• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Disertación de Maestría
DOI
https://doi.org/10.11606/D.45.2021.tde-16122021-182010
Documento
Autor
Nombre completo
Antonio Augusto Abello
Dirección Electrónica
Instituto/Escuela/Facultad
Área de Conocimiento
Fecha de Defensa
Publicación
São Paulo, 2021
Director
Tribunal
Hirata Junior, Roberto (Presidente)
Gomes, David Menotti
Wang, Zhangyang
Título en inglés
Two studies on Convolutional Neural Networks sensibility to resolution
Palabras clave en inglés
Deep learning
Face recognition
Super resolution
Resumen en inglés
Convolutional Neural Networks (CNNs) recently became the state-of-the-art for various Computer Vision tasks. However, for reasons not completely understood, they are very sensitive to low resolution images. This can be troublesome as real life applications such as automated driving or surveillance can not use high resolution sensors. In this work we perform two studies on this subject matter: on the first we empirically study the effect of resolution loss and image restoration algorithms on a Face Recognition model. On the second, we study the high frequency bias hypothesis, one of the current possible explanations for CNNs sensitivity. We are able to develop new techniques for image restoration that better deal with the low resolution recognition problem and advance the understanding of the high frequency bias in CNNs.
Título en portugués
Dois estudos sobre a sensibilidade de Redes Neurais Convolucionais à resolução
Palabras clave en portugués
Deep learning
Reconhecimento facial
Super-resolução
Resumen en portugués
Redes Neurais Convolucionais (CNNs) recentemente se tornaram o estado-da-arte em várias áreas de Visão Computacional (CV). No entanto, por razões não completamente conhecidas, elas são bastante sensíveis à imagens de baixa resolução. Isso pode se tornar um problema para aplicações no mundo real, uma vez que para casos como o de vigilância ou direção automatizada nem sempre sensores de alta resolução podem ser utilizados. Neste trabalho conduzimos dois estudos sobre esse assunto: no primeiro estudamos empíricamente o efeito de perda de resolução e do uso de algoritmos de restauração de imagens em um modelo de Reconhecimento Facial (FR). No segundo, estudamos a hipótese do viés para altas frequências, uma das possíveis explicações para a sensibilidade de CNNs. No trabalho conseguimos desenvolver novas técnicas de restauração que ajudam melhor no problema de reconhecimento em baixa resolução e aprofundamos o entendimento atual sobre viés para altas frequências em CNNs.
 
ADVERTENCIA - La consulta de este documento queda condicionada a la aceptación de las siguientes condiciones de uso:
Este documento es únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro. Esta reserva de derechos afecta tanto los datos del documento como a sus contenidos. En la utilización o cita de partes del documento es obligado indicar el nombre de la persona autora.
tese_Abello.pdf (7.79 Mbytes)
Fecha de Publicación
2022-02-09
 
ADVERTENCIA: Aprenda que son los trabajos derivados haciendo clic aquí.
Todos los derechos de la tesis/disertación pertenecen a los autores
CeTI-SC/STI
Biblioteca Digital de Tesis y Disertaciones de la USP. Copyright © 2001-2022. Todos los derechos reservados.