(α) ≤ p; for
that, if Σ contains a constraint of the form C(α) ./ 1, ./ ∈ {=,≥} (resp. C(α) = 0, C(α) ≤ 0), we
insert α (resp. ¬α) in Γ and do not insert the constraint in Σ′. If C(α) = q ∈ Σ, we insert C(α) ≤ q
and C(α) ≥ q in Σ′. Then all assignments of the latter form are transformed into C(¬α) ≤ 1 − q.
Also, insert constraints already in the form C(α) ≤ q ∈ Σ into Σ′. All transformation steps can be
made in linear time and are such that Γ ∪ Σ′ is satisfiable iff Σ is.

64 PROBABILITIES OVER ŁUKASIEWICZ INFINITELY-VALUED LOGIC 4.2

For every C(αi) ≤ qi ∈ Σ′, 0 < qi < 1, consider a new propositional variable Pi; insert αi → Pi

in Γ and C(Pi) = qi in Θ. Clearly 〈Γ,Θ〉 is in normal form and is obtained in linear time. The fact
that Σ is satisfiable iff 〈Γ,Θ〉 is follows from Lemma 8. �

Example 8 Note that the formalization presented in Example 7 is already in normal form, wit-
nessing that this format is quite a natural one to formulate ŁIP-assignments. 2

4.2.2 Algebraic Methods for Normal Form ŁIP-Assignments

From now on, we assume that ŁIP-assignments are in normal form. Here we explore their algebraic
structure as it allows for the interaction between a ŁIP-problem Θ and a Ł∞-SAT instance Γ, such
that solutions satisfying the normal form assignment can be seen as probabilistic solutions to Θ

agreeing with propositional theory Th(Γ).
Furthermore, to construct a convex combination of the form (4.1) we will only consider par-

tial valuations in ValPΓ , with Var(Γ) ⊆ P and Pi ∈ P, 1 ≤ i ≤ k. Given a ŁIP-assignment
〈Γ,Θ = {C(Pi) = qi}〉, a partial valuation v ∈ Val{P1,...,Pk} is Γ-satisfiable if it can be extended
to a partial valuation in ValPΓ . Let us identify partial valuations v ∈ Val{P1,...,Pk} with (k + 1)-
dimensional vectors [v(P1), . . . , v(Pk), 1]′ and let q be a (k + 1)-dimensional vector [q1, . . . , qk, 1]′;
the following is a direct consequence of Theorem 19.

Lemma 9 A normal form instance 〈Γ,Θ〉 is satisfiable iff there is a (k + 1) × (k + 1)-matrix AΘ

such that its entries are rational numbers with polynomial representation in the encoding of 〈Γ,Θ〉,
its last row is all 1’s, its columns are Γ-satisfiable and AΘλ = q has a solution λ ≥ 0. 2

Proof Let n be the number of formulas in Γ and let l = n + k. Suppose first that 〈Γ,Θ〉 is
satisfiable, thus the assignment admits a solution Āλ̄ = q̄, according to (4.4); the condition

∑
λ̄j = 1

is incorporated as the final row of Ā containing only 1’s; as mentioned in Section 4.2, matrix Ā
may be such that its entries are rational numbers with polynomial representation in the encoding
of 〈Γ,Θ〉. Each column Āj in matrix Ā corresponds to a partial valuation vj ∈ ValP and λ̄ is a
Ł∞-probability distribution over the vj ’s; clearly, λ̄j > 0 implies that vj ∈ ValPΓ . Let matrix ¯̄A

with k + 1 rows be obtained from Ā by deleting each line corresponding to a formula in Γ and
deleting each column Āj such that λ̄j = 0; also, let ¯̄λ be obtained from λ̄ by deleting each entry
λ̄j = 0. Note that, by construction, ¯̄A¯̄λ = q, ¯̄λ ≥ 0 and the columns in ¯̄A are Γ-satisfiable. Then,
by Carathéodory’s Theorem (Proposition 1) there exists a (k + 1)× (k + 1) matrix AΘ, built from
¯̄A columns, and a k + 1 dimensional vector λ such that AΘλ = q has a solution λ ≥ 0.

Conversely, suppose that the desired matrix AΘ exists, thus AΘ · λ = q, for some λ ≥ 0. Each
column of AΘ, being Γ-satisfiable, can be transformed into a column of A in (4.4) by extending
it with n 1’s, corresponding to the formulas in Γ. It follows easily that restrictions (4.4) have a
solution and thus 〈Γ,Θ〉 is satisfiable. �

Lemma 9 leads to a linear algebraic solving method as follows. Let V ⊆ Val{P1,...,Pk} be a set of
partial valuations over the propositional variables in Θ that take values whose representations have
a size limit based on the polynomial size of witnesses to ŁIP-assignments discussed in Section 4.2;
consider a |V |-dimensional vector as follows.

cj =

{
0, vj ∈ V is Γ-satisfiable
1, otherwise

(4.6)

4.3 A ŁIPSAT-SOLVING ALGORITHM 65

The vector c is a Boolean “cost” associated to each partial valuation vj ∈ V , such that the cost is
1 iff vj is Γ-unsatisfiable. Consider a matrix A whose columns are the partial valuations in V . Now
consider the linear program (4.7) which aims at minimizing that cost, weighted by the corresponding
probability value λj .

min c′ · λ
subject to A · λ = q∑

λj = 1

λ ≥ 0

A’s columns are partial valuations in V

(4.7)

Theorem 20 A normal form instance 〈Γ,Θ = {C(Pi) = qi | 1 ≤ i ≤ k}〉 is satisfiable iff the linear
program (4.7) reaches a minimal solution c′λ = 0. Furthermore, if there is a solution, then there is
a solution in which at most k + 1 values of λ are not null. 2

Proof If the linear program (4.7) reaches 0, we obtain v1, . . . , vm by selecting only the Γ-satisfiable
columns Aj for which λj > 0, obtaining a convex combination satisfying Θ. So, 〈Γ,Θ〉 is satisfiable.
Conversely, if 〈Γ,Θ〉 is satisfiable, by Lemma 9 there exists a matrix AΘ such that all of its columns
are Γ-satisfiable partial valuations in V and AΘλ = q; clearly AΘ is a submatrix of A; make λj = 0

when Aj is not a AΘ column and thus c′λ = 0. Again by Lemma 9, AΘ has at most k + 1 columns
so at most k + 1 values of λ are not null. �

Despite the fact that solvable linear programs of the form (4.7) always have polynomial size
solutions, with respect to the size of the corresponding normal form ŁIP-assignment, the elements
of linear program itself may be exponentially large, rendering the explicit representation of matrix
A impractical. In the following, we present an algorithmic technique that avoids that exponential
explosion.

4.3 A ŁIPSAT-Solving Algorithm

Based on the results of the previous section we are going to present an algorithm em-
ploying a linear programming technique called column generation (Hansen and Jaumard, 1990;
Kavvadias and Papadimitriou, 1990) to obtain a decision procedure for ŁIPSAT, which we call
ŁIPSAT-solving. This algorithm solves the potentially large linear program (4.7) without explic-
itly representing all columns and making use of an extended solver for Ł∞-SAT as an auxiliary
procedure to generate columns.

To avoid the exponential blow of the size of matrix in (4.7), the algorithm’s basic idea is to employ
the simplex algorithm (see Section 2.4 for references) over a normal form ŁIP-assignment 〈Γ,Θ〉,
coupled with a strategy that generates cost decreasing columns without explicitly representing
the full matrix A. In this process, we start with a feasible solution, which may contain several
Γ-unsatisfiable columns. We minimize the cost function consisting of the sum of the probabilities
associated to Γ-unsatisfiable columns, such that when it reaches zero, we know that the problem is
satisfiable; if no cost decreasing column can be generated and the minimum achieved is bigger than
zero, a negative decision is reached.

66 PROBABILITIES OVER ŁUKASIEWICZ INFINITELY-VALUED LOGIC 4.3

The general strategy employed here is similar to that employed in PSAT-solving
(Finger and Bona, 2011; Finger and De Bona, 2015), but the column generation algorithm is con-
siderably distinct and requires an extension of Ł∞-SAT decision procedure.

From the input 〈Γ,Θ〉, we implicitly obtain an unbounded matrix A and explicitly obtain the
vector of probabilities q mentioned in (4.7). The basic idea of the simplex algorithm is to move from
one feasible solution to another one with a decreasing cost. The feasible solution consists of a square
matrix B, called the basis, whose columns are extracted from the unbounded matrix A. The pair
〈B, λ〉 consisting of the basis B and a Ł∞-probability distribution λ is a feasible solution if B ·λ = q

and λ ≥ 0. We assume that qk+1 = 1 such that the last line of B will force
∑

G λj = 1, where G is
the set of B columns that are Γ-satisfiable. Each step of the algorithm replaces one column of the
feasible solution 〈B(s−1), λ(s−1)〉 at step s−1 obtaining a new feasible solution 〈B(s), λ(s)〉. The cost
vector c(s) is a {0, 1}-vector such that c(s)

j = 1 iff Bj is Γ-unsatisfiable. The column generation and
substitution is designed such that the total cost is never increasing, that is c(s)′ ·λ(s) ≤ c(s−1)′ ·λ(s−1).

Algorithm 8 presents the top level ŁIPSAT decision procedure. Lines 1–3 present the initializa-
tion of the algorithm. We assume the vector q is in ascending order. Let Dk+1 be a k + 1 square
matrix in which the elements on the diagonal and below are 1 and all the others are 0. At the
initial step we make B(0) = Dk+1, this forces λ

(0)
1 = q1 ≥ 0, λ(0)

j+1 = qj+1 − qj ≥ 0, 1 ≤ j ≤ k; and
c(0) = [c1, . . . , ck+1]′, where ck = 0 if column j in B(0) is Γ-satisfiable; otherwise cj = 1. Thus, the
initial state s = 0 is a feasible solution.

Algorithm 8 ŁIPSAT-CG: a ŁIPSAT solver via Column Generation
Input: A normal form ŁIPSAT instance 〈Γ,Θ〉.
Output: No, if 〈Γ,Θ〉 is unsatisfiable. Or a solution 〈B, λ〉 that minimizes (4.7).
1: q := [{qi | C(pi) = qi ∈ Θ, 1 ≤ i ≤ k} ∪ {1}] in ascending order;
2: B(0) := Dk+1;
3: s := 0, λ(s) = (B(0))−1 · q and c(s) = [c1, . . . , ck+1]′;
4: while c(s)′ · λ(s) 6= 0 do
5: y(s) = GenerateColumn(B(s),Γ, c(s));
6: if y(s) column generation failed then
7: return No; {ŁIPSAT instance is unsatisfiable}
8: else
9: B(s+1) = merge(B(s), b(s))

10: s++, recompute λ(s) and c(s);
11: end if
12: end while
13: return 〈B(s), λ(s)〉; {ŁIPSAT instance is satisfiable}

Algorithm 8’s main loop covers lines 5–12 which contains the column generation strategy de-
scribed above. Column generation occurs at beginning of the loop (line 5) which we are going to
detail below. If column generation fails the process ends with failure in line 7. Otherwise a column
is removed and the generated column is inserted in a process we called merge at line 9. The loop
ends successfully when the objective function (total cost) c(s)′ · λ(s) reaches zero and the algorithm
outputs a probability distribution λ and the set of Γ-satisfiable columns in B, at line 13.

The procedure merge is part of the simplex method which guarantees that given a k+ 1 column
y and a feasible solution 〈B, λ〉 there always exists a column j in B such that if B[j := y] is obtained
from B by replacing column j with y, then there is λ′ such that 〈B[j := y], λ′〉 is a feasible solution.

4.3 A ŁIPSAT-SOLVING ALGORITHM 67

Lemma 10 Let 〈B, λ〉 be a feasible solution of (4.7), such that B is non-singular, and let y be
a column. Then there always exists a column j such that 〈B[j := y], λ′〉 is a non-singular feasible
solution. 2

Proof As 〈B, λ〉 is a feasible solution,

k+1∑
i=1

Biλi = q. (4.8)

Suppose we replace column Bj by y. Due to the fact that B is not singular, there are coefficients
β1, β2, . . . , βk+1 such that

∑k+1
i=1 βiBi = y and thus

Bj =
y

βj
− β1

βj
B1 − · · · −

βj−1

βj
Bj−1 −

βj+1

βj
Bj+1 − · · · −

βk+1

βj
Bk+1. (4.9)

Substituting (4.9) for Bj in (4.8) yields:

λj
βj
y +

k+1∑
i=1

(λi −
βi
βj
λj)Bi = q. (4.10)

Note that the coefficient of Bj in the sum is 0. We have now a new vector of coefficients λ′ such
that B[j := y] · λ′ = q. Properly choosing j guarantees λ′ ≥ 0. As the elements of columns Bi and
y are all non-negative truth values, the set β>0 = {βi | βi > 0} is not empty. Taking a j from the
set {j | βj ∈ β>0 and ∀i, βiλj ≤ βjλi} implies λi− βi

βj
λj ≥ 0, for all i 6= j, and λj/βj ≥ 0, so λ′ ≥ 0.

Finally, as βj > 0 and all columns in B are linearly independent, B[j := y] is non-singular. �

Lemma 10 guarantees the existence of a column which may not be unique and further selection
heuristics is necessary; in our implementation we give priority to removing columns which are
associated to probability zero on a left-to-right order.

We now describe the column generation method, which takes as input the current basis B, the
current cost c and the restrictions Γ; the output is a column y, if it exists, otherwise it signals No.
The basic idea for column generation is the property of the simplex algorithm called the reduced
cost of inserting a column y with cost cy in the basis. The reduced cost is given by equation

ry = cy − c′B−1y (4.11)

and the simplex method guarantees that the objective function is non-increasing if ry ≤ 0. Fur-
thermore the generation method is such that the column y is Γ-satisfiable, so cy = 0. We thus
obtain

c′B−1y ≥ 0 (4.12)

which is an inequality on the elements of y. To force λ to be a probability distribution, we make
yk+1 = 1; the remaining elements yi are truth values of the variables in Θ, so that we are searching
for solution to (4.12) such that 0 ≤ yi ≤ 1, 1 ≤ i ≤ k. To finally obtain column y we must extend a
Ł∞-solver that generates Γ-satisfiable partial valuations so that it also respects the linear restriction
(4.12). In fact this is not an expressive extension of Ł∞ as the McNaughton property guarantees

68 PROBABILITIES OVER ŁUKASIEWICZ INFINITELY-VALUED LOGIC 4.3

that (4.12) is equivalent to a formula on variables y1, . . . , yk. In practice, we tested two ways of
obtaining a joint solver for Γ and (4.12).

• Employing an SMT (SAT modulo theories) solver that can handle linear algebraic expressions
such as (4.12) and the ones generated by the Ł∞-semantics. We already used such SMT-based
Ł∞-solver in Chapter 3 for testing the implementation of the representation algorithms in
Section 3.5 and for verifying neural network properties in Section 3.6.

• Using a MIP (mixed integer programming) solver that encodes Ł∞-semantics. Equation (4.12)
is simply a new linear restriction to be dealt with by the MIP solver. Ł∞-solvers based on
MIP solvers have been proposed by Hähnle (1991).

In both cases, the restrictions posed by the formulas in Γ and (4.12) are jointly handled by the
semantics of the underlying solver. We have thus the following result.

Lemma 11 There are algorithmic solutions to the problem of jointly satisfying formulas and in-
equalities with common variables. 2

We now deal with the problem of termination. Column generation as above guarantees that
the cost is never increasing. Limit cases where infinite cost descending columns might be generated
are avoidable by imposing a size restriction on the representations of such columns as established
in (4.7); in practice, such restriction is achieved due to the internal precision of the extended Ł∞-
solvers. In this context, the simplex method ensures that a solvable problem always terminates
if the costs always decrease and we are left with the problem of guaranteeing that the objective
function does not become stationary. This is guaranteed in the implementation by a column selection
strategy that respects Bland’s Rule and also by plateau escaping strategies such as Tabu search (see
Section 2.4 for references).

Lemma 12 There are column selection strategies that guarantee that the Algorithm 8 always ter-
minates. 2

Although there are no column selection heuristics that guarantee that the simplex method
terminates in a polynomial number of steps, it performs very well in most practical cases and its
average complexity is known to be polynomial (see Section 2.4 for references). By placing all the
results above together, we can state the correctness of Algorithm 8.

Theorem 21 Consider the output of Algorithm 8 with normal form input 〈Γ,Θ〉. If the algorithm
succeeds with solution 〈B, λ〉, then the input problem is satisfiable with distribution λ over the valu-
ations which are columns of B. If the program outputs No, then the input problem is unsatisfiable.
Furthermore, there are column selection strategies that guarantee termination. 2

Proof Lemma 10 guarantees that in all steps, 〈B(s), λ(s)〉 is a feasible solution to the problem.
If Algorithm 8 terminates with success, than cost zero has been reached, so by Theorem 20 the
input problem is satisfiable. On the other hand, if column generation fails, it fails with a positive
cost and this means there are no Γ-satisfiable columns that can reduce the cost. So, the problem in
unsatisfiable. Finally, a suitable column selection strategy by Lemma 12 guarantees termination.�

4.4 IMPLEMENTATION AND RESULTS 69

Example 9 We show the steps for the solution of Example 7. Initially, we have

q =

0.6

0.6

0.6

1

 , B(0) =

1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1

 , λ(0) = (B(0))−1 · q =

0.6

0

0

0.4

 , c(0) =

0

0

1

1

 .

c(0) expresses that the first two columns of B(0) are Γ-satisfiable. The total cost cost(0) = c(0)′ ·λ(0) =

0.4. At this point, column y(1) is generated substituting B(0)’s column 3 in the merge procedure:

y(1) =

1

0

1

1

 , B(1) =

1 0 1 0

1 1 0 0

1 1 1 0

1 1 1 1

 , λ(1) =

0.6

0

0

0.4

 , c(1) =

0

0

0

1

 .

cost(1) = 0.4. Again, column generation provides y(2) in place of column 1:

y(2) =

1

1

0

1

 , B(2) =

1 0 1 0

1 1 0 0

0 1 1 0

1 1 1 1

 , λ(2) =

0.3

0.3

0.3

0.1

 , c(2) =

0

0

0

1

 .

cost(2) = 0.1. Finally, column generation provides y(3) in place of column 4:

y(3) =

0.5

0.5

0.5

1

 , B(3) =

1 0 1 0.5

1 1 0 0.5

0 1 1 0.5

1 1 1 1

 , λ(3) =

0.2

0.2

0.2

0.4

 , c(3) =

0

0

0

0

 .

cost(3) = 0, so that the problem is satisfiable with solution 〈B(3), λ(3)〉. 2

4.4 Implementation and Results

We have developed implementations of solvers for the Ł∞-SAT and ŁIPSAT problems. In this sec-
tion, we present the empirical results on the search for the qualitative behavior of phase transition.
The source code for all experiments under license GPLv3 is publicly available.3

A decision problem displays a phase transition when there is an ordering of classes of instances
that presents a transition from predominantly satisfiable instances (answer Yes) to predominantly
unsatisfiable instances (answer No), which is called a first-order phase transition. Furthermore, the
decision problem displays a peak in average execution time around the middle of that transition
in which fifty percent of answers are Yes and fifty percent of answers are No, which is called a
second-order phase transition, following the terminology of statistical mechanics (Cheeseman et al.,
1991).

It is conjectured that there is a (second-order) phase transition for every NP-complete decision
3http://lipsat.sourceforge.net

http://lipsat.sourceforge.net

70 PROBABILITIES OVER ŁUKASIEWICZ INFINITELY-VALUED LOGIC 4.4

problem (Cheeseman et al., 1991). Empirical phase transition behavior are well established for
classical SAT (Gent and Walsh, 1994) and PSAT (Finger and Bona, 2011), among many others.
In fact, the empirical verification of phase transition for solvers of an NP-complete problem can be
perceived as a quality test for its implementation.

4.4.1 Phase Transition for Ł∞-Solvers

In a classical setting one usually employs 3-SAT format4 to obtain a phase transition diagram. The
randomly generated formulas are clauses with three literals each, the number of symbols n is fixed
and the rate between the number n of clauses and the rate m

n is used as the control parameter,
wherem is the number of clauses. In classical 3-SAT, the shape of the curve and the phase transition
point is maintained when n is changed. Unfortunately, there is no clausal normal form for formulas
in Ł∞. So, we employ instead a set of formulas which are used by Bofill et al. (2015) consisting of

l1 ⊕ l2 ⊕ l3 (4.13)

¬(l4 ⊕ l5)⊕ l6 (4.14)

where li are literals (negated or non-negated atoms). The generation of the formulas is parameterized
by the number n of propositional variables and the number m of formulas, which define the class
of randomly generated formulas. Following Bofill et al. (2015), formulas are generated as follows:
70% of formulas are of format in (4.13) and 30% of the format in (4.14). Each literal is randomly
chosen from the n possible symbols with equal probability, then there is a 50% chance of being a
positive or negative literal.

Two implementations were developed using publicly available open source software:

• a C++-implementation using the C++ interface to the Yices SMT solver (Dutertre, 2014);

• a C++-implementation using the C++ interface to the SCIP MIP solver (Achterberg, 2009).

For each implementation, the experiment proceeds as follows: with a fixed n = 100 we varied the
value of m such that the rate m

n varies from 0.2 to 8 in 0.2 steps. For each pair 〈n,m〉 we construct
a set of 100 randomly generated formulas as described above. And for each set we compute the
percentage of Ł∞-satisfiable formulas and the average decision time (user time).

All the experiments in this section were run on a UNIX machine with a i7-6900K CPU @
3.20GHz with 16 processors. The results of the experiments using two Ł∞-solvers are shown in
Figure 4.1. In Figure 4.1a we see the results of an SMT(LA) Ł∞-solver using YICES which presents
a first-order phase transition from satisfiable to unsatisfiable instances with a middle point occurring
at rate m

n ≈ 2; however, the average decision time peak occurs at m
n ≈ 5, unlike what is expected.

Furthermore, the peak time for solving a Ł∞-SAT problem is about 35 seconds. This unexpected
behavior may be credited to the fact that YICES converts internally all floating point numbers to
pair of integers, which impacts the efficiency of problems whose formulation involves a lot of floating
point numbers as is the case of Ł∞-SAT.

Figure 4.1b presents an Ł∞-solver using MIP solver SCIP, in which we can see a phase transition
from satisfiable to unsatisfiable instances also at m

n ≈ 2, with an average time peak also around

43-SAT is the usual name for the CPL-SAT restricted to CNF CPL-formulas whose clauses have at most three
literals.

4.4 IMPLEMENTATION AND RESULTS 71

(a) Based on SMT(LA) using YICES (b) Based on MIP solver using SCIP

Figure 4.1: Ł∞-solvers performance, randomly gen. instances: n = 100, m = 20 to 780

m
n ≈ 2, as expected. Furthermore, the peak time is 0.35 seconds, two orders of magnitude more
efficient than the YICES solver. Observing the average time, we note an always increasing right
tail, which can be credited to the fact that MIP solvers are not implemented with a “fail early”
strategy commonly used in logic-based solvers, which normally employ what is called restriction
learning strategies; furthermore, the size of the matrices used by the MIP solver increases with m.
Another possibility to explain such a behavior is the fact that the choice of the family of formulas
may be inappropriate, however no such increasing tail was observed in the SMT-based method,
which reinforces the hypothesis that this behavior is due to the MIP solver. Due to its superior
efficiency we only use the SCIP solver as an auxiliary procedure for the ŁIPSAT solver described
next.

4.4.2 Phase Transition for ŁIPSAT

The input for the ŁIPSAT solver is a normal form 〈Γ,Θ〉. We developed a C++-implementation
for Algorithm 8 using the C++ interface of the SoPlex linear algebra solver which is part of the
SCIP suite of optimizers. We used the Ł∞-solver based on SCIP MIP.

The experiments were obtained as follows. The input set of formulas Γ was generated with a
fixed number of symbols n and a varying number of clauses of format (4.13) and (4.14) as described
above. The probabilistic Θ-restrictions of the form {C(yi) = qi | i ≤ i ≤ k} were generated fixing
k ≤ n and randomly choosing the probabilities qi uniformly over the interval [0, 1].

Figure 4.2: Phase transition for ŁIPSAT solver: k = 20, n = 100 and m = 20 to 780

72 PROBABILITIES OVER ŁUKASIEWICZ INFINITELY-VALUED LOGIC 4.4

The results of the experiment can be seen in Figure 4.2. We clearly see a second-order phase
transition with a peak average time execution that overlaps the decreasing part of the percentage
satisfiable (%SAT) curve. Note that no increasing tail is observed, so that the “fail early” mechanism
is achieved in the combination of logic and linear algebra. The peak is near but does not coincide
with the fifty percent point of the first order phase transition which may be credited to the increasing
shape of the right tail in the Ł∞-solver presented in Figure 4.2. Also, there is a left shift of the
phase transition point m

n ≈ 1, similar to the shift of PSAT phase transition point with respect
to CPL-SAT (Finger and De Bona, 2015). Overall the phase transition format can be considered
satisfactory.

The results in this chapter have appeared in the following publications.

• Finger and Preto (2020) Marcelo Finger and Sandro Preto. Probably partially true: Satisfia-
bility for Łukasiewicz infinitely-valued probabilistic logic and related topics. Journal of Au-
tomated Reasoning, 64(7):1269-1286. ISSN 1573-0670. doi: 10.1007/s10817-020-09558-9. URL
http://doi.org/10.1007/s10817-020-09558-9.

• Finger and Preto (2018) Marcelo Finger and Sandro Preto. Probably half true: Probabilistic
satisfiability over Łukasiewicz infinitely-valued logic. In Didier Galmiche, Stephan Schulz and
Roberto Sebastiani, editors, Automated Reasoning. IJCAR 2018, volume 10900 of Lecture
Notes in Computer Science, pages 194-210, Cham. Springer International Publishing. ISBN
978-3-319-94205-6.

http://doi.org/10.1007/s10817-020-09558-9

Chapter 5

Probabilistic Constraints on Nash
Equilibria

In this chapter, we study a scenario called observable game for which: there are players who will
perform actions among the ones available for each of them; it is known that the combined actions
of these players will have the property of being a Nash equilibrium (Nash, 1951); and there is an
external observer who is aware of that, however is unsure about which action each player will choose.
Therefore, such external observer assigns subjective probability constraints to actions representing
his degree of confidence that such actions will be performed. The following problems are considered
according to the concepts of pure and mixed Nash equilibrium.

The Coherence Problem Given an observable game — a game together with a set of proba-
bilistic constraints on its actions —, decide if it is coherent; that is, decide if there exists an
actual probability distribution on the game equilibria that corresponds to those probabilistic
constraints.

The Extension (Inference) Problem Given a coherent observable game with probabilistic con-
straints on some of the players’ actions, compute upper and lower bounds on the probabilities
of some other action that preserves coherence.

The frameworks of semantics modulo satisfiability coupled with probabilistic assignments to
logical formulas yield the means to manage the scenario of an observable game. First, in a setting
of propositional logic where valuations encode the player’s strategies for the game, we determine
axioms for a propositional theory that are only satisfiable by valuations encoding equilibria. Thus,
we identify the observable game with a PSAT or a ŁIPSAT instance — depending on whether only
pure equilibria or also mixed equilibria are allowed — which states probabilistic assignments that
intend to agree with the aforementioned propositional theory.

For the Coherence Problems, we provide complexity classification and algorithms through poly-
nomial reductions from them to the well-studied decision problems associated to probability theories
grounded on propositional logics. In turn, we study the Extension Problems via reductions to the
Coherence Problems.

We first analyze the scenario modeled by the framework studied in this chapter in Section 5.1.
In Section 5.2, we introduce the formal notions of game, observable game and the Coherence and
Extension problems and also introduce pure equilibrium and study its computation; Section 5.4 has

73

74 PROBABILISTIC CONSTRAINTS ON NASH EQUILIBRIA 5.1

analogous content for the mixed equilibrium setting. In Section 5.3, we study and propose algorithms
for the Coherence and Extension problems in the pure equilibrium setting; in Section 5.5, we study
these problems in the mixed equilibrium setting. Finally, in Section 5.6, we analyze the implications
of our results for the phenomena modeled by observable games.

In this chapter, when we talk about formulas, valuations, partial valuations and Val, we refer
to CPL-formulas, CPL-valuations, CPL-partial valuations and CPL-Val in Sections 5.2 and 5.3;
and to Ł∞-formulas, Ł∞-valuations, Ł∞-partial valuations and Ł∞-Val in Sections 5.4 and 5.5.

5.1 Motivation on Observable Games

In game theory, a Nash equilibrium represents a situation in which each player’s strategy is a best
response to other players’ strategies; thus no player can obtain gains by changing alone his own
strategy. Nash proved that every n-player, finite, non-cooperative game has a mixed equilibrium
point (Nash, 1951, 1950a,b); however, more than one equilibrium may exist and the number of
equilibria can be even exponentially large over some game parameters.

For an observer knowing that an equilibrium is to be reached, there is an a priori uncertainty
before an instance of the game starts, concerning the exact kind of equilibrium to be reached and
also in knowing the players’ actions in that instance. In such a scenario, which we call an observable
game, it is most natural to describe the outcome in terms of subjective probabilities assigned to
actions, in which one presupposes a probability distribution over the set of all possible equilibria.

Unfortunately, not every assignment on action probabilities by an observer finds correspondence
to an actual probability distribution on possible equilibria of a given game; in fact, some actions
may always co-occur at equilibrium, so constraining their probabilities to distinct values does not
correspond to any underlying distribution on equilibria. In case the observer assigns a set of prob-
abilistic constraints on actions that correspond to a probability distribution on equilibria, we say
the observable game is coherent.

Lack of coherence can have important consequences which are better seen in a betting scenario
where an observer knows the configuration of a game before one of its instances is played and also
knows that this game reaches an equilibrium. The observer wants to place bets on the occurrence of
actions and an incoherent set of probabilities may lead to sure loss. So detecting and avoiding such
a disastrous assignment of probabilities may have considerable cost to the observer. This betting
scenario corresponds to de Finetti’s interpretation of subjective probabilities (de Finetti, 1931, 1937,
2017) in which incoherent probabilities have a one-to-one correspondence to sure loss.

An actual scenario of this kind may be seen in the pricing strategy of oligopolistic markets.
Assume that only a few companies dominate a beer market. They price their products from time to
time in light of competition aiming to conquer the largest market share and make the most profit.
Among the mechanisms of sale strategies there are price promotions (short-term price reductions),
thus the price portfolio of a company in some period is not of public knowledge in advance. However,
it is very reasonable to assume that the profits of the companies in the oligopoly reach an equilibrium
during the sales period under consideration. Oblivious to the oligopoly competition, it is of great
interest to a local brewer to predict the price portfolios of the big companies based on his experience
in observing their competition and pricing strategies; such prediction might help the local brewer
to set up his own pricing strategy and even his production process, which takes place in a small

5.2 OBSERVABLE GAMES AND COHERENCE 75

and more limited industry. This information may be crucial, for example, for deciding to limit the
production of some specific beers that cannot be competitive with the oligopoly price portfolios of
that period and focus on the production of some other beers with a more targeted niche, or even
launch new non-beer products. In this scenario, the big companies, their price portfolios and their
profits (which may be inferred from their price portfolios), are respectively the players, their actions
and their utilities in a game; the local producer with predictions about the oligopolistic market is
the observer with subjective probabilities over the player’s actions.

Observable games formalize such scenario with a market in equilibrium and an external agent
who has some idea about that equilibrium but is uncertain on the probabilistic distribution on the
possible equilibria and therefore on the players’ actions. Of course, there may be aspects left out as
it is expected from any theoretical idealization of the real world.

In order to better understand the combination of uncertainty and game equilibria, we initially
concentrate on uncertainty over pure equilibria, a restricted form of mixed equilibria in which each
player chooses as strategy a unique action and whose existence is not even guaranteed. That is,
the observer knows a priori that a pure equilibrium is to be reached for a given game, but does
not know exactly which actions will be performed at equilibrium. We later consider uncertainty
in mixed equilibria, a doubly uncertain situation, that combines uncertainty on the actions to be
played in a specific instance of a game with the also probabilistic notion of mixed strategy.

5.2 Observable Games and Coherence

Define a game as a quadruple G = 〈P,N,A, u〉, where P = {1, . . . , n} lists the n players in the
game, N = 〈N1, . . . , Nn〉 is a sequence of player neighborhoods in which Ni ⊆ P \ {i} is the set
of player i neighbors, A = A1 × · · · × An is a set of action profiles in which each Ai is the set of
all possible actions for player i and u = 〈u1, . . . , un〉 is a sequence of utility functions in which
ui : A→ Q is the utility function for player i. Assume that Ai ∩ Aj = ∅ for player i 6= j and that
ui(a1, . . . , a

′
j , . . . , an) = ui(a1, . . . , a

′′
j , . . . , an), for j /∈ Ni ∪ {i}.

An action profile e = 〈a1, . . . , ai, . . . , an〉 is a pure (Nash) equilibrium if, for every player i,
ui(e) ≥ ui(a1, . . . , a

′
i, . . . , an) for every a′i ∈ Ai. A game G may have zero or more pure equilibria.1

We write ai ∈ e to express that ai is the ith component of e.
By an observable game we mean a pair G = 〈G,Π〉, where G is a game and Π is a set of

probabilistic constraints on equilibria (PCE), that is a set of probability assignments on actions
limiting the probabilities of some actions occurring in an equilibrium, which represents the observer’s
ignorance on what equilibrium will be reached; we assume it has the following format:

Π =
{
P (αk) ./k pk

∣∣∣ ./k∈ {≤,≥,=}, 1 ≤ k ≤ K
}
, (5.1)

where αk are actions and pk are values in [0, 1]∩Q; we only consider rational probabilities because
we are concerned with computational problems.

As observable games deal with the scenario where an equilibrium is to be reached but its
action profile is unknown, we assign probabilities to equilibria:2 let EG = {e1, . . . , eM} be the

1Only mixed equilibria are guaranteed to exist, not pure ones; but every pure equilibrium is also a mixed equilib-
rium.

2This probability function over equilibria should not be confused with probabilities in mixed strategies.

76 PROBABILISTIC CONSTRAINTS ON NASH EQUILIBRIA 5.2

set of all equilibria associated with game G; we consider a probability function over G-equilibria
P : EG → [0, 1] ∩ Q, such that P (ei) ≥ 0 and

∑
ei∈EG P (ei) = 1. We define the probability P (ai)

that ai ∈ e ∈ EG is executed in a game G as

P (ai) =
∑

j | ai∈ej

P (ej).

Given a game G and an equilibrium probability function P , it is possible to compute the
probability of any action; however we face two problems. First, the number of equilibria may be
exponentially large in the numbers of players and of actions allowed for players. Second, we may
not know the equilibrium probability function P . Instead we are presented with an observable game
G = 〈G,Π〉, where G is a game and Π is a set of PCE and we are asked to decide the existence of an
underlying probability function P that satisfies Π; and, in case one exists, we want to compute the
range of probabilities for an unconstrained action ai. The former problem is called the Probabilistic
Coherence Problem and the second one is the Probabilistic Extension Problem.

Definition 7 (PCE Coherence Problem) Given an observable game G = 〈G,Π〉, PCE-

Coherence consists of deciding if it is coherent, that is if there exists a probability function over
the set of G-equilibria that satisfies all constraints in Π. PCE-Coherence rejects the instance if
it is not coherent or if there exists no equilibrium in G. 2

Definition 8 (PCE Extension Problem) Let G be a coherent observable game. Given an action
ai ∈ Ai, PCE-Extension consists in finding probability functions P and P that satisfy Π such
that P (ai) is minimal and P (ai) is maximal. 2

Example 10 Suppose we have a game between Alice and Bob in which Alice has three possible
actions a1, a2 and a3 and Bob also has three possible actions b1, b2 and b3, such that the joint
utilities are given by Table 5.1. This game has three pure Nash equilibria: 〈a1, b1〉, 〈a2, b3〉 and
〈a3, b3〉, which are stressed in bold. Suppose the game will reach a pure equilibrium state, in which

b1 b2 b3

a1 2,2 1, 1 1, 0
a2 1, 2 5, 4 1,5
a3 0, 1 2, 3 1,3

Table 5.1: Utility functions for Alice and Bob

case Bob and Alice will have chosen to play a single action; we now want to see through an external
observer’s eyes who does not know which equilibrium will be reached, however gives to the action
a2 the probability of 1

3 . Is this restriction feasible (coherent)? And if it is, what is the lower bound
on the probability of Bob playing b3 this observer should assign in order to remain coherent? Can
it be, say, 1

4?
Let us formalize such situation by G1 = 〈G1,Π1〉, where G1 = 〈P,N,A, u〉, in which P = {a, b},

Ni = P \ {i}, Aa = {a1, a2, a3}, Ab = {b1, b2, b3} and u is given by Table 5.1. In Π1, we consider
the action a2 occurring in an equilibrium with constraint P (a2) = 1

3 . This constraint is coherent
and it implies that the probability of b3 is at least 1

3 . So if we consider Π1 with joint constraints
P (a2) = 1

3 and P (b3) = 1
4 , G1 is incoherent. 2

5.2 OBSERVABLE GAMES AND COHERENCE 77

This framework where probabilities are assigned to pure equilibria is very similar to another
concept of equilibrium: the correlated equilibrium (Aumann, 1974). A correlated equilibrium in a
game G = 〈P,N,A, u〉 is a probability distribution over the set of action profiles A that satisfies a
specific equilibrium property. Despite the similarity, these are distinct objects: while our framework
models the uncertainty about which Nash equilibrium will be reached in a game (by a probability
distribution over EG ⊆ A), the distribution in a correlated equilibrium is the very concept of
equilibrium and is defined over all possible action profiles (not necessarily Nash equilibria).

In a deeper comparison, for both computing a correlated equilibrium and deciding on the coher-
ence of an observable game, it is necessary to guarantee that a probability distribution on action
profiles satisfies some linear inequalities that model the equilibrium property, in the case of cor-
related equilibrium, and that represents the probabilistic constraints, in the case of coherence.
However, while the correlated equilibrium inequalities may be directly derived from the given game
(Papadimitriou and Roughgarden, 2008), in order to write the coherence inequalities, it is necessary
to compute the Nash equilibria of the game, since the distribution in question is over such equilibria.
This difference should explain the discrepancy in complexity between the problem of computing a
correlated equilibrium, which is polynomial (Papadimitriou and Roughgarden, 2008), and that of
computing a distribution over EG satisfying a set of PCE, which is nondeterministic polynomial;
indeed, the proof we provide for the NP-completeness of PCE-Coherence (concerning only pure
equilibria) depends on the NP-completeness of computing pure equilibria.

5.2.1 Classes of Games

We may find in the literature several ways to represent games and this issue is directly related to
the configuration of the instances for our problems and, thus, to its complexity classification. We
focus on classes of games whose sizes are restricted and which possess equilibrium finding algorithms
whose computation complexity is also restricted; we limit our attention to what we call GNP-classes,
in which the representation of the game takes polynomial space in the numbers n of players and s
of maximum actions allowed for each player and the computation of each of the pure equilibrium
profiles may be made in nondeterministic polynomial time, also in terms of n and s. Due to the
time complexity restriction, the problem of deciding the existence of equilibria in a given GNP-class
has complexity in NP.

A natural way to represent games is by means of the standard normal form game where the
neighborhood of each player is Ni = P \ {i}, for all i ∈ P , and it is instantiated by explicitly giving
its utility functions in a table with an entry for each action profile a ∈ A containing a list with
player utilities ui(a), for all i ∈ P , as in Example 10.

It is an easy task to compute a pure Nash equilibrium of a game when its player utility functions
are given extensively, as in standard normal form. In that case, we just need to check, for each
action profile e = 〈a1, . . . , ai, . . . , an〉, whether it is a pure Nash equilibrium by comparing ui(e)
with ui(a1, . . . , a

′
i, . . . , an), for all i ∈ P and a′i ∈ Ai. For each of the |A| action profiles,

∑
i∈N |Ai|

comparisons will be needed. As the instance of the game is assumed to comprehend the utility
function values for all players, the computation can be done in polynomial time in the size of the
instance. However, in this explicit and complete format, the instance is exponential in the number n
of players, for if each player has exactly s actions, each utility function has sn values and the game
instance has nsn values to represent all utility functions. Therefore, a class of standard normal form

78 PROBABILISTIC CONSTRAINTS ON NASH EQUILIBRIA 5.2

a1 a2 a3

c1 10 10 5
c2 5 10 0
c3 5 0 10

b1 b2 b3

a1 10 5 0
a2 10 10 5
a3 5 0 10

c1 c2 c3

b1 10 5 0
b2 10 10 5
b3 5 0 10

Table 5.2: Utility functions for players a, b and c, respectively

games fails to be a GNP-class since, despite equilibria being computable in polynomial time, the
utility function requires exponential space to be explicitly represented.

More compact game representations, along with the complexity issues on deciding the existence
of pure equilibria on them may be found in Gottlob et al. (2005). A graphical normal form game is
such that utility functions are extensively given in separate tables, for each player i, with an entry
for each element in ×j∈Ni∪{i}Aj containing a correspondent utility value ui(a), where it is enough to
consider only the entries in a with indices inNi∪{i}, since, as defined earlier, ui(a1, . . . , a

′
j , . . . , an) =

ui(a1, . . . , a
′′
j , . . . , an) for j /∈ Ni ∪ {i}. Graphical normal form games can be turned into a compact

representation by imposing the bounded neighborhood property: let k be a constant, we say that a
game has k-bounded neighborhood if |Ni| ≤ k, for all i ∈ P .

Example 11 Let G2 = 〈P,N,A, u〉 be a game with P = {a, b, c}, Aa = {a1, a2, a3}, Ab =

{b1, b2, b3}, Ac = {c1, c2, c3} and utility functions given by Table 5.2, from which on can infer
the set N . G2 is a game in graphical normal form with k-bounded neighborhood for k ≥ 1, where
for each player utility, only the previous player’s action matters. As k < n − 1, G2 has a more
compact representation than it would have in standard normal form. Note that this instance of
graphical normal form game has 27 utility values explicitly represented and the same game in
standard normal form would need 81 utility values.

It was shown by Gottlob et al. (2005) that the problem of deciding whether a graphical normal
form game has pure Nash equilibria is NP-complete and, by Fischer et al. (2006), that NP-hardness
holds even when the game has 2-bounded neighborhood, where each player can choose from only 2

possible actions and the utility functions range among 2 values. It is trivial to establish a nondeter-
ministic polynomial algorithm for computing pure Nash equilibria on these games by guessing and
then verifying it.

Thus, we establish GNP-classes that contain the games in graphical normal form with k-bounded
neighborhood and at most s actions allowed to each player, for fixed k ≥ 2 and s ≥ 2; let GNPsk
represent these classes. Since it is needed at most nsk values to represent the utility functions, the
representation of the games uses polynomial space in the number n of players. Also, GNPk=

⋃
s∈N

GNPsk are GNP-classes where the representation of the games uses polynomial space in the number
n of players and the number s of maximum actions allowed.3 Note that deciding the existence of
pure equilibria in GNPsk and GNPk are NP-complete problems; we refer to the GNP-classes with
this property as NP-complete GNP-classes.

5.2.2 Computing Pure Nash Equilibria via CPL-SAT

The Cook-Levin Theorem (Cook, 1971) guarantees that there exists a polynomial reduction from the
problem of computing pure equilibria on GNP-classes to CPL-SAT. Let us show such a reduction.

3It is also necessary that the representation sizes of the utility function values be bounded by a polynomial in n
and s.

5.3 OBSERVABLE GAMES AND COHERENCE 79

Given a game G with P = {1, . . . , n} and Ai = {a1
i , . . . , a

si
i }, for i ∈ P , we build a set of clauses

ΦG over propositional variables Xj
i meaning that player i chose action aji . Let k be the maximal

|Ni| and s be the maximal |Ai|, si ≤ s. The set ΦG is built as follows:

(a) For each player i, add a clause
∨
j=1,...,si

Xj
i , representing that each player chooses one action.

This set of clauses is built in time O(ns).

(b) For each player i and pair api , a
q
i , with p 6= q, add a clause ¬Xp

i ∨ ¬X
q
i , representing that each

player chooses only one action. This set of clauses is built in time O
(
n
(
s
2

))
.

(c) For each player i and a = 〈aq11 , . . . , a
qi−1

i−1 , a
qi+1

i+1 , . . . , a
qn
n 〉, add the clause

∨
j∈Ni ¬X

qj
j ∨∨

r∈RX
r
i , where R is the set of indexes r such that ui(a

q1
1 , . . . , a

qi−1

i−1 , a
r
i , a

qi+1

i+1 , . . . , a
qn
n) ≥

ui(a
q1
1 , . . . , a

qi−1

i−1 , a
′
i, a

qi+1

i+1 , . . . , a
qn
n), for all a′i ∈ Ai, representing each player chooses one of the

best responses depending on his neighborhood choices; there may be more than one best re-
sponse all of which have the same utility. This set of clauses is built in time O(nsk).

For games in GNPsk, ΦG is built in linear time in n and for games in GNPk, it is built in
polynomial time in n and s. A nondeterministic polynomial algorithm for computing pure Nash
equilibria consists of the aforementioned reduction from a game G to its corresponding set of clauses
ΦG, with Var(ΦG) = P ⊆ P, followed by a nondeterministic algorithm computing a partial valuation
v ∈ ValP satisfying ΦG, that is v ∈ ValPΦG . The partial valuations v ∈ ValPΦG naturally encode
action profiles that are pure equilibria and, conversely, any pure equilibrium e corresponds to a
partial valuation ve ∈ ValPΦG .

Example 12 For the game G1 in Example 10, the set of formulas ΦG1 contains the variables X1
a ,

X2
a , X3

a , X1
b , X

2
b , X

3
b and the following clauses.

(a) X1
a ∨X2

a ∨X3
a , X1

b ∨X2
b ∨X3

b .

(b) ¬X1
a ∨ ¬X2

a , ¬X1
a ∨ ¬X3

a , ¬X2
a ∨ ¬X3

a , ¬X1
b ∨ ¬X2

b , ¬X1
b ∨ ¬X3

b , ¬X2
b ∨ ¬X3

b .

(c) ¬X1
b ∨X1

a , ¬X2
b ∨X2

a , ¬X3
b ∨X1

a ∨X2
a ∨X3

a , ¬X1
a ∨X1

b , ¬X2
a ∨X3

b , ¬X3
a ∨X3

b . 2

Example 13 For the game G2 in Example 11, the set of formulas ΦG2 contains the variables X1
a ,

X2
a , X3

a , X1
b , X

2
b , X

3
b , X

1
c , X2

c , X3
c and the following clauses.

(a) X1
a ∨X2

a ∨X3
a , X1

b ∨X2
b ∨X3

b , X
1
c ∨X2

c ∨X3
c .

(b) ¬X1
a ∨ ¬X2

a , ¬X1
a ∨ ¬X3

a , ¬X2
a ∨ ¬X3

a , ¬X1
b ∨ ¬X2

b , ¬X1
b ∨ ¬X3

b , ¬X2
b ∨ ¬X3

b , ¬X1
c ∨ ¬X2

c ,
¬X1

c ∨ ¬X3
c , ¬X2

c ∨ ¬X3
c .

(c) ¬X1
c ∨ X1

a ∨ X2
a , ¬X2

c ∨ X2
a , ¬X3

c ∨ X3
a , ¬X1

a ∨ X1
b , ¬X2

a ∨ X1
b ∨ X2

b , ¬X3
a ∨ X3

b , ¬X1
b ∨ X1

c ,
¬X2

b ∨X1
c ∨X2

c , ¬X3
b ∨X3

c . 2

80 PROBABILISTIC CONSTRAINTS ON NASH EQUILIBRIA 5.3

5.3 From PCE-Coherence to PSAT

Let us first formulate PCE-Coherence in linear algebraic terms. Let G = 〈G,Π〉 be an observable
game where G is a game with M pure Nash equilibria and Π = {P (αi) ./i pi | 1 ≤ i ≤ K} is a set
of PCE; consider a K ×M matrix A = [aij] such that aij = 1, if αi ∈ e, where e is the j-th pure
Nash equilibrium of G, and aij = 0, otherwise. Then, PCE-Coherence is to decide if there is a
probability vector π of dimension M that obeys:

Aπ ./ p∑
πj = 1 (5.2)

π ≥ 0

Since it is not mandatory for the PCE-Coherence instance to attach a constraint to each action,
matrix A may have fewer lines than the number of actions involved. As done sometimes before,
we may join the first two conditions in (5.2) in just one matrix A. The next results establish
computational complexity for PCE-Coherence.

Theorem 22 PCE-Coherence over a GNP-class is a problem in NP. 2

Proof Suppose the observable game G = 〈G,Π〉 is coherent and |Π| = K. Therefore there exists
a probability distribution π̄ over the set of all possible pure Nash equilibria that satisfy Π. By the
Carathéodory’s Theorem (Proposition 1) there is a probability distribution π assigning nonzero
probabilities to at most K + 1 equilibria. These equilibria are polynomially bounded in size since
G is member of a GNP-class. Since π is also polynomially bounded, there is a polynomial witness
attesting that Π is satisfiable. Therefore, G is coherent and PCE-Coherence is in NP. �

Theorem 23 PCE-Coherence over an NP-complete GNP-class is NP-complete. 2

Proof Membership in NP follows from Theorem 22. For NP-hardness, let us reduce the problem
of deciding the existence of pure Nash equilibria for games in the NP-complete GNP-class at hand
to PCE-Coherence over this same class. Given a game G = 〈P,N,A, u〉, we consider the instance
of observable game G = 〈G, {P (ai) ≥ 0}〉, for some arbitrary ai ∈ Ai, for i ∈ P . The reduction
from G to G may be computed in linear time; and G is coherent if, and only if, G has a pure Nash
equilibrium. We have shown that PCE-Coherence is NP-hard. �

Corollary 3 PCE-Coherence over GNPsk and GNPk are NP-complete. 2

The algebraic formulation of PCE-Coherence in (5.2) resembles the one of PSAT in Sec-
tion 2.3 and, indeed, motivates the following reduction from the former to the latter problem. Let
G = 〈G,Π〉 be an observable game such that G is member of a GNP-class and Π = {P (αi) ./i

pi | 1 ≤ i ≤ K} is a set of PCE. Let P be a set of propositional variables in one-to-one cor-
respondence to all possible actions in G and denote by Xi ∈ P the propositional variable as-
sociated to each action αi appearing in Π. The PSAT instance ΣG we construct is such that
ΠP = {P (Xi) ./i pi | 1 ≤ i ≤ K} ⊆ ΣG.

Semantics modulo satisfiability comes into play to ensure that the PSAT instance forces a
probability distribution that only assigns nonzero probability over valuations that represent Nash

5.3 FROM PCE-COHERENCE TO PSAT 81

equilibria. Since G is in a GNP-class, by the reduction in Section 5.2.2, there is a set of formulas ΦG,
with Var(ΦG) = P, such that if we have a partial valuation v ∈ ValPΦG , then {X ∈ P | v(X) = 1} is
a set of propositional variables representing actions which jointly played are in equilibrium. Thus,
we claim that the desired PSAT instance is ΣG = ΠP ∪ {P (ϕ) = 1 | ϕ ∈ ΦG}. If all symbols ./i in
ΠP are the equality symbol, the PSAT instance may be put in the equivalent atomic normal form
〈ΦG,ΠP〉.

Theorem 24 Let G = 〈G,Π〉 be an observable game, where G is a member of a GNP-class and Π

is a set of PCE, and ΣG be its associated PSAT instance constructed from G as above. Then, G is
coherent if, and only if, ΣG is satisfiable. 2

Proof Suppose G coherent. There exists a probability distribution P over the set of equilibria
EG = {e1, . . . , eM} such that

∑M
j=1 P (ej) = 1 and that satisfies Π. Since each equilibrium is

associated with a partial valuation that takes value 1 in the atoms Xi for which the associated
action αi is within the equilibrium and 0 otherwise, we consider the probability distribution over
partial valuations as the probability distribution over equilibria, taking probability 0 to those partial
valuations which are not associated to equilibria. This probability distribution makes ΣG satisfiable.

Now, suppose ΣG satisfiable. As the probability distribution that satisfies ΣG makes P (ϕ) = 1,
for all ϕ ∈ ΦG, it has nonzero value only on partial valuations related to equilibria. Since it also
satisfies Π, considering this distribution as a probability distribution over equilibria, we find G
coherent. �

Note that, since PSAT is in NP, it follows from Theorem 24 that PCE-Coherence is also in NP.
In other words, Theorem 22 can be seen as a corollary of Theorem 24.

Corollary 4 PCE-Coherence over a GNP-class is polynomial time reducible to PSAT. 2

Semantics modulo satisfiability naturally underlies such context of reducing instances of PCE-

Coherence to instances of PSAT. Since the partial valuations v ∈ ValPΦG stand for the equilibria
of a game G, they are the only ones that should be used to evaluate the formulas Xi ∈ P standing
for particular actions of players. The formulas Xi ∈ P are not, in general, consequences from ΦG,
but are also not necessarily impossibilities and may have positive probability.

Example 14 We show the reduction of PCE-Coherence to PSAT matrix format (2.5) for the
observable game G2 = 〈G2,Π2〉 with G2 in Example 11 and Π2 a set of PCE consisting of vector p
below. Let ϕG2 =

∧
ΦG2 ; we omit the columns of matrix A that are valuations which do not satisfy

ϕG2 computed in Example 13. So, the columns in matrix A codify the five pure Nash equilibria in
G2; its last line stands for

∑
πi = 1.

82 PROBABILISTIC CONSTRAINTS ON NASH EQUILIBRIA 5.3

Aπ =

a1

a2

a3

b1

b2

b3

c1

c2

c3

ϕG2

1 0 0 0 0

0 1 0 1 1

0 0 1 0 0

1 0 0 1 0

0 1 0 0 1

0 0 1 0 0

1 0 0 1 1

0 1 0 0 0

0 0 1 0 0

1 1 1 1 1

1 1 1 1 1

·

π1

π2

π3

π4

π5

 =

0.1

0.9

0

0.5

0.5

0

0.8

0.2

0

1

1

= p

This PSAT instance is satisfiable due to, for example, the vector π = [0.1, 0.2, 0, 0.4, 0.3]′, so the
PCE-Coherence instance is coherent. 2

5.3.1 An Algorithm for PCE-Extension

Let us turn to the PCE-Extension problem. Given a coherent observable game G, our aim is to
find the maximum and minimum observer’s probabilistic constraints for some action α maintaining
coherence. In other words, we need to search among the NP-witnesses of G for some that maximizes
and minimizes the constraints on α. One might wonder whether there are polynomial time (additive)
approximation algorithms for such problem, i.e., given a PCE-Extension instance consisting of G
and α and a precision ε > 0, whether there exist polynomial time algorithms which return m and
M such that:

• |P (α)−m| < ε;

• |P (α)−M | < ε.

The next results show the answer is negative, unless a huge breakthrough in complexity theory is
achieved. First we establish an auxiliary reduction: from a game G = 〈P,N,A, u〉, we build the
game G∗ = 〈P,N,A∗, u∗〉, where A∗1 = A1 ∪ {b}, with b /∈ A1, and A∗i = Ai, for i ∈ P \ {1}.
Profiles a ∈ A ⊆ A∗ remain with the same utilities u∗i (a) = ui(a), for all i ∈ P , and new profiles
= 〈b, a2, . . . , an〉 ∈ A∗, have utilities u∗1(pb) = max{u1(a′1, a2, . . . , an) | a′1 ∈ A1} and u∗i (pb) =

max{ui(a) | a ∈ A}, for i ∈ P \ {1}.

Lemma 13 Game G∗ may be built from a game G in polynomial time and has the new pure Nash
equilibria pb in addition to the ones G already has. 2

Proof Game G∗ may be built in polynomial time because for every partitioning set
{〈x, a2, . . . , an〉 | x ∈ A1} of action profiles of G, we may add one unique new action profile
pb = 〈b, a2, . . . , an〉; then it is necessary to add to G∗ less new utility values than the description of
G already has. Let a = 〈a1, . . . , an〉 ∈ A be an action profile. If a is a pure Nash equilibrium of G,
players in P \{1} cannot increase their utilities by choosing other action in A∗i and, if player 1 were
able to do so, it would have to be by choosing action b, then u∗1(b, a2, . . . , an) > u1(a′1, a2, . . . , an),

5.3 FROM PCE-COHERENCE TO PSAT 83

for all a′1 ∈ A1, contradicting the definition of u∗1. If a is not a pure Nash equilibrium of G, all
players can increase their utilities by choosing other actions in Ai. Then, all pure Nash equilibria in
G remains pure Nash equilibria in G∗. Finally, action profiles pb = 〈b, a2, . . . , an〉 are clearly pure
Nash equilibria in G∗ and we have the result. �

Theorem 25 Unless P = NP , there does not exist a polynomial time algorithm that approximates,
to any precision ε ∈ (0, 1

2), the expected value by the minimization version of PCE-Extension. 2

Proof Deciding the existence of pure Nash equilibria for games in GNPk is an NP-complete
problem; let us reduce this problem to PCE-Extension. Given a game G, we consider the coherent
observable game G = 〈G∗, {P (ai) ≥ 0}〉, for some arbitrary ai ∈ Ai, for i ∈ P , together with action
b as an instance of PCE-Extension. The reduction from G to G may be computed in polynomial
time by Lemma 13. Suppose there exists a polynomial time algorithm that approximates to precision
ε ∈ (0, 1

2) the expected value by the minimization version of PCE-Extension. If G does not have
any pure Nash equilibrium, all equilibria in G∗ are of the type pb = 〈b, a2, . . . , an〉, then P (b) = 1

and the supposed algorithm should return m > 1− ε > 1
2 . On the other hand, if G has some pure

Nash equilibrium, P (b) = 0 and the supposed algorithm should return m < 0 + ε < 1
2 . Therefore,

such algorithm decides an NP-complete problem in polynomial time and P = NP . �

Theorem 26 Unless P = NP , there does not exist a polynomial time algorithm that approximates,
to any precision ε ∈ (0, 1

2), the expected value by the maximization version of PCE-Extension.2

Proof Deciding the existence of pure Nash equilibria for games in GNPk is an NP-complete
problem; let us reduce this problem to some instances of PCE-Extension. Given a game G, we
consider the coherent observable game G = 〈G∗, {P (ai) ≥ 0}〉, for some arbitrary ai ∈ Ai, for
i ∈ P \ {1}, together with all actions a1 ∈ A1 as |A1| different instances of PCE-Extension.
The reduction from G to G may be computed in polynomial time by Lemma 13. Suppose there
exists a polynomial time algorithm that approximates to precision ε ∈ (0, 1

2) the expected value by
the maximization version of PCE-Extension. If G does not have any pure Nash equilibrium, all
equilibria in G∗ are of type pb = 〈b, a2, . . . , an〉, then P (a1) = 0, for all a1 ∈ A1, and the supposed
algorithm should returnM < 0+ε < 1

2 , for all PCE-Extension instances concerning a1 ∈ A1. On
the other hand, if G has some pure Nash equilibrium, P (a1) = 1, for some a1 ∈ A1, and the supposed
algorithm should returnM > 1−ε > 1

2 , for a particular PCE-Extension instance concerning some
a1 ∈ A1. Therefore, we are able to decide the existence of a pure Nash equilibrium in game G by
running the supposed algorithm |A1| times in the instances comprehending G and a1 ∈ A1; G has a
pure Nash equilibrium, if it returns M > 1

2 for some instance, and G has no equilibrium otherwise.
Such routine based on the supposed algorithm decides an NP-complete problem in polynomial time,
hence P = NP . �

We now describe a deterministic algorithm for solving PCE-Extension whose complexity
burden is all due to PCE-Coherence. Given a precision ε = 2−k, the algorithm works by making
a binary search through the binary representation of the possible constraints to α, solving PCE-

Coherence in each step.
Algorithm 9 presents the procedure to solve the maximization version of PCE-Extension. We

called PCECoherence(G ,Π) the process that decides a PCE-Coherence instance G = 〈G,Π〉.

84 PROBABILISTIC CONSTRAINTS ON NASH EQUILIBRIA 5.3

An algorithm for solving the minimization version of PCE-Extension is easily adaptable from
Algorithm 9.

Algorithm 9 PCE-Extension-BS: a PCE-Extension solver via Binary Search
Input: A coherent PCE-Coherence instance G = 〈G,Π〉, an action ai ∈ Ai and a precision ε > 0.
Output: Maximum P (ai) value with precision ε.
1: k := d| log ε|e;
2: j := 1, vmin := 0, vmax := 1;
3: if PCECoherence(G,Π ∪ {P (ai) = 1}) = Yes then
4: vmin := 1;
5: else
6: while j ≤ k do
7: vmax = vmin + 1

2j
;

8: if PCECoherence(G,Π ∪ {P (ai) ≥ vmax}) = Yes then
9: vmin := vmax;

10: end if
11: j++;
12: end while
13: end if
14: return vmin;

For instance, suppose the goal is to find the maximum possible value for constraining α: the
first iteration consists of solving PCE-Coherence for P (α) = 1, if it is coherent, P (α) = 1, if not,
P (α) = 0 with precision 20=1. In case the former iteration was not coherent, the second iteration
consists of solving PCE-Coherence for P (α) = 0.5, if it is coherent, P (α) = 0.5, if not, P (α) = 0,
both cases with precision 2−1 = 0.5. One more iteration will give precision 2−2 = 0.25 and it
consists of solving PCE-Coherence for P (α) = 0.75 in case the former iteration was coherent, or
for P (α) = 0.25 in case it was not. The process continues until the desired precision is reached and
it takes | log 2−k|+ 1 = k + 1 iterations to be completed.

Theorem 27 Given a precision ε > 0, PCE-Extension can be obtained with O(| log ε|) iterations
of PCE-Coherence. 2

Example 15 Suppose we have an observable game G3 = 〈G2,Π3〉 with G2 as in Example 11 and
Π3 a set of PCE consisting only of P (a2) = 0.9. In order to solve PCE-Extension for finding
P (b2) with precision 2−6, it will be necessary to solve seven instances of PCE-Coherence in the
form below.

π2 + π4 + π5 = 0.9

π2 + π5 = p5

π1 + π2 + π3 + π4 + π5 = 1

π1, π2, π3, π4, π5 ≥ 0

The necessary iterations of PCE-Coherence are displayed in Table 5.3. Our algorithm returns
P (b2) ≈ 0.890625, which is accurate within precision 2−6 = 0.015625, since P (b2) = 0.9.

5.4 COHERENCE ALLOWING MIXED EQUILIBRIA 85

Iteration p5 π′ Coherence
1 12 = 1 - No
2 0.12 = 0.5 [0.1, 0.5, 0, 0.4, 0] Yes
3 0.112 = 0.75 [0.1, 0.75, 0, 0.15, 0] Yes
4 0.1112 = 0.875 [0.1, 0.875, 0, 0.025, 0] Yes
5 0.11112 = 0.9375 - No
6 0.111012 = 0.90625 - No
7 0.1110012 = 0.890625 [0.1, 0.890625, 0, 0.009375, 0] Yes

Table 5.3: Iterations for solving PCE-Extension in Example 15

5.3.2 Generalized Constraints on Equilibria

Observable game G1 in Examples 10 and 12 seems to imply that the formula X2
a → X3

b holds,
that is ΦG1 |=CPL X2

a → X3
b , which forces P (X2

a → X3
b) = 1 and thus P (X2

a) ≤ P (X3
b). Thus,

the propositional theory derived from a game that will reach an equilibrium may offer a deeper
understanding of such game for an external observer and motivates the following generalization of
our goal problems.

Given a game G, consider the set of propositional variables P in one-to-one correspondence
with all actions ∪i∈PAi, where each variable Xj

i ∈ P represents the occurrence of action aji ∈ Ai
in the equilibrium. A formula ϕ, with Var(ϕ) ⊆ P, describes a combination of such statements at
equilibrium. On the semantic side, we identify each pure equilibrium e with a partial valuation ve
over P such that for every action aji ∈ Ai, ve(X

j
i) = 1 iff ai ∈ e. So, a formula ϕ is satisfied at

equilibrium e, represented as ϕ ∈ e, if ve(ϕ) = 1.
We can generalize the notion of PCE in (5.1) as a set

Π =
{
P (ϕk) ./k pk

∣∣∣ ./k∈ {≤,≥,=}, 1 ≤ k ≤ K
}
,

where ϕk are formulas such that Var(ϕk) ⊆ P, so instead of restricting the probabilities of actions at
equilibrium, we can now describe the probabilities of compound logical statements at equilibrium.

Definition 9 (Generalized PCE Coherence and Extension Problems) Given an observ-
able game G = 〈G,Π〉 with a set Π of generalized PCE, Generalized PCE Coherence Problem
consists of deciding if it is coherent, that is if there exists a probability function over the set of
G-equilibria that satisfies all constraints in Π. And the Generalized PCE Extension Problem for
a coherent observable game with a generalized set PCE Π and a formula ψ, with Var(ψ) ⊆ PG,
consists of finding upper and lower bounds for P (ψ) that satisfy Π. 2

Note that a generalized PCE instance Π = {P (ϕi) ./i pi, 1 ≤ i ≤ K} may be reduced to a
PSAT instance analogously to the reduction in Section 5.3.

5.4 Coherence Allowing Mixed Equilibria

We proceed on studying PCE-Coherence with respect to the more general concept of mixed Nash
equilibrium. A strategy for player i is a rational probability distribution σi over the set Ai of actions
for player i and Σ = Σ1 × · · · × Σn is the set of strategy profiles, in which each Σi is the set of all
possible strategies for player i. The set of actions with nonzero probability in a strategy σi is its

86 PROBABILISTIC CONSTRAINTS ON NASH EQUILIBRIA 5.4

support. We call pure strategy a strategy with unitary support and from now on we identify actions
with pure strategies; in contrast we call mixed strategy a strategy that is not a pure strategy.

It is assumed that each player’s choice of strategy is independent from all other players’ choices,
so the expected utility function Ui for player i is given by:

Ui(σ) =
∑
a∈A

ui(a)
∏
j∈P

σj(aj),

where σ ∈ Σ, and a = 〈a1, . . . , an〉 with aj ∈ Aj . A strategy profile e = 〈σ1, . . . , σi, . . . , σn〉 is a
mixed (Nash) equilibrium if, for every player i, Ui(e) ≥ Ui(σ1, . . . , σ

′
i, . . . , σn), for every σ′i ∈ Σi;

each σi in e is called a best response for player i given the other players strategies in e. Then, a
strategy profile is a mixed Nash equilibrium if, and only if, it is composed by best responses for all
players. A game G always has at least one mixed Nash equilibrium (Nash, 1951).

Note that an action profile a may be seen as a strategy profile σ by taking each action ai ∈ a
for player i as the strategy σi ∈ σ that assigns 1 to ai and 0 to the other actions in Ai. This way, a
is a pure Nash equilibrium if, and only if, its associated σ is a mixed Nash equilibrium.

Mixed strategies may be better understood if we think of a game situation that repeatedly
occurs and, in each instance, the players choose their actions randomly according to their mixed
strategies. In this context, an observable game is a game that repeatedly occurs and which is known
to be at one of its (mixed) equilibria, but the external observer does not know exactly which one.
An instance of the game will be played and the observer assigns subjective probabilities to actions
being part of the action profile to be reached in that instance. Formally, an observable game is a
pair G = 〈G,Π〉 as before. We may again interpret these probability assignments as bets placed by
the observer to the actions that the players are allowed to choose.

Another way of understanding observable games is by imagining there are many game situations
with the same setting and that repeatedly occurs and all these game situations are at some mixed
Nash equilibrium. With that knowledge, the external observer looks at one game situation that is
about to have a new instance played, but he does not know exactly which game situation among the
many ones existing this is. Then, the observer does not know which is the mixed Nash equilibrium
the game situation he is looking at is in and he assigns subjective probabilities for the players’
actions being part of the action profile resulting from the game situation instance.

As before, we suppose that there is a probability distribution over the mixed Nash equilibria. It
is important to note that this probability distribution is independent from probability distribution
in a mixed strategy. The former probability distribution ranges over mixed Nash equilibria and the
latter ranges over actions. If ej = 〈σ1j , . . . , σnj〉 ∈ EG, σij designates the i-th component of ej . In
this setting, the probability function P over mixed equilibria induces the probability P (ai) of an
action ai by

P (ai) =
∑

j | ej∈EG

σij(ai) · P (ej).

The definition of probabilistic constraints on equilibria (PCE) is analogous to that in Section 5.2,
namely a set of probability assignments on actions. PCE-Coherence is similarly defined as the
problem of, given an observable game G = 〈G,Π〉, deciding if it is coherent, i.e. deciding if there exists
a probability function over the set of equilibria that satisfies all constraints in Π. PCE-Extension

is also completely analogous to the one in the pure equilibrium setting.

5.4 COHERENCE ALLOWING MIXED EQUILIBRIA 87

Example 16 Recall Example 10 where we had the game between Alice and Bob in which Alice’s
actions were a1, a2 and a3 and Bob’s actions were b1, b2 and b3, such that the joint utilities are
in Table 5.1. This game has three pure equilibria, now viewed as special cases of mixed equilibria:
e1 = 〈σ1

1, σ
1
2〉, where σ1

1(a1) = 1, σ1
1(a2) = σ1

1(a3) = 0, σ1
2(b1) = 1, σ1

2(b2) = σ1
2(b3) = 0; and

e2 = 〈σ2
1, σ

2
2〉 and e3 = 〈σ3

1, σ
3
2〉 that are also based on the ones described in Example 10. However,

there are several other mixed equilibria among which we highlight e4 = 〈σ4
1, σ

4
2〉 given by

σ4
1(a1) =

2

3
, σ4

1(a2) =
1

3
, σ4

1(a3) = 0, σ4
2(b1) =

4

5
, σ4

2(b2) =
1

5
, σ4

2(b3) = 0.

We have established that if only pure equilibria are considered, the constraints P (a2) = 1
3 and

P (b3) = 1
4 are incoherent. However, in a context that considers mixed Nash equilibria, they are

coherent, as we detail in Example 17. 2

5.4.1 Classes of Games Allowing Mixed Equilibria

It is not known if there exists a nondeterministic polynomial algorithm that computes an exact
mixed Nash equilibrium for games with at least three players and such a result would imply theo-
retical breakthroughs in complexity theory (Etessami and Yannakakis, 2010). On the other hand,
for games with two players, such an algorithm may be described; the following result helps to
elucidate the problem and its combinatorial nature.

Proposition 5 (Papadimitriou (2007)) A mixed strategy is a best response if and only if all
pure strategies in its support are best responses. 2

Thus, in order to compute a mixed Nash equilibrium σ ∈ Σ, it is first necessary to establish all the
supports for all the players. We write Ui(σ|ai) for player i’s expected utility for the strategy profile
σ′ = 〈σ1, . . . , ai, . . . , σn〉 (remember we identify actions and pure strategies). Given the supports
with size ki for each player i, there are ki− 1 equations on the other players’ strategies in σ stating
that the ki player i’s expected utilities Ui(σ|ai), for his pure strategies ai in the support of σi are
equal. Then, for σ to be a mixed Nash equilibrium:

• The probabilities in σ must satisfy the system of
∑

i∈P (ki − 1) equations described above;

• For each player i, his expected utilities Ui(σ|ai), for the pure strategies ai in the support of
σi, must have value at least as the expected utilities Ui(σ|ai), for the pure strategies ai not
in the support.

In case σi is a pure strategy, there are no equations associated to player i in the system and in
case the game has only two players, it becomes a linear system. A nondeterministic polynomial
algorithm for computing mixed Nash equilibria for 2-player games consists of guessing supports,
then verifying if the corresponding linear system has a solution and, if so, verifying if the derived
strategies obey Proposition 5.

Thus, in order to generate a GNP-class with respect to mixed Nash equilibrium, let 2GNP be
the class of games with two players; further, we have to restrict the equilibrium concept to “small”
representations, as there are infinitely many mixed Nash equilibria for some games — i.e. the
equilibria representation sizes will be polynomially bounded on the game parameters. Note that the
restriction on “small” representations implies that each game has only finitely many mixed equilibria.

88 PROBABILISTIC CONSTRAINTS ON NASH EQUILIBRIA 5.4

We call 2G the class of games similarly defined but without the restriction on the representations
of equilibria; then, 2G fails to be a GNP-class. Both standard normal form and graphical normal
form may be used to represent games in 2GNP and 2G. In next section, we present a logic-based
algorithm for computing equilibria for 2-player games.

5.4.2 Computing Mixed Nash Equilibria via Ł∞-SAT

We now build a set of formulas ΦG in polynomial time from a 2-player game G such that the
valuations that satisfy ΦG encode the Nash equilibria of G.

Let P = {a, b}, A = Aa ×Ab, with Aa = {a1, . . . , ana} and Ab = {b1, . . . , bnb}, and u = 〈ua, ub〉
with ua : Aa → Q and ub : Ab → Q. Let σ = 〈σa, σb〉 be a generic strategy profile with σa :

Aa → [0, 1] ∩ Q and σb : Ab → [0, 1] ∩ Q generic mixed strategies for the players a and b. To each
probability σa(ai) and σb(b

j) we associate propositional variables Xi
a and Xj

b respectively. Thus,
X1
a , . . . , X

na
a , X1

b , . . . , X
nb
b ∈ ΦG. Let us build the formulas of ΦG according to player a; the formulas

according to player b are analogous.
To assure the propositional variables represent probabilities, we add to ΦG the formulas:

(i) X1
a ⊕ · · · ⊕Xna

a ;

(ii) ¬(X1
a �X2

a), ¬[(X1
a ⊕X2

a)�X3
a], . . . , ¬[(X1

a ⊕ · · · ⊕Xna−1
a)�Xna

a].

These formulas are built in time O(n2
a).

Let us denote by pUa(σ|ai) = Ua(σ|ak)q the formula that only has truth value 1 for a valuation
v that encodes strategy profile σ for which player a’s expected utilities Ua(σ|ai) and Ua(σ|ak) are
equal. For each player a’s action ai, we build the formula: ⊕

k=1,...,n

pUa(σ|ai) = Ua(σ|ak)q�Xk
a

�Xi
a,

which we denote by ζa(a
i). Let v be a valuation satisfying formulas (i) and (ii) and, therefore,

representing strategy profile σ. Then, the formula ζa(ai) is evaluated by v with the exact same
value as Xi

a if one of three following cases occurs: ai is not in the strategy σa support; ai is the
only action in σa support (σa is a pure strategy); the expected utility Ua(σ|ai), for player a’s pure
strategy ai, which is in σa support, is equal to the expected utilities Ua(σ|ak), for all ak in σa

support. If neither of these cases occur, v evaluates ζa(ai) strictly less than it evaluates Xi
a. We add

to ΦG the following formula, that has truth value 1 only if all the pure strategies ai fall into one of
the three cases just described:

(iii) ζa(a1)⊕ · · · ⊕ ζa(ana).

We denote by pUa(σ|ai) ≤ Ua(σ|ak)q the formula that only has truth value 1 for a valuation
v that encodes the strategy profile σ for which player a’s expected utility Ua(σ|ai) is at most his
expected utility Ua(σ|ak). For each player a’s pure strategy ai we build formula⊕

k=1,...,n

pUa(σ|ai) ≤ Ua(σ|ak)q�Xk
a ,

5.4 COHERENCE ALLOWING MIXED EQUILIBRIA 89

which we denote by χa(ai). Let v be a valuation satisfying all the formulas (i), (ii) and (iii) in ΦG.
The formula χa(ai) only has value 1 if player a’s expected utility Ua(σ|ai), for pure strategy ai, is
at most the expected utilities Ua(σ|ak), for all her pure strategies ak in σa support. We also add to
ΦG all the following formulas:

(iv) χa(a1), . . . , χa(ana).

Assuming formulas pUa(σ|ai) = Ua(σ|ak)q and pUa(σ|ai) ≤ Ua(σ|ak)q are built in time O(p(|G|))
on size |G| of an instance G of a game, formula (iii) and formulas (iv) are built in time O(n2

a ·p(|G|)).
By the discussion in Section 5.4.1, if a valuation v encoding σ = 〈σa, σb〉 satisfies the set ΦG as

we have built, then σa is a best response and, as we analogously add to ΦG all the formulas (i)-(iv)
concerning player b, σb is also a best response. In that case, σ is a Nash equilibrium and we state
the following result.

Theorem 28 Given a 2-player game and a strategy profile σ encoded by Ł∞-valuation v as in
previous discussion, σ is a Nash equilibrium if, and only if, v satisfies ΦG. 2

We still need to explicitly write the formulas pUa(σ|ai) = Ua(σ|ak)q and pUa(σ|ai) ≤ Ua(σ|ak)q.
Player a’s expected utilities Ua(σ|ai), for pure strategies ai, are given by:

Ua(σ|ai) =

nb∑
j=1

ua(a
i, bj)σb(b

j).

Thus, our goal is to represent linear equations and inequalities in Ł∞ with variables σb(bj) and ra-
tional coefficients ua(ai, bj). By representing an equation (or an inequality) in Ł∞ we mean building
a formula or a set of formulas that is satisfied by a valuation v if, and only if, v encodes a solution
to the equation (or inequality). Let us treat the general case of an equation

γ1x1 + · · ·+ γnxn = 0, (5.3)

with variables xi and rational fractions γi, for which we are interested in solutions in [0, 1]n.
Before building the representation, we put this equation in an equivalent format that we define

in two steps. First we turn (5.3) into

∑
i∈I

γ̃i
m
xi =

∑
j∈J

γ̃j
m
xj ,

where i ∈ I, if γi ≥ 0, and j ∈ J , if γj < 0, with I ∪J = {1, . . . , n}; m is the least common multiple
of all denominators in fractions γk, for k = 1, . . . , n; γ̃i

m are equivalent fractions to γi, for i ∈ I;
and γ̃j

m are equivalent fractions to −γj , for j ∈ J . Note that γ̃k and m are positive integers, for
k = 1, . . . , n. The second step consists in turning (5.3) into

∑
i∈I

γ̃i
µ
xi =

∑
j∈J

γ̃j
µ
xj ,

where µ = max{γ̃1, . . . , γ̃n}. In the final format, both sides of the equation take values in [0, 1] for
any vector 〈x1, . . . , xn〉 ∈ [0, 1]n.

90 PROBABILISTIC CONSTRAINTS ON NASH EQUILIBRIA 5.4

To each equation variable xk, we associate a propositional variable Xk, for k = 1, . . . , n, and
build the following set of formulas that represent (5.3), using the auxiliary propositional variables
C 1
M

and X̃k, for k = 1, . . . , n:

⊕
i∈I

γ̃iX̃i ↔
⊕
j∈J

γ̃jX̃j ; (5.4)

C 1
µ
↔ ¬(µ− 1)C 1

µ
; (5.5)

X̃k → C 1
µ

; (5.6)

Xk ↔ µX̃k, for k = 1, . . . , n. (5.7)

Let valuation v evaluate formulas (5.5)-(5.7) with truth value 1. Then, it also evaluates formula
(5.4) with truth value 1 if, and only if, 〈v(X1), . . . , v(Xn)〉 satisfies equation (5.3). Formula (5.5)
makes variable C 1

µ
have value 1

µ (for any v); formula (5.6) guarantees that variable X̃k has value

at most 1
µ and, together with formula (5.7), makes it have truth value exactly v(Xk)

µ .
We are now able to explicitly write formulas pUa(σ|ai) = Ua(σ|ak)q, remembering that we

identified equation variables σb(bj) with propositional variables Xj
b . We may take pUa(σ|ai) =

Ua(σ|ak)q as the maximum — the Ł∞-operator ∧— of formulas (5.4)-(5.7), or even as only formula
(5.4) and add formulas (5.5)-(5.7) to the set ΦG. To explicitly write formulas pUa(σ|ai) ≤ Ua(σ|ak)q
we use mutatis mutandis this very same technique considering

γ1x1 + · · ·+ γnxn ≤ 0

instead of equation (5.3) and using ⊕
i∈I

γ̃iX̃i →
⊕
j∈J

γ̃jX̃j

instead of formula (5.4).
Let us discuss the time complexity of building the set ΦG. By the observations we have been

doing throughout this section, computing set ΦG may be done in polynomial time if computing
formulas pUa(σ|ai) = Ua(σ|ak)q and pUa(σ|ai) ≤ Ua(σ|ak)q also may be done in polynomial time.
The equations and inequalities in terms of expected utilities Ua and Ub that we have discussed so far
may surely be derived from a 2-player game in polynomial time. However, writing formulas (5.4),
(5.5) and (5.7) takes exponential time in the binary representation of γ̃k, µ− 1 and µ due to n-fold
Ł∞-conjunctions in expressions nψ, for n ∈ {γ̃k, µ− 1, µ}. This situation may be circumvented by
taking advantage of binary representation in the same way was done in Section 3.4.2. We need to
replace every expression nψ, where n ∈ N\{0, 1}, by the corresponding one as in (3.11) and add the
corresponding formulas in (3.12) to the original collection (5.4)-(5.7). Therefore, we may represent
in Ł∞ linear equations or inequalities (with rational coefficients given in binary representation) in
polynomial time. Then, ΦG may be built from G in polynomial time.

A nondeterministic polynomial algorithm for computing mixed Nash equilibria for games in
2GNP or in 2G consists of the reduction from the input game G ∈ 2GNP to its corresponding set
ΦG, with Var(ΦG) ⊆ P, where P is a finite set, followed by a nondeterministic polynomial algorithm
computing partial valuations v ∈ ValP encoding the equilibria, that is v ∈ ValPΦG . In case only

5.5 FROM PCE-COHERENCE TO ŁIPSAT 91

equilibria with bounded representation size are considered, one should bound the representation
size of truth values computed by the Ł∞-solver employed.

5.5 From PCE-Coherence to ŁIPSAT

Let us also explore a linear algebraic formulation of PCE-Coherence in the mixed equilibrium
setting. Let Π = {P (αi) ./i pi, 1 ≤ i ≤ K} be a set of PCE for an observable game with M mixed
Nash equilibria. PCE-Coherence becomes the problem of deciding the existence of a vector π
satisfying

Aπ ./ p∑
πj = 1 (5.8)

π ≥ 0

where A = [aij] is a K ×M matrix whose columns represent the mixed Nash equilibria in the
game. In this case aij = σpj(αi), where p ∈ P is such that αi ∈ Ap, that is aij is the probability
assignment of action αi in the mixed equilibrium ej by player p. The existence of small witnesses
for coherence given by Carathéodory’s Theorem (Proposition 1) also applies in this setting. This
leads to a similar complexity result for PCE-Coherence as we have in Theorem 22.

Theorem 29 PCE-Coherence over a GNP-class is a problem in NP. 2

Proof This proof is totally analogous to that of Theorem 22. Suppose the observable game G =

〈G,Π〉 is coherent and |Π| = K. Therefore, there exists a probability distribution π over the set of
all possible (mixed) Nash equilibria that satisfy Π. By the Carathéodory’s Theorem (Proposition 1),
there is a probability distribution assigning nonzero probabilities to at most K+1 equilibria. These
equilibria are polynomially bounded in size since G is in a GNP-class. Therefore, there is a witness
π whose size is polynomially bounded attesting Π is satisfied, so PCE-Coherence is in NP. �

Corollary 5 PCE-Coherence over 2GNP is a problem in NP. 2

Example 17 We show the reduction of PCE-Coherence to the matrix form (5.8) for observable
game in Example 16. We only show the columns of matrix A corresponding to equilibria mentioned
in Example 16, which already provides a probability distribution satisfying the set of PCE in vector
p below; last line in A stands for

∑
πi = 1.

Aπ =

a1

a2

a3

b1

b2

b3

1 0 0 2
3

0 1 0 1
3

0 0 1 0

1 0 0 4
5

0 0 0 1
5

0 1 1 0

1 1 1 1

·

π1

π2

π3

π4

 =

p2

1
3

p4

p5

p6

1
4

1

= p

This matrix system is solvable due to, for example, the vector π = [1
2 ,

1
4 , 0,

1
4]′, so the PCE-

Coherence instance is coherent. 2

92 PROBABILISTIC CONSTRAINTS ON NASH EQUILIBRIA 5.5

An algorithm for solving PCE-Coherence has to provide a means to find a solution for (5.8)
if one exists and, otherwise, determine that no solution is possible. Note that in the case of pure
equilibria, the matrix A entries aij could have values only 0 and 1, but now aij = σpj(αi) ∈ [0, 1].
Here, such algebraic form resembles the one of ŁIPSAT in Section 4.2 and, now, we provide a
reduction from PCE-Coherence to ŁIPSAT.

Let G = 〈G,Π〉 be an observable game such thatG is a 2-player game and Π = {P (αi) ./i pi | 1 ≤
i ≤ K} is a set of PCE. Let P be a set of propositional variables in one-to-one correspondence to
all possible actions in G, denote by Xi ∈ P the propositional variable associated to each action
αi appearing in Π and let ΠP = {P (Xi) ./i pi | 1 ≤ i ≤ K}. By the polynomial reduction
in Section 5.4.2, there is a set of formulas ΦG, with P ⊆ Var(ΦG), such that if we have a partial
valuation v ∈ Val

Var(ΦG)
ΦG

, then P is a set of propositional variables whose truth values by v represent
probabilities for mixed strategies which jointly played are an equilibrium. Construct the ŁIPSAT
instance ΣG = ΠP ∪ {P (ϕ) = 1 | ϕ ∈ ΦG}. If all symbols ./i in ΠP are the equality symbol, such
ŁIPSAT instance may be put in the equivalent atomic normal form 〈ΦG,ΠP〉.

Theorem 30 Let G = 〈G,Π〉 be an observable game, where G is a 2-player game and Π is a set
of PCE, and let ΣG be its associated ŁIPSAT instance constructed from G as above. Then, G is
coherent if, and only if, ΣG is satisfiable. 2

Proof This proof is totally analogous to that of Theorem 24. Suppose G coherent. There exists a
probability distribution P over the set of equilibria EG = {e1, . . . , eM} such that

∑M
j=1 P (ej) = 1

and that satisfies Π. Since each equilibrium is associated with a partial valuation, we consider the
probability distribution over partial valuations as the probability distribution over equilibria, taking
probability 0 to those partial valuations which are not associated to equilibria. This probability
distribution makes ΣG satisfiable.

Now, suppose ΣG satisfiable. As the probability distribution that satisfies ΣG makes P (ϕ) = 1,
for all ϕ ∈ ΦG, it has nonzero value only on partial valuations related to equilibria. Since it also
satisfies Π, considering this distribution as a probability distribution over equilibria, we find G
coherent. �

As a consequence of the above theorem, PCE-Coherence over 2GNP and 2G are polynomial
time reducible to ŁIPSAT provided that, in the case of 2GNP, only valuations whose values take an
adequate bounded representation size are allowed for establishing satisfiability of ŁIPSAT instances.

Corollary 6 PCE-Coherence over 2G is a problem in NP. 2

The following proposition has a reduction that we use for establishing the NP-completeness of
PCE-Coherence over 2GNP and 2G and the inapproximability results in next section.

Proposition 6 (Conitzer and Sandholm (2008)) Let ϕ be a CNF CPL-formula with n propo-
sitional variables. Then there exists a 2-player game Gϕ which may be built in polynomial time,
with fi ∈ Ai, for i ∈ {1, 2}, such that ϕ is satisfiable if, and only if, it has a mixed Nash equilibrium
which is a strategy profile σSAT = 〈σ1, σ2〉, where σ1 assigns positive probability 1

n to n distinct
actions in A1 \ {f1}. Furthermore, action profile σf = 〈f1, f2〉 is the only other possible mixed Nash
equilibrium in Gϕ. 2

Theorem 31 PCE-Coherence over 2GNP and 2G are NP-complete. 2

5.5 FROM PCE-COHERENCE TO ŁIPSAT 93

Proof Memberships in NP are stated in Corollaries 5 and 6. CPL-SAT is an NP-complete problem;
let us reduce this problem to PCE-Coherence. Given a CNF CPL-formula ϕ, let Gϕ be the game
in Proposition 6. We consider the instance G = 〈Gϕ, {P (f1) = 0}〉 of PCE-Coherence, which may
be computed from ϕ in polynomial time. G is coherent if, and only if, Gϕ has another mixed Nash
equilibrium beyond σf , which happens if, and only if, ϕ is satisfiable. Thus, PCE-Coherence over
2GNP and 2G are NP-hard. �

There are many results stating that deciding on the existence of mixed Nash equilibria in 2-player
games with some property, such as uniqueness, Pareto-optimality, etc, are NP-complete problems
(Conitzer and Sandholm, 2008; Gilboa and Zemel, 1989). PCE-Coherence may be seen as an
addition to this list by Theorem 31 if one glimpses it as the problem of deciding whether there are
at most K + 1 equilibria for which there is an associated vector π that satisfies conditions in (5.8).

5.5.1 PCE-Extension Allowing Mixed Equilibria

We now analyze PCE-Extension in analogy of what has been done in Section 5.3.1. The defini-
tion of PCE-Extension is analogous to that of the pure equilibrium case, i.e. given a coherent
observable game G = 〈G,Π〉, where G is a 2-player game, and an action ai ∈ Ai, PCE-Extension

consists in finding probability functions P and P that satisfy Π such that P (ai) is minimal and
P (ai) is maximal. As far as approximation algorithms are concerned for PCE-Extension, we have
analogous results to Theorems 25 and 26.

Theorem 32 Unless P = NP , there does not exist a polynomial time algorithm that approximates,
to any precision ε ∈ (0, 1

2), the expected value by the minimization version of PCE-Extension. 2

Proof CPL-SAT is an NP-complete problem; let us reduce this problem to PCE-Extension.
Given a CNF CPL-formula ϕ, let Gϕ be the game in Proposition 6. We consider the coherent
observable game G = 〈Gϕ, {P (ai) ≥ 0}〉, for some arbitrary ai ∈ Ai, for i ∈ P , together with
action f1 as an instance of PCE-Extension. The reduction from ϕ to G may be computed in
polynomial time. Suppose there exists a polynomial time algorithm that approximates to precision
ε ∈ (0, 1

2) the expected value by the minimization version of PCE-Extension. If ϕ is not satisfiable,
the only equilibrium in Gϕ is σf , then P (f1) = 1 and the supposed algorithm should return
m > 1− ε > 1

2 . On the other hand, if ϕ is satisfiable, P (f1) = 0 and the supposed algorithm should
return m < 0 + ε < 1

2 . Therefore, such algorithm decides an NP-complete problem in polynomial
time and P = NP . �

Theorem 33 Unless P = NP , there does not exist a polynomial time algorithm that approximates,
to any precision ε ∈ (0, 1

6), the expected value by the maximization version of PCE-Extension.2

Proof CPL-SAT is an NP-complete problem; let us reduce this problem to PCE-Extension.
Given a CNF CPL-formula ϕ, let Gϕ be the game in Proposition 6. We consider the coherent
observable game G = 〈Gϕ, {P (a2) ≥ 0}〉, for some arbitrary a2 ∈ A2, together with some arbitrary
action a1 ∈ A1 \ {f1} as an instance of PCE-Extension. The reduction from ϕ to G may be
computed in polynomial time. Suppose there exists a polynomial time algorithm that approximates
to precision ε ∈ (0, 1

6) the expected value by the maximization version of PCE-Extension. If ϕ
is not satisfiable, the only equilibrium in Gϕ is σf , then P (a1) = 0 and the supposed algorithm

94 PROBABILISTIC CONSTRAINTS ON NASH EQUILIBRIA 5.6

should return M < 0 + ε < 1
6 . On the other hand, if ϕ is satisfiable, P (a1) = 1

3 and the supposed
algorithm should returnM > 1

3−ε >
1
6 . Therefore, such algorithm decides an NP-complete problem

in polynomial time, hence P = NP . �

PCE-Extension in the mixed equilibrium setting may also be solved by Algorithm 9 with
PCECoherence(G ,Π) now being a process that allows mixed equilibria. We have a similar result
as in Theorem 27.

Theorem 34 Given an instance of PCE-Extension over 2GNP or 2G and a precision ε > 0,
PCE-Extension can be obtained with O(| log ε|) iterations of PCE-Coherence. 2

5.6 Some Thoughts on Game-Theoretic Modeling

We can divide the study of equilibrium problems in two fundamental aspects. On the one hand,
the model per se; in this case, equilibrium concepts are often understood as models that explain
(rational or not) agent behavior, e.g. in the markets or in a biological system. On the other hand,
algorithms; such issues become relevant in the cases where it is important to actually compute an
equilibrium. Coherence of observable games — or, coherence of probabilistic constraints on equilibria
— does not constitute a concept of equilibrium, however we can make an analogy between their
study and the two aforementioned aspects. Indeed, in this chapter, we formalized the concept of
coherent observable games and solved the Coherence and Extension Problems.

The coherence of an observable game models the interaction that the uncertainty about the
game should have with the knowledge that such game reaches equilibrium. Thus, an incoherent
observable game explains the inevitable failure of the observer in taking advantage of his position
of observer, e.g. the sure loss of the better in de Finetti’s probability interpretation or the poor
management of the local beer producer observing the oligopolistic market. However, it is important
to notice that the observer’s subjective probability assignments may be coherent and still far from
reality. In this way, an incoherent observable game alone may be enough to explain the failure of
the observer, but a coherent observable game is not enough to guarantee his success. All in all,
the sharpness of the observer’s probability assignments also depends on how deep is his knowledge
about the game and to be coherent is only part of his enterprise in making a good analysis of the
game he observes.

As far as equilibrium concepts are concerned, the usefulness of the actual computation of equi-
libria is part of an ongoing debate (Papadimitriou and Roughgarden, 2008). Since by the aspect of
the model per se, an equilibrium concept explains agents behavior, the actual computation of an
equilibrium might be regarded as completely irrelevant. Nevertheless, it might also be argued that
it is only reasonable to accept that agents behave according to an equilibrium if it is not too hard
to compute such equilibrium. In light of this discussion, we may conclude that the hardness results
concerning PCE-Coherence point to the difficulty of the observer in being coherent; thus, it may
explain failures in the management by local producers when competing with oligopolists.

However, PSAT and ŁIPSAT have been shown to have easy-hard-easy phase transition, which
means that possibly most cases of PCE-Coherence over GNP-classes can be solved easily. By this
hypotheses, in most cases it is not difficult for an observer to be coherent and then the responsibility
for a poor management falls entirely over the poor knowledge on the oligopolistic market by the

5.6 SOME THOUGHTS ON GAME-THEORETIC MODELING 95

local producer. Moreover, we believe that the framework of observable games we set in this chapter
is in the interest of an observer who actually wants to compute the coherence and the extension of
his probabilities over actions which are in equilibrium independently of whether this equilibrium was
actually computed or how it was established; e.g. again, the local producer observing an oligopolistic
market. In this way, the reductions from PCE-Coherence to PSAT and ŁIPSAT are encouraging
due to their phase transition behavior and the improvement in the technologies for implementing
linear algebraic solvers and CPL-SAT, PSAT and even ŁIPSAT solvers.

The following paper, which is related to this chapter, has been submitted to a journal and is
currently under review.

• Sandro Preto, Eduardo Fermé and Marcelo Finger. Coherence of probabilistic constraints on
Nash equilibria.

96 PROBABILISTIC CONSTRAINTS ON NASH EQUILIBRIA 5.6

Chapter 6

Conclusions

In general, we applied semantics modulo satisfiability — a restricted semantics which comprehends
only valuations that satisfy some specific set of formulas — in computationally tackling some
problems in an efficient way. Evaluation via such restricted semantics was already present, although
not evidenced, in the work of Finger and De Bona (2015) for solving the Probabilistic Satisfiability
Problem; we defined an adequate framework for semantics modulo satisfiability, which was used
throughout all this thesis. We believe we have shown how natural such concept is, first, by examining
it in analogy to non-valid formulas and in parallel with propositional theories and, second, by
applying it in the ways we did.

We investigated implicit representations of functions by logical formulas in the Łukasiewicz
Infinitely-valued Logic by means of semantics modulo satisfiability; we called such concept repre-
sentation modulo satisfiability or representation in the Ł∞-MODSAT system. Rational McNaughton
functions were constructively shown to be representable in Ł∞-MODSAT, which yielded a poly-
nomial algorithm for building the representations. An implementation of the algorithm together
with results of experimental tests were presented and, in order to set up the tests, we established
classes of rational McNaughton functions from where random such functions may easily be chosen.
In comparison with the existing literature, we were able to conclude that our approach has the ad-
vantage to efficiently build representations in a logical framework whose associated problems have
reasonable complexity and there is considerable literature about them.

Moreover, as an application of the aforementioned representational framework, we used the
reasoning structure of Łukasiewicz Infinitely-valued Logic to set up a framework of formal analysis
of reachability and robustness of neural networks, which are functions that may be approximated by
representations in Ł∞-MODSAT. We also presented the results of our analysis of an actual neural
network that is an exact rational McNaughton function.

In the area of probabilities, we provided a theoretical basis for the development and implemen-
tation of probabilistic reasoning over Łukasiewicz Infinitely-valued Logic, specifically to solve the
ŁIPSAT problem. Analogous to the PSAT-solving of Finger and De Bona (2015), semantics mod-
ulo satisfiability played an important role in ŁIPSAT-solving due to the input atomic normal form,
which states probabilistic assignments to propositional variables intending to be in accordance with
a propositional theory. A phase transition behavior was empirically observed.

In the last subject we dealt with, we addressed a scenario in game theory which is unlike the
ones in the previous applications since, instead of taking place a priori in a logical framework, it
was translated into one in order to achieve the means to solve the raised problems. The problem

97

98 CONCLUSIONS 6.1

of PCE-Coherence was reduced either to PSAT or ŁIPSAT in a way that heavily subsumes
semantics modulo satisfiability for assigning probabilities agreeing with a propositional theory;
again, this shows how natural semantics modulo satisfiability are. Such reductions have made it
possible to provide complexity analysis and algorithms for PCE-Coherence through both PSAT-
and ŁIPSAT-solving. PCE-Coherence over GNP-classes were shown to be in NP and to be NP-
complete over NP-complete GNP-classes. We also provided a reduction from PCE-Extension to
PCE-Coherence.

6.1 Future Work

For the future, other applications of semantics modulo satisfiability may be identified in a variety
of logical systems both to approach established problems — as in the cases of ŁIPSAT and PCE-

Coherence — and define new useful concepts — as in the case of Ł∞-MODSAT. For instance,
the work of Finger (2019) has rephrased decision problems as CPL-SAT and PSAT in a way that
only admits a restricted underlying semantics; these problems turned out to be polynomial. The
rephrased problems have not been placed in the framework of semantics modulo satisfiability, how-
ever, we believe such approach would perfectly fit them. In addition, the applications presented in
this thesis also have room for further study.

Both the algorithm for building representations in Ł∞-MODSAT and its implementation might
be improved in order to achieve efficiency gains. The formal analysis of neural networks is a work still
in its dawn in which we may envision two directions to pursue: the effective codification of general
neural networks as (approximate) rational McNaughton functions in the regional format encoding,
so representable in Ł∞-MODSAT by our algorithm, and the formalization of more of their desirable
properties in the language of Łukasiewicz Infinitely-valued Logic with a view to the emerging field
of verification of neural networks. Despite our identification of neural networks with the functions
that they determine, the experiment in Section 3.6.1 shows that it is not a trivial problem to
translate from the neural network typical graph models to rational McNaughton functions in regional
format. Also, despite the extensive literature on computational problems related to Ł∞, to effectively
perform robustness verifications as proposed, an efficient approach to the decision on the validity
of logical consequence in Łukasiewicz Infinitely-valued Logic is still needed, as the experiment also
made clear.

Moreover, Amato et al. (2002) raised the hypothesis that the representation of neural networks
in a logical system may be useful in their interpretability, which happens to be a challenge to
their development; thus, approximate representations in Ł∞-MODSAT might play a role in such
endeavor.

On the ŁIPSAT problem, one may focus on the improvement of the solvers having the anal-
ysis of the phase transition as a qualitative guideline. From a theoretical perspective, it may be
worth investigating the connections between probabilities in accordance with a propositional theory
Th(Γ), where a distribution only assigns positive probability to valuations in a semantics modulo
satisfiability ValΓ, and conditional probabilities given that the formulas in Γ have occurred.

Finally, concerning observable games, besides tackling some practical problems and implemen-
tations of PCE-Coherence and PCE-Extension, the techniques presented might be expanded
to other forms of equilibrium such as ε-Nash equilibrium (Daskalakis et al., 2009).

Bibliography

Achterberg(2009) Tobias Achterberg. Scip: solving constraint integer programs. Mathematical
Programming Computation, 1(1):1–41. See http://scip.zib.de/. Cited in p. 70

Aguzzoli(1998) Stefano Aguzzoli. The complexity of McNaughton functions of one variable.
Advances in Applied Mathematics, 21(1):58–77. Cited in p. 56

Aguzzoli and Ciabattoni(2000) Stefano Aguzzoli and Agata Ciabattoni. Finiteness in infinite-
valued Łukasiewicz logic. Journal of Logic, Language and Information, 9:5–29. doi: 10.1023/A:
1008311022292. URL http://doi.org/10.1023/A:1008311022292. Cited in p. 52

Aguzzoli and Mundici(2001) Stefano Aguzzoli and Daniele Mundici. Weierstrass approxima-
tions by Łukasiewicz formulas with one quantified variable. In Proceedings 31st IEEE Interna-
tional Symposium on Multiple-Valued Logic, pages 361–366. IEEE. Cited in p. 15, 56

Aguzzoli and Mundici(2003) Stefano Aguzzoli and Daniele Mundici. Weierstrass approximation
theorem and Łukasiewicz formulas with one quantified variable. In Melvin Fitting and Ewa
Orłowska, editors, Beyond Two: Theory and Applications of Multiple-Valued Logic, pages 315–
335. Physica-Verlag HD, Heidelberg. ISBN 978-3-7908-1769-0. Cited in p. 15, 56

Amato and Porto(2000) P. Amato and M. Porto. An algorithm for the automatic generation of
a logical formula representing a control law. Neural Network World, 10(5):777–786. Cited in p. 15

Amato et al.(2002) Paolo Amato, Antonio Di Nola and Brunella Gerla. Neural networks and ra-
tional Łukasiewicz logic. In 2002 Annual Meeting of the North American Fuzzy Information Pro-
cessing Society Proceedings. NAFIPS-FLINT 2002 (Cat. No. 02TH8622), pages 506–510. IEEE.
Cited in p. 98

Ansótegui et al.(2012) C. Ansótegui, M. Bofill, F. Manyà and M. Villaret. Building automated
theorem provers for infinitely-valued logics with satisfiability modulo theory solvers. In 2012
IEEE 42nd International Symposium on Multiple-Valued Logic, pages 25–30. Cited in p. 42, 55

Aumann(1974) Robert J. Aumann. Subjectivity and correlation in randomized strategies. Journal
of Mathematical Economics, 1(1):67–96. Cited in p. 77

Barrett et al.(2016) Clark Barrett, Pascal Fontaine and Cesare Tinelli. The satisfiability modulo
theories library (SMT-LIB). www.SMT-LIB.org, 2016. Cited in p. 42, 55

Bertsimas and Tsitsiklis(1997) Dimitris Bertsimas and John N. Tsitsiklis. Introduction to linear
optimization. Athena scientific series in optimization and neural computation. Athena Scientific,
Belmont. ISBN 1886529191. Cited in p. 12

Bofill et al.(2015)Miquel Bofill, Felip Manyà, Amanda Vidal and Mateu Villaret. Finding hard in-
stances of satisfiability in Łukasiewicz logics. In 2015 IEEE International Symposium on Multiple-
Valued Logic (ISMVL), pages 30–35. Cited in p. 2, 55, 59, 70

Boole(1854) George Boole. An Investigation on the Laws of Thought. Macmillan, London. Avail-
able on project Gutemberg at www.gutenberg.org/etext/15114. Cited in p. 10

99

http://scip.zib.de/
http://doi.org/10.1023/A:1008311022292
www.gutenberg.org/etext/15114

100 BIBLIOGRAPHY 6.1

Borgward(1986) Karl Heinz Borgward. The Simplex Method: A Probabilistic Analysis. Algorithms
and Combinatorics 1. Springer. ISBN 978-3540170969. Cited in p. 13

Bova and Flaminio(2010) Simone Bova and Tommaso Flaminio. The coherence of Łukasiewicz
assessments is NP-complete. International Journal of Approximate Reasoning, 51(3):294–304.
ISSN 0888-613X. doi: 10.1016/j.ijar.2009.10.002. URL www.sciencedirect.com/science/article/
pii/S0888613X09001558. Cited in p. 2, 59, 62, 63

Brøndsted(1983) Arne Brøndsted. An Introduction to Convex Polytopes, volume 90 of Graduate
Texts in Mathematics. Springer-Verlag, New York. Cited in p. 11, 12

Cheeseman et al.(1991) Peter Cheeseman, Bob Kanefsky and William M. Taylor. Where the
really hard problems are. In Proceedings of the 12th international joint conference on Artificial
intelligence, volume 1, pages 331–337, San Francisco. Morgan Kaufmann. ISBN 1-55860-160-0.
URL http://portal.acm.org/citation.cfm?id=1631171.1631221. Cited in p. 13, 69, 70

Cignoli et al.(2000) R.L. Cignoli, I.M. D’Ottaviano and D. Mundici. Algebraic Foundations of
Many-Valued Reasoning. Trends in Logic. Springer Netherlands. ISBN 9789401594806. Cited in p.

9, 23, 24

Conitzer and Sandholm(2008) Vincent Conitzer and Tuomas Sandholm. New complexity results
about Nash equilibria. Games and Economic Behavior, 63(2):621–641. Cited in p. 92, 93

Cook(1971) Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of
the Third Annual ACM Symposium on Theory of Computing, STOC ’71, pages 151–158, New
York, NY, USA. Association for Computing Machinery. ISBN 9781450374644. doi: 10.1145/
800157.805047. URL http://doi.org/10.1145/800157.805047. Cited in p. 6, 9, 78

Daskalakis et al.(2009) Constantinos Daskalakis, Paul W. Goldberg and Christos H. Papadim-
itriou. The complexity of computing a Nash equilibrium. SIAM Journal on Computing, 39(1):
195–259. Cited in p. 98

de Finetti(1931) Bruno de Finetti. Sul significato soggettivo della probabilità. Fundamenta
Mathematicae, 17(1):298–329. URL http://eudml.org/doc/212523. Translated into English as
“On the Subjective Meaning of Probability”, In: P. Monari and D. Cocchi (Eds.), Probabilità e
Induzione, Clueb, Bologna, 291-321, 1993. Cited in p. 61, 74

de Finetti(1937) Bruno de Finetti. La prévision: Ses lois logiques, ses sources subjectives, 1937.
Cited in p. 61, 74

de Finetti(2017) Bruno de Finetti. Theory of probability: A critical introductory treatment. Trans-
lated by Antonio Machí and Adrian Smith. John Wiley & Sons. Cited in p. 61, 74

Di Nola and Leus,tean(2011) Antonio Di Nola and Ioana Leus,tean. Riesz MV-algebras and their
logic. In Proceedings of the 7th conference of the European Society for Fuzzy Logic and Technology
(EUSFLAT-11), pages 140–145. Atlantis Press. ISBN 978-90-78677-00-0. doi: 10.2991/eusflat.
2011.125. Cited in p. 56

Di Nola and Leus,tean(2014) Antonio Di Nola and Ioana Leus,tean. Łukasiewicz logic and Riesz
spaces. Soft Computing, 18:2349–2363. doi: 10.1007/s00500-014-1348-z. Cited in p. 56

Dutertre(2014) Bruno Dutertre. Yices 2.2. In Armin Biere and Roderick Bloem, editors,
Computer-Aided Verification (CAV’2014), volume 8559 of Lecture Notes in Computer Science,
pages 737–744. Springer. Cited in p. 42, 55, 70

Enderton(2001) Herbert B. Enderton. A Mathematical Introduction to Logic. Academic Press,
2nd edition. ISBN 978-0122384523. Cited in p. 8

www.sciencedirect.com/science/article/pii/S0888613X09001558
www.sciencedirect.com/science/article/pii/S0888613X09001558
http://portal.acm.org/citation.cfm?id=1631171.1631221
http://doi.org/10.1145/800157.805047
http://eudml.org/doc/212523

6.1 BIBLIOGRAPHY 101

Esteva et al.(2001) Francesc Esteva, Lluís Godo and Franco Montagna. The Π and Π1
2 logics: two

complete fuzzy systems joining Łukasiewicz and product logics. Archive for Mathematical Logic,
40(1):39–67. ISSN 1432-0665. Cited in p. 55

Etessami and Yannakakis(2010) Kousha Etessami and Mihalis Yannakakis. On the complexity
of Nash equilibria and other fixed points. SIAM Journal on Computing, 39(6):2531–2597. Cited in

p. 87

Finger(2019)Marcelo Finger. Sparse models: a tractable fragment for SAT, MAXSAT and PSAT.
In Cezar Augusto Mortari, Ricardo Silvestre, Ítala Maria Loffredo D’Ottaviano, Leandro Sugui-
tani and Petrucio Viana, editors, 19th Brazilian Logic Conference EBL 2019: Book of Abstracts,
pages 128–129. Mídia Gráfica e Editora Ltda, UFCG-EDUFCG. Cited in p. 98

Finger(2020) Marcelo Finger. Logic in times of big data. In J. Acacio de Barros and Décio
Krause, editors, A True Polymath: A Tribute to Francisco Antonio Doria, pages 184–198. College
Publications. ISBN 978-1-84890-351-7. URL www.collegepublications.co.uk/ABF/?00002. Cited

in p. 49

Finger and Bona(2011) Marcelo Finger and Glauber De Bona. Probabilistic satisfiability: Logic-
based algorithms and phase transition. In IJCAI, pages 528–533. Cited in p. 11, 62, 66, 70

Finger and De Bona(2015) Marcelo Finger and Glauber De Bona. Probabilistic satisfiability:
algorithms with the presence and absence of a phase transition. Annals of Mathematics and
Artificial Intelligence, 75(3):351–379. ISSN 1012-2443. doi: 10.1007/s10472-015-9466-6. URL
http://dx.doi.org/10.1007/s10472-015-9466-6. Cited in p. 2, 11, 12, 62, 66, 72, 97

Finger and Preto(2018) Marcelo Finger and Sandro Preto. Probably half true: Probabilistic
satisfiability over Łukasiewicz infinitely-valued logic. In Didier Galmiche, Stephan Schulz and
Roberto Sebastiani, editors, Automated Reasoning. IJCAR 2018, volume 10900 of Lecture Notes
in Computer Science, pages 194–210, Cham. Springer International Publishing. ISBN 978-3-319-
94205-6. Cited in p. 4, 72

Finger and Preto(2020)Marcelo Finger and Sandro Preto. Probably partially true: Satisfiability
for Łukasiewicz infinitely-valued probabilistic logic and related topics. Journal of Automated
Reasoning, 64(7):1269–1286. ISSN 1573-0670. doi: 10.1007/s10817-020-09558-9. URL http:
//doi.org/10.1007/s10817-020-09558-9. Cited in p. 3, 57, 72

Fischer et al.(2006) Felix Fischer, Markus Holzer and Stefan Katzenbeisser. The influence of
neighbourhood and choice on the complexity of finding pure Nash equilibria. Information Pro-
cessing Letters, 99(6):239–245. Cited in p. 78

Gamrath et al.(2020) Gerald Gamrath, Daniel Anderson, Ksenia Bestuzheva, Wei-Kun Chen,
Leon Eifler, Maxime Gasse, Patrick Gemander, Ambros Gleixner, Leona Gottwald, Katrin Hal-
big, Gregor Hendel, Christopher Hojny, Thorsten Koch, Pierre Le Bodic, Stephen J. Maher,
Frederic Matter, Matthias Miltenberger, Erik Mühmer, Benjamin Müller, Marc Pfetsch, Franziska
Schlösser, Felipe Serrano, Yuji Shinano, Christine Tawfik, Stefan Vigerske, Fabian Wegscheider,
Dieter Weninger and Jakob Witzig. The SCIP optimization suite 7.0. Technical report, Opti-
mization Online. URL www.optimization-online.org/DB_HTML/2020/03/7705.html. Cited in p.

42

Gent and Walsh(1994) Ian P. Gent and Toby Walsh. The SAT phase transition. In ECAI94 –
Proceedings of the Eleventh European Conference on Artificial Intelligence, pages 105–109. John
Wiley & Sons. Cited in p. 70

Georgakopoulos et al.(1988) George Georgakopoulos, Dimitris Kavvadias and Christos H. Pa-
padimitriou. Probabilistic satisfiability. Journal of Complexity, 4(1):1–11. ISSN 0885-064X. doi:
10.1016/0885-064X(88)90006-4. Cited in p. 11, 62

www.collegepublications.co.uk/ABF/?00002
http://dx.doi.org/10.1007/s10472-015-9466-6
http://doi.org/10.1007/s10817-020-09558-9
http://doi.org/10.1007/s10817-020-09558-9
www.optimization-online.org/DB_HTML/2020/03/7705.html

102 BIBLIOGRAPHY 6.1

Gerla(2001) B. Gerla. Rational Łukasiewicz logic and DMV-algebras. Neural Network World, 11
(6):579–594. Cited in p. 56

Gilboa and Zemel(1989) Itzhak Gilboa and Eitan Zemel. Nash and correlated equilibria: Some
complexity considerations. Games and Economic Behavior, 1(1):80–93. Cited in p. 93

Goldreich(2008) Oded Goldreich. Computational Complexity: A Conceptual Perspective. Cam-
bridge University Press, Cambridge. Cited in p. 13

Goodfellow et al.(2016) Ian Goodfellow, Yoshua Bengio and Aaron Courville. Deep Learning.
MIT Press. www.deeplearningbook.org. Cited in p. 49

Gottlob et al.(2005) G. Gottlob, G. Greco and F. Scarcello. Pure Nash equilibria: Hard and easy
games. Journal of Artificial Intelligence Research, 24:357–406. Cited in p. 78

Hähnle(1991) Reiner Hähnle. Towards an efficient tableau proof procedure for multiple-valued
logics. In Egon Börger, Hans Kleine Büning, Michael M. Richter and Wolfgang Schönfeld,
editors, Computer Science Logic: 4th Workshop, CSL ’90 Heidelberg, Germany, October 1–5,
1990 Proceedings, pages 248–260. Springer, Berlin, Heidelberg. ISBN 978-3-540-38401-4. doi:
10.1007/3-540-54487-9_62. URL http://doi.org/10.1007/3-540-54487-9_62. Cited in p. 68

Hansen and Jaumard(2000) P. Hansen and B. Jaumard. Probabilistic satisfiability. In Dov M.
Gabbay and Philippe Smets, editors, Handbook of Defeasible Reasoning and Uncertainty Man-
agement Systems, volume 5, pages 321–367. Springer Netherlands. Cited in p. 11

Hansen and Jaumard(1990) Pierre Hansen and Brigitte Jaumard. Algorithms for the maximum
satisfiability problem. Computing, 44(4):279–303. URL http://dx.doi.org/10.1007/BF02241270.
Cited in p. 65

Hughes and Anderson(1996) Robert B. Hughes and Michael R. Anderson. Simplexity of the
cube. Discrete Mathematics, 158(1-3):99–150. Cited in p. 24

Kavvadias and Papadimitriou(1990) Dimitris Kavvadias and Christos H. Papadimitriou. A
linear programming approach to reasoning about probabilities. Annals of Mathematics and Ar-
tificial Intelligence, 1(1):189–205. URL http://dx.doi.org/10.1007/BF01531078. Cited in p. 65

Leshno et al.(1993) Moshe Leshno, Vladimir Ya. Lin, Allan Pinkus and Shimon Schocken.
Multilayer feedforward networks with a nonpolynomial activation function can approximate
any function. Neural Networks, 6(6):861–867. doi: 10.1016/S0893-6080(05)80131-5. URL
www.sciencedirect.com/science/article/pii/S0893608005801315. Cited in p. 49

Levin(1973) Leonid Anatolevich Levin. Universal sequential search problems. Problemy Peredachi
Informatsii, 9(3):115–116. Cited in p. 9

McFarland(1993) Michael C. McFarland. Formal verification of sequential hardware: A tutorial.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 12(5):633–654.
Cited in p. 6

McNaughton(1951) R. McNaughton. A theorem about infinite-valued sentential logic. Journal
of Symbolic Logic, 16:1–13. Cited in p. 17

Mundici(2011) D. Mundici. Advanced Łukasiewicz calculus and MV-algebras. Trends in Logic.
Springer Netherlands. ISBN 9789400708402. Cited in p. 60

Mundici(1987) Daniele Mundici. Satisfiability in many-valued sentential logic is NP-complete.
Theoretical Computer Science, 52(1-2):145–153. Cited in p. 2, 9, 50, 55, 63

Mundici(1994) Daniele Mundici. A constructive proof of McNaughton’s theorem in infinite-valued
logic. The Journal of Symbolic Logic, 59(2):596–602. Cited in p. 21, 23, 29

www.deeplearningbook.org
http://doi.org/10.1007/3-540-54487-9_62
http://dx.doi.org/10.1007/BF02241270
http://dx.doi.org/10.1007/BF01531078
www.sciencedirect.com/science/article/pii/S0893608005801315

6.1 BIBLIOGRAPHY 103

Mundici(2006) Daniele Mundici. Bookmaking over infinite-valued events. International Journal
of Approximate Reasoning, 43(3):223–240. ISSN 0888-613X. doi: 10.1016/j.ijar.2006.04.004. URL
www.sciencedirect.com/science/article/pii/S0888613X0600034X. Cited in p. 59, 62

Munkres(2000) James R. Munkres. Topology. Prentice Hall, Upper Saddle River. Cited in p. 12

Nash(1951) John Nash. Non-cooperative games. Annals of Mathematics, 54(2):286–295. ISSN
0003486X. URL www.jstor.org/stable/1969529. Cited in p. 73, 74, 86

Nash(1950a) John F. Nash. Non-Cooperative Games. PhD thesis, Princeton University. Cited in p.

74

Nash(1950b) John F. Nash. Equilibrium points in n-person games. Proceedings of the National
Academy of Sciences, 36(1):48–49. Cited in p. 74

Nilsson(1986) Nils Nilsson. Probabilistic logic. Artificial Intelligence, 28(1):71–87. Cited in p. 11,
62

Papadimitriou and Steiglitz(1998) C.H. Papadimitriou and K. Steiglitz. Combinatorial Opti-
mization: Algorithms and Complexity. Dover. Cited in p. 12

Papadimitriou(1994) Christos H. Papadimitriou. Computational Complexity. Addison-Wesley,
Boston. Cited in p. 13

Papadimitriou(2007) Christos H. Papadimitriou. The complexity of finding Nash equilibria. In
Noam Nisan, Tim Roughgarden, Eva Tardos and Vijay V. Vazirani, editors, Algorithmic game
theory, pages 29–51. Cambridge University Press. Cited in p. 87

Papadimitriou and Roughgarden(2008) Christos H. Papadimitriou and Tim Roughgarden.
Computing correlated equilibria in multi-player games. Journal of the ACM, 55(3):1–29. ISSN
0004-5411. doi: 10.1145/1379759.1379762. URL http://doi.org/10.1145/1379759.1379762. Cited in

p. 77, 94

Preto and Finger(2019) Sandro Preto and Marcelo Finger. Representing rational McNaughton
functions via MODSAT relativisation. In Cezar Augusto Mortari, Ricardo Silvestre, Ítala
Maria Loffredo D’Ottaviano, Leandro Suguitani and Petrucio Viana, editors, 19th Brazilian
Logic Conference EBL 2019: Book of Abstracts, page 183. Mídia Gráfica e Editora Ltda, UFCG-
EDUFCG. Cited in p. 3, 57

Preto and Finger(2020) Sandro Preto and Marcelo Finger. An efficient algorithm for representing
piecewise linear functions into logic. Electronic Notes in Theoretical Computer Science, 351:167–
186. ISSN 1571-0661. doi: 10.1016/j.entcs.2020.08.009. URL http://doi.org/10.1016/j.entcs.2020.
08.009. Proceedings of LSFA 2020, the 15th International Workshop on Logical and Semantic
Frameworks, with Applications (LSFA 2020). Cited in p. 3, 57

Salvatore et al.(2019) Felipe Salvatore, Sandro Preto, Marcelo Finger and Roberto Hirata Jr.
Using neural models to perform inference. In Derek Doran, Artur d’Avila Garcez and Freddy
Lecue, editors, Proceedings of the 2019 International Workshop on Neural-Symbolic Learning and
Reasoning. Cited in p. 3

Szegedy et al.(2014) Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian J. Goodfellow and Rob Fergus. Intriguing properties of neural networks. In Yoshua
Bengio and Yann LeCun, editors, 2nd International Conference on Learning Representations,
ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings. Cited in p. 51

Tarela and Martínez(1999) J.M. Tarela and M.V. Martínez. Region configurations for real-
izability of lattice piecewise-linear models. Mathematical and Computer Modelling, 30(11-12):
17–27. Cited in p. 40

www.sciencedirect.com/science/article/pii/S0888613X0600034X
www.jstor.org/stable/1969529
http://doi.org/10.1145/1379759.1379762
http://doi.org/10.1016/j.entcs.2020.08.009
http://doi.org/10.1016/j.entcs.2020.08.009

104 BIBLIOGRAPHY 6.1

Tarela et al.(1990) J.M. Tarela, E. Alonso and M.V. Martínez. A representation method for PWL
functions oriented to parallel processing. Mathematical and Computer Modelling, 13(10):75 –
83. ISSN 0895-7177. doi: 10.1016/0895-7177(90)90090-A. URL www.sciencedirect.com/science/
article/pii/089571779090090A. Cited in p. 40

Xu and Wang(2019) J. Xu and S. Wang. Lattice piecewise affine representations on convex
projection regions. In 2019 IEEE 58th Conference on Decision and Control (CDC), pages 7240–
7245. doi: 10.1109/CDC40024.2019.9030119. Cited in p. 40

www.sciencedirect.com/science/article/pii/089571779090090A
www.sciencedirect.com/science/article/pii/089571779090090A

	List of Abbreviations
	List of Symbols
	List of Figures
	List of Tables
	Introduction
	Publications
	Thesis Structure

	Preliminaries
	Logic and Semantics Modulo Satisfiability
	Propositional Logics
	Classical Propositional Logic
	Łukasiewicz Infinitely-Valued Logic

	Classical Probability Theory
	Useful Mathematical Techniques

	Efficient Representation of Piecewise Linear Functions into Logic
	The Traditional Way
	Representation Modulo Satisfiability
	The Formula-Based Approach
	The Function-Based Approach
	Formula-Based versus Function-Based Approaches

	Representation Theorems via Hat Functions
	An Efficient Algorithm for Building Representations
	Regional Format of Rational McNaughton Functions
	A Particular Case: Truncated Linear Functions
	The General Case
	Pre-Regional Format and a Literature Review

	Implementation and Results
	Classes of Rational McNaughton Functions and Experiments

	An Application to the Formal Analysis of Neural Networks
	Verifying a Rain Forecast Neural Network

	Modulo Satisfiability versus Traditional Representation

	Probabilities over Łukasiewicz Infinitely-Valued Logic
	Łukasiewicz Probabilities and Coherence
	Algebraic Formulation of ŁIPSAT
	A Normal Form for ŁIP-Assignments
	Algebraic Methods for Normal Form ŁIP-Assignments

	A ŁIPSAT-Solving Algorithm
	Implementation and Results
	Phase Transition for Ł-Solvers
	Phase Transition for ŁIPSAT

	Probabilistic Constraints on Nash Equilibria
	Motivation on Observable Games
	Observable Games and Coherence
	Classes of Games
	Computing Pure Nash Equilibria via CPL-SAT

	From PCE-Coherence to PSAT
	An Algorithm for PCE-Extension
	Generalized Constraints on Equilibria

	Coherence Allowing Mixed Equilibria
	Classes of Games Allowing Mixed Equilibria
	Computing Mixed Nash Equilibria via Ł-SAT

	From PCE-Coherence to ŁIPSAT
	PCE-Extension Allowing Mixed Equilibria

	Some Thoughts on Game-Theoretic Modeling

	Conclusions
	Future Work

	Bibliography

