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Resumo

Lucas Mendonça de Souza. VCAT: um modelo de avaliação automatica para lingua-
ges visuais. Dissertação (Mestrado). Instituto de Matemática e Estatística, Universidade

de São Paulo, São Paulo, 2023.

Aprender a como programar tem se tornado um aspecto crucial da sociedade moderna. A presença de

tecnologias digitais no dia-a-dia requer um entendimento básico de como software funciona de forma a ter

consciência de como isso afeta a vida de todos. Ademais, as preocupações em relação a segurança digital

e privacidade tornam ainda mais relevante a compreensão dos conceitos da ciência da computação. Esses

aspectos não estão somente relacionados a programação e podem ser referidos na literatura como Pensamento

Computacional. Pensamento Computacional é entendido como a aplicação dos conceitos da ciência da

computação em diferentes contextos da vida cotidiana. Atentando a esse cenário, governos no mundo inteiro

estão implementando novos currículos escolares que incorporam a programação como uma habilidade chave.

Entretanto, a literatura mostra quer aprender a programar é uma tarefa complexa e difícil. Em alguns casos,

os índices de evasão e reprovação chegam a ser alarmantes. Desta forma, afim de mitigar esses problemas de

aprendizagem alguns pesquisadores sugerem o uso do paradigma de programação visual. Esse paradigma

consiste no uso de elementos visuais para a construção de algoritmos. Neste contexto, os experimentos

presentes na literatura afirmam ter encontrado indícios de melhora no processo de aprendizagem, como

melhores notas e motivação na aprendizagem. Uma outra tecnologia utilizada no ensino e aprendizagem

de programação é avaliação automática de programas. As ferramentas de avaliação automática avaliam a

corretude de um algoritmo utilizando diferentes métodos. Elas permitem com que os professores consigam

avaliar um grande número de exercícios e ao mesmo tempo fornecer uma retroalimentação rápida aos

estudantes. Todavia, apenas dois sistemas de programação visual que fornecem avaliação automática são

reportados na literatura: iVProg and Chentry. Ambos os sistemas, entretanto, oferecem métodos de avaliação

bem limitados. Assim, o objetivo dessa pesquisa é propor um modelo, chamado VCAT, de avaliação automática

de programas para sistemas de programação visual afim de permitir que linguagens de programação visual

tenham acesso a avaliação automática. Além disso, esse estudo também busca melhorar a retroalimentação

fornecida pelo método de avaliação automática conhecido como comparação de saídas. Uma instanciação do

modelo foi feita tendo como base o iVProg. Uma segunda instanciação do modelo também foi desenvolvida

para uma linguagem visual criada pelo autor usando o arcabouço Blockly. Melhorias foram feitas no algoritmo

de comparação de saídas presente no modelo. Um experimento com estudantes do curso de verão para

introdução à programação foi elaborado para avaliar como os estudantes percebem as melhorias no algoritmo

de comparação de saídas e no uso de sistemas de programação visual. Os resultados indicam que o modelo

apresentado é capaz de prover avaliação automática para outras linguagens visuais além do iVProg. Os dados

do experimento mostram que as mudanças implementadas na retroalimentação do método de comparação

de saídas foram bem recebidos pelos estudantes em comparação com a implementação tradicional do método

no VPL, uma ferramenta de ensino de programação que usa comparação de saídas como método de avaliação.

Além disso, os dados também apontam benefícios do uso de programação visual como uma ferramenta no

processo de aprendizagem de programação textual.

Palavras-chave: avaliação automática. programação visual. ensino de programação.





Abstract

Lucas Mendonça de Souza. VCAT: An automatic assessment model for visual
programming languages. Thesis (Master’s). Institute of Mathematics and Statistics,

University of São Paulo, São Paulo, 2023.

Learning how to code is becoming a crucial aspect of modern society. The presence of digital technologies

in everyday life requires some basic understanding on how software works in order to be aware of how

this affects everyone’s life. Moreover, concerns on privacy and digital security also raises the relevance

of understanding computer science concepts. These aspects are not only related to programming and can

be referred in the literature as Computational Thinking. Computational Thinking is understood as the

application of computer science concepts in different contexts of day-to-day life. As an answer to this,

governments worldwide are implementing new school curricula that incorporate programming as a key

skill. However, the literature shows that learning how to program is a complex and difficult task. In some

cases, the dropout and failure rates can be very alarming. So, in order to mitigate these learning problems

some researchers employed the visual programming paradigm. This paradigm consists in using visual

elements to code algorithms. In this context, the experiments reported in the literature claim improvements

in the learning process, such as better grades and motivation to learn. Another technology employed to

support teaching and learning programming is the automatic assessment of programs. These tools can

automatically evaluate a program using different methods. They allow teachers to assess a large number

of exercises and also provide quick feedback to students. Nonetheless, at the best of our knowledge, only

two visual programming systems that provide automatic assessment were found: iVProg and Chentry.

Both systems offer a limited method of assessment. Therefore, this research proposes VCAT, an automatic

assessment model to support Visual Programming Systems on providing this functionality to diverse visual

programming languages. In addition to providing such a functionality, it also introduces improvements to

its output matching algorithms, in order to provide a better experience with the generated feedback. The

model was successfully instantiated considering iVProg and Blockly, which indicates that it is independent

of the underlying visual programming language of the system. An experiment with students of the summer

program for introductory programming was designed to assess how the students perceived the feedback

improvements and the use of visual programming systems. Data from the experiment shows that the changes

implemented in the output matching feedback was well received by the students when compared to VPL,

a similar tool using the same type of automatic assessment without improvements. Moreover, data also

suggests benefits of using visual programming as a learning step toward text based programming.

Keywords: automatic assessment. visual programming. programming teaching.
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Introduction

Technology has become a ubiquitous element of everyone’s life. Smartphones, TVs
and other home appliances, almost everything in everyday life has some computational
capabilities. These capabilities are not limited to being able to compute and automated
some activities, but being able to talk to other appliances and the Internet itself (Coughlan
et al., 2012). Besides that, in some context to access to public information or services the
citizen needs to know how to operate a computer and its peripherals (Vee, 2013). Moreover,
nowadays it is not only enough to understand how to use a computer, it is also expected
some understanding of how a software works and how to build one (Vee, 2013; T. Dufva
and M. Dufva, 2016; Eshet-Alkalai, 2004). In other words, the modern society requires
some knowledge on computer programming.

As a consequence, governments and lawmakers world-wide are trying to rethink their
educational process in the light of this reality. They are aware of the necessities of a
connected world from productive, civic and privacy standpoint (Eshet-Alkalai, 2004;
Vee, 2013). So, in order to prepare the population to this new reality, a new curriculum that
inserts the computer and programming specially as a relevant subject is being implemented
around the world. The literature also recognizes the need for an understanding of computer
science concepts and their relevance in all areas beyond the exact sciences (Vee, 2013;
Eshet-Alkalai, 2004; Wing, 2006; Papert, 1980). This conceptual framework is usually
referred as Computational Thinking (CT). To Wing (2006), CT is the ability to employ
computer science concepts such as algorithm design, decomposition and abstraction to
solve problems in everyday life.

However, learning how to program is not an easy task. Programming is reputed as hard
and complex, requiring the ability to deal with concepts of different areas depending on the
problem being solved (Michael Edelgaard Caspersen, 2007; Lahtinen et al., 2005; Gomes
and Mendes, 2007). The students also face a variety of difficulties during the learning
process ranging from the teaching method used to programming language being taught
(Gomes and Mendes, 2007; Michael Edelgaard Caspersen, 2007). Moreover, this can affect
not only the final grades but also the students’ motivation to learn and their desire to
finish the course.

Different studies have suggested the use of visual programming paradigm as a way
of mitigating the problems related to programming learning. In this paradigm, a Visual
Programming Language (VPL) is used to enable the user to construct their code. A VPL
employs visual elements which the student use to visually build their algorithm. Studies
like Brandao et al. (2012), Sáez-López et al. (2016), C.-K. Chang et al. (2017), and Resnick
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et al. (2009) have found that the use of VPL can improve grades, students’ motivation
regarding programming learning and also their desire to keep studying computer science
subjects. So, visual programming systems like Scratch, Alice, iVProg and Chentry all
implement the visual programming paradigm.

Additionally, another strategy used to reduce the problems in programming teach-
ing and learning is the use of automatic assessment tools (AAT). These tool are system
developed with the goal of executing and evaluating programs. The evaluation process
can be of different natures. They can evaluate the functionality of a program, its code
structure or performance. Reguera and Leiva (2017), Lappalainen et al. (2017), and S. Li
et al. (2016) claim that the use of AAT can increase students’ engagement, improve their
grades. Also, by automating the assessment process, it can reduce the teacher’s amount of
labor regarding program evaluation.

Nonetheless, there is no report in the literature of a visual programming language
that uses the affordances of AAT. Only iVProg and Chentry are reported in the literature
with some sort of automatic assessment. In this context, iVProg can perform some basic
functional assessment of the program by using test cases that describes a set of inputs
and expected outputs (Brandao et al., 2012). Chentry, in the other hand, perform some
structural analysis of the code based on the logs produced during program construction.
The analysis aim to identify if the constructed program is similar to the reference solution
provided by the teacher (J.-H. Kim et al., 2019).

So, the goal of this research project is to investigate AAT strategy and VPL to propose
an automatic assessment model that would allow any VPL to use the affordances provided
by automatic assessment of programs. The method used to achieve this goal is the design
science paradigm (Peffers et al., 2007). The method provided a theoretical framework that
allows the development of an artifact, designed to solve a specific problem in a specific
context. It is an iterative process that provided the methodological basis required to validate
the whole process as a scientific method.

Chapter 1 will discuss the methodology employed in this research. The theoretical
framework used in this project is presented in chapter 2. In chapter 3, it will be presented
some related works on automatic assessment and its methods, while chapter 4 discuss the
proposed solution. Finally, chapter ?? will present the schedule.
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Chapter 1

Research Method

The theoretical and methodological concepts that guide this research are based upon
the Design Science paradigm. The paradigm provides the foundation required to use the
production of artifacts as a valid scientific method by an epistemological point of view
(Peffers et al., 2007; Pimentel et al., 2019). Thus, this project employs the design science
research method or design method, since its purpose is to provide an automatic assessment
model through the production of an artifact. In this context, an artifact represents a project
or engineering design designed to solve a problem. Therefore, artifact is a product aimed
at a given context and planned by applying knowledge and conjectures about the world
(Pimentel et al., 2019).

1.1 Design Science Method
The Design Science method is divided into a set of stages, varying by author and

the nature of the research area (Peffers et al., 2007; Hevner et al., 2004; Çağdaş and
Stubkjær, 2011). This project will follow the stages described by Peffers et al. (2007),
in his attempt to develop a framework for Design Science Research (DSR) to be used in
Information Systems (IS) research. As said by Pimentel et al. (2019), research in Informatics
in Education (IE) can be seen as a sub-area of IS since both frequently focus on developing
artifacts to solve problems. In this case, IS focus on business problems, while IE focus on
problems of educational nature.

Essentially, Peffers et al. (2007) divides the DSR research flow into six stages, as
shown in Figure 1.1. First stage (Identify problem & Motivate) is concerned with problem
identification and the relevance of the solution. The second stage (Define objective of a
solution) results from the objectives inferred from the identified problem in the first stage,
evaluating if they are possible and feasible. In the third stage (Design & Development) the
functionalities and architecture of artifact is decided and the artifact created. The fourth
stage is about the demonstration of the artifact regarding its potential to solve one or
more instances of the problem. This stage requires “effective knowledge of how to use the
artifact to solve the problem”(Peffers et al., 2007).
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During the fifth stage, observations and measurements of how well the artifact solves
the problem are done. In this stage, comparisons between the defined objectives and the
actual results are compared and the research can iterate back to previous stages if required.
Finally, in the sixth stage, the artifact is presented to the appropriate audience, scholarly or
professional. During the presentation, the problem the artifact is supposed to solve must
be exposed as is the novelty of the solution.

1.2 Applying the method to this project
In stage one, the lack of a visual programming teaching environment with automatic

assessment was identified through the literature on visual programming languages. There
were only two software found that had such capability: iVProg (Brandão et al., 2016)
and Chentry (J.-H. Kim et al., 2019). iVProg is a visual programming environment with
automatic assessment developed by the Laboratory of Informatics in Education (LInE) at
the Institute of Mathematics and Statistics of Universidade de São Paulo. Chentry is a visual
programming system developed to assess programming task in the www.playentry.com
platform. Both tools will be discussed in Section 2.2.2.

The relevance of the problem comes from studies like Meerbaum-Salant et al. (2010)
and C.-K. Chang et al. (2017) that shows how visual programming languages can poten-
tially improve grades and engage students. Moreover, introductory programming courses
are regarded as very difficult (Gomes and Mendes, 2007; Watson and F. W. Li, 2014;
Michael Edelgaard Caspersen, 2007; Rapkiewicz et al., 2006; Brandão et al., 2016) and
can also have alarming failure rates (Watson and F. W. Li, 2014; Rapkiewicz et al., 2006;
Brandão et al., 2016) also regarded as difficult and complex task, specially for beginners.
Thus, different solutions have been proposed to mitigate this problem, including visual
programming languages and automatic assessment (Basnet et al., 2018; Cardoso et al.,
2018). The aspects of visual programming languages and automatic assessment of programs
will be discussed in Chapter 2 .

Regarding the automatic assessment capabilities of iVProg, the tool can only assess
a program by output matching. In this method, a set of inputs is given to the program
and the output generated is compared to the expected output to check if they match
perfectly. This can be done case by case or by saving the output to a file and comparing
it to the reference output file. There are lots of criticism in the literature regarding this
method (C. K. Poon et al., 2016; Yu et al., 2017), since it usually means students can focus
on producing the exact expected output instead of working on the problem itself. Also,
according to the aforementioned works, it can also be a source of frustration, since empty
spaces, punctuation or misspelling can cause the assessment to fail. Chentry, in the other
hand, can only assess code based on log comparison which cannot guarantee that the
program behaves as expected.

At this point the first stage of the method was finished, since the problem was identified
and its relevance was justified by the absence of an adequate solution in the literature.
Therefore, in the second stage, the objective defined for the potential solution was to
provide means to extend and improve an existing solution while developing an automatic
assessment model of visual programming languages that would expand and improve the

www.playentry.com
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availability of their assessment methods. In this stage, iVProg was chosen as the subject
of the research since its source code is publicly available and the author is one of its
active developers. A better artifact would allow not only for an improved output matching
functionality but provide better feedback to students. Moreover, it is desirable that the
artifact also allows for other methods of assessment to be integrated to it.

The improvements in the output matching functionality are aimed to reduce the known
binary behavior of the algorithm, making room for partially correct solutions instead of
only correct and wrong. On the improved feedback aspects, the objective is to design an
artifact that provides context to its error messages making it easier to students to identify
the source of the problem. The feedback provided by the improved output matching
algorithm is also enhanced to provide more details on the failing text cases, showing the
differences between the expect output and the generated one. The details regarding the
designed solution can be found in Chapter 4

During the third stage, the artifact was effectively implemented using different web
technologies like the HTML5 stack (HTML, CSS and JavaScript) and the NodeJs tool.
This decision was motivated by the fact that our subject, iVProg is already developed as a
decentralized web applications and the author wanted to keep that same design philosophy.
The output matching algorithm was improved to better deal with different types of outputs.
Now, it breaks down the output assessment into groups of the standard types (text, boolean
and numeric). The final grade of a test case is the mean of the grade of the assessment of
each standard type in the output. In case of textual output, the algorithm will penalize
the grade based on the textual differences (in number of characters) between the output
generated by the student program and the output expected by the test case.

In fourth and fifth stages the experiment was devised. The experiment consisted of
collecting qualitative and quantitative data from participating students from the summer
program of the Institute of Mathematics and Statistics at USP. The students were enrolled in
the introductory programming course using C and have fully remote classes using iVProg,
instantiated using the proposed model, and visual programming language, a Moodle plugin
that performs automatic assessment of code for languages like C, C++ and Java, to name a
few. To collect qualitative data, 0a questionnaire was created, inspired by Savi et al., 2011
questionnaire for educational games. The quantitative data were derived from the grades of
the students in the exercises and the logs generated by interacting with both tools, iVProg
and visual programming language. The analysis will consist in extracting information from
the data that shows if the implemented artifact does achieves the expected improvements
on feedback and output matching algorithm. Both qualitative and quantitative data will be
cross-checked to identify if the quantitative data supports the findings from the qualitative
data. In the next Chapter, it will be discussed the concepts and theoretical framework used
to develop the proposed solution.
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Chapter 2

Theoretical Framework

2.1 Computer Programming
A program is a set of instructions written in a specific language that must undergo

transformations to be run by the computer (Oualline, 1997). According to Caspersen
(Michael Edelgaard Caspersen, 2007), programming can be "understood as the process
of inventing suitable structures" to solve a problem at hand. In this context, the program
represents a set of well defined instructions expressed in a computer language, describing
how to carry out a specific task (Lopes and Garcia, 2002; Taylor, 1982). In order to execute
the program as expected, the instructions must be sequenced and expressed in an adequate
form.

The adequate form here are mainly defined by two rules: syntax and semantics. There-
fore, in order to be valid, a program must first follow the syntactic rules of a programming
language(Tennent, 1976). Then, the syntactically valid program must also obey the
semantic rules defined by the language. The semantics of a programming language is very
important, since it specifies the meaning of each and every command used. In other words,
it defines how the computer should interpret the coded program (Tennent, 1976).

Programming languages can be classified according to their level. The level of a pro-
gramming language is a measurement of the amount of details the programmer has to
give the computer in order to make the program work (Shu, 1986). They can vary from a
very low to a high level. Low level languages are closely related to the hardware and its
architecture and requires much more detailed instructions. In higher levels, the languages
are closer to how we humans express things, usually by text, and also required much
less instructions or piece of code to achieve the desired result (Taylor, 1982; Oualline,
1997).

Figure 2.1 shows a program that reads a number and prints it coded in the Pascal
language (left - high level), and the same program compiled to Assembly language (right -
low level). Note that part of the resulting Assembly code has been omitted for simplicity.
In the figure, it is possible to notice that any human could read and get the idea that
something is being read and written by looking at the Pascal code. However, the same
cannot be said by looking at the Assembly code. It is a series of instructions aimed directly
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Figure 2.1: A program that reads an integer and prints it coded in Pascal and Assembly language

to the computer hardware, instructing it how to manipulate the processor registers and
memory addresses. Thus, there are a variety of programming languages that can be easy or
hard to understand at glance value. Consequently, the programming language can directly
interfere in the success of a student.

2.1.1 Programming Learning
Computers, and programming itself, are becoming more and more central to daily

life (Vee, 2013). The ability to program is also regarded as literacy to some authors due
its relevance in the 21st century society (Vee, 2013; Eshet-Alkalai, 2004; T. Dufva and
M. Dufva, 2016). In his work, Seymour Papert (Papert, 1980; Papert, 1996) discussed how
it was important to teach kids how to program computers instead of being programmed
by them. This was a criticism on the methods of how computers were used in classrooms,
as mere repositories of knowledge. Papert believed children should be allowed to use the
computer as a tool to construct knowledge and change how they could use it to learn
(Papert, 1980).

Thus, in order to materialize his idea, Papert developed a programming language
called Logo that could be used to control a virtual turtle (Papert, 1980). The Logo lan-
guage allowed for an easy way to communicate with the computer “so that learning to
communicate with them can be a natural process, more like learning French by living in
France”(Papert, 1980). The point was to give control of the machine through the use of
programming. However, the literature show there is still some problems regarding the
learning of programming by the novice.

Different studies report on the difficulties of learning programming logic: Michael
Edelgaard Caspersen (2007), Tan et al. (2009), Vainio and Sajaniemi (2007), Lahtinen
et al. (2005), Gomes and Mendes (2007) and Milne and Rowe (2002). All authors agree
that programming is a very complex and highly abstract process, but each of them focus
on different aspects of this process.

In his thesis, Michael Edelgaard Caspersen (2007) discusses the challenges and difficul-
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ties in learning how to program. To the author, understanding the programming process
and how to transfer acquired skills are the main challenges faced by students. Tan et al.
(2009) findings corroborate Caspersen assumptions. They collected data on undergraduates
through an on-line questionnaire in order to identify difficulties and prior experience with
programming. In their study, Gomes and Mendes (2007) list a variety of problems ranging
from teaching methods to students psychological state. They argue that some students are
not motivated enough to study programming, while they were also facing problems with
complex language syntax. In addition, the authors state that many students incorrectly
employ study methodologies, focusing on memorizing algorithms instead of learning them.
Milne and Rowe (2002) investigate students and tutors perception on some programming
concepts like pointers, functions and polymorphism. They also conclude that the lack of
understanding how a program works is directly responsible for students failure. On the
same note, Vainio and Sajaniemi (2007) report on students difficulties on tracing single
variables states during programming. Once again, not being able to mentally execute a
program is reported as main source of difficulties.

However, Michael Edelgaard Caspersen (2007), Gomes and Mendes (2007) and Lahti-
nen et al. (2005) also bring to the discussion the effect of the programming language
on students performance. The complex syntax can become an obstacle to some students
and cause lots of confusion during the learning process. Complex and obscure syntax
can provide a tremendous cognitive load to the learning process, thus affecting the final
performance (Michael Edelgaard Caspersen, 2007). Also, in students point of view, some
languages can be easier to understand than others (Lahtinen et al., 2005). And since most
languages used on programming courses are developed with professionals in mind, they
are not appropriate to a teaching environment (Gomes and Mendes, 2007). As a result,
they demand higher levels of memorization.

A direct consequence of these difficulties is the high dropout and failure rate some
programming courses face. According to Bosse and Gerosa (2015), in Brazil, most intro-
ductory programming courses have a high dropout and failure rate. Their research reports
a failure rate higher than 50% at Universidade de São Paulo. This rate includes students
who did not achieve the required grade and those who dropped out. Other studies also
discuss these high rates as a big concern in programming teaching research (Tan et al.,
2009; Rapkiewicz et al., 2006; Lahtinen et al., 2005).

Nonetheless, Bennedsen and Michael E. Caspersen (2007) report a global pass rate of
67%. Although they reported an 33% of failure rate, they could not provide any insight if
the failure rates represented only effective students, i. e. students who did not abandon the
course. In a follow-up study, Watson and F. W. Li (2014) confirmed these rates through a
literature review. They also identified an approximate global dropout rate of 3%. However,
both studies show that these rates can vary widely, with existing cases of 95% failure rate
(Bennedsen and Michael E. Caspersen, 2007). The authors also discuss that although
67% is not alarmingly low, it must be taken with caution since the rates of enrollment and
retention in computer science as a whole are known problems.

Although programming is a very complex task, programming skills are currently in
high demand. Different studies have been done in an attempt to find a solution to the
problems presented above. Among them, there is the visual programming paradigm which
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will be discussed in Section 2.2. Still, governments worldwide are trying to implement
introductory programming courses as integral part of elementary and high school curricula.
This movement is powered by the idea of computational literacy. Different authors argues
on how should this literacy be called (Vee, 2013; T. Dufva and M. Dufva, 2016), but in
this work we will use the term Computational Thinking as defined by (Wing, 2006).

2.1.2 Computational Thinking
The core concepts present in the idea of Computational Thinking were first identified

by Seymour Papert (Papert, 1980). The author believed the computer could be a tool
to pave new ways of thinking and learning, beyond the computer. Thus, the computer
would stop being only a machine to become a source of social transformation. Jeannette
Wing (Wing, 2006) coined the term Computational Thinking (CT) as the ability to employ
computer science concepts to solve problems in everyday life. According to the author, CT
is a fundamental skill that everyone should be eager to learn.

In an attempt to provide a clear definition, Aho (2012) presents CT as the “thought
processes involved in formulating problems so their solutions can be represented as
computational steps and algorithms”(Aho, 2012). In their study about bringing CT to K-12,
Barr and Stephenson (2011) discuss the problem of multiple definitions of CT present
in the literature. The authors argue that CT definition must be clear enough so that its
application is straightforward. Thus having K-12 in mind, they define CT as “an approach
to solving problems in a way that can be implemented with a computer”.

Recognizing the multitude of definitions to CT and also presenting a new approach
to the idea, Annette Vee (Vee, 2013) brings everything related to CT, digital (Eshet-
Alkalai, 2004) and code literacy (T. Dufva and M. Dufva, 2016) under the umbrella of
Computational Literacy. In her work, the author shows how all those definitions points
to the same direction: programming as a literacy. Since computer and programming
are inevitable elements in the society, constructing programs has become a powerful
mode of written communication (Vee, 2013). To the author, being a literacy means that
programming “can be used for creative, communicative and rhetorical purposes” (Vee,
2013). Therefore, Computational Literacy is the set of abilities to break a complex process
into small procedures and then express these procedures through code, which can be read
by a human or computer (Vee, 2013).

Vee (2013) argues that programming is a human facility with its own symbolism that
allows people to communicate through it. This understanding aligns directly with Papert’s
idea of using programming as a source of transformation, giving the programmer control
over the machine (Papert, 1996; Papert, 1980). Although, Vee (Vee, 2013) uses the term
Computational Literacy to talk about CT, in this project the term CT will be used as a
synonym to Computational Literacy. This choice is motivated to the fact that CT is a more
used term in the educational literature.

As shown above, CT goes beyond just programming. It is about applying the strategies
and models used to solve problems algorithmically to your everyday life. Thus, Wing
(Wing, 2006) divides it into a set of 11 processes such as abstraction, algorithm design and
decomposition. The objective then is to apply one of these processes to a given problem,
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not matter if the solution will by employed by a computer or human. The processes were
later expanded by other authors to include more granular concepts (Hsu et al., 2018;
Grover and Pea, 2013; Barr and Stephenson, 2011).

However, the literature shows that the main used strategy to foster CT is programming
(Grover and Pea, 2013; Hsu et al., 2018). But as presented in this section, programming
teaching and learning is not an easy endeavor and students may have lots of difficulties. So,
a solution employed in many studies devoted to programming teaching or CT is the visual
programming paradigm. As the name suggest, it is the use of visual elements instead of
text to construct a program. Programming languages that adopt this paradigm are known
as Visual Programming Languages. The paradigm will be discussed in the next section by
means of its associate programming languages.

2.2 Visual programming languages
Visual programming languages (VPL) come as an answer to the difficulties students face

when learning to program with traditional text-based languages. It is, as said by Glinert
and Tanimoto (1984), a departure from current programming styles in order to make
programming more accessible. And as such, VPL aims to mitigate the steep learning curve
related to programming since it has proven to be rather difficult to learn (Boshernitsan
and Downes, 1997). In this regard, studies have shown very positive effects of VPL in
the learning process like engagement and self-efficacy for instance (Booth and Stumpf,
2013; C.-K. Chang et al., 2017; Brandao et al., 2012). In this context, self-efficacy refers to
the student’s confidence on his capacity to solve a problem (Flammer, 2001). Moreover,
VPL are the main used teaching media to develop Computational Thinking according
to different reviews of the literature, specially due to its low cognitive load (Hsu et al.,
2018; Grover and Pea, 2013; Lye and Koh, 2014). Besides that, the Horizon Report also
identified visual programming languages as important tools to foster programming skills
(Freeman and Hall Giesinger, 2017).

A visual programming system is a programming environment that implements a
VPL (Nascimento et al., 2019). The presence of these systems dates back to 1960, when
Sketchpad was developed (Glinert and Tanimoto, 1984). The system allowed users to
create simple 2D objects using basic geometric primitives like lines and circles along with
operations such as copy and user-defined constraints (Boshernitsan and Downes, 1997).
Even though the creator of Sketchpad himself did not conceived it as a programming
tool, there is an understanding that it is possible to teach basic programming concepts
through geometric algorithms (Oliveira Brandão and Isotani, 2003). Another system
created during the same period was a data-flow language that allowed for debugging
and execution of data-flow diagrams (Boshernitsan and Downes, 1997). The first visual
system developed with programming in mind was Pygmalion, developed by David Smith
as a PhD project (Glinert and Tanimoto, 1984; Boshernitsan and Downes, 1997).

Pygmalion was an icon-based programming environment which employed the
programming-by-example concept. In this concept, students would show the system
how to perform a specific task, guiding the computer step by step. Then, the system
could generate a program that would perform that task for general cases. Figure 2.2
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Figure 2.2: Pygmalion’s user interface and example code.

shows the Pygmalion’s user interface with its menus and programming area. The figure
presents an example a user demonstrating to the system how to calculate 6!. After all the
steps are presented to the system, it can then calculate the factorial of any number. It is
possible to notice that the visual programming language used by Pygmalion had support
to flow control structures and loops. It was also possible to create your own icons and
functions.

Another relevant system to the development of VPL is Pict by Glinert and Tanimoto
(1984). Pict was the first system to allow for a complete visual programming experience.
According to the creators, all system interactions would be through the mouse without the
need for a keyboard. Besides the visual elements, Pict would also use audio cues to indicate
the correct usage of a command or errors. Visually, the code constructed inside Pict would
resemble a directed graph, with each node representing a programming structure. The
fragment of code shown in Figure 2.3 represents a piece of the factorial function. The
presence of different color schemes is another contribution given by Pict.

Modern systems like Alice3D, Scratch, Chentry and iVProg improve or expand the
concepts developed by the cited tools. Alice3D, for instance, focus on game building and
animations in a 3D world. Scratch follows a similar approach but in a 2D stage. iVProg uses
VPL affordances to enable students to build general purpose software. All these systems
will be discussed in Section 2.2.2.

2.2.1 Formal definition of Visual Languages
Visual language refers to any graphical system equipped with syntax and semantic rules,

where the language alphabet is consisted of visual symbols (Shu, 1986; Boshernitsan and
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Figure 2.3: Fragment of code show part of the factorial implementation in Pict
Source: Adapted from Glinert and Tanimoto (1984)

Downes, 1997). There are different ways to categorize the visual languages (Boshernitsan
and Downes, 1997) like, for example, the one defined by S. Chang et al. (1986, p. 3). In
their work, the authors divide the visual languages in four categories:

I. Visual Programming Languages

II. Iconic and Visual Information Processing Languages

III. Languages supporting visual interaction

IV. Visual information processing languages

Each category indicates how objects belonging to the language are composed. Categories
I and III have logical objects without a clear visual representation that are mapped to
one. Categories II and IV have naturally visual objects which then have a logical meaning
imposed over them.

Thus, the formal definition of a visual language 𝐿𝑣 can be expressed as the triple
𝐿𝑣 = (𝐼𝐷, 𝐺0, 𝐵) (Boshernitsan and Downes, 1997), where:

• 𝐼𝐷 is the image (or icon) dictionary,

• 𝐺0, the language grammar and

• 𝐵, the domain-specific knowledge base.

Following the characteristics defined by S. Chang et al. (1986), it is possible to infer that a
visual language is a mapping of domain-specific objects to visual elements. Taking VPL as
an example, 𝐼𝐷 is defined as the mapping 𝑋𝑚 ↦ 𝑋𝑖 , where 𝑋𝑚 represents the logical object
meaning and 𝑋𝑖 its visual representation. Then, 𝐺0 specifies how to construct composite
visual objects through spatial operations with elementary objects from 𝐼𝐷 (Boshernitsan
and Downes, 1997). Here, spatial operation defines how the user can move the objects
around since the language is visual in nature. Thus, a visual sentence is an arrangement
of pictorial elements related to two or more dimensions (Ferrucci et al., 1998). In this
context, the domain-specific knowledge base 𝐵 is responsible for giving meaning to the
composite objects. By analogy with textual programming languages, 𝐼𝐷 represents the
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alphabet, 𝐺0 the syntax rules and 𝐵 the semantic rules.

2.2.2 Visual Programming System
A number of visual programming systems have been developed through the years. Since

the Pict system, others interpretation of visual programming have been implemented, some
even mixing textual and visual. In this section, four systems will be presented: Alice3D,
Scratch and iVProg. They are all visual programming systems with different approaches
on how should the user build the code.

Alice is a visual programming environment developed by the Carnegie Mellon Uni-
versity where the user can create animations and games. It has been developed since
1992 and currently is in its third version. It is a standalone Java program that includes a
variety of graphical assets to be used by students. The idea behind Alice was to create a
novice-friendly 3d simulation system that supports exploratory programming (Conway,
1998). In Alice, the student has access to a 3d environment that can be populated with
different objects and images. It also includes a set of built-in actions that allows the user to
move objects, dynamically create new ones or change their appearance (Nascimento et al.,
2019). These actions are presented as visual blocks that can be dragged and dropped to
describe the desired behavior. The system is developed around an object-based approach,
where each element in the system is treated as an instance of a general class. It is a common
practice to use Alice as an introduction to object oriented programming (Nascimento
et al., 2019).

Figure 2.4: Alice user interface and its windows

Figure 2.4 presents Alice user interface and its windows. In the top left corner are the
objects in the scene window and in the bottom left corner are the selected object methods
and properties. The main scene window is in the middle of the screen while the selected
object function body is at the bottom of the screen. From the selected object method and
properties window it is possible to drag and drop all the actions the selected object can
perform. Figure 2.5 shows an example of a program that reads two numbers and prints
their sum in Alice.
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Figure 2.5: A program that reads two numbers and prints their sum in Alice

Following a similar design, the Scratch environment is actively developed by the
Lifelong Kindergarten Group at the MIT Media Lab. First launched in 2007, Scratch has
been under active development since then and has recently launched its third version.
Scratch is mainly a web application that also includes free assets like images and audio files.
There is also an off-line version that can be downloaded. The system target audience are
children and teenagers without programming knowledge and is designed to be ludic and
easy to use (Maloney et al., 2010). Scratch is heavily influenced by Papert’s constructionism
(Maloney et al., 2010; Resnick et al., 2009; Nascimento et al., 2019), in which case the
VPL system provides the students with tools to construct virtual stories and worlds. As a
consequence, Scratch is mainly used in middle schools projects and with kids, although
some experiments in higher education do exist Nascimento et al., 2019; C.-K. Chang
et al., 2017. Different from Alice, Scratch provides a 2D stage where users can easily create
games and animations by connecting and nesting blocks (Resnick et al., 2009; Maloney
et al., 2010). It also provides access to different multimedia sources like web-cams and
audio files.

Figure 2.6: Scratch main user interface.

The Scratch user interface is presented in Figure 2.6 . On the left is the list of command
blocks divided by categories which can be used to manipulate movable 2D graphical objects
called sprites and the stage (Maloney et al., 2010). In the middle is the programming area,
where the user drags and nest the blocks to code their algorithm. On the right is the stage,
where the user can insert sprites and background elements. In this window is also possible
to adjust manually some properties of the sprites like rotation and position. Figure 2.7
presents the same example in Figure 2.5 , but now implemented in Scratch.
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Figure 2.7: A program that reads two numbers and prints their sum in Scratch.

Chentry is a novel system designed to provide automatic assessment to an online
teaching web-platform (www.playentry.com). The platform is a Korean website aimed
at teaching children basic concepts of CT (J.-H. Kim et al., 2019). Although it uses a user
interface similar to Scratch, it just provides a limited amount of blocks based on the
assignment. When creating a project, the teacher can decide which blocks will be visible.
The Chentry system supports loops, variables, lists and input/output, such as Scratch
(J.-H. Kim et al., 2019). Moreover, the system can export code to the Arduino system and
also supports device communication.

Figure 2.8: Chentry main user interface.

Figure 2.8 presents the main interface of Chentry. The system provides a stage, which
cannot be edited by the user, that performs the code constructed at the block assembly area
on the left. There is also the block box, where all available blocks for the given assignment
will be presented. In the figure it is possible to see all blocks since it is the teacher view.
The example code implemented using Chentry is shown in Figure 2.9

Initially conceived as a modification of Alice, iVProg is now an independent system de-
veloped by the Laboratory of Informatics in Education (LInE) at Universidade de São Paulo.
Its first version was launched in 2009 and was distributed as a Java applet Nascimento
et al., 2019. However, since 2015 the system is implemented with HTML5 technology to be
fully web-compatible and portable. The motivation behind iVProg was to create a system
to aid programming teaching and learning that could also be easily integrated into learning
management systems. Moreover, iVProg ships with automatic assessment capabilities. As

www.playentry.com
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Figure 2.9: A program that reads two numbers and prints their sum in Chentry

Nascimento et al. (2019) report, iVProg is mainly used in high school and undergraduate
courses.

Figure 2.10: A program that reads two numbers and prints their sum in iVProg.

The iVProg user interface is presented in Figure 2.10 . The top bar presents a list of
commands related to code execution, assessment and help. iVProg also allows the user to
switch between a visual and textual representation of his code in a language inspired by
the PortugolStudio language1. The buttons on the left of the screen allows the user to create
variables in the global and local context and also insert commands to the function body.
The resemblance between the Alice code and iVProg is still very noticeable. Moreover,
the system also presents a terminal window responsible for managing input and ouput as
presented in the figure. It is also possible to create other functions with different return
types and parameters. Figure 2.11 shows the same example code for the other visual
systems now implemented in iVProg.

All the presented tools implement the visual programming paradigm in different
approaches and aimed different groups of users. In their work Nascimento et al. (2019)

1 http://lite.acad.univali.br/portugol/
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Figure 2.11: A program that reads two numbers and prints their sum in Alice

discuss the suitability of each one of them for some educational contexts like school level
and subject. Only Scratch and iVProg are web-compatible but only iVProg can be fully
integrated in a learning management system. Also, iVProg is the only tool present in the
literature that have support for some sort of automatic assessment of code. Automatic
assessment of programs will be discussed in Section 3.1.

2.2.3 Programming learning and Visual Programming
As mentioned earlier, the visual programming paradigm represents an advancement to-

wards a more accessible programming learning. Through its visual elements, VPL provides
a way to express code closer to how humans think (Lye and Koh, 2014). Reinforcing this
idea, Glinert and Tanimoto (1984) claim that the way humans mind process information
is often multidimensional and visual. Thus, VPL allows students to program through objects
that are closer to how they process information. This way they can concentrate on the
basic aspects of their solution instead of complex syntactic structures. As a consequence,
improvements in programming learning is reported by different studies.

Glinert and Tanimoto (1984) report an experiment where graduates and undergrad-
uates were asked to use the Pict system to develop some programming assignments. The
students found Pict’s visual system much easier to use than textual programming. Also,
some participants believed that they had just created a program without having to learn
a programming language. Moreover, students regarded the system as a useful tool to
understand program execution and debugging.

Investigating the empiric evidence for and against the claims made about VPL,Whitley
(1997) findings indicates that VPL is better when dealing with problem-solving situations.
According to the author, the reason is that the visual can express information in a more
consistent and organized way. He also claims that the benefit of using a VPL grows as
the complexity of the problem grows. However, he also points out that efficacy of visual
notation depends on the task to be performed, where the task may require more detailed
information from the visual system which is not always possible. Since he performed his
research in 1997, he was also concerned about the limits imposed by the graphics systems
of the time and other problems that are already overcome.

In his study, Sykes (2007) developed an experiment with three groups of computer
science students, two of them programming with C (comparison group) and one with
Alice3D (experimental group). The comparison among the groups showed that Alice3D
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eliminated syntax errors and was able to motivate students. They also noticed that the
visual nature of Alice3D allowed students to focus on problem-solving skills instead of
syntax and compilation errors. Moreover, when comparing all the groups, the experimental
group had a better performance overall.

Likewise, Meerbaum-Salant et al. (2010) developed an experiment with a group of
middle school students where Scratch was used to teach programming concepts. They
concluded that the use of a VPL improved students internalization of CS concepts like
loops, message passing and concurrency. Also, they applied a combination of Bloom’s and
SOLO taxonomies to measure students cognitive level after the experiment and found
indications of improvement. On the same note, Sáez-López et al. (2016) describe a case
study with 107 primary students using Scratch. The case study was developed in a 21h
sessions integrated in arts and science class. Their findings align with Meerbaum-Salant
et al. (2010) while also presenting advancements in other aspects related to logic and
mathematics. They also report an increase in motivation and enthusiasm.

C.-K. Chang et al. (2017) attempted to identify how VPL can affect motivation in
a data structure course. They analyzed the data of two groups, one experimental and
another control. They employed a pretest and post-test method to collect data on student
motivation. The experimental group had classes using the tradition method followed by
VPL, the control group had it the opposite way. Results show that VPL can improve students
motivation and outcome, which align with Meerbaum-Salant et al. (2010) and Sáez-López
et al. (2016). Also, the order in which VPL is introduced, before or after traditional text
programming, seemed irrelevant.

Brandao et al. (2012) performed an experiment with undergraduates in mathematics
through a blended learning approach. Their study attempted to identify how iVProg could
improve students problem solving with algorithms. Also, they investigated how a VPL can
affect students learning of a text-based programming language. The results indicate that
students found the visual language much easier to learn when compared to C. Students also
reported that the iVProg allowed them to focus on the solution instead of the issues related
to syntax and other language structure. The authors also claim students are more motivated
when using VPL and that iVProg can smooth text-based programming introduction.

Additionally, Booth and Stumpf (2013) developed a study with 11 students, where
each student would have 2h in lab with a textual and visual environment. Their findings
also confirms the claim that students perform better and are more motivated when using a
VPL system. Their results are also aligned with C.-K. Chang et al. (2017) regarding textual
and visual combination. Students also reported that they felt visual programming was a
good introduction to programming concepts but that once they understood the textual
approach was better. This is also related to Brandao et al. (2012) findings that a VPL
system can make textual programming easier.

Another approach that can yield good results in an introductory programming course is
automatic assessment of programs. The literature reports a number of benefits for students,
lecturers and instructors. The following section will discuss automatic assessment tools
and how they work.
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Chapter 3

Related Work

3.1 Automatic Assessment tools
The nature of programming makes it possible to employ automation in most cases. In

the industry, it is a common practice to use automated testing, deployment and integration
of huge software modules (Osherove, 2009). However, in an educational context, the use
of tools to automatically assess the students solutions dates back to 1960 (Douce et al.,
2005; Hollingsworth, 1960). Automatic Assessment Tools (AAT) can not only assess
numerous solutions at once but also provide quick feedback (Ala-Mutka, 2005). These
features can be very valuable for both students and lecturers (Ihantola et al., 2010). To
Pears et al. (2007), AAT are adaptable and have diverse applicability in a course context.
They can be used for summative or formative assessment, or even an impartial form of
evaluation. To the student, AAT provide a valuable and quick feedback, allowing them to
learn through their coding mistakes (Pears et al., 2007).

Instead of using compilers and text editors, the first AAT was developed to assess
Assembly code written on punch cards (Douce et al., 2005). The assessment process
consisted in checking if the outputs stored in specific memory address were the correct
ones. The only possible results at the time was “wrong answer” or “program complete”
(Douce et al., 2005). With the advancements of computing, new system were developed
and still in 1960, a new AAT designed for Algol was created. The system was dived in
three parts: a module responsible for the assessment, another to keep track of running
time and the last one to maintain a grade book (Douce et al., 2005).

According to Douce et al. (2005), the advantages of using an AAT consisted of a good
use of tutor and computer resources, already enabling a great number of students to learn
programming. Also, the authors claim that the concern with plagiarism and harmful code
was already present. Other tools were developed following the evolution of operating
systems (OS). These tools would use the preexisting tools and utilities provided by the
OS like testing engines and programming environment (Douce et al., 2005). Moreover,
with the emergence of these tools the concept of dynamic and static assessment took
shape.

For example, the first system to provide such hybrid approach was developed in 1989
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as reported by Douce et al. (2005) and Isaacson and Scott (1989). Besides checking the
program functionalities, the tool also verified if the code followed the code style expected
by the lecturer. In her review on AAT, Ala-Mutka (2005) analyze them according to
the nature of the assessment performed by the tool: dynamic or static. It is important to
mention that an AAT can provide assessments of both nature. Static assessment features
the evaluation of the code without the need to execute it. This type of assessment is able to
verify aspects ranging from coding style to code structure and other software metrics. In
dynamic assessment, the evaluation is focused on functionalities and the program behavior
during runtime. Dynamic assessment is often run inside “jails” in order to protect the host
system from malicious code (Ihantola et al., 2010).

3.1.1 Static and Dynamic Assessment
The automated assessment tools for programs have, in general, two types of assessment:

static and dynamic. In an educational context, each type of assessment aims to analyze
different aspects of the student solution. According toArifi et al. (2015), in static assessment
the program structure and content are examined to collect the required information. This
examination is done without the need to execute the code (Ala-Mutka, 2005). On the
other hand, dynamic assessment is characterized by the execution and verification of
functionalities. As a consequence, dynamic assessment usually requires some security
measure to ensure the safety of the system running it (Ihantola et al., 2010).

Static Assessment

Static assessment consists in the static verification of the student code. This is done
in order to check if the code provided follows the style rules or expected metrics. It is
important to note that any static verification requires the code to be sintatically valid (see
Section 2.1). This approach has a set of methods, many of them present in the industry
(Ala-Mutka, 2005; Arifi et al., 2015):

• code style: this approach analyzes the program readability in order to measure his
quality (Arifi et al., 2015). Some other aspects like line spacing and variable names
are also considered. Moreover, unused variables, usage of global variables, type
conversion and other language features are also considered(Ala-Mutka, 2005).

• programming errors: although most errors are found during runtime, there are
some heuristics that allow for some of them to be identified in a static verification
(Ala-Mutka, 2005; Ihantola et al., 2010). This includes semantic errors (see Sec-
tion 2.1) like incompatible parameter type when calling functions or performing
operations. Another problem very common with novices that can be spotted with
static assessment is never-ending loops (Arifi et al., 2015). Also, static analysis can
be used to identify potential malicious or problematic code and block its execution.

• software metrics: assessing a source code statically can also measure its complexity
(Arifi et al., 2015). The complexity of a code can indicate students performance or
misunderstanding of concepts and, as such, it should be used a sound pedagogical
purpose. Besides that, it is possible to measure comments frequency and number
of lines of code, i. e. lines that represent programming instructions, the number of
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statements and their size (Arifi et al., 2015). The size of a statement is represented
by average number of operators and operands.

• design: the assessment of the design (or structure) of a code is employed to assert
that the given code conforms to the required interface or structural requirement
(Ala-Mutka, 2005). Thus, a student code can be compared to a reference solution
and graded according to the similarities. Also, the same approach can be used to
detect possible plagiarism cases.

However, static assessment cannot provide reliable information regarding code behav-
ior during runtime. For example, if the code provided can perform the expected behavior
during its execution. Thus, dynamic techniques can be used to assess this aspect of the
code.

Dynamic Assessment

According to Ala-Mutka (2005), it is not possible to consistently and thoroughly
assess a student’s code without automation. This is specially true for dynamic assessment
since even a small piece of code can have numerous execution paths (Ala-Mutka, 2005).
To Arifi et al. (2015), dynamic assessment consists in executing a program with a battery
of test-cases. Each test-case can be designed to check an execution path and how the
program allocate and use processing power and memory (Ala-Mutka, 2005). Dynamic
assessment also have a set of approaches that can be divided into the following methods
(Ala-Mutka, 2005):

• functionality: this is the most common form of dynamic assessment. In most cases,
the system uses a black-boxing approach in which the program is analyzed as a single
entity. After that, the outputs generated by the program are examined and compared
to the expected ones which there is only two possible results: “correct” or “incorrect”
(Arifi et al., 2015). This assessment strategy is usually referred to as output matching,
which consists in comparing the program output text to the model output text (Ala-
Mutka, 2005). Another strategy used to assess program functionality is unit testing
(Ihantola et al., 2010). Unit testing is a piece of automated code that invokes a unit
of work in the system and then verifies if a given assumption about that unit of work
is true (Osherove, 2009). In this case, it is possible to evaluate the functionality of
smaller entities instead of complete programs. The unit of work can be a function or
any other block of code depending on the language used.

• efficiency: likewise the functionality evaluation, efficiency depends on a set of test-
cases. However, instead of checking outputs or assumptions about the program,
the system measures the program behavior during execution (Ala-Mutka, 2005).
Usually the measurements consists in CPU time or clock, how many times a block or
statement is executed. This approach normally requires a model solution to compare
the values measured from the student’s solution. Moreover, memory usage can also
be tracked and used as part of the assessment (Ihantola et al., 2010).

• testing skills: some system allows for students to upload their own test-cases. The
student program is run against his test-cases and the assessment is done on their
quality. The automated capabilities of the system are made available to the students
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so they can practice test designing and think about their own code (Ala-Mutka,
2005).

There are also some approaches the use a mixed-methods strategy. In some cases, it is
possible to specify moments during the program execution to run an specific assessment
(Ala-Mutka, 2005; Ihantola et al., 2010). Nonetheless, a set of test-cases are still required.
This approach can be useful when evaluating a program memory allocation strategy, to
make sure the memory being allocated is released at the right moment during execution
(Ala-Mutka, 2005).

3.1.2 Improving Automatic Assessment Methods
As already said by Ala-Mutka (2005), Ihantola et al. (2010), and Arifi et al. (2015), dy-

namic assessment through output matching is the most common approach used. Nonethe-
less, this approach does not tolerate deviations from the expected output which can be very
unforgiving when taking the student into consideration. It is very common to a human
instructor to ignore misspelled words or to identify synonyms, but the AAT may be able
to do so (Ala-Mutka, 2005; Ihantola et al., 2010). Since the system evaluates the outputs
generated by the student’s program, any extra character or whitespace can be enough to
evaluate a program as “incorrect” (Ihantola et al., 2010). There are some workarounds
that can be used to remove whitespaces, punctuation marks and accent marks, but it is
not easy to eliminate the synonyms and other writing styles problems. For example, the
expected output can be “the sum of the two numbers is 5” but the actual output is “The
sum is 5” which would be assessed as incorrect.

Figure 3.1: Dynamic assessment through output matching

Figure 3.1 shows how output matching works. The student submits a source code that
is executed using the teacher’s test-cases. Each test-case consists in a set of inputs and
expected outputs. The AAT then runs the student’s program against each test-case and
its respective inputs. An evaluation module then checks if the output(s) generated by the
students program matches the one present in the test-case. Note that the output must be
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strictly equal to the expected one. If they do match, the test-case is labeled correct and
incorrect otherwise. The student’s solution will be evaluated as correct if and only if all
the test-cases are labeled as correct. In the case presented in Figure 3.1 , the solution would
be evaluated as incorrect since it has at least one test-case labeled as incorrect.

Besides the methods described by Ala-Mutka (2005), there are other alternatives to
mitigate the output matching problem in the literature. For instance, C. K. Poon et al.
(2016), Yu et al. (2017), and Chung Keung Poon et al. (2018) propose a token pattern
approach which consists in a pre-processing step in order to identify key elements of the
output. They argue that “most of the deviations from expected outputs are associated not
with individual characters, but with groups of characters such as words and numbers” (Yu
et al., 2017). So, the output text is decomposed into tokens that represent an “atomic” piece
of meaningful information (Yu et al., 2017). The idea is that the system could automatically
identify how relevant each of the tokens are and they match the student’s output against
this tokens. A token can have different properties like: if it must match precisely the word
it represents or not; if the number it represents can have a different precision; if it allows
variations of the same word (synonyms); and being optional.

The token pattern approach attempts to give students some freedom, but as reported
by Yu et al. (2017) and C. K. Poon et al. (2016), the properties of each token group must be
set manually by the teacher. The systems presented in their study allows for some global
configurations in which certain groups can have default properties like whitespace and
punctuation.

Some studies focus on the feedback provided to the student, using technology and
tools that can aid the student locate errors easier. Araujo et al. (2016) employs a method
of spectrum-based fault localization (SBFL) and automatic code repair to produce better
feedback. SBFL is explained by the authors as a technique that relies on “program spectra:
program traces that reveal which parts of the code are active during a failed or successful
execution”(Araujo et al., 2016). SBFL dynamically assess the code in order to calculate
the likelihood of a given component, a line of code in this context, to by faulty. Like most
dynamic assessment, Araujo et al. (2016) requires a suite of well-designed test-cases in
order to locate the faulty components. The system ranks the each component based on the
rank given by the SBFL technique and use this information to generate a feedback.

However, Araujo et al. (2016) report that the technique can fail in given some situations
where the student solution did not pass at least one test-case. Also, the authors reports
that employing SBFL can be costly and, as such, improvements must be made in the
process.

Following a similar approach, Gulwani et al. (2018) employs clustering instead of a
fault localization technique. But, they still focused on feedback generation and code repair.
The clustering process uses an idea of dynamic equivalence of code. To Gulwani et al.
(2018), two programs 𝑃 and 𝑄 are said to be equivalent, 𝑃 ∼ 𝑄, if and only if they have
the same control flow structures and their variables have the same values, in the same
order with the same input. Based on this clustering, their algorithm then attempts to find
the minimum number of modifications required to transform a faulty program 𝑃 ′ into a
correct one.
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With the repair information in hand, the system them construct a feedback informing
the student which should be changed and to what. It is important to note that the whole
system relies on the idea of wisdom of the crowd and as such requires a number of correct
solutions to be available. For instance, given the code present in the Listing 3.1, Gulwani
et al. (2018) approach would generate a feedback like: “In assignment expression in line 4,
change sum[i] += vec to sum += vec[i]”. According to the authors, clustering and repair
achieved good results, comparable to a human. They also found some situations where
the algorithm could find a valid repair due to unsupported features and some problems
with control flow structures.

1 int sumVec (int len, int vec[len]) {
2 int i, sum = 0;
3 for (i = 0; i < len; ++i) {
4 sum[i] += vec;
5 }
6 return sum;
7 }

Program 3.1: Example of a faulty code in C

In their study, S. Li et al. (2016) developed a system that employs a random input
sample based on a reference solution. The system uses random test generation to produce
inputs using the reference solution and then perform symbolic execution with these inputs.
The idea is to identify which set of inputs executes most blocks of the reference solution.
With this information, the system then executes the student solution with a random
selection of the produced inputs. The generated output is then matched against the outpus
generated by the reference solution. Besides that, S. Li et al. (2016)’s system also verifies if
the student solution activates the same paths as the reference solution during symbolic
execution.

Experiment results indicates that the approach presented by S. Li et al. (2016) can
produce good results. However, it is a complex implementation and in the end it still
performs an output matching approach. Therefore, the technique is still subjective to
all the problems already mentioned. Table 3.1 summarizes the techniques presented in
this section and what the aim to solve. Next section will discuss how AAT can affect
programming learning and teaching.

3.1.3 Automatic Assessment and Programming
The automatic assessment tools(AAT) can provide a number of benefits to students

and lecturers. The possibility of giving quick feedback to students’ solution and to manage
many students are very attractive. However, the benefits of using an AAT are not limited
to these and in some cases the AAT was used as 0a tool to implement a novel teaching
methodology.

Reguera and Leiva (2017) developed an experiment with a group of students in an
introductory object oriented programming course. According to the authors, the AAT
was central to the development of didactic problem sequences. To the students, the quick
feedback provided by the AAT was very helpful and made them more motivated towards the
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Technique Study Improvement
Token Pattern Approach Yu et al. (2017), C. K. Poon

et al. (2016), and Chung
Keung Poon et al. (2018)

Attempts to improve out-
put matching by process-
ing the output into tokens

Fault Localization Araujo et al. (2016) Employs fault localization
to give context to feed-
back message

Code clustering Gulwani et al. (2018) Clustering of equivalent
code to better identify er-
rors

Code Repair Araujo et al. (2016) and
Gulwani et al. (2018)

Code repair as a source of
context to improve feed-
back messages

Random Test Generation S. Li et al. (2016) Improve AAT with au-
tomatic test generation
through a reference solu-
tion

Symbolic Execution S. Li et al. (2016) Improve code evalution
by checking all execution
paths and the quality of
test-cases

Table 3.1: Summary of techniques designed to improve AAT

course. Moreover, the increased motivation also resulted in better grades when compared
other classes in past years.

Lappalainen et al. (2017) investigated how AAT can affect students results during
exams. The authors claim that programming courses should have computer-based exams
instead of text-based. In their study, they analyzed different groups of students’ scores when
sitting exams with or without a computer. The group that sit the exam with a computer
used an AAT and had a clear advantage when solving more complex problems. The group
using AAT also produced less erroneous code. Besides that, they claim that automated
assessment gives reliable results when compared to manual assessment. However, the
design of quality test-cases can be very difficult as mentioned by S. Li et al. (2016).

In their study, D. M. D. Souza et al. (2015) developed a web-based AAT called ProgTest
in order to investigate the effects of the feedback provided by the tool. The experiment
consisted a group of 34 undergradute students of an introductory programming course. The
students found the constant and concrete feedback provided to be useful for developing
better comprehension of their code and analysis skills. In the instructor point of view, the
AAT was a viable way of identifying students difficulties regarding the concepts discussed
during the course.

A study attempting to investigate student performance when using AAT is reported by
Prather et al. (2018). They performed an intervention in two computer science courses
on programming: an introductory and an advanced course at a university in Argentina.
Both courses were taught using Haskell and the study employed the AAT called Mumuki
developed by the university. Their findings indicate that the use of an AAT can reduce
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the dropout and failure rates since the immediate feedback provided by the tool can help
students find errors and correct them on their own. Another important finding was that by
using automated assessment the students can have the freedom to pace their study.

Likewise,Wilcox (2015) presents the effects of introducing an AAT in an undergraduate
course through the years. The author claims that the automation of the grading process can
significantly save resources in introductory courses without impacting them negatively.
The AAT can save resources like time spent grading exercises and money paid to teaching
assistants to grade tests. According to the author, “the benefits of automation are both
tangible, such as higher exam scores, and intangible, such as increased student engagement
and interest” (Wilcox, 2015).

Following a similar approach, Cardoso et al. (2018) investigated how the use of an
AAT could impact students motivation and engagement. They developed an experiment
with 318 students of an introductory programming course during the year of 2017-2018.
As a result, students really enjoyed using an AAT and found the quick feedback provided
to be useful to improve their solution. Also, the majority of the students wished there were
more exercises to be done through the AAT.

Maguire et al. (2017) also developed a study on the effects of AAT and programming
learning. The objective regarding AAT was to identify if it could improve students outcome.
The authors then designed an intervention to analyze the effects of an AAT on students’
performance. Their findings indicate that an AAT can not only improve students grades but
also reduce failure rates. Their results aligns with those found by the already mentioned
studies like Prather et al. (2018). Also, they found that AAT saved a considerate amount
of labor on the part of lecturers and demonstrators, which also confirms Wilcox (2015)
findings. Besides that, the authors claim that the quick feedback helped students to develop
better programming skills.

As shown in this section, different studies shows the benefits of AAT to teaching and
learning to program. The tool can not only help the student improve their grades and
knowledge but also help the teacher to focus on didactic and pedagogical matters. The
automation can reduce the amount of labor required from the lecturer and other resources.
Then, how can one join the benefits of visual programming language and automatic
assessment of programs in a single package?

As cited before, iVProg is a visual programming tool that also offers automatic as-
sessment, however it suffers all the basic problems related to output matching. Moreover,
there is also Chentry (J.-H. Kim et al., 2019), another visual programming environment
that perform static analysis in order to match a given solution to a reference solution.
Next section will discuss this project proposed solution to improve visual programming
languages automatic assessment capabilities using iVProg as an example.

3.2 Abstract Syntax Tree
An Abstract Syntaxt Tree (AST) is usually the output of a syntactic analysis tool, very

relevant for compiled languages. The AST is, in this case, usually associated with a textual
code for programming language. According to Falleri et al. (2014), an AST is a labeled
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ordered rooted tree where the nodes can have a string value. In an AST, the label of a node
represents its name according the language grammar production rules (Tennent, 1976).
These production rules dictates how each syntactic structure should be represented in the
tree. Each node value corresponds to actual tokens in the code like function definitions,
variable declarations or literal values. The nodes also encode the flow-control structures
in the code and information about the data types present in the language.

(a) AST representation of the code from language L

(b) Textual representation in language L from the AST
in Figure 3.2a

Figure 3.2: Illustration of connection between source code and AST

An AST 𝑇 can be formally defined as 𝑇 = {𝑡 ∶ 𝑡 𝑖𝑠 𝑎 𝑛𝑜𝑑𝑒}, where a tree T has one
root node denoted by 𝑟𝑜𝑜𝑡(𝑇 ) (Falleri et al., 2014). Following the author’s definition, each
node 𝑡 ∈ 𝑇 must have a parent 𝑝 ∈ 𝑇 ∪ ∅ (denoted by 𝑝𝑎𝑟𝑒𝑛𝑡(𝑡)) where only 𝑟𝑜𝑜𝑡(𝑇 ) has ∅
as parent. The children of a node 𝑡 is denoted as 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑡). Figure 3.2 shows an example
of AST for the generic language L. Besides representing the relevant information about the
code and its structure, an AST can also be executed by interpreting it (Kalibera et al., 2014).
Also, an AST can also be transformed into other AST by using specific algorithms (Falleri
et al., 2014). This allows, for example, the transformation of an AST of one language to
another.
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Visual Code Assessment Tool -
VCAT

This chapter describes the solution developed in this research to enable different visual
programming languages to use automatic assessment features. The solution is divided
into three parts: the model, the instantiation and application. In this chapter it will be
discussed the model, the following chapters will discuss the instantiation and application
respectively. Here it will be presented the model and the purpose of each component.
Additionally, it describes how the components implementation relates to the theories and
concepts discussed in previous chapters.

4.1 VCAT’s Architecture
The solution presented in this section joins visual programming and automatic as-

sessment of programs. As explained in Section 2.1, programming is a challenging skill to
acquire. Among the difficulties faced by students, literature shows that the complexity of
textual programming languages is one of the most common. Visual programming languages
were designed as an alternative to traditional programming and to make programming
more accessible (J.-H. Kim et al., 2019). However, as presented in Chapter 2, most visual
programming languages do not lack automatic assessment features that allows students
faster feedback and autonomy. The only exceptions were iVProg and Chentry which offer
an automatic assessment features.

Still, both of them have limitations in what they can evaluate. For instance, iVProg only
offer the standard implementation of output matching with all the problems associated
with it. In Chentry’s case, the tool performs a static evaluation based on the logs produced
during code construction. The evaluation consists in comparing the logs produced by the
student with the logs of the reference solution. Although it is a valid form of assessment,
it does not guarantee that the code functions as expected (Ala-Mutka, 2005).

So, in order to allow other visual programming languages easier access to automated
assessment features and improved feedback, this work proposes the visual code automatic
test(VCAT). It is a model of automated assessment of code for visual language designed to al-
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low different visual programming languages to use a common core that provides automatic
assessment and improved feedback. VCAT design is inspired by iVProg’s later version,
focusing on decoupling assessment and execution logic from the visual programming
system. As a result this creates a new software artifact which can be used in other visual
programming systems besides iVProg. It is important to note that VCAT’s initial version
is focused on visual languages aimed towards high-school students and undergraduates
in their first steps on learning programming. The initial version is a proof of concept
and thus, limiting its scope was necessary to make its development and implementation
feasible. As a consequence, the design decisions taken at this moment are aligned with
this scope in mind.

Let 𝐿𝑣 be a visual language defined as 𝐿𝑣 = (𝐼𝐷, 𝐺0, 𝐵) where 𝐼𝐷 represent the visual
icons dictionary for the language; 𝐺0 the language grammar rules for combining visual
icons or visual objects into new visual objects; and 𝐵 the knowledge base responsible for
giving logical meaning for objects constructed in 𝐿𝑣 (see Section 2.2.1). Let (𝐿𝑣) be the
set of all valid constructions from 𝐿𝑣 and 𝐶𝑣𝑖𝑠𝑢𝑎𝑙 be a valid construction of 𝐿𝑣 such that
𝐶𝑣𝑖𝑠𝑢𝑎𝑙 ∈ (𝐿𝑣).

Figure 4.1: Simplified view of VCAT model

Let  be a software component that receives as an input a code and an assignment
description both in a predefined format which  is able to execute, and perform automatic
evaluation according to the assignment description provided. And as output,  provides
a feedback on the code it just assessed. Here  represents the VCAT’s core, responsible
for not only execution but also code assessment. Now, let 𝐹𝑡𝑟𝑎𝑛𝑠 be a function defined
as:

𝐹𝑡𝑟𝑎𝑛𝑠 ∶ 𝐶𝑣𝑖𝑠𝑢𝑎𝑙 → 𝐶𝑡𝑒𝑥𝑡 ,

where 𝐶𝑡𝑒𝑥𝑡 is a textual representation of 𝐶𝑣𝑖𝑠𝑢𝑎𝑙 which can be executed by . The
representation 𝐶𝑡𝑒𝑥𝑡 is the translation of each visual object that composes 𝐶𝑣𝑖𝑠𝑢𝑎𝑙 to their
corresponding logical meaning given by the language knowledge base 𝐵.
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Thus, as shown in Figure 4.1 , the model consists in a number of processes that occur
in two contexts: the visual language context and VCAT context. The translation of the
structure representing a visual code 𝐶𝑣𝑖𝑠𝑢𝑎𝑙 constructed from 𝐿𝑣 into an textual representa-
tion 𝐶𝑡𝑒𝑥𝑡 occurs in the visual language context and as such needs to be implemented for
each visual language that wants to use VCAT. Then, in VCAT´s context, the representation
𝐶𝑡𝑒𝑥𝑡 is executed and evaluated by , providing a feedback that can be presented to the
student.

In Figure 4.1 ,  uses an assignment description provided by the teacher which
describes how the assessment should be performed.  then uses the information present
in the assignment description and evaluates the code accordingly using both Code Executor
and Assessment component. Through the Assessment component,  can have access to
different types of evaluators like output matching, unit testing, static analysis, etc. Here,
the IO module in  allows communication between  and the visual programming
system, specially for feedback presentation and, in case of code execution, requesting
input from the user. Next section will provide more details for the AST component along
side information on 𝐹𝑡𝑟𝑎𝑛𝑠 function implementation.

4.2 Implementing 𝐹𝑡𝑟𝑎𝑛𝑠
The implementation details of 𝐹𝑡𝑟𝑎𝑛𝑠 is heavily dependent on the visual language. So,

providing a generic implementation that would work for all is not feasible. Given that
each visual programming system can represent and manage the visual code in a variety of
ways, the need for a function responsible for translating the visual code from the visual
programming system context (𝐶𝑣𝑖𝑠𝑢𝑎𝑙) to a representation that is known by VCAT (𝐶𝑡𝑒𝑥𝑡 )
becomes evident. Thus, it is required that any visual programming language that wishes
to use all functionalities provided by VCAT must implement their own 𝐹𝑡𝑟𝑎𝑛𝑠 .

Let 𝐿𝐻 be a hypothetical visual programming language defined as 𝐿𝐻 = (𝐼𝐷, 𝐺0, 𝐵) and
let 𝑂1, 𝑂2 and 𝑂3 be visual objects such that 𝐶𝑣𝑖𝑠𝑢𝑎𝑙 = {𝑂1, 𝑂2, 𝑂3} which were constructed
by operating over icons from 𝐼𝐷 given the rules defined in 𝐺0. Thus, it follows that
𝐶𝑣𝑖𝑠𝑢𝑎𝑙 ∈ (𝐿𝐻 ) since it is a valid construction from the language 𝐿𝐻 . Let’s assume that𝐶𝑣𝑖𝑠𝑢𝑎𝑙
in this case represents the following algorithm represented in natural language:

1. Create a variable named val of type integer (𝑂1).

2. Read a user input into variable val (𝑂2).

3. Write to the output the value from variable val times 2 (𝑂3).

Then, by using the knowledge base 𝐵 it is possible to map each construction 𝑂𝑖 in 𝐶𝑣𝑖𝑠𝑢𝑎𝑙
to their logical meaning and as a consequence generate its equivalent construction in the
representation of 𝐶𝑡𝑒𝑥𝑡 . In VCAT, the AST data structure was chosen to represent 𝐶𝑡𝑒𝑥𝑡 ,
and as such the process of creating 𝐶𝑡𝑒𝑥𝑡 can be defined as a mapping of each visual object
logical meaning to a valid AST node.

The AST structure was chosen because it can be executed and it can also be used to
encode all commands and expressions of any programming language. And so, 𝐶𝑡𝑒𝑥𝑡 must
be constructed using the AST nodes present in the AST component of . Therefore, the
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AST component must provide all nodes for a general-purpose language in order to cover
as many visual programming languages as possible. It must also be feasible to extend the
AST component such that new nodes can be created to contemplate logical constructions
not covered by the original AST node set.

Taking the visual code 𝐶𝑣𝑖𝑠𝑢𝑎𝑙 = {𝑂1, 𝑂2, 𝑂3} into consideration, Program 4.1 presents
a possible implementation of 𝐹𝑡𝑟𝑎𝑛𝑠 for 𝐿𝐻 using JavaScript.

Program 4.1 Example implementation of 𝐹𝑡𝑟𝑎𝑛𝑠 for a hypothetical visual language 𝐿𝐻 .

1 function translateVaribleDef(variableDefBlock) {
2 var_ame = variableDefBlock.name
3 var_type = variableDefBlock.type
4 ast_var_def = new AST.Declaration(var_name, var_type)
5 return ast_var_def;
6 }
7
8 function translateReadInput(readInputBlock) {
9 var_name = readInputBlock.varName

10 ast_var_ref = new AST.Variable(var_name)
11 ast_func_read = new AST.FunctionCall("read", ast_var_ref)
12 return ast_func_read
13 }
14
15 function translateWriteOutput(write_block) {
16 // translateExpression code is omitted for simplicity
17 ast_expression = translateExpression(write_block.expression)
18 return new AST.FunctionCall("write", ast_expression)
19 }
20
21 function Ftrans(c_visual) {
22 root = []
23 for (visual_object in c_visual) {
24 // from first visual object to last
25 // B is the knowledge base of the language
26 switch(B.getObjectType(visual_object)) {
27 case VARIABLE_DEF:
28 root.push(translateVaribleDef(visual_object))
29 break;
30 case READ:
31 root.push(translateReadInput(visual_object))
32 break;
33 case WRITE:
34 root.push(translateWriteOutput(visual_object))
35 break;
36 // omitted for simplicity
37 }
38 }
39 return root
40 }

Program 4.1 exemplifies how each translation function is tied to the visual object logical
meaning the function is supposed to translate. In Program 4.1, 𝐹𝑡𝑟𝑎𝑛𝑠 implementation, it is
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possible to notice the knowledge base 𝐵 guides the function to call the correct translation
function given the visual object. Then, each translation function is fully aware of the
type of the visual object it is attempting to translate and as such can access the proper
fields and select the correct AST node. Moreover, as discussed before a visual object
can be a composition of other visual elements as exemplified by translateWriteOutput in
Program 4.1. To properly translate the write block, the function needs to translate the
visual elements present in the expression provided to the write block. This shows that
recursive calls will happen during the execution of 𝐹𝑡𝑟𝑎𝑛𝑠 for any visual language. It is
important to note that this is example based on the concepts presented in this text so
facilitate the comprehension. In a concrete scenario, it is very likely that there is not special
object representing the knowledge base 𝐵 and the logical meaning of a visual object is
actually encoded in itself.

4.3 VCAT’s core:  software component

VCAT’s purpose is to provide automatic assessment of code for visual programming
languages. To do so, the model needs to provide its users with some ready to use tools
which requires minimum implementation on the users’ side. The software component
needs to be independent of the visual programming language being used and be able to
execute and evaluate the code represented by 𝐶𝑡𝑒𝑥𝑡 . This is very important for it allows
 to be shared with any visual language that wants to instantiate the model.

As discussed in Section 4.2, it was decided to use an AST data structure to represent𝐶𝑡𝑒𝑥𝑡
since it can be executed. It can potentially represent any code which meet the expectation
of the model. Since the visual programming system itself controls the contruction of the
visual code and generates 𝐶𝑡𝑒𝑥𝑡 itself, there is no point of performing any type of code style
assessment. And as such, the use of an AST does not impact negatively the model.

4.3.1 AST component
The AST used in this project is able to represent most general purposes languages.

It has nodes for variables, vectors and matrices, block of codes, loops and control flow
structures. It has also support advanced structures like pointers, which allows visual
languages to work with function parameters as references. Moreover, it can recognize all
basic types like boolean, integers, float-point numbers, characters and strings. However,
the AST does not support user-defined types like C struct or Pascal record, even though
there are internal modules that would support this feature. Since an AST can be linked to
a textual code form, it was decided to also allow  to execute code in traditional text
format.

This is influenced by the idea that visual programming should be a helping tool in
learning how to code using text (Brandao et al., 2012). The objective is to use visual
programming to teach students programming logic concepts like variable, loop and con-
ditional, and show how they are universal for all languages. The textual programming
language implemented was based on PortugolStudio’s(Dos Anjos et al., 2016; Noschang
et al., 2014), sharing some similarities and compatibility where possible. PortugolStudio´s
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programming language is designed towards beginners and was a good addition to the
model.

4.3.2 Code Executor & IO components
The code executor as the name suggests is responsible for executing 𝐶𝑡𝑒𝑥𝑡 , specially

during functional assessment. It allows visual programming languages to dedicate effort
on the visual coding aspect and delegate to  code execution. The code executor is an
interpreter designed to execute the algorithm encoded using the AST nodes defined in
VCAT. Also, it can fully execute the textual language defined for the AST component.
Another important aspect of the code executor is its flexibility. Adding new functionalities
at runtime without causing breaking changes to its API should be relatively simple. This
can be very useful when providing support for other visual programming languages with
some particular requirements.

Another very important aspect of code execution is the ability to interact with the user.
By definition, an algorithm is a set of operations performed over an input to provide an
output, thus making the IO component a very important part of . The IO component
provides the interfaces required by the code executor to request an input from the user and
also to present any output generated during execution or other verification by . The
interfaces provided are expected to fulfill the IO needs of the AST (and as a consequence
its corresponding language). As discussed in Section 4.3.1, the VCAT’s AST aims to realize
the requirement of a general purpose programming language. Thus, IO interfaces are
designed to provide the standard capabilities of reading all the basic types defined for the
AST (integer, floating-point, character, string and boolean) and also printing them to the
desired output. Moreover, in case a visual programming system needs a special kind of IO,
the interfaces, the AST and the code executor itself can be extended to support it.

4.3.3 Assessment component
The assessment component as the name suggest is responsible for code evaluation.

Its purpose is to house all assessment methods available for . Figure 4.2 shows the
domain diagram for the Assessment component. In VCAT, the AssessmentRunner has the
responsibility of running the correct assessment defined in the assignment description
file. For this, the AssessmentRunner should provide a static function where assessment
methods can be register using the same name as the one expected in the assignment
description file. The AssessmentRunner is expected to inform of any issues during the
assessment process, and as a result it needs access to the output interface. This same
output interface is passed on to the assessment method during its execution in order to
provide feedback. Since the AssessmentRunner is designed as a composition of different
assessment methods, an abstraction called Assessment was devised.

The Assessment abstraction defines an application programming interface (API) for all
assessment methods inside VCAT. As such, it must be implement by any new assessment
method since, otherwise the AssessmentRunner will not be able to execute it. The Assess-
ment interface API defined aims to allow the AssessmentRunner to provide the Assessment
instance all information inside the assignment description(setAssignmentDesc) and exe-
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cute it (eval) and provide feedback. Note in Figure 4.2, that the AssessmentRunner does
not have any dependency to the CodeExecutor component, this dependency is pushed to
the class implementing the Assessment interface since there is also static types of program
assessment which does not require code execution. In Figure 4.2, the dashed line from the
NewAssessment class to the CodeExecutor component is to indicate that this dependency
is not mandatory.

Figure 4.2: Domain diagram for VCAT Assessment component

In this initial version, VCAT has integrated to  an output matching assessment.
This output matching class is an improved implementation over the standard approach as
presented in Section 3.1.2 and is based on iVProg’s original version. The new algorithm
can now properly deal with the problem of numeric precision and treat typed values
independent of text. As discussed in Section 3.1.2, it is common to output matching
algorithms to label solution as wrong if the student’s output have a higher precision than
the teacher’s solution. Inspired by the literature and the author’s own interactions with
students during classes, VCAT’s output matching algorithm focus not only on improving
how the algorithm treats the generated output but also on the feedback provided to the
students The improvements on the presentation of the inconsistencies to the students are
designed so they can understand their mistakes and easily take action at the likely source
of the issue.

One very common problem for traditional output matching algorithms is to mislabel
as incorrect solutions where the generated numeric value has different precision than the
one expected even though a human would label it as correct. In VCAT’s output matching
algorithm, students’ numeric outputs are truncated if they have higher precision than
the expected output. When dealing with textual output, the new algorithm computes the
differences between the produced output and the expected one, so students can easily
identify typos or missing words. The solutions presented by Yu et al. (2017), C. K. Poon
et al. (2016), and Chung Keung Poon et al. (2018) for these textual issues are very complex
to implement and require a lot of work from the instructor side.
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Additionally, in VCAT the output matching algorithm will break down the students
solution in parts, one for each type(numeric, text and boolean) identified in the expected
output. The assessment will be performed in each part individually, avoid situations where
the students will score 0, even though they had got really close to the correct solution.
Moreover, the text output is assessed character by character and the grade is penalized
by the number of missing/wrong characters. With this in place, the student will get a
percentage of the grade based on how many parts are correct instead of a straight zero. For
instance if the expected output is “area: 25” but the student code outputs only “25”, VCAT
will score it as 50% of the grade since the numeric output matches the expected.

In VCAT, a simpler solution to the problem was designed. To better visually indicate
the textual issues in the output, a textual difference tool (diff ) was implemented as part of
VCAT’s output matching code. The diff tool is heavily used in programming and textual
edition environments. It uses colors and strike-trough text formatting to indicate text that
must be inserted, kept or removed. So, VCAT feedback highlights the differences between
the output produced by students solution and output expected by the assignment using
the diff tool. It makes it easier for students to spot the issues in the output more quickly
and also immediately know if they had extra text added or missed something. The output
processing checks the generated output line by line to facilitate this process. Even though
the current version of VCAT only has output matching assessment, the system is robust
enough to accept new modules with new assessment strategies. This is a result of an initial
focus on providing a better and clear assessment feedback to the students in order to be
more helpful when errors occurred.

Talking about new assessment methods, a new method that could be implemented
is a static analysis assessment. As presented in Figure 4.2 , the main requirement is to
implement the Assessment interface. For instance, a static analysis module can use the
AST representing the code to verify the design and software metrics like code complexity,
presence of loops and recursion. Once another assessment option is available it would
then be possible to perform compounded assessment of multiple types. The static analysis
could, for example, be used to prevent a program from being evaluated by the output
matching algorithm if it does not meet an specific requirement or vice-versa. This would
be an improvement on the method presented by J.-H. Kim et al. (2019), since in Chentry
only the log was analysed and not the actual code produced by the student.

As discussed in Section 4.1, the Assessment component has to be able to deal with the
visual languages types of I/O. VCAT’s initial version has support for text-based I/O which
is aligned with the most traditional languages and the general nature of the exercises for
the learning level the initial implementation is aimed for. This is was a necessity since
providing a global solution to all possible scenarios would be unfeasible. VCAT was created
as a flexible and extensible tool which allows visual languages to adapt it to their needs if
required. Also, any new feature needed can be added as a new component under VCAT’s
 and as a consequence all visual languages using VCAT would also be able to use the
new feature.

VCAT’s output matching assessment requires a set of test-cases to be executed. The
test-case is provided to VCAT by an assignment description file which can also be extended
to set some configurations in VCAT’s modules. Next section will discuss the format and
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the parts of the assignment description file.

4.3.4 Assignment Description
The assignment description is an important element of VCAT’s model. It is responsible

for instructing  how it should perform the automatic assessment of the provided
code. The assignment description file format is influenced by the automated assessment
algorithm being used. However, VCAT expects the file to be a valid JSON object, which
is a portable, descriptive file format and easy to read, be it by a human or machine. For
instance, Program 4.2 describes how the assignment description file could look like for
using with output matching algorithm.

Program 4.2 Example of an assignment description file for output matching in VCAT.

1 {
2 "assessment": "output_matching",
3 "test_cases": [
4 {
5 "input": [2,2],
6 "output": [4]
7 },
8 {
9 "input": [3,3],

10 "output": [27]
11 }
12 ]
13 }

It tells VCAT to perform automatic assessment using the output matching algorithm.
Given that in this algorithm it is mandatory that test cases, Program 4.2 also has a set
of pairs of inputs and the expected outputs which are used to assess students’ code. The
values inside the fields input or output can be anything as long as the  can handle it. So,
in case of the addition of a new type of input, the only requirement is that the new input
abides to the rules set by the IO module. The same principle applies for the output.

Program 4.3 Example of an assigment description file for static assessment in VCAT.

1 {
2 "assessment": "static_assessment",
3 "check_rules": {
4 "variable_naming": "snake_case",
5 "code_complexity": 45,
6 "max_nesting_level": 2,
7 }
8 }
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To illustrate the relationship between the assignment description file and the automatic
assessment method used, Program 4.3 presents a potential file format for a static assessment
algorithm. As mentioned in Section 3.1.1, generally speaking static assessment checks
the source code style, programming errors and software metrics. Program 4.3 shows an
example of a static assessment algorithm that checks variable naming style and code
metrics like its complexity and the level of nesting of flow control and looping structures.
Static assessment can be a great tool in developing good coding practices by pointing out
issues that are not easy to spot and even avoid crashes during runtime. Even though VCAT
is quite flexible and open for extensions, there are somethings that it cannot handle or
requires some specialized class. Next section will present the known limitations of the
model and how they affect the model.

4.4 Model limitations
Unfortunately, the proposed model cannot be applied in all contexts and for all code that

can be produced by visual languages in general. Some cases can be solved by implementing
a new functionality that allows VCAT to provide the missing feature, like inputs and
outputs that are not the traditional keyboard and text. Other limitations, however, cannot
be easily solved by implementing a new functionality. For instance, parallel-like execution
of some solutions present in visual programming languages like Scratch and Chentry.

These parallel-like executions have a set of independent blocks of code to have individ-
ual lifetime while allowing them to communicate between each other. This make dynamic
assessment of code extremely difficult. Nonetheless, this difficulty is not limited to VCAT
itself but computer science as a whole, since parallel code usually has non-deterministic
behavior (Y.-J. Kim et al., 2005), meaning that each execution with the same input can
produce the output in a random order each time. Output matching algorithm and as other
dynamic assessment algorithms like unit testing, cannot handle this kind of behavior
properly. So, currently, any solution that presents a similar behavior to a parallel execution
cannot be dynamically assessed with VCAT. However, static analysis would still be feasible
since there is no execution of the code and it is a deterministic process. Next chapter will
report the steps for the instantiation of VCAT for iVProg and another visual language
designed by the author.
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Chapter 5

VCAT instantiation

This chapter describes the required steps to instantiate VCAT for a given visual lan-
guage. It presents how 𝐹𝑡𝑟𝑎𝑛𝑠 was instantiate for the languages presented and the usage of
VCAT IO module to allow interaction between the user and . First, the process for in-
stantiating VCAT for iVProgis presented since it is the main visual programming language
for VCAT and one of the flagships of our research group. The other language presented in
this chapter is a simple general-purpose visual programming language developed by the
author. The idea behind this second language is to demonstrate that VCAT is a general
model applicable to other visual languages and not only iVProg.

5.1 Implementing software component 
As discussed in Section 4.3, the software component  is the core of VCAT. Among its

functionalities is the ability to execute the output provided by 𝐹𝑡𝑟𝑎𝑛𝑠 and perform automatic
assessment. Since in last chapter presented VCAT from an abstract point of view, here 
will be presented in its concrete form for the model instantiation. It is important to keep
in mind that  is part of the VCAT context and thus does not change as a consequence
of the language it is being instantiated for.

Aligned with the research group approach of developing decentralized web applications,
VCAT’s  was developed using HTML5 stack (HTML, CSS and JavaScript) to allow it
to be executed independent of a web server. As a consequence, all components were also
developed using JavaScript and its super-set language TypeScript. This not only allows
students’ web browsers to execute everything but also provides the flexibility required
by . The JavaScript language makes it possible for objects to be extended with new
functionalities during runtime without actually needing to modify the original source code.
This makes  very flexible and able to be extended to fulfil any special needs of a new
visual language, although in VCAT’s case, some small intervention would be needed in the
original source code to any modification to take effect. For security reasons, it was decided
to not allow free modification of  during runtime since this could affect students’ data
and the trustworthiness of the automatic assessment result.

Figure 5.1 presents the domain diagram of the main packages, interfaces and classes
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Figure 5.1: Domain diagram for the JavaScript implementation of 

that composes  JavaScript implementation. It expands the contents resented in Figure
4.1 and discussed in Section 4.3 on Chapter 4. Do note that the actual implementation
contains more packages and classes, but they are relevant to the intended discussion. In
Figure 5.1 there is a new package called Helpers which houses some of the code used to
improve the feedback provided by the OutputMatching class. For example, the Levenshtein
distance algorithm is implemented inside the Helpers package so it is available for others
packages to reuse easily. There is also the code for formatting the output of the Levenshtein
algorithm like the commonly used textual difference tool diff. In general, the package
contains reusable implementations of common or useful tasks that can be used anywhere
inside VCAT’s .

5.1.1 AST package
Figure 5.2 shows the implementation of the AST component described in Section 4.1

with more details of the ASTParser class and one interface available in the ASTElements
package. ASTElements is a package created to hold all the elements representing the AST
nodes recognized by VCAT. The elements are divided into two categories: expressions
and commands. Command nodes represents all instructions from the language that can
alter the program state like: function and variable declarations, assignments, control flow,
loops, I/O and other function calls. On the other hand, expression nodes represents all
parts of any expression in the language like "𝑖 + 2", "5 + (3 ∗ 𝑖)" or "𝑝𝑜𝑤(𝑖, 2) + 𝑠𝑞𝑟𝑡(𝑖 + 1)"
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Figure 5.2: Class diagram for the AST package JavaScript implementation

which produces values but does not alter the program state. The expression nodes contains:
functions calls that return values, unary and binary operations, constant and variable
values. Among all the expression nodes, the only one that can break the rule regarding
not altering the program state is the function call expression. This is because a function in
VCAT can receive a parameter by reference and thus all modifications to that parameter
will be reflected outside of the function. So, given that the functions 𝑝𝑜𝑤 and 𝑠𝑞𝑟 above
are not by reference, the consecutive evaluation of them would produce the same result
always as long as not command altering the state of variable 𝑖 is executed in between. One
can see expression node as idempotent operations while command nodes are not.

All commands and expression nodes have the ASTNode interface as a common su-
perclass, this helps abstract away the role of each node where the information is not
necessary. Then, through object-oriented programming inheritance mechanism, the AST-
Parser can decode textual code into a list of ASTNodes that will be later executed by the
Processor class. The text-based language, as mentioned in Section 4.3.1, is inspired by
PortugolStudio and should be seen as a stepping tool to move from a visual programming
language to a text-based language. As shown in Figure 5.2, the ASTParser has a static
method called createParser(string text) used to create a ASTParser instance. There are
many other methods inside a ASTParser instace, but from the final user point of the the
most relevant method available is parseTree(). This method will parse the text fed to the
createParser function and generate a list a ASTNodes in a tree-like approach, where each
element in the list is a child of the root node. Another important aspect of ASTParser is
that it supports internationalization and can currently parse code written in English or
Portuguese. Appendix A presents the syntax rules for English of the text-based language
supported by VCAT in the Extended Backus–Naur form (EBNF). Additionally, the list of
all built-in functions and their description can be found at Appendix B.

5.1.2 Code executor & IO packages
The class diagram in Figure 5.3 describes the JavaScript implementation of the packages

CodeExecutor and IO. The diagram in Figure 5.3 shows the classes contained inside the
CodeExecutor package: SemanticAnalyzer, Processor and Store. The SemanticAnalyzer is
capable of performing semantic analysis of the code which checks if all nodes have been
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correctly constructed while also performing type checking. Among the checks performed,
the SemanticAnalyzer can identify if a function that must return a value but are missing a
return command; if the number and types of the parameters passed to a function meets
what is expected by the function; if an expression evaluates to the correct type of the
variable it is being assigned to, be it a atomic variable or an array. If any issue is found,
the SemanticAnalyzer will throw an exception and attempt to inform to the best of its
capability what is wrong and where.

Responsible for code execution, the Processor class is a very important element of VCAT
since dynamic assessment, like output matching, requires code execution to be performed.
The class has dependency with the Input, Output and ASTNode(Figure 5.2) interfaces. The
Input and Output interfaces enables the Processor to perform I/O operations independent
of the environment it is being executed. This enables each visual programming system to
implement the interfaces accounting for their particular needs.

Figure 5.3: Class diagram for the CodeExecutor and IO packages JavaScript implementation
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Also, the Processor is dependent on the Store class which represents the program state.
In VCAT, the program state is a stack of all active scopes of the program where an active
scope is a function being executed. The Store in the bottom of the stack represents the
global scope where all global variables are defined. The function Processor.interpretAST is
responsible for the execution of the program and it returns the final state after complete
execution. It is a non-blocking asynchronous function which is represented in JavaScript
by the type Promise. Since executing any code involves operations that are dependent on
user interactions(I/O) or resource being available in the network or disk, the Processor
had to be designed with that in mind and JavaScript is a very good language to deal with
asynchronicity.

All IO abstractions can be found on the IO package like the interfaces Input and
Output. Notice that the Input interface requestInput function also has Promise in its
return type signature. AS mentioned before, this is inherent of the I/O operations in a
regular computer, and making this synchronous will mean that user browser would just
freeze until an input was feed to the . Also, the IO package ships a class called Console
which implements both Input and Output interfaces. The Console class is a ready-to-use
HTML implementation with a set of functions to allow easy integration to any web page.
It uses HTML, CSS and JavaScript to create the look-and-feel of a regular console where
data input can be request and outputs can be shown.

5.1.3 Assessment package
The Assessment package JavaScript implementation does not differ from the model

design presented in Section 4.3.3 besides the details regarding functions return types and
the Result class as shown in Figure 5.4. The AssessmentRunner class is responsible for
reading the assignment description file and performing the instructed assessment. It uses
an internal mapping of assessment name and their corresponding implementation. An
assessment is added to this mapping by calling the static function registerAssessment. The
function runTest returns a int value representing the final grade for the whole assessment
and is an asynchronous function.

In the JavaScript implementation, VCAT’s OutputMatching class has two internal
private fields with special implementations of the I/O interfaces. These implementation
are used only during dynamic testing and they provide the input in the test case to the
program. Also, the output interface implementation for dynamic testing captures all
outputs generated by the program during execution. The captured output is then used top
verify if it matches with the expected output from the test case. The OutputMatching class
will use all the improvements mentioned on Section 4.3.3 to generated a better feedback to
the student, using its access to the system output interface to present it. Besides performing
the assessment of the code represent by the ASTNode, the function eval will also return a
Result instance wrapped inside a Promise.

The Result class encapsulates the grade of the performed assessment and a JSON object
called evalResult that stores data on the feedback provided. Taking the OutputMatching
class as an example, the object evalResult contains the input used, and generated output
and the expected output along side the diff formatted texts to present to the student.
Additionally, the evalResult can also be used to provide metadata from the assessment to
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Figure 5.4: Class diagram for the Assessment package JavaScript implementation

the AssessmentRunner like runtime. Having presented the implementation details on ,
the next step is to use it to instantiate the model for a visual programming language. The
first instantiation will be for iVProg, followed by an instantiation for a visual programming
language created by the author using Google’s visual language framework Blockly. The
next section will discuss iVProg’s implementation of 𝐹𝑡𝑟𝑎𝑛𝑠 and the steps necessary to
connect its output to VCAT’s .

5.2 Instantiating for iVProg
iVProg is one of the main flagships of the Laboratory of Informatics in Education - LInE

and as such is the main instantiation for VCAT. It is part of a framework developed for
Moodle called iAssign which provides learning modules for different subject like Geometry,
Programming and Mathematics. Given its compatibility with Moodle, iVProg is a visual
programming system developed with the Web in mind. During this research, iVProg and
VCAT development went hand-to-hand even though they are two different software. There
were many features introduced to iVProg that were inspired by VCAT model and vice-
versa. For example, the possibility of using a textual code as an alternative to constructing
the AST tree directly was inspired by iVProg. On the other hand, iVProg’s adoption of
function parameters passing as a reference was influenced by VCAT implementation of
the functionality.

For iVProg visual language each block defined is an element of the icon dictionary
𝐼𝐷. It is important to note that iVProg handling of variables is different from other visual
programming languages like Alice, Scratch and Chentry. In iVProgvariables are not blocks
themselves. Instead, they are incorporated in the blocks, i.e. the read block has a list of
variables that you can read values into. Additionally, all variables in iVProg have a defined
type much like traditional programming languages. Its user interface controls how each
type of block can interact with one another fulling the role of the language grammar 𝐺0.
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Figure 5.5: List of command blocks available in iVProg

Each block has encoded in itself its type and role, and collectively this data produces the
knowledge base 𝐵, where it is possible to map each block to a logical meaning. Figure 5.5
presents the list of available commands in iVProg. A noticeable detail in the figure is that
each block name already hint to their role and logical meaning.

As already presented in Section 2.2.2, iVProg working area is well defined and consists,
by default, of a main function body. The user interface allows students to create new
functions, which can have parameters and their own variables. iVProg also supports
global variables and all basic types supported by VCAT, including vectors and matrices. In
iVProg, 𝐶𝑣𝑖𝑠𝑢𝑎𝑙 is a tree-like structure very similar to an AST, that is stored by the visual
programming system. The advantage of being a tree-like is that the implementation of
𝐹𝑡𝑟𝑎𝑛𝑠 becomes straight forward since it can be implemented as a recursive descent parser
as discussed in next section.

5.2.1 Implementation of 𝐹𝑡𝑟𝑎𝑛𝑠
The 𝐹𝑡𝑟𝑎𝑛𝑠 function for iVProg was implemented as part of its user interface module.

The function 𝐹𝑡𝑟𝑎𝑛𝑠 walks through 𝐶𝑣𝑖𝑠𝑢𝑎𝑙 using a recursive descent parser. It parses 𝐶𝑣𝑖𝑠𝑢𝑎𝑙
in a top-down approach, checking all leaves from the current node before going to its next
sibling. Even though iVProg handles the variable definition in a different way, this does
not interfere in the translation process from 𝐶𝑣𝑖𝑠𝑢𝑎𝑙 to 𝐶𝑡𝑒𝑥𝑡 .

Thus, each node is transformed into its textual representation using the textual language
format since iVProg has a textual mode. As mentioned before, the idea is to use visual
programming language as a bridge to textual programming since this will be the main
form of programming students will face in their professional lives. The visual aspect is to
facilitate students assimilation of the programming concepts and be able to apply them
using a text-based language.
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Program 5.1 Code snippet for iVProg 𝐶𝑡𝑒𝑥𝑡 generation for an assignment block.

1 function assignmentCode (command_obj, indentation) {
2 let ret = "\n";
3 ret += " ".repeat(indentation);
4 ret += variableValueMenuCode(command_obj.variable) // Generate code for

leaf node of Variable type
5 ret += " <- ";
6 ret += elementExpressionCode(command_obj.expression); // Generate code for

leaf node Expression type
7 return ret;
8 }

Program 5.1 presents a part of iVProg 𝐹𝑡𝑟𝑎𝑛𝑠 implementation for the variable assignment
block. Besides the basic textual formatting presented in lines 2 and 3, the code first checks
the leaf node for the variable block contained by the assignment block(line 4). Then, it will
check the inner elements of the assignment command block, starting with the variable.
Although a variable in iVProg is not a block the user can manipulate, it behaves and is
encoded like one.

After calling the function responsible for generating the textual code for the variable in
the command, it then calls the function that will generate the text for the expression in the
assignment command. The elementExpressionCode function will recursively call itself for
each expression element in command_objėxpression until it reaches the atomic elements of
an expression like variable name or constant value. The final product of all these function
calls is the textual code(𝐶𝑡𝑒𝑥𝑡 ) for the assignment block being translated.

Program 5.2 Example code for AST nodes generation for iVProg’s Assignment command.

1 function assignmentASTNode (command_obj) {
2 const variableNode = variableValueASTNode(command_obj.variable);
3 const expressionNode = elementExpressionASTNode(command_obj.expression);
4 const assignmentNode = new vcat.AST.AssingntmentNode(variableNode,

expressionNode);
5 return assignmentNode;
6 }

Program 5.2 shows an example implementation of 𝐹𝑡𝑟𝑎𝑛𝑠 using AST nodes instead of
generating the textual language. The main difference is that the functions now return
ASTNode objects instead of text. The steps are the same: 1) first the node for variable is
generated; 2) then the node representing the expression being assigned to the variable
is created; 3) and last the assignment node is created having the variable and expression
nodes as children. Although the expression node on line 3 is a single object, it can contain
many other expression-type nodes as children, in order to represent complex expressions.
As with Program 5.1, the final result will be a 𝐶𝑡𝑒𝑥𝑡 in AST structure.

Once 𝐶𝑡𝑒𝑥𝑡 is generated, the next step is to input it into . This step is very straight
forward, specially if the only desired functionality is the AAT. SinceiVProg also uses VCAT
as its code executor next section will describe the steps used in iVProg to feed 𝐶𝑡𝑒𝑥𝑡 into
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 for execution and automatic assessment.

5.2.2 Inputting 𝐶𝑡𝑒𝑥𝑡 into 
After 𝐶𝑡𝑒𝑥𝑡 is created from the recursive descent parsing, it is then inputted to VCAT

𝑀 for execution or assessment. Program 5.3 shows a snippet code of how to input 𝐶𝑡𝑒𝑥𝑡
into  be executed. iVProg uses VCAT not only as a source of AAT but also as its main
code executor. For this reason, iVProg does not need to implement code execution since it
can use  instead.

As presented in Section 4.3 and by the class diagram in Figure 5.3, code execution
requires the setup of the I/O channels that must be used by the Processor. iVProg makes
use of the Console class in the IO package(Figure 5.3 as Input and Output interface. Since
iVProg is a complete web application, it has a dedicated area where the Console class can
inject its HTML nodes to mimic the console look-and-feel. As a result, this simplifies the
integration process between iVProg visual programming system and VCAT.

Program 5.3 Code snippet for executing a program using 𝐹𝑡𝑟𝑎𝑛𝑠 and VCAT.

1 const ast = vcat.CodeExecutor.SemanticAnalyser.analyseFromSource(c_text);
2 const proc = new vcat.CodeExecutor.Processor(ast);
3 // vcatConsole is an instance of Console created earlier, it works as both

input and output
4 proc.registerInput(vcatConsole)
5 proc.registerOutput(vcatConsole);
6
7 //Focus the console
8 vcatConsole.focus();
9

10 proc.interpretAST().then((_finalProgramState) => {
11 console.log("Program executed sucessfully");
12 }).catch(console.error);

In Program 5.3, the first line uses 𝐶𝑡𝑒𝑥𝑡 to generate the AST tree but also checks for
semantic issues in the code. In the scenario where 𝐶𝑡𝑒𝑥𝑡 is already in the AST format,
it is possible to go straight to line 2. However, if the semantic check is still desired the
SemanticAnalyser can be instantiated using the constructor presented in Figure 5.3. Then,
a new instance of the Processor class is created, using the generate AST. The final step
before actual execution is to register the input and output channels that will be used
during execution. In this case, an instance of VCAT’s Console is used. The execution of
the code is triggered by calling Processor.interpretAST function which in turn, returns a
Promise<Store>. The variable _finalProgramState is an instance of Store and represents the
final state of the program.

Program 5.4 Code snippet for running automatic assessment in iVProg using VCAT.

1 // assignmentDesc is a JSON object in VCAT’s format
2 const ast = vcat.CodeExecutor.SemanticAnalyser.analyseFromSource(c_text);

cont ⟶
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⟶ cont
3 const assessment = new vcat.Assessment.AssessmentRunner(ast,
4 assignmentDesc, vcatConsole);
5 assessment.runTest(),then((final_grade) => {
6 // The feedback has already been printed by the AssessmentRunner using

vcatConsole
7 // final_grade stores the final grade for the exercise calculated as a

mean of all grades of each test case
8 // The value is in the interval [0, 1], where 1 represents 100\%.
9 // This can be used to register the information on database or other

storage for later use.
10 // The final grade will be presented by default using the output

interface provided
11 console.log(‘Final grade: ${final_grade}‘);
12 }).catch(console.error);

The steps required to perform automatic assessment does not differ much from the
steps to execution. In Program 5.4, it is possible to see that 𝐶𝑡𝑒𝑥𝑡 is also checked for semantic
issues before being passed to the assessment runner. Now, instead of feeding the generated
AST to the Processor class, it used as parameter in the constructor of the AssessmentRunner.
The AssessmentRunner will be the one responsible of providing the AST structure to the
proper assessment method as defined in the assignment description file. The automatic
assessment is trigger by line 5 and when it is done the AssessmentRunner will use the
vcatConsole instance to print the feedback to the student. The Promise returned by the
runTest function, contains the final grade of the assessment which can be however the
instructor see fit like storing it into a database for later retrieval.

Figure 5.6: Output Matching feedback page showing the type-based assessment of the output

Figure 5.6 shows the feedback page for an assignment where the student’s program



5.3 | INSTANTIATING FOR BLOCKLY

51

did not produce the correct output. It is possible to see that even though the output was
not correct, the solution was graded with 50% of the grade since the numeric part of the
output was correct. Also, the result column shows that the output is missing the text “area:
” which is highlighted in green.

This described all the steps performed to integrate VCAT to iVProg in order to provide
code execution and code assessment. Although iVProg uses the textual language approach
to implement 𝐹𝑡𝑟𝑎𝑛𝑠 , using the AST node directly is still an alternative. Next section will
discuss the steps required by the special visual programming language developed by the
author using Blockly to demonstrate VCAT generality.

5.3 Instantiating for Blockly
To demonstrate model generality, the author created a visual programming language

using Google´s Blockly. Blockly is a framework for developing visual programming system
that allows the user to create different kind of blocks using XML or JSON format. It already
comes with a user interface that has an area for the blocks defined for the language and
an area for code construction. Blockly user interface is heavily inspire by Scratch´s but
can be slightly changed to provide a different look and feel.

Figure 5.7: User interface for Blockly instantiation

Figure 5.7 shows Blockly user interface for the language of this instantiation. The
figure shows the HTML page created by the author with Blockly inserted to it. Apart from
the two top-left buttons: run and grade it!, everything else is from Blockly. On the left is the
tool box with all the blocks available for the language and on the right of it is the working
area. In the working area the user places and combines blocks to create the algorithm as
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presented in the figure.

Let´s recall the formal definition of a visual language: 𝐿𝑣 = (𝐼𝐷, 𝐺0, 𝐵)(Section 2.2.1).
Here we have that each block defined is an element of 𝐼𝐷. Also, when creating a new block
using Blockly, the user needs to define how this new blocks interacts with the existing
blocks which fulfils 𝐺0 requirement. The creation process also populates the knowledge
base 𝐵, since the framework requires the user to add each block to a category that maps to
a logical meaning, i.e flow control, loop, variable, expression, etc.

For simplicity, the language implemented for this instantiation had support to only a
numeric data type which can represent integer and float-pointing numbers. To fulfill the
requirements of a general purpose language, blocks for flow control, loop, variable defini-
tion and I/O functions were also added. The language also had support for arithmetic and
logical expressions where the logical expression could use equality and logical operators
(and, or and negation).

5.3.1 Implementing 𝐹𝑡𝑟𝑎𝑛𝑠
The Blockly framework comes with a Generator class that fits perfectly the purpose of

𝐹𝑡𝑟𝑎𝑛𝑠. This class is designed to allow the translation of the blocks created to any desired
structure or textual language. Thus, the Blockly Generator was used to translate the blocks
to the textual language used by VCAT. For that, the Generator class behaves as a dictionary
where the user associate one kind of block to a function responsible for generating textual
code given the logical meaning of that block.

As mentioned in last section, the visual language created has a numeric type to represent
all integers and floating-points numbers. This is relevant because VCAT AST requires a
type to be provided to all variables. This is because in order for the SemanticAnalyser to
properly check the AST structure, the type information is crucial to assert that the code is
semantically correct. In the event that the visual language needs to provide a polymorphic
type that can represent all types in one(numbers, strings, characters, etc.), it would be
required to implement a new library responsible for reading and writing this new type.
VCAT internal type system is advanced enough that it already provides internal support
for polymorphic types making it easier for such changes. Although the support is already
present, its usage is limited to special inner functions cases.

Program 5.5 Code snippet of 𝐹𝑡𝑟𝑎𝑛𝑠 implementation for the visual language created using
Blockly.

1 CODE_GENERATOR[’variables_set’] = function(block) {
2 // Variable assignment
3 const varName = CODE_GENERATOR.nameDB_.getName(block.getFieldValue("VAR"),

Blockly.Names.NameType.VARIABLE);
4 const argument0 = CODE_GENERATOR.valueToCode(
5 block, ’VALUE’, CODE_GENERATOR.NONE) || ’0’;
6 return varName + ’ <- ’ + argument0 + ’\n’;
7 };

Thus, the step of translating 𝐶𝑣𝑖𝑠𝑢𝑎𝑙 into 𝐶𝑡𝑒𝑥𝑡 in this case is a matter of walking through
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the blocks present in the working area and producing their respective textual code. This
is done every time the user clicks on the run or grade it!. Program 5.5 shows a snippet
of the code generation for the variable assignment block. The implementation is very
similar to iVProg’s in Program 5.1. The CODE_GENERATOR variable is an instance of
Blocky Generator class and it behaves as a dictionary where the keys are elements of 𝐼𝐷
and are mapped to the functions responsible for generating the final code. The Blockly
implementation of 𝐹𝑡𝑟𝑎𝑛𝑠 also use the textual language as the format for 𝐶𝑡𝑒𝑥𝑡 since it is must
faster to implement and the creationg of the AST nodes can be delegated to VCAT.

One of the main differences between this implementation and iVProg’s is that in the
language created with Blockly, the variables are blocks themselves. And as such, to access
the variables names the framework provides a name database that can be used to access
the name of all variables. This is required because inside the blocks the framework does
not store the actual name of the variable, but an id hash instead. Additionally, instead of
calling a particular function for expression code generation, line 4 calls a function defined
by the framework itself to generate code for expressions which are referred to as values.
Behind the scenes, the function valueToCode will call the appropriate functions in order to
generate the code.

Now that 𝐹𝑡𝑟𝑎𝑛𝑠 is implemented and can generate 𝐶𝑡𝑒𝑥𝑡 , the next step is to input 𝐶𝑡𝑒𝑥𝑡
into . As iVProg, this visual language will use VCAT’s  for both execution and
automatic assessment. Next section will present the implementation steps employed to
integrate  to the Blockly framework.

5.3.2 Inputting 𝐶𝑡𝑒𝑥𝑡 into 
Much like iVProg, the implementation for code execution follows the same steps. After

generating 𝐶𝑡𝑒𝑥𝑡 , the SemanticAnalyzer is used to create the AST code structure. Then, a
instance of the Processor class is created using the AST code and the desired I/O interfaces.
Program ?? shows part of the implementation for code execution. First step is to generate
𝐶𝑡𝑒𝑥𝑡 by calling translate(), a function created to call CODE_GENERATOR.blockToCode
function. From line 2 on wards the lines are the same in the iVProg implementation.

Program 5.6 Code snippet for executing a program using 𝐹𝑡𝑟𝑎𝑛𝑠 and VCAT.

1 const c_text = translate();
2 const ast = vcat.CodeExecutor.SemanticAnalyser.analyseFromSource(c_text);
3 const proc = new vcat.CodeExecutor.Processor(ast);
4 // vcatConsole is an instance of Console created earlier, it works as both

input and output
5 proc.registerInput(vcatConsole)
6 proc.registerOutput(vcatConsole);
7 vcatConsole.focus();
8
9 proc.interpretAST().then((_finalProgramState) => {

10 console.log("Program executed sucessfully");
11 }).catch(console.error);

It is also possible to note in Program 5.7 that to use the automatic assessment, the
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steps are also the same from iVProg. Here, the snippet also includes the parsing of the
assignment description file on line 4. Given the that the assignment description is a text
file, one can use the JSON native JavaScript library to convert the text into a JSON object.
In this instantiation, a button named grade it!(Figure 5.7) was created to run VCAT AAT.
The button executes the code present in Listing 5.7 and shows the feedback and final
grade in the console and also in a alert window. In the next chapter the application of the
proposed solutions which represents the final part of this three part design.

Program 5.7 Code snippet for performing automatic assessment for Blockly-based visual
language.

1 const c_text = translate();
2 const ast = vcat.SemanticAnalyser.analyseFromSource(c_text);
3 // vcatConsole is an instance of Console created earlier, it works as both

input and output
4 const assignmentDescription = JSON.parse(/*this should be the JSON file

contents*/);
5 const assessment = new vcat.Assessment.AssessmentRunner(ast,
6 assignmentDescription, vcatConsole);
7 assessment.runTest().then((final_grade) => {
8 alert(‘You grade: ${final_grade}‘);
9 }).catch(console.error);
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Chapter 6

VCAT Evaluation

Section 5.3 last chapter described the necessary steps for a given visual programming
language to instantiate VCAT. The instantiation process was executed for two different vi-
sual programming languages: iVProg and a language designed with the Blockly framework.
This demonstrates that the proposed model is general enough to work with different visual
programming languages. This chapter will present the application of the solution through
an experiment developed to evaluate if the changes in VCAT’s output matching algorithms
in comparison to output matching traditional implementations actually improved the
feedback provided. The analysis is done using a questionnaire answered by the students
and a quantitative analysis using students grades in iVProg and VPL exercises.

6.1 Experiment
The experiment was conducted with students from an introductory programming

course in the summer program at the Institute of Mathematics and Statistics (IME-USP).
The summer program at IME-USP is run every year from January to February, and it
offers a range of courses including introductory programming courses. The classes were
conducted not conducted by the author, but he was part of the support group for the whole
course with some interactions with the students answering questions on programming
logic. A total of 104 students were divided into two classes, one in the morning and another
in the evening from January 4th to February 26th. The course in general had a load of 60
hours with lectures from Monday to Friday, where one day of the week was dedicated
to help students with their doubts by a teaching assistant. The morning the classes went
from 08:00 to 10:00 and the night classes from 19:00 to 21:00. The morning class was
compromised of 37 students while the night class had 67 students enrolled. Also, both
classes were lectured by the same teacher and the teaching assistant was also the same
for both. The course structure was the same as previous editions where the following
topics are discussed: basic computer architecture, input & output command, expressions,
conditional commands, loops, functions, vectors and matrices.

For each subject exercises using both tools, iVProg and VPLwere created. In the be-
ginning, the exercises were equally distributed between iVProg and VPL, and gradually
had the proportion of VPL exercises increased until they were the only ones. This change



56

6 | VCAT EVALUATION

happened every time a new subject was introduced and was also part of past editions. Thus,
the only intervention done in the course was the use of iVProg with VCAT instantiated,
everything else went as it would have in previous editions. It is important to note that all
classes were delivered online via Moodle and the BigBlueButton virtual class room as a
result of the Covid-19 pandemic.

During the first 4 weeks of the course, the students were introduced to iVProg and
then to an AAT plug-in for Moodle called Virtual Programming Lab (VPL). Right after
this 4 week period, the students had to answer a questionnaire designed to assess if the
developed artifact and its improvements successfully achieved the desired goals regarding
AAT improvements.The answers were all voluntary and the students were informed about
the nature of the research and the contributions it could produce. The questionnaire pages
inside the Moodle course also contained the terms of how the data collected would be
used and that they could withdraw their consent at any time. From the 104 students who
were participating in the introductory course, a total of 57 effectively answered both
questionnaires, one for each tool used. Out of this total, 36 students were from the evening
class and 21 from the morning class. The next section will present the questions used to
evaluate the artifact and their motivation.

6.2 Questionnaire
The questionnaire was composed of 8 questions each intended to collect data regarding

the tools being used, iVProg or VPL, and how the students perceived the quality of the
feedback provided. It was inspired by Savi et al. (2011) evaluation model for educational
games. In their model, Savi et al. (2011) proposed a set of 27 questions designed to assess
students’ motivation, user experience and learning. Although iVProg and VPLare not
educational games they are still educational software developed with a view of aiding the
teaching-learning process.

Thus, the questionnaire applied in this research used Savi et al. (2011) original proposal
as a starting point. New questions were devised regarding user experience of the tools
and how it affected the learning process. Additionally, questions on the students’ trust
in the automatic assessment were also included, along with questions on short term
learning. Table 6.1 presents the questions, translated to English, used to evaluate iVProg
and VPL.

It is important to emphasize that the questions had their text adapted accordingly
when used to evaluate VPL. Also, there was an discursive question related to Q1 where
the students were ask to give more context to the answer they gave. This was motivated
from past experiences where students would assess the tool not based on the tool itself,
but by associating it to the topics being learned with the tool, in this case algorithms and
programming.

Each question was answered using a five points Likert-like scale as proposed by
the original model (Savi et al., 2011). Each answer was assigned a value ranging from
−2 to 2 where a negative value does not inherently mean a negative answer and vice-
versa. The resulting score was calculated by averaging each question’s answers. Thus, the
interpretation is directly related to the answer format: the closer a question average is to 2
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Question Text Purpose

Q1
The tool iVProg for the construction and execution
of algorithms using blocks was easy to understand.

Ease of usage

Q2
In the exercises that the automatic assessment tool
detected an error, how do you classify the utility of
this functionality?

AAT feedback quality

Q3 It was easy to start using iVProg as a study tool. Usage of the tool as a study aid

Q4
While solving exercises using iVProg I felt confident
that I was learning.

Confidence in the tool as a learning aid

Q5
How do you classify the difficulty level of the exer-
cises in the current block?

Perceived difficulty

Q6
Using iVProg to solve exercises made it difficult or
easy ?

Tool effect on the perceived difficulty

Q7
I had positive feelings of efficiency while solving
exercises using iVProg.

Tool effect on perceived efficiency

Q8
In your perception, how much do you believe iVProg
with automatic assessment contributed to your al-
gorithm learning?

Short term learning

Table 6.1: English translated version of the questionnaire used to assess iVProg and its AAT

the better it was evaluated by the students (Savi et al., 2011). Moreover, the questionnaire
format also allowed for a comparison of how the students perceived different aspects in
the tools iVProg and VPL. Next section will present the results of the assessment of both
tools and also a breakdown of each question comparing how each tool of evaluated by the
students.

6.2.1 Results
After aggregating the data from both classes, the average for the answers for each tool

was calculated as it is shown in Figure 6.1. As displayed in the figure, both tools were
positively evaluated, with some question reaching an average around 1.5.

Starting with Q1, it is possible to see that both tools were evaluated almost identically
regarding the ease of usage, with VPL getting a slightly higher score. In Table 6.2, its
is possible to see the distribution of each score for Q1 for both tools. On the comments
provided, the general sentiment was that both tools were intuitive. However, some students
felt that they needed some initial guidance to properly use iVProgwhich aligns with the
data shown in Table 6.2.

When evaluating the quality of AAT feedback (Q2), iVProg got a higher score than
VPL, with the difference being above 0.30. Looking at the answers distribution, it shows
that more than 70% of the students thought the AAT feedback from iVProg was really
good against ≈ 57% from VPL. Regarding the usage of the tools as a study aid (Q3), both
were similarly evaluated with iVProg receiving a slightly higher score. On Q4, the students
were asked to assess how confident they felt they were learning when using the tools.
Both tools scored higher than 1.5 but VPL got a higher score even though the difference is
not so big (≈ 0.19). Looking at the values in Table 6.2, we can see that more than 80% of
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Figure 6.1: iVProg and VPL scores comparison

Question -2 -1 0 1 2
Q1 3.5% — 1.8% 1.8% — 0% 8.8% — 10.5% 43.9% — 38.6% 42.1% — 49.1%
Q2 0% — 0% 5.3% — 10.5% 5.3% — 12.3% 15.8% — 19.3% 73.7% — 57.9%
Q3 0% — 1.8% 5.3% — 5.3% 5.3% — 5.3% 24.6% — 31.6% 64.9% — 56.1%
Q4 0% — 0% 3.5% — 1.8% 5.3% — 5.3% 24.6% — 10.5% 66.7% — 82.5%
Q5 7% — 17.5% 21.1% — 33.3% 38.6% — 22.8% 28.1% — 22.8% 5.3% — 3.5%
Q6 0% — 0% 3.5% — 3.5% 12.3% — 12.3% 36.8% — 29.8% 47.4% — 54.4%
Q7 1.8% — 0% 5.3% — 0% 14% — 8.8% 15.8% — 12.3% 63.2% — 78.9%
Q8 0% — 0% 0% — 1.8% 12.3% — 3.5% 19.3% — 14% 68.4% — 80.7%

Table 6.2: Occurrence table for the percentage of answers’ scores for the tools iVProg — VPL given by
the 57 students

the students felt very confident using VPL to solve the exercises.

The only question to score lower than 1 was Q5, regarding the perceived difficulty of
the exercises of the period for the given tool. For this question a −2 implies that the student
found the exercise very difficult, while a 2 implies very easy. Even though the exercises
were designed with similar difficulty in mind, students considered iVProg exercises to be
more neutral. VPL on the other hand was considered slightly difficult with an average score
of ≈ −0.4. Additionally, when examining the perceived difficulty of the exercises taking the
tool used to solve them into consideration (Q6), the students’ answers suggests that the
tools did not affect them negatively. The data suggests that most students perceived that
the tools actually aided them to solve the exercises. Both iVProg and VPL scored similarly
with a negligible difference. In VPL’s case, more than 50% of the students considered that
the tool made it very easy to solve the exercises.

On Q7, the students were asked about how efficient they felt when using the tools
to solve the exercises. In general both tools scored well. Nonetheless, VPL score was
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higher than iVProg with a difference around ≈ 0.36. Also, around 78% of the students
classified VPL as the tool the felt most efficient using. The last question was about long
term learning of algorithms and how the students felt the tool used helped them achieve
that. Once again the tools scored really well, with VPL getting a slightly higher score.
Additionally, approximately 80% of the students thought the using VPL contributed a lot
to their algorithm learning. The next chapter brings some discussions on the results found
and some other insights gathered from the data collected.

6.3 Exercises’ grades analysis
In order to gauge the effects of the improvements of the output matching feedback

in VCAT and also the use of visual programming languages with automatic assessment
from a quantitative perspective, the author decided to analyse the grades students scored
in iVProg and VPL exercises. The exercises chosen for this analysis were the ones that
coincided with the week the students answered the questionnaire. Since there was no
limitations on the number of submissions a student could make until he got the max grade
for a given exercise, some treatment of the final grade was needed to take into account how
long it took to the student to get that score. The following formula was used to compute
the final grade (𝐺𝑓 𝑖𝑛𝑎𝑙) from the students original grade:

𝐺𝑓 𝑖𝑛𝑎𝑙 = 𝑔𝑟𝑎𝑑𝑒 ∗ (1 −
1
Δ𝑇

) (6.1)

where 𝑔𝑟𝑎𝑑𝑒 is the students grade for the exercise, and Δ𝑇 is defined as the difference
between the students’ recorded timestamps for last and initial interaction of the tool in
minutes (L. d. Souza et al., 2021). It is important to note that Δ𝑇 is strictly higher than
1. Δ𝑇 represents the amount of time of tool usage the student had until he solved the
problem.

The dataset consisted of 9 exercises from VPL, they were the exact same for both
classes. In iVProg’s case, 11 exercises were included from the morning class while the
evening class had only 9 included. It is important to note that only the data for the students
who answered both questionnaires and had submissions on all exercises were processed.
The total of students from both classes who met the criteria was 16. Once the dataset was
defined, it is was pre-processed following the same steps presented in L. d. Souza et al.,
2021 to make sure all timestamps and grades were aligned.

At first, a visual analysis was performed on the data to check the value distribution as
shown in Figure 6.2. The box plots shows that iVProg’s scores were more concentrated
on the middle with some variance on the extremes(Figure 6.2a), with a minimum value
above 0.5 and maximum ≈ 1.0. On the other hand, VPL had a bigger spread of scores with
some small variance on the extremes, specially towards the lower whisker(Figure 6.2b).
The lowest value was slightly above 0.2 and the highest close to 0.9. Comparing the mean
values between the two box plots, it is noticeable that iVProg’s has a higher mean value
compared the VPL. In fact, iVProg’s scores in general are much higher than VPL.

To confirm that the behavior seen in the box plots were not a random event, the
non-parametric Wilcoxon signed-rank test was performed in the data. The test was chosen
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(a) Box plot for iVProg’s 𝐺𝑓 𝑖𝑛𝑎𝑙 scores (b) Box plot for VPL’s 𝐺𝑓 𝑖𝑛𝑎𝑙𝑠𝑐𝑜𝑟𝑒𝑠

Figure 6.2: Box plots for both tools 𝐺𝑓 𝑖𝑛𝑎𝑙 scores to compare the values distribution shape

since the data is not normally distributed and both samples came from the same population.
For this test, the following hypothesis were defined:

• 𝐻0: “iVProg’s 𝐺𝑓 𝑖𝑛𝑎𝑙 grades are less than VPL’s”(null hypothesis).

• 𝐻1: “iVProg’s 𝐺𝑓 𝑖𝑛𝑎𝑙 is greater than VPL’s” (alternative hypothesis);

The test result produced a statistic of 123.0 with 𝑝-value = 0.00135. Therefore, it is possible
to reject 𝐻0 since there is a probability of ≈ 0.002 for the results seen to be the product of
random chance. So, it can be concluded that there is a statistically significant difference
between iVProg’s and VPL’s 𝐺𝑓 𝑖𝑛𝑎𝑙 where iVProg’s grades are higher.

Taking into consideration that Equation 6.1 encodes in 𝐺𝑓 𝑖𝑛𝑎𝑙 the time spent in the
tool, the results show that students were able to solve the exercises much faster using
iVProg when compared to VPL. This indicates that solving exercise using iVProg was
less complicated than solving them with VPL. The discussions on these results will be
presented on next chapter.
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Discussions

This chapter discusses the data collected during the application of VCAT. It starts with
the analysis of the questionnaire answers followed by the analysis of the quantitative data
of the grades comparisons. The data shows that the research objectives were achieved
and provides some interesting insights on students perceptions of visual programming
compared to traditional text programming.

7.1 Questionnaire answers
By analyzing the data presented in Figure 6.1, it is possible to conclude that one of the

main objectives of this research has been achieved. The students felt that the feedback
provided by iVProg was much better to inform them of the issues in the code when
compared with VPL.

(a) Occurrence graph for Q2 answers for iVProg (b) Occurrence graph for Q2 answers for VPL

Figure 7.1: Occurrence graph for Q2 regarding AAT capabilities of iVProg and VPL from very useless(-
2) to very useful(2)

Figure 7.1 presents the distribution of each score for the question between both tools.
It is relevant to note that VPL uses by default output matching dynamic assessment as
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an AAT strategy. Having more than 70% (Figure 7.1a) of the answers scoring 2 for iVProg
indicates that the improvements in the output matching algorithm and feedback provided
in iVProg achieved the goal of being more helpful and clear when compared to VPL.
Specially when the inspiration for the proposed improvements came from past experience
with regular students using VPL and their complaints.

Although VPL was also well rated (Figure 7.1b), it received more neutral and negative
score when compared to iVProg. The author attributes this to the known problems of output
matching assessment (Ala-Mutka, 2005; Ihantola et al., 2010; C. K. Poon et al., 2016),
notably with the difficulty some of the summer course students reported on understanding
the feedback provided by VPL. The main complaint the students had were that VPL errors
message were not clear enough.

In the literature, this is issue is usually related to the fact that a number of programming
languages used in some courses, in this case C, provides error messages not beginner
friendly (Sykes, 2007; Meerbaum-Salant et al., 2010). VCAT had, on the other hand,
improved how the output matching result is presented to the students and how it is
evaluated, as described in Chapter 4. Moreover, it also attempted to provide more helpful
error messages that could point the student towards the source of the problem.

When asked about how easy it was to use each tool(Q1), the students considered both
easy enough to use. In this aspect, VPL scored slightly higher, which the author considers
an expected outcome. Even though, students have commented that both tools are quite
easy to use, VPL has a very clean user interface since one of its main points is to behave
like a basic text editor where students can code.

(a) Occurrence graph for Q2 answers for iVProg (b) Occurrence graph for Q2 answers for VPL

Figure 7.2: Occurrence graph for Q1 on iVProg and VPL ease of usage from very hard(-2) to very
easy(2)

Figure 7.2 displays how students scored each tool for Q1. Both tools had some negative
feedback given, however the positives were much higher. VPL was considered very easy
to use by almost 50% of the students while on iVProg’s case it they were divided between
an easy and very easy evaluation. By its own purpose, iVProg is a different kind of tool
with much richer user interface and different kinds of interactions when compared to
VPL. As a consequence,this require students to take some time to get used to. Students’
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comments shows that they could use iVProg much better after the teacher gave them a
basic introduction. This experience regarding iVProg was also reported in a prior study
regarding the best interface style for the tool (Félix et al., 2019). By analysing interaction
logs and heat maps from students clicks confronted with data collected using NASA-TLX
usability questionnaire. The authors were able to identify some bottlenecks in the interface
and propose improvements. Although some improvements were made since then, their
effects and impacts on user experience have not been validated yet.

Additionally, there is a matter of programming language used. Although visual program-
ming can potentially facilitate the learning process of programming concepts (Sáez-López
et al., 2016; Sykes, 2007), coding with text is also regarded as more convenient once you
learned the basics (Brandao et al., 2012; Booth and Stumpf, 2013). This convenience
can help explain the likelihood of students considering VPL much easier to use, specially
taking into account that they enrolled in a C programming course.

Also, due to how the course was organized the exercises from iVProg were always
presented first and VPL second. This was not intentional but it led to students solving
iVProg exercises first and then VPL. However, the results are aligned with other researches
regarding the effect of visual programming languages on students learning, specially when
visual programming comes first (Brandao et al., 2012; Meerbaum-Salant et al., 2010;
Sykes, 2007).

(a) Occurrence graph for Q3 answers for iVProg (b) Occurrence graph for Q3 answers for VPL

Figure 7.3: Occurrence graph for Q3 on iVProg and VPL usage as a study tool from very hard to use
(-2) to very easy(2)

Another positive effect of visual programming can be seen on the results related to
how easy it was to use the tools as a study aid (Q3). iVProg got mostly positive results as
shown in Figure 7.3a and averaged close to 1.5, slightly higher than VPL. As mentioned
before, the literature already reports on the effects of using visual programming as a tool to
ease programming learning (Meerbaum-Salant et al., 2010; Boshernitsan and Downes,
1997) which can explain the results see in Figure 7.3 . This benefit is also reinforced when
most approaches of developing CT uses programming and visual programming (Hsu et al.,
2018). Even though there is no other data that could corroborate the assumptions, past
experiences in the classroom suggest that the students sometimes use iVProg as a sort
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of playground, where they can try their ideas. During the summer course, iVProg and
VPL exercises were similar by design to enhance the use visual programming as a study
tool.

VPLscores does not come as a surprise. Considering that the course aimed to teach
programming using C language, it is natural that the students would feel that VPL was
also very suitable for studying. Besides being able to write C code through VPL, they were
also able to use the AAT and get feedback on their solutions. As a consequence, the author
attributes the lower scores seen in Figure 7.3b to the difficulties students usually report
on understanding the feedback provided by VPL.

(a) Occurrence graph for Q4 answers for iVProg (b) Occurrence graph for Q4 answers for VPL

Figure 7.4: Occurrence graph for Q4 on if they felt confident when using iVProg and VPLfrom totally
disagree(-2) to totally agree(2)

The tools assessment from the students perspective on how confident they felt while
using them (Q4) show that both scored really well. The majority of students felt very
confident when using any of the tools with average score above 1.5. However, VPL got a
“very confident” score from more than 80% of the students. As discussed in Q3, the author
associate the scores presented in Figure 7.4 with the fact that this course was aimed at
the C language. By using VPL, the students most likely felt that they were learning more
when compared to iVProg.

Figure 7.5 shows how each tool scored regarding the perceived difficulty of the pro-
gramming exercises solved using them (Q5). For around 38% of the students perceived the
programming exercises when using iVProg to be of adequate difficulty. This is significantly
higher to the 22% achieved by VPL even though the exercises were purposely similar,
sometimes the exact same. This perception again can be associated with the findings
of other investigations regarding the ease of use of visual programming languages for
beginners (Sykes, 2007; Meerbaum-Salant et al., 2010).

VPL scores of around 50% of the students perceiving the exercises in the tool to be more
difficult than their iVProg counterparts also aligns with the findings from other researchers
like Gomes and Mendes, 2007 and Vainio and Sajaniemi, 2007. As the literature suggest,
the use of commercial languages i.e C and Java can pose barriers to beginners especially
when dealing with error messages and the complex syntax. The scores present in Figure
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(a) Occurrence graph for Q5 answers for iVProg (b) Occurrence graph for Q5 answers for VPL

Figure 7.5: Occurrence graph for Q5 on the students perception of exercise difficulty when using
iVProg and VPL from very challenging(-2) to very easy(2)

7.5b can also be related to the scores presented in Figure 7.1b on the AAT capabilities of
VPL. Since some students felt that the feedback provided by VPLś AAT was not as helpful
as iVProgś, this could have some impact on their perceived difficulty of the exercises when
errors occurred.

(a) Occurrence graph for Q6 answers for iVProg (b) Occurrence graph for Q6 answers for VPL

Figure 7.6: Occurrence graph for Q6 on effects of each tool over the students perception of exercise
difficulty from much harder(-2) to much easier(2).

While Q5 aimed to assess the perceived difficulty of the exercise offered through each
tool, Q6 on the other hand attempted to assess the effect of the tools themselves on this
perceived difficulty. Figure 7.6 presents how each tool scored regarding their effect on
perceived difficulty.] Curiously, even though the majority of students said the exercise
difficulty was appropriate, not being too difficult nor too easy, they felt that the tools
actually helped make the exercises easier to solve. In general, VPL score slightly higher
than iVProg in this regard, having more than 50% of the respondents suggesting that it
made solving the exercises much easier against around 47% from iVProg.
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The author associate the fact that VPL had more ´´much easier” scores to the expected
transition from visual programming environment to textual coding. Even though the
exercises presented in iVProg were considered more balanced in Q5(Figure 7.5) when
compared to VPL, the more the students became familiar with developing algorithms the
more comfortable they became with textual code. The results from Q2(Figure 7.1) on ease
of usage also suggests that a greater level of comfort with textual code could be a potential
explanation for the results. The next question to be discussed can also be linked to this
effect of the tool on the perceived difficulty.

(a) Occurrence graph for Q7 answers for iVProg (b) Occurrence graph for Q7 answers for VPL

Figure 7.7: Occurrence graph for Q7 on if the students felt efficient while using iVProg and VPL from
totally disagree(-2) to completely agree(2).

In Figure 7.7, it is possible to notice that the majority of the students felt efficient while
using both tools. However, almost 80% of the students agreed that using VPL made them
feel more efficient. This can be linked to the results presented for Q6 above and also to the
already mentioned fact that the course was aimed to teach C language. The fact that most
respondents also solved the exercises in iVProg first to then attempt to solve them in VPL,
since iVProgś exercises always came first in the page, also shows the potential benefits of
visual programming languages. Having already solved comparable exercises that requires
a similar line of thought may have contributed to the perceived higher efficiency felt while
using VPL.

Figure 7.8 presents the occurrence graph for the students answer for Q8. More than
50% of the students agree that the tools used contributed significantly for their algorithm
learning. The algorithm learning from VPL was significant for 80% students against around
68% from iVProg. As with the last three discussed questions, Q8 also indicates the potential
influence of the usage of visual programming systems before solving problems using a
textual language.

This indicates the potential of employing visual programming as a step in conventional
text-based programming courses as reported by other researches like Booth and Stumpf,
2013; Brandao et al., 2012. Both system had an average score for Q8 above 1.5 showing that
the students perceived that they contributed in some way for their algorithm learning. This
is can also be a result of the already mentioned circumstances of the order of the exercises
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(a) Occurrence graph for Q8 answers for iVProg (b) Occurrence graph for Q8 answers for VPL

Figure 7.8: Occurrence graph for Q8 on the students perception the contribution of the tools(iVProg &
VPL) for algorithm learning from not contributed at all (-2) to contributed significantly (2).

being iVProg first then VPL, and the fact that the students enrolled in a C programming
course, thus influencing their perception of what means to learn algorithm.

7.2 iVProg and VPL grade analysis
The 𝐺𝑓 𝑖𝑛𝑎𝑙 data for iVProg and VPL presented in Figure 6.2 is well aligned with similar

studies in the literature. The data is aligned with other studies findings on ease of usage of
visual programming language when compared to traditional text languages (Sáez-López
et al., 2016; Meerbaum-Salant et al., 2010; Brandao et al., 2012). Additionally, the results
can also be related to the reported difficulties with syntax which are common on textual
languages (Gomes and Mendes, 2007). However, the main insight provided by the data,
given the nature of this research, is that the improvements of the feedback speaks to other
results on the questionnaire. It aligns with the insights provided by the answers for Q2,
showing that the improved feedback has positively impacted on students ability to solve
the exercises faster. 𝐺𝑓 𝑖𝑛𝑎𝑙 data also provides more context to the answers provided for Q5
regarding the perceived difficulty of the exercises where most students felt that solving
them in VPL was harder when compared to iVProg. It indicates that this perceived easiness
could be related to the speed which they could solve the problems.

Nonetheless, it contrasts with answers for Q7 where the majority of the students felt
they were more efficient using VPLin comparison with VPL. Again, the need to write code
directly in text could also explain this perception since typing an algorithm can take more
time than visually building it, affecting the whole perception. And as pointed out before,
the fact that they were enrolled in a C programming course could also have affected the
answers to this question given that their main purpose would be to program in C language.
The same analysis can be applied to answers of Q6, although the difference between both
tools are not that expressive in this case.
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Chapter 8

Conclusions

This chapter will present a condensed view of the results and objectives of this research.
Like the better perception of the students for the feedback provided and how easier it was
to solve the problem using a visual language. Also, potential future works pathways are
also presented like improving the semantic analyser feedback and implementing a code
debugger in VCAT. Moreover, the possibility of adding an artificial intelligence with a
large language model to better communicate with the students is also discussed.

8.1 Final considerations

This research presents an automatic assessment model for visual programming system
called VCAT which allows visual programming languages to use automatic assessment
methods to evaluate students code. Besides that, VCAT also has improved the process
and feedback for the output matching algorithm, dealing better with numeric and textual
outputs. Another improvement is that VCAT’s implementation uses color coded outputs
to the student can better identify what is wrong in the output produced by his solution
and can easily tackle the source of the problem.

The model was instantiated for two different visual programming languages showing
that it is general. Although it has some limitation regarding variables types and I/O
options, it is extensible and can be modified to support new functionalities. The experiment
developed to evaluate the model and the improvements in the feedback shows that the
research objectives were achieved. When comparing iVProg’s output matching solution
to the traditional implementation in VPL, the students perceived iVProg’s feedback to be
much better in helping them solve the problem.

The data collected also shows that by using visual programming languages, beginners
can solve algorithmic problems much easier in comparison to traditional text languages as
already reported in the literature (Brandao et al., 2012; Meerbaum-Salant et al., 2010).
Also, the data suggests that visual languages can also ease students learning of text-based
languages.
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8.2 Future work
First, a better and large experiment should be designed to confirm the finding in

this research and better assess the effects of the tools themselves in students perceived
efficiency. Another relevant improvement is in the feedback of the semantic analyser
and of the text-to-ast parser in VCAT. The better we inform students of issues in their
code and the whys behind it, the better they can learn and improve. Also, the literature
reports that helping students visualize code execution is a very effective tool in helping
them learning(Gomes and Mendes, 2007). Thus, implementing a debugger integrated in
VCAT is a good addition since this would be available to all languages that instantiate the
model.

Another interesting addition would be to experiment on integrating a artificial intelli-
gence with a large language model that is capable of better explaining the errors found
during code execution. It would behave as intelligent tutor that can communicate clearly
and use students historical data in the tool to better support their learning.
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Appendix A

Syntax rules for VCAT textual
language presented using EBNF
language

This appendix contains the syntax rules for the textual language recognized by VCAT’s
. The rules are presented using the metasyntax language Extend Backus-Naur Form
(EBNF), widely used to describe programming language syntax.
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Appendix B

List of the built-in functions
available in VCAT

This appendix presents the list of all built-in functions already available in VCAT
organizer by library. Note that the names provided here are the ones available in the
English language. In total there are 5 libraries: Conversion, Mathematics, Text, IO and
Array. With the exception of the Mathematics library, all functions available in the others
libraries can be used in the textual language by only using their names followed by the
parameters. For instance, to use the read function in the IO library, all that is need is to
write read(var).

However, the Mathematics library requires that you prefix the function call with the
library name: Mathematics.abs(-1). This method of calling the built-in functions can also
be used for the other libraries(IO.read(var)) but it is not mandatory. It is important to note
that VCAT allows the students to name their functions with the same name as the built-in
functions, this is by design. By prefixing the built-in function with its library name, you
avoid potential name conflicts. The following sections will present the libraries and their
functions.

B.1 Conversion

The Conversion library contains the all functions responsible for type conversion as
well as functions responsible for checking if a given string can be converted to a specific
type. All functions inside the Conversion library can be used without prefixing them
with Conversion. Table B.1 lists all the functions names with the parameter type and their
description.

B.2 Mathematics

As its name suggests the Mathematics library contains basics mathematical functions
like: abs, cos, sin and rnd. The functions in this library can only be accessed by prefixing
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Name Description
isReal(val: string) Returns true if the string can be converted to a

floating-point value.
isInt(val: string) Returns true if the string can be converted to an

integer value.
isBool(val: string) Returns true if the string can be converted to a

boolean value
castReal(val: string|int) Converts the string or int value into a floating-point

value.
castInt(val:
string|real|char)

Converts the string or real value into an interger. In
case of char value, it is converted to corresponding
integer value according to the ASCII table.

castBool(val: string) Converts the string value into a boolean value if the
string represents a boolean value (true or false),

castString(val:
int|real|char|bool)

Converts the value provided into its textual repre-
sentation.

castChar(val: int) Converts the int provided into the corresponding
character in the ASCII table.

Table B.1: Built-in functions available in the Conversion library

their names with Mathematics.. Table B.2 presents all functions available in the Mathematics
library.

B.3 Text
The Text library stores all functions related to string and characters manipulation. The

functions in this library are presented in Table B.3 and does not require the usage of the
prefix Text.

B.4 IO
Inside the IO library resides the two very important functions that allows users and

 to interact with each other. The read function allows  to request the user to input
values to the program being executed. On the other hand, the write functions allows
 to communicate to the user data generated by the program, see Table B.4 for more
information.
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Name Description
sin(angle: real|int) Calculates the sine of the angle in degrees repre-

sented by the numeric value provided.
cos(angle: real|int) Calculates the cosine of the angle in degrees repre-

sented by the numeric value provided.
tan(angle: real|int) Calculates the tangent of the angle in degrees repre-

sented by the numeric value provided.
sqrt(val: real|int) Calculates the square root of the numeric value pro-

vided. It will stop execution if the value is negative.
pow(x: real|int, y: real|int) Calculates x to the power of y where x and y are

numeric values.
log(val: real|int) Calculates the log10 of the numeric value provided.

If the value is negative, the function stops execution.
abs(val: real|int) Returns the absolute value of the numeric input pro-

vided.
negate(val: real|int) Returns the value of the numeric input provided

multiplied by -1.
invert(val: real|int) Calculates 1/𝑣𝑎𝑙.
max(values: real[]|int[]) Computes the maximum value in the provided vec-

tor of values.
min(values: real[]|int[]) Computes the minimum value in the provided vector

of values.
rand() Return a random value in the range [0,1] calculated

using a predefined seed.
setSeed(seed: int) Sets the internal seed used in the rand() function to

the value provided.

Table B.2: Built-in functions available in the Mathematics library

Name Description
substring(str:string, start:int, end:int) Returns the sub-string inside str, starting at position

start and ending at position (end-1). If the range
defined by the positions start and end is not valid
for the string str, it will return the empty string.

length(str:string) Returns the length of the string str.
uppercase(str:string) Converts all characters in string str to uppercase.
lowercase(str:string) Converts all characters in string str to lowercase.
charAt(str:string, index:int) Returns the character in string str at position index.

If index is not a valid position for the string str,
execution will be interrupted.

Table B.3: Built-in functions available in the Mathematics library
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Name Description
read(var&:all types) Stores into var the input provided by the user. Note

that var here is a reference to a variable created by
the student to receive the input.

write(values...:all types) Writes the list of values provided to the underlying
output channel. Here, values is a variadic parameter
which means it can have as many values as desired.
This is completely transparent to the students when
coding, since from their perspective they are only
passing a list of comma-separated values to the write
function.

Table B.4: Built-in functions available in the Mathematics library



81

References

[Aho 2012] Alfred V. Aho. “Computation and computational thinking”. Comput. J.
55.7 (July 2012), pp. 832–835. issn: 0010-4620. doi: 10.1093/comjnl/bxs074. url:
http://dx.doi.org/10.1093/comjnl/bxs074 (cit. on p. 10).

[Ala-Mutka 2005] Kirsti M Ala-Mutka. “A survey of automated assessment ap-
proaches for programming assignments”. Computer Science Education 15.2 (2005),
pp. 83–102. doi: 10 .1080/08993400500150747. url: https : / /doi .org/10 .1080/
08993400500150747 (cit. on pp. 21–25, 31, 62).

[Araujo et al. 2016] E. Araujo, M. Gaudencio, D. Serey, and J. Figueiredo. “Applying
spectrum-based fault localization on novice’s programs”. In: 2016 IEEE Frontiers
in Education Conference (FIE). Oct. 2016, pp. 1–8. doi: 10.1109/FIE.2016.7757727
(cit. on pp. 25, 27).

[Arifi et al. 2015] S. M. Arifi, I. N. Abdellah, A. Zahi, and R. Benabbou. “Automatic
program assessment using static and dynamic analysis”. In: 2015 Third World
Conference on Complex Systems (WCCS). Nov. 2015, pp. 1–6. doi: 10.1109/ICoCS.
2015.7483289 (cit. on pp. 22–24).

[Barr and Stephenson 2011] Valerie Barr and Chris Stephenson. “Bringing compu-
tational thinking to k-12: what is involved and what is the role of the computer
science education community?” ACM Inroads 2.1 (Feb. 2011), pp. 48–54. issn:
2153-2184. doi: 10.1145/1929887.1929905. url: http://doi.acm.org/10.1145/1929887.
1929905 (cit. on pp. 10, 11).

[Basnet et al. 2018] Ram B. Basnet, Tenzin Doleck, David John Lemay, and Paul
Bazelais. “Exploring computer science students’ continuance intentions to use
kattis”. Education and Information Technologies 23.3 (May 2018), pp. 1145–1158.
issn: 1573-7608. doi: 10.1007/s10639-017-9658-2. url: https://doi.org/10.1007/
s10639-017-9658-2 (cit. on p. 5).

[Bennedsen and Michael E. Caspersen 2007] Jens Bennedsen and Michael E.
Caspersen. “Failure rates in introductory programming”. SIGCSE Bull. 39.2
(June 2007), pp. 32–36. issn: 0097-8418. doi: 10 . 1145 / 1272848 . 1272879. url:
http://doi.acm.org/10.1145/1272848.1272879 (cit. on p. 9).

https://doi.org/10.1093/comjnl/bxs074
http://dx.doi.org/10.1093/comjnl/bxs074
https://doi.org/10.1080/08993400500150747
https://doi.org/10.1080/08993400500150747
https://doi.org/10.1080/08993400500150747
https://doi.org/10.1109/FIE.2016.7757727
https://doi.org/10.1109/ICoCS.2015.7483289
https://doi.org/10.1109/ICoCS.2015.7483289
https://doi.org/10.1145/1929887.1929905
http://doi.acm.org/10.1145/1929887.1929905
http://doi.acm.org/10.1145/1929887.1929905
https://doi.org/10.1007/s10639-017-9658-2
https://doi.org/10.1007/s10639-017-9658-2
https://doi.org/10.1007/s10639-017-9658-2
https://doi.org/10.1145/1272848.1272879
http://doi.acm.org/10.1145/1272848.1272879


82

REFERENCES

[Booth and Stumpf 2013] Tracey Booth and Simone Stumpf. “End-user experiences
of visual and textual programming environments for arduino”. In: End-User De-
velopment. Ed. by Yvonne Dittrich, Margaret Burnett, Anders Mørch, and
David Redmiles. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 25–39.
isbn: 978-3-642-38706-7 (cit. on pp. 11, 19, 63, 66).

[Boshernitsan and Downes 1997] Marat Boshernitsan and Michael Downes. Vi-
sual Programming Languages: A Survey. 1997 (cit. on pp. 11–13, 63).

[Bosse and Gerosa 2015] Yorah Bosse and Marco Aurélio Gerosa. “Reprovações e
trancamentos nas disciplinas de introdução à programação da universidade de
são paulo: um estudo preliminar”. In: Workshop sobre Educação em Computação -
WEI. SBC, 2015 (cit. on p. 9).

[Brandao et al. 2012] Leonidas de Oliveira Brandao, Romenig da Silva Ribeiro, and
Anarosa Alves Franco Brandao. “A system to help teaching and learning algo-
rithms”. In: 2012 Frontiers in Education Conference Proceedings. Oct. 2012, pp. 1–6.
doi: 10.1109/FIE.2012.6462374 (cit. on pp. 1, 2, 11, 19, 35, 63, 66, 67, 69).

[Brandão et al. 2016] Leônidas de Oliveira Brandão, Y. Bosse, and M. A. Gerosa.
“Visual programming and automatic evaluation of exercises: an experience with
a stem course”. In: 2016 IEEE Frontiers in Education Conference (FIE). Oct. 2016,
pp. 1–9. doi: 10.1109/FIE.2016.7757621 (cit. on p. 5).

[Çağdaş and Stubkjær 2011] Volkan Çağdaş and Erik Stubkjær. “Design research for
cadastral systems”. Computers, Environment and Urban Systems 35.1 (2011), pp. 77–
87. issn: 0198-9715. doi: https://doi.org/10.1016/j.compenvurbsys.2010.07.003.
url: http://www.sciencedirect.com/science/article/pii/S0198971510000670 (cit. on
p. 3).

[Cardoso et al. 2018] M. Cardoso, A. V. de Castro, and A. Rocha. “Integration of
virtual programming lab in a process of teaching programming eduscrum based”.
In: 2018 13th Iberian Conference on Information Systems and Technologies (CISTI).
June 2018, pp. 1–6. doi: 10.23919/CISTI.2018.8399261 (cit. on pp. 5, 28).

[Michael Edelgaard Caspersen 2007] Michael Edelgaard Caspersen. PhD thesis. De-
partment of Computer Science, 2007 (cit. on pp. 1, 5, 7–9).

[C.-K. Chang et al. 2017] Chih-Kaia Chang, Ya-Feib Yang, and Yu-Tzua Tsai. “Explor-
ing the engagement effects of visual programming language for data structure
courses”. Education for Information 33.3 (Nov. 2017), pp. 187–200 (cit. on pp. 1, 5,
11, 15, 19).

[S. Chang et al. 1986] S. Chang, Tadao Ichikawa, and Panos A. Ligomenides. Visual
Languages. Springer, 1986. isbn: 9781461318057 (cit. on p. 13).

https://doi.org/10.1109/FIE.2012.6462374
https://doi.org/10.1109/FIE.2016.7757621
https://doi.org/https://doi.org/10.1016/j.compenvurbsys.2010.07.003
http://www.sciencedirect.com/science/article/pii/S0198971510000670
https://doi.org/10.23919/CISTI.2018.8399261


REFERENCES

83

[Conway 1998] Matthew John Conway. “Alice: Easy-to-learn three-dimensional script-
ing for novices”. PhD thesis. University of Virginia, 1998. url: https : / /www.
learntechlib.org/p/117253 (cit. on p. 14).

[Coughlan et al. 2012] T. Coughlan et al. “Exploring acceptance and consequences of
the internet of things in the home”. In: 2012 IEEE International Conference on Green
Computing and Communications. Nov. 2012, pp. 148–155. doi: 10.1109/GreenCom.
2012.32 (cit. on p. 1).

[Dos Anjos et al. 2016] Cleverson Sebastião Dos Anjos, Duda Rodrigo, and Sani de
Carvalho Rutz Da Silva. “Tecnologias gratuitas para o ensino das disciplinas de
algoritmos e programação”. Revista ESPACIOS| Vol. 37 (Nº 29) Año 2016 (2016)
(cit. on p. 35).

[Douce et al. 2005] Christopher Douce, David Livingstone, and James Orwell. “Au-
tomatic test-based assessment of programming: a review”. J. Educ. Resour. Com-
put. 5.3 (Sept. 2005). issn: 1531-4278. doi: 10.1145/1163405.1163409. url: http:
//doi.acm.org/10.1145/1163405.1163409 (cit. on pp. 21, 22).

[T. Dufva and M. Dufva 2016] Tomi Dufva and Mikko Dufva. “Metaphors of
code—structuring and broadening the discussion on teaching children to
code”. Thinking Skills and Creativity 22 (2016), pp. 97–110. issn: 1871-1871.
doi: https://doi.org/10.1016/j.tsc.2016.09.004. url: http://www.sciencedirect.com/
science/article/pii/S1871187116301055 (cit. on pp. 1, 8, 10).

[Eshet-Alkalai 2004] Yoram Eshet-Alkalai. “Digital literacy: a conceptual frame-
work for survival skills in the digital era”. Journal of Educational Multimedia and
Hypermedia 13 (Jan. 2004) (cit. on pp. 1, 8, 10).

[Falleri et al. 2014] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias
Martinez, and Martin Monperrus. “Fine-grained and accurate source code
differencing”. In: Proceedings of the 29th ACM/IEEE International Conference on
Automated Software Engineering. ASE ’14. Vasteras, Sweden: ACM, 2014, pp. 313–
324. isbn: 978-1-4503-3013-8. doi: 10.1145/2642937.2642982. url: http://doi.acm.
org/10.1145/2642937.2642982 (cit. on pp. 28, 29).

[Félix et al. 2019] Igor Moreira Félix, Lucas Mendonça Souza, Bernardo Martins Fer-
reira, and Leônidas de Oliveira Brandão. “A study to build a new visual pro-
gramming system: fixed or contextual menu?” In: 2019 IEEE Frontiers in Education
Conference (FIE). 2019, pp. 1–8. doi: 10.1109/FIE43999.2019.9028616 (cit. on p. 63).

[Ferrucci et al. 1998] Filomena Ferrucci, Genny Tortora, Maurizio Tucci, and Giu-
liana Vitiello. “Relation grammars: formalism for syntactic and semantic analysis
of visual languages”. In: Visual Language Theory. Springer, 1998 (cit. on p. 13).

https://www.learntechlib.org/p/117253
https://www.learntechlib.org/p/117253
https://doi.org/10.1109/GreenCom.2012.32
https://doi.org/10.1109/GreenCom.2012.32
https://doi.org/10.1145/1163405.1163409
http://doi.acm.org/10.1145/1163405.1163409
http://doi.acm.org/10.1145/1163405.1163409
https://doi.org/https://doi.org/10.1016/j.tsc.2016.09.004
http://www.sciencedirect.com/science/article/pii/S1871187116301055
http://www.sciencedirect.com/science/article/pii/S1871187116301055
https://doi.org/10.1145/2642937.2642982
http://doi.acm.org/10.1145/2642937.2642982
http://doi.acm.org/10.1145/2642937.2642982
https://doi.org/10.1109/FIE43999.2019.9028616


84

REFERENCES

[Flammer 2001] A. Flammer. “Self-efficacy”. In: International Encyclopedia of the Social
& Behavioral Sciences. Ed. by Neil J. Smelser and Paul B. Baltes. Oxford: Pergamon,
2001, pp. 13812–13815. isbn: 978-0-08-043076-8. doi: https://doi.org/10.1016/B0-
08-043076-7/01726-5. url: http://www.sciencedirect.com/science/article/pii/
B0080430767017265 (cit. on p. 11).

[Freeman and Hall Giesinger 2017] Adams Becker S. Cummins M. Davis A. Freeman
A. and C. Hall Giesinger. NMC/CoSN Horizon Report: 2017 K–12 Edition. The
New Media Consortium, 2017 (cit. on p. 11).

[Glinert and Tanimoto 1984] E. Glinert and S. Tanimoto. “Pict: an interactive
graphical programming environment”. Computer 17.11 (Nov. 1984), pp. 7–25.
issn: 0018-9162. doi: 10.1109/MC.1984.1658997 (cit. on pp. 11–13, 18).

[Gomes and Mendes 2007] Anabela Gomes and Antonio Mendes. “Learning to pro-
gram - difficulties and solutions”. In: International Conference on Engineering
Education. Jan. 2007, pp. 283–287 (cit. on pp. 1, 5, 8, 9, 64, 67, 70).

[Grover and Pea 2013] Shuchi Grover and Roy Pea. “Computational thinking in k–12:
a review of the state of the field”. Educational Researcher 42.1 (2013), pp. 38–43.
doi: 10.3102/0013189X12463051. eprint: https://doi.org/10.3102/0013189X12463051.
url: https://doi.org/10.3102/0013189X12463051 (cit. on p. 11).

[Gulwani et al. 2018] Sumit Gulwani, Ivan Radiček, and Florian Zuleger. “Auto-
mated clustering and program repair for introductory programming assignments”.
In: Proceedings of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation. PLDI 2018. Philadelphia, PA, USA: ACM, 2018, pp. 465–
480. isbn: 978-1-4503-5698-5. doi: 10.1145/3192366.3192387. url: http://doi.acm.
org/10.1145/3192366.3192387 (cit. on pp. 25–27).

[Hevner et al. 2004] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram.
“Design science in information systems research”. MIS Q. 28.1 (Mar. 2004), pp. 75–
105. issn: 0276-7783. url: http://dl.acm.org/citation.cfm?id=2017212.2017217
(cit. on p. 3).

[Hollingsworth 1960] Jack Hollingsworth. “Automatic graders for programming
classes”. Commun. ACM 3.10 (Oct. 1960), pp. 528–529. issn: 0001-0782. doi: 10.
1145/367415.367422. url: http://doi.acm.org/10.1145/367415.367422 (cit. on p. 21).

[Hsu et al. 2018] Ting-Chia Hsu, Shao-Chen Chang, and Yu-Ting Hung. “How to learn
and how to teach computational thinking: suggestions based on a review of the
literature”. Computers & Education 126 (2018), pp. 296–310. issn: 0360-1315. doi:
https://doi.org/10.1016/j.compedu.2018.07.004. url: http://www.sciencedirect.
com/science/article/pii/S0360131518301799 (cit. on pp. 11, 63).

https://doi.org/https://doi.org/10.1016/B0-08-043076-7/01726-5
https://doi.org/https://doi.org/10.1016/B0-08-043076-7/01726-5
http://www.sciencedirect.com/science/article/pii/B0080430767017265
http://www.sciencedirect.com/science/article/pii/B0080430767017265
https://doi.org/10.1109/MC.1984.1658997
https://doi.org/10.3102/0013189X12463051
https://doi.org/10.3102/0013189X12463051
https://doi.org/10.3102/0013189X12463051
https://doi.org/10.1145/3192366.3192387
http://doi.acm.org/10.1145/3192366.3192387
http://doi.acm.org/10.1145/3192366.3192387
http://dl.acm.org/citation.cfm?id=2017212.2017217
https://doi.org/10.1145/367415.367422
https://doi.org/10.1145/367415.367422
http://doi.acm.org/10.1145/367415.367422
https://doi.org/https://doi.org/10.1016/j.compedu.2018.07.004
http://www.sciencedirect.com/science/article/pii/S0360131518301799
http://www.sciencedirect.com/science/article/pii/S0360131518301799


REFERENCES

85

[Ihantola et al. 2010] Petri Ihantola, Tuukka Ahoniemi, Ville Karavirta, and Otto
Seppälä. “Review of recent systems for automatic assessment of programming
assignments”. In: Proceedings of the 10th Koli Calling International Conference
on Computing Education Research. Koli Calling ’10. Koli, Finland: ACM, 2010,
pp. 86–93. isbn: 978-1-4503-0520-4. doi: 10.1145/1930464.1930480. url: http:
//doi.acm.org/10.1145/1930464.1930480 (cit. on pp. 21–24, 62).

[Isaacson and Scott 1989] Peter C. Isaacson and Terry A. Scott. “Automating the
execution of student programs”. SIGCSE Bull. 21.2 (June 1989), pp. 15–22. issn:
0097-8418. doi: 10.1145/65738.65741. url: http://doi.acm.org/10.1145/65738.65741
(cit. on p. 22).

[Kalibera et al. 2014] Tomas Kalibera, Petr Maj, Floreal Morandat, and Jan Vitek.
In: Proceedings of the 10th ACM SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments. VEE ’14. Salt Lake City, Utah, USA: ACM, 2014,
pp. 89–102. isbn: 978-1-4503-2764-0. doi: 10.1145/2576195.2576205. url: http:
//doi.acm.org/10.1145/2576195.2576205 (cit. on p. 29).

[J.-H. Kim et al. 2019] Jeong-Hun Kim, Jong-Hyeok Choi, Uygun Shadikhodjaev, Aziz
Nasridinov, and Ki-Sang Song. “Chentry: automated evaluation of students’
learning progress for entry education software”. In: Big Data Applications and
Services 2017. Ed. by Wookey Lee and Carson K. Leung. Singapore: Springer
Singapore, 2019, pp. 51–60. isbn: 978-981-13-0695-2 (cit. on pp. 2, 5, 16, 28, 31, 38).

[Y.-J. Kim et al. 2005] Young-Joo Kim, Mi-Young Park, So-Hee Park, and Yong-Kee Jun.
“A practical tool for detecting races in openmp programs”. In: Parallel Comput-
ing Technologies. Ed. by Victor Malyshkin. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2005, pp. 321–330. isbn: 978-3-540-31826-2 (cit. on p. 40).

[Lahtinen et al. 2005] Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Järvinen.
“A study of the difficulties of novice programmers”. In: Proceedings of the 10th
Annual SIGCSE Conference on Innovation and Technology in Computer Science
Education. ITiCSE ’05. Caparica, Portugal: ACM, 2005, pp. 14–18. isbn: 1-59593-024-
8. doi: 10.1145/1067445.1067453. url: http://doi.acm.org/10.1145/1067445.1067453
(cit. on pp. 1, 8, 9).

[Lappalainen et al. 2017] Vesa Lappalainen, Antti-Jussi Lakanen, and Harri Hög-
mander. “Towards computer-based exams in cs1”. In: Proceedings of the 9th
International Conference on Computer Supported Education - Volume 2: CSEDU,
INSTICC. SciTePress, 2017, pp. 125–136. isbn: 978-989-758-240-0. doi: 10.5220/
0006323501250136 (cit. on pp. 2, 27).

[S. Li et al. 2016] Sihan Li, Xusheng Xiao, Blake Bassett, Tao Xie, and Nikolai Till-
mann. “Measuring code behavioral similarity for programming and software
engineering education”. In: Proceedings of the 38th International Conference on
Software Engineering Companion. ICSE ’16. Austin, Texas: ACM, 2016, pp. 501–510.
isbn: 978-1-4503-4205-6. doi: 10.1145/2889160.2889204. url: http://doi.acm.org/
10.1145/2889160.2889204 (cit. on pp. 2, 26, 27).

https://doi.org/10.1145/1930464.1930480
http://doi.acm.org/10.1145/1930464.1930480
http://doi.acm.org/10.1145/1930464.1930480
https://doi.org/10.1145/65738.65741
http://doi.acm.org/10.1145/65738.65741
https://doi.org/10.1145/2576195.2576205
http://doi.acm.org/10.1145/2576195.2576205
http://doi.acm.org/10.1145/2576195.2576205
https://doi.org/10.1145/1067445.1067453
http://doi.acm.org/10.1145/1067445.1067453
https://doi.org/10.5220/0006323501250136
https://doi.org/10.5220/0006323501250136
https://doi.org/10.1145/2889160.2889204
http://doi.acm.org/10.1145/2889160.2889204
http://doi.acm.org/10.1145/2889160.2889204


86

REFERENCES

[Lopes and Garcia 2002] Anita Lopes and Guto Garcia. Introdução à Programação:
500 Algoritmos Resolvidos. Rio de Janeiro: Campus; Edição: Cd, 2002 (cit. on p. 7).

[Lye and Koh 2014] Sze Yee Lye and Joyce Hwee Ling Koh. “Review on teaching and
learning of computational thinking through programming: what is next for k-
12?” Computers in Human Behavior 41 (2014), pp. 51–61. issn: 0747-5632. doi:
https://doi.org/10.1016/j.chb.2014.09.012. url: http://www.sciencedirect.com/
science/article/pii/S0747563214004634 (cit. on pp. 11, 18).

[Maguire et al. 2017] Phil Maguire, Rebecca Maguire, and Robert Kelly. “Using au-
tomatic machine assessment to teach computer programming”. Computer Science
Education 27.3-4 (2017), pp. 197–214. doi: 10.1080/08993408.2018.1435113. eprint:
https://doi.org/10.1080/08993408.2018.1435113 (cit. on p. 28).

[Maloney et al. 2010] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silver-
man, and Evelyn Eastmond. “The scratch programming language and environ-
ment”. Trans. Comput. Educ. 10.4 (Nov. 2010), 16:1–16:15. issn: 1946-6226. doi:
10.1145/1868358.1868363. url: http://doi.acm.org/10.1145/1868358.1868363 (cit. on
p. 15).

[Meerbaum-Salant et al. 2010] Orni Meerbaum-Salant, Michal Armoni, and
Mordechai (Moti) Ben-Ari. “Learning computer science concepts with scratch”. In:
Proceedings of the Sixth International Workshop on Computing Education Research.
ICER ’10. Aarhus, Denmark: ACM, 2010, pp. 69–76. isbn: 978-1-4503-0257-9. doi:
10.1145/1839594.1839607. url: http://doi.acm.org/10.1145/1839594.1839607
(cit. on pp. 5, 19, 62–64, 67, 69).

[Milne and Rowe 2002] Iain Milne and Glenn Rowe. “Difficulties in learning and
teaching programming—views of students and tutors”. Education and Informa-
tion Technologies 7.1 (Mar. 2002), pp. 55–66. issn: 1573-7608. doi: 10 .1023/A :
1015362608943. url: https://doi.org/10.1023/A:1015362608943 (cit. on pp. 8, 9).

[Nascimento et al. 2019] Marcos Devaner do Nascimento et al. “Which visual pro-
gramming language best suits each school level? a look at alice, ivprog, and
scratch”. In: 2019 IEEE World Engineering Education Conference (EDUNINE). 2019
(cit. on pp. 11, 14–17).

[Noschang et al. 2014] Luiz F. Noschang, Fillipi Pelz, Elieser A. de Jesus, and André
L. A. Raabe. “Portugol studio: uma ide para iniciantes em programação”. In:
Anais do Congresso Anual da Sociedade Brasileira de Computação. Workshop sobre
Educação em Informática. Vol. 1. 2014 (cit. on p. 35).

[Oliveira Brandão and Isotani 2003] Leônidas de Oliveira Brandão and Seiji
Isotani. “Uma ferramenta para ensino de geometria dinâmica na internet: igeom”.
In: Anais do Workshop de Informática na Escola - WEI 2003. 2003, pp. 410–421
(cit. on p. 11).

https://doi.org/https://doi.org/10.1016/j.chb.2014.09.012
http://www.sciencedirect.com/science/article/pii/S0747563214004634
http://www.sciencedirect.com/science/article/pii/S0747563214004634
https://doi.org/10.1080/08993408.2018.1435113
https://doi.org/10.1080/08993408.2018.1435113
https://doi.org/10.1145/1868358.1868363
http://doi.acm.org/10.1145/1868358.1868363
https://doi.org/10.1145/1839594.1839607
http://doi.acm.org/10.1145/1839594.1839607
https://doi.org/10.1023/A:1015362608943
https://doi.org/10.1023/A:1015362608943
https://doi.org/10.1023/A:1015362608943


REFERENCES

87

[Osherove 2009] Roy Osherove. The Art of Unit Testing: With Examples in .Net.
1st. Greenwich, CT, USA: Manning Publications Co., 2009. isbn: 1933988274,
9781933988276 (cit. on pp. 21, 23).

[Oualline 1997] Steve Oualline. Practical C Programming: Why Does 2+2 = 5986? third.
Nutshell Handbooks. O’Reilly Media, 1997 (cit. on p. 7).

[Papert 1980] Seymour Papert. Mindstorms: Children, Computers, and Powerful Ideas.
New York, NY, USA: Basic Books, Inc., 1980. isbn: 0-465-04627-4 (cit. on pp. 1, 8,
10).

[Papert 1996] Seymour Papert. “Computers in the classroom: agents of change”. The
washington post education review 27 (1996) (cit. on pp. 8, 10).

[Pears et al. 2007] Arnold Pears et al. “A survey of literature on the teaching of intro-
ductory programming”. In: Working Group Reports on ITiCSE on Innovation and
Technology in Computer Science Education. ITiCSE-WGR ’07. Dundee, Scotland:
ACM, 2007, pp. 204–223. doi: 10.1145/1345443.1345441. url: http://doi.acm.org/
10.1145/1345443.1345441 (cit. on p. 21).

[Peffers et al. 2007] Ken Peffers, Tuure Tuunanen, Marcus A. Rothenberger, and
Samir Chatterjee. “A design science research methodology for information
systems research”. Journal of Management Information Systems 24.3 (2007), pp. 45–
77. doi: 10.2753/MIS0742-1222240302. eprint: https://doi.org/10.2753/MIS0742-
1222240302. url: https://doi.org/10.2753/MIS0742-1222240302 (cit. on pp. 2–4).

[Pimentel et al. 2019] Mariano Pimentel, Denise Filippo, and Flávia Maria Santoro.
“Design science research: fazendo pesquisas científicas rigorosas atreladas ao
desenvolvimento de artefatos computacionais projetados para a educação”. In:
Metodologia de Pesquisa em Informática na Educação: Concepção da Pesquisa. Vol. 1.
Série Metodologia de Pesquisa em Informática na Educação. Porto Alegre: SBC,
2019 (cit. on p. 3).

[C. K. Poon et al. 2016] C. K. Poon, T. Wong, Y. T. Yu, V. C. S. Lee, and C. M. Tang.
“Toward more robust automatic analysis of student program outputs for assess-
ment and learning”. In: 2016 IEEE 40th Annual Computer Software and Applications
Conference (COMPSAC). Vol. 1. June 2016, pp. 780–785. doi: 10.1109/COMPSAC.
2016.208 (cit. on pp. 5, 25, 27, 37, 62).

[Chung Keung Poon et al. 2018] Chung Keung Poon et al. “Automatic assessment via
intelligent analysis of students’ program output patterns”. In: Blended Learning.
Enhancing Learning Success. Ed. by Simon K.S. Cheung, Lam-for Kwok, Kenichi
Kubota, Lap-Kei Lee, and Jumpei Tokito. Cham: Springer International Publish-
ing, 2018, pp. 238–250 (cit. on pp. 25, 27, 37).

https://doi.org/10.1145/1345443.1345441
http://doi.acm.org/10.1145/1345443.1345441
http://doi.acm.org/10.1145/1345443.1345441
https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.1109/COMPSAC.2016.208
https://doi.org/10.1109/COMPSAC.2016.208


88

REFERENCES

[Prather et al. 2018] James Prather et al. “Metacognitive difficulties faced by novice
programmers in automated assessment tools”. In: Proceedings of the 2018 ACM Con-
ference on International Computing Education Research. ICER ’18. Espoo, Finland:
ACM, 2018, pp. 41–50. isbn: 978-1-4503-5628-2. doi: 10.1145/3230977.3230981.
url: http://doi.acm.org/10.1145/3230977.3230981 (cit. on pp. 27, 28).

[Rapkiewicz et al. 2006] Clevi Elena Rapkiewicz et al. “Estratégias pedagógicas no
ensino de algoritmos e programação associadas ao uso de jogos educacionais”.
RENOTE 4.2 (2006) (cit. on pp. 5, 9).

[Reguera and Leiva 2017] J. L. Reguera and Y. F. Leiva. “A learning methodology for
object oriented programming with effective support from the pa3p automatic
evaluation platform”. In: 2017 36th International Conference of the Chilean Computer
Science Society (SCCC). Oct. 2017, pp. 1–8. doi: 10.1109/SCCC.2017.8405111 (cit. on
pp. 2, 26).

[Resnick et al. 2009] Mitchel Resnick et al. “Scratch: programming for all”. Commu-
nications of the ACM 52.11 (Nov. 2009), pp. 60–67. issn: 0001-0782. doi: 10.1145/
1592761.1592779. url: http://doi.acm.org/10.1145/1592761.1592779 (cit. on pp. 1,
15).

[Sáez-López et al. 2016] José-Manuel Sáez-López, Marcos Román-González, and Es-
teban Vázquez-Cano. “Visual programming languages integrated across the
curriculum in elementary school: a two year case study using “scratch” in five
schools”. Computers & Education 97 (2016), pp. 129–141. issn: 0360-1315. doi:
https://doi.org/10.1016/j.compedu.2016.03.003. url: http://www.sciencedirect.
com/science/article/pii/S0360131516300549 (cit. on pp. 1, 19, 63, 67).

[Savi et al. 2011] Rafael Savi, Christiane Gresse von Wangenheim, and Adriano Bor-
gatto. “A model for the evaluation of educational games for teaching software
engineering”. In: Sept. 2011, pp. 194–203. doi: 10.1109/SBES.2011.27 (cit. on pp. 6,
56, 57).

[Shu 1986] Nan C. Shu. “Visual programming languages: a perspective and a di-
mensional analysis”. In: Visual Languages. Springer, 1986, pp. 11–34. isbn:
9781461318057 (cit. on pp. 7, 12).

[D. M. D. Souza et al. 2015] Draylson Micael De Souza, Seiji Isotani, and Ellen
Francine Barbosa. “Teaching novice programmers using progtest”. International
Journal of Knowledge and Learning 10.1 (2015), pp. 60–77. doi: 10.1504/IJKL.2015.
071054. eprint: https://www.inderscienceonline.com/doi/pdf/10.1504/IJKL.2015.
071054. url: https://www.inderscienceonline.com/doi/abs/10.1504/IJKL.2015.
071054 (cit. on p. 27).

https://doi.org/10.1145/3230977.3230981
http://doi.acm.org/10.1145/3230977.3230981
https://doi.org/10.1109/SCCC.2017.8405111
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/1592761.1592779
http://doi.acm.org/10.1145/1592761.1592779
https://doi.org/https://doi.org/10.1016/j.compedu.2016.03.003
http://www.sciencedirect.com/science/article/pii/S0360131516300549
http://www.sciencedirect.com/science/article/pii/S0360131516300549
https://doi.org/10.1109/SBES.2011.27
https://doi.org/10.1504/IJKL.2015.071054
https://doi.org/10.1504/IJKL.2015.071054
 https://www.inderscienceonline.com/doi/pdf/10.1504/IJKL.2015.071054 
 https://www.inderscienceonline.com/doi/pdf/10.1504/IJKL.2015.071054 
https://www.inderscienceonline.com/doi/abs/10.1504/IJKL.2015.071054
https://www.inderscienceonline.com/doi/abs/10.1504/IJKL.2015.071054


REFERENCES

89

[L. d. Souza et al. 2021] Lucas de Souza, Igor Felix, Bernardo Ferreira, Anarosa
Brandão, and Leônidas Brandão. “I know what you coded last summer”. In:
Anais do XXXII Simpósio Brasileiro de Informática na Educação. Online: SBC, 2021,
pp. 909–920. doi: 10.5753/sbie.2021.218673. url: https://sol.sbc.org.br/index.php/
sbie/article/view/18117 (cit. on p. 59).

[Sykes 2007] Edward R. Sykes. “Determining the effectiveness of the 3d alice program-
ming environment at the computer science i level”. Journal of Educational Comput-
ing Research 36.2 (2007), pp. 223–244. doi: 10.2190/J175-Q735-1345-270M. eprint:
https://doi.org/10.2190/J175-Q735-1345-270M. url: https://doi.org/10.2190/J175-
Q735-1345-270M (cit. on pp. 18, 62–64).

[Tan et al. 2009] P. Tan, C. Ting, and S. Ling. “Learning difficulties in programming
courses: undergraduates’ perspective and perception”. In: 2009 International Con-
ference on Computer Technology and Development. Vol. 1. Nov. 2009, pp. 42–46.
doi: 10.1109/ICCTD.2009.188 (cit. on pp. 8, 9).

[Taylor 1982] Robert P Taylor. Programming primer : a graphic introduction to com-
puter programming with BASIC and Pascal. English. Includes index. Reading, MA :
Addison-Wesley, 1982. isbn: 0201074001 (cit. on p. 7).

[Tennent 1976] R. D. Tennent. “The denotational semantics of programming lan-
guages”. Commun. ACM 19.8 (Aug. 1976), pp. 437–453. issn: 0001-0782. doi:
10 . 1145 / 360303 . 360308. url: http : / / doi . acm . org / 10 . 1145 / 360303 . 360308
(cit. on pp. 7, 29).

[Vainio and Sajaniemi 2007] Vesa Vainio and Jorma Sajaniemi. “Factors in novice
programmers’ poor tracing skills”. In: Proceedings of the 12th Annual SIGCSE
Conference on Innovation and Technology in Computer Science Education. ITiCSE
’07. Dundee, Scotland: ACM, 2007, pp. 236–240. isbn: 978-1-59593-610-3. doi:
10.1145/1268784.1268853. url: http://doi.acm.org/10.1145/1268784.1268853 (cit. on
pp. 8, 9, 64).

[Vee 2013] Annette Vee. “Understanding computer programming as a literacy”. Literacy
in Composition Studies 1.2 (2013). issn: 2326-5620. url: http://licsjournal.org/OJS/
index.php/LiCS/article/view/24 (cit. on pp. 1, 8, 10).

[Watson and F. W. Li 2014] Christopher Watson and Frederick W.B. Li. “C”. In: Pro-
ceedings of the 2014 Conference on Innovation & Technology in Computer Science Edu-
cation. ITiCSE ’14. Uppsala, Sweden: ACM, 2014, pp. 39–44. isbn: 978-1-4503-2833-
3. doi: 10.1145/2591708.2591749. url: http://doi.acm.org/10.1145/2591708.2591749
(cit. on pp. 5, 9).

[Whitley 1997] K. N. Whitley. “Visual programming languages and the empirical
evidence for and against”. Journal of Visual Languages & Computing 8.1 (1997),
pp. 109–142. issn: 1045-926X. doi: https://doi.org/10.1006/jvlc.1996.0030. url:
http://www.sciencedirect.com/science/article/pii/S1045926X96900300 (cit. on
p. 18).

https://doi.org/10.5753/sbie.2021.218673
https://sol.sbc.org.br/index.php/sbie/article/view/18117
https://sol.sbc.org.br/index.php/sbie/article/view/18117
https://doi.org/10.2190/J175-Q735-1345-270M
https://doi.org/10.2190/J175-Q735-1345-270M
https://doi.org/10.2190/J175-Q735-1345-270M
https://doi.org/10.2190/J175-Q735-1345-270M
https://doi.org/10.1109/ICCTD.2009.188
https://doi.org/10.1145/360303.360308
http://doi.acm.org/10.1145/360303.360308
https://doi.org/10.1145/1268784.1268853
http://doi.acm.org/10.1145/1268784.1268853
http://licsjournal.org/OJS/index.php/LiCS/article/view/24
http://licsjournal.org/OJS/index.php/LiCS/article/view/24
https://doi.org/10.1145/2591708.2591749
http://doi.acm.org/10.1145/2591708.2591749
https://doi.org/https://doi.org/10.1006/jvlc.1996.0030
http://www.sciencedirect.com/science/article/pii/S1045926X96900300


90

REFERENCES

[Wilcox 2015] Chris Wilcox. “The role of automation in undergraduate computer
science education”. In: Proceedings of the 46th ACM Technical Symposium on
Computer Science Education. SIGCSE ’15. Kansas City, Missouri, USA: ACM, 2015,
pp. 90–95. isbn: 978-1-4503-2966-8. doi: 10.1145/2676723.2677226. url: http:
//doi.acm.org/10.1145/2676723.2677226 (cit. on p. 28).

[Wing 2006] Jeannette M. Wing. “Computational thinking”. Commun. ACM 49.3 (Mar.
2006), pp. 33–35. issn: 0001-0782. doi: 10 . 1145 / 1118178 . 1118215. url: http :
//doi.acm.org/10.1145/1118178.1118215 (cit. on pp. 1, 10).

[Yu et al. 2017] Y. T. Yu, C. M. Tang, and C. K. Poon. “Enhancing an automated system
for assessment of student programs using the token pattern approach”. In: 2017
IEEE 6th International Conference on Teaching, Assessment, and Learning for Engi-
neering (TALE). Dec. 2017, pp. 406–413. doi: 10.1109/TALE.2017.8252370 (cit. on
pp. 5, 25, 27, 37).

https://doi.org/10.1145/2676723.2677226
http://doi.acm.org/10.1145/2676723.2677226
http://doi.acm.org/10.1145/2676723.2677226
https://doi.org/10.1145/1118178.1118215
http://doi.acm.org/10.1145/1118178.1118215
http://doi.acm.org/10.1145/1118178.1118215
https://doi.org/10.1109/TALE.2017.8252370

	Introduction
	Research Method
	Design Science Method
	Applying the method to this project

	Theoretical Framework
	Computer Programming
	Programming Learning
	Computational Thinking

	Visual programming languages
	Formal definition of Visual Languages
	Visual Programming System
	Programming learning and Visual Programming


	Related Work
	Automatic Assessment tools
	Static and Dynamic Assessment
	Improving Automatic Assessment Methods
	Automatic Assessment and Programming

	Abstract Syntax Tree

	Visual Code Assessment Tool - VCAT
	VCAT's Architecture
	Implementing Ftrans
	VCAT's core:  M software component
	AST component
	Code Executor & IO components
	Assessment component
	Assignment Description

	Model limitations

	VCAT instantiation
	Implementing software component  M
	AST package
	Code executor & IO packages
	Assessment package

	Instantiating for iVProg
	Implementation of Ftrans
	Inputting Ctext into  M

	Instantiating for Blockly
	Implementing Ftrans
	Inputting Ctext into  M


	VCAT Evaluation
	Experiment
	Questionnaire
	Results

	Exercises' grades analysis

	Discussions
	Questionnaire answers
	iVProg and VPL grade analysis

	Conclusions
	Final considerations
	Future work

	Syntax rules for VCAT textual language presented using EBNF language
	List of the built-in functions available in VCAT
	Conversion
	Mathematics
	Text
	IO

	References

