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Resumo

Luciano Walenty Xavier Cejnog. Estimativa de pose de mão e análise de movimento no
contexto de terapia ocupacional. Tese (Doutorado). Instituto de Matemática e Estatística,
Universidade de São Paulo, São Paulo, 2021.

Estimativa de pose de mão é um problema considerado complexo dentro da área de visão
computacional com uma vasta gama de aplicações, especialmente na área de interface humano-
computador. Com a evolução do estado-da-arte em técnicas de aprendizado profundo e com
a popularização de sensores 3D de baixo custo, o estado-da-arte atual do problema vem se
atualizando continuamente e muitos métodos novos têm sido propostos nos últimos anos.
Esses métodos em sua maioria são baseados no uso de grandes volumes de dados para
treinamento, e alcançam resultados cada vez melhores nas bases de dados padronizadas, como
NYU, ICVL e HANDS17. Uma das aplicações que se bene�ciaria do uso de visão computacional
é a terapia ocupacional de mão. Por exemplo, em doenças crônicas como a artrite reumatoide
(AR), a avaliação do estado funcional do paciente é fundamental para o tratamento bem como
para a prevenção de deformidade dos dedos. Um dos procedimentos para o diagnóstico das
deformidades dos dedos é a medição dos ângulos de movimento, por exemplo a �exão/extensão
e abdução/adução dos dedos, feita por um goniômetro em um processo simples, mas que pode
ser invasivo e demorado para o paciente. Esta tese busca preencher uma lacuna do estado-da-
arte ao propor e avaliar a viabilidade da utilização de um arcabouço composto de um sensor 3D
de baixo custo e uma técnica estado-da-arte em estimativa de pose de mão 3D para aquisição
automática dos ângulos da mão em pacientes de artrite reumatoide. O algoritmo proposto é
aplicado em um conjunto de imagens de profundidade, retornando a posição das juntas da
mão estimadas a partir de uma rede neural convolucional profunda. O algoritmo utilizado
pode ser executado em tempo real, permitindo a visualização dos esqueletos resultantes ao
mesmo tempo em que as imagens são adquiridas. A partir dessa estimativa, os ângulos de
�exão/extensão e de abdução/adução da mão são calculados aplicando operações de geometria
computacional. A di�culdade em se encontrar bases de dados relativas a pessoas com AR torna
a estimativa de poses de mão dos pacientes um desa�o ainda maior para os métodos de visão
computacional baseados em dados. Dessa forma, foi proposto um protocolo de aquisição de
dados para grupos de pacientes e controle. Foram feitos experimentos de comparação com os
dados do goniômetro dos acometidos pela AR. Os resultados mostram que é possível distinguir
automaticamente os conjuntos de acometidos e controle usando descritores de Fourier. Os
ângulos mensurados pelo sensor podem ser usados como indicativo das capacidades de
movimento dos pacientes. O procedimento é simples, não invasivo e mais amigável para os
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acometidos pela AR, reduzindo o tempo de avaliação além de oferecer dados em tempo real
do movimento dinâmico.

Palavras-chave: Estimativa de pose de mão. Visão computacional. Terapia ocupacional.



Abstract

Luciano Walenty Xavier Cejnog. Hand pose estimation and movement analysis for
occupational therapy. Thesis (Doctorate). Institute of Mathematics and Statistics, University
of São Paulo, São Paulo, 2021.

Hand pose estimation is a challenging problem in computer vision with a wide range of
applications, especially in human-computer interface. With the development of inexpensive
consumer-level depth cameras and the evolution on deep learning techniques, the current
state-of-art in the problem is continuously developing and several new methods have been
proposed in recent years. Those methods are mostly data-driven and reach good results in
standard datasets such as NYU, ICVL and HANDS17. An application that would bene�t from
the use of computer vision techniques is hand occupational therapy. In chronic diseases like
rheumatoid arthritis (RA), the evaluation of the hand functional state is fundamental for the
treatment and prevention of �nger deformities. One of the procedures for deformity diagnosis
is the measurement of movement angles i.e. �exion/extension and abduction/addution, made
using goniometers in a process that can be time-consuming and invasive for the patient.
The main proposal of this PhD is to �ll a gap in the literature by proposing and evaluating
the viability of using a framework composed of a 3D low-cost sensor and a 3D hand pose
estimation state-of-art method for automatic assessment of rheumatoid arthritis patients.
Given depth maps as input, our framework estimates 3D hand joint positions using a deep
convolutional neural network. The proposed pose estimation algorithm can be executed
in real-time, allowing users to visualise 3D skeleton tracking results at the same time as
the depth images are acquired. Once 3D joint poses are obtained, our framework estimates
�exion/extension and abduction/adduction angles by applying computational geometry oper-
ations. The absence of public datasets with RA patients in the literature makes the estimation
of hand poses of patients a challenge for computer vision data-driven methods. We therefore
proposed a protocol to acquire new data from groups of patients and control. We performed
experiments of identi�cation of RA patients and control sets and also performed comparison
with goniometer data. Results show that a method based on Fourier descriptors is able to
perform automatic discrimination of hands with Rheumatoid Arthritis (RA) and healthy pa-
tients. The angle between joints can be used as an indicative of current movement capabilities
and function. The acquisition is much easier, non-invasive and patient-friendly, signi�cantly
reducing the evaluation time and o�ering real-time data for the dynamic movement.

Keywords: Hand pose estimation. Computer vision. Occupational therapy.
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Chapter 1

Introduction

This chapter de�nes the problem addressed and the goals of this thesis. Section 1.1
contextualizes the problem of using computer vision to help the evaluation of hand range of
motion in patients with rheumatoid arthritis. Section 1.2 formalizes the problem de�nition
as an investigation of computer vision techniques for hand range of motion evaluation.
Section 1.3 describes the main goal, Section 1.4 details the main contributions of the thesis,
and Section 1.5 provides an outline of how the rest of the thesis is organized.

1.1 Motivation

Hand pose estimation is an important task in the computer vision �eld, with several
applications in areas such as human-computer interface, augmented reality, sign language
recognition and robotics. It is a very challenging problem due to the high dimensionality
of the hand structure, self-occlusions and ambiguities on the model and the similarity
between the �ngers. With the recent development of consumer-level 3D depth cameras
and advances in computer vision and deep learning, some of those problems are mitigated
and more robust and accurate methods are being presented in each major conference and
journal of the area. Di�erent �elds of application could bene�t from the latest advances
on hand pose estimation.

An important �eld that was not explored in details by the computer vision community
(Meals et al., 2018) is hand surgery recovery and occupational therapy, in particular in the
treatment of Rheumatoid Arthritis (RA). RA is an autoimmune chronic disease that leads to
joint deformities due to an in�ammation that causes the erosion of tissues, including bones.
This in�ammatory mechanism was discovered very recently (Donate et al., 2021). Findings
of population-based studies show RA a�ects 5 to 10% of adults in developed countries. The
disease is three times more frequent in women than men, and 50% of risk of developing
RA is attributable to genetic factors (Scott et al., 2010). The clinical complaints include
pain, swelling and motion limitations of the a�ected joints. A physical examination will
reveal the presence of pain, increased joint volume, intra-articular e�usion (presence of
intra-articular �uid), heat and eventual redness. Recent advances in occupational therapy
research indicate that the �rst 12 months with RA symptoms stand out as an acknowledged
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“window of therapeutic opportunity” (Mota et al., 2013). Therefore, identifying the disease
in its early stages is fundamental in preventing its progression.

Figure 1.1 shows an example of hand with rheumatoid arthriris and ulnar deviation in
contrast with a normal hand.

Figure 1.1: Example of hand with ulnar deviation from a patient on hand �exor tendon surgery

recovery (on the right), in contrast with a normal hand of the same patient (on the le�). Courtesy of

Prof. Valeria Elui.

One common step in the treatment of rheumatoid arthritis is the design of orthoses for
injured hands. Orthoses are external devices applied to any part of the body to stabilize it
or immobilize it, prevent or correct deformities, protect against injury, maximize function
and reduce the pain caused by deformity (Goia et al., 2017). Orthoses are tailor-made by
therapists and for the hand case act like a lever system distributing the force applied to
the ulnar deviation. Figure 1.2 illustrates and presents details about hand orthoses used on
the patients that participated of the dataset formation.

The evaluation of hand function is fundamental for the therapist to plan the treatment
as well as record the results. Literature in hand therapy de�ne metrics and guidelines in
order to extract those metrics with precision (Marques, 1997). A widely used metric for
measuring the joint angles is range of motion (ROM). The range of motion is de�ned as
the quantity of movement of an articulation. Active range of motion refers to movement
without interference of external factors, providing information about the capacity, coordi-
nation and muscular power of the patient. Passive range of motion refers to movement
only by external factors, and it is used to verify the integrity of articular surface and the
extensibility of the articular capsule (Norkin and White, 1997). It is conventioned by
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(a) Parts of an orthosis. Courtesy of Prof. Valéria Elui.

Figure 1.2: Example of an orthosis used on the hand, tailor-made devices made to distribute the

force and leverage the e�ects of rheumatoid arthritis.

occupational therapists that the erect anatomical posture corresponds to 0◦ of movement.
Thus, the maximal amplitude value for each articulation is 180◦. In this thesis, we will
focus on measuring active range of motion for hand articulations, using the movement
patterns of �exion/extension and abduction/adduction. Figures 1.3 and 1.4 show examples
of �exion and abduction movements recorded from control and patients.

Table 1.1 shows the minimal and maximal amplitude considered normal for the hand
angles, according to Marques (1997). Figure 1.5 shows the corresponding joints for a hand
model.

Joint Movement Min Amplitude Max Amplitude
Metacarpophalangeal (MCP) Flexion 0◦ 90◦

Extension 0◦ 30◦
Abduction 0◦ 30◦
Adduction 0◦ 20◦

Interphalangeal (PIP and DIP) Flexion 0◦ 110◦
Extension 0◦ 10◦

Thumb CMC Flexion 0◦ 15◦
Extension 0◦ 70◦
Abduction 0◦ 70◦

Table 1.1: Standard measurements for joint angles in goniometry (Marques, 1997).

Typically, Disabilities of the Arm, Shoulder and Hand (DASH ) questionnaires (Orfale
et al., 2005) are used to assess hand function during the recovery process. This evaluation
method is based on the patient qualitative self-evaluation of di�culty in the execution
of daily activities, such as writing, preparing a meal or making a bed. Quantitative evalu-
ation of the hand function is usually assessed by active range of motion measurements.
The standard procedure for this evaluation is the use of a goniometer. With a speci�c
hand/�nger goniometer, as exempli�ed in Figure 1.6, the therapist can access objectively
and reliably the range of motion measurements. Such devices are widely used due to their
simplicity and low cost. The procedure, however, requires a trained therapist that follows
the protocols, is time consuming and requires a careful setup and patient positioning.

Although the manual goniometer is a widely used device for assessing hand angles,
the literature has explored alternatives for automatizing the measurement procedure.
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(a) (b) (c)

(d) (e) (f)

Figure 1.3: Example of extension/�exion movement. Frames were recorded using the Intel
RealSense® SR300 sensor, and a hand pose estimation algorithm was applied in order to provide the

hand joints.

One possibility for automatizing range of motion measurements is the use of electric
sensors (Tajali et al., 2016; Gutiérrez-Martínez et al., 2014). The results presented
show that those devices are reliable and obtain measurements highly correlated to the
ones obtained by manual goniometry, but the technology is still expensive and of limited
distribution.

Another idea that has been explored is digital photogrammetry, which consists in the
determination of angles in hand images. This approach was mostly used by surgeons,
and some recent works indicate that the reliability of this method has increased over the
years (Carvalho et al., 2012). However, viability studies in the literature (Ellis et al., 1997;
Bruton et al., 1999; Meals et al., 2018) show that the use of digital photogrammetry has
limited reliability and precision for measuring hand joint angles in comparison to the
manual goniometry. According to Meals et al. (2018), one of the main limitations of this
approach is that the result is not immediately assessed: joints must be photographed and
then measured. This work indicates future possibilities of using 3D scanning and video
capture technology to the development of an automatic goniometer for the hand. Most
state-of-the-art hand pose estimation methods, including the Pose-REN method used in
our pipeline (Chen et al., 2019), present the possibility of assessing results in real-time,
simplifying the automation of the process.

Among recent works that proposes solutions based on computer vision for occupational
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(a) (b) (c)

(d) (e) (f)

Figure 1.4: Example of abduction/adduction movement. Frames were recorded using the Intel
RealSense® SR300 sensor, and a hand pose estimation algorithm was applied in order to provide the

hand joints.

therapy in general, Pereira et al. (2017) proposes a smartphone accelerometer-based app
to measure active and passive knee ROM in a clinical setting. The hand problem, however,
is arguably more challenging than the knee, and 2D hand pose estimation results are still
not reliable (see Section 2.4). An alternative is the use of depth sensors, and despite its
recent rise of popularity few works to date make use of such devices for this task. We
highlight the work of Lima et al. (2016), that uses information obtained by a Leap Motion
sensor to estimate hand angles. Leap Motion is a sensor developed for hand tracking in the
context of Human-Computer interaction and is composed by three 2D cameras and two
monochromatic infra-red sensors. This sensor was tested in our pipeline as input for hand
analysis. However, we chose not to use it because the black-box hand pose estimation
algorithm presented in the SDK is not suitable for hands with ulnar deviation and did not
yield feasible results to practical use in our preliminary setup tests (see more in Section
3.1).
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Figure 1.5: Identification of hand joints. This figure was produced using the Intel Realsense
®

SR300

sensor, with real data from a hand with Rheumatoid Arthritis and an orthosis. The joints follow the

hand model used in the HANDS17 dataset.

This thesis seeks to evaluate the possibilities of using state-of-art computer vision-
based systems to assist the therapists in diagnosing rheumathoid arthritis. This PhD
research is part of the project “Hand tracking for occupational therapy” (proc. FAPESP
14/50769-1), that aims to study computer vision techniques capable of providing support
to hand �exor tendon surgery recovery. The project is a collaboration with Professor
Teó�lo E. Campos, from the Computer Science Department at the Universidade de Brasília
(UnB), Professor Adrian Hilton, from the Centre for Vision, Speech and Signal Processing
(CVSSP) of the University of Surrey, Professor Janko Calic, who was also at the CVSSP but
moved to the BBC in 2015, Professor Maria da Graça Campos Pimentel, from Instituto de
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(a)

(b)

Figure 1.6: Examples of goniometers used for hand range of motion measurements (provided

courtesy by Prof. Valéria Elui).

Ciências Matemáticas e de Computação from USP, and Professor Valeria Meirelles Carril
Elui, Faculdade de Medicina de Ribeirão Preto, USP.

1.2 Problem de�nition

The project aims to investigate the use of computer vision techniques to provide
objective feedback to the patient and to produce quantitative evaluations about their hand
movement function and evolution. Ideally, the framework should handle patients with
rheumatoid arthritis and also healthy hands.
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In particular, we detail the development of a new framework for hand data acquisition,
pose estimation and analysis, that can be applied to Rheumatoid Arthritis patients. The
camera-based framework can enhance the comfort of the patient and the e�ciency during
the range of motion angle assessments. The procedure is markerless, does not require
setting up an environment or external structure to capture those measurements and uses
state-of-art computer vision techniques.

For data acquisition, the objective is to create a dataset containing hand poses from
a group of occupational therapy patients with hand problems and from a control group
making the same set of movements (�exion and abduction). In hand pose estimation, the
objective is to estimate 3D joint positions from a raw depth image, obtained from a depth
sensor. For hand analysis, we seek to estimate �exion/extension and abduction/adduction
measurements from the skeletons estimated with the algorithm, and compare it with the
measurements obtained with a goniometer, which is a standard evaluation method for
occupational therapy.

1.3 Goal
The main goal of the thesis is to contribute to the development of a computer vision-

based framework for automatic hand range of motion measurements aiming to help
therapists and patients with rheumatoid arthritis. This framework should use a setup for
data acquisition that is simple enough for use in a therapeutic setting of an hospital or
clinic. In this context, the speci�c goal of this work is to develop computer vision methods
to estimate hand joint angles in sequences of depth images, evaluating �nger movement
patterns of �exion/extension and abduction/adduction.

1.4 Contributions
The main contributions of the thesis are listed below:

• We propose an original end-to-end hand pose estimation and �nger movement
analysis approach for occupational therapy;

• We apply a state-of-the-art hand pose estimation method (Chen et al., 2019) for
automatic �nger range of motion evaluation of patients in hand occupational therapy;

• We propose hand movement analysis tools based on the estimated angles and range-
of-motion measurements from skeletons - we describe these results in the publication
"Hand range of motion evaluation for Rheumatoid Arthritis patients", presented in
the 14th IEEE International Conference on Automatic Face and Gesture Recognition

(Cejnog, de Campos, Elui, and R. M. Cesar Jr., 2019);

• We propose a dataset acquisition protocol and report the main decisions, di�culties
of the process and the �nal acquisition protocol;

• We present a new dataset of depth maps and hand tracking results obtained using
from patients of Rheumatoid Arthritis being treated at the Hospital das Clínicas in
the Faculdade de Medicina Ribeirão Preto / University of São Paulo;
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• We perform experiments with the dataset, comparing with measurements obtained
by goniometers. Although the accuracy of the comparison is limited, a simple Fourier
Descriptor in the time series of angle measurements is capable of discriminating be-
tween patients and healthy subjects - these results were presented in the publication
“A framework for automatic hand range of motion evaluation of rheumatoid arthritis
patients”, published in Informatics and Medicine Unlocked (Cejnog, de Campos, Elui,
and Roberto Marcondes Cesar Jr., 2021).

1.5 Organization
The rest of this document is organized as follows: Chapter 2 presents a literature

review on hand pose estimation and details the state-of-art method used in our framework.
Chapter 3 details the data acquisition and dataset formation, while Chapter 4 describes the
methods used for hand pose estimation and hand analysis. Chapter 5 presents experimental
results, identifying patterns that de�ne control and patient sets. That chapter also presents
a comparison of measurements obtained by sensors with goniometer measurements.
Chapter 6 presents concluding remarks.





11

Chapter 2

Bibliographical review on hand
pose estimation

The literature on hand function evaluation for therapists, together with some related
traditional techniques was discussed in Chapter 1. In this chapter we present a bibliograph-
ical review for hand pose estimation. We describe the methods subdivided in a historical
cut: early methods (1997-2007), depth sensors (2011 - 2016), deep learning on depth maps
(2016 to state-of-the-art) and deep learning on RGB images (2017 to state-of-the-art). We
decided to treat image-based deep learning methods in a separated section because the
nature of the solutions and the datasets used for comparison are speci�c for methods in
this category.

2.1 Early methods
The hand is a natural interface to input data to machines, hence the high interest

on gesture recognition for Human-Computer Interaction. The �rst applications on hand
gesture recognition were based on sensors and gloves, such as the CyberGlove (Kessler
et al., 1995), illustrated in Figure 2.1, and MIT Data Glove (Zimmerman et al., 1987).
However, the use of such devices limit the applicability of hand tracking to unnatural
interactions.

Another version of the problem is markerless image-based hand pose estimation,
that has immediate applications for which many solutions have been proposed with
single-viewpoint and multi-viewpoint input devices. Image-based methods for hand pose
estimation are strongly based on machine learning, using characteristics such as hand
shape, orientation, �nger’s �exion angles, among others.

Some early works on hand pose estimation were based on multiple RGB views, as
a solution to reduce data ambiguity. In this context, the works of Erol et al. (2007) and
Campos (2006) present an overview of multi-view hand tracking methods. The thesis
of Campos (2006) present methods for skin segmentation, articulated object tracking
and multiple view hand pose estimation. Figure 2.2 presents the pipeline introduced in
Campos and Murray (2006), which uses multiple views, skin colour segmentation, contour
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Figure 2.1: CyberGlove II, reproduced from h�p://www.cyberglovesystems.com/cyberglove-ii/ ,

accessed in 16/11/2017.

extraction and computation of global image descriptors. That pipeline follows a framework
based on bags of visual words. The global descriptors of all views are concatenated and
used as input to RVM, a sparse regressor for pose estimation.

Figure 2.2: Pipeline proposed by Campos (2006) for multiple view hand pose estimation (repro-

duced with permission from the author).

Another line of works is based on tracking of single RGB sequences, applying general
object tracking models. In this context, we highlight the work of Stenger et al. (2006),
that combines a hierarchical-based articulated object detection with a probabilistic particle
�ltering tracking model. Detection is based on a tree-based detection and �ltering that
uses training data for pose clustering, modeling edge and color likelihoods. Tracking uses
a Markov transition matrix, model that estimates the probabilities of state transitions to
infer future states in the hierarchical tree search space. The main limitation of this method
is that the angular resolution and allowed appearance of the results are dependent of
the number of poses on the training set. This work was the basis for many hand gesture

http://www.cyberglovesystems.com/cyberglove-ii/
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recognition and tracking systems. For more references on the hand gesture recognition
problem, refer to the survey of Pisharady and Saerbeck (2015).

2.2 Methods based on depth sensors
With the development of low-cost depth sensors, most methods started to use depth

maps as input. The use of depth sensors reduce the data ambiguity without the necessity
of con�guring and calibrating a multiple view setup, making easier the hand pose esti-
mation task. Oikonomidis et al. (2011) pioneered the use of depth sensor data for hand
tracking. The basic idea is the minimization of an energy function using a Particle Swarm
Optimization (PSO) system. Later, the project focused on tracking the articulated motion
of two hands (Oikonomidis et al., 2012).

Approaches based on minimizing an energy term over a model are called generative
(or model-driven) methods, being developed in contrast to discriminative (or data-driven)
methods, which are based on learning over a dataset. Hybrid approaches combine discrim-
inative and generative subtasks in their pipeline.

Among generative and hybrid methods, a project from Microsoft1 has presented several
new solutions (Sun et al., 2015; Sharp et al., 2015; Tang et al., 2015) for this problem.
Sun et al. (2015) present a coarse-to-�ne hierarchical approach, based on the degrees of
freedom of each joint of the model. The pose of di�erent parts of the hand is recovered
sequentially, following the order of complexity of each point. Two metrics are used: the
per-joint error averaged on all images and the percentage of successful frames (success
rate). A new dataset was also made available by the authors.

Sharp et al. (2015) propose an analysis by synthesis approach to hand tracking, infering
the parameters that allow the generation of the input image. The method is based on
hand RoI extraction, per-frame reinitialization and model �tting (based on PSO). The
function minimized in the model �tting process is named golden energy and represents
the di�erence between joints of a rendered model over the depth image and the position
of the points in raw depth maps.

Tang et al. (2015) propose a sequence of predictors organized into a kinematic hierarchy,
following the basic idea of Sun et al. (2015)’s approach. For each step of the predictor,
the method produces random samples, minimizes the energy and estimates a partial pose.
The generation of random samples is made through a regression forest. The method is
evaluated with respect to the variation of the number of particles.

Still among the model-based approaches, Tagliasacchi et al. (2015) and Tkach et al.

(2016) adapt the golden energy term proposed at Microsoft by adding terms based on
normal compatibility and closest-point correspondences. Those works were important in
showing that classical solutions like the Iterative Closest Point (ICP) algorithm could be
adapted in order to help solving harder problems.

Many databases were developed in order to measure and compare model errors. Initially
databases like Dexter1 (Sridhar et al., 2013), Synthetic (later called MSHD, designed for

1h�ps://www.microso�.com/en-us/research/project/fully-articulated-hand-tracking/

https://www.microsoft.com/en-us/research/project/fully-articulated-hand-tracking/
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Figure 2.3: Hierarchical hand pose detection pipeline, extracted from Tang et al. (2015). Copyright

©2015 IEEE.

stress-test robustness) and Fingerpaint (video and depth captured from painted hands,
providing a semi-automatic ground-truth). More recently, three main datasets have been
used - ICVL (Tang et al., 2015), NYU (Tompson et al., 2014) and MSRA (Sun et al., 2015).
Those datasets provide hand data with annotated joint poses, and are described with more
details in Section 2.5.

2.3 Methods based on deep learning
In recent years, the development of deep learning algorithms led to signi�cant advances

in machine learning and its applications, particularly in Computer Vision (LeCun et al.,
2015).
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The advent of those new machine learning algorithms combined with the development
of accurate solutions for 2D joint detection based on CNNs (S.-E. Wei et al., 2016; Newell
et al., 2016), like Convolutional Pose Machines (illustrated in Figure 2.4), led the community
of hand pose estimation to design methods based on convolutional neural networks
(Oberweger and Lepetit, 2017; Oberweger, Wohlhart, et al., 2015; Zhou et al., 2016;
Ge et al., 2017; Guo et al., 2017).

Figure 2.4: Advances in machine learning allowed significant progress in 2D joint detection, with

new methods like Convolutional Pose Machines, reproduced from S.-E. Wei et al. (2016). This

method uses a sequential architecture composed of CNNs, producing increasingly accurate estimates

for joint locations, illustrated in parts (a) predicting from local evidence, (b) multi-part context and

(c) convergence from additional iterations. Those advances also impacted on new solutions for hand

pose estimation. Copyright ©2016, IEEE.

Those methods di�er among themselves in the neural network architecture and type,
the input image type, the hand representation used and the use of prior constraints. As an
example, the DeepPrior++ (Oberweger and Lepetit, 2017) uses a Residual Neural Network,
which is a deep network whose training is based on minimizing residual weights in each
layer. This work uses data augmentation in the training, such that realistic samples can be
generated from simple geometric transformations over the original training samples. Guo
et al. (2017) use an ensemble-based neural network, which integrates the results of di�erent
regressors in di�erent regions of the image. Chen et al. (2019) compute a feature map
for each joint and fuse those maps using a structured region ensemble network (named
Pose-REN), reaching competitive results. Wan et al. (2017) propose the use of Generative
Adversarial Networks (GAN) and Variational Autoencoder (VAE), two strong ideas in the
recent wave of advances in machine learning. The VAE is used in order to learn and model
the distribution of hand poses, and the GAN is used to model the distributions of depth
images. In the training process, the method learns a mapping between the latent spaces of
both networks in a multitask optimization framework. This method allows training and
learning from unlabeled data.

Another line of work includes methods based on volumetric information, which use
context features of the 3D point sets in order to more accurately locate the joints. Methods
such as Anchor-to-Joint (A2J) (Xiong et al., 2019), V2V-PoseNet (Moon, Chang, et al., 2018)
and DenseNet (Wan et al., 2018) currently reach very competitive results in all state-of-art
datasets for hand pose estimation. DenseNet obtains the hand pose by fusing 2D and 3D
heatmaps.
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Moon, Chang, et al. (2018) uses an encoder-decoder architecture to convert the 2D
depth image in a 3D voxel grid, and then estimates the per-voxel likelihood of each
keypoint, identifying the positions of highest likelihoods in the V2V-PoseNet method.
Those positions are then warped back to real world coordinates. This approach has the
drawback of the high computational cost of the voxelization procedure, increasing the
di�culty of the training process.

A2J (Xiong et al., 2019) uses anchor points in the depth image which capture the global-
local context information. The joint position is regressed by weighting the in�uence of
each anchor point. The neural network used is a 2D-CNN, which lowers the computational
cost of training.

Fang et al. (2020) recently proposed JGR-P2O, a system for pixel-to-o�set prediction
based on joint graph reasoning. This system explicitly models the dependencies among
joints and the relations between pixels and the joints for better local feature representation
learning. This method uni�es pixel-wise o�set predictions and direct joint regression for
end-to-end training, leading to state-of-the-art results with a relatively low computational
cost.

A recent approach also worth-citing is that of Poier et al. (2018), that uses multiple
views to learn implicit pose representations of the hand. An important aspect of this
approach is that the training is semi-supervised, using labeled and unlabeled data.

The development of deep learning methods brought the necessity of larger datasets.
As a consequence, new million-scale datasets have been made available in 2017: the
BigHand2.2M (Yuan, Ye, et al., 2017) and First-Person Action dataset (Garcia-Hernando
et al., 2018). With these datasets, deep learning methods can use a much larger training
set and reach better results. To consolidate the trend of using CNNs, the International
Conference on Computer Vision board organized the HANDS in the million 2017 challenge
on 3D pose estimation (Yuan, Garcia-Hernando, et al., 2018a)2, a competition on a
benchmark using the BigHand2.2M dataset.

The results of this challenge were presented by Yuan, Ye, et al. (2017) in the form of
a survey that discusses design choices as well as the corresponding evaluation results.
Aspects evaluated and taken into account were:

• The nature of the input images (2D or 3D): while depth images can be seen as 2D
points with depth, some methods perform joint detection in a 3D voxel grid: result
shows that 3D volumetric representation presents higher performance;

• If the method uses probability density maps (detection-based) or regresses the
parameters directly from the depth image (regression-based): results point that
detection-based methods tend to outperform regression-based methods, but regres-
sion methods can reach good results using explicit spatial constraints;

• Whether the regression is hierarchical (regression is made by subtasks, usually
branches of joints are detected separately and concatenated) or holistic (the whole
hand pose is regressed directly in one optimization step), and whether structural
constraints and priors are incorporated in the network: it was found that the error

2h�p://icvl.ee.ic.ac.uk/hands17/challenge/

http://icvl.ee.ic.ac.uk/hands17/challenge/
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Figure 2.5: Hand pose samples from the BigHand2.2M dataset, reproduced from Yuan, Ye, et al.

(2017). Copyright ©2017, IEEE.

on occluded joints is narrowed in methods with explicit modeling of structure
constraints and hierarchical joints;

• Whether the training is divided in stages and one stage is used to enhance the result
of the subsequent stages: cascaded methods performed better in general;

• In general, discriminative methods still generalize poorly to unseen hand shapes,
and the use of models with better generative capacity can be a promising choice.

The method with the best result on the challenge is A2J (Xiong et al., 2019), while
JGR-P2O (Fang et al., 2020) is the best performing method on NYU and ICVL datasets.

The current panorama of the area indicates the continuous improvement of methods
based on deep CNNs for depth images and that there are e�orts of many research groups
around the world in this direction.

Although a lot of improvement has been observed since the �rst commodity depth
sensors became available, all methods have their limitations and depth maps are still far
from perfect. One potential direction for future work is to exploit a pre-processing step to
denoise depth maps using a method such as that of Yan et al. (Chenggang Yan, Li, et al.,
2020).

Another potential approach for 3D hand pose estimation is the use of a tracking-as-
detection method (or indeed, tracking-as-retrieval), similar to what was done by Stenger
et al. (2006). Despite the relative success back then, such an approach does not seem to
have been explored again since the deep learning revolution. The deep multi-view retrieval
method (Chenggang Yan, Gong, et al., 2020) has certainly a high potential of success in a
tracking-as-retrieval framework.
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2.4 Deep Learning image-based methods

With the development of new solutions for 2D joint detection based on CNNs (as
mentioned in Section 2.3), new methods that use learning-based 2D joint detection and
Inverse Kinematics have been proposed to estimate hand pose based exclusively on RGB
image (Zimmermann and Brox, 2017; Panteleris and Argyros, 2017; Mueller et al.,
2018; Panteleris, Oikonomidis, et al., 2018). The development of monocular image-based
pose estimation methods is important for generalization and ease of use, but the absence
of the depth dimension makes the problem much harder. Data-driven methods need much
larger datasets to train in order to obtain a good generalization capacity.

As far as we are aware, the �rst method to perform 3D hand pose estimation from
2D input using deep learning was the approach of Zimmermann and Brox (2017). This
method uses three networks in order to compute probability maps. The �rst network
(HandSegNet) is based on the person detector provided by S.-E. Wei et al. (2016), casting
the hand localization as a segmentation problem. The training process is done with the
synthetic dataset presented in the paper (RHD dataset). With the mask provided by this
network, the image is cropped and normalized. The pipeline follows with the identi�cation
of 2D keypoints on the segmented region, using an architecture similar to the Pose Network
(PoseNet) also presented in S.-E. Wei et al. (2016). The following step is the application of
the PosePrior network, in order to estimate the most likely 3D con�guration given the 2D
keypoints. This network is trained with respect to a canonical frame, and this makes the
training more e�cient.

Mueller et al. (2018) identi�ed that the approach of Zimmermann and Brox (2017)
generalizes poorly to real world images due to the use of synthetic images in the training
process. To minimize this problem, Mueller et al. (2018) propose the use a Cycle-GAN
to enhance synthetic data, such that its statistical distribution resambles real-world hand
images. After the training, the method applies a CNN (RegNet) to predict 2D heatmaps
and 3D joint positions. The �nal step is a kinematic skeleton model �tting, through energy
minimization. Boukhayma et al. (2019) incorporate the use of the MANO hand model
(Romero et al., 2017). This is a di�erentiable model that encodes parameters of the view,
shape and pose for a hand image, and the method uses a Residual Network (He et al., 2016)
to train and estimate parameters of the model.

Recently, Santavas et al. (2020) presented a single-stage method, based on a lightweight
architecture. This method uses DenseNets as a backbone - each layer propagates its own
features to subsequent layers through a channel-wise concatenation. The method relies
on a new neural network block (Attention Augmented Inverted Bottleneck Block) and
modi�ed pooling (blur pooling) and activation (Mish) functions. The method of Santavas
et al. (2020) is currently the best method in all datasets (Simon et al., 2017; Hampali et al.,
2019) used in the literature for 2D hand pose estimation, and it is expected that 2D methods
continue to evolve and reach better results.

Moon, Yu, et al. (2020) presented a dataset with 2.6 million images of 2D annotations
on hand interactions. Since the publication is very recent, the only method tested was the
baseline Inter-Net proposed in the publication, but it is expected that this dataset impacts
the quality and development of new solutions, with a much larger set of samples.
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There are other problems that relate to inferring 3D from 2D RGB images, such as
room layout estimation (C. Yan et al., 2020) can certainly inspire methods for hand pose
estimation without depth information. More closely related are the methods of 2D joint
detection based on CNNs and their successful application to problems such as human pose
estimation (Cao et al., 2021).

2.5 Summary of datasets
Table 2.1 presents a summary with the datasets cited through this chapter.

More information about the datasets proposed for hand pose estimation, as well as the
main papers published on conferences, theses, workshops and challenges are available in
the repository Awesome Hand Pose Estimation3, which is frequently updated with new
data, composing a snapshot of the state-of-the-art on hand pose estimation.

Dataset Input Year Synthetic /
Real

#frames
(train/test)

#subjects #joints Reference

Dexter1 Depth +
RGB

2013 Real 2137 1 6 Sridhar et al. (2013)

NYU Depth 2014 Real 72k/8k 2 36 Tompson et al. (2014)
ICVL Depth 2014 Real 331k/1.5k 10 16 Tang et al. (2015)
Fingerpaint Depth 2015 Synthetic 100k 1 21 Sharp et al. (2015)
MSRA Depth 2015 Real 76375 9 21 Sun et al. (2015)
HANDS17 Depth 2017 Real 2.2M 10 21 Yuan, Ye, et al. (2017)
RHD RGB 2017 Synthetic 41258 / 2728 20 21 Zimmermann and

Brox (2017)
FreiHAND RGB 2019 Real 130K/3960 - 21 Mueller et al. (2018)
InterHand2.6M RGB 2020 Real 2.6M 27 21 Moon, Yu, et al. (2020)

Table 2.1: Summary of the main datasets used in the literature in hand pose estimation.

2.6 Discussion
This chapter presented the main methods in the literature for hand pose estimation.

The popularization of depth sensors and the development of data-driven deep learning
methods allowed new solutions to arise, with deep learning approaches reaching the best
results to date in the standard datasets (ICVL, MSRA, NYU and HANDS17).

The RGB variant of hand pose estimation is a much more di�cult problem, in an earlier
state of development with deep learning solutions. The MANO hand model is an important
element in this pipeline, making easier the encoding of hand shape parameters in neural
network architectures.

In the context of our work, the goal was to �nd a method suitable for hands with
rheumatoid arthritis, as well as healthy hands. Ideally, the application would bene�t if
the method could handle 2D inputs, with the therapists being able to evaluate video RGB
inputs recorded from the patients remotely. Therefore, we made preliminary experiments
with the image-based method of Zimmermann and Brox (2017), whose source code was
made available by the authors4. The implementation of the method was publicly available

3h�ps://github.com/xinghaochen/awesome-hand-pose-estimation#datasets, committed on 28/03/2021
4h�ps://github.com/lmb-freiburg/hand3d

https://github.com/xinghaochen/awesome-hand-pose-estimation#datasets
https://github.com/lmb-freiburg/hand3d
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and we were able to perform qualitative evaluations. We evaluated qualitatively that the
results were inconsistent and very sensitive to skin tones and the presence of the orthosis.
However, since this method is a baseline for image-based deep learning methods, the use
of more re�ned approaches can deal with some of the drawbacks. Santavas et al. (2020)
show robust qualitative results for hand-object interaction, but skin tone diversity is an
issue that is still not addressed by any recent method or dataset.

In the project we opted to use a method based on depth images, since all the draw-
backs noticed were inherent to any method that uses RGB images as input. Depth image
processing considers only the geometry of the hand, and therefore such methods are not
a�ected by skin colour variations. The presence of the orthosis is also shown to be a
minor drawback in our evaluation. Therefore, depth-based methods have been considered
a better choice for data acquisition from patients with rheumatoid arthritis, considering
the current state-of-the-art the literature. We evaluated some methods in our pipeline, and
chose the Pose-REN method (Chen et al., 2019). Although more recent methods present
better results, this method is competitive in all datasets and can be executed in real-time.
Furthermore, the authors provide a demo code to run the method for any depth image
input using pre-trained models5, compatible with the Realsense SR300 sensor used in our
acquisitions. Our experiments showed that this method is robust in most situations, even
with the orthosis. More details on the dataset acquisition process and on the Pose-REN
method are described in Chapter 3 and Section 4.1, respectively.

As described in Section 1.1, the use of computer vision for joint estimation in a "real-
world" clinical setting is still under development and relies on the development of precise
methods to deal with the challenges inherent to the pose estimation problem. In particular,
for the hand/�nger problem, we were not able to identify computer vision approaches
in the literature that are trained speci�cally for precise joint identi�cation in health
applications.

However, we expect that the signi�cant advances in computer vision and hand pose
estimation can lead to a series of advances in the inherent applications. For hand occu-
pational therapy, the possibility of acquiring 3D frames and skeletons reduces most of
ambiguities found in 2D visual estimation, and its use in the treatment of patients can be
far less intrusive than the goniometers. It is worth mentioning that according to Meals
et al. (2018), one of the main weaknesses of digital photogrammetry is that joints must
be photographed and then measured. Most hand pose estimation methods, including
Pose-REN (Chen et al., 2019), present the possibility of acquiring results in real-time,
simplifying the method and favouring the automation of the process.

5h�ps://github.com/xinghaochen/Pose-REN/tree/master/src/demo

https://github.com/xinghaochen/Pose-REN/tree/master/src/demo
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Chapter 3

Data acquisition protocol and
dataset formation

In this thesis, we propose a complete framework for hand range of motion estima-
tion. This chapter details the dataset formation process and the framework proposed for
hand range of motion estimation, presented in Figure 3.1. This Chapter focuses on data
acquisition, detailing and illustrating project decisions about sensors, methods, patient
positioning and other issues found, which was the �rst step of the project implementation.
The proposed pipeline, illustrated in Figure 3.1 is able to extract and analyze hand joint
angle measurements from RGBD images acquired in real-time.

Data acquisition Hand pose estimation Hand movement analysis

Figure 3.1: Proposed pipeline, highlighting the developments of current Chapter. The next steps are

discussed in Chapters 4 and 5.

This Chapter presents a narrative of the process of iteratively designing acquisition
setups and evaluating recent methods, with data from real patients.

The development of the data acquisition module was made in collaboration with
Professors Valeria Elui and Daniela Goia at the Hospital das Clínicas at Faculdade de

Medicina de Ribeirão Preto (FMRP-USP), located at the University of São Paulo’s Ribeirão
Preto campus. We studied di�erent sensors and designed an acquisition protocol. As �rst
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step of the project, our goal was to design a baseline setup for data acquisition, study depth
sensors and acquire data from patients in recovery of �exor tendon surgery.

3.1 Data acquisition hardware and protocols
evaluation: �rst experiments

Initially the plan was to use three di�erent sensors in the acquisition, so that the hand
can be captured from multiple views. The evaluated sensors were: the Intel RealSense

®
R200,

suitable for acquisitions in medium range; the Intel RealSense
®

SR300, that can capture
points at a closer range, and the Leap Motion

®, which generates a black-box coarse hand
tracking result and is designed as an interface device for gesture recognition. The libraries
used in the project were librealsense and the Leap Motion Orion SDK.

(a) R200 (b) SR300 (c) Leap Motion

Figure 3.2: Sensors used on the initial setup.

The setup was built in a way to maximize the amount of relevant information extracted
from the three sensors, which are positioned at their minimal depth range that produces
stable results. This was a concern especially in the R200, since it is a medium range sensor.
It was positioned to capture the hand from a frontal view with a larger distance. The SR300
captures the hand from top viewpoint, and the Leap Motion in an even shorter distance,
from a bottom view. In some of the captured sequences the patient used an orthosis,
a mechanical device used on the treatment process in order to enhance the movement
capability.

Sensor Range (m) Depth resolution Num Cameras
Realsense R200 0.5m - 3.5m 480p 2 IR, 1 RGB
Realsense SR300 0.2m - 1.5m 480p 1 IR, 1 RGB

Leap Motion up to 0.8m 640x240 2 IR

Table 3.1: Attributes of the sensors used in the initial setup

The setup was mounted in an uniform background environment due to the expectations
of using RGB methods. The patient also wore a blue wristband in the �rst experiments in
order to facilitate �nding the wrist and identifying the hand. The sensors were disposed
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in such a way that the hand is positioned near to the minimal range of each sensor,
maximizing its capture resolution and details. Figure 3.3a shows a representation of the
setup from a side, with the measurements of the distances used in the sensor positioning.
Figure 3.3b shows the back view of the setup, after mounted.

(a) Diagram of the designed setup. The sensors were positioned such that

the distance to the hand is closer to the minimum range.

(b) Setup a�er

mounted.

Figure 3.3: Setup used on the acquisition process. All sensors were positioned to maximize the

capture resolution - the hand is positioned near to the minimal range of each sensor (40cm for the

SR300 and 50cm for the R200).

Initially, we acquired data from two di�erent patients in di�erent combinations of
the sensors. With the setup mounted, we were able to simultaneously obtain data from
all sensors. For one of the patients, three sequences were gathered with di�erent sensor
combinations. For the other patient, the dataset contains the same sequences with and
without an orthosis. In all sequences, the patient wore a blue wristband, to facilitate
the localization of the wrist. We observed an interference between the infrared lights
emitted by the SR300 and the Leap Motion, and took the decision of doing the acquisition
separatedly for the sensors. Figure 3.4 show samples of this acquisition.

We have then decided to acquire data using only the sensor SR300, since our objective
was to form a dataset from hands with unusual movement patterns and with orthosis. We
took the decision of withdrawing the R200 since the medium-range depth images captured
by this sensor do not capture enough detail of the hands (see Figure 3.4d). The Leap Motion
also had issues, and could rarely locate and track the hand. The hand tracking algorithm
of this sensor is a black-box algorithm, so it was impossible to assess depth maps and
evaluate results or perform �ne-tuning operations. Our assumption in this issue is that the
joints of the patients could not be recovered by the Leap Motion since they are di�erent
from the usual hand joint pattern. Figure 3.5 presents an example of data acquired in this
session.

We gathered sequences from �ve patients using the SR300, with and without the
orthosis. At this point, a new version of librealsense was released, with a record/playback
tool which was used for the acquisition. Besides, we evaluated an implementation of Guo
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(a) SR300 - Color (b) SR300 - Depth (normalized)

(c) R200 - Color (d) R200 - Depth (normalized)

Figure 3.4: Example of an acquisition from a patient with orthosis, from sensors SR300 and R200.

et al. (2017) and used it to qualitatively evaluate some of the results. Some sequences from
di�erent camera positions were obtained as well. Figure 3.6 presents a frame acquired in
this session.
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Acquisition 1 - July 12th 2017
Patients 3
Sequences 12
Frames 2889
Size (MB) 2827.8
Sequences with orthosis 3
Experiments Simultaneous captures with Leap Motion, SR300 and R200.

Conclusions

Leap Motion uses the same frequencies as R200 and SR300,
and an interference pattern can be seen in the depth
images. Since it is a medium/long range sensor, R200 does
not generate reliable data for hand pose estimation.

Decisions Acquire data from Leap Motion and SR300 separately. Stop
using the R200 sensor.

Table 3.2: Summary of the data acquisition experiment - July 12th. 2017

Acquisition 2 - October 11th 2017
Patients 1
Sequences 4
Frames 1353
Size (MB) 501.9
Sequences with orthosis 2

Experiments
Only separated captures obtained from SR300 and Leap
Motion. Only one of the scheduled patients attended. Some
control sequences were recorded.

Conclusions Leap Motion does not recognize hands with orthoses and
unusual shapes.

Decision Use only the SR300 sensor.

Table 3.3: Summary of the data acquisition experiment - October 11th. 2017

Acquisition 3 - November 23rd 2017
Patients 5
Sequences 10
Frames 6076
Size (MB) 1976.7
Sequences with orthosis 4

Experiments

All sequences were recorded with the SR300 sensor. As li-

brealsense2 was released, we used the new record/playback
tool to capture data. Some experiments were made with a
hand pose estimation algorithm.

Conclusions Hand tracking method had some di�culties to segment
the hand from the rest of the image.

Table 3.4: Summary of the data acquisition experiment - November 23rd. 2017
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(a) Color (b) Depth (normalized)

Figure 3.5: Example of an acquisition from the sensor SR300, made in October 11th.

(a) Color (b) Depth (normalized)

Figure 3.6: Example of an acquisition from the sensor SR300, made in November 23rd.

3.2 Hand pose estimation and acquisition protocol
improvements

The acquired data was used to test hand pose estimation methods, and choose an
adequate method for our framework. At a �rst moment, it was hard to �nd a method
suitable for use “in the wild”, with most methods being reproductible only in the evaluation
datasets, but we managed to test the methods of Guo et al. (2017) and Zimmermann and
Brox (2017) with the patient data. The implementation of both methods was available1

2, as well as an ’in-the-wild’ hand pose estimation applications that generated real-time
results for each frame. Those results, however, were shown to be inadequate, evidencing
issues in the setup.

Figure 3.7 shows the results of Zimmermann and Brox (2017) method. Since this
two-step method that uses segmentation is image-based, the presence of the orthosis and

1h�ps://github.com/lmb-freiburg/hand3d
2h�ps://github.com/guohengkai/region-ensemble-network

https://github.com/lmb-freiburg/hand3d
https://github.com/guohengkai/region-ensemble-network


3.2 | HAND POSE ESTIMATION AND ACQUISITION PROTOCOL IMPROVEMENTS

27

the poor skin segmentation obtained were issues that a�ected the quality of the results.
Figure 3.8 shows result samples of Guo et al. (2017) method. Since it is depth-based, the
demo works well when the hand is the closest element to the camera, but a background
clutter removal method is necessary for result enhancement. However, the level of details
in the results obtained were far from the desired level, even when the segmentation was
correctly made.

(a) In this case the failure on the hand segmentation

(bottom le�) yields a bad pose recovery.

(b) The HandSegNet worked better in this image,

leading to a better result if compared to (a), that

shows a similar hand pose.

(c) This is a case with the orthosis, and it a�ects

strongly the color-based hand segmentation and

consequently the hand pose estimation.

(d) This case is a�ected by the occlusion caused

by the orthosis and by the poor result of the

segmentation.

Figure 3.7: Sample results from Zimmermann and Brox (2017) method in one frame of our dataset.

Following these experiments, it was decided that the hand pose estimation should
be executed in real-time during the capture, allowing the repositioning of the hand by
the therapist. The real-time execution of the code demanded an equipment with GPU
processing and CUDA library.

In this meantime, the Pose-REN method (Chen et al., 2019) was published as a preprint
and its implementation was available in the repository of the authors. With the availability
of a pre-trained model on HANDS17 dataset, we were able to get much more accurate
results. The main constraint of the method was the need of a background clutter removal
algorithm, such that the hand needs to be the closest object to the camera. This made
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(a) In this example, the hand is the closer object to the camera, so the method returns a coarse pose.

(b) In this case, the wrist was in the same depth as the hand, so the result was inaccurate.

Figure 3.8: Sample results from Guo et al. (2017) method in one frame of our dataset.

the results recorded from previous acquisition setups unfeasible, because patients were
resting their wrist on a support which perturbs the depth map. It was not possible to
segment the hand with a simple depth threshold (e.g. Figures 3.4 and 3.6). Therefore, with
the resources available and the expertise gained in previous acquisitions, we decided to
make new data acquisition sessions. The new acquisition protocol took this into account,
simplifying the setup and positioning the sensor in front of the patient, and with an arm
rest for the patient be more comfortable in the process. During the acquisition, the patient
was oriented to �exion the arm such that only the hand is visible. With the algorithm
executing in real-time, the position could also be adjusted during the acquisition process,
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because the patient and therapist have online feedback. This new setup positioning is
shown in Figure 3.9.

(a) a (b) b

Figure 3.9: Setup used for data acquisition, with the Intel RealSense® SR300

Control data was recorded during September 2018, in São Paulo. Eight people were
recorded performing movements of �exion/extension and abduction/adution with both
hands, totalling 100 sequences. None of those people had rheumatoid arthritis or ulnar
deviation on �ngers.

We tested the four pre-trained models made available by the authors of Pose-REN,
as exempli�ed in Figure 3.10, and after a qualitative evaluation on a number of video
sequences, and considering previous works on the literature, we chose to use the HANDS17
model. The availability of a pre-trained model in the HANDS17 dataset enhanced greatly
the precision and robustness of the results, since this dataset presents the possibility of
training with a much larger training set (see Table 2.1 for comparison).

A new acquisition with rheumatoid arthritis patients was set up in October 5th 2018
in Ribeirão Preto. In this acquisition session, we obtained data from three patients with
rheumatoid arthritis. For each patient, hand and movement type we acquired data with
and without the orthosis. Each movement sequence is saved in a �le and can be reproduced
as input for a virtual RealSense sensor. Table 3.5 presents a summary of the current state of
our dataset after the new acquisition sessions. The quality of the results was improved with
the use of Pose-REN, and even the orthosis and poses with self-occlusion were handled
with relative success by the method. The main drawback observed was in the abduction
acquisitions, in hand poses where the �ngers are closed. Figure 3.11 exempli�es some of
the sequences recorded with this setup.
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(a) Result with the ICVL pre-trained model. (b) Result with the NYU pre-trained model.

(c) Result with the MSRA pre-trained model. (d) Result with the HANDS17 pre-trained model.

Figure 3.10: Sample results obtained by applying Pose-REN (Chen et al., 2019) on control data for

all pre-trained models.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.11: Sample results obtained by applying Pose-REN model (Chen et al., 2019) trained on

HANDS17 model with patients data, obtained in October 2018.

Acquisition 4 - October 5th. 2018
Patients with rheumatoid
arthritis 3

Sequences 23
Sequences with orthosis 6
Control sequences with
healthy hands 100

Size (GB) 147.5

Observations

The possibility of seeing the result of the hand pose
estimation in real-time enhanced the acquisition process.
The model used was robust to many situations tested.
Sometimes the patients had di�culties to follow the
protocol and the hand was at the same depth as the arm at
start. The method had some di�culty with �ngers closed
in abduction movements. Patients were in di�erent stages
of the disease.

Experiments

All sequences were recorded with the SR300 sensor. As li-

brealsense2 was released, we used the new record/playback
tool to capture data. Some experiments were made with a
hand pose estimation algorithm.

Conclusions Hand tracking method worked well but in some cases had
di�culties to segment the hand from the rest of the image.

Table 3.5: Summary of the data acquisition experiment - October 5th. 2018
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3.3 Final protocol and GUI interaction
With the amount of data acquired, the focus of the work in the subsequent stages was

on the data analysis. With the angle computation, we developed a GUI tool to capture
data and estimate the hand angles in real-time. For range of motion measurements, we
studied reference guides in occupational therapy and estimated the average maximum
and minimum values from the movements of a patient. This estimation tool, however, still
lacked ground-truth comparison. Therefore, we felt the necessity of acquiring more data
to complement the experiments.

Two new acquisition sessions were performed with patients in the Hospital das Clínicas
from FMRP, in the Ribeirão Preto campus of the University of São Paulo. The sessions took
place in September 6th. and 13rd. 2019. In those acquisition sessions, we obtained additional
data from �ve patients with rheumatoid arthritis using a sensor Intel RealSense SR300,
using the same setup of the acquisitions described in Table 3.5 and Figure 3.9. The patients
evaluated were in di�erent stages of the disease, but some movement sequences were
challenging for the algorithm. For each patient, hand and movement type (�exion/extension
and abduction/adduction) we acquired data from patients with and without the orthosis,
as well as their manual range of motion measurements from a goniometer, in order to
compare results. Each movement sequence recorded from the SR300 sensor is saved in a
bag �le and can be reproduced as input for a virtual RealSense sensor. For those sessions,
we formalized an acquisition protocol, described in Appendix A.4. Table 3.6 summarizes
the acquisitions. Figure 3.12 shows sample results of this acquisition. The main issues
found in this acquisition were in cases where the arm is visible in the camera.

Acquisitions 5 and 6 - September 6th. and 13rd. 2019
Patients with rheumatoid
arthritis 5

Sequences 56

Experiments

All sequences were recorded following the protocol and
using the GUI tool, and all patients had their range of
motion measurements computed by a manual goniometer
for comparison.

Observations

The depth cluttering was manually made in the GUI, fa-
cilitating the protocol for the patient. Some patients were
in a much more advanced state of AR, and the method
had some di�culty to deal with the movement patterns.
For the �rst time, an orthosis a�ected the result of pose
estimation.

Conclusions The protocol was successful and manual goniometer data
was provided for comparison.

Table 3.6: Summary of the data acquisition experiments - September 6th and 13rd. 2019

The data obtained in the sessions was complemented with the sequences obtained in
2018, and we also obtained data for �exion movements for 5 new subjects that compose the
control group. Table 3.7 presents a summary of our dataset. As a conclusion, we managed
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.12: Sample results obtained by applying Pose-REN model (Chen et al., 2019) trained on

HANDS17 model with patients data, obtained in September 2019.

to build a dataset with 891 movement sequences of �exion and abduction from patients and
control subsets. Our dataset is the �rst of its kind and we made it publicly available3. The
dataset contains samples captured from 12 healthy subjects and 8 RA patients, performing
�exion and abduction movements with each of their hands. For each RA patient and each
hand with ulnar deviation, we obtained two �exion and two abduction sequences. The
data acquired from patients is limited due to the availability of patients and occupational
therapists. The raw data captured from the sensor included RGB channels, which could
potentially expose and enable the identi�cation of patients. We reprocessed all the data
to remove the RGB channels and to store the depth maps in an accessible way that is
compatible with Pose-REN and does not a�ect the results reported.

3h�p://vision.ime.usp.br/~cejnog/handanalysis

http://vision.ime.usp.br/~cejnog/handanalysis
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Summary
Patients with rheumatoid arthritis 8
Number of people in the control set 12
Patient Sequences 79
Control Sequences 108
Patient clips 310
Control clips 581
Total clips 891
Total number of frames 85755
Frames used on clips 60192
Percentage of frames used 70.2%
Size (GB) 482

Table 3.7: Summary of our final dataset.

3.4 Discussion

In this chapter, we presented the formation of the dataset used in this work, detailing
each of its steps: the selection of the sensors, problems found in acquisition, project deci-
sions taken, the selection of the hand pose estimation method adequate for the setup among
many new methods that arose from the deep learning revolution, data anonymization and
publication of the dataset. All steps and decisions taken during the process are important,
in a way that mistakes could leverage or stall the success of the project or even make its
execution unfeasible. We opted to report design decisions that turned out to be mistakes,
such as the �rst setup and the use of sensors in parallel.

The amount of data obtained covered a small number of patients in the context of ma-
chine learning (8 patients, 12 control subjects) due to many factors: the limited availability
of the appointments with patients, the continuous development of the setup during the
doctorate, the 314km distance between São Paulo and Ribeirão Preto. Considering these
variables, the amount of data obtained was solid and we were able to obtain multiple data
for each movement and patient. FMRP-USP provided full support in the data acquisition
process.

The dataset was made available online and any hand pose estimation method based
on RGBD input can be used in further steps of the pipeline. To our knowledge, this is the
�rst dataset for hand pose estimation to contain data from Rheumatoid Arthritis patients,
which makes it challenging for current state-of-art pose estimation methods and we hope
that it can contribute to the use of computer vision techniques in hand occupational
therapy.

The main limitation of the proposed dataset is that we did not acquire ground-truth
hand joint annotations per frame, due to the simpli�ed setup and inherent limitations
on the sensors that were used. This impacts the subsequent pipeline steps and validation
in many ways: in the hand pose estimation task, we decided to use a model trained in
a di�erent standard dataset (HANDS17), and since both sets are di�erent we cannot be
certain whether such model can generalize to unseen shapes; for clip extraction, the
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annotation was based on peaks and valleys and is validated manually. In summary, the
absence of hand joint annotations per frame potentially ampli�es uncertainties from
di�erent sources in the pipeline. These issues are further explored in Chapter 5.
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Chapter 4

Proposed method: hand tracking,
analysis and classi�cation

This chapter details the framework proposed for hand range of motion estimation.
Following the pipeline illustrated in Figure 4.1, the proposed methods for 3D hand pose
estimation (Section 4.1) and hand movement analysis (Section 4.2) are presented. The
proposed pipeline is able to extract and analyze hand joint angle measurements from
RGBD images acquired in real-time.

Data acquisition Hand pose estimation Hand movement analysis

Figure 4.1: Proposed pipeline, highlighting the steps discussed in this chapter. The data acquisition

step was discussed in Chapter 3

4.1 Hand Pose Estimation
Given the unusual features of our dataset, the hand trackers that generate the best

results on standard benchmarks do not necessarily perform well on rheumatoid arthritis
patients. After a range of preliminary experiments, we concluded that, at the time of the
design of our experiments, out of the most recent real-time 3D hand pose estimation
methods, the one that gives the best results in our data is Chen et al.’s Pose-REN method
(Chen et al., 2019), trained with the HANDS17 dataset (Yuan, Garcia-Hernando, et al.,
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2018b)1. Pose-REN method is based on the estimation of feature maps using Convolutional
Neural Networks (CNNs). These feature maps are combined using an ensemble network,
in order to generate a consistent hand pose. The method is illustrated in Figure 4.2.

.
Figure 4.2: Pipeline used on Pose-REN hand pose estimation method. Reproduced from Chen et al.

(2019) (Copyright license nr. 4918240801176)

The method takes as input a depth image  and returns as output the 3D locations
 = (pxi , pyi , pzi), i ∈ {0, ⋯ , Nj} of the hand joints, where Nj is the number of joints of the
hand model. The architecture is recurrent: the current estimate of the hand pose t is used
as input to help re�ning it at t+1. In the �rst iteration, a coarse hand pose 0 is estimated
using a simple CNN. The network then enhances this pose in two steps: pose-guided
region extraction and structured region ensemble. For a pose t , in the region extraction,
each point of the skeleton is projected from world to pixel coordinates, and a bounding box
around each joint is cropped, generating the feature regions  t

i . In the ensemble network,
those feature regions are processed by fully-connected (fc) layers, generating for each
joint j feature vectors ℎl1j , where l1 indicates the �rst fc layer. These feature vectors are
integrated hierarchically according to the topology of the hand, i.e. joints that belong to
the same �nger are concatenated in the same vector. This vector is then fed into another
fc layer, whose output is a feature vector ℎl2i for each �nger i. The vectors of all �ngers
are concatenated and again fed to a fc layer, whose output is t+1, a 3 × Nj matrix of point
positions in 3D. This pose is then fed into the initial layer, starting a new iteration of the
network, and gradually features around the location of the �ngers contribute more to the
feature vectors than distant features, optimizing the output pose. This method is currently
among the best performing methods in all state-of-art datasets. Its implementation is
available online 2.

1After the development of our experiments and the writing of this paper, the JGR-P2O (Fang et al., 2020)
was published along with its source code. An evaluation of that method for AR patient image sequences is
suggested as future work.

2h�ps://github.com/xinghaochen/Pose-REN

https://github.com/xinghaochen/Pose-REN
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With respect to the taxonomy proposed by Yuan, Garcia-Hernando, et al. (2018b) (see
discussion in page 16), the Pose-REN method is a 3D method that uses probability density
maps, with hierarchical regression and the training is performed in a single step.

The skeleton used by HANDS17 dataset has 21 points of reference: the center of
the wrist (W) and for each �nger x the proximal interphalangeal (PIPx ), the distal inter-
phalangeal joints (DIPx ) and the tip (�ngertipx ). The exception is the thumb, which is
represented by the carpometacarpal joint (CMC) and a single interphalangeal joint (IP).
Fingers are represented by the respective roman number (I-V: I for the thumb, V for the
little �nger). In our pipeline, we will refer to a depth image as D(x, y, t) and to the skeletons
obtained by the hand pose estimation algorithm as S⃗(t). This skeleton is illustrated in
Figure 1.5.

As a preprocessing, we perform depth �ltering. As mentioned in Chapter 3, in most
cases this is su�cient to segment the hand in the scene.

4.2 Hand movement analysis
After obtaining the hand skeleton joints with the pose estimation algorithm, our goal is

to estimate the range of motion measurements, in order to evaluate the patient and assess
its movement capabilities. The diagnosis of the current state of each patient is provided in
the form of a table (illustrated by Table 4.1), and the complete hand analysis pipeline is
illustrated in Figure 4.3.

Finger 2 3 4 5
min max min max min max min max

P1 - L

MTC (◦) 0 80 -8 96 0 94 -6 92
IFP (◦) -14 72 -18 88 -36 96 -48 96
IFD (◦) 0 40 0 50 0 28 -12 44

Abduction (cm) 11.3 8 3.6 3.4

P1 - R

MTC (◦) 0 82 0 102 -8 70 -12 92
IFP (◦) -24 72 -36 86 -32 76 -48 94
IFD (◦) 0 30 0 44 8 28 0 42

Abduction (cm) 10.5 4 4.3 3.5

Table 4.1: Measurements extracted from one of the patients during the data acquisition session.

Since the range of motion measurements take into account the �exion and abduction
angles, the key step for hand movement analysis is to compute such angles from the
skeletons. The process of angle extraction is further described in Section 4.2.1.

With one skeleton per frame, each recorded sequence yields a signal that is composed
by time series, one for each estimated measurement. This time series is noisy and contain
many movements of �exion or abduction per sequence. We will refer to each cycle of
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�exion or abduction inside a sequence as a clip. With that, it is necessary that the beginning
and the ending frames of each movement cycle is identi�ed. The algorithm for automatic
detection is described in Section 4.2.2. In each sequence, since the duration of each clip
can be di�erent, we perform an alignment of all signals extracted for a patient and hand,
identifying mean and standard deviation values. With the resulting signal, we can identify
peaks and valleys in order to determine the movement capabilities from each joint. This
process is detailed in Section 4.3.1. With this, we can determine minimum and maximum
values for the �exion and abduction angles of a patient.

4.2.1 Angle Extraction

Using the skeletons S⃗(t) obtained by the hand pose estimation method, the analysis aims
to obtain measurements of �exion/extension and adduction/abduction. Such measurements
are computed for each frame of all sequences obtained in the acquisition. Our ultimate
goal is to estimate these angles with accuracy similar to that obtained using manual
measurements with goniometers, but in a more e�cient and less intrusive way.

The estimation of the �exion angles is obtained by extracting the vectors between the
adjacent joints in the structure. For the �nger x , the �exion angles from the joints MCP,
PIP and DIP are de�ned respectively as:

F̂-x-MCP = arccos (⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗MCPx − W ⋅ ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗PIPx − MCPx ) (4.1)
̂F-x-PIP = arccos (⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗PIPx − MCPx ⋅ ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗DIPx − PIPx ) (4.2)

̂F-x-DIP = arccos (⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗DIPx − PIPx ⋅ ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗�ngertipx − DIPx ) (4.3)

For the thumb, the �exion angles of CMC and IP joints are obtained analogously. Figure
4.4 illustrates the �exion angle computation, highlighting the arcs correspondent to the
calculus on an example with a closed hand.

As for abduction, there are some di�culties to compute it because the angle between
two phalanx bones actually depends on two systems of joints, rather than a single joint that
connects both. This makes it hard to dissociate abduction from �exion angles, particularly
on hands with deformities. For this reason, it is common that occupational therapists
actually measure abduction by the distance between two consecutive �ngertips. We also
compute the opening between the �ngers, which is not a usual measurement for occupa-
tional therapy, but is straightforward and can indicate other types of patterns in a way that
is invariant to the size of the hands. The opening angle is computed as the angle between
the mean point between the MCP joints of both �ngers and each PIP joint.

A-x-tip = ||�ngertipx−1 − �ngertipx ||2 (4.4)

OP − x = arccos (
⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗PIPx − mid(MCPx ,MCPx+1)⋅⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗PIPx+1 − mid(MCPx ,MCPx+1)) (4.5)

Figures 4.5 and 4.6 show the variation of angle measurements ̂F-III-MCP, F̂-III-PIP,
F̂-III-TIP and ABD3 per frame, computed for all frames in a sequence obtained with a
control individual and a patient, respectively. These �gures also show the correspondences
between given poses and maximum and minimum values on the angle graphics, showing
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(a) Skeleton acquired from depth image. (b) Wireframe obtained from the skeleton,

illustrating all hand joints.

(c) Wireframe highlighting the angle F − I V −
MCP .

(d) Wireframe highlighting angles F − I V −MCP ,

F − I V − PIP and F − I V − DIP .

Figure 4.4: Example of application of the angle formulae for practical example of a closed hand,

detailing the wireframe skeleton and highlighting the joint vectors and correspondent angles

F − I V − MCP , F − I V − PIP and F − I V − DIP .

that the method of hand pose estimation reaches consistent results for �exion movements.
For the patient with ulnar deviation, the angle sequences show a higher variability, which
is caused by the higher variability of the hand shapes of the patient.

Results obtained from the patient and control hands show that the Pose-REN method
is able to generalize for unseen shapes, and despite the inaccuracy for unusual hand poses,
the overall performance for angle detection shows that the method can be used in our
pipeline.

4.2.2 Cycle detection
Each clip is composed by multiple movements of �exion/abduction. Since the objective

of the movement analysis is the identi�cation of the minimum and maximum angles for
each patient (see Table 4.1), the proposed approach aims to identify each movement inside
the clips, identifying the average minimum and maximum values for each angle. With this,
we leverage the presence of outliers in previous steps. Therefore, we de�ned that after
computing the angles, the next step of the pipeline is the identi�cation of the begin and
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Figure 4.5: Angle estimates, highlighting correspondences to poses obtained by the pose estimation

algorithm on a healthy individual from the control set - Smaller angles represent open hands while

larger angles correspond to closed hand poses.

end of each clip.

In Section 4.2.1 we detailed the angle extraction, showing that in the case of �exion
movements the minimum angles correspond to open hand poses and the maximum angles
correspond to closed hands (Figure 4.5). Thus, we de�ned that the movements begin with
the open hand and end with the next frame with the open hand, after the closing movement.
For abduction/adduction, the clip should contain one cycle of the movement of opening
and closing the �ngers, starting and ending with the hand with the �ngers closed.

For the upcoming analyses, the cycles were manually extracted from the sequences,
using a visual tool to mark the frames from beginning and ending. However, such pro-
ceeding is not suitable for a real-time pipeline, since it is time-consuming and relies on
visual interpretation.
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Figure 4.6: Angle estimates, highlighting correspondences to poses obtained by the pose estimation

algorithm on a RA patient - Smaller angles represent open hands while larger angles correspond to

closed hand poses.

4.3 Extraction of values for automatic goniometry

4.3.1 Synchronization and superposition of movements

After the segmentation of the sequence in clips containing one movement, we seek to
characterize the range of motion of each joint, considering the multiple clips regarding to
the same patient and hand.

Since the length of the clips can be di�erent, the synchronization is made by resampling
the angle signals with a standard range. For this, we perform an interpolation in each
angle signal, such that the length of each clip is set as 50 frames.

With that, we are able to compute the average value and the standard deviation
considering all processed clips for both patients and control set. This result is shown in
Figure 4.7. Note that the graphs for di�erent angles have di�erent y-scales. This result
shows that both sets follow the same movement pattern and have subtle di�erences,
focused mainly in the beginning of the movement.
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Figure 4.7: Comparison of average angle values and standard deviations obtained in control set

(blue), patients with (green) and without orthosis (red) for �exion movement, for finger 4.

4.3.2 Results for automatic goniometry
With the synchronization of movements, we can also perform individual measurements

for each patient, providing a table similar to Table 4.1 for each patient and hand. The
abduction/adduction sequences are analyzed separately, and �ll the bottom line with
the extent of �nger openings of a patient. This comparison is shown in details in the
experiment proposed in Section 5.3.

4.4 Discrimination between patient and control
Another possible application for the pipeline is the di�erentiation of sequences between

patients and control. For this, we use the cycles obtained in previous steps and propose
the use of Fourier descriptors in order to represent the multidimensional signal. This
classi�cation experiment is important to validate whether the current angle extraction
pipeline is able to characterize the e�ect of Rheumatoid Arthritis in the �exion movement
pattern.

4.4.1 Fourier descriptors
For all sequences of movement acquired with the patients and with the control individ-

uals we computed the �exion and abduction angles frame by frame, and manually extract
the landmark frames in the beginning and in the end of each movement. We will refer to
the angle representation of a movement sequence as a clip, representing the i-th angle as
ai(t).

For each detected cycle of movement, we normalize the sequences of hand points
trajectories by subsampling them, so that all clips have the same duration (i.e., the same
number of measurements). The sample representation used for the classi�cation experi-
ment is based on the extraction of Fourier coe�cients  (i) for each angle i. The 25 �rst
coe�cients for each angle are concatenated and stored as a sample representation. The
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coe�cients of the Fourier transform Fai (u) for an angle ai are computed by:

ai (u) =
1
N

N−1

∑
t=0

ai(t)e
−j2�ut
N ; 1 ≤ u ≤ 25 (4.6)

Let Na be the number of angles computed for each clip. The �nal representation  (u)
of a clip is the concatenation of all Fourier descriptors of all angles.

 = concat(ai (u)), 1 ≤ i ≤ Na, 1 ≤ u ≤ 25 . (4.7)

Figure 4.8 shows examples of training samples, obtained after the FFT processing. Note
that each sample has 25 × Na = 575 dimensions.

(a) Control example.

(b) Patient example.

Figure 4.8: Examples of Fourier descriptors, obtained through the concatenation of Fourier

descriptors for each angle of a clip.
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4.4.2 Classi�cation
We performed a series of experiments to classify sequences into patients or control.

Since the number of samples is small, we de�ned three types of classi�cation experiments:
80-20% split, leave-one-person-out, and leave-one-person-out with sample synthesis (LOO
+ SS).

The goal of the initial experiments was to validate the feature extraction method based
on Fourier descriptors and to choose an adequate classi�cation algorithm. To validate our
method, we de�ned a baseline descriptor which is built by simply concatenating of the
minimum and maximum value of each angle of each joint of the hand.

To choose the classi�cation algorithm, di�erent supervised classi�ers have been tried
in both Split 80-20 and LOO during the experiments, namely: AdaBoost, Decision Tree,
Gaussian Process, Linear SVM, Naive Bayes, Nearest Neighbors, Neural Net, QDA, Random
Forest and RBF SVM, using the implementation available in the Python package Scikit-
Learn(Pedregosa et al., 2011). The methods selected were:

• K-Nearest Neighbors (Goldberger et al., 2004): Assigns to each sample the most
frequent value of the K nearest neighbors of the training set. The method tested
used K=3.

• Linear SVM (Support Vector Machine with Linear kernel) (Platt, 1999): Clas-
si�er based on Support Vector Machine, which tries to estimate the hyperplane
that maximizes the margin between the classes (distance to the nearest point of the
hyperplane).

• RBF SVM (Support Vector Machine with Radial Basis Function Kernel)
(Platt, 1999): Classi�er based on SVM which uses a Kernel feature, in order to
add nonlinearity to the hyperplane. The RBF (Radial Basis Function) kernel uses
an exponential function. The parameters used are 
 and C : 
 de�nes how much
in�uence a single example has, and a high C aims to classify all training examples
correctly.

• Gaussian Process (Rasmussen and Williams, 2005): Based on Gaussian Process,
this classi�er estimates the hyperparameters of a prior kernel using the training data,
and integrates out the kernel after tuning. The kernel used in the test is RBF(1.0).

• Decision Tree (Breiman et al., 1984): Model that learn simple rules from the data
features. The main parameter is the tree depth: deeper trees allow more complex
rules and more precise models.

• Random Forest (Breiman, 2001): Ensemble method based on combining the pre-
dictions of many decision tree classi�ers, which uses averaging to improve the
predictive accuracy. The parameters are the number of estimators (trees in the
forest), the max depth of each tree, and the size of the random subsets of features
considered when splitting a node.

• Neural Net (Hinton, 1990): Classi�er method based on a Multi-Layer Perceptron
Network. Optimization is done by minimizing the log-loss function using stochastic
gradient descent.
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• AdaBoost (Hastie et al., 2009): AdaBoost classi�er optimizes a sequence of weak
classi�ers, �tting a sequence of repeatedly modi�ed versions of the data. Each
modi�ed version of the data multiplies the weight of each training sample, allowing
the classi�er to focus on the di�cult examples on each iteration. The base estimator
used is Decision Tree, with max depth = 1.

• Naive Bayes (Chan et al., 1982): Implements the Gaussian Naive-Bayes algorithm
for classi�cation. This algorithm is based on Bayes theorem with the Naive as-
sumption of independence between each sample. With the assumption, we can use
Maximum A Posteriori (MAP) estimation to estimate P(y) and P(xi |y). The likelihood
of the functions is assumed to be gaussian.

• QDA (Quadratic Discriminant Analysis) (Ledoit and Wolf, 2004): Classic clas-
si�er that �ts a quadratic decision surface in the data, generated by �tting class
conditional densities to the data and using Bayes’ rule.

4.5 Discussion

Section 4.1 presented the method Pose-REN, chosen due to its ease of implementation
and generalization capacity in the wild for hand pose estimation, in particular with the
model trained on HANDS17 dataset. The HANDS17 dataset, as discussed in Section 2.5,
was the �rst million-scale dataset for hand pose estimation, and the pre-trained model
encodes a much larger complexity, which translates into generalization capacity. By using
this model, the method is able to perform more robustly in real cases.

Section 4.2 presented all the subsequent steps of the pipeline, including the angle
extraction from the skeleton obtained in previous steps, automatic and manual procedures
for cycle detection on the signals, extraction of values for automatic goniometry through
the synchronization and superposition of movements of the same patient, and the dis-
crimination between patient and control, which used Fourier descriptors to encode angle
signals and presented all the classi�cation methods adequate for this task.

In the angle extraction procedure, we are aware that the wrist point is not the correct
point for measuring the wrist joint location in the calculation of �exion angles in each
�nger and should be corrected for each �nger, skewing the quality of angle estimatives.
Post-processing steps can be proposed to correct those positions according to the position
of each bone using the raw depth image as a guide. However, considering the complexity
of the hand shapes, this post-processing step poses a challenging problem.

We believe that the pipeline proposed allows further generalization: any hand pose
estimation method based on depth input can be used. For angle extraction, we based
the measurements on HANDS17 model, whose hand joints are the same as in MSRA
model. The hand models used in NYU and ICVL datasets are based on di�erent hand joint
positions, and the angle measurements should be computed di�erently. This is exempli�ed
in Figure 3.10.

Results on the comparison between automatic and manual procedures for cycle detec-
tion, comparison between the proposed automatic goniometry and manual goniometry for
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patients, and classi�cation between control and patient �exion sequences will be presented
in Chapter 5.
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Chapter 5

Experimental Results

This chapter presents experiments to assess and validate the proposed method. Section
5.1 presents a signal analysis experiment, illustrating all the steps of the hand analysis
pipeline, translating the results as measurement tables, evaluating whether the hand range
of motion assessment is meaningful and describing the inherent patterns to the movement.
Section 5.2 presents the classi�cation experiments done to classify sequences into patient
and control classes, with the goal of showing that the adopted shape descriptors and
classi�ers are able to encode the di�erence between the shapes of skeletons. Results show
that the use of SVM classi�ers and Fourier descriptors reach an accuracy of approximately
90% in classifying sequences into patient and control. Section 5.3 shows a comparative
experiment of the Range of Motion measurements obtained automatically from the patients
with annotated goniometer measurements.

5.1 Characterization of movement signals
This experiment aimed to evaluate the proposed method for the angle evaluation

pipeline, using the methodology described in Section 4.2. We assume that the prerequi-
site steps were already executed: we used the Pose-REN method with the pre-trained
HANDS17 model in all sequences of the dataset to compute hand skeletons in every frame
of movement acquired. We adopted the formulae proposed in Section 4.2.1 to compute
�exion and abduction angles per frame. The process was made for all movement sequences
of the dataset, composed of patients and control subjects.

In this analysis, we show data for joints F − I V −MCP , F − I V − PIP , F − I V − PIP and
A − IV − tip. The data visualization for all joint angles and complete �gures are available
in the Annex C.

The �rst goal of the experiment was to visually validate the angle measurements. For
this, we evaluated the maximum and minimum values of each angle and their correspon-
dant images for examples of the dataset. For the �exion movements, the maximum and
minimum values of MCP and PIP angles correspond directly to closed and open hands.
Figures 5.1 and 5.2 illustrate the angle evaluation for each frame of a sequence.
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Figure 5.1: Angle evaluation of a patient. Le� and middle columns show graphs with angle joint

measurements obtained frame by frame of a sequence acquired following the defined protocol. Right

column present frames of maximum and minimum values for the angle F − I V − MCP in the

sequence, corresponding to the instants highlighted by vertical dashed lines in the graphs: top image

is the lowest angle value and bottom corresponds to the highest.
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Figure 5.2: Angle evaluation of an individual in control group. Le� and middle columns show

graphs with angle joint measurements obtained frame by frame of a sequence acquired following

the defined protocol. Right column present frames of maximum and minimum values for the angle

F − I V − MCP in the sequence, corresponding to the instants highlighted by vertical dashed lines in

the graphs: top image is the lowest angle value and bottom corresponds to the highest.
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Each pulse on the graphs in Figure 5.2 correspond to a �exion movement, and some
of the local optima are highlighted. The maximum and minimum values for the angle
F − I V − MCP are highlighted and correspond to the hand skeleton frames plotted on
the right. The initial analysis of these graphs shows that the angle pattern for open
hands correspond to points closer to the global minima for all MCP, PIP and DIP angle
measurements. As for the closed hand pattern, MCP and PIP angles present a similar pattern
of prominent peak with a local maxima, although in Figure 5.2 the joints corresponding
to PIP angles of some cycles present a pattern of irregularity near the local maxima. For
the DIP angles, a similar pattern of irregularity near the local maxima is observed in both
patient and control sequences. The main di�erences between patient and control are in
the pattern of PIP angle graphics and in shape and magnitude of DIP angles, that reach
maximum values of approximately 90◦ for control and peaks at approximately 60◦ for
patients.

Guided by the visual correspondences between angle signals and frames, we manually
annotated the frames corresponding to the beginning and the end of each movement,
naming each movement interval as a clip. Figure 5.3 highlights the two intervals of �exion
movement manually annotated from the movement sequence illustrated in Figure 5.1. The
number of clips is variable for each sequence, and in this stage we �ltered sequences in
which the hand pose estimation result was inaccurate.

The next validation step was to obtain a summary of measurements for each individual.
For this, we resampled all clips, representing them by an interpolated version of 50 frames.
With the resampling, we are able to deal with movements of di�erent speed, comparing
and grouping sequences with di�erent length. Figure 5.4 shows the superposition of clips
in each of the previous sequences illustrated in Figures 5.1 and 5.2. Figure 5.5 shows the
clips extracted from all �exion sequences of the same subject.

Analyzing Figure 5.4, it is possible to note the general patterns of �exion movement for
the same subject. In nearly all sequences we perceive the peak in MCP and PIP angles and
the in�exion in DIP angles. In Figure 5.5, the pattern maintains itself, but in the patient
sequences we can perceive two groups of signals in MCP and DIP angles, which leads to a
higher standard deviation for the average signal.

The �nal step is to consolidate the results for each subject: given that all clips were
annotated and resampled to the same length, we obtain average and standard deviation
values for each angle in each frame of the resulting signals, thus characterizing the �exion
movement for the subject. Figure 5.6 shows the average and standard deviation for the
control and patient individuals illustrated in previous �gures, with the mean signals for
each individual shown in the background colored by the respective classes.

Figure 5.6 shows that the general tendency maintains the characteristics observed
at the previous examples for the majority of patient and control subjects. Those classes
behave similarly, with the main di�erences occurring in the DIP joint (�fth and sixth rows
of the Figure) - in some control subjects the pattern observed is a slope, di�ering from the
previously observed in�exion behavior, and the angles reach higher values in these cases.
In order to provide a complete objective feedback with angle values for each patient, we
need the abduction/adduction measurement. For this, we perform a similar procedure on
abduction sequences, resampling and grouping the sequences of the same subject, in order
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Figure 5.3: Manual annotation of movement intervals in the angle sequence described in Figure 5.1.

Extracted clips are marked in red.

to extract mean values for each moment of the movement. Using �exion and abduction
assessments, we are able to compose Tables 5.1 and 5.2 , which are built in the same way
as Table 4.1.

Comparing these tables, it is noticeable that the angles of the control subject in left
and right hands have similar magnitudes, with subtle variations on the IFP joint. For this
subject, abduction range was not computed because there were no clips for abduction
movement. For the patient (Table 5.2), the di�erence between the MTC angles are much
more noticeable between hands, in which the left hand (with AR) has limited range and
the maximum angle is lower. This is a pattern observable in the results of some patients,
indicating that RA a�ected one of the hands more than the other. This observation is
highlighted in Table 5.2. The individual measurements for each patient are available in
Appendix B, and are summarized in Figures 5.7, 5.8, 5.9, 5.10.
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Finger 2 3 4 5
min max min max min max min max

C05 - L

MTC (◦) 18.97 68.36 15.77 67.47 10.01 68.18 12.53 72.16

IFP (◦) 2.51 90.97 1.63 109.98 1.23 117.82 2.54 88.56
IFD (◦) 3.40 60.52 3.41 48.88 6.98 54.49 3.79 53.28

abd (cm) 0.00 0.00 0.00 0.00

C05 - R

MTC (◦) 18.45 69.91 14.89 76.30 7.94 79.83 7.88 82.08

IFP (◦) 2.42 94.76 1.89 101.86 1.32 109.96 1.62 87.97
IFD (◦) 2.71 64.67 2.85 57.60 7.75 60.19 4.35 57.12

abd (cm) 0.00 0.00 0.00 0.00

Table 5.1: Measurements extracted from one of the control subjects. Highlighted values indicate

maximum MCP �exion angles for both hands, which for control subjects in general are comparable.

Finger 2 3 4 5
min max min max min max min max

P07 - L

MTC (◦) 15.74 44.05 10.56 47.77 4.91 47.51 6.76 58.84

IFP (◦) 0.74 85.21 1.23 98.16 1.37 91.04 1.08 71.82
IFD (◦) 19.45 47.15 17.70 43.76 16.36 48.84 13.13 54.07

abd (cm) 2.52 1.66 1.69 2.50

P07 - R

MTC (◦) 23.63 76.20 14.88 80.43 9.05 81.23 7.89 80.91

IFP (◦) 0.94 88.63 2.76 103.09 1.49 99.76 1.74 83.98
IFD (◦) 20.45 48.65 6.66 45.11 8.06 54.33 18.23 56.34

abd (cm) 2.87 2.48 1.34 0.98

Table 5.2: Measurements extracted from one of the patients during the data acquisition ses-

sion. Highlighted values indicate maximum MCP �exion angles for both hands. In this patient

specifically such values are much di�erent between le� and right hand, which re�ects di�erent

rheumatoid arthritis stages for each hand.
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Figure 5.4: Extracted clips from sequences shown in Figure 5.3: patient (le�) and control (right).

Trajectories have been re-sampled.
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Figure 5.5: All trajectories extracted from clips of the same person: patient (le�) and control (right).

Trajectories have been re-sampled.
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Figure 5.6: Summarization in terms of mean and standard deviation of all trajectories extracted

from clips from the same person: patient (le�) and control (right). "Average clips" of other subjects

are shown in the background. Patient samples are colored in red, and control samples are colored in

blue.
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Figure 5.7: Summarization of the average minimum and maximum values for MCP joints in all

subjects of the dataset. Patients are identified in red and control subjects in blue.
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Figure 5.8: Summarization of the average minimum and maximum values for PIP joints in all

subjects of the dataset. Patients are identified in red and control subjects in blue.
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Figure 5.9: Summarization of the average minimum and maximum values for DIP joints in all

subjects of the dataset. Patients are identified in red and control subjects in blue.
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Figure 5.10: Summarization of the average minimum and maximum values for abduction in all

subjects of the dataset. For these measurements only the sequences with abduction movement were

considered. Patients are identified in red and control subjects in blue.
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From Figures 5.7, 5.8, 5.9 and 5.10, we observe that the tendency of variation between
hands occurs in the majority of RA patients, especially in MCP and DIP joints. This is
re�ected by the variance between consecutive red rows in Figures 5.7 and 5.9, which
contrasts to the much lower variance between consecutive blue rows. We also observed
a big variation in abduction measurements, which can be explained by the nature of
the abduction measurement used in this work. Abduction is measured as the di�erence
between consecutive �ngertips, in millimetres. Such measurement tends to present a high
variability for di�erent sizes of hands, which is re�ected in Figure 5.10 and the di�erences
between intervals observed in the lines of the graph, where in previous �gures such
di�erence is smaller. We can also observe that patients (in red) in general reach a higher
maximum value and present higher di�erences between both hands (subsequent lines of
the graphs) for abduction.

Another possible application with the measurements obtained is to characterize patients
and control subjects in general. This is done in similar fashion to the previous procedure,
grouping all control clips and all patient clips and extracting mean and standard deviation
values. Figure 5.11 present the "average clip" with error bars for each set, illustrating that
the general behaviour is similar among patient and control subjects, with subtle variations
on the magnitude of the standard deviation for MCP and DIP angles. For the patient
signals, it is noticeable that the minimum value for almost every �exion angle is higher
than the average minimum value for control signals. The biggest di�erence, however, is in
abduction, which presents a much higher variability for patients, especially at the joint
II-TIP.
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Figure 5.11: Summarization in terms of mean and standard deviation of patient set (le�) and

control set (right). Patient set contains all clips extracted from patients and show a slightly higher

variability. Control set contains all clips extracted from the control group.
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5.2 Classi�cation

In order to provide an initial step in the use of data from whole movement sequences
for analysis, we performed a series of experiments to classify sequences into patients
or control. These experiments aim to validate the angle extraction pipeline proposed in
this work for the classi�cation task. For this experiment, we focused solely on �exion
movement sequences. Ideally the motivation for classi�cation was to provide a "grading"
system that evaluates the state of the disease in each patient. However, given the small
amount of clips and the absence of specialized hand pose estimation methods for the
context, this classi�cation is done to prove whether simple descriptors and classi�ers can
separate the results provided by the hand pose estimation setup in two simple classes,
establishing the feasibility of such analysis. With enough data, more details can be added to
the classi�cation pipeline and the original grading system idea can be implemented.

In order to show that movement descriptors can enhance the accuracy of classifying
between control and patients by taking into account the dynamic aspect of the movement,
we proposed the computation of Fourier descriptors for each clip. The current evaluation
assessment method extracts maximum and minimum angle metrics, and by correctly
classifying sequences instead of key frames, the occupational therapy community can
work on more complex input data and discover di�erent types of features that characterize
the disease. A future possibility is the use of the classi�cation as a decision support tool in
the context of telemedicine and remote diagnosis.

For this experiment, we tested di�erent classi�cation algorithms, in order to select the
methods that yielded better results, and compared the feature extraction method based on
Fourier descriptors (described in Section 4.4.1) with a baseline descriptor built by simply
concatenating the minimum and maximum values from each computed angle. This process
is described by the following equation:

 = concat(min(ai), max(ai)), (5.1)

for i = 1, ⋯ , Na.

Since the number of samples is small, we de�ned three types of classi�cation ex-
periments: 80 − 20% split, leave-one-person-out, and leave-one-person-out with sample
synthesis (LOO + SS). We performed paired experiments with both baseline and Fourier
descriptors, using Split and Leave-one-person-out strategies.

• Split (80-20): since the sample shu�ing can a�ect the data distribution, we perform 10
instances of classi�cation, each with a random split of 80% of the samples for training
and the remaining for testing. We then report the mean and standard deviation of
the accuracies obtained.

• Leave-one-person-out (LOO): we choose one person and take all clips from that
person as the test set. Training is done with all other sequences. This test shows
whether the pattern obtained from a patient or a control subject can generalize well
for unseen subjects. We grouped the results in control and patient groups, showing
the mean and standard deviation of the accuracy of both groups.
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• Leave-one-out with sample synthesis (LOO + SS): random noise is applied to se-
quences of the dataset, generating new sample sequences and balancing the training
and test set. After this process, we apply the leave-one-out strategy, by selecting
a subject for testing and training with sequences of all other subjects. Di�erent
levels of noise and train set sizes have been tested, in order to validate whether
small inaccuracies from the hand pose estimation method a�ect the angle estimation
and the overall patient/control classi�cation, and the results are compared to LOO
average results. This experiment is decribed in details in Subsection 5.2.1.

Additionally, di�erent supervised classi�ers have been tried in both Split 80-20 and LOO
during the experiments, namely: AdaBoost, Decision Tree, Gaussian Process, Linear SVM
(Support Vector Machine), Naive Bayes, Nearest Neighbors, Neural Net, QDA (Quadratic
Discriminant Analysis), Random Forest and RBF SVM (Support Vector Machine with Radial
Basis Function Kernel). A brief description of each classi�er is available in Section 4.4.2.
Among the classi�ers, the Linear SVM presented the best performance. The results of both
experiments are shown in Tables 5.3 and 5.4.

The best combination of classi�er and descriptor in both experiments was the Lin-
ear SVM with the Fourier descriptor, reaching an accuracy of 94.1% in the Split 80-20

Experiment (%) Control (%) Patient (%) General (%)
Fourier Linear SVM 96.31 ± 3.07 91.97 ± 6.55 94.14 ± 5.56
Baseline QDA 96.66 ± 3.81 89.11 ± 6.82 92.88 ± 6.69
Fourier Nearest Neighbors 97.08 ± 3.42 86.31 ± 9.39 91.69 ± 8.88
Baseline AdaBoost 94.99 ± 4.29 83.08 ± 12.56 89.04 ± 11.11
Baseline Neural Net 88.87 ± 8.93 88.65 ± 8.03 88.76 ± 8.49
Baseline Linear SVM 92.72 ± 3.69 84.60 ± 7.51 88.66 ± 7.17
Fourier AdaBoost 95.86 ± 1.51 78.97 ± 11.65 87.41 ± 11.85
Fourier Neural Net 94.37 ± 5.88 78.50 ± 13.42 86.44 ± 13.05
Baseline Nearest Neighbors 95.30 ± 4.68 73.79 ± 13.97 84.54 ± 14.97
Baseline Random Forest 98.96 ± 1.62 65.33 ± 15.04 82.15 ± 19.93

Table 5.3: Best performance classifiers on the Split experiment (in percentage of accuracy).

Experiment (%) Control (%) Patient (%) General (%)
Fourier Linear SVM 94.33 ± 10.53 81.57 ± 31.34 89.63 ± 21.67
Fourier Neural Net 92.89 ± 12.01 73.11 ± 36.33 85.60 ± 25.85
Baseline AdaBoost 89.54 ± 15.54 74.07 ± 30.09 83.84 ± 23.28
Baseline Linear SVM 89.08 ± 20.29 74.57 ± 33.44 83.74 ± 26.85
Baseline Neural Net 87.35 ± 22.97 73.91 ± 35.87 82.40 ± 29.14
Fourier AdaBoost 91.92 ± 8.93 65.71 ± 34.74 82.26 ± 25.59
Fourier Decision Tree 90.76 ± 10.56 62.01 ± 28.66 80.17 ± 23.78
Baseline QDA 90.58 ± 17.43 59.71 ± 38.39 79.21 ± 30.93
Baseline Random Forest 95.82 ± 9.59 49.71 ± 40.60 78.83 ± 34.06
Fourier Nearest Neighbors 92.50 ± 16.03 53.64 ± 40.62 78.18 ± 33.49

Table 5.4: Best performing classifiers on the leave-one-person-out experiment.
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experiment, and 89.6% in the leave-one-person-out experiment. It is worth mentioning
that, except for some speci�c cases, most classi�ers did not perform much worse than
the SVM results here reported. Our interpretation is that the proposed hand tracking and
angle measurements successfully capture the di�erences between control and patient
movements in a robust way. Therefore, the classi�cation task itself does not critically
depend neither on the features nor on the classi�er, which is a good advantage of the
proposed framework.

For control subjects, the accuracy reached in the majority of methods is high, surpassing
90% with low standard deviation in most cases. The main di�erences can be seen in the
patient set, whose accuracy varies between 65% and 91% in the split experiment, and
between 49% and 81% in the leave-one-person-out experiment. Although the Fourier
Linear SVM was the method that performed better in both experiments, the methods
Baseline QDA and Fourier Nearest Neighbors, which presented competitive results in
the Split experiment, reported a lower accuracy in the LOO experiment: Baseline QDA
varied from 92.88% to 79.21%, and Fourier Nearest Neighbors varied from 91.69% to 78.18%,
with a loss of approximately 13% for both methods between experiments that indicates
di�culties when dealing with unseen subjects. The Fourier Linear SVM method presented
a more robust behavior, with a variation from 94.14% to 89.63%, losing approximately 5%
between experiments and with an average accuracy 4.04% higher than the second best
method, Fourier Neural Net.

The Fourier descriptor was consistently better than the baseline descriptor, with an
average di�erence of 5%. The baseline result reached the average accuracy of 84% in
the leave-one-person-out, which indicates that the minimum and maximum angles are
important measurements and can be used to identify patient and control. However, the
information added by Fourier descriptors is able to consistently improve the performance,
working as a �ne-tuned descriptor.

The high accuracy of the Linear SVM in both experiments is a good indicative, especially
in the leave-one-person-out, which shows that the descriptor can be generalized for unseen
subjects. For patients, the accuracy was slightly lower, which is expected as the data is
more diverse, since each patient’s hand is in a di�erent stage of ulnar deviation. This
higher variance in hand shapes and movement patterns creates data clusters that are more
challenging for the classi�er.

5.2.1 Data generation with sample synthesis
One important issue in the classi�cation experiment is that the dataset is composed by

581 control clips and 310 patient clips, as described in Table 3.7. This poses the dataset as a
slightly imbalanced dataset, which is usually biased towards the majority class (Burnaev
et al., 2015). Common strategies to deal with this issue are undersampling of the major-
ity class, oversampling of the minority class and data augmentation / sample synthesis
techniques.

For the third experiment we performed sample synthesis (SS) (Dougherty et al., 2002)
to address the imbalance between the amount of samples from patients and control. In this
process, we generate synthetic data from the samples, enabling us not only to deal with
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data imbalance but also to evaluate the results of of our analysis method in the presence
of hand pose estimation noise. For that, we applied Gaussian noise for each joint position
in the skeleton. One could question why we have not applied standard data augmentation
strategies on the depth maps, instead of injecting noise on the pose estimation data. The
data augmentation strategies used in other computer vision applications usually follow two
strategies: (a) RGB value perturbations (such as changing brightness, contrast, injecting
Gaussian noise, etc.) and (b) homography transformations, cropping and padding. These
strategies cannot naïvelly be applied to depth maps for the following reasons:

(a) The behaviour of noise in depth maps is di�erent from that of pixel RGB values.
The noise from depth sensors that are based on active infra-red patterns tend to
alternate between Gaussian-like patterns and patches with unknown depth values.
In fact, Chenggang Yan, Li, et al. (2020) have exploited the intrinsic low-rang and self-
similarity property of depth images to propose a denoising method. A proper data
augmentation method should start from a 3D scene model and apply a transformation
that would do the inverse of what the method of Yan et al. does.

(b) Homography-based distortions would be unrealistic for our data acquisition setting
and would generate on unexpected depth values. An alternative would be to geneate
a 3D point cloud from each depth map, perturb the 3D position of each point and
re-generate depth maps by ray tracing and interpolations.

There are works in the literature that discuss the best ways of augmenting depth maps,
for problems that are di�erent than hand pose estimation, such as depth completion
(Hammond, 2019). However, the complexity of such methods would certainly slow down
the training process. Furthermore, our depth maps were acquired in realistic non-ideal
conditions (particularly when the patients were wearing orthoses). This means that the
depth maps already had a noise that is very typical of that kind of sensor and those
conditions. We therefore believe that there was no need to inject further noise on depth
maps to synthesize new samples. Instead, we focused our sample synthesis method on
modelling potential imperfections of the hand pose estimation method (rather than on the
depth maps), which is why it was more sensible to inject noise on the resulting 3D point
positions. This is in line with other papers about pose estimation methods: many of them
make use of skeletons and model priors for sample synthesis and for the training process
(Zhang et al., 2020; Wu et al., 2020; Molchanov et al., 2015).

Therefore, for a sequence

S⃗(t) = {xi(t), yi(t), zi(t)}

for i = 1, ⋯ , Nj and t = 1, ⋯ , T , we generate the augmented sequence

S⃗′(t) = {xi(t) + (0, �), yi(t) + (0, �), zi(t) + (0, �)} ,

where  (�, �) represents a Gaussian function with � mean and � standard deviation,
measured in millimeters. This procedure is applied in each frame to generate new clip
samples.

In this sense, we augmented the training and the testing sets and performed the Leave-
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one-person-out experiment. We analysed the variations of control and patient sets and
evaluate how the Gaussian noise a�ects the classi�cation accuracy. For each patient hand
and noise magnitude, we generated 100 augmented samples from the original sequences.
On the composition of the training set, we used di�erent sample sizes, of 100 and 400
samples of the remaining patients, such that this set is composed by the same number
of control and patient samples randomly chosen among the augmented dataset. The test
set is composed of all 100 samples of the unseen patient. We repeated the leave-one-out
experiment using all subjects for testing and di�erent values of � (1, 2 and 4). We used the
Linear SVM classi�er with Fourier descriptors, which yielded the best results in previous
experiments, and Baseline descriptors for comparison. This experiment was repeated
8 times for each parameter con�guration, and average results are compared in Table
5.5.

� ts=100 ts=400
Control Patients Control Patients

Baseline, � = 1 79.53% ± 24.86% 68.95% ± 34.86% 87.52% ± 18.67% 73.17% ± 31.37%
Baseline, � = 2 81.07% ± 21.73% 73.78% ± 30.38% 84.88% ± 17.79% 72.56% ± 32.60%
Baseline, � = 4 78.71% ± 19.64% 71.56% ± 27.10% 82.92% ± 20.25% 73.82% ± 28.68%
Fourier, � = 1 87.16% ± 20.28% 71.76% ± 37.63% 89.67% ± 17.42% 73.86% ± 35.05%
Fourier, � = 2 87.94% ± 18.80% 74.18% ± 35.93% 89.80% ± 16.73% 74.27% ± 35.86%
Fourier, � = 4 84.42% ± 17.69% 75.79% ± 33.31% 84.82% ± 16.86% 73.37% ± 31.96%

Table 5.5: Average and standard deviation SVM precision values for di�erent train sizes and noise

amounts.

Comparing the descriptors, the Fourier descriptor again reached higher levels of
accuracy than the baseline descriptor in all cases. The training set size also in�uenced the
results, such that in nearly all cases a larger training yielded a higher level of accuracy. The
exceptions were the Fourier descriptor with � = 4 and the Baseline descriptor with � = 2,
that reached an average accuracy higher with the training set of size 100. Nonetheless,
the results were consistent and show that the pipeline is able to handle di�erent levels of
noise, and that the angle analysis can deal with small inconsistencies from the tracker for
the classi�cation task.

Table 5.6 presents a comparison with previous experiment accuracy rates. This result
indicates that the leave-one-out experiment poses a more accurate representation of the
classi�cation experiment for unseen hands. The presence of augmented data lowers the
accuracy for the patient set (around 73% for all values of � ), with signi�cant values of
standard deviation. This small performance loss was expected due to the variance of hand
poses in the patient set, as discussed earlier.

Figure 5.12 show the average accuracy per subject of the dataset. It is observable from
the Figure that lower accuracies are concentrated in speci�c cases, notably two control
individuals (C02_f r and C10_f r ), and three patients (P05_f l , P06_f r , P07_f l and P07_f r ).
For the remaining cases, the pipeline was able to predict the class with accuracy over
80% for � = 1. With higher values of � , it is noticeable that the accuracy decreases for
some cases (e.g. C01_f r and P01_f r ), and increases in some of the described cases of lower
accuracy (e.g. P06_f r ). This is explained by the tendency of data normalization and detail



5.2 | CLASSIFICATION

67

Experiment Control (%) Patient (%) General (%)
LOO 94.66% ± 8.45% 83.00% ± 31.69% 90.37% ± 21.14%
LOO + SS, � = 1 88.41% ± 18.90% 72.80% ± 36.20% 82.66% ± 27.66%
LOO + SS, � = 2 88.63% ± 18.36% 73.51% ± 35.96% 83.06% ± 27.25%
LOO + SS, � = 4 87.29% ± 18.09% 73.86% ± 34.85% 82.35% ± 26.38%

Table 5.6: Accuracy comparison (in %) between the Linear SVM with sample synthesis using

di�erent values of � (in mm) with the result obtained in the Leave-one-person-out experiment.

loss that comes with higher values of noise.

Figure 5.12: Average accuracy by subject, grouped by � .

The main �ndings of these experiments are:

• Without noise, we are able to reach a good accuracy score for classi�cation between
control and patients, even with scenarios of unseen shapes.

• With the presence of noise, the accuracy score is lower especially in patients. The
training set size has little in�uence on the accuracy, and the use of Fourier descriptors
does enhance the results for left hand of the patients.

• Fourier descriptors are a classical approach for describing series, and are used in
this context to prove the usefulness of describing movements taking into account its
dynamic aspects - any state-of-art series descriptor can be used and should provide
yet more accurate results.
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5.3 Comparison with the goniometer
We concluded in previous experiments that the hand analysis pipeline is able to

characterize �exion and abduction movements, the angles extracted translate into open
and closed hand patterns, and that a straightforward classi�er has high accuracy in
distinguishing between patient and control hand shapes. In this experiment we compared
patient measurements obtained by the sensor with reliable goniometer measurements,
aiming to evaluate whether the hand analysis pipeline can provide objective feedback to
the occupational therapists in practical scenarios.

For this, with support of the Occupational Therapy department from FMRP-USP, we
obtained the range of motion goniometer measurements for �exion and abduction of �ve
patients. Those data were acquired for patients in di�erent stages of the disease. The
measurements provided were the maximum and minimum value for each �exion angle,
and the maximum distance between tips for abduction.

For RA, the standard procedure is the range of motion value evaluation. For phalanx
joints, i.e. MCP, PIP and DIP, such values are computed simply by subtracting the maximum
�exion angle with the maximum extension angle of each joint. Since �exion and extension
are measured with relation to the same plane, we represent this value as the minimum
and maximum value for the �exion angle of each joint. In some patients, this minimum
value is negative, indicating that the resting position is negative with relation to the plane
de�ned by the palm of the hand. This con�guration is named hyperextension, and the
proposed method is unable to identify negative values. In our proposal, we extracted clips
with single hand opening movements, in which we can identify the range of each angle
measurement using maximum and minimum values.

In order to compare the measurements, we decided to use an observation-based method-
ology. For each patient and hand, the sensor measurement should be computed from the
set of all measurements manually annotated into clips (using the methodology described
in Section 5.1). Figure 5.13 plots all measurements per angle from one of the evaluated
patients, with violin plots (Hintze and Nelson, 1998) with estimated distributions of
each angle. Small white points are measurements taken from each clip frame, and the
background curves are calculated using a kernel density estimation method from the
underlying points.

From all the measurements, we compute quantiles for each patient and angle, and
compose the maximum and minimum values using four di�erent approaches:

1. Global maximum and minimum values for each measurement;

2. 0.05 and 0.95 quantiles for each measurement;

3. 0.10 and 0.90 quantiles for each measurement;

4. Average of minimum and average of maximum values from all clips of the same
subject (used to compose Tables 5.1 and 5.2).

Figure 5.14 show the interval comparison between the annotated goniometer ROM (in
red) and the other strategies for the patient characterized in Figure 5.13. The observed be-
haviour varies with the type of joint: for MCP and DIP joints, the goniometer interval tends
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Figure 5.13: Angle observations from a patient.

to be larger than the sensor intervals; for PIP joints, the sensor minimum measurement is
around 0 and the goniometer indicates a measurement around 20◦ for all joints, indicating
that the hand does not open completely. For abduction, the measurement obtained by
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the goniometer was the maximum distance between two �ngers, and we considered that
the movement interval for abduction is between 0 and the measurement provided by the
goniometer.
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Figure 5.14: Angle range intervals for observed patient using the four strategies decided.

In order to choose the most consistent strategy for range of motion extraction we
compute average values for range of motion per joint. The behaviour for the observed
patient (Figures 5.13 and 5.14) arguably extends for the rest of the dataset: for MCP joints,
the sensor ROM is substantially smaller than the goniometer, and the best approximation
is the strategy 1 (using global maximum and minimum values). On the other hand, for PIP
joints, the range of motion provided by the goniometer is consistently smaller than the
sensor measurement; in this case, using the strategy 4 (average maximum and average
minimum) leverages the error. For DIP joints, the best strategy was the 0.95 quantile
(strategy 2), with the exception of the joint F − I I −DIP , for which the strategy 4 provided a
better aproximation. For abduction, the strategy 2 is a better approximation in all scenarios
with the exception of the joint A − I I − T IP , for which the strategy 4 yielded a smaller
magnitude error. Figure 5.15 shows the average ROM value, while Figure 5.16 shows the
average absolute magnitude error per joint.
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Figure 5.15: Average range of motion per strategy, comparing with the goniometer.
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Figure 5.16: Average absolute di�erence of range of motion per strategy, comparing with the

goniometer.

Analysing the error magnitude, we consider the approximation provided by the sensor
not su�cient to provide reliable results for occupational therapy. In order to detail the
error sources that compose such result, we computed the Pearson correlation coe�cient
between the observed variables. The dataset used in this analysis was composed by one
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record per hand (5 patients, 2 hands) and per angle (16 angles), resulting in a total of
160 samples. For each sample, we computed maximum and minimum values for each
strategy, maximum and minimum values extracted by the goniometer, as well as the ROM
measurement using all strategies and the ground-truth goniometer ROM measurement.
The Pearson correlation coe�cient �X,Y is a measure of linear correlation between two sets
of data X and Y , assuming values in the interval [−1, 1]. Values closer to 1 indicate high
positive correlations, negative values indicate negative correlation and low magnitude
values indicate that the variables are uncorrelated. This coe�cient is computed by the
covariance between two variables divided by the product of their standard deviations, as
detailed in Equation 5.2.

�X,Y =
E[(X − �X )(Y − �Y )]

�x�y
(5.2)

Figure 5.17 shows a heatmap with this measure, indicating that the correlation between
the range of motion obtained by the goniometer and the sensor ROM peaks at 0.52, for the
strategy 4. This indicates a low correlation between such measurements. Furthermore, the
correlation between the observated ROMs for the four strategies are above 0.9, indicating
that the all strategies have similar behaviours, which means that outlier �ltering has limited
e�ect in this task. In addition, the correlation between goniometer minimum values and
sensor minimum values is much lower than the correlation between maximum values, thus
the main imprecisions come from lower angle measurements. One possible explanation
is the incapacity of the hand pose estimation method on representing extension angles
(negative measurements).
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Figure 5.17: Correlation heatmap between observations - values close to 1 indicate a high linear

correlation, close to -1 indicate a high negative linear correlation, and low magnitude values

indicate that the variables are uncorrelated.

Aware of this issue with the hand pose estimation method, we recalculated all the
measures transforming all negative minimum values to zero. Figure 5.18 shows the corre-
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lation indexes in the new scenario. We observed an increase on correlation values between
goniometer ROM and all strategies (peaking at 0.55 for the strategy 4), and between
goniometer minimum values and sensor measurements. This indicates that the extension
movement impacts the results of the ROM comparison, but the increase of the Pearson
correlation coe�cient is insu�cient to justify the use of the method in practical scenarios.
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Figure 5.18: Correlation heatmap between observations (disconsidering negative GT angle

measurements) - values close to 1 indicate a high linear correlation, close to -1 indicate a high

negative linear correlation, and low magnitude values indicate that the variables are uncorrelated.

5.4 Remarks
In Section 5.1, we showed that the hand analysis pipeline yields coherent results for

hand angles, for which the highest and lowest measurements are associated with open and
closed hand patterns. We further described the general behaviour of control subjects and
patients in �exion movements, as well as how the limitations caused by rheumatoid arthritis
a�ects the angles. The pipeline uses a pre-trained model for hand pose estimation and was
trained with regular hand shapes, therefore showing su�cient generalization capacity in
terms of estimating hand poses in unseen scenarios. For occupational therapy, we believe
that the characterization of �exion angles in terms of temporal signals provides new
possibilities for comparison and characterization of the disease state of each patient.

The experiment executed in Section 5.2 shows that the use of simple descriptors and
classi�ers is enough to di�erentiate movement patterns from control and patient subjects.
This initial result re�ects that computer vision approaches can be used to identify features
that characterize rheumatoid arthritis on patients. The high accuracy yielded from the
leave-one-person-out experiment also indicates that the movement patterns are indeed
separable as two distinct classes, and further exploration of the characteristics of such
patterns can provide new �ndings about rheumatoid arthritis.
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In Section 5.3, we compare ground-truth minimum and maximum values obtained
from a goniometer with sensor measurements, in order to validate the practical use of
the framework for range of motion estimation. Watching the obtention of measurements
with the goniometer, we noted that the therapist guides the patient to put the adequate
strength in the movements of opening and closing the hand. The measurements are then
calculated by guiding the patient to keep the hand in the current state for some seconds
- the guidelines provided by the therapist have fundamental importance for the precise
assessment. For the sensor acquisition, those guidelines are performed before the recording,
and this setup di�erence yields bias and in�uences the process.

The results obtained in this experiment show that the range of motion intervals
generated by the sensor and the goniometer have a low correlation, despite the e�orts on
evaluating di�erent strategies of providing min/max values. This shows that more studies
and enhancements on hand pose estimation are needed in order to use the framework in
practical range of motion acquisition scenarios.

We also noted that the lack of annotated data from patients sensibly limits the ROM
measurement accuracy, since we are applying our system on a dataset where hand shapes
and patterns are very di�erent from those used in the pre-trained model. With bigger
and speci�c purpose datasets, the increase of the generalization capacity of hand pose
estimation methods can help this pipeline to achieve more reliable results.
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Chapter 6

Conclusion

6.1 Conclusion

Main contributions
This thesis sought to evaluate the viability of an automatic pipeline for patients with

rheumatoid arthritis, using state-of-the-art hand pose estimation methods. A new approach
has been introduced and evaluated experimentally using real data. We de�ned an acquisi-
tion setup with a patient set and a control set, obtaining �exion and abduction movement
sequences. In the case of patients, the ulnar deviation and the use of orthosis a�ect the
acquisition and the resulting hand pose, which makes the problem more challenging than
state-of-the-art hand pose estimation benchmarks. We de�ned an acquisition protocol for
�exion and abduction movements and detailed the main project decisions for the formation
of the dataset.

We estimated the hand pose using the Pose-REN algorithm and presented a method to
convert 3D point coordinates to �exion and abduction angles. We proposed a strategy to
register sequences of movements and represent cycles of movements as feature vectors
based on frequency domain descriptors. This representation of the movement patterns is
then used for classi�cation, aiming to identify patterns and distinguish between patients
and control data.

The proposed method is able to accurately estimate skeleton angles and range of
motion measurements from control and patients, even with the 3D hand pose estimation
algorithm being trained in a completely di�erent dataset of healthy hand movements.
Results for classi�cation are promising, showing that a simple movement cycle is enough
to distinguish patients from control.

Findings of the experiments
The main �ndings of the experiments are:

• The angles extracted by the hand analysis pipeline encode correctly �exion and
abduction movements, characterizing visually each movement in terms of angle
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variation.

• A simple classi�er and motion descriptor is able to distinguish between control and
patient classes, even with unseen subjects.

• When compared to real goniometer range of motion measurements, the error mag-
nitude is still high, indicating that the there is a lot of room for improvement in the
application for real patient assessments.

Impact for computer vision community
It is important to note that this thesis proposes a challenging application for hand pose

estimation with a baseline solution. The pipeline built for estimation of hand angles can be
used with di�erent hand pose estimation methods and sensor con�gurations. The work of
Ng et al. (2021) uses the �exion and abduction angles formulae to apply the self-attention
hand pose estimation method in a setup with two sensors, computing the average angle
value in both sensors in order to reach more robust results. We believe that with the
advances in the results for hand pose estimation, further methods could be used with tests
"in the wild", and the generalization capacity of current pose estimation methods makes
possible the application in other knowledge areas, especially in assessments for medicine
and occupational therapy.

Impact for occupational therapy
For occupational therapy, the thesis proposes a framework to analyse �exion and abduc-

tion angles as time signals. Compared to current movement analysis that uses maximum
and minimum values, the analysis of a signal that encodes the complete movement pattern
can help the research on rheumatoid arthritis and future characterization of movement
patterns from patients in di�erent stages of the disease.

In terms of objective feedback, the range of motion comparison experiment resulted
in high error values, and the min/max intervals provided by the goniometer have low
correlation to the intervals generated by the sensor. This limits the use of our framework
to provide objective feedback for the patients. However, new methods and new datasets
can enhance this result.

In terms of applicability, the acquisition protocol is simple and requires a single depth
sensor RealSense SR300. The project originally sought to use 2D hand pose estimation
methods in order to provide feedback with cell phone cameras, but despite the recent
interest in such solutions, the state-of-art methods still have limited accuracy. With the
progress of the area, we believe that such solutions can become feasible, making the setup
much cheaper and accessible.

Impact of the dataset
The created dataset is important in the sense of providing depth images of patients with

rheumatoid arthritis in contrast with control images. Such images have unusual shapes
and pose a challenge for hand pose estimation methods. The dataset has the limitation of
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not providing the ground-truth values for each frame, due to acquisition setup limitations.
Nonetheless, experiments show that the dataset is able to provide valuable information in
form of movement description for occupational therapists.

Lessons learnt from acquisition setup
In the context of machine learning for human/hand pose estimation, the ideal data

acquisition procedure uses sensors to obtain ground-truth measurements for the skeletons
of the subjects, allowing the training of hand pose estimation models that contains hands
with shapes of patients with rheumatoid arthritis and thus leveraging the error propagation
from the hand joints estimation. This process, however, involves a careful and time-
consuming setup and positioning the sensors on the exact positions of the joints. The
data acquisition protocol for this project required the assessment of hand shapes during
medical assessments from patients in rehabilitation, and the conception of the setup
demanded simplicity and comfort of the patients, with markerless assessments. In this
context, we opted for a pre-trained model using the HANDS17 dataset, which provides
robust estimatives and is able to deal with most movement sequences. Since the model
was not trained with patients and hand shapes with disabilities, that decision limited the
reliability of data and added an error source to the pipeline from the model used in hand
pose estimation. The production of a dataset with ground-truth joint values for rheumatoid
arthritis and other disabilities would improve the model used in HPE and provide more
exact results, but was unfeasible in the current project.

Limitations and reproductibility of the pipeline
The pipeline is built such that new methods can be tested in the hand pose estimation

step. The only limitation is the angle calculation, which might need to be reformulated for
other hand models. The pipeline is compatible with every method that uses the HANDS17
or MSRA dataset, whose model is composed by 21 joints. We believe that if hand an-
gle evaluation becomes a common task for hand pose estimation, the pipeline can be
straightforwardly adapted to include other methods.

We are optimistic that the recent developments in 2D hand pose estimation, with
million-scale datasets and training of proper models, can provide a better generalization
capacity for 2D hand pose estimation methods. As discussed in Section 2.4, monocular
image-based and pose estimation is a much more complex problem if compared to depth-
based, since it relies on color-based joint estimation and naked hands do not have enough
texture to allow reliable tracking of its parts. The amount of hand shape variation and
self-occlusion are also major challenges. With the use of the InterHand2.6M dataset, we
can expect that new models are trained and can reach promising results. For now, the use
of 3D hand pose estimation methods is recommended.

6.2 Future Works
This work demonstrates the viability of using a computer-vision based system for

movement analysis in the context of occupational therapy. However, the adoption of such
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approach in a real-world clinical setting is more challenging and requires further research
and development in many aspects.

We suggest multiple directions for future works following this thesis.

Hand pose estimation
For hand pose estimation, the proposed framework and acquisition protocol serves

as a baseline for angle estimative of patients. We highlight the subsequent work of Ng
et al. (2021), that uses a multiple sensor setup for hand angle estimation on patients with
stroke. That work proposes the hand angle estimation as application of the method, uses
multiple sensors for robustness, and points towards the future directions of producing a
dataset with hand shapes of stroke patient. We believe that the construction of a purpose-
speci�c ground-truth dataset with patients with rheumatoid arthritis will enhance the
generalization capacity of hand pose estimation methods for this task.

Hand analysis
The main limitation of the current pipeline is that the movement clips are manually

annotated. In order to provide a fully automatic pipeline, an algorithm for clip detection
has to be applied. We currently see two strategies for this task:

1. Use the annotated intervals to train a machine learning model that automatically
encodes the class information (i.e. �exion or abduction movements).

2. Use the main features described by the angle signals (in�exions and slopes) to detect
similarities between a basis-curve and intervals of raw data.

For real-time �exion movement detection, we suggest a pattern-based algorithm. The �rst
step is to remove apparent outliers and irregularities in MCP �exion angles. For this, we
apply the smoothing by simpli�ed least squares method in each angle separately. After the
smoothing, we seek to �nd peaks and valleys in the signals. This step is made by �nding
zero-crossing values in the derivative of the signal. In order to avoid outliers, we also
�ltered the results, eliminating points that are at a distance bigger than a threshold to the
global minimum and maximum. Clip interval candidates are composed by the interval
between two local minima. Since we are dealing with multiple time signals, the resulting
clips are the intersection of the intervals composed from each individual signal.

Another limitation of the current hand angle estimation method is that it only es-
timates positive angles, being unable to express extension and adduction values. The
computation of angle formulae for other hand models, such as the MANO model, are also
important.

In the context of occupational therapy, further work can be done in describing and
quantifying the movements of �exion/extension and abduction/adduction: we described
the shape of �exion and abduction measurements per frame, but a study on occupational
therapy can associate the characteristics of rheumatoid arthritis with the observed behavior.
Further analysis can also associate curve descriptors with the state of the disease in each
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patient; this can be done by machine learning classi�ers, taking into account the movement
dynamic aspects for evaluating the hand state.

We can also perform analyses with the measurements obtained in sequences from
patients with orthoses - such sequences can be used as comparison baseline for char-
acterizing the state of the disease since the orthoses are designed to correct the ulnar
deviation.

The proposed framework can be further used for evaluation of the hand state in the
same patient. In the context of this work, we planned to perform acquisitions with a patient
in di�erent moments, but since the setup was in development we were not able to analyze
the measurement variation through time. With enough data, it is possible to use such
information to help the therapist in the treatment planning.

Another possibility of application is to ideally perform the classi�cation of hand shapes
and movement descriptors according to the disease state - creating a "grading" scheme
that can be used to provide continuous evaluation of a single patient.

It is also feasible the development of an interface that can guide the patient on the
�exion/abduction movement execution using augmented reality, through the playback of
reference sequences indicating for the patient the movement that should be performed in
each moment.

Other areas
We consider that the range of applications extend to areas other than occupational

therapy - the characterization of di�erent types of movements than �exion and abduction
can be tested for tasks like human-computer interaction and sign language recognition,
given the appropriate datasets for training and evaluation.
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Data acquisition protocol

This appendix details the steps used in the �nal data acquisition protocol, used for the
acquisition performed in patients at 2019 September 6th and 13rd (as described in Table
3.6).

A.1 Setup installation and con�guration
1. Fasten the camera in a position such that the hand is acquired in a frontal position.

2. Mark the �oor indicating the positioning of the patient.

A.2 Upon patient arrival
1. Extract goniometer measurements from the patient by the occupational therapist.

2. Instruct the patient showing the movement that should be done from the current
position.

3. Position the patient on the mark.

4. If the patient is wearing a long sleeve shirt, roll up the sleeves such that it does not
disturb the quality of the hand detection.

5. Record the sequences, in the following order:

(a) Three �exion sequences with the right hand (without orthosis).

(b) Three �exion sequences with the left hand (without orthosis).

(c) Three abduction sequences with the right hand (without orthosis).

(d) Three abduction sequences with the left hand (without orthosis).

(e) Three �exion sequences with the right hand (with orthosis).

(f) Three �exion sequences with the left hand (with orthosis).
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(g) Three abduction sequences with the right hand (with orthosis).

(h) Three abduction sequences with the left hand (with orthosis).

A.3 Analysis
1. Annotate each movement sequence, indicating the frame numbers of the beginning

and the end of the movement (indicating the intervals where the movement happens).

2. Generate tables with minimum, maximum and average values for each angle mea-
sured in each clip.

3. Compare the values obtained with the sensor and the values obtained by the go-
niometer.

4. Train classi�cation model to classify between control and patient.

A.4 Recommendations
• The hand pose estimation method requires that the hand should be the nearest

object to the camera in order to reach more precise results.

• Each recorded sequence should be composed by 10 movements (named clips). At
the end of the 10 movement sequences, the patient should lower the arm, wait 10
seconds and start the next sequence. The acquisition software should be con�gured
for this pipeline.
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Results for each subject

In this appendix, we show the �exion angle and abduction assessments for each subject
composing our dataset. The tables are composed in the same way as Tables 5.1 and 5.2,
with minimum and maximum values separated per hand, joint and �nger. For control
subjects and patients with abduction measurements equal to zero, no abduction clips have
been recorded.

Finger 2 3 4 5
min max min max min max min max

C01 - L

MTC (◦) 16.25 68.20 13.15 70.30 8.92 71.91 11.11 77.61
IFP (◦) 1.43 78.40 0.92 102.14 3.44 112.94 1.72 80.92
IFD (◦) 11.35 59.24 9.13 50.35 15.35 47.80 16.74 50.87

abd (cm) 0.00 0.00 0.00 0.00

C01 - R

MTC (◦) 22.97 67.14 16.12 70.59 11.93 71.70 6.87 78.05
IFP (◦) 2.63 84.37 3.92 105.76 6.27 112.39 3.90 78.11
IFD (◦) 13.85 54.04 11.59 44.72 17.38 46.57 20.80 49.31

abd (cm) 0.00 0.00 0.00 0.00

Table B.1: Measurements extracted from one of the patients during the data acquisition session.
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Finger 2 3 4 5
min max min max min max min max

C02 - L

MTC (◦) 16.44 32.70 12.29 31.48 7.25 30.71 10.54 43.12
IFP (◦) 1.16 41.23 1.31 75.36 0.72 105.54 0.50 45.75
IFD (◦) 6.22 121.85 3.81 84.12 3.97 67.15 3.38 98.93

abd (cm) 0.00 0.00 0.00 0.00

C02 - R

MTC (◦) 13.19 25.53 11.05 23.83 5.13 23.53 7.20 41.83
IFP (◦) 1.05 34.01 1.92 84.39 0.89 97.34 1.56 46.77
IFD (◦) 7.85 119.32 8.25 93.45 11.40 90.70 9.80 92.78

abd (cm) 0.00 0.00 0.00 0.00

Table B.2: Measurements extracted from one of the patients during the data acquisition session.

Finger 2 3 4 5
min max min max min max min max

C03 - L

MTC (◦) 15.17 48.49 12.56 53.63 10.23 55.05 15.34 66.59
IFP (◦) 2.03 79.49 1.10 110.31 1.39 121.12 0.97 94.71
IFD (◦) 3.40 73.84 3.62 51.76 3.37 51.17 3.60 54.09

abd (cm) 0.00 0.00 0.00 0.00

C03 - R

MTC (◦) 10.46 48.81 8.42 53.85 5.78 55.53 9.11 66.80
IFP (◦) 1.71 79.59 1.09 103.67 1.30 119.98 0.82 81.57
IFD (◦) 8.18 66.74 4.00 54.95 9.11 48.97 8.90 54.41

abd (cm) 0.00 0.00 0.00 0.00

Table B.3: Measurements extracted from one of the patients during the data acquisition session.
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Finger 2 3 4 5
min max min max min max min max

C04 - L

MTC (◦) 16.30 67.23 11.33 68.53 6.11 66.49 8.46 75.82
IFP (◦) 2.32 75.53 1.92 105.02 0.89 113.94 1.78 82.52
IFD (◦) 6.97 69.40 4.35 55.51 10.03 50.32 5.95 61.75

abd (cm) 0.00 0.00 0.00 0.00

C04 - R

MTC (◦) 18.52 64.55 13.96 64.72 6.71 64.71 8.59 72.26
IFP (◦) 2.49 74.77 1.32 101.36 1.94 111.37 2.32 84.14
IFD (◦) 5.88 73.17 5.70 61.32 12.58 53.23 13.05 66.10

abd (cm) 0.00 0.00 0.00 0.00

Table B.4: Measurements extracted from one of the patients during the data acquisition session.

Finger 2 3 4 5
min max min max min max min max

C05 - L

MTC (◦) 18.97 68.36 15.77 67.47 10.01 68.18 12.53 72.16
IFP (◦) 2.51 90.97 1.63 109.98 1.23 117.82 2.54 88.56
IFD (◦) 3.40 60.52 3.41 48.88 6.98 54.49 3.79 53.28

abd (cm) 0.00 0.00 0.00 0.00

C05 - R

MTC (◦) 18.45 69.91 14.89 76.30 7.94 79.83 7.88 82.08
IFP (◦) 2.42 94.76 1.89 101.86 1.32 109.96 1.62 87.97
IFD (◦) 2.71 64.67 2.85 57.60 7.75 60.19 4.35 57.12

abd (cm) 0.00 0.00 0.00 0.00

Table B.5: Measurements extracted from one of the patients during the data acquisition session.
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Finger 2 3 4 5
min max min max min max min max

C06 - L

MTC (◦) 21.32 58.38 15.94 72.14 6.94 71.19 7.95 81.94
IFP (◦) 1.22 88.06 1.35 102.07 1.60 103.68 1.23 79.09
IFD (◦) 11.69 70.33 10.41 53.61 11.17 57.56 11.06 53.36

abd (cm) 2.39 2.08 1.17 1.05

C06 - R

MTC (◦) 20.03 60.20 13.74 61.93 5.56 58.78 5.14 67.81
IFP (◦) 0.63 96.59 0.87 113.28 0.81 115.05 1.61 101.12
IFD (◦) 14.33 73.89 12.63 60.69 17.13 65.44 8.77 63.90

abd (cm) 5.01 2.89 0.55 1.03

Table B.6: Measurements extracted from one of the patients during the data acquisition session.

Finger 2 3 4 5
min max min max min max min max

C07 - L

MTC (◦) 17.98 67.76 13.33 75.26 5.77 75.79 6.49 78.00
IFP (◦) 1.56 58.47 0.87 89.15 1.17 100.52 0.74 67.20
IFD (◦) 15.14 53.00 11.94 46.00 13.84 47.70 12.17 54.16

abd (cm) 2.89 1.33 0.53 1.04

C07 - R

MTC (◦) 18.84 56.42 11.14 66.67 1.83 67.15 2.57 73.11
IFP (◦) -1.51 61.91 -0.48 89.89 0.16 102.87 -0.14 59.28
IFD (◦) 24.68 52.48 17.92 45.87 23.08 47.81 21.50 48.98

abd (cm) 2.59 1.52 0.67 0.74

Table B.7: Measurements extracted from one of the patients during the data acquisition session.
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Finger 2 3 4 5
min max min max min max min max

C08 - L

MTC (◦) 9.13 35.55 6.98 41.32 2.55 40.31 8.00 58.31
IFP (◦) 0.82 68.85 1.06 100.06 1.19 114.78 0.83 58.19
IFD (◦) 8.09 77.37 10.24 63.78 12.64 67.17 12.23 71.00

abd (cm) 1.97 1.38 0.70 1.43

C08 - R

MTC (◦) 18.77 60.14 9.91 64.37 4.17 68.36 6.91 74.22
IFP (◦) 1.06 94.38 0.98 106.62 1.56 119.28 1.36 91.80
IFD (◦) 16.72 58.63 14.40 51.76 19.60 54.93 19.67 59.78

abd (cm) 5.43 2.35 0.42 0.71

Table B.8: Measurements extracted from one of the patients during the data acquisition session.

Finger 2 3 4 5
min max min max min max min max

C09 - L

MTC (◦) 16.26 68.68 12.40 70.45 7.28 71.94 18.57 75.13
IFP (◦) 2.66 88.36 1.33 99.41 1.82 102.88 2.88 88.48
IFD (◦) 7.56 47.80 7.25 43.77 9.34 43.94 11.94 38.08

abd (cm) 3.47 1.85 0.63 2.32

C09 - R

MTC (◦) 15.70 67.49 10.08 67.12 5.37 70.32 17.05 75.47
IFP (◦) 1.44 88.11 2.12 98.39 1.27 101.04 1.79 84.26
IFD (◦) 16.25 45.91 11.59 42.70 12.76 44.78 13.88 42.19

abd (cm) 3.47 2.05 0.65 2.06

Table B.9: Measurements extracted from one of the patients during the data acquisition session.
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Finger 2 3 4 5
min max min max min max min max

C10 - L

MTC (◦) 22.08 30.46 13.80 22.82 5.69 17.92 7.06 30.73
IFP (◦) 1.14 47.95 1.45 68.18 1.81 75.61 0.74 35.99
IFD (◦) 3.95 122.75 10.45 109.28 10.60 111.24 8.76 111.84

abd (cm) 2.86 1.34 0.61 1.78

C10 - R

MTC (◦) 23.50 38.52 13.48 37.74 9.08 35.63 10.63 57.65
IFP (◦) 1.80 93.37 2.27 99.47 1.78 109.35 1.70 66.25
IFD (◦) 9.73 50.24 10.68 49.10 10.53 40.72 9.38 54.81

abd (cm) 3.48 1.74 0.37 0.66

Table B.10: Measurements extracted from one of the patients during the data acquisition session.

Finger 2 3 4 5
min max min max min max min max

C11 - L

MTC (◦) 18.41 61.09 15.78 67.58 8.85 69.99 12.00 78.78
IFP (◦) 3.71 78.82 4.85 107.02 6.34 107.51 2.82 75.44
IFD (◦) 14.85 53.95 12.67 41.34 12.75 42.15 12.53 48.08

abd (cm) 2.50 1.51 0.68 1.75

C11 - R

MTC (◦) 15.94 74.70 14.14 74.66 5.02 77.36 8.99 81.52
IFP (◦) 0.06 92.23 -0.96 107.28 -0.94 113.54 -0.94 86.53
IFD (◦) 13.08 58.15 9.95 44.30 13.71 49.25 6.58 50.60

abd (cm) 3.24 1.38 0.38 1.65

Table B.11: Measurements extracted from one of the patients during the data acquisition session.
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Finger 2 3 4 5
min max min max min max min max

C12 - L

MTC (◦) 13.99 73.52 18.81 70.93 14.13 70.12 17.41 73.88
IFP (◦) 2.24 85.15 0.78 100.36 3.11 105.04 1.57 84.36
IFD (◦) 6.12 59.10 4.35 50.74 7.87 51.50 8.67 51.81

abd (cm) 3.08 1.73 1.49 2.42

C12 - R

MTC (◦) 16.16 67.02 11.83 68.67 5.63 68.00 8.75 75.21
IFP (◦) 1.80 89.71 1.13 100.31 2.45 108.92 1.48 84.96
IFD (◦) 14.29 62.38 13.37 58.79 18.35 57.57 15.89 57.47

abd (cm) 2.84 1.40 0.78 1.98

Table B.12: Measurements extracted from one of the patients during the data acquisition session.

Finger 2 3 4 5
min max min max min max min max

P01 - L

MTC (◦) 20.67 31.16 22.52 27.85 18.78 24.71 32.13 43.79
IFP (◦) 1.61 80.04 3.26 96.43 7.30 89.80 16.70 50.14
IFD (◦) 11.55 62.65 13.83 49.56 14.45 65.79 24.78 80.67

abd (cm) 0.00 0.00 0.00 0.00

P01 - R

MTC (◦) 19.35 41.35 12.66 39.80 6.27 37.52 9.84 53.81
IFP (◦) 2.93 100.37 3.22 125.84 4.85 127.99 2.00 96.48
IFD (◦) 13.69 37.38 13.54 25.30 15.33 30.19 16.50 42.65

abd (cm) 10.11 6.03 3.38 3.75

Table B.13: Measurements extracted from one of the patients during the data acquisition session.
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Finger 2 3 4 5
min max min max min max min max

P02 - L

MTC (◦) 25.44 50.11 19.91 42.53 11.18 40.20 12.64 45.67
IFP (◦) 2.76 69.37 2.60 95.22 2.78 96.82 1.92 38.41
IFD (◦) 22.99 70.17 17.17 53.48 19.44 60.06 20.69 73.49

abd (cm) 7.99 6.02 3.26 4.80

P02 - R

MTC (◦) 40.30 56.63 27.23 52.01 18.01 45.90 20.15 46.03
IFP (◦) 5.59 63.82 4.27 95.66 3.17 98.40 4.84 37.91
IFD (◦) 17.12 46.29 18.16 34.12 23.97 42.83 32.57 68.19

abd (cm) 10.94 4.64 2.99 4.59

Table B.14: Measurements extracted from one of the patients during the data acquisition session.

Finger 2 3 4 5
min max min max min max min max

P03 - L

MTC (◦) 15.26 60.18 16.77 59.60 11.32 62.14 13.45 72.76
IFP (◦) 1.70 101.61 1.99 109.48 1.54 113.75 1.43 81.91
IFD (◦) 6.25 45.75 2.89 33.89 4.26 38.21 5.59 52.12

abd (cm) 9.40 6.19 3.22 4.86

P03 - R

MTC (◦) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
IFP (◦) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
IFD (◦) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

abd (cm) 7.46 6.59 3.23 6.01

Table B.15: Measurements extracted from one of the patients during the data acquisition session.



B | RESULTS FOR EACH SUBJECT

91

Finger 2 3 4 5
min max min max min max min max

P04 - L

MTC (◦) 21.10 59.48 19.43 60.82 12.17 56.26 15.19 68.15
IFP (◦) 1.96 104.76 1.74 119.36 0.99 115.07 1.76 85.19
IFD (◦) 9.14 48.10 5.08 45.37 6.75 49.57 14.60 57.62

abd (cm) 10.42 5.53 3.10 4.95

P04 - R

MTC (◦) 15.70 37.10 16.90 48.34 19.21 51.63 45.11 67.82
IFP (◦) 3.99 83.39 4.60 97.03 7.15 91.36 18.60 48.46
IFD (◦) 18.08 52.03 14.42 37.68 15.20 44.55 26.29 58.60

abd (cm) 0.00 0.00 0.00 0.00

Table B.16: Measurements extracted from one of the patients during the data acquisition session.

Finger 2 3 4 5
min max min max min max min max

P05 - L

MTC (◦) 22.25 45.94 12.23 42.97 1.49 40.60 17.83 56.88
IFP (◦) 2.60 56.82 6.12 73.60 3.67 87.32 10.54 62.65
IFD (◦) 19.08 86.16 14.57 76.55 12.98 60.94 30.02 69.02

abd (cm) 7.74 4.24 2.61 5.71

P05 - R

MTC (◦) 20.91 53.43 19.75 59.20 22.43 60.32 30.81 75.12
IFP (◦) 3.02 78.46 2.41 101.72 5.15 94.64 5.22 36.98
IFD (◦) 22.62 28.87 8.49 16.57 12.71 19.94 18.79 27.73

abd (cm) 6.61 4.56 3.73 3.92

Table B.17: Measurements extracted from one of the patients during the data acquisition session.
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Finger 2 3 4 5
min max min max min max min max

P06 - L

MTC (◦) 28.53 59.41 16.49 59.34 8.24 56.15 19.82 62.98
IFP (◦) 2.58 79.65 2.41 102.83 2.91 99.07 22.82 69.84
IFD (◦) 18.20 50.72 9.55 38.80 9.86 48.64 14.13 46.73

abd (cm) 2.82 1.84 1.53 1.99

P06 - R

MTC (◦) 25.25 53.03 15.76 56.70 8.52 53.53 19.16 63.45
IFP (◦) 10.88 89.35 4.72 106.41 3.23 100.70 31.12 65.34
IFD (◦) 17.28 40.87 10.79 31.14 10.68 38.34 16.56 45.96

abd (cm) 2.90 1.66 1.15 1.95

Table B.18: Measurements extracted from one of the patients during the data acquisition session.

Finger 2 3 4 5
min max min max min max min max

P07 - L

MTC (◦) 15.74 44.05 10.56 47.77 4.91 47.51 6.76 58.84
IFP (◦) 0.74 85.21 1.23 98.16 1.37 91.04 1.08 71.82
IFD (◦) 19.45 47.15 17.70 43.76 16.36 48.84 13.13 54.07

abd (cm) 2.52 1.66 1.69 2.50

P07 - R

MTC (◦) 23.63 76.20 14.88 80.43 9.05 81.23 7.89 80.91
IFP (◦) 0.94 88.63 2.76 103.09 1.49 99.76 1.74 83.98
IFD (◦) 20.45 48.65 6.66 45.11 8.06 54.33 18.23 56.34

abd (cm) 2.87 2.48 1.34 0.98

Table B.19: Measurements extracted from one of the patients during the data acquisition session.
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Finger 2 3 4 5
min max min max min max min max

P08 - L

MTC (◦) 24.30 55.02 20.10 55.79 11.56 54.77 18.82 66.69
IFP (◦) 0.78 108.90 2.82 120.07 2.40 112.72 2.93 84.52
IFD (◦) 15.19 46.96 15.51 41.30 20.39 48.60 28.10 53.80

abd (cm) 3.45 2.14 1.20 1.63

P08 - R

MTC (◦) 31.63 52.00 31.26 52.08 32.66 51.59 44.77 62.60
IFP (◦) 3.08 45.54 9.13 85.69 10.86 78.31 11.11 65.44
IFD (◦) 26.85 50.84 18.24 37.45 24.64 39.26 32.07 41.91

abd (cm) 3.06 2.41 2.04 3.57

Table B.20: Measurements extracted from one of the patients during the data acquisition session.
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Appendix C

Visual evaluation for abduction
sequences

In this appendix, we show full results for characterization of the abduction movement,
with the complete graphics of movement and angle description, extending the analysis
performed for the �nger IV to all other �ngers.

Figures C.1 and C.2 illustrate �exion sequences, highlighting the frames with higher
and lower values for the measurement F − I V − PIP .

For clip extraction, we manually extracted the landmarks for abduction, with the cycle
correspondent to one opening and closing of the �ngers. Figures C.3 and C.4 show the
annotated clips.

Figures C.5 and C.6 conclude the analysis by showing summarization in terms of mean
and standard deviation for one patient and control individual.
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Figure C.3: Manual annotation of movement intervals in the angle sequence described in Figure

C.1. Extracted clips are marked in red.
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Figure C.4: Extracted clips from sequences shown in Figure 5.3: patient (le�) and control (right).

Trajectories have been re-sampled.
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Figure C.5: All trajectories extracted from clips of the same person: patient (le�) and control

(right). Trajectories have been re-sampled.
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Figure C.6: Summarization in terms of mean and standard deviation of all trajectories extracted

from clips from the same person: patient (le�) and control (right). "Average clips" of other subjects

are shown in the background. Patient samples are colored in red, and control samples are colored in

blue.
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Appendix D

Visual evaluation for abduction
sequences

In this appendix, we show the results and characterization of the abduction movement.
This is made in a similar fashion to the methodology applied in Section 5.1.

Figures D.1 and D.2 illustrate abduction sequences, highlighting the frames with
higher and lower values for the measurement A − IV − tip. With this, we show the direct
correspondence between closed hands and lower measurements and open hands with
higher measurements.

For clip extraction, we manually extracted the landmarks for abduction, with the cycle
correspondent to one opening and closing of the �ngers. Figures D.3 and D.4 show the
annotated clips.
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Figure D.3: Manual annotation of movement intervals in the angle sequence described in Figure

D.1. Extracted clips are marked in red.
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Figure D.4: Manual annotation of movement intervals in the angle sequence described in Figure

D.2. Extracted clips are marked in red.
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