• JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
  • JoomlaWorks Simple Image Rotator
 
  Bookmark and Share
 
 
Tese de Doutorado
DOI
https://doi.org/10.11606/T.45.2019.tde-15032019-114236
Documento
Autor
Nome completo
Luis Eduardo Zambrano Fernandez
E-mail
Unidade da USP
Área do Conhecimento
Data de Defesa
Imprenta
São Paulo, 2018
Orientador
Banca examinadora
Kohayakawa, Yoshiharu (Presidente)
Benevides, Fabricio Siqueira
Hoppen, Carlos
Martin, Daniel Morgato
Mota, Guilherme Oliveira
 
Título em português
Densidade local em grafos
Palavras-chave em português
Bisecções de grafos
Densidade local
Metades esparsas
Teorema de Turán
Resumo em português
Nós consideramos o seguinte problema. Fixado um grafo H e um número real \alpha \in (0,1], determine o menor \beta = \beta(\alpha, H) que satisfaz a seguinte propriedade: se G é um grafo de ordem n no qual cada subconjunto de [\alpha n] vértices induz mais que \beta n^2 arestas então G contém H como subgrafo. Este problema foi iniciado e motivado por Erdös ao conjecturar que todo grafo livre de triângulo de ordem n contém um subconjunto de [n/2] vértices que induz no máximo n^2 /50 arestas. Nosso resultado principal mostra que i) todo grafo de ordem n livre de triângulos e pentágonos contém um subconjunto de [n/2] vértices que induz no máximo n^2 /64 arestas, e ii) se G é um grafo regular de ordem n livre de triângulo, com grau excedendo n/3, então G contém um subconjunto de [n/2] vértices que induz no máximo n^2 /50 arestas. Se além disso G não é 3-cromático então G contém um subconjunto de [n/2] vértices que induz menos de n^2 /54 arestas. Como subproduto e confirmando uma conjectura de Erdös assintoticamente, temos que todo grafo regular de ordem n livre de triângulo com grau excedendo n/3 pode ser tornado bipartido pela omissão de no máximo (1/25 + o(1))n^2 arestas. Nós também fornecemos um contraexemplo a uma conjectura de Erdös, Faudree, Rousseau e Schelp.
 
Título em inglês
Local density in graphs
Palavras-chave em inglês
Bisections of graphs
Local density
Sparse-halves
Turán's theorem
Resumo em inglês
We consider the following problem. Fixed a graph H and a real number \alpha \in (0,1], determine the smallest \beta = \beta(\alpha, H) satisfying the following property: if G is a graph of order n such that every subset of [\alpha n] vertices spans more that \beta n^2 edges then G contains H as a subgraph. This problem was initiated and motivated by Erdös who conjectured that every triangle-free graph of order n contains a subset of [n/2] vertices that spans at most n^2 /50 edges. Our main result shows that i) every triangle- and pentagon-free graph of order n contains a subset of [n/2] vertices inducing at most n^2 /64 edges and, ii) if G is a triangle-free regular graph of order n with degree exceeding n/3 then G contains a subset of [n/2] vertices inducing at most n^2 /50 edges. Furthermore, if G is not 3-chromatic then G contains a subset of [n/2] vertices inducing less than n^2 /54 edges. As a by-product and confirming a conjecture of Erdös asymptotically, we obtain that every n-vertex triangle-free regular graph with degree exceeding n/3 can be made bipartite by removing at most (1/25 + o(1))n^2 edges. We also provide a counterexample to a conjecture of Erdös, Faudree, Rousseau and Schelp.
 
AVISO - A consulta a este documento fica condicionada na aceitação das seguintes condições de uso:
Este trabalho é somente para uso privado de atividades de pesquisa e ensino. Não é autorizada sua reprodução para quaisquer fins lucrativos. Esta reserva de direitos abrange a todos os dados do documento bem como seu conteúdo. Na utilização ou citação de partes do documento é obrigatório mencionar nome da pessoa autora do trabalho.
teseZambrano.pdf (1.26 Mbytes)
Data de Publicação
2019-03-22
 
AVISO: Saiba o que são os trabalhos decorrentes clicando aqui.
Todos os direitos da tese/dissertação são de seus autores.
CeTI-SC/STI
© 2001-2024. Biblioteca Digital de Teses e Dissertações da USP.